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Abstract

A variety of constitutive models have been developed for soft tissue mechanics. However, there 

is no established criterion to select a suitable model for a specific application. Although the 

model that best fits the experimental data can be deemed the most suitable model, this practice 

often can be insufficient given the inter-sample variability of experimental observations. Herein, 

we present a Bayesian approach to calculate the relative probabilities of constitutive models 

based on biaxial mechanical testing of tissue samples. 46 samples of porcine aortic valve tissue 

were tested using a biaxial stretching setup. For each sample, seven ratios of stresses along 

and perpendicular to the fiber direction were applied. The probabilities of eight invariant-based 

constitutive models were calculated based on the experimental data using the proposed model 

selection framework. The calculated probabilities showed that, out of the considered models and 

based on the information available through the utilized experimental dataset, the May–Newman 

model was the most probable model for the porcine aortic valve data. When the samples were 

grouped into different cusp types, the May–Newman model remained the most probable for the 

left- and right-coronary cusps, whereas for non-coronary cusps two models were found to be 

equally probable: the Lee–Sacks model and the May–Newman model. This difference between 

cusp types was found to be associated with the first principal component analysis (PCA) mode, 

where this mode’s amplitudes of the non-coronary and right-coronary cusps were found to be 

significantly different. Our results show that a PCA-based statistical model can capture significant 

variations in the mechanical properties of soft tissues. The presented framework is applicable 

to any tissue type, and has the potential to provide a structured and rational way of making 

simulations population-based.
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1. Introduction

Soft tissues exhibit a complex stress-strain behavior, including nonlinearity and anisotropy, 

that varies not only across tissue types, but also from sample to sample. Decades of research 

into the biomechanics of soft tissues has shed important light on their behavior and role in 

many physiological systems, such as vascular, lungs and ligaments. However, there are still 

open challenges that need further investigations. One of these challenges is modeling the 

biomechanical behavior of soft tissues reliably and with high fidelity. This challenge remains 

an active area of research.

Numerous constitutive models have been developed to describe the stress-strain behavior 

of soft tissues [1]. These models range from purely phenomenological to multi-scale ones 

that incorporate detailed microstructural information. Some of the more commonly adopted 

models can be categorized into Fung-type [2], invariant-based [3], and structural models 

[4, 5]. These model categories have individual pros and cons. For example, the Fung-type 

models, without additional treatment, do not satisfy frame invariance [6, 7], while the 

structural models are computationally too expensive to be employed in finite element 

simulations of realistic biological systems.

Even within each category, there are a large number of available models that can be 

challenging to differentiate. It is often unclear which model is most suitable for a given 

problem or situation, thus making selection of a particular model challenging. While the 

model that best fits a tissue’s ex-vivo response may be considered an “optimal” choice, 

different definitions of “best fit” can lead to different results. For example, how one 

prescribes relative weights to different experimental protocols performed on a tissue sample 

can have an effect on the fit. This becomes a unique challenge when none of the models 

fit all the experiments simultaneously, leading to a trade-off when performing the fitting. 

Moreover, considering the inter-sample variability in many biological systems, there is no 

guarantee that a model that fits the data for one sample will also be representative of the data 

for another sample of the same tissue type. Nevertheless, it is reasonable to expect that a 

chosen model should be able to represent several (ideally, all) samples, not just one.

The focus of the present study is on the problem of choosing a model for soft tissues, which 

is termed as “model selection”. In general, model selection is a non-trivial problem, and 

several approaches have been proposed in the literature [8], such as a Bayesian framework 

[9], techniques based on cross-validation [10] and those based on information criteria [11]. 

However, these techniques are only starting to be used in the field of tissue biomechanics 

[12–14]. This is partly because model selection becomes all the more challenging due to the 

nonlinearities of constitutive models, the high dimension of the measurement space, and the 

subtle variations in how experiments are conducted.
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An effective and widely used experimental method for biomechanical characterization of 

soft tissues is biaxial testing, which has been applied to various types of thin tissues [5, 

15–20]. With established testing setups and fast acquisition commercial systems, it is now 

possible to collect biaxial test data on a large number of samples and employ advanced 

techniques from data science (e.g., machine learning) for solving unresolved issues. Thus, 

the goal of this study is to formulate a Bayesian framework for model selection that can 

be applied to data from planar biaxial mechanical testing. Herein, model selection is posed 

as a problem of selecting a model that has the highest probability given the experimental 
data. Importantly, the framework is designed to account for the inter-sample variability and 

experimental noise within a Bayesian setting.

To demonstrate the proposed model selection framework, we apply it to aortic valve (AV) 

tissue, which is clinically important for healthy functioning of the heart. The AV is made 

up of three semilunar cusps: left coronary cusp (LCC), non-coronary cusp (NCC), and right 

coronary cusp (RCC). While biomechanics of the AV tissue has been studied extensively in 

the literature [5, 21–29], there is no consensus yet regarding its most appropriate constitutive 

model [7, 30–32]. Further, the three cusp types also pose an interesting question: can the 

same model be used to represent all three AV cusps or a different model is required for each 

cusp type?

The proposed framework aims to be general and applicable to all tissue types, while also 

providing a unique insight into the biomechanics of AV tissue. This article is organised as 

follows. The experimental, theoretical, and computational methods are described in Section 

2. Then, the results using the proposed framework for AV tissue are presented in Section 

3. Finally, the implications and potential uses of the proposed framework are discussed in 

Section 4.

2. Methods

2.1. Data generation and pre-processing

A pre-requisite for the proposed framework is the availability of data from a sufficient 

number of samples to generate a statistical model. In this subsection, the details of the 

experimental setup used to generate the data and the techniques used for pre-processing of 

the data are presented. The experimental data used in this study is the same as that reported 

in a previous study [33], and its experimental procedure is summarized next, followed by the 

details of data pre-processing required for the proposed framework to work.

2.1.1. Tissue preparation—Eighteen porcine hearts (80 – 140 kg of weight, 1 – 1.5
years of age) were obtained from a USDA-approved abattoir (Chickasha Meat Company, 

Chickasha, OK). Each heart was dissected, and the three AV cusps (LCC, NCC, and 

RCC) were extracted from the aortas. The cusps were then briefly stored at −20°C prior 

to mechanics testing within 6 – 12 hours. Prior to biaxial testing, the excised AV specimens 

were thawed in an in-house phosphate-buffered saline (PBS) solution at room temperature. 

Once thawed, the belly region of the tissue was dissected from the cusp, and thickness 

measurements were made using a non-contact laser displacement sensor (Keyence IL-030, 
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Itaska, IL) at three different locations of each cusp specimen to determine the average tissue 

thickness.

2.1.2. Biaxial mechanical testing protocols—For biaxial testing, the tissue 

specimens were mounted to a commercial biaxial testing system (BioTester, CellScale, 

Canada, 1.5 N load cells) via BioRake tines, resulting in an effective testing region of 

6.5 × 6.5 mm. During mounting, the tissue’s circumferential and radial directions were 

aligned with the x- and y-directions of the biaxial testing system, respectively. Four glass 

beads (with a diameter of 300 – 500 μm) were placed on the center region of each specimen 

to serve as fiducial markers for quantifying the in-plane strains.

For testing, the specimen were submerged in a 32°CPBS bath during the testing. The force 

readings from the load cells and CCD camera images were recorded at 15 Hz throughout the 

test. The biaxial loading rates were restricted to < 3.32%/sec to be within the quasi-static 

loading range ( < 12%/sec) to minimize any potential effects of strain rate on the results. At 

any point, if fx and fy were the forces applied in the x- and y-directions, respectively, the 

measured normal stresses were calculated as Pxx = fx/tLy and Pyy = fy/tLx, where Lx and Ly

are the effective dimensions of the sample and t is the average measured tissue thickness 

in the unloaded configuration (Fig. 1a). The deformation gradient F was quantified using 

bi-linear interpolation of the bead positions [33], and the right Cauchy–Green deformation 

tensor was calculated as C = F⊤F (here ( ⋅ )⊤ denotes the matrix transpose). Since the tissue’s 

fiber orientation was aligned with the biaxial testing direction in the experimental setting, 

the off-diagonal terms in the deformation tensor were assumed to be small, effectively 

neglecting any shear deformation. The stretches along the two axes were calculated as 

λx = Cxx and λy = Cyy, where Cxx and Cyy are the two diagonal components of C. The stretch 

in the tissue’s thickness direction was calculated using the incompressibility constraint, i.e., 

λz = 1/λxλy.

A preconditioning protocol, consisting of six loading/unloading cycles at a target first 

Piola-Kirchhoff (PK) peak stress of P = 240 kPa, was first applied to restore the tissue to 

its in-vivo biomechanical configuration. The preconditioning protocols were followed by 

the actual testing protocols. Each testing protocol was defined as recording stresses and 

stretches along a loading path in the Pxx − Pyy space starting at zero-stress state and ending at 

a target maximum stress Pxx
r, max, Pyy

r, max . The target maximum stress state for a protocol r had 

an associated ratio, ϕr = Pxx
r, max/Pyy

r, max and target stress magnitude Pmax = Pxx
r, max 2 + Pyy

r, max 2

(Fig. 1b), with r = 1, …, R. Target stress magnitude was kept approximately constant across 

all samples and protocols, while the target ratio was varied between protocols, so that 

Pxx
r, max, Pyy

r, max = Pmax

1 + ϕr
2 ϕr, 1 . The corresponding maximum stretch for each protocol was pre-

determined and then stretches were increased linearly from the reference state λx = λy = 1
to reach the maximum stretch (and therefore the maximum stress) state. For protocol 

r, mr points were recorded, and, therefore, for each sample, ∑r = 1
R 2mr stresses and ∑r = 1

R 2mr

stretches were recorded.
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2.1.3. Data collection—N = 46 samples of aortic valve tissue were tested (15 LCC, 

15 RCC, and 16 NCC). R = 7 target ratios were used for each tissue sample, with 

ϕr ∈ {0.25, 0.5, 0.75, 1, 1.333, 2, 4}. Each protocol was repeated for three loading/unloading 

cycles, and the measurements from the final loading cycle were used. In practice, the actual 

maximum stress magnitude Pmax and the actual stress ratios ϕr varied slightly from the target 

values. More importantly, the number of points along the curve mr varied from sample to 

sample. As a result each sample had different number of measurements. In order to create 

a uniform number of measurements across samples, an interpolation of the experimentally 

measured stretch-stress curves was required, which is described next.

2.1.4. Interpolation and smoothing—To standardize the measurements for all 

samples with the same range of applied stresses and the same number of measurement 

points, an interpolation was necessary. An appropriate interpolation function was required 

that provided a good fit to the full range of stress-stretch curves. After testing various 

options, the following one-dimensional function based on implicit elasticity proposed by 

Freed and Rajagopal [34] was used

ε = εC + εE = σ
EC + 1

β 1 − 1
1 + (β − 1)σ/EE β/(β − 1) , (1)

where ε ≔ λx − 1 and σ ≔ Pxx for curves along the fiber direction, and ε ≔ λy − 1 and 

σ ≔ Pyy for the cross-fiber direction. The above function has three parameters, β, EE, EC , 

which were determined by fitting Eq. (1) to each experimental stress-stretch curve. Since 

the one-dimensional function is based on implicit elasticity theory, it also helped avoid any 

non-physical oscillations in the interpolated data.

After fitting the above function to each experimental stress-stretch curve, an interpolated (or 

extrapolated) and smoothed version of the dataset was produced, with each curve having 

m‾ = 100 points and reaching a maximum stress magnitude of Pmax  (here ⋅  denotes the 

mean operator over all tissue samples). Thus, after this step, each sample I had the same 

input

x = ∪
r = 1

R {Pxx
r, max, Pyy

r, max} . (2)

The outputs included measured stresses, denoted as a vector σ(I) ∈ ℝ2Rm‾ , and the same 

number of stretches, denoted as a vector λ(I) ∈ ℝ2Rm‾ . Since the stretches varied linearly 

for each protocol, the stretch vector could be represented simply in terms of the maximum 

stretches for each protocol, λmax, (I) ∈ ℝ2R. The combination of normalized stresses and 

maximum stretches for each sample was represented with a combined output vector

y(I) ≔ σ(I)

Pmax ∪ λmax, (I), (3)
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and this combined output vector y(I) ∈ ℝ2R(m‾ + 1).

2.1.5. Principal component analysis—After interpolation, we had the same number 

of measurements for all N samples, y(I), I = 1, …, N. From these measurements, a statistical 

distribution of the measured output was sought. A fundamental statistical distribution 

is the multivariate Gaussian distribution, which requires estimation of the mean vector 

and covariance matrix. However, because of the highdimensionality of the output space, 

directly estimating its covariance matrix would have required a prohibitively large number 

of samples. Therefore, a reduction in dimensionality was first achieved via principal 

component analysis (PCA) as follows.

First, the mean output was calculated as

y = 1
N ∑

I = 1

N
y(I), (4)

and a zero-mean output vector for each sample was calculated as

Δy(I) = y(I) − y . (5)

All the zero-mean output vectors were written in a matrix form Z, where the Ith row is 

Δy(I)1. Next, a singular value decomposition of Z was performed as

Z = USVH, (6)

where ( ⋅ )H denotes the conjugate transpose of a matrix, S is a diagonal matrix with singular 

values sα (equal to the square root of the eigenvalues of ZHZ), and rows of VH, vα, are 

the corresponding unitary eigenvectors (also called principal modes) of ZHZ. The singular 

values and vectors pairs were written as sα, vα , with α = 1, …, N. The PCA mode amplitudes 

of each data set were calculated as

aα
(I) = Δy(I) ⋅ vα . (7)

Therefore, the reconstructed measurements from first M principal modes were

y(I) =
α = 1

M
aα

(I)vα + y . (8)

1Remark: A direct estimation of the covariance matrix would be Σ = Z⊤Z. However, since N ≪ 2R(m‾ + 1), this estimate of the 
covariance matrix would be extremely illconditioned and not usable for building a statistical model. Thus, a PCA was required to 
resolve this issue.
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Using the unitary property of U, it is easy to see that the singular values sα also represent the 

standard deviation of the modal amplitudes aα
(I). Thus, keeping the first M principal modes, 

the experimental data was represented as a statistical model2

Y = y + ∑
α = 1

M
N(0, sα

2)vα + I − ∑
α = 1

M
vα ⊗ vα ϵ, (9)

where ϵ is a random vector with norm ∥ ϵ ∥ ∼ N 0, σ2 + σn
2 . The variance of this random 

vector was related to the fact that α > M modes were truncated:

σ2 = 1
N ∑

I = 1

N
y(I) − y(I) 2, (10)

whereas the measurement noise variance σn
2 was calculated from the interpolation error.

2.2. Hyperelastic constitutive models

The main question this study aims to address is, “which model should be selected given the 

data from N samples described above?”. In order to proceed, eight hyperelastic constitutive 

models that have been developed for soft tissues were pre-selected. The choice, although not 

an exhaustive list, covers several invariant-based models that can be difficult to differentiate. 

The following models were considered in this study: (i) an isotropic model by Yeoh for 

rubber elasticity [35]; (ii) the Lee–Sacks (LS) model for the mitral valve leaflet tissue [36]; 

(iii) the May–Newman (MN) model with another form proposed for the mitral valve tissue 

[37]; (iv and v) two variants of a model proposed by Holzapfel, Gasser, and Ogden for 

arterial tissue with an additive split of isotropic and anisotropic components [38] (HGO with 

linear isotropic term and HGO2 with an exponential isotropic term); (vi) Holzapfel model 

proposed for coronary arteries [39]; (vii) another model proposed by Gasser, Ogden and 

Holzapfel (GOH) for coronary arteries [3], and (viii) Humphrey–Yin (HY) model developed 

for myocardium [40]. Some theoretical limitations have been reported for these models in 

the literature, however the shortlist was made based on their common use in practice.

Hyperelastic models define a strain energy density function (SEDF) Ψ. The SEDFs and 

corresponding parameters θ of all the eight models in alphabetical order are summarized in 

Table 1. From the SEDF, the first PK stress is derived as [41]

P = ∂Ψ
∂F − pF−⊤, (11)

where p is the hydrostatic pressure to enforce incompressibility. Based on the 

applied deformation in the biaxial setup, we can determine the deformation gradient 

F = diag λx, λy, 1/λxλy . The models considered are functions of the first invariant I1 = tr(C)
and the fourth invariant I4 = N ⋅ CN, where N is the fiber direction and approximated to be 

2Remark: Choosing a statistical model here can also be considered as a problem of model selection. Since the mode amplitudes are 
scalars and independent (because of PCA), this is an easier problem. For simplicity, a normal distribution was chosen for the modal 
amplitudes. However, if enough samples are available, it is possible to select more appropriate distributions for each PCA mode.
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along the x-axis. Thus, ∂Ψ
∂C = ∂Ψ

∂I1
I + ∂Ψ

∂I4
N ⊗ N, and the hydrostatic pressure p is analytically 

derived by equating the normal stress along tissue’s thickness, Pzz = 0 [42, 43].

Thus, given a model for SEDF Ψ, the resulting stresses Pxx and Pyy can be obtained from 

stretches λx and λy. However, since the experiments were performed to target stresses 

Pxx
r, max, Pyy

r, max , the inputs to the model were the stresses instead. From these maximum target 

stresses, the maximum target stretches were computed iteratively using a modified Powell 

method implementation in SciPy [44]. Once the target stretches were found, m‾  equi-spaced 

stretch increments were applied to find the resulting stresses. The resulting stresses were 

then normalized by Pmax  and combined with the maximum target stretches (as per Eq. 3) 

to obtain the model output vector, denoted as z which is a function of the chosen model and 

associated parameter values.

Note that, for some models, their parameterization was slightly altered from the original 

versions to make the parameters comparable to other models. Moreover, all the considered 

models have similar numbers (3 to 5) of parameters. For any additional models to be 

considered, the framework can simply be applied to the new model and the results compared 

with those presented here.

2.3. Proposed framework: Bayesian model selection

In this subsection, the framework for model selection is described. If K models are 

considered with output z = ℳℐ(x, θ), where ℳℐ represents the ℐth model with associated 

parameters θ and ℐ = 1, …, K, these were compared to the statistical model of the 

measurements Y  in Eq. (9) as follows. From the Bayes’ theorem (see Appendix A for the 

preliminaries), we have:

p θ ∣ z = y, ℳℐ = p z = y ∣ θ, ℳℐ p θ ∣ ℳℐ

p z = y ∣ ℳℐ
, (12)

where the denominator on the right-hand side is an integral of the numerator, i.e.,

p z = y ∣ ℳℐ =
θ

p z = y ∣ θ, ℳℐ p θ ∣ ℳℐ dθ . (13)

The above integral balances model complexity and quality of fit by rewarding the goodness 

of fit while penalising models with parameters that do not contribute to the goodness of fit. 

Applying the Bayes’ theorem once again, we arrived at the probability of model ℐ given the 

measurements

p ℳℐ ∣ z = y = p z = y ∣ ℳℐ p ℳℐ

p(z = y) , (14)

where the denominator is the summation over the numerator, i.e.,
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p(z = y) = ∑
ℐ = 1

K
p(z = y ∣ ℳℐ)p(ℳℐ) . (15)

This approach, also known as the Bayes factor, has been proposed to compare any two 

models [45] and is being recently used in mechanics [14, 46, 47]. Thus, to evaluate the 

model probabilities p ℳℐ ∣ z = y , Eq. (13) has to be evaluated with specified or assumed 

prior probabilities of models p ℳℐ . In the absence of any prior knowledge or preference, 

equal prior probabilities of the models were used, i.e., p ℳℐ = 1/K for all ℐ. The integral 

in Eq. (13) was computed using Monte Carlo integration, as described next.

2.3.1. Monte Carlo integration—The integral in Eq. (13) can be high-dimensional 

with a large or, possibly, infinite domain. Thus, Monte Carlo integration was used to 

approximate this integral [48], i.e.,

p(z = y ∣ ℳℐ) ≈ 1
S ∑

s = 1

S
p(z = y ∣ θs, ℳℐ), (16)

where θs, s = 1, …, S, are samples from the prior distribution of model parameters p θ ∣ ℳℐ . 

The useful property of Monte Carlo integration is that the approximation error converges 

∼ 1
S  independently of the dimension of the parameter space. Moreover, it is trivial to 

implement and parallelize. Lastly, the prior distribution can be sampled randomly or quasi-

randomly, with the latter giving faster convergence in practice [48]. Therefore, a Sobol 

sequence [49, 50] was used to generate S = 215 samples from the prior distributions of 

parameters of each model, p θ ∣ ℳℐ .

2.3.2. Calculating the likelihood—In Eq. (16), it is required to calculate the likelihood 

function in the RHS. This is computed from the statistical model presented in Eq. (9). That 

is, for a given model ℳℐ and parameter value θs, the model output z = ℳℐ x, θs  was first 

calculated. Then its mode amplitudes with respect to the PCA were calculated as

aα
s = (z − y) ⋅ vα . (17)

Lastly, the error term was calculated by adopting the L2 norm as

e2 = ∥ (z − y) −
α = 1

M
aα

svα ∥
2

. (18)

Thus, the likelihood was calculated as
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p(z = y ∣ θs, ℳℐ) = ∏
α = 1

M 1
2πsα

exp − (aα
s)2

2sα
2

× 1
2π(σ2 + σn

2)
exp − e2

2(σ2 + σn
2)

.
(19)

2.3.3. Choice of parameter prior distributions—Choosing the prior probability 

distribution of parameters for each model, p θ ∣ ℳℐ , is an important step in the proposed 

framework. In the absence of any prior information about the parameters, an uninformed 

prior—specifying a uniform distribution in a range—can be assumed. However, there is no 

obvious way to choose an appropriate range for each parameter. To make this choice of 

range consistent across models, the following approach was used. A classical curve-fitting 

technique was used to fit the model output z to the mean response y resulting in best-fit 

parameter values θ‾ (Table 2). Details of the classical fitting procedure and a remark on 

its relation to the likelihood function are provided in Appendix B. Subsequently, a range 

of θi ∈ θ‾i/10, 10 θ‾i + 1  for each parameter θi was used (Table 3), thus spanning two orders 

of magnitude around the best-fit values of the parameters. A different procedure was used 

for the structural parameter κ: its distribution was assumed to be uniform in the entire 

admissible range (usually [0, 1] or [0, 1/3]). The ranges of the parameters used for each 

model are listed in Table 3.

2.4. Post-processing and statistical tests

The simulations performed for computing the Monte Carlo integral in Eq. (16) can also be 

used to obtain further insights. For example, the posterior distributions of the parameters, 

Eq. (12), for each model can be computed. From the posterior distributions, point estimates 

of the expected parameter values can be defined as

E(θ) =
θ

θ p θ ∣ z = y, ℳℐ dθ (20)

and subsequently approximated via Monte Carlo approximation. Another point estimate, the 

maximum a posteriori (MAP) estimate θMAP, was also approximated from the Monte Carlo 

samples as

θMAP ≈ arg max
s ∈ {1, …, S}

p θs ∣ z = y, ℳℐ . (21)

Equivalently, the expected model output and its variance,

E(z) =
θ

z p θ ∣ z = y, ℳℐ dθ and (22)

V(z) =
θ

[z − E(z)] ⊗ [z − E(z)] p θ ∣ z = y, ℳℐ dθ, (23)
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were approximated using the Monte Carlo integration. Lastly, to obtain a histogram of 

the posterior probability distributions of each of the model parameters θi, the range of 

each parameter was divided into 20 equal-sized bins, Bi
J ≔ θi

J, θi
J + 1 , J = 1, …, 20. Then, the 

posterior probability distribution p θ ∣ z = y, ℳℐ  was marginalized with respect to the other 

parameter θj ≠ i to obtain following discrete probability:

p θi ∈ Bi
J ∝

θ
H θi, Bi

J p θ ∣ z = y, ℳℐ dθ, (24)

where

H(x, B) = 1 if x ∈ B
0 otherwise . (25)

The above integral was also approximated using Monte Carlo.

For finding differences between cusp types, independent samples t-test was used to compare 

the modal amplitudes. For finding correlations between modal amplitudes and tissue 

thicknesses, Pearson’s correlation coefficient was used.

3. Results

3.1. Data pre-processing

The considered ratio ϕ varied slightly from the target values (Fig. 2). The mean values of 

the applied ratios were ϕr ∈ {0.29, 0.58, 0.87, 1.13, 1.42, 2.02, 3.87}, and the mean magnitude 

of the maximum applied stress was Pmax = 307.4 kPa. These mean values of stress ratios ϕ
and maximum stress magnitude Pmax were used for evaluating the common input vector x
(representing the target applied stresses, Eq. 2) and thereafter compute the model outputs y
(representing the resulting stresses and stretches, Eq. 3).

The stress-stretch curves at all ratios for all 46 samples are plotted as points in Fig. 3. The 

1D model (Eq. 1) fit all the stress-stretch curves well (solid lines in Fig. 3), without causing 

any issues of overfitting, oscillations, or ill-conditioning. The coefficient of determination 

of the fit was R2 > 0.927 for all curves, with the mean value being R2 = 0.996. The 

fitted values of parameters and coefficients of determination are provided as Supplementary 

Information (SI). Thus, the function also allowed reliable interpolation/extrapolation. The 

interpolated stress-stretch curves for the common input vector x are shown in Fig. 4. These 

curves were used as the input to the proposed model selection framework, starting with the 

principal component analysis.

3.2. Principal component analysis

The mean stress-stretch response is shown in Fig. 5, with the variation of one standard 

deviation depicted as shaded area. The amplitudes of all the normal modes calculated using 

PCA are shown in Fig. 6 (see SI for an animation of the first five PCA modes). The main 

boxplot shows the variation in the modal amplitudes of the experimental data, which is only 

Aggarwal et al. Page 11

J Mech Behav Biomed Mater. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dominant for the first five modes. The inset in Fig. 6 shows the singular values of each mode 

on a log-scale, which decrease exponentially. The first five dominant PCA modes are plotted 

in Fig. 7.

Based on the PCA, a statistical model (Eq. 9) was constructed. The framework allows 

generation of synthetic dataset based on this statistical model. Ten random samples are 

shown in Fig. 8, which demonstrates that the statistical model captures the variation in the 

actual dataset.

3.3. Model probabilities

Using the proposed framework, the convergence of Monte Carlo integration was confirmed 

by plotting the model probabilities for M = 11 versus number of iterations (Fig. 9). Clearly, 

all the computations were converged. The most probable model comes out to be the May–

Newman model, followed by the Lee–Sacks model. If the number of modes M retained 

in the statistical model are varied, the model probabilities vary, as shown in Fig. 10a. 

Interestingly, if no principal modes are considered (M = 0), i.e., the comparison of classical 

fitting to the mean is used, five out of the eight models have roughly similar probabilities, 

with May–Newman model being the most probable. This means that the five of the models 

are able to describe the mean response well. However, as variations along the principal 

modes are included in the statistical model, it becomes possible to differentiate the models. 

For M ≥ 11, the May–Newman model performs significantly better that the other models.

If we categorize the samples by cusp types (LCC, RCC, and NCC), the relative probabilities 

of the eight models for each cusp type show varying behavior (Fig. 10b–d). For both LCC 

and RCC tissues, the May–Newman model still has the largest probability, and there is 

a clear convergence of model probabilities as modes are increased. In contrast, for NCC 

tissues, the probabilities oscillate as we increase the number of modes considered. At 

M ≥ 11 the probabilities of Lee–Sacks and May–Newman models are comparable. This 

indicates that both May–Newman and Lee–Sacks models are equally good at describing the 

data of NCC tissues, and one cannot be ruled out in favor of the other. Moreover, some 

of the other models, e.g., Humphrey–Yin model, perform well for certain values of M and 

should not be discarded. Generally, the NCC tissues show a unique behavior at mode M = 7
that affects all model probabilities and will require further investigation in the future.

3.4. Expected and MAP parameter values

Since the MN model clearly outperforms other models based on the proposed Bayesian 

framework, we analyze its properties further. Using the Monte Carlo integration, for 

MN model, the expected values of its parameters (Eq. 20) were calculated to be 

μ = 11.26 kPa, k1 = 305.66 kPa, k2 = 1.74, and k3 = 299.73. For comparison, the MAP estimates 

of its parameters (Eq. 21) were found to be μ = 13.74 kPa, k1 = 253.77 kPa, k2 = 1.1, and 

k3 = 335.72. When compared with the parameter values using classical fit (Table 2), a large 

difference is noticed. This is due to a fundamental difference in the two approaches. While, 

the classical fit tries to match the model response to the mean response, the presented 

approach prefers to match the shape (i.e. principal modes of variation from the mean) of 

stress-stretch curves from a model to those observed in the experiments.
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The resulting stress-stretch curves and their variations were computed for the MN model 

and are shown in Fig. 11. While the MN model captures the cross-fiber response well, 

its response along the fibers deviates from the data, especially for low ϕ. This issue 

is also present in all other models considered (results not shown for brevity), and it is 

related to the complex coupling of fiber and matrix. This mismatch between the data and 

the considered models indicates that none of the considered models are perfectly suited 

for aortic valve tissues and signifies the need for continued developments in the field of 

constitutive modeling. The difficulty in selecting a model in the absence of a clear, perfect fit 

highlights the need for a systematic framework that allows an objective and easy-to-interpret 

comparison of models. Lastly, the posterior distributions of the MN model parameters are 

shown in Fig. 12, which could be used for population-based studies in the future.

4. Discussion

The coupling between fiber and cross-fiber directions in soft tissues produces a complex 

behavior, which is only captured when multiple biaxial loading ratios are used in a biaxial 

mechanical testing setup. Many constitutive models have been developed to describe this 

observed behavior and provide better predictive capabilities. However, commonly these 

models are fit only to the mean response, effectively regarding the variability observed in 

biological samples as being random. In contrast, the PCA results highlight that the observed 

variation is not random and should be considered when matching with a model’s response.

4.1. Efficacy of the proposed framework

In the present study, we proposed a novel framework that accounts for the inter-sample 

variability and allows for the computation of the probabilities of chosen constitutive models. 

Notably, instead of finding the best fit as is commonly done in the literature, the proposed 

framework aims to find the model that can capture the variation seen in the experimental 

dataset. This approach depends on having data from a large number of tissue samples. 

The large and, potentially variable, number of data points for each sample pose a critical 

challenge in the application of statistical tools. Herein, one-dimensional interpolation and 

PCA-based techniques were used to tackle these challenges, and were found to be effective.

For the interpolation, it was not trivial to establish a function that can fit all the observed 

stress-stretch curves. The one-dimensional stress-strain function proposed by Freed and 

Rajagopal [34] worked extremely well (Fig. 3). Since the function is based on elasticity 

theory, by construction, it excluded non-physical responses, such as oscillations that are 

commonly observed in the low-stress regime of the biaxial stretching data. Moreover, even 

with just three parameters, it was able to fit all of the 2N × R = 644 stress-stretch curves 

R2 > 0.927 and mean R2 = 0.996 .

In addition, PCA was used to reduce the dimensions of the dataset and thereby establishing 

a computationally useful statistical model. Since the PCA modes are orthogonal, the 

amplitudes of the PCA modes are independent, by construction. Thus, PCA reduces the 

problem to constructing distributions of several scalar variables. In this work, each modal 
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amplitude was assumed to have a normal distribution. However, this assumption can be 

relaxed if the hypothesis of normality can be rejected with sufficient number of samples.

Once the statistical model is established, the proposed framework is straightforward to 

implement, and the Monte Carlo integration scheme is trivial to parallelize. The results 

converged for all Monte Carlo simulations, with typical computational times of 30 minutes 

with a 16-core CPU. Thus, the framework is computationally feasible while providing 

descriptive statistical insight. The fact that the framework was able to distinguish between 

similar models (all of them dependent on I1 and I4 with exponential terms) and pick up the 

differences between leaflet types, also observed in the PCA, is remarkable and substantiates 

its reliability.

Lastly, the Bayesian framework offers some practical advantages compared to the classical 

parameter-fitting approach. While in-general having a higher number of parameters gives a 

model an advantage in fitting the data better, this advantage is naturally taken into account 

in the Bayesian setting wherein models with more parameters are penalized [13]. Moreover, 

finding a unique global minima in parameter-fitting can be challenging for problems with 

either insufficient data to differentiate the parameters or with highly (or perfectly) correlated 

parameters [51, 52]. The proposed framework circumvents these issues by integrating over 

the parameter space (see SI for a simple demonstration of these features). Nevertheless, 

finding a suitable model is a multi-faceted problem, and if the uniqueness of parameters is of 

interest, that aspect could be accounted for in choosing a model.

4.2. Insights into tissue mechanics

Our results highlight several important characteristics of soft tissues, in general, and for 

aortic valve cusps, in particular. The observed variation in the stress-stretch response of 

tissues was larger in the fiber direction compared to the cross-fiber direction (Fig. 5). 

Moreover, it is clear that even the most probable model (i.e., the May–Newman model) does 

not capture the stress-stretch curves at all of the biaxial loading ratios (Fig. 11). This means 

that there is a trade-off while matching the models to the measurements. Nonetheless, the 

proposed framework naturally accounts for this trade-off by integrating over the parameter 

space, weighted appropriately.

From the considered eight hyperelastic models and based on the information available 

through the utilized experimental dataset, the most probable model for AV tissues was the 

one proposed by May–Newman [37]. Although this model was originally proposed for 

mitral valve tissues, the same model form has been adopted for the aortic valve tissue as well 

[30]. The second most probable model was the one by Lee and Sacks [36], which has been 

used for mitral valve, tricuspid valve and bioprosthetic valve.

A key finding from this study is that different models are suitable for different AV cusp 

types. Specifically, the Lee–Sacks model [36] and the May–Newman model [37] were 

equally probable for the NCC, while the May–Newman model was the most probable model 

for the LCC and RCC. In order to further investigate these differences, the amplitudes of 

the PCA modes for the three cusp types were compared, and noticeable differences were 

found in the first mode amplitudes (Fig. 13). Specifically, there was a statistically significant 
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difference between the NCC and RCC samples (p < 0.05). Although the difference between 

the NCC and LCC samples was not established to be statistically significant (p = 0.07), it 
could be due to the limited sample size in this study. The different stress-stretch behavior 

of the NCC might also be related to its different physiology (no coronary flow) and the 

observed differences in its geometry relative to the other two cusp types [53].

Furthermore, when processing the data from biaxial mechanical testing, it is common to 

work with stresses, essentially factoring out tissue thickness. However, for valves, their 

thickness is an important design feature. To investigate the relation between the thickness 

and stress-strain response of tissues, the classical Pearson’s correlation coefficient was 

calculated between the modal amplitudes and tissue thicknesses. The second and third 

modes showed a statistically significant correlation (Table 4). This indicates a correlation 

between the tissue thickness and its stress-strain behavior, which should be accounted for 

while constructing population-level models. One way of achieving this is by working with 

membrane tension rather than stress, thereby incorporating the tissue thickness into the 

model parameters.

4.3. Limitations

While the proposed framework allows for an objective comparison between constitutive 

models, the objectivity should be interpreted within the scope of the problem—i.e. within 

the scope of the experimental data used and the models considered in the study—and from a 

Bayesian perspective. This means that the results are only valid for the data used and subject 

to the prior probabilities used. Having more experimental data (e.g., shear deformations have 

been shown to be important for constitutive modeling [54]) would make the results more 

reliable. Similarly, microstructural information on the tissues, if available, could be used to 

either fix or more tightly constrain the fiber dispersion parameters (such as κ) in the models.

The list of models considered is also limited by practical limitations. While, ideally, one 

would include include all the models available in the literature, this process is practically 

infeasible. Therefore, only the most widely used constitutive models for soft tissues were 

used in this study. However, there could be other models in the literature that might be 

more suitable, such as those with nonlinear contributions from the isotropic matrix [55], 

those with I2 and I5 invariants [56–58], those with logarithmic functions in the strain energy 

density [59, 60], or meso-scale or multi-scale models. Thus, the framework only compares 

chosen models, and any model not included in this framework cannot be excluded or 

disregarded.

Results from the proposed framework depend on the choice of prior parameter distributions. 

Practically, choosing the parameters’ prior distributions in a manner that is consistent across 

models is not trivial. Too wide of a distribution indicates uncertainty, which may lower the 

final model probability. Equivalently, a narrow distribution may limit the model’s capability 

to cover the observed spread in the data. One approach for choosing consistent parameter 

ranges was used in this study, however other approaches should be tested in the future. To 

confirm the results in this study, a uniform prior in the range obtained by fitting a model 
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to each of the individual samples was also tested. The resulting model probabilities were 

largely the same (results presented in SI), further adding confidence to our results.

Another limitation of the proposed framework is its reliance on having a large enough 

sample size. Thus, more data would allow construction of better statistical models and 

higher confidence in the results. These limitations will be addressed in the future work in 

this direction, that is outlined next.

4.4. Future work and conclusion

In the future, the proposed framework will be applied to other tissue types from animals 

and humans. Additional models that are known to satisfy continuum and thermodynamic 

requirements will be included in the investigation, allowing a comparison of wider range of 

models. Specifically, models based on other invariants [56–58] and other functional forms 

[59, 60] will be studied, as well as structural and multi-layer models that are specifically 

developed to describe the coupling. While an equal prior probability was assigned to all 

the models considered here, any concerns regarding the stability/convexity/thermodynamic 

requirements could be reflected in a reduced prior probability. This study focused on elastic 

behavior under quasi-static loading, but a similar framework could be developed to compare 

models that describe the viscoelastic behavior at varying loading rates observed in valve 

tissues [61].

In this study, only the biomechanical parameters were considered to be random, while the 

stress-free state of the tissues were assumed to be known. However, the stress-free (i.e., 

reference) state of tissues is well-known to be difficult to assess [62, 63]. In valve tissues, 

this is due to the existing prestresses at different scales [64] and long toe regions in the 

stress-strain response. A novel feature of the proposed framework is that it can account for 

uncertainty in the reference state by considering prestresses to be random variables. This 

extension will be undertaken in the future.

In conclusion, the framework will facilitate an objective comparison of constitutive models 

against experimental data for different tissues. In conjunction with optimal design of biaxial 

experiments [65] and improved parameter estimation techniques [51, 52], work in the 

proposed direction will lead to the development of more predictive biomechanical models 

that are representative of population, not just individual patients.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A.: Bayes’ Theorem

For two continuous random variables A and B, let the joint prior probability density function 

be denoted by p(A, B). Further, the prior marginal probability densities of A and B are 

denoted as p(A) and p(B), respectively. The posterior probability density of A given B
(known as the conditional probability) is denoted as p(A ∣ B) and is given by the Bayes’ 

theorem:

p(A ∣ B) = p(B ∣ A)p(A)
p(B) ,

where p(B ∣ A) is the likelihood term. The denominator on the right hand side is also the 

normalization term as shown below:

p(B) = ∫ p(A, B)dA = ∫ p(B ∣ A)p(A)dA .

Appendix B.: Classical Fitting

Given the mean output y, the classical way of fitting a model is to find the model parameters 

such that the model output z(θ) = ℳℐ(x, θ) is closest to the mean output y in some norm. A 

commonly used L2 norm is adopted here in the present study, i.e., the sum of squares of each 

component difference. Mathematically, we write:

θ‾ ≔ arg min
θ

∥ z(θ) − y ∥2 .

The above minimization was performed using the trust-region reflective algorithm 

implemented in SciPy.

When we do not consider any of the PCA modes (i.e., M = 0) and ascribe all variation in the 

data as error, the likelihood function (19) becomes

p z = y ∣ θs, ℳℐ = 1
2π σ2 + σn

2
exp − e2

2 σ2 + σn
2

,

where the error term also simplifies to e2 = ∥ z − y ∥2. It is easy to see that the maximum 

likelihood happens when e2 is minimized. In other words, the fitted parameters θ‾ also 

correspond to the maximum likelihood with M = 0. In contrast, as the PCA modes are 

included, the likelihood depends not only on the error term (i.e., random variations), but also 

on the specific variations along the included PCA modes.
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Figure 1: 
(a) A schematic of the biaxial testing with the circumferential (fiber) direction of the tissue 

was aligned with the x axis and the radial (cross-fiber) direction of the tissue was aligned 

with the y axis. (b) The different loading paths in the stress space with seven different 

loading ratios ϕr ∈ {0.25, 0.5, 0.75, 1, 1.333, 2, 4}.
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Figure 2: 
The applied stresses (dots) deviated slightly from the target ratio (faint dashed colored lines), 

where the mean achieved ratio is shown in solid colored lines. The mean magnitude of the 

maximum applied stress Pmax is plotted as a black dashed circular arc. The target stresses 

for each protocol are the intersection of the circular arc and solid lines, and are denoted with 

black *.
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Figure 3: 
The experimental data for N = 46 samples (dots) and the fitted interpolating function (line) 

in the (a) fiber and (b) cross-fiber direction; horizontal axes are stretches and vertical 

axes are stresses in [kPa]. Each color represents a different tissue sample of total N = 46
specimens.
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Figure 4: 
The interpolated data in the (a) fiber and (b) cross-fiber direction; horizontal axes are 

stretches and vertical axes are stresses in [kPa]. Each color represents a different tissue 

sample of total N = 46 specimens.
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Figure 5: 
The mean stress-stretch response (blue lines) in the (a) fiber and (b) cross-fiber direction; 

horizontal axes are stretches and vertical axes are stresses in [kPa]. The shaded gray area 

denotes one standard deviation.
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Figure 6: 
A boxplot of the amplitudes of PCA modes in the experimental data, from which a normal 

distribution is constructed with mean zero and variance equal to sα
2 (inset).

Aggarwal et al. Page 27

J Mech Behav Biomed Mater. Author manuscript; available in PMC 2024 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7: 
First five principal modes of stress-stretch response in the (a) fiber and (b) cross-fiber 

direction; horizontal axes are stretches and vertical axes are stresses in [kPa]. For an 

animation of the modes, see SI.
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Figure 8: 
Ten synthetic samples’ stress-stretch response using Eq. (9) in the (a) fiber and (b) cross-

fiber direction; horizontal axes are stretches and vertical axes are stresses in [kPa]. Each 

color represents one synthetic sample.
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Figure 9: 
Relative probabilities of the eight hyperelastic models calculated using the proposed 

framework with M = 11 versus number of Monte Carlo iterations.
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Figure 10: 
The probabilities of the eight hyperelastic models versus number of PCA modes retained M
for (a) all, (b) LCC, (c) RCC, and (d) NCC types.
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Figure 11: 
Posterior response using May–Newmann model with mean (solid line) and variation (shaded 

region) in blue color compared to the data in red color, in the (a) fiber and (b) cross-fiber 

direction. For comparison, the classic fit of the MN model is plotted with dashed blue lines. 

Horizontal axes are stretches and vertical axes are stresses in [kPa].
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Figure 12: 
Histogram of the posterior distribution of parameters of the May–Newman model.
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Figure 13: 
Independent samples t-tests between the modal amplitudes of different cusp types showed a 

significant difference in the second principal mode between the NCC (n = 16) and the other 

two cusp types (n = 15 each), which is consistent with the finding that the probability of 

models is different for the NCC.
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Table 1:

List of models considered with their strain energy density functions and the associated parameters. For LS 

model, k* ≔ κk2 + (1 − κ)k3 is used for brevity.

Model Strain energy density function Parameters

GOH Ψ = μ
2 I1 − 3 + k1

2k2
exp k2 κI1 + (1 − 3κ)I4 − 1 2 − 1 θ = μ, k1, k2, κ

HGO Ψ = μ
2 I1 − 3 + k1

2k2
exp k2 I4 − 1 2 − 1 θ = μ, k1, k2

HGO2 Ψ = k1
k2

exp k2 I1 − 3 − 1 + k3
2k4

exp k4 I4 − 1 2 − 1 θ = k1, k2, k3, k4

Holzapfel Ψ = μ
2 I1 − 3 + k1

2k2
exp k2 κ I1 − 3 2 + (1 − κ) I4 − 1 2

− 1

θ = μ, k1, k2, κ

HY Ψ = k1
k2

exp k2 I1 − 3 − 1 + k3
k4

exp k4 I4 − 1 2 − 1 θ = k1, k2, k3, k4

LS Ψ = μ
2 I1 − 3 + k1

2k∗ κ exp k2 I1 − 3 2 + (1 − κ)exp

k3 I4 − 1 2 − 1

θ = μ, k1, k2, k3, κ

MN Ψ = μ
2 I1 − 3 + k1

k2 + k3
exp k2 I1 − 3 2 + k3 I4 − 1 4

− 1

θ = k1, k2, k3, μ

Yeoh Ψ = ∑i = 1
3 ci I1 − 3 i θ = c1, c2, c3
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Table 2:

Model parameters values θ‾i corresponding to the best classical fit to the mean response

Model θ‾1 (in kPa) θ‾2 (in kPa) θ‾3 θ‾4 θ‾5

GOH μ = 3.68 k1 = 30.00 k2 = 8.93 κ = 0.30 –

HGO μ = 28.48 k1 = 1.86 k2 = 5.68 – –

HGO2 k1 = 0.25 k3 = 0.64 k2 = 3.55 k4 = 0.25 –

Holzapfel μ = 4.14 k1 = 4.89 k2 = 1/86 κ = 0.51 –

HY k1 = 0.25 k3 = 0.92 k2 = 3.54 k4 = 44.92 –

LS μ = 5.3 k1 = 2.65 k2 = 1.21 k3 = 7.14 κ = 0.96
MN μ = 4.21 k1 = 57.45 k2 = 0.93 k3 = 36.08 –

Yeoh c1 = 0 c2 = 0 c3 = 6.8 kPa – –
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Table 3:

Prior distributions of the model parameters were assumed to be uniform in the following ranges (around the 

best classical fit from Table 2)

Model θ1 prior (in kPa) θ2 prior (in kPa) θ3 prior θ4 prior θ5 prior

GOH μ ∈ [0.37, 46.83] k1 ∈ [3.00, 310.00] k2 ∈ [0.89, 99.30] k3 ∈ [0, 1/3]
HGO μ ∈ [2.85, 294.85] k1 ∈ [0.19, 28.57] k2 ∈ [0.57, 66.83] –

HGO2 k1 ∈ [0.02, 12.47] k3 ∈ [0.06, 16.36] k2 ∈ [0.36, 45.54] k4 ∈ [0.70, 79.60] –

Holzapfel μ ∈ [0.41, 51.43] k1 ∈ [0.49, 58.94] k2 ∈ [0.19, 28.62] κ ∈ [0, 1] –

HY k1 ∈ [0.03, 12.51] k3 ∈ [0.09, 19.17] k4 ∈ [4.49, 459.20] k2 ∈ [0.35, 45.43] –

LS μ ∈ [0.53, 63.00] k1 ∈ [0.26, 36.47] k2 ∈ [0.12, 22.10] k3 ∈ [0.71, 81.45] κ ∈ [0, 1]
MN μ ∈ [0.42, 52.08] k1 ∈ [5.75, 584.50] k2 ∈ [0.09, 19.31] k3 ∈ [3.61, 370.77] –

Yeoh c1 ∈ [0.00, 10.00] c2 ∈ [0.00, 10.00] c3 ∈ [0.68, 78.01]
kPa

– –
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Table 4:

Pearson’s correlation coefficient between tissue thickness and amplitudes of the first five PCA modes and 

corresponding p-values

Mode Correlation coefficient r p-value

0 −0.25 0.09

1 +0.36 0.02

2 −0.33 0.03

3 +0.12 0.44

4 −0.22 0.14
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