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Safe Explorative Bayesian Optimization – Towards Personalized
Treatments in Plasma Medicine

Kimberly J. Chan, Joel A. Paulson, and Ali Mesbah

Abstract— This paper considers the problem of Bayesian
optimization (BO) for systems with safety-critical constraints.
Recent work has shown that a theoretically consistent way
to account for constraints in BO is to relax the constraint
functions such that the feasible region has a high probability of
containing the global solution. However, by construction, these
approaches are unable to ensure safe/feasible operation at every
query, which is unacceptable in safety-critical applications.
Alternatively, safe BO methods force the query points to remain
in the interior of a partially-revealed safety region, which may
result in unacceptable (and unquantified) performance losses.
This paper presents a new safe BO method that avoids these
performance losses by systematically incorporating potential
performance gains from enlargement of the safety region. The
proposed method avoids getting stuck at suboptimal points
based on a potentially small initial safety region due to limited
initial exploration of the safety boundary. The performance of
the proposed method is demonstrated for safe control of a cold
atmospheric plasma jet towards personalized plasma medicine.

I. INTRODUCTION

Advances in data-driven control and decision-making ca-
pabilities have created significant opportunities for autonomy
for vehicles, robots, and biomedical devices [1]. Interactions
with humans make safety a fundamental requirement for
these autonomous systems. Thus, the underlying problem for
autonomy can be generally posed as a constrained optimiza-
tion problem of the form

min
x∈X

{
f0(x) : f i(x) ≥ 0, ∀i = 1, . . . ,m

}
, (1)

where x are the decision variables (i.e., modifiable parame-
ters), f0 : X → R is the objective function, f i : X → R are
constraints, and X ⊂ Rnx is some compact domain.

In autonomous systems, it is often the case that the
mathematical structure of the objective f0(x) and constraints
f i(x) are not exactly known, e.g., those derived from closed-
loop trajectories. In such cases, we often refer to the func-
tions {f i(x)}mi=0 as “black-box” in the sense that they can
only be learned from noisy observations at specific query
points x ∈ X . These observations must then be used in a
strategy to compute an optimum for x. One such strategy is
Bayesian optimization (BO) [2]. BO is a sequential decision-
making strategy that uses probabilistic surrogate models of
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{f i(x)}mi=0 to optimize a proxy problem to (1). The surrogate
models, often represented with Gaussian Processes (GPs),
are updated via Bayesian inference [3]. Optimizing the proxy
problem is facilitated by an acquisition function α(x) : X →
R, which, in some form, leverages the uncertainty in the
posterior model. This feature of optimizing with respect to
both the belief of the optimum and the uncertainty sur-
rounding this belief is commonly referred to as the trade-off
between exploration and exploitation. By iteratively querying
and updating the surrogates, BO systematically explores the
design space X to find an optimum.

For the safe interaction of autonomous systems with hu-
mans, it is imperative to ensure that the proposed parameter
choices satisfy constraints {f i(x)}mi=1. In other words, eval-
uating any arbitrary x in X can lead to constraint-violating
designs that can have dangerous outcomes. Yet, identifying
a safe, or feasible, design space F ⊆ X when the constraints
are unknown is challenging. To this end, several recent works
have been proposed in the realm of safe BO. At its core,
the safe BO problem is exactly the constrained optimization
problem (1) with strict adherence to the constraints. Two
common approaches are taken: (i) a penalty-based strategy,
where the constraints act as a penalty term in the objective;
and (ii) a safe set strategy, where points are only chosen
from an estimation of the safe region. In [4], the acquisition
function is augmented with barrier functions, a take on (i); it
uses the posterior estimates of the constraints to directly pe-
nalize the acquisition objective to limit the search to revealed
safe points. Here, the solution will only be locally optimal
near the initial safe design point x0. Alternatively, [5] uses
the posterior models to compute a partially-revealed safe set
using Lipschitz continuity properties. This safe set is further
subdivided into a set of potential “optimizers” and a set of
potential “expanders.” Then, the most uncertain element from
the combination of the optimizers and expanders is suggested
as the next query. This method takes an exploration-first
perspective to maximize the discovery of safe points and
then switches focus to the standard exploitation/exploration
trade-off. This method may lead to “wasteful” queries within
the feasible region.

In an attempt to expand the feasible region, [6] proposes
an ϵ-greedy approach to switch to a pure exploratory strategy
to directly explore the boundary of the feasible region.
However, this exploratory procedure remains agnostic to
improvements in the main objective. This paper presents
SEBO (Safe Explorative Bayesian Optimization), a new safe
BO method that avoids potential performance losses by
incorporating information gained by expanding the feasible



Fig. 1. Exemplary feasible set using safe Bayesian optimization (BO) (in
orange) versus a relaxed problem (in green). The true feasible set is in red,
while the initial feasible point is in blue. The true optimum is denoted with
a cyan “x”, and a local optimum is denoted with a magenta “x”. Contours
of the objective are in gray-scale with more optimal spaces in white.

region. As depicted in Fig. 1, penalty-based strategies for safe
BO may be prone to being overly conservative such that they
may get stuck in the locally feasible region near the initial
safe point. SEBO uses a relaxed formulation to widen the
search space that more likely encapsulates the true optimum.
Safety is ensured by projecting back to the estimated safe
region, but at the same time, maximizing the potential to
increase knowledge around the safe set in the direction of
improvement. Thus, SEBO effectively incorporates directed
information to explore the safe region(s).

We demonstrate SEBO for an example application for
personalized plasma medicine, which is an emerging field
involving the use of cold atmospheric plasmas (CAPs) for a
variety of medical treatments [7]. Automated CAP treatments
using advanced control (e.g., model predictive control, MPC)
are necessary for ensuring effective delivery of plasma effects
[8], [9]. Tailoring the plasma effects is key to ensuring the
efficacy of plasma treatments [10]. However, the underly-
ing mechanisms of plasma-surface interactions can only be
quantified for a population of subjects [8], [11]. Therefore,
iterative improvements in delivery of plasma effects using
BO will enable personalization of CAP treatments, wherein
ensuring patient safety is of the utmost importance. We com-
pare SEBO’s performance to alternative safe BO approaches
and demonstrate that it can mitigate getting stuck in a local
feasible region while realizing safe CAP treatments.

II. SAFE BAYESIAN OPTIMIZATION USING
LOGARITHMIC BARRIER FUNCTIONS

Since the model and constraint functions in (1) are un-
known, we must learn them from data. Here, we focus on
the case that these functions can be modeled as independent
Gaussian processes (GPs)

f i(x) ∼ GP(µi(x), ki(x, x′)), ∀i = 0, . . . ,m, (2)

where µi(x) = E{f i(x)} denotes the prior mean function
and ki(x, x′) = E{(f i(x)−µi(x))(f i(x′)−µi(x′))} denotes
the prior covariance (kernel) function of the objective and
safety constraints. GP models are non-parametric and have

the property that the posterior model, conditioned on noisy
observations yi

n = (yi1, . . . , y
i
n) at query points (x1, . . . , xn),

remains a GP with the following analytic expressions for the
mean, kernel, and standard deviation functions

µi
n(x) = ki⊤

n (x)(Ki
n + ηiI)−1yi

n, (3a)

kin(x, x
′) = ki(x, x′)− ki⊤

n (x)(Ki
n + ηiI)−1ki

n(x
′),

σi
n(x) =

√
kin(x, x), (3b)

where ki
n(x) = [ki(x1, x), . . . , k

i(xn, x)]
⊤, Ki

n is the
positive definite kernel matrix whose elements are given by
[Ki

n]ν,ω = ki(xν , xω) for all ν, ω ∈ {1, . . . , n}, and ηi > 0
is the variance of a zero-mean Gaussian noise model for the
observations, i.e., yij = f i(xj)+ϵij for some ϵij that is R-sub
Gaussian noise [12].

If the GP models are sufficiently “well-calibrated,” then
they can provide high probability confidence bounds on
{f i(x)}mi=0. We summarize this requirement below.

Assumption 1 (Well-calibrated GPs): The GP models for
the unknown objective and constraint functions {f i(x)}mi=0

satisfy the inequality below ∀x ∈ X , n ≥ 0, and i =
0, . . . ,m

|f i(x)− µi
n(x)| ≤

√
βi
n+1σ

i
n(x), (4)

with probability at least 1− δ for some δ ∈ (0, 1).
This assumption can be satisfied by properly selecting

the sequence of confidence bound parameters {βi
n+1}n≥0

as long as the functions {f i(x)}mi=0 have a bounded re-
producing kernel Hilbert space (RKHS) norm; see [12] for
expressions for {βi

n+1}n≥0, which are defined in terms of
the maximum information gain.

For convenience, we rewrite Assumption 1 in terms of the
lower confidence bound (LCB) and upper confidence bound
(UCB) on the unknown functions at iteration n

lin(x) = µi
n(x)−

√
βi
n+1σ

i
n(x), (5a)

ui
n(x) = µi

n(x) +
√
βi
n+1σ

i
n(x), (5b)

where the inequality (4) can be equivalently stated as f i(x) ∈
[lin(x), u

i
n(x)] using the LCB/UCB definitions. The main

idea behind a safe BO procedure is then to sequentially select
new sample points x1, x2, . . . that have a high probability of
satisfying safety constraints at every iteration. This differs
from standard BO that would query by solving xn+1 ∈
argminx∈X l0n(x) (using an LCB acquisition function). As
proposed in [4], one can ensure xn+1 remains in the interior
of the partially-revealed safe set by solving

xn+1 ∈ argmin
x∈X

{
l0n(x) + τ

∑m
i=1 Blin(x)

}
, (6)

where Bg(x) = − ln(g(x)) is the logarithmic barrier applied
to a constraint g(x) ≥ 0 and τ > 0 is a tunable parameter
that ensures the barrier term converges to the exact indicator
penalty function in the limit τ → 0. Notice that (6) accounts
for both performance and safety. The safety guarantees
conferred by (6) are summarized in the following theorem.



Theorem 1 (Safe Learning [4]): Let Assumption 1 hold,
the feasible set F = {x ∈ X : f i(x) ≥ 0,∀i = 1, . . . ,m} be
non-empty, and there exists at least one known safe starting
point x0 ∈ F . Then, the sequence of query points {xn}n≥1

generated by (6) satisfies

Pr
{
f i(xn) ≥ 0, ∀i = 1, . . . ,m, ∀n ≥ 1

}
≥ 1− δ, (7)

for any chosen δ ∈ (0, 1).
The proof of this theorem is based on three key arguments.

First, the partially-revealed feasible region, defined by

F̂n = {x ∈ X : lin(x) ≥ 0, ∀i = 1, . . . ,m}, (8)

must be contained within the true feasible region F̂n ⊆ F
with high probability. Second, F̂n ̸= ∅ must be non-empty
given a known safe point x0. Third, the log-barrier term in
(6) always guarantees the next query point xn+1 is contained
in this estimated region, i.e., xn+1 ∈ F̂n.

The primary challenge encountered by this type of safe
BO approach is that it does not have any direct incentive
to grow the size of the partially-revealed safety region F̂n.
Thus, it may become “stuck” in the sense that F̂n ⊂ F as
n → ∞, which could lead to sub-optimal performance in
cases where the global solution to (1) satisfies x⋆ ∈ F \ F̂n.
We look to overcome this challenge by introducing SEBO.

III. SAFE EXPLORATIVE BAYESIAN OPTIMIZATION

The main idea motivating the proposed SEBO method is
that there is value in enlarging the certifiable safety region at
every iteration of BO to ensure that we do not get stuck in
a sub-optimal solution. Thus, we require a metric that, when
evaluated at any x ∈ X , provides a reasonable measure of
the potential benefit of querying the constraints at that point
in the future. Let Vol(F̂n) denote the volume of the partially-
revealed safe set. We can propose the following safety-based
acquisition function that we refer to as the expected safety
improvement (ESI)

ESIn(x) = En

{
Vol(F̂n+1)− Vol(F̂n) | xn+1 = x

}
, (9)

where En{·} denotes the expectation with respect to the
posterior distribution given all function evaluations up until
iteration n. There are two important challenges with (9): (i)
it is expensive to compute and optimize since it requires
repeated estimation of the volume of a set, though this can
in principle be done with Monte Carlo methods (see, e.g.,
[13]); and (ii) any growth in the safety region is valued by
this metric, which can impede the ability to discover new safe
points that are likely to improve performance over multiple
steps in the future. SEBO attempts to overcome both of
these challenges by applying a series of steps that do not
compromise the safety guarantees established in Theorem 1.

The first major step of SEBO is to decide when the choice
in (6) is likely to contain low information content. The most
straightforward approach is to check if σ0

n(xn+1) ≤ ε, where
ε ≥ 0 is a user-specified tolerance value. This implies we can
confidently predict the value of f0(xn+1) and, thus, have
no additional room for improvement within F̂n. Whenever

Algorithm 1 Safe Explorative Bayesian Optimization
Input(s): Domain X , safe point x0 ∈ F , initial data D0 =
{x0, {f i(x0)}mi=0}, m + 1 GP models (2), confidence
bound parameters {βi

n+1}n≥0, barrier parameter τ > 0,
switching tolerance ε ≥ 0, and exploration radius b ≥ 0.

1: for n = 0, 1, . . . do
2: xn+1 ← argminx∈X {l0n(x) + τ

∑m
i=1 Blin(x)}

3: if σ0
n(xn+1) ≤ ε then

4: xr
n+1 ← argminx∈X {l0n(x) + τ

∑m
i=1 Bui

n
(x)}

5: xp
n+1 ← argminx∈F̂n

∥x− xr
n+1∥

6: xn+1 ← argmaxx∈∂F̂n∩Nb(x
p
n+1)

∑m
i=1 σ

i
n(x)

7: end if
8: Query xn+1 and observe objective and constraints
9: Update data Dn+1 ← Dn ∪ {xn+1, {f i(xn+1)}mi=0}

10: Update GP models with Dn+1 using (3)
11: end for

such a situation occurs, we must explore outside the current
safe region. To decide a new search direction, we solve the
following relaxed problem

xr
n+1 ∈ argmin

x∈X

{
l0n(x) + τ

∑m
i=1 Bui

n
(x)

}
, (10)

where the LCB in the log-barrier term in (6) is replaced
with the UCB. This change fundamentally alters the way that
constraints are handled in the search process. In particular,
(10) operates over a relaxed feasible region

F̃n = {x ∈ X : ui
n(x) ≥ 0, ∀i = 1, . . . ,m}. (11)

Since F̃n contains the global solution with high probability
under Assumption 1 [14], sampling at {xr

n}n≥1 will guaran-
tee convergence to the global solution; however, it will result
in loss of the safety guarantees. Instead of directly sampling
at this point, SEBO finds the closest safe point to xr

n+1 by
solving the following projection problem

xp
n+1 ∈ argmin

x∈F̂n

∥x− xr
n+1∥. (12)

For any xr
n+1 ̸∈ F̂n, the projected point xp

n+1 ∈ ∂F̂n

will lie on the boundary of the partially-revealed safe region
and, thus, is more likely to expand the boundary. However,
this projection does not account for the uncertainty of the
constraint functions and may sample low uncertainty points.
Thus, the final step of SEBO is to find the point with the
largest sum of standard deviations in a neighborhood of the
safe region boundary around xp

n+1, i.e.,

xs
n+1 ∈ argmax

x∈∂F̂n∩Nb(x
p
n+1)

∑m
i=1 σ

i
n(x), (13)

where Nb(z) = {x : ∥x − z∥ ≤ b} is a b-radius ball
around point z. When the solution to (6) has low information,
xs
n+1 is proposed as the new query point. The SEBO

method is summarized in Algorithm 1. Although the practical
performance of SEBO will be affected by the choice of
parameters ε and b, they will not affect the safety properties,
as summarized below.



Theorem 2: Let the assumptions in Theorem 1 hold. Then,
for any choice of ε, b ≥ 0, the sequence of query points
{xs

n}n≥1 generated by (13) will satisfy the safety constraints
(7), with xn replaced by xs

n, for any δ ∈ (0, 1).
Proof: The projection (12) and exploration (13) steps of

SEBO ensure xs
n+1 ∈ F̂n for all n ≥ 0 such that the same

arguments used in the proof of Theorem 1 follow. ■
It is interesting to note that Algorithm 1 reduces to the

safe BO method in [4] in the case that σ0
n(xn+1) > ε always

holds, which is guaranteed to be true whenever ε = 0. As
such, we can interpret SEBO as a generalization of this
method. SEBO will be particularly useful whenever one
starts with a very restrictive inner approximation of F .

IV. PERSONALIZED PLASMA TREATMENT GUIDANCE

A. CAP Jet Modeling and Control

We consider a kHz-excited CAP jet (CAPJ) in helium [9].
The manipulated inputs are applied power P (in Watts) and
helium flow rate q (in standard liters per minute, SLM). The
measured outputs are maximum surface temperature T (◦C)
and total optical intensity I (in arbitrary units) of the plasma
at the plasma-surface incident point. The system dynamics
h(·) are described by an observable, canonical form of a
linear time-invariant model

s(k + 1) = As(k) +Ba(k) + w(k), (14)

where k is the discrete-time step, s = [T, I]⊤ ∈ R2 is
the vector of states, a = [P, q]⊤ ∈ R2 is the vector of
manipulated inputs, w is a stochastic variable that represents
the overall system uncertainty, and A,B are the state-space
matrices identified using subspace identification [15].

CAP treatments rely on the quantification of the delivered
plasma effects to a surface. We describe the accumulation of
thermal effects on a target with a metric called cumulative
equivalent minutes (CEM) [16], [17] given by

CEM(k + 1) = CEM(k) +K(Tref−T (k))δt, (15)

where K > 0 is an exponential base dependent on physical
properties of the substrate, Tref = 43◦C is the reference
temperature, δt is the sampling time, and CEM(0) = 0. Here,
δt = 0.5 s in accordance with our open-loop data collection.

For a controlled plasma treatment, we use MPC, which is
formulated in terms of the optimal control problem

min
s(k),a(k)

(CEMsp − CEMc(Np|k))2 (16a)

s.t. s(i+ 1|k) = hc (s(i|k), a(i|k)) , (16b)
(s(i|k), a(i|k)) ∈ S ×A, (16c)
s(0|k) = s(k), (16d)
∀i ∈ {0, . . . , Np − 1},

where s(k) = [s(0|k)⊤, . . . , s(Np|k))]⊤ is the vector of
predicted states s(i|k) over the prediction horizon Np = 5
at time k; a(k) = [a(0|k), . . . , a(Np−1|k))] is the vector of
predicted inputs a(i|k) at time k; CEMsp is the setpoint for
the CEM; S = [25◦C, 0 arb. units] × [45◦C, 80 arb. units]
is the set of state constraints; A = [1.5 W, 1.5 SLM] ×

[5 W, 5 SLM] is the set of input constraints; hc(s, a) =
Âs + B̂a is the control-relevant state space model that
may differ from (14); and CEMc(Np|k) = CEM(k) +∑Np−1

i=0 K̂Tref−T (i|k)δt is the control-relevant CEM model
that may differ from (15). The solution to (16) defines the
MPC law as

πc (s(k)) = a⋆(0|k), (17)

where a⋆(0|k) is the optimal first input. The MPC prob-
lem (16) is implemented in Python using CasADi [18] and
is solved using IPOPT [19].

B. MPC Law Adaptation using SEBO

The plant (14) and (15) has parameters (A,B,K) that are
specific to a given patient, which are not known in advance.
The control method in (16), on the other hand, only has
estimates of these values based on general population data.
Therefore, to personalize a CAPJ treatment, we propose to
use SEBO to adapt a subset of these parameters to improve
closed-loop performance while remaining safe using as few
iterations as possible. This problem can be formulated in
terms of (1) by defining the following black-box functions

f0(x) =
∑N

k=0(CEMsp − CEM(k))2, (18a)

f1(x) =
∑N

k=0([T (k)− Tmax]
+)2, (18b)

where x = [Â11, Â12, Â21, Â22, K̂]⊤ are the subset of model
parameters in the controller that we allow to be modified
(mainly the elements of the estimated A matrix and K
constant since we assume B can be accurately identified),
N denotes the treatment time, and Tmax denotes the maxi-
mum allowed safe surface temperature. The objective (18a)
corresponds to the cumulative deviation of the CEM value
from its setpoint while the constraint (18b) corresponds to the
squared summation of all constraint violations over the full
course of the treatment. The CEM and temperature values
in (18a) and (18b) correspond to the true closed-loop values
obtained by applying the MPC law (17) to the plant (14)–
(15). As such, every evaluation of these functions requires
an expensive closed-loop experiment. We allow all model
parameters to vary within the following geometric bounds,

x =

{
x̂0/v, x̂0 > 0,

vx̂0, x̂0 ≤ 0,
, x =

{
vx̂0, x̂0 > 0,

x̂0/v, x̂0 ≤ 0,
,

where x̂0 is the nominal value of x, x is the lower bound,
x is the upper bound, and v = 2. These bounds define the
search space X .

C. Results

To demonstrate SEBO, we consider the CAP treatment of
a subject over a time period of N = 120 s. The objective
is to deliver CEMsp = 1.5 min of thermal dose as quickly
as possible, while the constraint with Tmax = 45◦C ensures
safety and comfort of the individual subject. We consider
a limited budget of 30 iterations for SEBO, where the
objective (18a) and constraint (18b) are observed after each
full treatment time of 120 s and are modeled as independent



Fig. 2. Comparison of observed closed-loop profiles between three strategies: (a) SEBO, (b) safe BO, and (c) the relaxed formulation of safe BO. The
top figures represent the evolution of CEM over a treatment period of 120 s. The bottom figures represent the evolution of temperature over the same
treatment period. The colors/gradient of the profiles indicate the evolution of the profiles over 30 iterations of BO. The first two profiles in dotted pink
indicate the initial data provided to BO.

GPs.1 We select τ = 103 and {β̃i}mi=0 = 0.1 as “poor”
selection of the parameters from the standard safe BO, while
ε = 0.5 and b = 10−2 in Algorithm 1.2 ε is chosen based
on a user preference to indicate the level of desired potential
improvement. b is chosen to be a small number near the
neighborhood of projected query xp

n+1. In this work, the sets
F̂n and ∂F̂n are approximated using random samples.

Observed closed-loop trajectories of the CAP treatment for
three BO methods are shown in Fig. 2. The three methods
are compared column-wise: (a) SEBO, (b) standard safe BO
(Section II), and (c) relaxed safe BO (BO using only (10)).
The initial dataset D0 consists of one known feasible and
one known unfeasible point in X , shown in dotted pink.
An infeasible initial data point helps to initially delineate
between a safe region and unsafe region. In practice, such
data points are readily estimated. For example, a controller
that operates with low power at all times will most certainly
provide a feasible solution, as power is directly related to
surface temperature. Meanwhile, a controller that operates
with high power at all times will most certainly provide an
infeasible solution. The remaining profiles evolve over 30
iterations. Yellow-green profiles indicate earlier observations,
and dark blue profiles indicate later observations. The top
figures are the CEM profiles, which represent the objective
(18a), and the bottom figures are the temperature profiles,

1To implement SEBO, we modified components of Ax [20]. Ax interfaces
with BoTorch [21] to perform BO. These tools were used with their default
settings. Modifications to Ax are detailed in the codes available at https:
//github.com/kchan45/SafeBOPlasma.

2We note that β̃ is selected by the user, and β = β̃ π
2

to match the
implementation in Ax.

which represent the constraint (18b). Looking at the profiles
in Fig. 2(b), most of the search is contained near the initial
feasible point, with very few exploratory actions. As a
result, many iterations are not helpful in finding a better
treatment. Meanwhile, the profiles in Fig. 2(c) demonstrate
much more exploration of the design space X , but with
several constraint-violating queries. Using SEBO allows a
middle-ground result. In Fig. 2(a), the observations exhibit
more exploration compared to the standard safe BO, while
still strictly adhering to the constraint. This result shows that
SEBO uses and retains the information from the relaxed
problem. We note that the standard safe BO appears to
violate the constraint for two observations, and may be a
result of a poor choice in β since the safety guarantees are
probabilistic in nature.

Furthermore, we show that the revealed feasible set for
SEBO is larger than what is estimated by standard safe BO
in Fig. 3. By the end of 30 iterations, the posterior models can
be used to visualize the revealed feasible set F̂30. In Fig. 3,
blue stars indicate F̂30 of SEBO; orange circles indicate F̂30

of standard safe BO; and green triangles indicate F̂30 of the
relaxed safe BO. We select a subset of parameters to examine
and visualize, namely A11, A22, and K, due to their influence
on the states s; A11 and A22 are the diagonal elements of
A, and K is the exponential base of the CEM delivery. The
subplots of Fig. 3 represent the 3 planes of the 3-dimensional
space. Relaxed safe BO and SEBO both have larger F̂30.
In general, since the main influence of constraint violation
involves temperature, A11 exhibits the most restrictive range
of feasible parameters. Meanwhile, the influence of A22 and



Fig. 3. Comparison of revealed feasible sets of SEBO, safe BO, and the relaxed formulation of safe BO at iteration 30; the feasible set is denoted by
F̂30. Blue stars indicate F̂30 of SEBO; orange circles indicate F̂30 of standard safe BO; and green triangles indicate F̂30 of the relaxed safe BO. While
5 parameters were included in the design space of BO, i.e., x ∈ R5, we show the revealed set for 3 of the parameters A11, A22, and K since they are
deemed the most influential to the objective and constraints. Values of the parameters are normalized.

K are less influential with respect to safety. A22 relates to the
total optical intensity, and K describes the rate of thermal
dose delivery (CEM), both of which have no influence on
safety. Nonetheless, standard safe BO provides a myopic
view of the design space. F̂30 of relaxed safe BO has a
more holistic view of what is deemed feasible/unfeasible, so
its region is larger than standard safe BO, but smaller than
SEBO because it has explored more areas of infeasibility.

V. CONCLUSIONS AND FUTURE WORK

This paper presented a new method for safe explorative
Bayesian optimization (SEBO) to improve the performance
of standard safe BO that relies on penalizing constraint vio-
lations. SEBO ensures that the recommended designs do not
get stuck in a locally feasible space. We demonstrated SEBO
for run-to-run adaptation of an MPC law used to control
cold atmospheric plasma treatment of surfaces in the context
of plasma medicine. We showed that SEBO outperforms
standard safe BO by exploring safe regions on the boundary
in the direction of objective improvement. Future work will
involve evaluating the volume of improvement of the feasible
region in conjunction with performance improvement.
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