Search for $B^+ \to \ell^+ \nu \ell^- \bar{\nu} X$

(BAbAR Collaboration)

1. Laboratoire d’Annecy-le-Vieux de Physique des Particules (LAPP), Université de Savoie, CNRS/IN2P3, F-74941 Annecy-Le-Vieux, France
2. Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
3a. INFN Sezione di Bari, I-70126 Bari, Italy
3b. Dipartimento di Fisica, Università di Bari, I-70126 Bari, Italy
4. University of Bergen, Institute of Physics, N-5007 Bergen, Norway
5. Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
6. University of Birmingham, Birmingham, B15 2TT, United Kingdom
7. Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
8. University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
9. Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
10. Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
11. University of California at Irvine, Irvine, California 92697, USA
12. University of California at Riverside, Riverside, California 92521, USA
13. University of California at San Diego, La Jolla, California 92093, USA
14. University of California at Santa Barbara, Santa Barbara, California 93106, USA
15. University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
16. California Institute of Technology, California 91125, USA
17. University of Cincinnati, Cincinnati, Ohio 45221, USA
18. University of Colorado, Boulder, Colorado 80309, USA
19. Colorado State University, Fort Collins, Colorado 80523, USA
20. Technische Universität Dortmund, Fakultät Physik, D-44221 Dortmund, Germany
21. Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
22. Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, F-91128 Palaiseau, France
23. University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
24a. INFN Sezione di Ferrara, I-44100 Ferrara, Italy
24b. Dipartimento di Fisica, Università di Ferrara, I-44100 Ferrara, Italy
25. INFN Laboratori Nazionali di Frascati, I-00044 Frascati, Italy
26. INFN Sezione di Genova, I-16146 Genova, Italy
27. Harvard University, Cambridge, Massachusetts 02138, USA
28. Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
29. Humboldt-Universität zu Berlin, Institut für Physik, Newtonstr. 15, D-12489 Berlin, Germany
30. Imperial College London, London, SW7 2AZ, United Kingdom
31. University of Iowa, Iowa City, Iowa 52242, USA
32. Iowa State University, Ames, Iowa 50011-3160, USA
33. Johns Hopkins University, Baltimore, Maryland 21218, USA
34. Laboratoire de l’Accélérateur Linéaire, IN2P3/CNRS et Université Paris-Sud 11, Centre Scientifique d’Orsay, B. P. 34, F-91898 Orsay Cedex, France
SEARCH FOR $B^+ \to \ell^+ \nu_{\ell} \text{ RECOILING ...}$

\[\text{PHYSICAL REVIEW D 81, 051101(R) (2010)} \]

35Lawrence Livermore National Laboratory, Livermore, California 94550, USA
36University of Liverpool, Liverpool L69 7ZE, United Kingdom
37Queen Mary, University of London, London, E1 4NS, United Kingdom
38University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
39University of Louisville, Louisville, Kentucky 40292, USA
40Johannes Gutenberg-Universität Mainz, Institut für Kernphysik, D-55099 Mainz, Germany
41University of Manchester, Manchester M13 9PL, United Kingdom
42University of Maryland, College Park, Maryland 20742, USA
43University of Massachusetts, Amherst, Massachusetts 01003, USA
44Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
45McGill University, Montréal, Québec, Canada H3A 2T8
46aINFN Sezione di Milano, I-20133 Milano, Italy
46bDipartimento di Fisica, Università di Milano, I-20133 Milano, Italy
47Université de Montréal, Physique des Particules, Montréal, Québec, Canada H3C 3J7
48Mount Holyoke College, South Hadley, Massachusetts 01075, USA
50aINFN Sezione di Napoli, I-80126 Napoli, Italy
50bDipartimento di Scienze Fisiche, Università di Napoli Federico II, I-80126 Napoli, Italy
51NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
52University of Notre Dame, Notre Dame, Indiana 46556, USA
53Ohio State University, Columbus, Ohio 43210, USA
54University of Oregon, Eugene, Oregon 97403, USA
55aINFN Sezione di Padova, I-35131 Padova, Italy
55bDipartimento di Fisica, Università di Padova, I-35131 Padova, Italy
56Laboratoire de Physique Nucléaire et de Hautes Energies, IN2P3/CNRS, Université Pierre et Marie Curie-Paris 6, Université Denis Diderot-Paris7, F-75252 Paris, France
57University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
58aINFN Sezione di Perugia, I-06100 Perugia, Italy
58bDipartimento di Fisica, Università di Perugia, I-06100 Perugia, Italy
59aINFN Sezione di Pisa, I-56127 Pisa, Italy
59bDipartimento di Fisica, Università di Pisa, I-56127 Pisa, Italy
59cScuola Normale Superiore di Pisa, I-56127 Pisa, Italy
60Princeton University, Princeton, New Jersey 08544, USA
61aINFN Sezione di Roma, I-00185 Roma, Italy
61bDipartimento di Fisica, Università di Roma La Sapienza, I-00185 Roma, Italy
62Universität Rostock, D-18051 Rostock, Germany
63Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
64CEA, Ifri, SPF, Centre de Saclay, F-91191 Gif-sur-Yvette, France
65SLAC National Accelerator Laboratory, Stanford, California 94309 USA
66University of South Carolina, Columbia, South Carolina 29208, USA
67Stanford University, Stanford, California 94305-4060, USA
68State University of New York, Albany, New York 12222, USA
69Tel Aviv University, School of Physics and Astronomy, Tel Aviv, 69978, Israel
70University of Tennessee, Knoxville, Tennessee 37996, USA
71University of Texas at Austin, Austin, Texas 78712, USA
72University of Texas at Dallas, Richardson, Texas 75083, USA
73aINFN Sezione di Torino, I-10125 Torino, Italy
73bDipartimento di Fisica Sperimentale, Università di Torino, I-10125 Torino, Italy
74aINFN Sezione di Trieste, I-34127 Trieste, Italy
74bDipartimento di Fisica, Università di Trieste, I-34127 Trieste, Italy
75IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
76University of Victoria, Victoria, British Columbia, Canada V8W 3P6

*Deceased.
†Now at Temple University, Philadelphia, Pennsylvania 19122, USA.
‡Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy.
§Also with Università di Roma La Sapienza, I-00185 Roma, Italy.
‖Now at University of South Alabama, Mobile, Alabama 36688, USA.
¶Also with Laboratoire de Physique Nucléaire et de Hautes Energies, IN2P3/CNRS, Université Pierre et Marie Curie-Paris6, Université Denis Diderot-Paris7, F-75252 Paris, France.
**Also with Università di Sassari, Sassari, Italy.
We present a search for the decay \(B^+ \rightarrow \ell^+ \nu_\ell (\ell = \tau, \mu, \text{or} e) \) in \((458.9 \pm 5.1) \times 10^6 \) \(B\bar{B} \) pairs recorded with the BABAR detector at the PEP-II B-factory. We search for these \(B \) decays in a sample of \(B^+B^- \) events where one \(B \)-meson is reconstructed as \(B^+ \rightarrow D^0 \ell^\mp \bar{\nu}_\ell X \). Using the method of Feldman and Cousins, we obtain \(\mathcal{B}(B^+ \rightarrow \tau^+ \nu_\tau) = (1.7 \pm 0.8 \pm 0.2) \times 10^{-4} \), which excludes zero at 2.3\(\sigma \). We interpret the central value in the context of the standard model and find the \(B \) meson decay constant to be \(f_B = (62 \pm 31) \times 10^3 \text{ MeV}^2 \). We find no evidence for \(B^+ \rightarrow e^+\nu_\ell \) and \(B^+ \rightarrow \mu^+\nu_\mu \) and set upper limits at the 90\% C.L. \(\mathcal{B}(B^+ \rightarrow \ell^+\nu_\ell) < 0.8 \times 10^{-5} \) and \(\mathcal{B}(B^+ \rightarrow \mu^+\nu_\mu) < 1.1 \times 10^{-5} \).

DOI: 10.1103/PhysRevD.81.051101 PACS numbers: 13.20.-v, 12.15.Ji, 12.25.Hw

The strategy adopted for this analysis is similar to that from our previously published work [10]. Signal \(B \) decays, \(B^+ \rightarrow \ell^+\nu_\ell \), are selected in the recoil of a semileptonic decay, \(B^- \rightarrow D^0 \ell^-\bar{\nu}_\ell X \), referred to as the “tag” \(B \). The final states of the \(\tau^+ \) decay in \(B^+ \rightarrow \tau^+\nu_\tau \) are identical to those in Ref. [10]: \(\tau^+ \rightarrow e^+\nu_\ell \bar{\nu}_\tau, \tau^+ \rightarrow \mu^+\nu_\mu \bar{\nu}_\tau, \tau^+ \rightarrow \pi^+\bar{\nu}_\tau, \) and \(\tau^+ \rightarrow \rho^+\bar{\nu}_\tau \). For the first time, we include \(B^+ \rightarrow e^+\nu_\ell \) and \(B^+ \rightarrow \mu^+\nu_\mu \) in this search. In addition to using about 20\% more data than in Ref. [10], we relax the constraints on the tag \(B \), improve the definition of the discriminating variables and use a combination of tag and signal \(B \) variables in a multivariate discriminant that improves signal efficiency and background rejection.

The tag \(B \) is reconstructed in the set of semileptonic \(B \) decay modes \(B^- \rightarrow D^0 \ell^-\bar{\nu}_\ell X \), through the full hadronic reconstruction of \(D^0 \) mesons and identification of the lepton, \(\ell^- \), as either \(e^- \) or \(\mu^- \). Other particles (\(X \)) resulting from a transition from a higher-mass charm state down to the \(D^0 \) are not explicitly reconstructed and are not included in the tag \(B \) kinematics. This strategy, and the reconstruction method (\(D^0 \) decay modes, \(D^0 \ell^- \) vertex requirements, etc.), are the same as in Ref. [10]. One difference in the present analysis is that we may assign up to one photon (from \(X \)) back to the tag \(B \), based on its consistency with the decay \(D^0 \rightarrow (\pi^0, \gamma)D^0 \).

The efficiency for tag \(B \) reconstruction (\(\epsilon_{\text{tag}} \)) is defined as the rate at which events in the signal MC are found to contain at least one reconstructed tag \(B \) and a single track recoiling against that tag. The efficiency for each signal mode is given in Table III, including corrections for systematic effects (described below). The efficiency is larger for \(B^+ \rightarrow \tau^+\nu_\tau \) events due to high-multiplicity \(\tau^+ \) decays faking tag \(B \) mesons.

We identify one of the following reconstructed particles recoiling against the tag \(B \): \(e^+, \mu^+, \pi^+, \) or \(\rho^+ \). The \(e^+ \) and \(\mu^+ \) can come from \(B^+ \rightarrow \tau^+\nu_\tau \), with the \(\tau^+ \) decaying leptonically, or directly from \(B^+ \rightarrow \mu^+\nu_\mu \) or \(B^+ \rightarrow e^+\nu_e \). The signal track must originate from the interaction point (IP), with a distance of closest approach to the IP less than 2.5 cm along the beam axis and less than 1.5 cm transverse to the beam axis. We reject events that contain more than one such IP track recoiling against the tag \(B \).
There may be additional tracks that do not come from the IP. We reject events where the single IP track is identified as a kaon. We assign the single-track recoils to categories based on a hierarchical selection. An event is assigned to the \(\mu^+ \) category if the track passes muon identification or to the \(e^+ \) category if it passes electron identification; in the latter category, we recover up to one bremsstrahlung photon based on angular separation from the track and add its four-momentum to the electron's. We assign the event to the \(\rho^+ \) category if it fails lepton identification and can be paired with a \(\pi^0 \) candidate. The \(\pi^0 \) candidates used in the \(\rho^+ \) reconstruction are defined as a pair of photons, each with laboratory energy \(>50 \text{ MeV} \), with invariant mass \(m_{\gamma\gamma} = [0.115, 0.150] \text{ GeV/c}^2 \). Single-track events that fail the selections above are assigned to the \(\pi^+ \) category.

While the direction of neither \(B \) meson can be known precisely, four-momentum conservation constrains the tag \(B \) momentum to lie on a cone around the flight direction of the reconstructed \(D^0 \ell^- \) system. The cosine of the opening angle between the \(B \) meson and the \(D^0 \ell^- \) system in the CM frame is given by

\[
\cos\theta_{B;Y} = \frac{2E_Y E_{\gamma} - m_B^2 - m_{\ell}^2}{2|\vec{p}_{B}||\vec{p}_{\ell}|}, \quad (1)
\]

where \(\ell \) refers to the reconstructed tag \(B \) final state, \((E_Y, \vec{p}_Y) \) and \((E_B, \vec{p}_B) \) are the four-momenta in the CM frame, and \(m_Y \) and \(m_B \) are the masses of the \(Y \) system and tag \(B \) meson, respectively. \(E_B \) and the magnitude of \(\vec{p}_B \) are calculated from the beam energy: \(E_B = E_{\text{CM}}/2 \) and \(|\vec{p}_B| = \sqrt{E_B^2 - m_B^2} \). Decays of the \(B \) meson directly to \(D^0 \ell^- \nu \) are largely constrained to the physical region of this cosine, while decays involving a higher-mass charm state will yield cosine values below the physical region when the intermediate decay particles (e.g., \(\pi^0 \) or \(\gamma \)) are not explicitly reconstructed.

The signal \(B \) momentum vector is equal in magnitude to \(|\vec{p}_B| \) and is opposite to the tag \(B \) direction, so that it lies on the cone of the tag \(B \) momentum defined by Eq. (1). To estimate quantities in the signal \(B \) rest frame, such as the momentum of the signal \(B \) daughter(s), we choose the signal \(B \) boost vector on that cone and we compute the quantity in the corresponding rest frame. We then use the value of that quantity averaged over all trial rest frames as an estimate of the true value. We denote the momentum of the signal particle(s) determined by this method as \(p'_{\text{sig}} \).

This has the largest impact in the \(B^+ \to e^+\nu_\ell \), and \(B^+ \to \mu^+\nu_\mu \) channels, where the lepton is monoenergetic in the signal \(B \) rest frame. The improved resolution of the lepton momentum directly improves the separation of signal and background. If an event has a reconstructed signal muon (electron) candidate and \(p'_{\text{sig}} > 2.30(2.25) \text{ GeV/c} \), it is classified as a \(B^+ \to \mu^+\nu_\mu \) (\(B^+ \to e^+\nu_\ell \)) candidate; otherwise, it is classified as \(B^+ \to \tau^+\nu_\tau \), with \(\tau^+ \to \mu^+\nu_\mu\bar{\nu}_\tau \), \(\tau^+ \to e^+\nu_\ell\bar{\nu}_\ell \).
or pions); for \(\tau^+ \rightarrow \pi^+ \pi^0 p_\tau \), the reconstructed mass of the \(\rho^+ \), and the CM momenta of the \(\rho^+ \) daughters; and for \(B^+ \rightarrow \tau^+ \nu_\tau \), \(\cos \theta_{\tau \nu} \) vs \(p_\text{sig} \), where \(\cos \theta_{\tau \nu} \) is defined in the signal \(B \) meson rest frame using Eq. (1), replacing \(B \) meson quantities with those of the \(\tau (E_\tau = m_\tau/2 \text{ and } p_\tau = \sqrt{m_\tau^2 - m_\tau^2}) \) and where \(Y \) refers to the reconstructed \(\tau \) final state (computed using the signal \(B \) meson rest frame averaging procedure). Other variables used are: the separation between the tag \(B \) meson decay vertex and the point of closest approach to the IP by the signal \(B \) track; and the distribution of the cosine of the angle between the signal \(B \) CM momentum and the tag \(B \) thrust vs the minimum invariant mass of any three charged particles in the event [10].

The shapes of these variables in MC simulation are then used to define probability density functions (PDFs) for signal (\(P_s \)) and background (\(P_b \)). We define for each variable the ratio \(P_s / [P_s + P_b] \). We use the product of these ratios to construct a pair of likelihood ratios (LHRs) for each signal channel, one for rejecting background (LHR\(_{bg}\)) and the other for rejecting continuum (LHR\(_{cont}\)) backgrounds. The LHR output is bounded between 0 and 1, with signal accumulating toward 1 and background toward 0.

We optimize selection criteria on \(E_{\text{extra}} \), LHR\(_{bg}\), and LHR\(_{cont}\) for all modes. For the \(B^+ \rightarrow e^+ \nu_e \) and \(B^+ \rightarrow \mu^+ \nu_\mu \) modes, we additionally optimize the selection on \(p_\text{sig} \). For the \(\tau^+ \rightarrow e^+ \nu_e \bar{\nu}_\tau \) mode we additionally optimize the selection on \(m_{\ell \ell} \) (to reject poorly modeled photon-conversion background). For the \(\tau \) decay modes, we choose the figure-of-merit (FOM) to be \(\sqrt{N_{\text{sig}} / N_{\text{bg}}} \), since there is still significant background left in these channels even after final selection criteria are applied. For \(B^+ \rightarrow \mu^+ \nu_\mu \) and \(B^+ \rightarrow e^+ \nu_e \) we use \(N_{\text{sig}} / (3/2 + \sqrt{N_{\text{bg}}}) \) [13] due to the low expected background. We divide the MC simulation samples for signal and background into thirds, two for optimization and one from which to compute unbiased efficiencies and background predictions. This latter sample has statistics roughly equivalent to the data. Optimized selection criteria are given in Table I. The signal efficiency (\(\epsilon_{\text{sig}} \)) is defined as the rate at which signal events containing a reconstructed tag \(B \) are also found to contain a signal \(B \) candidate, and it includes the \(\tau^+ \) branching fractions. These efficiencies are given in Table III.

We calibrate our background prediction using sideband regions of \(E_{\text{extra}} \) where the signal contribution is negligible. We define the sidebands for \(B^+ \rightarrow \tau^+ \nu_\tau, B^+ \rightarrow \mu^+ \nu_\mu, \) and \(B^+ \rightarrow e^+ \nu_e \) as \(E_{\text{extra}} \geq 0.4 \text{ GeV}, \geq 0.72 \text{ GeV}, \) and \(\geq 0.6 \text{ GeV}, \) respectively. We predict \(N_{\text{data}}^{\text{side}} \), the number of background events in data in the \(E_{\text{extra}} \) signal region (Table II), by scaling the yield predicted by the MC simulation (\(N_{\text{MC}}^{\text{side}} \)) by the ratio of yields in data (\(N_{\text{data}}^{\text{side}} \)) and MC (\(N_{\text{MC}}^{\text{side}} \)) in the sideband. This method assumes that the shape of \(E_{\text{extra}} \) is well described but does not rely on the absolute prediction of the yield. We validate this approach by defining sidebands in other variables (\(D^0 \) mass, LHR\(_{cont}\), LHR\(_{bg}\), and \(p_\text{sig} \)) and studying the data/MC agreement for the entire \(E_{\text{extra}} \) background shape. We find the shape to be well described. We also studied the effect of varying the \(E_{\text{extra}} \) sideband definition and obtained consistent background predictions.

<table>
<thead>
<tr>
<th>Mode</th>
<th>LHR(_{bg})</th>
<th>LHR(_{cont})</th>
<th>(E_{\text{extra}}) (GeV)</th>
<th>(p_\text{sig}) (GeV/c)</th>
<th>(m_{\ell \ell}) (GeV/c^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B^+ \rightarrow \tau^+ \nu_\tau)</td>
<td>0.77</td>
<td>0.25</td>
<td><0.20</td>
<td>\cdots</td>
<td>>0.29</td>
</tr>
<tr>
<td>(e^+ \bar{\nu}_\tau)</td>
<td>0.14</td>
<td>0.72</td>
<td><0.24</td>
<td>\cdots</td>
<td>\cdots</td>
</tr>
<tr>
<td>(\mu^+ \bar{\nu}_\mu)</td>
<td>0.97</td>
<td>0.95</td>
<td><0.24</td>
<td>\cdots</td>
<td>\cdots</td>
</tr>
<tr>
<td>(\rho^+ \nu_\rho)</td>
<td>0.57</td>
<td>0.80</td>
<td><0.35</td>
<td>\cdots</td>
<td>\cdots</td>
</tr>
<tr>
<td>(B^+ \rightarrow (\mu^+, e^+) \nu_\mu)</td>
<td>0.33</td>
<td>0.61</td>
<td><0.72</td>
<td>[2.45, 2.98]</td>
<td>\cdots</td>
</tr>
<tr>
<td>(\mu^+ \nu_\mu)</td>
<td>None</td>
<td>0.01</td>
<td><0.57</td>
<td>[2.52, 3.02]</td>
<td>\cdots</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mode</th>
<th>(N_{\text{MC}}^{\text{side}})</th>
<th>(N_{\text{data}}^{\text{side}})</th>
<th>(N_{\text{MC}}^{\text{bg}})</th>
<th>(N_{\text{data}}^{\text{bg}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tau^+ \rightarrow e^+ \nu_e \bar{\nu}_\tau)</td>
<td>333 \pm 19</td>
<td>334 \pm 18</td>
<td>81 \pm 10</td>
<td>81 \pm 12</td>
</tr>
<tr>
<td>(\tau^+ \rightarrow \mu^+ \nu_\mu \bar{\nu}_\mu)</td>
<td>1248 \pm 36</td>
<td>1236 \pm 35</td>
<td>136 \pm 12</td>
<td>135 \pm 13</td>
</tr>
<tr>
<td>(\tau^+ \rightarrow \pi^+ \bar{\nu}_\tau)</td>
<td>6507 \pm 88</td>
<td>7167 \pm 85</td>
<td>212 \pm 19</td>
<td>234 \pm 19</td>
</tr>
<tr>
<td>(\tau^+ \rightarrow \rho^+ \bar{\nu}_\rho)</td>
<td>1841 \pm 48</td>
<td>1734 \pm 42</td>
<td>62 \pm 9</td>
<td>59 \pm 9</td>
</tr>
<tr>
<td>(B^+ \rightarrow \mu^+ \nu_\mu)</td>
<td>12 \pm 5</td>
<td>14 \pm 4</td>
<td>12 \pm 5</td>
<td>13 \pm 8</td>
</tr>
<tr>
<td>(B^+ \rightarrow e^+ \nu_e)</td>
<td>26 \pm 6</td>
<td>42 \pm 6</td>
<td>15 \pm 5</td>
<td>24 \pm 11</td>
</tr>
</tbody>
</table>
The branching fraction for any of the decay modes is

$$B(B^+ \rightarrow \ell^+ \nu_\ell) = \frac{N_{\text{obs}} - N_{\text{bg}}^\text{data}}{2N_{B^+B^-}e_{\text{tag}}e_{\text{sig}}}.$$ \hspace{1cm} (2)$$

where N_{obs} is the total number of events observed in the signal region and $N_{B^+B^-}$ is the total number of $\Upsilon(4S) \rightarrow B^+B^-$ decays in the data. The estimation of $N_{B^+B^-}$ has an uncertainty of 1.1% [14].

Potential sources of significant systematic uncertainty in e_{tag} and e_{sig} include the tag reconstruction rate, the modeling of E_{extra}, and signal track and neutral reconstruction. We use “double-tagged” events to study possible effects. Double-tagged events contain two fully reconstructed, independent, oppositely charged semileptonic tag B decays. These double-tagged events are analogous to signal, in that every particle that can be assigned to the original B decays has been assigned.

We use the absolute yields of tagged events to obtain a systematic uncertainty on e_{tag}. We form a double ratio from the ratios of double-tagged to single-tagged events in the data and MC simulation. Single-tagged events are defined as events containing at least one semileptonic tag B decay with no constraints on the rest of the event. We improve the sample purity by requiring that $D^0 \rightarrow K^-\pi^+$ in at least one of the tags. We measure this double ratio to be 0.891 ± 0.021. As a comparison, we perform the same measurement replacing $D^0 \rightarrow K^-\pi^+$ with $D^0 \rightarrow K^-\pi^-\pi^+\pi^-$ and find the double-ratio to be 0.954 ± 0.011. We use 0.891 as the nominal correction to e_{tag} and treat the relative difference between the two methods (7.1%) as the systematic uncertainty.

The E_{extra} distribution in double-tag events is expected to contain contributions similar, though not identical, to those from signal events. We validate E_{extra} using the double-tagged events described above, additionally requiring that the second tag contains only $D^0 \rightarrow K^-\pi^+$ and satisfies $\cos(\theta_{B\gamma}) = [-1.1, 1.1]$ to reject second tags with missing neutrals. The resulting E_{extra} distribution is shown in Fig. 1. It is well-described by the MC simulation. We compare the efficiency of selecting events in data and MC simulation for $E_{\text{extra}} \approx 0.4$ GeV and find that the efficiency needs to be corrected by 0.985 ± 0.044 to match the data. The uncertainty on this correction is due to the statistical uncertainty on the data and MC simulation, and we treat it as a systematic uncertainty.

The remaining systematic uncertainties on e_{sig} come from tracking efficiency (0.36% per signal track), π^0 reconstruction for the $\tau^+ \rightarrow \rho^+\bar{\nu}_\tau$ mode (0.984 ± 0.030), and particle identification. These are evaluated using control samples of well-characterized particles. The particle identification efficiency corrections and systematic uncertainties are 0.953 ± 0.003 (0.97 ± 0.04) for identified electrons in the $B^+ \rightarrow \tau^+\nu_\tau$ ($B^+ \rightarrow e^+\nu_e$) and 0.92 ± 0.05 (1.016 ± 0.022) for identified muons in the $B^+ \rightarrow \tau^+\nu_\tau$ ($B^+ \rightarrow \mu^+\nu_\mu$) analysis.

The E_{extra} distributions for each channel are given in Fig. 2 and results given in Table IV. We use the method of Feldman and Cousins [15] to interpret the yields in each channel. When computing the level at which we exclude the null hypothesis, we include systematic errors as a Gaussian convolution with the nominal Poisson distribution. Our results in the $B^+ \rightarrow \mu^+\nu_\mu$ and $B^+ \rightarrow e^+\nu_e$ channels are consistent with the background expectation and we obtain only one-sided 90% confidence intervals. For $B^+ \rightarrow \tau^+\nu_\tau$, we obtain a two-sided 68% confidence interval and exclude the null hypothesis at the level of 2.3σ. This result supersedes that of the previous work [10]. The statistical consistency test of the results over the four $B^+ \rightarrow \tau^+\nu_\tau$ channels has a χ^2 per degree-of-
from this measurement and combining this result with B simulation is luminosity normalized and corrected for the data/ing fraction (dotted line) normalized to 10 times the expected background MC simulation (gray shaded), and signal MC simulation have been applied for each final state. Shown are data (black points), In the context of the SM, we determine that formed using branching fractions computed with Eq. (2).

FIG. 2 (color online). E_{extra} after all selection criteria have been applied for each final state. Shown are data (black points), background MC simulation (gray shaded), and signal MC simulation (dotted line) normalized to 10 times the expected branching fraction (10^0 times for $B^+ \rightarrow e^+ \nu_e$). The background MC simulation is luminosity normalized and corrected for the data/ MC ratio in the E_{extra} sideband; the rectangles represent the MC simulation statistical uncertainty. In (a–d), the vertical dashed line indicates the signal region boundary. In (f–g) the first bin is the signal region.

freedom of 2.02/3, or a probability of 57%, and is performed using branching fractions computed with Eq. (2). In the context of the SM, we determine that $f_B^2 = (62 \pm 31) \times 10^3$ MeV2, where the uncertainty arises dominantly from this measurement and $|V_{ub}|$.

We obtain a single $BABAR$ result for $B^+ \rightarrow \tau^+ \nu_{\tau}$ by combining this result with $\mathcal{B}(B^+ \rightarrow \tau^+ \nu_{\tau}) = (1.8_{-0.9}^{+1.0}) \times 10^{-4}$, which is derived from a statistically-independent sample using tag B mesons decaying into fully hadronic final states [16]. We use a simple error-weighted average, since the correlated systematics (mainly due to particle identification, charged particle tracking, and E_{extra}) have a negligible impact on the combination. We obtain $\mathcal{B}(B^+ \rightarrow \tau^+ \nu_{\tau}) = (1.7 \pm 0.6) \times 10^{-4}$, which excludes zero at the 2.8σ level. Both this and the combined results are consistent with the SM prediction.

In conclusion, we have used the complete $BABAR$ data sample to search for the purely leptonic B meson decay $B^+ \rightarrow \ell^+ \nu$ using a semileptonic B decay tagging technique. We measure $\mathcal{B}(B^+ \rightarrow \tau^+ \nu_{\tau}) = (1.7 \pm 0.8 \pm 0.2) \times 10^{-4}$ and exclude the null hypothesis at the level of 2.3σ. We find results consistent with the background predictions for the decays $B^+ \rightarrow \mu^+ \nu_{\mu}$ and $B^+ \rightarrow e^+ \nu_{e}$. We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support $BABAR$. The collaborating institutions wish to thank SLAC for its support and kind hospitality.

This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation.

[1] Charge-conjugate modes are implied throughout this paper.
SEARCH FOR $B^+ \rightarrow \ell^+ \nu_\ell$ RECOILING . . .