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2011 Laurea (B. S.) in Civil Engineering cum laude, Alma Mater Studiorum -
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Achieving good accuracy while keeping a low computational cost in numerical simulations

of problems involving large deformations, material fragmentation and crack propagations still

remains a challenge in computational mechanics. For these classes of problems, meshfree

discretizations of local and nonlocal approaches, have been shown to be effective as they avoid

some of the common issues associated with mesh-based techniques, such as the need for re-

meshing due to excessive mesh distortion. Nonetheless, other issues remain.

In the framework of local mechanics, the semi-Lagrangian reproducing kernel particle

method (RKPM) has been proved to be particularly effectively for material damage and frag-
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mentation, as by reconstructing the field approximations in the current configuration it does

not require the deformation gradient to be positive definite. This, however, results in a high

computational cost.

Furthermore, for crack propagation problems, the use of classical local mechanics presents

many challenges, such as the need of accurately representing the singular stress field at crack tips.

The peridynamic nonlocal theory circumvents these issues by reformulating solid mechanics in

terms of integral equations. In engineering applications, a simple node-based discretization of

peridynamics is typically employed. This approach is limited to first order convergence and often

lacks the symmetry of interaction of the continuous form. The latter can be recovered through the

use of the peridynamic weak form, which however involves costly double integration.

First, we first propose, in the context of local mechanics, a blending-based spatial coupling

scheme to transition from the computationally cheaper Lagrangian RKPM to the semi-Lagrangian

RKPM. Next, we introduce an RK approximation to the field variables in strong form peridynam-

ics to increase the order of convergence of peridynamic numerical solutions. Then, we develop

an efficient n-th order symmetrical variationally consistent nodal integration scheme for RK

enhanced weak form peridynamics.

Lastly, we propose a Waveform Relaxation Newmark algorithm for time integration of

the semi-discrete systems arising from meshfree discretizations of local and nonlocal dynamics

problems. This scheme retains the unconditional stability of the implicit Newmark scheme with

the advantage of the lower computational cost of explicit time integration schemes.

Numerical examples demonstrate the effectiveness of the proposed approaches.
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Chapter 1

Introduction
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1.1 Motivation

Achieving good accuracy while keeping a low computational cost in numerical simulations

of problems involving large deformations, crack propagations or material fragmentation still

remains a challenge in computational mechanics. For this class of problems, meshfree methods

have been shown to avoid some of the common issues associated with mesh-based techniques

(e.g., the finite element method), such as mesh entanglement and the need for re-meshing due to

excessive mesh distortion. Nonetheless, other issues remain.

In the framework of classical local mechanics, the semi-Lagrangian framework reproduc-

ing kernel particle method has been proved to be particularly suitable for problems involving

material damage and fragmentation. This approach circumvents the issues associated with the

use of Lagrangian approaches, which break down when the topology of the problem changes

so that the mapping between the undeformed reference configuration and deformed current

configuration is no longer one-to-one, by reconstructing the field approximations based on the

current configuration (i.e., at every time step of the simulation). While doing so allows for

approximation completeness of arbitrary order in the current configuration, reconstructing the

RK shape functions and shape function gradients associated with the approximation significantly

increases the overall computational cost.

Overall, modeling arbitrary crack growth is very challenging. For problems involving

crack propagation, meshfree methods allow representing arbitrary crack geometries by relatively

simple approaches such as the visibility criterion, without the need of re-meshing to modify

the connectivity between the nodes. However, an accurate representation of the singular stress

field occurring at a crack tip requires the use of enrichment techniques. The approximation

space can be locally enriched either extrinsically or intrinsically. Extrinsic enrichment techniques

introduce additional degree of freedoms, which increases the computational cost, while intrinsic

enrichment on subregions of the domain requires careful construction to avoid a discontinuous
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approximation space at the subdomain interfaces. To circumvent the issues associated with the

use of local (i.e., PDE-based) mechanics for crack propagation problems, such as the need to

represent singular stress fields, the peridynamic nonlocal theory was developed. Peridynamics is

an integro-differential nonlocal reformulation of continuum mechanics, which differently from

the local approach does not make differentiability assumptions on the displacement field. For

this reason, it remains valid in the presence of discontinuities and it is naturally well-suited for

modeling fractures and crack growth. For the aforementioned reasons meshfree methods are

commonly used to discretize peridynamic problems. The most common discretization method

for peridynamic models used in engineering problems is a node-based meshfree approach. This

method discretizes peridynamic domains by a set of nodes, each associated with a nodal cell

with a characteristic volume, leading to a particle-based description of continuum systems and

approximates the peridynamic integral by nodal integration. The behavior of each particle is then

considered representative of its cell. While this leads to a method characterized by a relatively

simple implementation and relatively low computational cost, compared to other discretizations,

its convergence rate is limited to first-order, making it hard to increase accuracy without significant

discretization refinement (and related increased cost).

Furthermore, due to its nonlocal nature, peridynamics is based on the interaction be-

tween couple of points in the domain, which is typically symmetrical in nature. However, this

symmetry is often lacking in discrete strong peridynamic formulations. This issue can be circum-

vented through the use of weak form peridynamics. However, since the variational form of the

peridynamic balance of linear momentum entails the solution of a double integral, it requires

higher computational expense relative to the strong form, which has limited its use for practical

applications.

Lastly, once a semi-discrete system is obtained for the meshfree discretization of either

the local or the nonlocal approach, time integration is performed. One of the most well known

and widely used family of direct time integration methods is the Newmark family of methods.
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Its implicit implementation is unconditionally stable but requires the solution of a linear system,

which makes it computationally expensive; its explicit form, on the other hand, has a low compu-

tational cost as it doesn’t require the solution of systems but is conditionally stable, thus limiting

the allowed time increment. For problems involving large deformations and fragmentation, such

as impact problems, the meshfree particles can often get very close to each other during the

impact phase, leading to the need of very small time steps to retain stability in the explicit case.

For long simulations this can also lead to an increase of computational cost.

1.2 Objectives

The objective of this work is to enhance the computational efficiency and accuracy of

meshfree approaches employed in the solution of local and nonlocal problems, in the framework

of large deformation, fracture and material fragmentation problems. To this end, the major

developments of this dissertation can be summarized as follows:

• Development of a Lagrangian/semi-Lagrangian coupling scheme to spatially blend the

Lagrangian and the semi-Lagrangian RK approximations. This allows for the use of the

semi-Lagrangian RK approximation only in those portions of the problem domain where

required by the nature of the deformation (e.g., where fragmentation occurs) and to avoid

the re-computation of the RK shape functions in the rest of the domain (i.e., where the

Lagrangian RK approximation is employed). This results in computational saving, which

is assessed in large deformation and fragmentation problems, such as a Taylor bar impact

problem or as a projectile perforating a concrete panel.

• Development of an RK enhanced approach for peridynamic solutions. The use of the

RK approximation in the field variables in the peridynamic equations, when paired with

accurate numerical integration, is shown to increase the order of convergence of peridy-

namic numerical solutions through manufactured one-dimensional and two-dimensional
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peridynamic problems.

• Identification of variationally consistent n-th order integration constraints for RK enhanced

weak form peridynamics and development of an n-th order variationally consistent nodal

integration scheme. Achieving higher-order accurate integration in a node-based framework

should aid towards the use of coarser discretization integration and a lower computational

cost.

• The introduction and analysis of a Waveform Relaxation Newmark (WRNβ) algorithm for

the solution of linear second-order hyperbolic systems of ODEs in time, which retains the

unconditional stability of the implicit Newmark scheme with the advantage of the lower

computational cost of explicit time integration schemes. The performance of this algorithm

is compared to a standard implicit Newmark method on a suite of numerical examples.

1.3 Outline

The remainder of this dissertation is organized as follows. Overviews of the reproducing

kernel particle method (RKPM), of the nonlocal theory of peridynamics, and of the waveform

relaxation method are given in Chapter 2. The construction of the RK approximation func-

tions, both in the Lagrangian and semi-Lagrangian framework are reviewed in Chapter 3. The

advantages and disadvantages of these formulations are then discussed in Chapter 4, where a

Lagrangian/semi-Lagrangian RK spatial coupling scheme is also introduced. The stability of the

coupled approach is analyzed and several numerical examples are presented to show the ability

of the proposed coupling scheme to reduce the computational cost of RKPM meshfree large

deformation simulations with respect to pure semi-Lagrangian RK simulations. In Chapter 5,

we review the nonlocal peridynamic theory in its strong form and the associated typically used

node-based discretization scheme. We then introduce a reproducing kernel enhanced strong-form

peridynamic approach, with the goal of improving the convergence behavior in the solution of
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peridynamic problems. Its ability to improve convergence with respect to the common node-based

discretization is demonstrated through convergence studies for 1D and 2D bond-based static linear

peridynamic problems. Chapter 6 reviews the weak form of peridynamics through the nonlocal

vector calculus framework. n-th order integration constraints for a variationally consistent RK

enhanced weak form peridynamics are identified and a modified nodal integration approach

to achieved n-th order variational consistency is also presented. In Chapter 7 we the general

waveform relaxation Gauss-Seidel and Jacobi relaxation schemes are reviewed and we introduce

the Newmark Waveform Relaxation algorithm, with the goal of improving the time-integration ef-

ficiency of the semi-discrete equations coming from the discretization of either the classical local

or the nonlocal theory. Stability analysis and convergence studies are also performed, followed

by discussion on the necessary conditions needed for stability and convergence of the method.

The performance of the method in terms of accuracy and computational time is illustrated on the

semi-discrete equations of classical structural dynamics and of nonlocal approaches, discretized

by the reproducing kernel particle method. Lastly, a summary of this work and concluding

remarks are given in Chapter 8.
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Chapter 2

Literature Review
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2.1 The reproducing kernel particle method

Meshfree methods have been shown to be well-suited for problems where mesh-based

approaches, such as the finite element method (FEM), perform poorly due to excessive mesh

distortion or entanglement issues. This is the case, for example, of problems involving very

large deformations [58][57]. Furthermore, they are suited for fracture modeling [124][122][43],

fragment-impact problems [98], and adaptive refinement computations, where re-meshing in

mesh-based approaches can become expensive.

In this thesis, we focus on the reproducing kernel particle method (RKPM) [138][56],

which is a meshfree approach based on a kernel function to control locality and smoothness,

and a correction function to enforce polynomial reproduction up to arbitrary order. RKPM has

been formulated as a Lagrangian approach [56][57] and as a semi-Lagrangian approach [55] for

modelling of nonlinear solids and structures.

In the RKPM Lagrangian meshfree approach, the variational equations can be formulated

in the reference undeformed configuration or in the current deformed one (total Lagrangian

approach and updated Lagrangian approach, respectively) and the RK approximation functions

are constructed in the reference configuration. Because of the meshfree nature of the method,

materials undergoing very large deformations can be modeled successfully [56]. The Lagrangian

RKPM formulation has therefore been used to model problems involving plasticity [56], structural

dynamics [137], and hyperelasticity [58][44]. However, Lagrangian RKPM breaks down when

the mapping between the deformed and the undeformed configuration is no longer one-to-one and

the deformation gradient is no longer invertible. This is the case when modeling extremely large

deformation problems, such as high velocity impact and penetration processes, during which new

surface formation and material fragmentation occur.

To overcome this limitation, the semi-Lagrangian RKPM formulation [55][97] was de-

veloped, where the approxi mation functions are constructed directly in the current deformed
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configuration, meaning that the mapping between the undeformed and the deformed configuration

is no longer required. Semi-Lagrangian RKPM has been used for a large variety of problems,

such as impact problems involving earth moving simulations [97], fragmentation [63][98], and

slope stability analyses [89]. A downside of the semi-Lagrangian RK approximation is, however,

its high computational cost. In fact, in order to reconstruct the RK approximation in the current

configuration, the search for node neighbors of each evaluation point and the reconstruction

of semi-Lagrangian shape functions need to be performed at each time step. This makes the

semi-Lagrangian RK approach computationally expensive. On the contrary, the Lagrangian

RK approach is computationally advantageous, given that its approximation is only built in the

reference configuration.

Over the years, as highlighted in [127], several approaches have been proposed to couple

the finite element method and meshfree approaches. These include, among others, master-slave

couplings [119][123][38][39], where meshfree particles adjacent to the finite element domain

are rigidly connected to finite elements, bridging domain couplings [127], where the coupling is

performed by blending the two approximations at the energy level by means of a ramp function,

couplings via Lagrange multipliers [10], and couplings via mixed interpolation [121]. In [121]

coupling between FEM and element-free Galerkin (EFG) approximations is achieved by the

definition of a transition zone (having the width of an element), where a mixed approximation

was built by substituting finite element nodes with particles and by blending the FEM and EFG

approximations via ramp functions so that continuity and first-order consistency are preserved.

A similar approach was employed in [70] to blend EFG and enrichment functions for crack tip

fields.

In [1] and in [136], a blending between FEM and meshfree approaches (EFG and RKPM,

respectively) where arbitrary order reproducing conditions are imposed in the transition zone.

Since the reproducing conditions are imposed to build the mixed approximation in the transitioning

region, this approach does not require the definition of a ramp function. Imposing the reproducing
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conditions in the transitioning zone, however, requires knowledge of the FEM shape function

values at the evaluation points of interest. They are, in fact, used as input when the reproducing

conditions are imposed to construct the meshfree functions.

2.2 The peridynamic theory

Peridynamics is an integro-differential nonlocal reformulation of the classical theory of

continuum mechanics. It was introduced in [111][113] to model spontaneous formation of cracks.

Since balance laws are computed through integration rather than differentiation, assumptions

on the spatial differentiability of displacement fields are not required. For this reason, the

peridynamic formulation remains valid in the presence of displacement discontinuities and is

thus directly applicable to problems involving material failure and damage. Peridynamics has

therefore been used to model, among others, crack nucleation [14][114], crack propagation and

growth in brittle glass [6][7][147][148], and failure and damage in concrete [13][133], composites

[9] [18][19][143][135][144][149], and polycrystals [15][87][71]. Being nonlocal, peridynamic

models possess a length scale, called horizon, which defines the range of nonlocal interactions.

In the limit of vanishing nonlocality, relationships between peridynamic and classical models

can be established, if the latter are well defined. In [115] it is shown that, under suitable

smoothness assumptions, elastic peridynamic models reduce to classical elastic models as the

horizon value approaches zero. Since governing equations in peridynamics are continuous,

different discretization schemes have been employed and studied for their solution, including finite

difference schemes [141], the finite element method [7][16][27][28][42][100][106][140][141],

and direct quadrature and particle-based methods [16][25][85][112]. Connections between

node-based discretizations of strong forms of peridynamic equations and discretized classical

partial differential equations (PDEs) have been explored in [37][83][96]. In [96] the equivalence

between nearest-neighbor peridynamic discretizations and finite difference schemes is shown
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when appropriate integration weights are chosen in the peridynamic discretization. A connection

between approximations of classical continuum models with the Reproducing Kernel Particle

Method (RKPM) [56][138] and peridynamics has been made in [83] for uniform discretizations,

while conditions for the equivalence of Smoothed Particle Hydrodynamics (SPH) [54] and

node-based peridynamics were introduced in [37].

In this work, we focus on meshfree type discretizations of the nonlocal peridynamic

equations. The accuracy of the numerical solutions obtained by a node-based discretization of

nonlocal peridynamic problems and their convergence to the nonlocal analytical solutions under

grid refinement have been investigated in [93][94][117]. In [117] the authors solved nonlocal

elliptic boundary value problems. They observed an oscillatory behavior in the convergence results

and attributed it mostly to the integration error associated with the node-based integration scheme,

which was implemented using the so-called full volume approach [112]. Further convergence

studies were carried out in [93], where several schemes to improve the integration accuracy were

employed. While improving the integration accuracy reduced the oscillatory behavior, it was

noted that the attainable convergence rate was limited to first order due to a piecewise-constant

approximation associated with the node-based discretization. Higher convergence rates can

be obtained by employing higher-order discretizations. This can be achieved, for example, by

piecewise linear finite element discretizations [140][141]. However, the use of finite element

discretizations for solving peridynamic problems involving fractures can become cumbersome

due to the need of adapting the mesh to the evolving cracks. Furthermore, the use of the finite

element method in peridynamics can be computationally expensive as it is based on weak forms,

which lead to the need of performing double spatial integration. Lastly, in the finite element

framework, the order of continuity and completeness of the approximate solution are intertwined.
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2.3 Waveform relaxation

The Waveform Relaxation method (WR), also called dynamic iteration method, is an

iterative technique for solving space-time problems and can be used for solving the related

systems of ODEs. It offers so-called parallelization of time and due to its implicit nature provides

improved stability compared to explicit methods [41].

As highlighted in [35], time parallel methods can be grouped in different categories: meth-

ods based on multiple shooting [51, 2, 91], direct time parallel methods [139, 11, 3, 107] (mainly

based on predictor-corrector type of approaches), space-time multigrid techniques [134][32] and

waveform relaxation methods [68, 17, 76, 84]. The multiple shooting method was developed in its

discrete form in [2] and then expanded in continuous form in [91]. The idea behind this approach

is to partition the time domain into windows and, after a first coarse serial solution used to

determine approximate initial conditions for each time window, solve in parallel a refined solution

over each window. The solution at the final time step for a window might not coincide with

the assumed initial condition of the next one (thus the term shooting): the solution is therefore

performed iteratively until agreement is achieved. Different from the multiple shooting methods,

multigrid methods in space and time are not naturally parallel [35], but they can be used to solve

systems simultaneously over the entire space-time domain [35][31]. Following a similar idea

where space-time is one large domain, a common finite element discretization of both the space

and the time domains was proposed in [33].

Here, we focus on the class of time-parallel Waveform Relaxation methods [68][52]. The

WR method was mostly applied to parabolic initial value problems with applications in electrical

network systems and the analysis of circuits [68] and has rarely been applied to hyperbolic

problems that arise in structural dynamics.

This method differs from most standard iterative techniques in that it is a continuous-

time method, iterating with functions in time, called waveforms. In other words, the space
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domain in this algorithm is partitioned into smaller subsystems while time is not discretized but

rather kept continuous. However, in practical implementations of the method, discretization of

time is also desired, especially when non-linearities are considered. One of the advantages of

the WR schemes is it being unstructured in the time domain. Hence, if in a system there are

several variables changing at different rates, they can be uncoupled and each integrated with the

appropriate time step size, with a predefined interpolating operator to exchange the information

between subsystems [41]. Several ways for accelerating the convergence, thus improving the

efficiency, of the waveform relaxation schemes have been investigated, such as successive over

relaxation (SOR), Polynomial acceleration (Chebyshev iteration, Krylov subspace acceleration)

and Multigrid [52, 48, 47, 109, 131, 110].

The SOR waveform relaxation and its convergence were first studied by Miekkala and

Nevanlinna [129][130]. Reichelt et al. [82] improved the results by proposing a convolution

SOR acceleration of the waveform relaxation scheme in which, instead of multiplying by a fixed

SOR parameter as in the traditional SOR approach, a time-dependent SOR kernel was used. The

effectiveness of this approach was confirmed in [49], where the performance of the convolution

SOR was compared to SOR methods based on matrix splitting and extrapolation. It was found

that, while the latter techniques led only to a minor acceleration, the method based on convolution

achieved convergence acceleration similar to the one obtained for optimal stationary SOR methods.

Lastly, a parareal Schwarz waveform relaxation algorithm was recently proposed by combining

the aforementioned multiple shooting methods and the Schwarz waveform relaxation method

[35][76][50][146]. In this scheme, similar to the space-time multigrid methods, simultaneous

iteration over a set of unknowns in the space-time domain is performed [35]. The focus of these

studies and procedures has been mainly on parabolic first order differential equations; limited

studies have been conducted on hyperbolic and second-order systems. In [145] and [67] the

application of waveform relaxation methods to second-order differential equations and their

convergence have been studied; however this was performed by converting the system to first
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order. None of these studies considered the Newmark family of integration methods for second

order ODEs that is common in structural dynamics.
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3.1 Lagrangian reproducing kernel approximation

The Reproducing Kernel (RK) approximation is the basis of the RKPM [56][138]. The

RKPM is originally based on a continuous corrected kernel estimate of a scalar function f (x)

denoted by f h(x):

f (x)≈ f h(x) =
∫

Ω

Ψ(x;x−y) f (y)dy, (3.1)

where Ω⊂ Rd denotes a closed domain, x ∈Ω, and

Ψ(x;x−y) = Φa(x−y)C(x;x−y), (3.2)

where Φa(x−y) is a kernel function with compact support measure a used to define the locality

and the order of continuity, and C(x;x−y) is a correction function used to impose the reproducing

conditions for desired Ω order of completeness of the approximation. Eq. (3.1) is then discretized

by means of numerical integration [56]. To do so, integration weights need to be defined to

ensure completeness in the approximation. Furthermore, it is shown in [56] that in order for the

reproducing conditions to remain satisfied in the discrete setting, the same integration scheme

needs to be used consistently throughout the whole approximation construction procedure. To

maintain consistency in the discrete approximation and avoid complexity in defining the weights

in the domain of integration of Eq. (3.1), an RK approximation developed directly in a discrete

form was introduced in [57].

In mesh-based approaches such as the finite element method (FEM), the shape functions

and the related approximation space are strictly linked to element connectivity. In the RKPM,

instead, the approximate solutions are constructed over a nodal discretization of the considered

domain. Conditions for particle (node) distributions to be suitable for numerical computations are

outlined in [108].

Let us now consider the initial reference domain ΩX ⊂ Rd , which after deformation
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gets mapped to the deformed domain Ωx ⊂ Rd . Let ΩX be discretized by a set of NP nodes

{XI|XI ∈ ΩX}NP
I=1, where X is the material coordinate defined in the reference (undeformed)

domain configuration. In a Lagrangian reproducing kernel approximation, the discrete RK

approximation f h,L(X, t) of a generic function f (X, t) in ΩX is defined as:

f h,L(X, t) =
NP

∑
I=1

Ψ
L
I (X) fI(t), (3.3)

where {ΨL
I (X)}NP

I=1 is the set of Lagrangian RK shape functions and { fI}NP
I=1 is the set of nodal

coefficients of the approximation [56][57][138]. It has to be noted that the RK shape functions

do not typically possess the Kronecker delta property. Therefore, the RK nodal coefficients (also

called generalized coefficients) are not equivalent to the approximate function values at the nodes

(i.e., f h(XI, t) 6= fI(t)). However, the Kronecker delta property can be recovered through the use,

for example, of singular kernel functions [64] or of the so-called transformation method [56][29],

which modifies the shape functions to enforce the Kronecker-delta property.

ΦI

Figure 3.1: Meshfree discretization with an RK approximation kernel function.

Similarly to Eq. (3.2), RK shape functions in the discrete setting are defined as the product

of a kernel function Φa(X−XI) with compact support ΦI (see Figure 3.1) and a correction
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function C(X;X−XI):

Ψ
L
I (X) = Φa(X−XI)C(X;X−XI). (3.4)

The correction function C(X;X−XI) is defined as a linear combination of basis functions hk,

k = 1,2, ...,n, and coefficients qk:

C(X;X−XI) = HT(X−XI)q(X). (3.5)

In the case of monomial basis functions:

C(X;X−XI) = ∑
|α|≤n

(X−XI)
αqα(X)≡HT(X−XI)q(X), (3.6)

where q(X) is the column vector of coefficients and HT (X−XI) is the row vector of the monomial

bases:

HT (X−XI) = {(X−XI)
α}|α|≤n, (3.7)

where n is the basis order and, in multi-index notation, α≡ (α1,α2, ...,αd), |α| ≡
d
∑

i=1
αi, Xα ≡

Xα1
1 Xα2

2 ...Xαd
d , and Xα

I ≡ Xα1
I1 Xα2

I2 ...Xαd
Id

A unique property of the RK approximation is that, different from the FEM, the order

of approximation is completely independent of the smoothness (order of continuity) of the

approximation, allowing for great flexibility in the definition of the approximation function. The

basis order n defines the order of completeness in the RK approximation. Smoothness of the

approximation functions is determined through the choice of the kernel function Φa(x−xI). A

cubic B-spline function such as

Φa

( z
a

)
=


2
3 −4( z

a)
2 +4( z

a)
3 for 0≤ z

a < 1
2

4
3 −4( z

a)+4( z
a)

2− 4
3(

z
a)

3 for 1
2 ≤ z

a ≤ 1

0 otherwise

, (3.8)
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where

z =‖ X−XI ‖, (3.9)

for example, gives a C2 continuity. This kernel function Φa has a spherical support (see Figure

3.2 for the 2D case). The kernel function can also be constructed by multiplying the chosen kernel

function in one-dimension according to:

Φa(X−XI) =
d

∏
i=1

Φai(Xi−XIi), (3.10)

where ai represents the chosen support measure in each dimension. In this case, the kernel

function Φa has a brick support (see Figure 3.2 for the 2D case). In addition, in [46] RK kernel

functions defined on triangulations are employed.

   xI

a

   xI

2a1

2a2

Figure 3.2: Spherical (circular in 2D) and brick (rectangular in 2D) support for Φa.

The coefficients q(X) in Eq. (3.6) are determined by imposing the reproducing conditions

in the reference initial configuration:

NP

∑
I=1

Ψ
L
I (X)H(XI) = H(X), (3.11)
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that, in the case of monomial reproducing conditions becomes:

NP

∑
I=1

Ψ
L
I (X)Xα

I = Xα, |α| ≤ n. (3.12)

Equivalently, by the binomial theorem,

NP

∑
I=1

Ψ
L
I (X)(X−XI)

α =
NP

∑
I=1

ΨI(X)
d

∏
p=1

αp

∑
kp=0

(
αp

kp

)
(−1)kpXαp−kp

p xkp
I p

=
NP

∑
I=1

ΨI(X)
α1

∑
k1=0

...
αd

∑
kd=0

(
α1

k1

)
...

(
αd

kd

)
(−1)|k|Xα−kXk

I

=
α1

∑
k1=0

...
αd

∑
kd=0

(
α1

k1

)
...

(
αd

kd

)
(−1)|k|xα−k

NP

∑
I=1

ΨI(X)Xk
I

=
α1

∑
k1=0

...
αd

∑
kd=0

(
α1

k1

)
...

(
αd

kd

)
(−1)|k|Xα−kXk

= Xα

α1

∑
k1=0

...
αd

∑
kd=0

(
α1

k1

)
...

(
αd

kd

)
(−1)|k|

= Xα
δα0 = δα0,

(3.13)

where δα0 = δα10δα20...δαd0, meaning that

NP

∑
I=1

Ψ
L
I (X)(X−XI)

α = δα0, (3.14)

NP

∑
I=1

Ψ
L
I (X)H(X−XI) = H(0), (3.15)

where H(0) is a vector containing the values of δα0 for all the considered values of α. By using

(3.4) and (3.5) in Eq. (3.15) one obtains:

NP

∑
I=1

Φa(X−XI)[HT (X−XI)q(X)]H(X−XI) = H(0), (3.16)
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[
NP

∑
I=1

Φa(X−XI)H(X−XI)HT (X−XI)

]
q(X) = H(0). (3.17)

Consequently,

q(X) = M−1(X)H(0), (3.18)

where M(x) is called the moment matrix and is defined as follows:

M(X) =
NP

∑
I=1

H(X−XI)HT (X−XI)Φa(X−XI). (3.19)

By substituting q(X) obtained from (3.18) into (3.6), the RK shape functions in (3.4) are obtained

as
Ψ

L
I (X) = HT (X−XI)M−1(X)H(0)Φa(X−XI)

= HT (0)M−1(X)H(X−XI)Φa(X−XI).

(3.20)

It can be easily shown that the expression for ΨL
I (X) in (3.20) satisfies Eq. (3.12) [108].

In order for the expressions in (3.18) and (3.20) to be defined, the moment matrix in (3.19) must be

invertible, meaning that the reproducing equations are required to be linearly independent at any

evaluation point X ∈ΩX . This is possible only if there is a sufficient number np of independent

kernels covering the evaluation point X [56][108], where

np =

(
n+d

d

)
. (3.21)

Kernel independence means that the associated points are not located on a geometry that can be

represented by the basis functions. For example, if linear bases are used in 3D, every evaluation

point should be covered by 4 kernel supports ΦI(X) of non-coplanar points. The algorithm to

construct the RK shape functions is provided in the form of a pseudo-code in Appendix 3-A,

while the reproducing capabilities of the RK shape functions are shown in Appendix 3-B.
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3.2 Semi-Lagrangian reproducing kernel approximation

In the semi-Lagrangian approach [55][97], while the RK discretization points follow the

material motion, function approximation is built by means of shape functions expressed and

constructed with respect to the current spatial coordinates:

f̃ (ϕ(X, t), t) = f̃ (x, t)≈ f̃ h,SL(x, t) =
NP

∑
I=1

Ψ
SL
I (x) f̃I(t), (3.22)

thus avoiding the need for directly knowing the mapping ϕ [55][97][128] between the reference

and current configuration. The semi-Lagrangian shape functions are defined as

Ψ
SL
I (x) =C(x;x−xI)Φa(x−xI), (3.23)

where ΨSL
I (x) is the shape function of node I built in the current configuration, with xI =ϕ(XI, t),

and C(x;x−xI) and Φa(x−xI) are the correction and kernel function expressed in the current

configuration, respectively. Similarly to the Lagrangian case presented in Section 3.1, the kernel

function controls the smoothness and the locality of the approximation, while the correction

function is defined as a linear combination of basis functions and coefficients

C(x;x−xI) = HT (x−xI)q(x), (3.24)

where HT (x− xI) is the row basis vector and q(x) is the column vector of coefficients. As

in the Lagrangian approximation case, the coefficients vector q(x) is determined by imposing

reproducing conditions, but this time in the current deformed configuration. For example, for the

case of monomial basis and monomial reproducing conditions:

NP

∑
I=1

Ψ
SL
I (x)xα

I = xα, |α| ≤ n, (3.25)
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where NP, n, α, and |α| are defined as in Section 3.1. After following similar steps as in Section

3.1, the semi-Lagrangian shape functions can be expressed as

Ψ
SL
I (x) = HT (0)M−1(x)H(x−xI)Φa(x−xI), (3.26)

where M(x) = ∑
NP
I=1 H(x−xI)HT (x−xI)Φa(x−xI) is the moment matrix defined in the current

configuration.

As in the Lagrangian case (see Section 3.1), kernel functions can be defined either with a

spherical or a brick support. In the Lagrangian RK approximation, though, the kernel functions,

which are defined in the reference configuration, deform together with the material body and cover

the same group of material nodes before and after deformation. The semi-Lagrangian kernels,

instead, traditionally do not deform with the body and cover different RK nodes over the course

of the deformation. Figure 3.3 shows the comparison between Lagrangian and semi-Lagrangian

kernel supports during deformation. In order for M(x) to be invertible in Eq. (3.26), np (see

Eq. (3.21)) independent kernels need to cover evaluation point x in the current configuration.

However, given that the kernels cover different points at different times, it can happen that, at a

certain point during the deformation, the number of neighbouring nodes covering x is not enough

for the chosen basis order n. This is the case, for example, in fragmentation problems, when a

single particle detaches itself from the body and has only itself as a neighbour. In order not to

be restricted, in these situations, to the use of constant bases or to an abrupt reduction in basis

order, a “quasi-linear” formulation was introduced in [20]. The quasi-linear reproducing kernel

approach allows for almost linear completeness when the number of neighbours is insufficient to

achieve first-order completeness.
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(a) Undeformed configuration kernel support. (b) Deformed configuration, RK shape function.

(c) Deformed configuration, Lagrangian kernel support. (d) Deformed configuration, Lagrangian RK shape function.

(e) Deformed configuration, semi-Lagrangian kernel support. (f) Deformed configuration, semi-Lagrangian RK shape
function.

Figure 3.3: Lagrangian and semi-Lagrangian kernels and associated RK shape functions. The
shape functions are built using a linear basis and a cubic B-spline kernel.

It has to be noted that, differently from the Lagrangian case, the material time derivative

of the semi-Lagrangian shape functions does not vanish. This is due to their time dependency

and to their construction in the current configuration, which leads to the kernel supports covering

different material particles at different times (see Figure 3.3). The temporal derivative ˙̃f h,SL(X, t)
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of the semi-Lagrangian approximation of a function f̃ h,SL(X, t) is

˙̃f h,SL(X, t) =
NP

∑
I=1

[ΨSL
I (x) ˙̃fI(t)+Ψ

∗
I (x) f̃I(t)], (3.27)

where ˙̃fI(t) is the I-th nodal coefficient corresponding to ˙̃f h,SL(x, t) and Ψ∗I (x) is the correction

due to the time rate of the semi-Lagrangian kernel Φ̇a [98]:

Ψ
∗
I (x) =C(x,xI−x)Φ̇a(x−xI). (3.28)

As shown in Section 3.1 for the Lagrangian case, the kernel Φa is typically a function of a distance

measure normalized with respect to support size measures (a for the spherical support case and ai,

i = 1,2,3, in the case of a brick support). Therefore, for the case, for example, with a spherical

support:

Φ̇a (x−xI) =
∂Φa

∂t

∣∣∣∣
[X]

= Φ
′
a

(‖ x−xI ‖
a

)
x−xI

a ‖ x−xI ‖
· ∂(x−xI)

∂t
. (3.29)

A similar expression can be derived for kernels with brick support [128]. Furthermore, it has to be

noted that the time derivative of the correction function is omitted in Eq. (3.28) as it is constructed

in the current configuration in order to meet the reproducing conditions (see Eq. 3.25).

It is noted in [128] and [120] that the contribution of the terms involving Ψ∗ in Eq. (3.27)

is negligible for problems with moderate relative changes in nodal velocities [128] or when a

nodal integration scheme, such as direct nodal integration (DNI), stabilized conforming nodal

integration (SCNI), or stabilized nonconforming nodal integration (SNNI), is employed [120]. In

such cases, the term associated with Ψ∗ can be omitted.

When it was introduced [55], the semi-Lagrangian approximation (see Eq. (3.22)) was

employed to approximate the velocity field. The related acceleration field was determined

by Eq. (3.27) but an approximation for the displacement field was not defined. In [97][63],

displacement and velocity are both approximated by using Eq. (3.22), while in [128] Eq. (3.22)
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is used for the displacement field and velocity and acceleration are approximated by using the

first and second temporal derivative of the displacement approximation, respectively. If the terms

associated with the temporal derivatives of Φa are omitted, the two approaches coincide.

SCNI was developed to obtain optimal convergence for linearly complete functions as

well as to solve the rank instability issue present in direct nodal integration [59]. In SCNI, the

domain is partitioned in conforming cells (see Figure 3.4a for a two-dimensional example) each

associated with an RKPM node. In order to avoid the rank instability arising from the direct

evaluation of the shape functions gradients at the nodes, nodal gradients are computed through a

smoothing operation over the conforming nodal domains as follows:

∇̃ΨI(xI) =
1

WL

∫
ΩL

∇ΨIdΩ =
1

WL

∫
ΓL

ΨIndΓ, (3.30)

where ∇̃(·), WL, and n are a smoothing gradient operator, the volume of a gradient

smoothing cell of node L, and the surface normal vector, respectively. Due to the way the

smoothing is performed and to the conforming nature of the nodal cells, the first-order variational

consistency for Galerkin linear exactness is satisfied, leading to optimal convergence. However, in

order for SCNI to be employed in a semi-Lagrangian RKPM formulation, the conforming nodal

cells would have to be reconstructed at each integration time step. For this reason, this integration

approach is too computationally expensive to be feasibly used for practical problems in a semi-

Lagrangian framework. Therefore, instead of SCNI, SNNI is often used in conjunction with

semi-Lagrangian RK [98]. In SNNI, the smoothing of the shape function gradients in Eq. (3.30)

is performed over nonconforming cells, represented by brick domains constructed around each

RKPM node (see Figure 3.4b for a two-dimensional example). These smoothing domains

traditionally maintain their shape, similarly to the semi-Lagrangian kernel function supports, for

the whole duration of the simulation, making them suitable for semi-Lagrangian RKPM. The

relaxation of the conforming requirement, however, leads to the first-order variational consistency

for Galerkin linear exactness being no longer satisfied. In order to improve the performance of
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SNNI and achieve an arbitrary-order variational consistency, a variationally consistent integration

for meshfree methods was proposed in [61]. Furthermore, in [65] additional stabilization terms

were introduced for SCNI by means of a modified strain smoothing expression (M-SCNI). In [74],

instead, a naturally stabilized nodal integration (NSNI) was introduced. NSNI adds stabilization

to the direct nodal integration (DNI) scheme by performing a Taylor expansion about each RKPM

node of the displacement field in each related nodal integration cell.

RKPM node

Smoothing zone

(a) Conforming SCNI cells.

RKPM node

Smoothing zone

(b) Nonconforming SNNI cells.

Figure 3.4: RKPM smoothing cells for SCNI and SNNI (two-dimensional case).
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3.3 Appendix 3-A: Pseudo-code for constructing RK shape

functions

Variables:

nnodes: number of RK nodes xI

neval: number of evaluation points x

n: basis order

d: number of spatial dimensions

sb = (n+d)!
n!d!

ad: kernel support measure(s)

Xd
e =



x1
1 ... x1

d

: ... :

xi
1 ... xi

d

: ... :

xneval
1 ... xneval

d


: matrix of coordinates of all the evaluation points

Xd
J =



x1
1J ... xd

1J

: ... :

xi
1J ... xi

dJ

: ... :

xnnodes
1J ... xnnodes

dJ


: matrix of coordinates of all the RK nodes

xi = Xd
e (i, :) = [xi

1, ...,x
i
d]: i-th evaluation point coordinates

xi
J = Xd

J (i, :) = [xi
1J, ...,x

i
dJ]: i-th RK node coordinates
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M(x) = Msb×sb: moment matrix

Sneval×nnodes: matrix to store the RK shape function values at the evaluation points

HT (0) = HT
0 = [1,0, ...,0]1×sb

H(x−xJ) = Hsb×1: basis vector

ΨJ(x) = ΨJ: shape functions of node J evaluated at x

Algorithm 1 Cubic B-spline Kernel (spherical support)

1: function [Φa] = Kernel(x,xJ,ad)
2: {%} N.B. different types of kernels can be implemented. Similarly, for the other algorithms.
3: z = ‖x−xJ‖

ad

4: if 0≤ z < 1
2 then

5: Φa =
2
3 −4z2 +4z3

6: else
7: if 1

2 ≤ z < 1 then
8: Φa =

4
3 −4z+4z2− 4

3z3

9: end if
10: if z≥ 1 then
11: Φa = 0
12: end if
13: end if
14: end function
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Algorithm 2 Basis vector computation

1: function [H] = Basis(x,xJ,n)
2: if d=1 then
3: x1 = x(1)
4: x1J = xJ(1)
5: for k = 0 : n do
6: H(k+1) = (x1− x1J)

k

end for
7: else
8: if d=2 then
9: x1 = x(1);x2 = x(2)

10: x1J = xJ(1);x2J = xJ(2)
11: count = 1
12: for k = 0 : n do
13: for j = 0 : k do
14: i = k− j
15: H(count) = (x1− x1J)

i(x2− x2J)
j

16: count = count +1
17: end for
18: end for
19: end if
20: if d=3 then
21: x1 = x(1);x2 = x(2);x3 = x(3)
22: x1J = xJ(1);x2J = xJ(2);x3J = xJ(3)
23: count = 1
24: for k = 0 : n do
25: for j = 0 : k do
26: for i = 0 : k− j do
27: l = k− j− i
28: H(count) = (x1− x1J)

i(x2− x2J)
j(x3− x3J)

l

29: count = count +1
30: end for
31: end for
32: end for
33: end if
34: end if
35: end function
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Algorithm 3 Moment matrix computation

1: function [M] = Moment(x,Xd
J ,n)

2: M = 0 . initialize
3: for j = 1 : nnodes do
4: xJ = Xd

J ( j, :)
5: [Φa] = Kernel(x,xJ,ad)
6: [H] = Basis(x,xJ,n)
7: M = M+HHT Φa

8: end for
9: end function

Algorithm 4 RK shape functions ΨJ(x) evaluation
1: for i = 1 : neval do
2: x = Xd

e (i, :) . evaluation point coordinates
3: [M] = Moment(x,Xd

J ,n)
4: for j = 1 : nnodes do
5: xJ = Xd

J ( j, :) . RK node coordinates
6: [Φa] = Kernel(x,xJ,ad)
7: [H] = Basis(x,xJ,n)
8: ΨJ = HT

0 M−1HΦa
9: S(i, j) = ΨJ(x)

10: end for
11: end for
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3.4 Appendix 3-B: Comparison between RK shape functions

and uncorrected kernels

In this appendix, the reproducing capabilities of the RK shape functions are compared with

those of the uncorrected kernels. Figure 3.5 shows the comparison between the one-dimensional

uncorrected kernel functions Φa(x− xI) and the RK shape functions ΨI(x) = Φa(x− xI)C(x;x−

xI). A set of 11 equally spaced nodes and a cubic B-spline kernel with measure a = 1.5h,

where h represents the nodal spacing, were used. For plotting purposes, the cubic B-spline was

scaled by a factor of 4
3 with respect to the one presented in Eq. (3.8). It can be noted that due

to the correction function, which modifies the kernel functions especially near the boundaries,

the RK approximation shape functions, with constant and linear bases (see Figures 3.5a and

3.5b, respectively) exactly reproduce constant and linear functions (see Figures 3.6a and 3.6b,

respectively). On the contrary, the kernel functions do not satisfy the consistency conditions and

thus cannot reproduce any order of polynomials. Similar results can be obtained for non-uniform

nodal discretizations (see Figures 3.7 and 3.8).
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(a) Constant basis
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(b) Linear basis

Figure 3.5: Kernel functions ΦI and RK shape functions ΨI (1D) for a uniform point distribu-
tion.
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(a) Zeroth-order consistency
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(b) First-order consistency

Figure 3.6: Zeroth- and first-order consistency conditions for the kernel functions ΦI and RK
shape functions ΨI (1D) for a uniform point distribution. Constant and linear bases were used
in the RK approximation in (a) and (b), respectively.
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Figure 3.7: Kernel functions ΦI and RK shape functions ΨI (1D) for a non-uniform point
distribution.
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Figure 3.8: Zeroth- and first-order consistency conditions for the kernel functions ΦI and RK
shape functions ΨI (1D) for a non-uniform point distribution. Constant and linear bases were
used in the RK approximation in (a) and (b), respectively.

A similar comparison is also shown for a two-dimensional case (see Figure 3.9). Fig-

ures 3.10 and 3.11 show the kernels and the RK shape functions associated with a node xI near the

boundary and in the interior of the domain, respectively. In this construction, a uniform grid of 5x5

nodes, constant bases, and a spherical cubic B-spline (Eq. (3.8)) with support measure a = 1.5h,

with h being the grid spacing, were used. Similar to the one-dimensional case, the significance of

the correction functions for nodes near the boundary of the domain can be observed. Satisfaction

of the zeroth-order and first-order reproducing conditions by the RK approximation are shown in

Figures 3.12 and 3.13, respectively. For the linear case, so as to guarantee the minimum necessary

number of independent kernels, the kernel support measure was increased to a = 2h and linear

bases were used to construct the RK approximation functions.
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(0,0) (1,0)

(0,1) (1,1)

   xI

Figure 3.9: A meshfree discretization of a two-dimensional unit square domain.

(a) Kernel function ΦI (b) RK shape function ΨI

Figure 3.10: Kernel function ΦI and RK shape function ΨI (2D) near the domain boundary.
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(a) Kernel function ΦI (b) RK shape function ΨI

Figure 3.11: Kernel function ΦI and RK shape function ΨI (2D) in the domain interior.

(a) Kernel functions ΦI (b) RK shape functions ΨI

Figure 3.12: Zeroth-order consistency conditions for the kernel functions ΦI and RK shape
functions ΨI (2D).
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(a) Kernel functions ΦI (b) RK shape functions ΨI

Figure 3.13: First-order consistency conditions for the kernel functions ΦI and RK ΨI shape
functions (2D).
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Chapter 4

A Lagrangian/semi-Lagrangian coupling

approach for meshfree modeling
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4.1 Lagrangian equation of motion

In solid mechanics, total Lagrangian and updated Lagrangian formulations are commonly

used. In both formulations, the material motion from the reference (initial) domain ΩX ⊂ Rd

to the deformed (current) domain Ωx ⊂ Rd is described by the mapping function x = ϕ(X, t),

where X and x represent the material reference coordinates and the current spatial coordinates,

respectively. The material displacement is represented by u(X, t) =ϕ(X, t)−X (see Figure 4.1).

e1

e2

e3

Reference (initial) configuration

Current (deformed) configuration

∂ΩX

∂Ωx

X

x

u

ΩX

Ωxϕ(X, t)

Figure 4.1: Deformation of a material body.

In the total Lagrangian formulation, integrals and derivatives are taken with respect to the

material coordinates X and Lagrangian measures of stress and strain are used [123]. Therefore,

considering a body initially occupying a domain ΩX with undeformed boundary ∂ΩX (see Figure

4.1) with initial density, body force and surface traction represented, respectively, by ρ0, b0, and
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h0, the equation of motion in the total Lagrangian formulation is [123][55]

∫
ΩX

δuiρ
0üi dΩ+

∫
ΩX

δFi jPi j dΩ =
∫

ΩX

δuib0
i dΩ+

∫
∂ΩX

δuih0
i d∂Ω, (4.1)

where P is the first Piola-Kirchoff stress tensor and F is the deformation gradient, defined as

Fi j = ∂ϕi/∂X j. The updated Lagrangian formulation, instead, is expressed in terms of Eulerian

measures of stress and strain, and derivatives and integrals are taken with respect to the spatial

coordinates x [123]. As in the total Lagrangian approach, though, quantities are a function of the

material coordinates X. Any generic quantity f(X, t) can, however, be expressed as a function of

spatial coordinates as

f(X, t) = f(ϕ−1(x, t), t) = f̃(x, t) = f̃(ϕ(X, t), t), (4.2)

where f = f̃ ◦ϕ (and f̃ = f ◦ϕ−1). Alternatively, implicit differentiation can be employed to

compute derivatives of functions of X with respect to x [123]. In the updated Lagrangian

formulation, the equation of motion is expressed as [55][97]

∫
Ωx

δuiρüi dΩ+
∫

Ωx

δu(i, j)σi j dΩ =
∫

Ωx

δuibi dΩ+
∫

Γx

δuihi dΓ, (4.3)

where u(i, j) = (∂u j/∂xi +∂ui/∂x j)/2, σ is the Cauchy stress, Ωx is the deformed domain with

current boundary ∂Ωx and ρ, b, and h represent the density, body force, and surface traction in

the deformed current configuration, respectively.

The total Lagrangian and the updated Lagrangian descriptions can be shown to be mathe-

matically equivalent through the mapping between the reference and current configurations, and

the transformation of stress and strain measures [123]. Choosing one formulation or the other is

typically just a matter of convenience based on the employed material constitutive model [97].

40



4.2 Blending-based reproducing kernel

Lagrangian/semi-Lagrangian coupling

The Lagrangian RK approximation approach presented in Section 3.1 can be employed

either in a total Lagrangian or updated Lagrangian framework (see Section 4.1), can handle large

deformations and is computationally advantageous as it only requires RK neighbour searching

and computation of RK shape functions and shape function derivatives with respect to the material

coordinates at the beginning of the simulation.

However, for path-dependent material laws such as those that employ, for example,

the Cauchy stress as the stress measure, calculation of the spatial derivative of displacement

u(X, t) ≈ uh(X, t) is required [55][97][77]. If a Lagrangian RK approximation is used, this is

obtained through the following chain rule:

∂uh
k(X, t)
∂xi

=
NP

∑
I=1

∂ΨL
I (X)

∂xi
dIk =

NP

∑
I=1

∂ΨL
I (ϕ

−1(x))
∂xi

dIk

=
NP

∑
I=1

[
∂ΨL

I (ϕ
−1(x))

∂ϕ
−1
j (x)

∂ϕ
−1
j (x)
∂xi

]
dIk

=
NP

∑
I=1

[
∂ΨL

I (X)

∂X j
F−1

ji

]
dIk,

(4.4)

where ΨL
I (X) is the I-th Lagrangian shape function, defined in Chapter 3 (see Section

3.1), and F−1 is typically obtained as the direct inverse of F [55][97]. Similarly for other fields

employed in an updated Lagrangian formulation where, as stated in Section (4.1), the derivatives

of functions of X with respect to x are computed through implicit differentiation. It is clear from

Eq. (4.4) that the Lagrangian RK formulation breaks down when the mapping x =ϕ(X, t) is no

longer one-to-one, hence no longer invertible. This is the case, for example, for problems with

changes in topology, such as new surface formation, due to material separation or fragmentation.

To circumvent this issue, the Semi-Lagrangian reproducing kernel approximation (see Section
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3.2) was developed.

However, this approach breaks down for problems where the mapping ϕ is no longer

one-to-one and the deformation gradient F is no longer invertible. The semi-Lagrangian RK

method (see Section 3.2), on the contrary, since the supports of the kernel functions (and thus of

the shape functions) do not deform with the material body and neighbouring points are therefore

redefined during the deformation process, is capable of handling such problems However, also

the semi-Lagrangian RK method presents some drawbacks. While, on the one hand, it allows, by

defining material separation and contact at the discrete level, to model large flows of material

motion and to solve contact problems involving arbitrary new surface formation [128][98], it

can also lead to undesired numerical fracture. This appears when two RK points nonphysically

separate due to insufficient kernel support coverage in the current configuration. Furthermore, the

need to perform a search for the neighbouring RK nodes and to reconstruct the semi-Lagrangian

shape functions at each integration time step makes the semi-Lagrangian RKPM approach

computationally expensive.

In order to retain the advantages of both approaches in a completely meshfree framework,

a blending-based Lagrangian/semi-Lagrangian spatial coupling approach is here proposed and

investigated.

The main idea behind this method is to use the semi-Lagrangian approximation only in

those areas of the domain where the nature of the deformation requires it (e.g. when the deforma-

tion gradient F is no longer invertible) and the Lagrangian RK approximation everywhere else.

This is achieved through coupling the semi-Lagrangian and the Lagrangian approximation over a

transition region, similarly to the way finite element and element-free Galerkin approximations

were coupled in [121]. The approximation over this transition region is obtained by blending the

Lagrangian and the semi-Lagrangian RK approximations by means of ramp functions as follows:
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f̃ h(ϕ(X, t), t) = [1− r(x)] f̃ h,L(ϕ(X, t), t)+ r(x) f̃ h,SL(x, t)

= [1− r(x)]
NP

∑
I=1

Ψ̃
L
I (ϕ(X, t)) f̃I(t)

+ r(x)
NP

∑
I=1

Ψ
SL
I (x) f̃I(t)

=
NP

∑
I=1
{[1− r(x)]Ψ̃L

I (x)+ r(x)ΨSL
I (x)} f̃I(t)

=
NP

∑
I=1
{[1− r(x)]ΨL

I (X)+ r(x)ΨSL
I (x)} f̃I(t)

=
NP

∑
I=1
{[1− r(x)]ΨL

I (ϕ
−1(x, t))+ r(x)ΨSL

I (x)} f̃I(t)

=
NP

∑
I=1

ΨI(x) f̃I(t),

(4.5)

where Ψ̃L
I (ϕ(X, t)) are the deformed Lagrangian RK shape functions in the current configuration,

so that

f̃ h,L(ϕ(X, t), t) =
NP

∑
I=1

Ψ̃
L
I (ϕ(X, t)) f̃I(t) =

NP

∑
I=1

Ψ
L
I (X) f̃I(t), (4.6)

where Eq. (3.22) has been used, and

ΨI(x, t) = [1− r(x)]ΨL
I (ϕ

−1(x, t))+ r(x)ΨSL
I (x) (4.7)

with r(x) being a spatial ramp function that is equal to zero for the Lagrangian portion of the

domain and equal to unity for the semi-Lagrangian one. In this work a linear ramp function is

employed:

r(x) =


0 for wC ≤ d(x)

1− d(x)
wC

for 0 < d(x)< wC

1 for d(x)≤ 0

, (4.8)

where wC ≥ 0 is the constant width of the transition zone, ∂ΩC is the boundary of the

semi-Lagrangian domain (i.e., the interface between the pure semi-Lagrangian zone and the
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transition one), and

d(x) = (xC−x) ·n, (4.9)

where n is the outer unit normal to ∂ΩC, and xC is the closest point to x on ∂ΩC:

xC = {x ∈ ∂Ω
C | min(‖ xC−x ‖)}. (4.10)

This coupling approach guarantees continuity of the shape functions across the transition

zone. This can be seen, for example by looking at Figure 4.3, which shows one-dimensional shape

functions for the Lagrangian, transition, and semi-Lagrangian zones in the current configuration

Ωx = [0,2], obtained after applying a linear displacement u = X to an initial domain ΩX = [0,1]

(see Figure 4.2 for the shape functions in the undeformed configuration). The interface between

the pure semi-Lagrangian zone and the transition one ∂ΩC in the current configuration corresponds

to x = 1.25 and the width of the transition zone is wC = 0.5. The discretization contains 11 nodes.

Linear Lagrangian and semi-Lagrangian are considered, both constructed with cubic B-spline

kernel functions with a support size a = 3.5h, where h is the nodal spacing in the reference

configuration.
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Figure 4.2: Linear RK shape functions in the undeformed configuration.
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Figure 4.3: Linear Lagrangian, linear semi-Lagrangian, and coupled RK shape functions in the
current configuration obtained through application of a linear displacement field.

Continuity of the shape function direct derivatives in the transition zone, however, depends

on the continuity of the ramp function. A linear ramp function such as the one in Eq. (4.8) would

result in discontinuous derivatives across the transition zone interface [121][127][70]. In this

work, therefore, shape function derivatives in the transition zone are computed in the same way as

the shape functions, i.e. by blending the the Lagrangian and semi-Lagrangian spatial derivatives:

∂ f̃ h(ϕ(X, t), t)
∂xi

= [1− r(x)]
∂ f̃ h,L(ϕ(X, t), t)

∂xi
+ r(x)

∂ f̃ h,SL(ϕ(X, t), t)
∂xi

=
NP

∑
I=1
{[1− r(x)]

∂ΨL
I (X)

∂X j
F−1

ji + r(x)
∂ΨSL

I (x)
∂xi

} f̃I(t)

=
NP

∑
I=1

∂ΨI(x)
∂xi

f̃I(t)

,

(4.11)

where
∂ΨI(x)

∂xi
= [1− r(x)]

∂ΨL
I (ϕ

−1(x, t))
∂X j

F−1
ji + r(x)

∂ΨSL
I (x)
∂xi

= [1− r(x)]
∂ΨL

I (X)

∂X j
F−1

ji + r(x)
∂ΨSL

I (x)
∂xi

.

(4.12)
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Similarly, in this work, the shape function time derivatives are computed as:

˙̃f h(ϕ(X, t), t) = [1− r(x)] ˙̃f h,L(ϕ(X, t), t)+ r(x) ˙̃f h,SL(ϕ(X, t), t), (4.13)

where ˙̃f h,L(ϕ(X, t), t)=∑
NP
I=1 ΨL

I (X) ˙̃fI(t) and ˙̃f h,SL(ϕ(X, t), t) are defined according to Eq. (3.27).

It can be noted that the ramp function r(x) (and hence the domain zones) is defined in the

current configuration. This allows for points in the Lagrangian or the transition portion of the

domain at a certain time to become part of the semi-Lagrangian zone at a subsequent time. The

semi-Lagrangian portion of the domain can be made to increase, for example, by checking in the

Lagrangian and mixed portions of the domain values such as the determinant or the condition

number of the deformation gradient. If a predefined threshold is reached in a region of the

domain, said region can be made part of the semi-Lagrangian zone from then on. It could happen,

however, that a portion of the body originally in the semi-Lagrangian zone enters over the course

of the deformation into a portion of the domain which is currently defined as Lagrangian. This

can happen, for example, in problems involving fragmentation due to high-velocity impacts,

where the fragments formed in the semi-Lagrangian zone reach the Lagrangian one. This is

avoided by imposing that once a portion of the domain has been semi-Lagrangian, it remains

semi-Lagrangian until the end of the simulation, i.e. the semi-Lagrangian portion of the domain

is only allowed to grow and not to reduce.

4.3 von Neumann stability analysis of the Lagrangian/semi-

Lagrangian coupling approach

In this section, a von Neumann stability analysis is performed to estimate the critical

time step of the Lagrangian/semi-Lagrangian coupling approach. The derivation here presented

follows from [40] for one dimension. The result of the stability analysis is dependent on the
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spatial and time integration schemes used. In this work, we consider a stabilized nonconforming

nodal integration in space and central difference in time, respectively. Furthermore, for simplicity,

a one-dimensional equation of motion is considered.

First, we introduce the Lagrangian/semi-Lagrangian RKPM coupled approximation (see

Eqs. (4.5) and (4.11)) in Eq. (4.3) and obtain the semi-discrete equation of motion:

Mü = fext− fint , (4.14)

where fext is the vector of external forces, fint is the vector of internal forces where

fint
I =

∫
Ωx

∂ΨI(x)
∂x

σdΩ, (4.15)

and M is the mass matrix. We consider a row-sum lumped mass, so that its I-th diagonal value is:

mI =
∫

ΩX

ρ
0
ΨI(X)

NP

∑
J=1

ΨJ(X)dΩ =
∫

ΩX

ρ
0
ΨI(X)dΩ

=
∫

Ωx

ρΨI(x)dΩ,

(4.16)

where we recall that x = X and ρ = ρ0 in the reference configuration. It has to be noted that,

since we are considering SNNI integration, the terms associated with the time derivatives of the

RK shape functions were omitted in Eq (4.14) (see Section 3.2). The full discrete equation is

obtained by applying the central difference scheme to integrate in time:

M
(dn+1−2dn +dn−1)

∆t2 = fext− fint , (4.17)

where ∆t is the time step and n indicates the n-th time step. Due to the diagonal nature of the
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lumped mass matrix, we can consider a generic I-th row in Eq. (4.17), which leads to

mI
(dn+1

I −2dn
I +dn−1

I )

∆t2 = f ext
I − f int

I , (4.18)

In order to perform the stability analysis, we introduce a small perturbation in displacement

and neglect boundary conditions in Eq. (4.17) [40]:

mI
( ˜̃dn+1

I −2 ˜̃dn
I +

˜̃dn−1
I )

∆t2 =− f̃ int
I , (4.19)

where˜̃denotes perturbation and

˜̃f int
I =

∫
Ωx

∂ΨI(x)
∂x

Dσ
NP

∑
J=1

∂ΨJ(x)
∂x

˜̃dn
J dΩ, (4.20)

where Dσ is the material response tensor and

σ = Dσ
NP

∑
J=1

∂ΨJ(x)
∂x

dJ (4.21)

was used in Eq. (4.15). Now, considering a constant Dσ, Eq. (4.19) can be rewritten as:

˜̃dn+1
I −2 ˜̃dn

I +
˜̃dn−1
I =−∆t2Dσ

mI

∫
Ωx

∂ΨI(x)
∂x

NP

∑
J=1

∂ΨJ(x)
∂x

˜̃dn
J dΩ

=−c2
∆t2

∫
Ωx

∂ΨI(x)
∂x

NP

∑
J=1

∂ΨJ(x)
∂x

˜̃dn
J dΩ,

(4.22)

where c2 = Dσ/mI . We now consider a uniform discretization with spacing ∆X in the reference

configuration, and a uniform deformation with deformation gradient F = 2, so that the spacing in

the current configuration is ∆x = 2∆X . As aforementioned, SNNI is considered for the spatial

domain integration. SNNI nonconforming cells are defined in the reference configuration and their

size, in this analysis, is kept constant. The SNNI cell size can be defined as being proportional to
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the corresponding conforming nodal cell [40], which, in the one-dimensional case, corresponds

to the nodal spacing ∆X . The proportionality parameter is hereon referred as α (see Figure 4.4).

I I + 1I − 1I − 2I − 3 I + 3I + 2

I I + 1I − 1

X

x

α∆X

0.5α∆x

Figure 4.4: SNNI smoothing points associated with node I in the reference and current configu-
ration. The smoothing points are marked by black crosses.

As mentioned in Section 3.2, in the SNNI approach direct shape function gradients are

replaced by smoothed gradients, obtained by smoothing over nonconforming nodal cells (see

Figures 3.4 and 4.4). Given that the coupled gradient is computed by coupling of the Lagrangian

and semi-Lagrangian gradients, the smoothed Lagrangian and semi-Lagrangian gradients are

first computed and then combined according to Eq. 4.12. For the one-dimensional case with

uniform distribution, the boundary of the smoothing domain for a generic node L is [X−L ,X+
L ] in

the reference configuration and [x−L ,x
+
L ] in the current configuration, where X−L = XL−0.5α∆X ,

X+
L = XL+0.5α∆X , x−L = xL−0.5α∆X = xL−0.25α∆x, and x+L = xL+0.5α∆X = xL+0.25α∆x.

The Lagrangian smoothed gradient and the semi-Lagrangian smoothed gradient are, respectively

∂Ψ
L
I (XL)

∂X
=

ΨL
I (X

+
L )−ΨL

I (X
−
L )

α∆X
, (4.23)

and

∂Ψ
SL
I (xL)

∂x
=

ΨSL
I (x+L )−ΨSL

I (x−L )
α∆x

, (4.24)
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making the smoothed coupled gradient

∂ΨI(xL)

∂x
= [1− r]

[
ΨL

I (X
+
L )−ΨL

I (X
−
L )

α∆X

]
F−1

+ r
[

ΨSL
I (x+L )−ΨSL

I (x−L )
α∆x

]
,

(4.25)

where, following [40], r(x) has been taken to be constant. It has to be noted that

ΨL
I (X

+
L )−ΨL

I (X
−
L )

α∆X
F−1 =

ΨL
I (X

+
L )−ΨL

I (X
−
L )

α∆x

=
Ψ̃L

I (ϕ(X
+
L , t))− Ψ̃L

I (ϕ(X
−
L , t))

α∆x
.

(4.26)

In the first term of Eq (4.26), the smoothed gradient of the Lagrangian shape functions

is evaluated in the undeformed configuration and pushed forward through the inverse of the

deformation gradient. The last term represents the smoothed gradient of the deformed Lagrangian

shape function computed over a deformed smoothing cell, which is obtained by applying the

deformation gradient to the SNNI smoothing cell in the reference configuration. These two

approaches are therefore equivalent. This results in the use of two different smoothing cells: a

deformed one for the Lagrangian smoothed gradient contribution and an undeformed one for the

semi-Lagrangian smoothed gradient contribution (see Figure 4.5).

I I + 1I − 1I − 2I − 3 I + 3I + 2

I I + 1I − 1

X

x

α∆X

α∆x

Figure 4.5: SNNI smoothing points associated with node I for the Lagrangian (indicated as
black crosses) and semi-Lagrangian (marked by red asterisks) contributions to the coupled
smoothed gradient.
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Now, by applying the stabilized nonconforming nodal integration to the right-hand side of

Eq. (4.22), we obtain

˜̃dn+1
I −2 ˜̃dn

I +
˜̃dn−1
I =−c2

∆t2
NP

∑
J=1

NP

∑
L=1

{
[1− r]

[
ΨL

I (X
+
L )−ΨL

I (X
−
L )

α∆X

]
F−1

+ r
[

ΨSL
I (x+L )−ΨSL

I (x−L )
α∆x

]}
·
{
[1− r]

[
ΨL

J (X
+
L )−ΨL

J (X
−
L )

α∆X

]
F−1

+ r
[

ΨSL
J (x+L )−ΨSL

J (x−L )
α∆x

]}
∆x ˜̃dn

J ,

(4.27)

˜̃dn+1
I −2 ˜̃dn

I +
˜̃dn−1
I =−c2

∆t2
NP

∑
J=1

NP

∑
L=1

{
[1− r]

[
ΨL

I (X
+
L )−ΨL

I (X
−
L )

α∆x

]
+ r
[

ΨSL
I (x+L )−ΨSL

I (x−L )
α∆x

]}
·
{
[1− r]

[
ΨL

J (X
+
L )−ΨL

J (X
−
L )

α∆x

]
+ r
[

ΨSL
J (x+L )−ΨSL

J (x−L )
α∆x

]}
∆x ˜̃dn

J ,

(4.28)

˜̃dn+1
I −2 ˜̃dn

I +
˜̃dn−1
I =−c2∆t2

α2∆x

NP

∑
J=1

NP

∑
L=1
{[1− r][ΨL

I (X
+
L )−Ψ

L
I (X

−
L )]

+ r[ΨSL
I (x+L )−Ψ

SL
I (x−L )]}

· {[1− r][ΨL
J (X

+
L )−Ψ

L
J (X

−
L )]

+ r[ΨSL
J (x+L )−Ψ

SL
J (x−L )]} ˜̃dn

J .

(4.29)

Considering RKPM shape functions with support size a≤ (2+0.5α)∆X = (1+0.25α)∆x,

α ∈ [1,2], and by letting the perturbed displacement take the plane wave form

˜̃dn
I = λ

neik(I∆x), (4.30)

where k is the wave-number and λ is the amplification factor, the following stability

criterion can be obtained

51



c2
∆t2 ≤ α2∆x

Ā
, (4.31)

where

Ā =
[
(1− r)AL + rASL]2, (4.32)

with
AL = [ΨL((3−0.5α)∆X)sin(3k∆X)+Ψ

L((2−0.5α)∆X)sin(2k∆X)

+Ψ
L((1−0.5α)∆X)sin(k∆X)−Ψ

L((1+0.5α)∆X)sin(k∆X),

(4.33)

with k = 2k, and

ASL = [ΨSL((1−0.25α)∆x)sin(k∆x)]. (4.34)

The details of the derivation are reported in 4.5. It has to be noted that in the stability criterion

(see Eq. (4.31)), Ā would be replaced by AL2 and ASL2 in the case of a purely Lagrangian or

semi-Lagrangian approximation, respectively. In 4.5 it is shown that

Ā =
[
(1− r)AL + rASL]2 ≤max(AL2

,ASL2
), (4.35)

meaning that the critical time step for the coupled case is larger than the larger critical time step

between the purely Lagrangian and the purely semi-Lagrangian cases. This suggests that, for a

given problem, selecting a time step for which the purely Lagrangian and semi-Lagrangian cases

are stable, would guarantee stability of the coupled case as well.

4.4 Numerical results

In this section, the effectiveness of the proposed Lagrangian/semi-Lagrangian RKPM

coupling is verified through a set of numerical examples. Its efficiency compared to fully semi-

Lagrangian RK simulations is also demonstrated through run-time comparisons. All results in

this section are obtained for an MPI implementation of the 3D RKPM formulation in FORTRAN,
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run on a single compute node (RAM 256 GB) containing 32 processors (2.3GHz). The amount of

processors used is specified in each example. For time integration, central difference with lumped

mass is employed.

4.4.1 Wave propagation in an elastic bar

Consider the following one-dimensional undamped wave propagation problem in an

elastic bar with ΩX = [0,1] and time t ∈ (0,T ):

ü(X , t) = c2 d2u(X ,t)
dX2 for X ∈ΩX , t ∈ (0,T ) , (4.36)

with boundary conditions  u(0, t) = 0

u(1, t) = u0 sin(πct
2 )

, (4.37)

and initial conditions  u(X ,0) = 0

u̇(X ,0) = u0(
πc
2 )sin(πX

2 )
, (4.38)

where u0 = 0.001 m, c =
√

E
ρ

, E is the Young’s modulus and ρ is the density of the bar. The

exact solution for this problem is

u(X , t) = u0 sin(
πX
2
)sin(

πct
2

) (4.39)

We built a model of a bar of length 1 m with a cross section 0.0125 m by 0.0125 m. Poisson’s

ration ν = 0 was used to simulate a one-dimensional solution. Young’s modulus and density of

the bar are E = 78.2 Pa and ρ = 2700 kg
m3 , respectively. The employed discretization consists

of a total of 324 RK nodes (four nodes in the cross sectional area). We consider the following

approximations: full semi-Lagrangian RK, full Lagrangian RK, and two coupled cases (hereon

referred as “Coupled 1” and “Coupled 2”). For all cases we employ SNNI, linear basis and a
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cubic B-spline kernel function with a brick support. The kernel support in the i-th direction

is taken to be ai = 2.5hi where hi is the nodal spacing in the i-th direction, with i = 1,2, ...,3.

In the first coupled case “Coupled 1” the semi-Lagrangian portion of the domain is positioned

centered around the bar midpoint. In this case the semi-Lagrangian zone ΩSL = [0.4,0.6] for

all t ∈ (0,T ), meaning that ∂ΩC = {x = 0.4}∪{x = 0.6}. The width of the transition zone is

wc = 0.15. In “Coupled 2”, the semi-Lagrangian zone is at the free-end of the bar: ΩSL = [0.9,1]

(∂ΩC = {x = 0.9}), and the width of the transition zone is still wc = 0.15. Figure 4.6 shows the

Lagrangian, semi-Lagrangian and transition zones.

x0 10.5

(a) Coupled 1..

x0 10.5

(b) Coupled 2.

Figure 4.6: Lagrangian (red), semi-Lagrangian (blue) and transition (green) zones.

Figure 4.7 and Figure 4.8 show the displacement time histories of the bar end (X = 1)

and of the bar midpoint (X = 0.5), respectively. The employed time step ∆t is equal to 10−6 s.

Such time step was chosen so that the purely Lagrangian and semi-Lagrangian simulations would

be stable. Consistently with the analysis in Section 4.3, this choice resulted in a stable coupled

simulation. It can be observed that all the numerical approximations agree well with the exact

solution.
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Figure 4.7: Displacement time history for the bar tip end (X = 1).
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Figure 4.8: Displacement time history for the bar midpoint (X = 0.5).

Table 4.1 shows the run-time for the various considered approximations for two runs,
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each performed on four processors. As expected the purely Lagrangian approximation simulation

is the fastest one. In “Coupled 1”, where the percentage of domain where the semi-Lagrangian

shape functions had to be recomputed (i.e. the semi-Lagrangian and transition zones) is equal to

50% of the total domain, the total run-time is on average equal to 63.96% of the run-time of the

full semi-Lagrangian RK simulation. In “Coupled 2”, instead, the semi-Lagrangian and transition

zones amount to 25% of the total domain and the total run-time is on average equal to 44.43% of

the run-time of the full semi-Lagrangian RK simulation.

Table 4.1: Run-times for the one-dimensional wave propagation problem.

- Run-time (s)
Method Run 1 Run 2

Lagrangian 6.286 6.192
semi-Lagrangian 25.709 26.342

Coupled 1 16.412 16.882
Coupled 2 11.590 11.536

4.4.2 Taylor bar impact

In this section, we consider a cylindrical aluminium bar impacting a rigid frictionless wall

[34]. Experimental results for this problem are provided in [86]. The initial height and radius

of the bar are 2.346 cm and 0.391 cm, respectively. We define a reference system [x,y,z] where

x is along the longitudinal direction of the bar. The bottom and top side of the undeformed bar

are at x = 0 and x = 2.346, respectively. The initial velocity of the bar is v0 = (−373,0,0) m/s.

The Young’s modulus, density and Poisson’s ratio are E = 1 GPa, ν = 0.3, and ρ = 2700 kg/m3,

respectively.

We consider a J2 plasticity constitutive model with isotropic hardening. The yield function

is [56][75]

f (s, ēp) = ‖s‖−
√

2
3

K(ēp), (4.40)
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where s is the deviatoric part of the Cauchy stress, ēp is the equivalent plastic strain and

K(ēp) = σY (1+125ēp)0.1 (4.41)

We consider an initial yield stress σY = 0.29 GPa and a plastic hardening modulus H = 0

GPa [56]. The impact of the aluminium bar against the wall is modelled by imposing a zero

displacement along the x direction to the nodes at x = 0 in the undeformed configuration. The bar

is modelled using 185 nodes in the cross-section and 41 nodes in the longitudinal direction (for a

total of 7,585 nodes).

First, we consider the following cases: full Lagrangian RK, full semi-Lagrangian RK, and

three coupled cases (hereon referred as “Coupled 1”, “Coupled 2” and “Coupled 3”). For all cases

we employ SNNI, linear basis and a cubic B-spline kernel function with a brick support. The

kernel support in the i-th direction is taken to be ai = 2.5hi where hi is the nodal spacing in the i-th

direction, with i = 1,2, ...,3. In all the coupled cases, the semi-Lagrangian portion of the domain

is positioned so that it contains the bottom side of the bar. In “Coupled 1” the semi-Lagrangian

zone ΩSL is defined to be between the yz planes at x = 0 and x = 0.87 for all t ∈ (0,T ), while in

“Coupled 2” the semi-Lagrangian zone ΩSL is defined to be between the yz planes at x = 0 and

x = 0.57 for all t ∈ (0,T ). In “Coupled 3”, ΩSL is between the yz planes at x = 0 and x = 0.27

for all t ∈ (0,T ). The width of the transition zone is in all cases wc = 0.3. Figure 4.9 shows the

coupling zones in the initial undeformed configuration, while Figure 4.10 shows the deformed

Taylor bar with the Lagrangian, semi-Lagrangian and transition zones. Table 4.2 contains the final

deformed bar heights and radii for the considered cases, as well as the experimentally observed

final height reported in [86]. All cases get reasonably close to the experimental value.
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(a) Coupled 1. (b) Coupled 2. (c) Coupled 3.

Figure 4.9: Initial Taylor bar configurations in the coupling approach. The semi-Lagrangian,
Lagrangian and transition zones are represented in blue, red, and green, respectively.

(a) Lagrangian. (b) semi-Lagrangian. (c) Coupled 1.

(d) Coupled 2. (e) Coupled 3.

Figure 4.10: Deformed Taylor bars. The semi-Lagrangian, Lagrangian and transition zones are
represented in blue, red, and green, respectively.
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Table 4.2: Dimensions of the deformed Taylor Bar.

Method Radius (cm) Height (cm)
Lagrangian 0.769 1.632

semi-Lagrangian 0.774 1.630
Coupled 1 0.774 1.630
Coupled 2 0.774 1.630
Coupled 3 0.772 1.630

Experiment [86] - 1.651

It has to be noted that the coupled cases provide results similar to the full semi-Lagrangian

formulation. This is due to the fact that, in the coupled approaches, the semi-Lagrangian zone was

placed where the majority of the deformation happens (i.e. at the bottom of the bar). However,

it can be noted in Table 4.3 that the “Coupled 1”, “Coupled 2”, and “Coupled 3” cases had a

run-time equal to 80.8%. 71.1%, 61.6%, respectively, compared to the run-time of the full semi-

Lagrangian simulation. It has to be noted, also, that the size of the definition of the Lagrangian,

semi-Lagrangian and transition zones, was kept constant for the whole duration of the simulations

(see Figures 4.10 and 4.9). For this reason, as the deformation occurs, portions of the domain

originally in the Lagrangian zone entered the transition and semi-Lagrangian ones, requiring

shape functions re-computation. The runs were performed with 16 processors for a simulation

end-time T = 3.15 · 10−5 s and a time step ∆t = 10−9 s. This ∆t was selected as it resulted in

stable purely Lagrangian and semi-Lagrangian simulations. Consistently with the analysis in

Section 4.3, this also resulted in a stable coupled simulation.

Table 4.3: Run-times for the Taylor bar impact problem.

Method Run-time (s)
Lagrangian 2173.0

semi-Lagrangian 14772.2
Coupled 1 11936.4
Coupled 2 10506.2
Coupled 3 9104.7
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4.4.3 Impact-perforation simulation

In this section, the penetration of a spherical steel projectile impacting a CorTuf [21]

ultra high-strength concrete panel with a zero degree angle is considered. This problem is taken

from the experiments presented in [63], and the corresponding experimental results are used as a

reference for comparison with the the numerical results from the RKPM simulation. Specifically,

impact of a spherical projectile with diameter equal to 1.11 cm and an initial velocity of 1114.65

m/s on a 2.54 cm thick CorTuf concrete panel is considered. The width and the height of the

panel are both equal to 30.48 cm.

In the simulation, the projectile is modeled using 1163 nodes while the concrete panel

was discretized using 190000 nodes. The projectile is modeled using J2 plasticity with properties

reported in Table 4.4, while concrete is modeled using the MIDM (microcrack informed damage

model)-enhanced AFC model. The AFC material model parameters can be found in [63].

Table 4.4: Spherical projectile properties.

Property Value
Young’s modulus, E 200 GPa

Poisson’s ratio, ν 0.26
Density, ρ 7806 kg/m3

Mass proportional damping 0.0001 1/s
Initial yield stress σY 2400 MPa
Hardening modulus H 2500 MPa

Contact between the panel and the projectile was modeled using the kernel contact

approach employed in [98]. Quasi-linear approximation functions are employed with linear basis,

α = 0.0001 and ε = 0.005. Quartic B-spline kernel functions are used. It was noted in [63] that,

in order to prevent nonphysical fragmentation of the projectile, a sufficiently large support size

has to be considered. In this work, we take the normalized support size to be equal to 3.0 for the

projectile and 1.5 for the concrete panel.
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Two cases are considered: a full semi-Lagrangian simulation and a coupled case. For

the coupled case a right circular cylinder defines the semi-Lagrangian zone ΩSL. The axis of the

cylinder is positioned so that it connects the centres of the impact and exit faces of the concrete

panel. The radius of the base of the cylinder is taken to be equal to 5 cm, while the width of the

transition zone is wc = 2 cm. The Lagrangian, semi-Lagrangian and transition zones are shown

in Figure 4.11.

Figure 4.11: Semi-Lagrangian (blue), transition (green) and Lagrangian (red) RK zones.

The tensile damage pattern and the shear damage pattern at the panel exit face are shown

in Figures 4.12 and 4.13, respectively, while the corresponding debris clouds are shown in Figure

4.14. The exit velocities of the projectile are reported in Table 4.5. It can be observed that the

results obtained with the semi-Lagrangian RK simulation and with the coupled one are similar.

However, as shown in Table 4.6, the “Coupled” case took 63.8% of the run-time of the full

semi-Lagrangian simulation. The runs were performed with 32 processors for a simulation

end-time T = 39 · 10−5 s and a time step ∆t = 10−8 s. Such time step was chosen so that the
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purely Lagrangian and semi-Lagrangian simulations would be stable. Consistently with the

analysis in Section 4.3, this choice resulted in a stable coupled simulation.

(a) Coupled. (b) semi-Lagrangian.

Figure 4.12: Tensile damage at panel the exit face.

(a) Coupled. (b) semi-Lagrangian.

Figure 4.13: Shear damage at panel the exit face.
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(a) Coupled. (b) semi-Lagrangian.

Figure 4.14: Debris clouds due to concrete perforation at t = 39 ·10−5 s.

Table 4.5: Projectile exit velocity.

Method Exit Velocity (m/s) Velocity reduction (%)
semi-Lagrangian 338.0 69.7

Coupled 338.3 69.6
Experiment [63] 544.7 51.13

Table 4.6: Run-times for the impact-perforation problem.

Method Run-time (s)
semi-Lagrangian 84970.8

Coupled 54197.5
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4.5 Appendix 4-A: von Neumann stability analysis expansions

In order to obtain the stability criterion for the Lagrangian/semi-Lagrangian coupled

approximation, we start by expanding the right-hand side of Eq. (4.29). Since the considered

discretization is uniform and we ignore any influence coming from the boundary of the domain,

we can exploit the symmetrical nature of the RKPM shape functions, as well as the fact that the

all shape functions have the same values for the same distances (e.g., ΨI(p∆X) = ΨJ(p∆X) =

Ψ(p∆X), ∀I,J with p ∈R). Recalling that the considered support size for the RK shape functions

is taken to be a≤ (2+0.5α)∆X = (1+0.25α)∆x with α ∈ [1,2], and by defining r1 = 1− r and

r2 = r, we obtain
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+[−2r2
1Ψ

L((1+0.5α)∆X)ΨL((3−0.5α)∆X)

+2r2
1Ψ

L((3−0.5α)∆X)ΨL((1−0.5α)∆X)

+2r1r2Ψ
L((3−0.5α)∆X)ΨSL((1−0.25α)∆x)

+ r2
1Ψ

L((1−0.5α)∆X)ΨL((1+0.5α)∆X)

−2r1r2Ψ
L((1−0.5α)∆X)ΨSL((1−0.25α)∆x)

+2r1r2Ψ
L((1+0.5α)∆X)ΨSL((1−0.25α)∆x)

− r2
1Ψ

L2
((1−0.5α)∆X)− r2

1Ψ
L2
((1+0.5α)∆X)

− r2
2Ψ

SL2
((1−0.25α)∆x)] ˜̃dn

I+2

+[2r2
1Ψ

L((2−0.5α)∆X)ΨL((1+0.5α)∆X)

−2r2
1Ψ

L((2−0.5α)∆X)ΨL((1−0.5α)∆X)

−2r1r2Ψ
L((2−0.5α)∆X)ΨSL((1−0.25α)∆x)] ˜̃dn

I+3

+[2r2
1Ψ

L((3−0.5α)∆X)ΨL((1+0.5α)∆X)

−2r2
1Ψ

L((3−0.5α)∆X)ΨL((1−0.5α)∆X)
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−2r1r2Ψ
L((3−0.5α)∆X)ΨSL((1−0.25α)∆x)

− r2
1Ψ

L2
((2−0.5α)∆X)] ˜̃dn

I+4

+[−2r2
1Ψ

L((3−0.5α)∆X)ΨL((2−0.5α)∆X)] ˜̃dn
I+5

+[−r2
1Ψ

L2
((3−0.5α)∆X)] ˜̃dn

I+6}

˜̃dn+1
I −2 ˜̃dn

I +
˜̃dn−1
I = (B.3)

− c2∆t2

α2∆x
{r2

1Ψ
L2
((3−0.5α)∆X)[− ˜̃dn

I−6 +2dn
I − ˜̃dn

I+6]

+ r2
1Ψ

L2
((2−0.5α)∆X)[− ˜̃dn

I−4 +2dn
I − ˜̃dn

I+4]

+ r2
1Ψ

L2
((1−0.5α)∆X)[− ˜̃dn

I−2 +2dn
I − ˜̃dn

I+2]

+ r2
1Ψ

L2
((1+0.5α)∆X)[− ˜̃dn

I−2 +2dn
I − ˜̃dn

I+2]

+ r2
2Ψ

SL2
((1−0.25α)∆x)[− ˜̃dn

I−2 +2dn
I − ˜̃dn

I+2]

+ r2
1Ψ

L((3−0.5α)∆X)ΨL((2−0.5α)∆X)[−2dn
I−5 +2dn

I−1 +2dn
I+1−2dn

I+5]

+ r2
1Ψ

L((3−0.5α)∆X)ΨL((1−0.5α)∆X)[−2dn
I−4 +2dn

I−2 +2dn
I+2−2dn

I+4]

+ r2
1Ψ

L((3−0.5α)∆X)ΨL((1+0.5α)∆X)[+2dn
I−4−2dn

I−2−2dn
I+2 +2dn

I+4]

+ r1r2Ψ
L((3−0.5α)∆X)ΨSL((1−0.25α)∆x)[−2dn

I−4 +2dn
I−2 +2dn

I+2−2dn
I+4]

+ r2
1Ψ

L((2−0.5α)∆X)ΨL((1+0.5α)∆X)[+2dn
I−3−2dn

I−1−2dn
I+1 +2dn

I+3]

+ r2
1Ψ

L((2−0.5α)∆X)ΨL((1−0.5α)∆X)[−2dn
I−3 +2dn

I−1 +2dn
I+1−2dn

I+3]

+ r1r2Ψ
L((2−0.5α)∆X)ΨSL((1−0.25α)∆x)[−2dn

I−3 +2dn
I−1 +2dn

I+1−2dn
I+3]

+ r2
1Ψ

L((1+0.5α)∆X)ΨL((1−0.5α)∆X)[+2dn
I−2−4dn

I +2dn
I+2]

+ r1r2Ψ
L((1+0.5α)∆X)ΨSL((1−0.25α)∆x)[+2dn

I−2−4dn
I +2dn

I+2]

+ r1r2Ψ
L((1−0.5α)∆X)ΨSL((1−0.25α)∆x)[−2dn

I−2 +4dn
I −2dn

I+2]}

Now, by introducing Eq. (4.30), and by dividing by λneikI∆x we obtain
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λ
1−2+λ

−1 = (B.4)

− c2∆t2

α2∆x
{r2

1Ψ
L2
((3−0.5α)∆X)[−e−6ik∆x +2− e6ik∆x]

+ r2
1Ψ

L2
((2−0.5α)∆X)[−e−4ik∆x +2− e4ik∆x]

+ r2
1Ψ

L2
((1−0.5α)∆X)[−e−2ik∆x +2− e2ik∆x]

+ r2
1Ψ

L2
((1+0.5α)∆X)[−e−2ik∆x +2− e2ik∆x]

+ r2
2Ψ

SL2
((1−0.25α)∆x)[−e−2ik∆x +2− e2ik∆x]

+ r2
1Ψ

L((3−0.5α)∆X)ΨL((2−0.5α)∆X)[−2e−5ik∆x +2e−ik∆x +2eik∆x−2e5ik∆x]

+ r2
1Ψ

L((3−0.5α)∆X)ΨL((1−0.5α)∆X)[−2e−4ik∆x +2e−2ik∆x +2e2ik∆x−2e4ik∆x]

+ r2
1Ψ

L((3−0.5α)∆X)ΨL((1+0.5α)∆X)[+2e−4ik∆x−2e−2ik∆x−2e2ik∆x +2e4ik∆x]

+ r1r2Ψ
L((3−0.5α)∆X)ΨSL((1−0.25α)∆x)[−2e−4ik∆x +2e−2ik∆x +2e2ik∆x−2e4ik∆x]

+ r2
1Ψ

L((2−0.5α)∆X)ΨL((1+0.5α)∆X)[+2e−3ik∆x−2e−ik∆x−2eik∆x +2e3ik∆x]

+ r2
1Ψ

L((2−0.5α)∆X)ΨL((1−0.5α)∆X)[−2e−3ik∆x +2e−ik∆x +2eik∆x−2e3ik∆x]

+ r1r2Ψ
L((2−0.5α)∆X)ΨSL((1−0.25α)∆x)[−2e−3ik∆x +2e−ik∆x +2eik∆x−2e3ik∆x]

+ r2
1Ψ

L((1+0.5α)∆X)ΨL((1−0.5α)∆X)[+2e−2ik∆x−4+2e2ik∆x]

+ r1r2Ψ
L((1+0.5α)∆X)ΨSL((1−0.25α)∆x)[+2e−2ik∆x−4+2e2ik∆x]

+ r1r2Ψ
L((1−0.5α)∆X)ΨSL((1−0.25α)∆x)[−2e−2ik∆x +4−2e2ik∆x]}

71



λ
2−2λ+1 = (B.5)

− c2∆t2

α2∆x
λ{r2

1Ψ
L2
((3−0.5α)∆X)[4sin2(3k∆x)]

+ r2
1Ψ

L2
((2−0.5α)∆X)[4sin2(2k∆x)]

+ r2
1Ψ

L2
((1−0.5α)∆X)[4sin2(k∆x)]

+ r2
1Ψ

L2
((1+0.5α)∆X)[4sin2(k∆x)]

+ r2
2Ψ

SL2
((1−0.25α)∆x)[4sin2(k∆x)]

+ r2
1Ψ

L((3−0.5α)∆X)ΨL((2−0.5α)∆X){4[cos(k∆x)− cos(5k∆x)]}

+ r2
1Ψ

L((3−0.5α)∆X)ΨL((1−0.5α)∆X){4[cos(2k∆x)− cos(4k∆x)]}

+ r2
1Ψ

L((3−0.5α)∆X)ΨL((1+0.5α)∆X){4[cos(4k∆x)− cos(2k∆x)]}

+ r1r2Ψ
L((3−0.5α)∆X)ΨSL((1−0.25α)∆x){4[cos(2k∆x)− cos(4k∆x)]}

+ r2
1Ψ

L((2−0.5α)∆X)ΨL((1+0.5α)∆X){4[cos(3k∆x)− cos(k∆x)]}

+ r2
1Ψ

L((2−0.5α)∆X)ΨL((1−0.5α)∆X){4[cos(k∆x)− cos(3k∆x)]}

+ r1r2Ψ
L((2−0.5α)∆X)ΨSL((1−0.25α)∆x){4[cos(3k∆x)− cos(k∆x)]}

+ r2
1Ψ

L((1+0.5α)∆X)ΨL((1−0.5α)∆X)[−8sin2(k∆x)]

+ r1r2Ψ
L((1+0.5α)∆X)ΨSL((1−0.25α)∆x)[−8sin2(k∆x)]

+ r1r2Ψ
L((1−0.5α)∆X)ΨSL((1−0.25α)∆x)[+8sin2(k∆x)]}

=−c2∆t2

α2∆x
λ{4[r1Ψ

L((3−0.5α)∆X)sin(3k∆x)+ r1Ψ
L((2−0.5α)∆X)sin(2k∆x)

+ r1Ψ
L((1−0.5α)∆X)sin(k∆x)− r1Ψ

L((1+0.5α)∆X)sin(k∆x)

+ r2Ψ
SL((1−0.25α)∆x)sin(k∆x)]2}

=−4
c2∆t2

α2∆x
λ{r1[Ψ

L((3−0.5α)∆X)sin(3k∆x)+Ψ
L((2−0.5α)∆X)sin(2k∆x)

+Ψ
L((1−0.5α)∆X)sin(k∆x)−Ψ

L((1+0.5α)∆X)sin(k∆x)]

+ r2[Ψ
SL((1−0.25α)∆x)sin(k∆x)]}2 =−4

c2∆t2

α2∆x
λ{r1AL + r2ASL}2

=−4
c2∆t2

α2∆x
λĀ,
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where

Ā = {r1[Ψ
L((3−0.5α)∆X)sin(3k∆x) (B.6)

+Ψ
L((2−0.5α)∆X)sin(2k∆x)

+Ψ
L((1−0.5α)∆X)sin(k∆x)−Ψ

L((1+0.5α)∆X)sin(k∆x)]

+ r2[Ψ
SL((1−0.25α)∆x)sin(k∆x)]}2

and

AL = [ΨL((3−0.5α)∆X)sin(3k∆x)+Ψ
L((2−0.5α)∆X)sin(2k∆x)

+Ψ
L((1−0.5α)∆X)sin(k∆x)−Ψ

L((1+0.5α)∆X)sin(k∆x)]

= [ΨL((3−0.5α)∆X)sin(3k∆X)+Ψ
L((2−0.5α)∆X)sin(2k∆X)

+Ψ
L((1−0.5α)∆X)sin(k∆X)−Ψ

L((1+0.5α)∆X)sin(k∆X),

with k = 2k, and

ASL = [ΨSL((1−0.25α)∆x)sin(k∆x)].

Therefore, we can write

λ
2−2λ+1 =−4

c2∆t2

α2∆x
λĀ, (B.7)

λ
2−2(1−2

c2∆t2

α2∆x
Ā)λ+1 = 0, (B.8)

73



and can find

λ1,2 = 1−2
c2∆t2

α2∆x
Ā±

√
(1−2

c2∆t2

α2∆x
Ā)2−1. (B.9)

For stability, we require

|λ1,2| ≤ 1, (B.10)

which is satisfied for Ā = 0 or, with Ā 6= 0, if

(1−2
c2∆t2

α2∆x
Ā)2 ≤ 1, (B.11)

2
c2∆t2

α2∆x
Ā≤ 2, (B.12)

c2
∆t2 ≤ α2∆x

Ā
. (B.13)

Now, we show that

Ā = (r1AL + r2ASL)2

=
[
(1− r)AL + rASL]2 ≤max(AL2

,ASL2
). (B.14)

In order to consider all possibilities with respect to the signs of AL and ASL, we recast from

Eq. (B.14) as

Ā =
[
(1− r)|AL|− r|ASL|

]2
. (B.15)
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We start by considering the case for which |ASL| ≥ |AL|, so we want

Ā =
[
(1− r)|AL|− r|ASL|

]2 ≤ |ASL|2, (B.16)

−|ASL| ≤ (1− r)|AL|− r|ASL| ≤ |ASL|. (B.17)

Recalling that 0≤ r ≤ 1, we show the left-hand side of Eq. (B.17) as follows

−|ASL| ≤ −r|ASL| ≤ (1− r)|AL|− r|ASL|, (B.18)

and the right-hand side of Eq. (B.17) as follows

(1− r)|AL|− r|ASL| ≤ (1− r)|AL| ≤ (1− r)|ASL| ≤ |ASL|. (B.19)

Similarly, if |AL| ≥ |ASL|, we show

−|AL| ≤ (1− r)|AL|− r|ASL| ≤ |AL|. (B.20)

The left-hand side of Eq. (B.20) can be shown as follows:

−|AL| ≤ (1− r)|AL|− r|ASL|, (B.21)

|ASL| ≤ 2− r
r
|AL|, (B.22)

Since 2−r
r ≥ 0 and |AL| ≥ |ASL|, Eq. (B.22) is always satisfied. Now, for the right-hand side of
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Eq. (B.20):

(1− r)|AL|− r|ASL| ≤ |AL|, (B.23)

−r|ASL| ≤ r|AL|, (B.24)

|ASL| ≤ |AL|, (B.25)

which is also always satisfied.
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Chapter 5

A reproducing kernel enhanced approach

for peridynamic solutions
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5.1 The Peridynamic Theory

The peridynamic theory [18][24][111][116][113] is a nonlocal reformulation of the clas-

sical theory of continuum mechanics. The peridynamic theory is nonlocal since, given a bounded

body Ω⊂ Rd with d being the spatial dimension (d = 1,2,3), a material point x ∈ Ω interacts

with all points x′ ∈ Rd within a finite distance δ called horizon, which represents the maximum

distance for nonlocal interaction in the material model, and defines the neighborhood of x:

Hx := {x′ ∈ Rd|‖ξ‖ ≤ δ}, (5.1)

where ξ := x′−x is called the bond connecting the material point x to the material point x′ in

the reference configuration. In this paper, it will be assumed that the horizon is independent of x.

The material points contained in the neighborhood Hx are referred to as the family of x.

By replacing the stress divergence in the momentum equation with a volume integral, the

peridynamic theory extends the classical theory of continuum mechanics to allow for discontinu-

ities in the displacement field. The peridynamic equation of motion for a material point x ∈Ω at

time t ≥ 0 is

ρ(x)
∂2u
∂t2 (x, t) =

∫
Hx

f̂(x,x′, t)dVx′+b(x, t), (5.2)

where f̂(x,x′, t) is the force density (with units of force per volume squared) that the material

point x′ exerts on the material point x, b is a prescribed body force density field, ρ is the mass

density, and u represents the displacement field. In general, the force density can be expressed as

f̂(x,x′, t) = T[x, t]〈ξ〉−T[x′, t]〈−ξ〉, (5.3)

where T is an operator called force state [113] that maps the bond ξ to a force density (force

per volume squared). The spatial dependence of the force state on x and t is written in square
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brackets, while the bond the operator acts on is contained within angle brackets. The expression

in Eq. (5.3) satisfies f̂(x,x′, t) =−f̂(x′,x, t), which guarantees conservation of linear momentum

[24][116][113]. The force state T contains the information regarding the material constitutive

behavior and, depending on its definition, the peridynamic material models fall into one of

two categories: bond-based or state-based [113]. State-based material models can be further

subdivided into ordinary state-based and non-ordinary state-based [53]. In ordinary state-based

material models, force densities act in the direction of the corresponding bond in the deformed

configuration: y(x′, t)−y(x, t) = ξ+η, where y(x, t) = x+u(x, t) is the deformed position of

x at time t and η = u(x′, t)−u(x, t) is the relative displacement between x and x′ at time t. In

non-ordinary state-based material models, force densities are not restricted to act in the deformed

bond direction. Bond-based models are the simplest class of material models in peridynamics

[111]. In bond-based models, the (pairwise) force density depends only on the deformation of the

bond ξ, meaning that T[x, t]〈ξ〉 is such that f̂(x,x′, t) = f(u(x′, t)−u(x, t),x′−x, t) [113]. For a

static problem, the peridynamic equilibrium equation for x ∈Ω is

−
∫

Hx
T[x]〈ξ〉−T[x′]〈−ξ〉dVx′ = b(x). (5.4)

Different from the classical local problems based on PDEs, where boundary conditions are

imposed over a lower-dimensional domain ∂Ω⊂ Rd−1, in peridynamics boundary conditions are

generally imposed over a nonzero volumetric layer BΩ⊂ Rd surrounding the domain of interest

Ω⊂ Rd due to the integral nature of the equilibrium equation. This leads to an overall problem

domain Ω := Ω∪BΩ. Such imposition of boundary conditions guarantees well-posedness of the

resulting nonlocal boundary-value problem [101][73][126]. The width of BΩ is typically taken

to be at least equal to the horizon δ [4][24][93] (typically δ for bond-based models and 2δ for

state-based models).
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5.1.1 Node-based meshfree discretization of peridynamic equations

The continuum peridynamic equation (5.2) can be discretized with different approaches.

Due to the simplicity of its implementation and its relatively low computational cost, compared to

other discretizations, the most common discretization approach in peridynamics is the node-based

discretization method of [112].

Consider a domain Ω, and let it be discretized by a set of nodes xI ∈Ω, each associated

with a material cell ΩI such that
⋃

I ΩI = Ω and ΩI∩ΩJ =∅ for I 6= J. Each cell ΩI has a volume

VI . In this approach, the solution at each node is considered as representative of the solution in its

associated cell. Following [93], the peridynamic equation of motion is first integrated over ΩI ,

leading to

∫
ΩI

ρ(x)
∂2u
∂t2 (x, t)dVx =

∫
ΩI

∫
Hx

T[x, t]〈x′−x〉−T[x′, t]〈x−x′〉dVx′dVx +
∫

ΩI

b(x, t)dVx. (5.5)

Because of the antisymmetry of the integrand in the first term of the right-hand side of

Eq. (5.5), the self interaction of the cell ΩI vanishes [93]. By employing a one-point quadrature

rule for the outer integral over ΩI with xI ∈Ω as quadrature point and VI as quadrature weight,

and by subsequently dividing by VI , Eq. (5.5) becomes

ρ(xI)
∂2u
∂t2 (xI, t) =

∫
Hx\ΩI

T[xI, t]〈x′−xI〉−T[x′, t]〈xI−x′〉dVx′+b(xI, t). (5.6)

Now, take the discrete family of xI ∈Ω for the node-based approach as

FI =
{

xJ ∈Ω,J 6= I|‖xJ−xI‖ ≤ δ

}
, (5.7)

and express the integral in Eq. (5.6) as a summation of integrals over the cells of the family nodes.
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Then, we have

ρ(xI)
∂2u
∂t2 (xI, t) = ∑

J∈FI

(∫
ΩJ

T[xI, t]〈x′−xI〉−T[x′, t]〈xI−x′〉dVx′

)
+b(xI, t). (5.8)

Finally, each integral in the summation is evaluated using a one-point quadrature rule over the

J-th cell with xJ and VJ the quadrature point and weight, respectively. The node-based meshfree

discrete peridynamic equation is then

ρ(xI)
∂2u
∂t2 (xI, t) = ∑

J∈FI

(T[xI, t]〈xJ−xI〉−T[xJ, t]〈xI−xJ〉)VJ +b(xI, t). (5.9)

The definition of FI in Eq. (5.7) was introduced in [93] in conjunction with a Full Volume (FV)

approach. In the FV approach, if a neighboring node is within the neighborhood of xI , its full

volume is used as quadrature weight regardless of how much of it is covered by the neighborhood

of xI . To improve the accuracy of the integration, different definitions of FI [26] and integration

weights [85][93] as well as the use of additional integration points [92] have been proposed.

5.2 Reproducing Kernel Enhanced Peridynamics

The node-based meshfree discretization as discussed in Section 5.1.1, while simple and

computationally efficient compared to other discretization approaches such as finite elements,

presents some drawbacks. First, the use of a nodal integration approach can strongly affect

accuracy and convergence rates, particularly for non-uniform discretizations [7][25]. This ap-

proach considers a piecewise-constant approximation of the displacement field and limits the

convergence rate of numerical solutions to first order. To obtain higher convergence rates, other

solution approaches, such as the use of finite difference or finite element discretizations with

linear basis functions have been proposed [7][100][141][140].

The proposed RK approach introduces the discrete RK approximation uh(x) of the
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displacement field u(x) (Eq. (3.3)) into the peridynamic governing equation (Eq. (5.2)). As

presented in Chapter 3, the RK approximation can be constructed with arbitrary smoothness

and completeness, leading to an increased convergence rate in a meshfree framework. The

RK enhanced approach is here presented for bond-based peridynamic models, i.e., f̂(x,x′, t) =

f(u(x′, t)−u(x, t),x′− x, t). Furthermore, in this work, numerical integration is performed by

means of a background grid of Gauss integration points (see, for example, Figure 5.1). This

approach is thereon referred to as Gauss integration scheme 1.

(0,0) (1,0)

(0,1) (1,1)

   Gauss point
   RK node
Integration cell 

Figure 5.1: Meshfree discretization of a two-dimensional unit square domain with background
integration grid.

In [81], another approach (Gauss integration scheme 2) is also employed, where Gauss

integration points are placed inside the neighborhood of each node as shown in Figure 5.2 and

Figure 5.3, representing a 1D and a 2D case, respectively. In 1D, Gauss integration points are

distributed in a [-1,1] interval and mapped into the neighborhood of a point x, [x−δ,x+δ]. In

2D, the neighborhood of a point x is a disk of radius δ. Any integral I on this circle can be
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transformed using polar coordinates as follows:

I =
∫

δ

−δ

∫ √
δ2−x2

−
√

δ2−x2
f (x,y)dydx

=
∫

δ

0

∫ 2π

0
f (r cosθ,r sinθ)rdθdr

=
∫ 1

0

∫ 1

0
f (δξcos(2πη),δξsin(2πη))δξ2πdηdξ.

(5.10)

The idea is to place the Gauss integration points in a unit square [0,1]× [0,1] and then transform

their coordinates to polar coordinates by a change of variables so that they fall in [0,δ]× [0,2π].

In this way, all integration points are contained within each point neighborhood regardless of the

size of the horizon δ. This change of coordinates results in a non-uniform angular distribution

of Gauss quadrature points in the neighborhood (as in Figure 5.3a). Another technique [36]

[105] [118] that creates uniform angular distributions of quadrature points is also adopted for the

so-called Gauss integration scheme 2 (as in Figure 5.3b).

Figure 5.2: Meshfree discretization of a 1D domain with Gauss integration points within the
neighborhood of each node.
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(a) Non-uniform Gauss Points. (b) Uniform integration points in angular direction.

Figure 5.3: Meshfree discretization of a two-dimensional unit square domain with integration
points within the neighborhood of each node. The dashed lines represent the limits of the
neighborhoods of nodes A and B.

Now, the reproducing kernel enhanced approach is derived by introducing the RK approx-

imation in the field variables. The Gauss integration scheme is used to evaluate the integral in the

peridynamic equilibrium equation. The peridynamic equation of motion is first evaluated at node

xI ∈Ω:

ρ(xI)
∂2u
∂t2 (xI, t) =

∫
Hx

f(u(x′, t)−u(xI, t),x′−xI, t)dVx′+b(xI, t). (5.11)

The integral in Eq. (5.11) is then evaluated as a summation over the integration points xg ∈ FI

with integration weights wg:

ρ(xI)
∂2u
∂t2 (xI, t) = ∑

g:xg∈FI

f(u(xg, t)−u(xI, t),xg−xI, t)wg +b(xI, t), (5.12)
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where the discrete family of xI , FI , is now

FI =
{

xg ∈Ω|‖xg−xI‖ ≤ δ

}
. (5.13)

It can be noted that, if the Gauss integration scheme 1 is used, the node-based scheme presented

in Section 5.1.1 is recovered for a choice of quadrature point xJ and quadrature weight VJ . The

displacement values at xI and xg are then computed by their RK approximation (cf. Eq. (3.3)),

leading to

ρ(xI)
NP

∑
J=1

ΨJ(xI)
d2uJ(t)

dt2 = ∑
g:xg∈FI

f

(
NP

∑
J=1

(ΨJ(xg)−ΨJ(xI))uJ(t),xg−xI, t

)
wg

+b(xI, t).

(5.14)

Equation (5.14) can then be solved to obtain the nodal coefficients, after providing initial and

boundary conditions.

In the case of a one-dimensional static linear problem so that, for example, f (u(x′, t)−

u(x, t),x′− x, t) = c(u(x′)−u(x)), where c is the material micromodulus, Eq. (5.14) becomes

− ∑
g:xg∈FI

NP

∑
J=1

c(ΨJ(xg)−ΨJ(xI))uJwg = b(xI) ∀xI ∈Ω, (5.15)

which can be rewritten as

AIu = bI ∀xI ∈Ω, (5.16)

where

AT
I =



−∑g:xg∈FI c(Ψ1(xg)−Ψ1(xI))wg

−∑g:xg∈FI c(Ψ2(xg)−Ψ2(xI))wg

...

−∑g:xg∈FI c(ΨNP(xg)−ΨNP(xI))wg


, (5.17)
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uT =

[
u1 u2 ... uNP

]
, (5.18)

and

bI = b(xI). (5.19)

The discrete equations in (5.16) for all the interior nodes can be combined to yield

Au = b, (5.20)

where

AT =

[
A1 ... AI ... Ani

]
, (5.21)

bT =

[
b1 ... bI ... bni

]
, (5.22)

and ni denotes the number of nodes xI ∈ Ω. Equation (5.15) holds for all xI ∈ Ω. For points

xK ∈BΩ, the equations associated with the prescribed boundary conditions hold. Now, it has to

be noted that The RK approximation coefficients (usually called generalized coefficients) are not

equivalent to the approximate function values at the nodes (i.e., uI 6= uh(xI)). In other words, the

RK shape functions, different from the FEM ones, lack the Kronecker delta property. Because of

this, imposition of essential boundary conditions in the RKPM framework is done differently from

that in FEM. Several methods have been developed for the enforcement of Dirichlet boundary

conditions in the RK approximation framework [29][62][64]. In the static problems considered

in this work, we limit ourselves to Dirichlet boundary conditions and impose them strongly by

collocation [29][60][56][64] at the boundary nodes:

uh(xK) =
NP

∑
J=1

ΨJ(xK)uJ = gK ∀xK ∈BΩ (5.23)

or

GKu = gK ∀xK ∈BΩ, (5.24)
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where gk is the prescribed boundary value and

GK =

[
Ψ1(xK) Ψ2(xK) ... ΨNP(xK)

]
. (5.25)

The discrete equations in Eq. (5.24) for all Dirichlet boundary nodes can be combined to yield

Gu = g, (5.26)

where

GT =

[
G1 ... GK ... Gnk

]
, (5.27)

gT =

[
g1 ... gK ... gnk

]
, (5.28)

and nk denotes the number of nodes xK ∈BΩ. By combining Eq. (5.15) and Eq. (5.23), and by

considering every xI ∈Ω, the following matrix equation is obtained:

Ku = f, (5.29)

where

KT =

[
A1 ... Ani G1 ... Gnk

]
, (5.30)

fT =

[
b1 ... bni g1 ... gnk

]
. (5.31)

Eq. (5.29) can be solved to obtain the generalized coefficients vector u. A similar procedure can

be followed in higher dimensions.
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5.3 Numerical Results

5.3.1 One-dimensional static peridynamic problem

Figure 5.4: 1D domain Ω := Ω∪BΩ.

Following [93], consider a one-dimensional unit length domain (see Figure 7.8) Ω =

[0,1], with inner domain Ω = (δ,1− δ) and boundary layer BΩ = [0,δ]∪ [1− δ,1], and a

one-dimensional force state

T[x]〈ξ〉= 1
2

cw(|ξ|)(u(x′)−u(x)), (5.32)

where ξ = x′− x, w(|ξ|) is an influence function, and c is a constitutive constant. An influence

function is a scalar-valued function, with a finite support determined by the horizon, used to

weight the force state. It is commonly dependent on the bond length (spherical influence function)

[95][113] and it is zero for bond lengths greater than the horizon. In this work the influence

function is taken as follows:

w(|ξ|) =


1
|ξ|α , for |ξ| ≤ δ

0, for |ξ|> δ

, (5.33)
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where α = 0,1. The constitutive constant c is taken as [93]

c =
2K
m

, (5.34)

where K is a constant and m is the so-called weighted volume [18][24][95][113]:

m =
∫

δ

−δ

w(|ξ|)ξ2dξ. (5.35)

The static linear bond-based peridynamic problem associated with Eq. (6.80) is

 −
∫ x+δ

x−δ
cw(|ξ|)(u(x′)−u(x))dx′ = b(x), for x ∈Ω

u(x) = g(x), for x ∈BΩ

(5.36)

where g(x) is a prescribed Dirichlet boundary condition function. To assess the performance of

the RK enhanced approach and to perform convergence studies of the corresponding numerical

solutions, the method of manufactured solutions is employed. An analytical solution u(x) to the

boundary value problem in Eq. (5.36) is chosen. Based on such solution, the boundary conditions

are taken so that g(x) = u(x) ∀x ∈BΩ and the associated body force density field b(x) in Ω is

computed.

Three manufactured solutions are considered: a quadratic polynomial, a cubic polynomial,

and an exponential function. For the polynomial cases, we thus have the general form u(x) =

k3x3 + k2x2 + k1x+ k0 with k3, k2, k1, and k0 being constant coefficients. The body force density

for Eq. (5.36) is then

b(x) =−
∫ x+δ

x−δ

cw(|ξ|)[k3(x′3− x3)+ k2(x′2− x2)+ k1(x′− x)]dx′

=−
∫

δ

−δ

cw(|ξ|)[k3((x+ξ)3− x3)+ k2((x+ξ)2− x2)+ k1ξ]dξ

=−2K(3k3x+ k2),

(5.37)
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where we used Eq. (6.83).

Similarly, for the manufactured exponential solution, the corresponding body force density

field is

b(x) =−
∫ x+δ

x−δ

cw(|ξ|)[ex′− ex]dx′ = 2c
∫

δ

0
cw(|ξ|)[1− cosh(ξ)]dξex. (5.38)

For α = 0 in Eq. (5.33),

b(x) = 2c[δ− sinh(δ)]ex =
4K
m

[δ− sinh(δ)]ex, (5.39)

while for α = 1

b(x) = 2c[γ−Chi(δ)+ ln(δ)]ex =
4K
m

[γ−Chi(δ)+ ln(δ)]ex, (5.40)

where γ is the Euler-Mascheroni constant and the hyperbolic cosine integral is

Chi(z) := γ+ ln(z)+
∫ z

0

cosh(x)−1
x

dx. (5.41)

Convergence in one dimension with h-refinement

The concept of convergence in peridynamics [24][25] can refer either to: 1) the conver-

gence of a nonlocal peridynamic model (or solution) to a local (PDE) counterpart as the horizon

δ goes to zero, under proper regularity assumptions; or 2) the convergence of a discrete numerical

solution to the continuum nonlocal solution of a peridynamic problem as the discretization be-

comes finer (i.e., the number of discretization nodes N increases) while the horizon δ is kept fixed

(N-convergence). In this work, we focus on N-convergence. To perform convergence studies, the

error L2 norm of the numerical solution is computed by using Gauss integration points in each
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interval between adjacent nodes:

‖uh−u‖2 =

[∫
Ω

(uh(x)−u(x))2dx
] 1

2

=

[
N−1

∑
nc=1

ng

∑
g=1

(uh(xnc
g )−u(xnc

g ))2wnc
g

] 1
2

, (5.42)

where the outer summation is over the number of intervals between adjacent nodes while

{xnc
g }g=1,...,ng and {wnc

g }g=1,...,ng are, respectively, the Gauss points and associated weights in

each interval. As discussed in Section 5.2, a piecewise-constant approximation is considered for

the node-based approach, while the RK approximation is used for the RK enhanced scheme.

In [93] the convergence behavior of a node-based solution to the problem described by

Eq. (5.36) was studied and integration error was identified as one of the main contributors to an

oscillatory behavior of the error convergence results (see Appendix B). For this reason, we opt to

employ Gauss integration based on the schemes described in Section 5.2. Moreover, when Gauss

points are placed in cells coinciding with nodal intervals as in Gauss integration scheme 1, the

refinement in discretization is performed so that δ/h = k with k ∈ N and h is the nodal spacing in

a uniform discretization. In this way the integration cells are fully contained in the neighborhood

of each discretization node (see Figure 5.5). For consistency, the same refinement scheme is also

used for Gauss integration scheme 2.

Gauss integration cell

Gauss integration cell

Figure 5.5: h-refinement scheme

Furthermore, in this work, the node-based approach discussed in Section 5.1.1 is used for
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comparison. However, in the node-based scheme used in this paper, the cells ΩJ of the nodes xJ

near the boundary of the neighborhood are only partially included in the neighborhood. For this

reason, the integration weights (i.e., the material cells’ volumes VJ) for the node-based approach

were computed by using the so-called Partial Volume (PV) algorithm [85][93]. This algorithm

defines the family of xI as in Eq. (5.7) but modifies the cell volumes as follows:

VJ =


1
h

[
δ−
(
|xJ− xI|− h

2

)]
V̄J if |xJ− xI| ≥ δ− h

2

V̄J otherwise

(5.43)

where V̄J is the full cell volume.

Convergence of numerical solutions with Gauss integration in one dimension

In this section, the convergence of the numerical solutions to the exact solution of the

peridynamic problem in Eq. (5.36) with Gauss integration is investigated. We consider first the

case with a manufactured quadratic solution u(x) = x2. For this problem, we choose α = 0 in

the influence function, K = 1, δ = 0.04, b(x) =−2, and g(x) = x2. The weighted volume m is

computed analytically according to Eq. (6.84).

We consider the Gauss integration scheme 1 with Gauss integration points placed in the

intervals between nodes. Convergence is studied by solving the problem for an increasing number

of uniformly spaced nodes through the procedure outlined in Section 5.3.1: we start with 76

nodes (δ/h = 3) and increase the number of nodes by 25 until we reach 351 nodes (δ/h = 14).

Under this refinement, whole integration cells and all the Gauss points in them are contained

in the neighborhood thus reducing the integration error. Two numerical solution schemes are

used: the node-based method discussed in Section 5.3.1 with partial volumes and the enhanced

RK approximation approach with Gauss quadrature scheme 1 (cf. Section 5.2). For the RK

formulation, a first-order basis, a cubic B-spline kernel, and a support size a = 1.001h were used.
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Integration was performed by using two Gauss points in each interval between adjacent nodes, as

it was observed that for this type of refinement, increasing further the number of Gauss points

did not result in a different convergence behavior. The error L2 norm is computed by using three

Gauss points in each integration cell. Convergence results for the two methods are presented in

Figure 5.6. The average convergence rates r, for a linear fit of the whole data (in a least-squares

sense) is also shown in Figure 5.6.
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Figure 5.6: Convergence of the numerical solution of Eq. (5.36) for u(x) = x2, using the
node-based meshfree approximation with partial volumes (NB Constant (PV)) and linear RK
approximation with a = 1.001h.

Asymptotically, i.e., if the convergence rate is computed using only the last three data

points, the node-based method with partial volumes exhibits a convergence rate close to first

order. Using the linear RK approximation increases the convergence rate to second order.

In [81], the same problem was also solved using the Gauss integration scheme 2 presented

in Section 5.2. A total of 1000 Gauss integration points within each neighborhood were used

so to reduce the effect of integration error on the convergence behavior. Values of α = 0 and

α = 1 in the peridynamic influence function are considered and three Gauss integration points per

background integration cell were used to compute the error L2 norm. A linear RK approximation
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and support size a = 1.001h were chosen. A similar behaviour as the one presented in Figure 5.6

for Gauss integration scheme 1 was observed: the same convergence rate of 1.96 is reported for

α = 0, while a slightly lower one (r = 1.71) is observed for α = 1.

Let us now consider the problem outlined in Eq. (5.36) for a manufactured cubic solution

u(x) = x3. For this case, δ = 0.04, b(x) = −6x, g(x) = x3, and K = 1. The problem is solved

using an increasing number of uniformly spaced nodes from 76 (δ/h = 3) to 351 (δ/h = 14)

in increments of 25. Both the node-based method with partial volumes and the RK enhanced

approach are used. The RK formulation is employed both with first-order and second-order bases.

In the first case, the support size is a = 1.001h, while in the latter a = 2.1h. In both cases a

cubic B-spline kernel is employed. First, α = 0 has been chosen in the influence function and the

Gauss integration scheme 1 with 4 Gauss points in each interval between adjacent nodes is used.

Three Gauss integration points per background integration cell were used to compute the error L2

norm. Figure 5.7 shows the error convergence results for the two methods as well as the average

convergence rates r, obtained by a least-squares fit of all the error points.

−2.6 −2.5 −2.4 −2.3 −2.2 −2.1 −2.0 −1.9 −1.8
log10(h)

−12

−10

−8

−6

−4

−2

lo
g 1

0
(||
u
−
u
h
|| 2

)

NB Constant (PV), r = 1.52

Linear RK, a = 1.001h, r = 1.96

Quadratic RK, a = 2.10h, r = 3.11

Figure 5.7: Convergence of the numerical solution of Eq. (5.36) for u(x) = x3 using node-based
meshfree with PV (NB Constant (PV)) and linear and quadratic RK approximations for α = 0.
Gauss integration scheme 1 is used.
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Similar to the case with manufactured quadratic solution, the node-based method with

partial volumes exhibits a convergence rate that is asymptotically close to linear, while the linear

RK approximation increases it to second order. Raising the basis order in the RK approximation

to quadratic further increases the convergence rate to close to third order. Similar results were

obtained using the Gauss integration scheme 2 in [81].

Lastly, a problem with manufactured exponential solution is considered. The following

data are used: δ = 0.04, α = 0, K = 1, b(x) = 6
δ3 [δ− sinh(δ)]ex, and g(x) = ex. The same

discretizations employed for the 1D problems with manufactured cubic and quadratic solutions

are considered. Both first-order and second-order RK approximations with a cubic B-spline

kernel and respective support sizes a = 1.001h and a = 2.1h are used. As described in Chapter 3,

higher-order RK approximations can be considered by simply increasing the basis order in the

basis vector H. Figure 5.8 shows the convergence behavior obtained by using Gauss integration

scheme 1 (results for Gauss integration scheme 2 can be found in [81]). A total of five Gauss

integration points in each integration cell was employed in scheme 1 while a number of Gauss

integration points equivalent to two Gauss integration points per cell was positioned in each

horizon for scheme 2. For both cases, eight Gauss integration points per cell were used in the

computation of the error L2 norm. Similar results to the ones obtained for the problem with

manufactured cubic solutions are obtained. For a linear RK approximation, a second-order

convergence behavior is obtained, and rates higher than third-order are observed when a quadratic

RK approximation is employed.
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Figure 5.8: Convergence of the numerical solution of Eq. (5.36) for u(x) = ex using linear and
quadratic RK approximations. Gauss integration scheme 1 for α = 0 is used.

Study of the effect of the RK approximation support size

In the RK enhanced scheme, in addition to the horizon, which represents the support of the

peridynamic influence function, the kernel support size a also needs to be assigned. Given that its

value is linked only to the construction of the approximation function uh, in this work a is chosen

independently of the horizon δ. In this section, the effect of the choice of different RK support

sizes a on the convergence behavior of the RK enhanced numerical solution is investigated. This

is done by solving, for different values of a, the problems with manufactured quadratic, cubic, and

exponential solutions presented in Section 5.3.1. Here the results for Gauss integration scheme 1

are presented; in [81] results related to Gauss integration scheme 2 for α = 0 and α = 1 can be

found.

Figure 5.9 shows the obtained error results and the average convergence rates r for the

1D problem with manufactured quadratic solution using the Gauss integration scheme 1 for

α = 0 (see Figure 5.9). A linear RK approximation and the same data used in Section 5.3.1 were

employed. A convergence rate close to second order is obtained regardless of the chosen RK
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support size.
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Figure 5.9: Convergence of the numerical solution of Eq. (5.36) for u(x) = x2, α = 0 in the
influence function, and linear RK approximation using Gauss integration scheme 1 and different
support sizes a.

The results obtained for different values of the RK support a for the 1D problem with

manufactured cubic solution introduced in Section 5.3.1 are presented in Figures 5.10a and 5.10b

for the case with α = 0 in the influence function, which show the convergence results for the

Gauss integration scheme 1 and linear and quadratic RK bases, respectively. For the linear basis,

the convergence rates are close to second order for all the considered support sizes. For the

quadratic basis, the convergence rate has a stronger variation with the support size but it is always

higher than third order.
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(b) Quadratic RK

Figure 5.10: Convergence of the numerical solution of Eq. (5.36) for u(x) = x3, α = 0 in the
influence function using Gauss integration scheme 1 and different support sizes a.

Lastly, the convergence behavior for different values of a in the solution of the problem

with manufactured exponential solution introduced in Section 5.3.1 is presented. Figure 5.11a

shows the obtained error results and the average convergence rates r when a linear RK approx-

imation is used. The convergence rates are close to second order. The convergence behaviors

obtained for a quadratic RK approximation are shown in Figure 5.11b. As for the case with

manufactured cubic solutions, convergence rates close or higher than third order are obtained.
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Figure 5.11: Convergence of the numerical solution of Eq. (5.36) for u(x) = ex, α = 0 in the
influence function using Gauss integration scheme 1 and different support sizes a.

Study of the effect of the number of Gauss quadrature points

In this section we study the effect of the number of Gauss quadrature points on the

convergence of the RK enhanced scheme. Integration error was identified as a major contributor

to the L2-error [93]. As shown in Appendix 5-A, if the integration in Eq. (5.36) is carried out

using nodal integration, a highly oscillatory behavior is seen in the convergence results. As

aforementioned in Section 5.3.1, in order to reduce the effect of integration error, high Gauss
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quadrature rules and the refinement scheme introduced in Section 5.3.1 were used. Here, one-node

increment refinements are considered and the effect of the number of Gauss quadrature points on

the convergence behavior is studied. For Gauss integration scheme 1, here considered (see [81]

for the results for integration scheme 2), this is performed by increasing the number of Gauss

points in each cell (NGcell). The associated total number of Gauss points in the neighborhood

(NG1δ) satisfies: ⌊
δ

h

⌋
×NGcell ≤ NG1δ ≤

⌈
δ

h

⌉
×NGcell.

The study of the effect of the number of Gauss quadrature points was carried out by

solving the static linear problem with manufactured quadratic solution introduced in Section 5.3.1.

The problem data is the same as in Section 5.3.1. A linear RK approximation with support size

a = 1.001h is employed. The convergence study is however performed by means of one-node

increments starting from 76 nodes up to 151 nodes. An oscillatory behavior can be observed in

Figure 5.12, where the convergence results are shown for different numbers of Gauss integration

points per cell.
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Figure 5.12: Convergence of the numerical solution of Eq. (5.36) for u(x) = x2 using the linear
approximation for α = 0 and different numbers of Gauss integration points per cell (NGcell).

In Figure 5.12, it can be noted that as the number of Gauss integration points per cell
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increases, so does the integration accuracy, leading to a reduction in the oscillatory behavior.

However, for all the number of Gauss integration points a periodic behavior can be observed in the

convergence plots. This is likely related to the fact that the percentage of the two integration cells

near the boundary of each nodal neighborhood that is included within the neighborhood varies

periodically during the h-refinement. This type of behavior is therefore mitigated if the Gauss

integration points are placed within the neighborhood of each node as in the Gauss integration

scheme 2 (see [81]. When a high number of Gauss points per cell is used in Gauss integration

scheme 1, the oscillatory behavior is strongly mitigated and an average convergence rate close to

second order appears to be recovered. In fact, for NGcell = 960, the average convergence rate is

r = 1.90.

As noted by inspecting the results shown in Figure 5.12, in order to reduce the oscillatory

behavior for Gauss integration scheme 1 a larger number of Gauss points is needed. In order to

study how the increase in the number of Gauss points affects the accuracy of the solution for a

given discretization, we solved the considered problem with quadratic manufactured solution

for an increasing number of Gauss points. A discretization with 116 nodes was used. For such

discretization the integration cells in Gauss integration scheme 1 are only partially covered by

each nodal neighborhood. Figure 5.13 shows the error norm of the numerical solution for an

increasing number of Gauss points in each integration cell. It can be observed that both schemes

reach a similar accuracy as the number of Gauss points is increased. Gauss integration scheme 2

[81] though allows for the use of a lower number of integration points. For the Gauss integration

scheme 2, the Gauss integration points are distributed inside each neighborhood as in Figure 5.2,

so in this comparison, the total number of Gauss points in the neighborhood is chosen to be

NG2δ =

⌈
δ

h

⌉
×NGcell, (5.44)

where NGcell is coincident with that from scheme 1 for the same nodal refinement, such that

NG2δ (total number of Gauss points in the neighborhood in scheme 2) and NG1δ are comparable.
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Overall, both schemes employ a larger number of integration points with respect to the

node-based partial volume approach. However, the RK enhanced approach appears to yield better

accuracy even for a relatively small amount of Gauss points, especially when Gauss integration

scheme 2 is employed.
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Figure 5.13: Error norm of the numerical solution of Eq. (5.36) for u(x) = x2 using the linear
RK approximation for α = 0 for different number of Gauss points in each integration cells.

Non-uniform discretizations

Here, the convergence behavior of the proposed RK enhanced peridynamic scheme is

investigated for non-uniform discretizations. We solve the static linear problem with manufactured

quadratic solution introduced in Section 5.3.1, with α = 0 in the influence function. The non-

uniform discretizations were constructed by perturbing uniform discretizations with N nodes (and

corresponding spacings of size h) in the problem domain interval [0,1]. This was achieved by

moving each node in (0,1) from their original position xI in the uniform grid to a new randomly

selected position xnu
I ∈ [xI− εh,xI + εh], where ε is a chosen perturbation factor. The problem is

solved using an increasing number of nodes from 76 to 351 in increments of 25. The maximum

spacing between two adjacent nodes in a non-uniform discretization is indicated as hmax. Figure
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5.14 shows the results obtained using Gauss integration scheme 1 (for Gauss integration scheme

2 see [81]) for discretizations generated with ε = 0.1,0.2. A total of 1024 Gauss points per cell

was employed. Three Gauss points per cell were used in the computation of the error L2 norm.

The obtained convergence rates are all close to second order.

The need to use a high number of Gauss quadrature points to avoid oscillations in the

convergence behavior arises from the same reasons presented in Section 5.3.1. In the convergence

study with non-uniform discretizations, each refinement is composed of a random distribution

of points. The nodal neighborhood is kept constant for all discretizations and, as such, it covers

different number and portions of the integration cells. If the number of Gauss points is too low, the

resulting integration error varies with each refinement, causing an oscillatory behavior similar to

the one presented in Figure 5.12. This issue is mitigated when using Gauss integration scheme 2

[81].

−2.5 −2.4 −2.3 −2.2 −2.1 −2.0 −1.9 −1.8 −1.7
log10(hmax)

−4.0

−3.5

−3.0

−2.5

lo
g 1

0
(||

u
−

u
h
|| 2

)

Gauss Scheme 1, ε = 0.1, r = 2.04

Gauss Scheme 1, ε = 0.2, r = 1.98

Gauss Scheme 2, ε = 0.1, r = 1.98

Gauss Scheme 2, ε = 0.2, r = 1.98

−2.5 −2.4 −2.3 −2.2 −2.1 −2.0 −1.9 −1.8 −1.7
log10(hmax)

−4.0

−3.5

−3.0

−2.5

lo
g 1

0
(||

u
−

u
h
|| 2

)

Gauss Scheme 1, ε = 0.1, r = 2.04

Gauss Scheme 1, ε = 0.2, r = 1.98

Gauss Scheme 2, ε = 0.1, r = 1.98

Gauss Scheme 2, ε = 0.2, r = 1.98

−2.5 −2.4 −2.3 −2.2 −2.1 −2.0 −1.9 −1.8 −1.7
log10(hmax)

−4.0

−3.5

−3.0

−2.5

lo
g 1

0
(||

u
−

u
h
|| 2

)

Gauss Scheme 1, ε = 0.1, r = 2.04

Gauss Scheme 1, ε = 0.2, r = 1.98

Gauss Scheme 2, ε = 0.1, r = 1.98

Gauss Scheme 2, ε = 0.2, r = 1.98

Figure 5.14: Convergence of the numerical solution of Eq. (5.36) for u(x) = x2 using the linear
approximation for α = 0 and non-uniform discretizations arising from perturbation factors
ε = 0.1,0.2. Gauss integration schemes 1 is used.

103



5.3.2 Two-dimensional static peridynamic problem

Figure 5.15: 2D domain Ω := Ω∪BΩ.

Consider a unit square domain (Figure 5.15) Ω = [0,1]× [0,1], with inner domain Ω =

(δ,1−δ)× (δ,1−δ) and boundary layer BΩ = Ω\Ω, and a two-dimensional force state

T[x]〈ξ〉= 1
2

cw(‖ξ‖)ξ⊗ξ‖ξ‖2 (u(x
′)−u(x)), (5.45)

where ξ = x′−x. The associated static linear bond-based peridynamic problem is

 −
∫
Hx

cw(‖ξ‖) ξ⊗ξ‖ξ‖2 (u(x′)−u(x))dVx′ = b(x), for x ∈Ω

u(x) = g(x), for x ∈BΩ

(5.46)

where w(‖ξ‖) is taken as

w(||ξ||) =


1
||ξ||α , for ||ξ|| ≤ δ

0, for ||ξ||> δ

(5.47)

g(x) is a prescribed Dirichlet boundary condition function, and c is a constitutive constant taken

from [93]:

c =
6E
m

, (5.48)
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where E is a constant and m is the weighted volume:

m =
∫

H
w(‖ξ‖)‖ξ‖2dξ (5.49)

with H representing a neighborhood of radius δ around the origin.

The procedure employed to construct the manufactured problem in two dimensions

follows [93] and is similar to the one used for the one-dimensional case. A cubic polynomial

solution form u = (u1,u2) is considered:

u1(x) = m1x3
1 +m2x3

2 +m3x2
1x2 +m4x1x2

2 +m5x2
1

+m6x2
2 +m7x1x2 +m8x1 +m9x2 +m10,

u2(x) = n1x3
1 +n2x3

2 +n3x2
1x2 +n4x1x2

2 +n5x2
1

+n6x2
2 +n7x1x2 +n8x1 +n9x2 +n10,

(5.50)

where m1, ...,m10 and n1, ...,n10 are constants. The body force b(x) = (b1(x),b2(x)) is obtained

as

b1(x) =−
3E
4

[(9m1 +m4 +2n3)x1 +(3m3 +3m2 +2n4)x2 +3m5 +m6 +n7] ,

b2(x) =−
3E
4

[(9n2 +n3 +2m4)x2 +(3n4 +3n1 +2m3)x1 +3n6 +n5 +m7] .

(5.51)

Convergence of numerical solutions in two dimensions

The convergence of the numerical solutions to the exact solution of the peridynamic

problem in Eq. (5.46) is investigated. We first consider the case with a manufactured quadratic

solution u(x) = (x2
1,0). We choose E = 1, δ = 0.3, b(x) = (−9/4,0), α = 0, and g(x) = (x2

1,0).

The weighted volume m is computed analytically according to Eq. (5.49). Convergence is studied

by solving the problem for an increasing number of uniformly spaced nodes. The same number

of nodes is used in both directions (as in Figure 5.1); we start with 4 nodes (δ/h = 1.2) in each
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direction (16 total) and increase that number until we reach a total number of 784 nodes by

considering increasing ratios (δ/h = 1.2k) with k ∈ N. The choice of increasing the δ/h ratio

by integer multiples of 1.2 was made to mimic in 2D the refinement performed in the quadratic

1D problem (Section 5.3.1). It has to be noted that different from the one-dimensional case, the

refinement in the two-dimensional case does not allow for complete coverage of the integration

cells by the neighborhood. Two numerical solution schemes are used: the node-based method

discussed in Section 5.1.1 with full volumes and the RK enhanced approach with Gauss integration

scheme 1 (Section 5.2). For the RK formulation a first-order basis, a cubic B-spline kernel with

square support, and support sizes a1 = a2 = 1.5h were used. Integration was performed by using

10x10 Gauss points in each integration cell. The same amount of Gauss integration points per cell

was used to compute the error L2 norm. Convergence results for the two methods are presented in

Figure 5.16, where r is the average convergence rate fitting the whole data.
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Figure 5.16: Convergence of the numerical solution of Eq. (5.46) for u(x) = (x2
1,0), α = 0 in

Eq. (6.82), using the node-based meshfree solution with FV (NB Constant (FV)) and the linear
RK approximation. Gauss integration scheme 1 is used.

The node-based method with full volumes exhibits a convergence rate close to first order.

For the linear RK approximation the overall trend is closer to second order. A slightly oscillatory

106



behavior, possibly attributable to integration error, is however observed.

5.3.3 Two-dimensional dynamic crack-branching problem

BΩ

Ω

BΩ

4 cm

10 cm 

Figure 5.17: 2D domain Ω := Ω∪BΩ. The pre-notch is indicated by the dashed line.

Given that peridynamics was originally developed from problems involving discontinuities

(i.e., cracks and fractures), here we conduct a preliminary investigation of the performance of the

RK Enhanced Peridynamic approach for a two-dimensional dynamic crack branching problem.

Dynamic problems are described by Eq. (5.2) and differ from the static ones considered in the

previous numerical examples mainly by the presence of the term ρ(x)∂2u
∂t2 (x, t), which once the

peridynamic equation is collocated at a node I, becomes ρ(xI)
∂2u
∂t2 (xI, t). The acceleration term,

when the RK approximation is employed, can be recast in each direction i = 1, ...,d = 3, as

∂2ui
∂t2 (xI, t) = ∑

NP
J=1 ΨJ(xI)d̈iJ .

Here, we consider a two-dimensional crack branching problem in soda-lime glass, first

studied in [23]. The domain has dimensions 10 cm by 4 cm and the soda-lime glass has Young?s

modulus E = 72GPa, density ρ = 2440kg/m3, and energy release rate G0 = 3.8J/m2. We

consider a constant Boolean unit influence function, a horizon δ = 2 mm, and m = δ/h = 3,

where h is the uniform nodal spacing employed. This resulted in 160 and 60 nodes being used
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in the horizontal and vertical directions, respectively, for a total of N=9000 nodes. The material

has been modeled using the Prototype Brittle Microelastic (PMB) material model ([112]). In the

PMB material model the pairwise force density is:

f̂(x,x′, t) =
(

c
‖η+ξ‖−‖ξ‖

‖ξ‖

)
η+ξ

‖η+ξ‖ (5.52)

where c is a constant, ξ = x′−x and η = u(x′, t)−u(x, t).

We consider a two-dimensional plane stress simulation, so we take [26]:

c =
6E

πδ3(1−ν)
=

9E
πδ3 , (5.53)

where the fact that for two-dimensional bond based peridynamics the Poisson’s ratio ν = 1/3

[132] has been used. For spatial integration, a node-based approach with Full Volume (FV)

integration has been used. While it was shown in the previous numerical examples in this

Section that such an approach does not always lead to sufficiently accurate integration for optimal

convergence behavior, here it is used since it simply retains bond-breaking symmetry. If Gauss

integration were used, in fact, bonds would have to be defined between each node xI and each

Gauss point xgJ associated with every other discretization node xJ . A horizontal pre-notch of

length equal to 5 cm is created in the horizontal midline of the sample (see Figure 5.17): this is

obtained by breaking all the bonds crossing the pre-notch and all the bonds associated with nodes

located on the pre-notch itself. Over the course of the deformation, bonds break if their relative

elongation is larger than the critical relative elongation, which is related to the choice of influence

function and energy release rate. In this work:

s0 =

√
4πG0

9E
. (5.54)
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The crack pattern is identified through the nodal damage variable ϕ, which is computed as

ϕ = 1− ϕN

ϕD
, (5.55)

where ϕN is a nodal volume-weighted measure of the currently unbroken bonds, computed as the

sum of the volumes associated with the neighboring nodes connected by unbroken bonds, while

ϕD is the measure associated with the initial unbroken bonds, i.e., the original neighborhood

volume. For time integration, the velocity-Verlet scheme is used with time step ∆t = 0.067 µs

and final simulation time T = 43 µs.

First, we consider a tensile stress σ = 2 MPa, applied as a body force to the top and

bottom rows of nodes (the boundary layer is taken to have width equal to the nodal spacing

h). This will produce a single-branching crack [23]. The problem was solved by using the

traditional node-based meshfree approach with full volumes and with a Lagrangian RK Enhanced

approach with nodal integration, so that, as aforementioned, bonds and their breaking is defined

between couple of nodes. Linear basis RK approximations with brick supports were employed.

A normalized support size equal to 1.2 was chosen in both directions. A cubic B-spline kernel

function was used. The result obtained with the node-based approach is shown in Figure 5.18. For

the RK Enhanced approach, both a consistent and a lumped (via row-sum) density matrix were

considered. The obtained results, which are shown Figures 5.19 and 5.20, respectively, match

those obtained in [23] and qualitatively resemble the behaviour observed experimentally in [30]

for cracking of soda-lime glass. It can be noted that for the considered cases, all obtained damage

patterns are close to each other. This might be due to the fact that nodal integration can mitigate

the effect of the introduction of the RK shape functions in the approximation (see Appendix 5-A).
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Figure 5.18: Fracture damage for the node-based meshfree solution.

Figure 5.19: Fracture damage for the RK solution. A consistent density matrix was considered.

Figure 5.20: Fracture damage for the RK solution. A lumped density matrix was considered.
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Next, a multiple-branching case was considered. The same parameters as in the single-

branching case were considered with the exception of the applied tensile stress, which is now

taken to be σ = 4MPa, and m = δ/h here taken equal to four. Again, the explicit velocity-Verlet

scheme is used for time integration. The time step is taken to be ∆t = 0.05µs and the final

simulation time is T = 33µs.The result obtained with the node-based approach is shown in Figure

5.21. For the RK Enhanced approach, both a consistent and a lumped (via row-sum) density

matrix were considered. The obtained results are shown Figures 5.22 and 5.23 respectively. As

for the single branching case, the observed overall behavior appears to be similar for the three

considered cases. Again, these results match those obtained in [23] and qualitatively resemble the

behaviour observed experimentally in [30].

Figure 5.21: Fracture damage for the node-based meshfree solution.
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Figure 5.22: Fracture damage for the RK solution. A consistent density matrix was considered.

Figure 5.23: Fracture damage for the RK solution. A lumped density matrix was considered.

5.4 Peridynamic Modified Nodal Integration Weights

As highlighted in the previous Sections and in Appendix 5-A, accurate integration is

paramount for achieving good accuracy and convergence behaviour of peridynamic solutions.

This can be achieved, as described in Sections 5.2 and 5.3, through the use of a high-order

Gauss quadrature scheme. However, high-order Gauss quadrature can become very expensive,

especially in higher dimensions. On the other hand, a nodal integration quadrature scheme,

while relatively computationally inexpensive does not lead sufficient integration accuracy (see
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Appendix 5-A). Therefore, the main idea presented in this Section is to develop a high-order

nodal integration quadrature. This is achieved by imposing n− th order integration constraints (an

idea presented for the weak form of classical mechanics in [61]) through reproducing conditions

similar to those presented for RKPM in Chapter 3 ([79][78][80]). Let us consider an integration

over the peridynamic neighbourhood of a node I of a generic function f (x′) = f (xI,x′) =

cω(xI,x)(u(x′)−u(xI)) (see, for example, Eq. 5.36):∫
HxI

f (x′)dV ′x. (5.56)

When integration over nodes J = 1, ...,NP is used to approximate the term in Eq. (5.56), we get:∫
HxI

f (x′)dV ′x ≈
NP

∑
I 6=J,J=1

f (xJ)VJ. (5.57)

where VJ is the integration weight associated with the J-th integration point.

Let us now consider for polynomials of order n, un(x) (so that f n(x′) = cω(xI,x)(un(x′)−

un(xI)). Following a similar idea as in [61], we now want to impose exactness of the numerical

nodal integration in Eq. (5.57) for polynomials of order n so that:∫
HxI

f n(x′)dV ′x =
NP

∑
I 6=J,J=1

f n(xJ)VJ. (5.58)

Considering all orders of completeness |k|= 1, ...,n we obtain:

∫
HxI

cω(xI,x)(x′
k−xk

I )dV ′x =
NP

∑
I 6=J,J=1

(xk
J−xk

I )VJ, ∀1≤ |k| ≤ n, (5.59)

where the multi-index notation introduced in Chapter 3 has been used. Note that for a constant

function u, Eq. (5.57) is trivially satisfied, so the first order of completeness we consider is |k|= 1.

Now, assuming the left-hand side in Eq. (5.59) is known and can be computed for a known

influence function and order k, we use an idea similar to the one presented for RKPM in Chapter

3; that is, we want to construct integration weights so that the integral reproducing conditions
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in Eq. (5.59) are exactly satisfied. To this end, we replace each integration weight VJ with V g
J ,

defined as a product of vectors of basis functions H(xI,xJ) and unknown coefficients b to be

determined [79][78][80]:

V g
J = HT

J b, (5.60)

where HT
J =

[
{xk

J−xk
I}1≤|k|≤n

]
. Substituting Eq. (5.60) into Eq. (5.59) we get:

NP

∑
I 6=J,J=1

(xk
J−xk

I )H
T
J b = βk ∀1≤ |k| ≤ n, (5.61)

where we defined

βk =
∫

HxI

cω(xI,x)(x′
k−xk

I )dV ′x. (5.62)

Now, Eq. (5.67) leads to the following system:

Mb = β, (5.63)

where β is a column vector containing the k exact integrals in Eq.(5.62) and

M =
NP

∑
I 6=J,J=1

HJHT
J . (5.64)

It can be noted that M is similar to the moment matrix obtained in the RKPM construction (see

Chapter 3). If M is invertible, from Eq. (5.63) we get:

b = M−1
β, (5.65)

which substituted in Eq. (5.60) leads to the expression for the integration weights:

V g
J = HT

J M−1
β. (5.66)
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Now, invertibility of M is not guaranteed and can be linked to the non-uniqueness of the

integration weights satisfying the constraints in Eq. (5.67). As an example, we can consider a

one-dimensional case with a uniform distribution of nodes. For the first-order condition (i.e.,

k = 1) βk = 0 we can get from Eq. (5.67):

NP

∑
I 6=J,J=1

(xJ− xI)H
T
J b =

NP

∑
I 6=J,J=1

(xJ− xI)V
g
J = 0, (5.67)

which is satisfied either by zero-weights V g
J = 0, ∀J or by constant symmetrical weights V g

J =V ,

∀J. In Appendix 5-B we show for a one-dimensional case with a uniform discretization that for

symmetrical integration weights the equations associated with odd k are automatically satisfied

(i.e., lead to 0 = 0). If included, they would produce zero rows in M. This can be circumvented

by only imposing the even k conditions.

For illustration, let us now consider the one-dimensional example presented in Sec-

tion 5.3.1 for a quadratic manufactured solution. Figures 5.24 and 5.25, show the obtained

displacement fields by using the Full Volume (FV) integration approach and nodal integration

with the weights derived in Eq. (5.66) after imposing second-order consistency. It can be seen

that the modified weights allow recovering of the exact manufactured solution.
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Figure 5.24: Solution for one-dimensional peridynamic problem with manufactured solution
using a FV integration approach.
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Figure 5.25: Solution for one-dimensional peridynamic problem with manufactured solution
using nodal integration with modified integration weights with quadratic consistency.

Lastly, it can be shown that this approach of deriving integration weights is equiva-
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lent to the one presented in [88], when the same functions are to be integrated (i.e., f (x′) =

cω(xI,x)(u(x′)−u(xI))) and the same basis vector H is used. In [88] the quadrature weights are

found through the Generalized Moving Least Square (GMLS) [104] by imposing integration ex-

actness of functions through a least squares approach. The resulting expression for the quadrature

weights is [88]:

ω = BT S−1g, (5.68)

where ωT = {ω1, ...,ωJ, ...,ωNP}, ∀J 6= I, is the vector of integration weights of size equal to the

number of quadrature points in the family of node I. g is the vector containing the k exact integral

gk

gk =
∫

HxI

cω(xI,x)(x′
k−xk

I )dV ′x, (5.69)

and B is a rectangular matrix with column vectors HJ , ∀J 6= I, and S = BBT . It follows that

g = β, S = M and that each integration weight ωJ in ω is:

ωJ = HT
J S−1g = HT

J M−1
β. (5.70)

By comparing Eq. (5.66) and Eq. (5.70) it is clear that the weights computed with the two ap-

proaches are the same. This is not too surprising given the fact that both approaches are imposing

reproduction of integral of functions, though one directly and one through a minimization problem.

This relates to the similarity between RKPM and RK implicit gradient [66] and GMLS, which

imposes reproductions of generic functionals through a minimization approach.
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5.5 Appendix 5-A: Effect of nodal integration on convergence

Here, it is shown that the error associated with integration strongly affects the conver-

gence behavior, even when the RK enhanced approach is used. To do so, the one-dimensional

peridynamic problem with manufactured quadratic solution u(x) = x2 introduced in Section

5.3.1 is solved by using a nodal integration approach. Both the node-based method discussed

in Section 5.3.1 with partial volumes and the RK enhanced approach are considered. The same

data employed in Section 5.3.1 are used: α = 0, K = 1, δ = 0.04, b(x) =−2, and g(x) = x2. The

weighted volume m is computed analytically according to Eq. (6.84). Convergence is studied by

solving the problem for an increasing number of uniformly spaced nodes: we start with 76 nodes

(δ/h = 3) and increase the number of nodes by 1 until we reach 151 nodes (δ/h = 6). For the RK

formulation used in this example problem, a first-order basis and a second-order basis were used.

A support size of a = 1.001h was used for the case with linear bases, while a = 2.1h was chosen

for the case with quadratic bases. The convergence behavior of a node-based solution described

by Eq. (5.36) was studied for this problem in [93] for different influence functions and integration

weights. Figure 5.26 shows the error convergence results for the RK enhanced approach with

nodal integration, and compares them with the error obtained in [93] for a piecewise-constant

approximation where the PV approach (NB Constant (PV)) described in Section 5.3.1 was used.
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Figure 5.26: Convergence of the numerical solution of Eq. (5.36) for u(x) = x2 using node-
based piecewise-constant meshfree solution (with PV) and RK approximations. Integration error
strongly affects the convergence behavior.

It can be observed that, even though the completeness of the approximation was increased

through the use of the RK approximation, integration error significantly affects the convergence

behavior. Reducing the effect of the integration error is thus necessary to achieve optimal

convergence behaviors.

5.6 Appendix 5-B: Reproducing conditions for integration

weights in one-dimensional uniform discretizations

Let us start by considering an arbitrary polynomial of order 2z:

u(x) = a0 +a1x+a2x2 + ...+anxn + ...a2zx2z =
2z

∑
n=0

anxn (5.71)

Let us consider

∫ x+δ

x−δ

cω[u(x′)−u(x)]dx′ =
∫ +δ

−δ

cω[u(x+ξ)−u(x)]dξ, (5.72)
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where ω is used to denote ω(|x′− x|), ω(|ξ|). Eq. (5.72) becomes

∫ +δ

−δ

cω[u(x+ξ)−u(x)]dξ =
2z

∑
n=1

∫ +δ

−δ

cω[an(x+ξ)n−anxn]dξ (5.73)

By using the binomial theorem:

2z

∑
n=1

∫ +δ

−δ

cω{an[(x+ξ)n− xn]}dξ =
2z

∑
n=1

∫ +δ

−δ

cω

{
an

[ n

∑
p=0

(
n
p

)
xn−p

ξ
p− xn

]}
dξ

=
2z

∑
n=1

∫ +δ

−δ

cω

{
an

[ n

∑
p=1

(
n
p

)
xn−p

ξ
p
]}

dξ

=
2z

∑
n=1

an

n

∑
p=1

(
n
p

)
xn−p

∫ +δ

−δ

cωξ
pdξ

(5.74)

Now, let us consider the right-hand side of Eq. (5.74):

an

n

∑
p=1

(
n
p

)
xn−p

∫ +δ

−δ

cωξ
pdξ

= an

[ n

∑
p=1

(
n
p

)
xn−p

∫ +δ

−δ

cωξ
pdξ

]
= an

[ n

∑
p=1

n!
p!(n− p)!

xn−p
∫ +δ

−δ

cωξ
pdξ

]
= an

[ n

∑
p=1

n!
(n− p)!

xn−pmp

]
= an[βn]

(5.75)

where

mp =
1
p!

∫
δ

−δ

cωξ
pdξ. (5.76)

Eq. (5.74) then becomes:

2z

∑
n=1

∫ +δ

−δ

cω{an[(x+ξ)n− xn]}dξ =
2z

∑
n=1

an

[ n

∑
p=1

n!
(n− p)!

xn−pmp

]
(5.77)
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In order to find the integration weights, we consider Eq. (5.77) being collocated at x = xI as well

as a nodal discretization of the peridynamic integral. The nodal discretization leads in general

to a summation over all the nodes xJ in the family FI of xI . In order to be able to compare the

two considered approaches we consider a uniformly discretized case with the same number of

neighbours: hence there are z neighbours to the left of xI and z to the right of xI .

2z

∑
n=1

an ∑
J∈FI

cωIJ(xn
J− xn

I )V
g
J =

2z

∑
n=1

an

[ n

∑
p=1

n!
(n− p)!

xn−p
I mp

]
(5.78)

2z

∑
n=1

an

z

∑
k=−z

cωk

[
(xI + kh)n− xn

I

]
V g

k =
2z

∑
n=1

an

[ n

∑
p=1

n!
(n− p)!

xn−p
I mp

]
(5.79)

2z

∑
n=1

an

z

∑
k=−z

cωk

[ n

∑
p=0

(
n
p

)
(xI)

n−p(kh)p− xn
I

]
V g

k =
2z

∑
n=1

an

n

∑
p=1

n!
(n− p)!

xn−p
I mp (5.80)

2z

∑
n=1

an

z

∑
k=−z

cωk

n

∑
p=1

(
n
p

)
(xI)

n−p(kh)pV g
k =

2z

∑
n=1

an

n

∑
p=1

n!
(n− p)!

xn−p
I mp (5.81)

Now, in this approach, in order to find V g
k , we impose Eq. (5.81) ∀n, n = 1, ...,2z:

z

∑
k=−z

cωk

n

∑
p=1

(
n
p

)
(xI)

n−p(kh)pV g
k =

n

∑
p=1

n!
(n− p)!

xn−p
I mp (5.82)

z

∑
k=−z

cωk

n

∑
p=1

n!
p!(n− p)!

(xI)
n−p(kh)pV g

k =
n

∑
p=1

n!
(n− p)!

xn−p
I mp (5.83)

n

∑
p=1

n!
p!(n− p)!

(xI)
n−p

z

∑
k=−z

cωk(kh)pV g
k =

n

∑
p=1

n!
(n− p)!

xn−p
I mp (5.84)

n

∑
p=1

n!
(n− p)!

xn−p
I

z

∑
k=−z

1
p!

cωk(kh)pV g
k =

n

∑
p=1

n!
(n− p)!

xn−p
I mp (5.85)

By considering each p separately (see Remark 1):

1
p!

z

∑
k=−z

cωk(kh)pV g
k = mp, ∀p = 1, ...,n (5.86)
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which, if n = 2z, is:
1
p!

z

∑
k=−z

cωk(kh)pV g
k = mp, ∀p = 1, ...,2z (5.87)

Now, for odd values of p:

mp =
1
p!

∫
δ

−δ

cωξ
pdξ = 0 (5.88)

1
p!

z

∑
k=−z

cωk(kh)pV g
k = 0 (5.89)

Eq. (5.87) is satisfied ∀p only either if all the weights are zero (non admissible due to the

conditions imposed when p is even) or if the integration weights are symmetrical, i.e. V−k =Vk.

Symmetrical weights satisfy the conditions imposed for odd values of p; hence, we are left with

the conditions for the even values of p:

1
p!

z

∑
k=−z

cωk(kh)pV g
k = mp, ∀p ∈ 2N, p = 2, ...,2z (5.90)

1
p!

z

∑
k=1

2cωk(kh)pV g
k =

1
p!

∫
δ

−δ

cωξ
pdξ, ∀p ∈ 2N, p = 2, ...,2z (5.91)

Remark 1: the reason that allows us to consider separately each p going from Eq. (5.85)

to Eq. (5.86) is rooted in the fact that n = 1, ...,2z and that we are solving one equation for each

value of n. So when n = 1 in Eq. (5.85), p = 1 and we have the equation for p = 1, then when

n = 2, p = 1,2; the condition for p = 1 is already satisfied to the imposition of the same condition

when n = 1 and so on. This same reasoning applies for all n = 1, ...,2z. See the following system

for clarification:
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

∑
z
k=−z cωk(kh)V g

k = m1

2xI∑
z
k=−z cωk(kh)V g

k +2!∑z
k=−z cωk

1
2!(kh)2V g

k = 2xIm1 +2!m2

3!
2!x

2
I ∑

z
k=−z cωk(kh)V g

k +3!xI∑
z
k=−z cωk

1
2!(kh)2V g

k

+3!∑z
k=−z cωk

1
3!(kh)3V g

k = 3!
2!x

2
I m1 +3!xIm2 +3!m3

4!
3!x

3
I ∑

z
k=−z cωk(kh)V g

k + 4!
2!x

2
I ∑

z
k=−z cωk

1
2!(kh)2V g

k

+4!xI∑
z
k=−z cωk

1
3!(kh)3V g

k +4!∑z
k=−z cωk

1
4!(kh)4V g

k

= 4!
3!x

3
I m1 +

4!
2!x

2
I m2 +4!xIm3 +4!m4

...

∑
2z
p=1

2z!
(2z−p)!x

2z−p
I ∑

z
k=−z cωk

1
p!(kh)pV g

k = ∑
2z
p=1

2z!
(2z−p)!x

2z−p
I mp

(5.92)

that can be rearranged as 

∑
z
k=−z cωk(kh)V g

k = m1

∑
z
k=−z cωk

1
2!(kh)2V g

k = m2

∑
z
k=−z cωk

1
3!(kh)3V g

k = m3

∑
z
k=−z cωk

1
4!(kh)4V g

k = m4

...

∑
z
k=−z cωk

1
2z!(kh)2zV g

k = m2z

(5.93)
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Chapter 6

Variationally Consistent Integration in

Reproducing Kernel Enhanced Weak

Form Peridynamics
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As for classical PDE-based boundary/initial value problems, the peridynamic strong form

formulation can be recast into a so-called variational (or weak) form, which mimics the one

typically employed for the solution of partial differential equations. Since the variational form of

the peridynamic balance of linear momentum entails the solution of a double integral, it generally

involves significant geometric complexity and requires higher computational expense relative to

the strong form [12]. For this reason, even though the use of the weak form has been recently

proposed to facilitate the imposition of nonlocal boundary conditions [22], it has been mainly

employed for the purpose of proving theorems about its properties, convergence rates for different

approximations, and the uniqueness and existence of a solution [69][141][142][125][99], rather

than for practical applications, for which it has been used mainly in conjunction with finite

element approximations [140][69]. Nonetheless, due to the presence of the double integration,

the discrete peridynamic weak form can retain symmetry of interaction between two points in

the domain, which is often lacking in discrete strong peridynamic formulations [8]. Here, we

propose a variationally consistent integration for weak form peridynamics, which allows for exact

integration for polynomial solutions up to a desired order, while retaining the symmetrical feature

of weak form peridynamics.

6.1 Review of nonlocal vector calculus

Nonlocal vector calculus was originated from the study of peridynamics [72][102] and

provides a systematic way of formulating nonlocal models, such as peridynamics [69], through

the use of nonlocal operators. In this Section we review some of its basic aspects and provide

the definitions of the nonlocal divergence and gradient operators. Furthermore, some of the

theorems of nonlocal vector calculus, such as nonlocal integration by parts, will be reviewed so to

introduce the weak form of the peridynamic equation of motion. The interested reader is referred

to [72][102][69][103] and [5] for further discussions on nonlocal vector calculus.
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To start, consider x,y,z ∈ Rn. For any point x ∈ Rn, and for integrable functions ψ(x,y) :

Rn×Rn→ R, we define [102]

∫
Ω̃

ψ(x,y)dy ∀ Ω̃⊆ Rn, (6.1)

as the nonlocal flux density at x into a measurable volume Ω̃. Therefore, for any two open

measurable regions Ω1 ⊆ Rn and Ω2 ⊆ Rn

∫
Ω1

∫
Ω2

ψ(x,y)dydx (6.2)

represents a scalar interaction (nonlocal flux) from Ω1 into Ω2. In accordance with Eq. (6.1), the

term
∫

Ω2
ψ(x,y)dy in Eq. (6.2) is the nonlocal flux density at x ∈Ω1 into the region Ω2. Now, we

require no self-interaction, i.e. the flux from a region into itself vanishes [102][5]:

∫
Ω̃

∫
Ω̃

ψ(x,y)dydx = 0, ∀ Ω̃⊆ Rn, (6.3)

which is equivalent to requiring that ψ(x,y) = −ψ(y,x) for almost all x,y ∈ Rn. Eq (6.3) is

obviously satisfied if we consider an antisymmetric function [5]

ψ(x,y) =−ψ(y,x), ∀ x,y ∈ Rn. (6.4)

Futhermore, it is proved in [102] that Eq. (6.3) is equivalent to

∫
Ω1

∫
Ω2

ψ(x,y)dydx+
∫

Ω2

∫
Ω1

ψ(x,y)dydx = 0, ∀Ω1,Ω2 ⊆ Rn, (6.5)

that is the nonlocal flux from Ω1 into Ω2 is equal and opposite to the nonlocal flux from Ω2 into

Ω1. Eq. (6.5) is therefore the nonlocal analogue of the local action-reaction principle [102].

Now, a nonlocal operator D is sought so that it satisfies a nonlocal analogue of the
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divergence theorem, i.e., “the integral of the nonlocal divergence of a vector ν over any region

Ω̃⊂ Rn is equal to the flux out of that region” [102]:

∫
Ω̃

Dν(x)dx =
∫

Ω̃

∫
Rn

ψ(x,y)dydx, ∀ Ω̃⊆ Rn, (6.6)

where we have considered that a point x ∈ Ω̃ can interact with all points y ∈ Rn so that the

nonlocal flux density out of x is [102]

∫
Rn

ψ(x,y)dy. (6.7)

The operator D is then called nonlocal divergence.

In [5][102] a linear and continuous map D : [C∞
c (Rn×Rn)]k→D′(Rn), with k = 1,2, ...,3

and where D′(Rn) (space of distributions) is the dual space of D =C∞
c (Rn), is first considered.

Then, for almost all x ∈ Rn, from the Schwartz kernel theorem,

Dν(x) =
∫
Rn

∫
Rn
κ(x,y,z) ·ν(z,y)dzdy, (6.8)

where the kernel κ(x,y,z) ∈ ([C∞
c (Rn×Rn)]k×C∞

c (Rn))′. Now, by looking at Eq. (6.6)

∫
Ω̃

∫
Rn

∫
Rn
κ(x,y,z) ·ν(z,y)dzdydx =

∫
Ω̃

∫
Rn

ψ(x,y)dydx, ∀ Ω̃⊆ Rn, (6.9)

the nonlocal flux is expressed in [102] as

ψ(x,y) =
∫
Rn
κ(x,y,z) ·ν(z,y)dz, for almost all x,y ∈ Rn, (6.10)

which, by the antisymmetry of ψ(x,y) with respect to x and y (see Eq. (6.4)), requires [102]

κ(x,y,z) ·ν(z,y) =−κ(y,x,z) ·ν(z,x), for almost all x,y,z ∈ Rn. (6.11)
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Therefore, for a fixed kernel κ(x,y,z), the flux density per unit volume ψ(x,y) is uniquely

expressed in terms of ν(x,y) in [102] as

ψ(x,y) =
1
2

∫
Rn

[κ(x,y,z) ·ν(z,y)−κ(y,x,z) ·ν(z,x)]dz, for almost all x,y ∈ Rn, (6.12)

and the nonlocal divergence operator D in terms of ν(x,y) as [102]

Dν(x) =
1
2

∫
Rn

∫
Rn

[κ(x,y,z) ·ν(z,y)−κ(y,x,z) ·ν(z,x)]dzdy, for almost all x ∈ Rn.

(6.13)

Now, the expression in Eq. (6.8) is taken as the general definition of the nonlocal di-

vergence operator in [5]. Depending on the choice of kernel, different definitions nonlocal

(divergence) operators can be defined [5]. In [102], the kernel is taken to be κ(x,y,z) =

2α(x,y)δ(x− z), where δ(·) denotes the Dirac delta function and α(x,y) ∈
[
L1(Rn×Rn)

]k,

so that, from Eq. (6.13) we get

Dν(x) =
1
2

∫
Rn

∫
Rn

[2α(x,y)δ(x− z) ·ν(z,y)−2α(y,x)δ(y− z) ·ν(z,x)]dzdy

=
∫
Rn

[α(x,y) ·ν(x,y)−α(y,x) ·ν(y,x)]dy.
(6.14)

Now, by restricting the function α(x,y) to be antisymmetric (discussions on why α(x,y) should

be antisymmetric are provided in [102][5]), Eq. (6.14) can be recast as

Dν(x) =
∫
Rn

[ν(x,y)+ν(y,x)] ·α(x,y)dy. (6.15)

Remarks:

• If we substitute the kernel κ(x,y,z) = 2α(x,y)δ(x− z) in Eq. (6.8)
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Dν(x) =
∫
Rn

∫
Rn
κ(x,y,z) ·ν(z,y)dzdy

=
∫
Rn

∫
Rn

[2α(x,y)δ(x− z)] ·ν(z,y)dzdy

=
∫
Rn

[2α(x,y)] ·ν(x,y)dy

=
∫
Rn

[ν(x,y)] ·α(x,y)dy+
∫
Rn

[ν(x,y)] ·α(x,y)dy.

(6.16)

We see from Eq. (6.10) and Eq. (6.4) that

ψ(x,y) =
∫
Rn

2α(x,y)δ(x− z) ·ν(z,y)dz

= 2α(x,y) ·ν(x,y)

=−ψ(y,x) =−2α(y,x) ·ν(y,x),

(6.17)

which implies

2α(x,y) ·ν(x,y) =−2α(y,x) ·ν(y,x), (6.18)

2α(x,y) ·ν(x,y)−2α(x,y) ·ν(y,x), (6.19)

2α(x,y) · [ν(x,y)−ν(y,x)] = 0, (6.20)

ν(x,y) = ν(y,x). (6.21)

Substituting Eq. (6.21) in Eq. (6.16) leads to Eq. (6.15) and

ψ(x,y) = 2α(x,y) ·ν(x,y) = [ν(x,y)+ν(y,x)] ·α(x,y), (6.22)

which is consistent with Eqs. (6.15), (6.8) and (6.10).

• In [5], Eq. (6.8) is taken as the basis for the definition of the nonlocal divergence operator.

By choosing κ(x,y,z) = δ(x− z)α(x,y)+δ(x−y)α(x,z), where δ(·) denotes the Dirac
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delta function andα(x,y)∈
[
L1(Rn×Rn)

]k is a vector-valued function, the nonlocal vector

calculus presented in [102][72] is recovered. In fact, from Eq. (6.8), we get

Dν(x) =
∫
Rn

∫
Rn
κ(x,y,z) ·ν(z,y)dzdy

=
∫
Rn

∫
Rn

[δ(x− z)α(x,y)+δ(x−y)α(x,z)] ·ν(z,y)dzdy

=
∫
Rn

∫
Rn

δ(x− z)α(x,y) ·ν(z,y)dzdy+
∫
Rn

∫
Rn

δ(x−y)α(x,z) ·ν(z,y)dzdy

=
∫
Rn
α(x,y) ·ν(x,y)dy+

∫
Rn

∫
Rn

δ(x−y)α(x,z) ·ν(z,y)dydz

=
∫
Rn
α(x,y) ·ν(x,y)dy+

∫
Rn

∫
Rn
α(x,z) ·ν(z,x)dz

=
∫
Rn
α(x,y) ·ν(x,y)dy+

∫
Rn
α(x,y) ·ν(y,x)dy

=
∫
Rn
α(x,y) · [ν(x,y)+ν(y,x)]dy,

(6.23)

where in the second term of the third step the order of double integration has been reversed

and where the integration variable has been changed from z to y in the sixth step. It can

be observed that Eq. (6.23) is the same as Eq. (6.15), and it is consistent with Eqs. (6.8)

and (6.10) and the flux obtained in Eq. (6.22). However, substituting κ(x,y,z) = δ(x−

z)α(x,y)+δ(x−y)α(x,z) in the definition of flux in Eq. (6.10) leads to

ψ(x,y) =
∫
Rn
κ(x,y,z) ·ν(z,y)dz

=
∫
Rn

[δ(x− z)α(x,y)+δ(x−y)α(x,z)] ·ν(z,y)dz

=α(x,y) ·ν(x,y)+
∫
Rn

[δ(x−y)α(x,z)] ·ν(z,y)dz.

(6.24)

As aforementioned, in fact, the process in Eq. (6.23) relies on switching the double integrals

and a change of variables, and this is not possible from Eq. (6.10). It can be observed,

though, that the kernel employed in [5] (i.e., κ(x,y,z) = δ(x−z)α(x,y)+δ(x−y)α(x,z))

recovers the one used in [102] (i.e., κ(x,y,z) = 2α(x,y)δ(x− z)), if y and z are swapped
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in the second term. From Eq. (6.23) we get

Dν(x) =
∫
Rn

∫
Rn
κ(x,y,z) ·ν(z,y)dzdy

=
∫
Rn

∫
Rn

[δ(x− z)α(x,y)+δ(x−y)α(x,z)] ·ν(z,y)dzdy

=
∫
Rn

∫
Rn

δ(x− z)α(x,y) ·ν(z,y)dzdy+
∫
Rn

∫
Rn

δ(x−y)α(x,z) ·ν(z,y)dzdy

=
∫
Rn

∫
Rn

δ(x− z)α(x,y) ·ν(z,y)dzdy+
∫
Rn

∫
Rn

δ(x−y)α(x,z) ·ν(z,y)dydz

=
∫
Rn

∫
Rn

δ(x− z)α(x,y) ·ν(z,y)dzdy+
∫
Rn

∫
Rn

δ(x− z)α(x,y) ·ν(y,z)dzdy

=
∫
Rn

∫
Rn

δ(x− z)α(x,y) ·ν(z,y)dzdy+
∫
Rn

∫
Rn

δ(x− z)α(x,y) ·ν(z,y)dzdy

=
∫
Rn

∫
Rn

[2α(x,y)δ(x− z)] ·ν(z,y)dzdy,
(6.25)

where Eq. (6.21) has been employed.

6.1.1 Nonlocal divergence and gradient

Based on Section 6.1, here we provide the definitions for nonlocal divergence and gradient

from [102]. The interested reader is advised to pay careful attention while reading the literature,

as different different authors sometimes use different nomenclature, definitions, and symbols for

these operators (see for example [72][69]). Given a vector two-point function (i.e., a function

defined for pairs of points) ν : Rn×Rn→ Rk and the antisymmetric vector two-point function

α : Rn×Rn→ Rk, the nonlocal divergence operator D on ν, so that Dν : Rn→ R, is defined as

Dν(x) :=
∫
Rn
(ν+ν ′) ·αdy, for x ∈ Rn, (6.26)

where ν = ν(x,y), ν ′ = ν(y,x) and α=α(x,y).

The nonlocal gradient operator G acting on a scalar two-point function η : Rn×Rn→ R
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is defined, given an antisymmetric vector two-point function β : Rn×Rn→ Rk as

Gη(x) :=
∫
Rn
(η+η

′) ·βdy, for x ∈ Rn, (6.27)

where Gη : Rn→ Rk. The adjoint operators of the aforementioned nonlocal operators are the

two-point operators defined as follows [102]. Given a point function (i.e., a function defined at

points) u : Rn→ R the adjoint of D is the two-point operator given by

D∗u(x,y) :=−(u′−u)α, for x,y ∈ Rn, (6.28)

where u′ = u(y) and u = u(x) and D∗u : Rn×Rn→ Rk. Given the vector point function (vx) :

Rn→ Rk, the adjoint of G is the two-point operator that acts on v as:

G∗v(x,y) :=−(v′−v) ·β, for x,y ∈ Rn. (6.29)

Now, we can also define the nonlocal divergence operator acting on tensors by applying the

definion in Eq. (6.26) to each row of the tensor [102]. Given the tensor, two-point function

Ψ : Rn×Rn→ Rm×k and the antisymmetric vector two-point function α : Rn×Rn→ Rk, the

nonlocal point divergence operator Dt for tensors is defined as

DtΨ(x) :=
∫
Rn
(Ψ+Ψ′) ·αdy, for x ∈ Rn, (6.30)

where DtΨ : Rn→ Rm, Ψ = Ψ(x,y), and Ψ′ = Ψ(y,x). Now, given the vector point function

v(x) : Rn→ Rm, the adjoint of Dt is given by [102]

(D∗t v)(x,y) =−(v′−v)⊗α, for x,y ∈ Rn, (6.31)

where D∗t v : Rn×Rn → Rm×k, v = v(x), and v′ = v(y). Also, the definition of the nonlocal
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gradient operator of a two-point scalar function given in Eq. (6.27) can be extended to define the

nonlocal gradient operator Gt acting on a two-point vector function ψ(x,y) as the point tensor

function:

Gtψ(x) :=
∫
Rn
(ψ′+ψ)⊗βdy. (6.32)

The corresponding adjoint operator G∗t acting on a point tensor U(x) is given by [102]:

(G∗t U)(x,y) =−(U′−U) ·β, (6.33)

where U′ = U(y) and U = U(x).

6.1.2 Nonlocal interaction operators

Let us start by considering an open subset Ω ⊂ Rn; we define the interaction domain

corresponding to Ω as [102]:

BΩ := {y ∈ Rn \Ω such that α(x,y) 6= 0 f or some x ∈Ω}, (6.34)

so that BΩ consists of those points outside of Ω that interact with points in Ω. At this point, we

can define operators that describe the interaction between points in BΩ and those in Ω = Ω∪BΩ.

Following [102] we can define the point interaction operator N ν(x) := BΩ→ R, ∀x ∈ BΩ,

N ν(x) :=−
∫

Ω∪BΩ

(ν+ν ′) ·αdy, (6.35)

which corresponds to the nonlocal divergence operator defined in Eq. (6.26). Corresponding

to the point gradient operator in Eq. (6.27) we can also define the point interaction operator

Sη : BΩ→ Rk, ∀x ∈ BΩ, as

Sη(x) :=−
∫

Ω∪BΩ

(η+η
′)βdy. (6.36)
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6.1.3 Nonlocal integral theorems

Based on the notations and definitions presented in Sections 6.1.1 and 6.1.2 the following

theorems can be proved [102][72]

∫
Ω

Dνdx =
∫

BΩ

N νdx, (6.37)

∫
Ω

Gηdx =
∫

BΩ

Sηdx. (6.38)

Eq. 6.37 is referred to as the nonlocal Gauss theorem [72]. Also, nonlocal integration by parts

formulas can be defined [102], which are analogue to the local ones. Given the point functions

u(x) : Rn→ R, v(x) : Rn→ Rk, we have [102]

∫
Ω

uDνdx−
∫

Ω∪BΩ

∫
Ω∪BΩ

D∗u ·νdydx =
∫

BΩ

uN νdx, (6.39)

∫
Ω

v ·Gηdx−
∫

Ω∪BΩ

∫
Ω∪BΩ

G∗vηdydx =
∫

BΩ

v ·Sηdx. (6.40)

6.2 Variationally consistent integration for high order exact-

ness in weak form peridynamics

6.2.1 Model problem

The concept of variationally consistent integration for high order exactness was introduced

in [61] for boundary value problems of the following form:

−Lu = b, in Ω

u = g, on ∂Ωg

Bu = h, on ∂Ωh

, (6.41)
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where L is a generic differential operator acting in Ω⊂ Rd , b is a source term, g is the prescribed

values of u on the essential zero-volume boundary ∂Ωg., B is a boundary operator acting on

the Neumann boundary ∂Ωh, and the domain boundary ∂Ω is such that ∂Ω = ∂Ωg∪ ∂Ωh and

∂Ωg∩∂Ωh = /0. Here, we extend it to boundary value problems involving integral operators, such

as the peridynamic equation of motion. We therefore consider the following nonlocal constrained

value problem:

−Λu = b, in Ω

u = g, on BΩg

N u = h, on BΩh

, (6.42)

where N is a linear operator of volume constraints on the non-zero volume BΩh and Λ is a

nonlocal integral operator. If Λu = Dt(βD∗t (u)T ) with u ∈ Rd and β being a chosen kernel, for

example, corresponds to the linear operator of bond based peridynamics [69][102]. When d = 1

the nonlocal Laplacian operator Lu = D(βD∗(u)T ) is recovered. For simplicity, in the rest of the

discussion we consider

−Lu = b, in Ω

u = g, on BΩg

N (βD∗u) = h, on BΩh

. (6.43)

6.2.2 Integration constraints

Now, let us consider the nonlocal constrained value problem in Eq.6.43 where the solution

is complete polynomials with degree n:

u = ∑
|α|≤n

cxα = un, (6.44)

where the multi-index notation introduced in Chapter 3 has been used. The corresponding problem

with consistent force term and boundary conditions is
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−Lun = b, in Ω

un = g, on BΩg

N (βD∗un) = h, on BΩh

, (6.45)

that is, when the source terms and boundary conditions in Eq. (6.45) are specified, the

solution is Eq. (6.44). Similarly to what can be done for the classical theory, by multiplying the

first equation in the strong formulation in Eq. (6.45) by a test function v ∈ R (with v = 0 ∈ BΩ)

and by applying the nonlocal integration by parts in Eq. (6.39), a variational (weak) formulation

for the problem in Eq. (6.43) can be obtained:

a(v,u)Ω = (v,b)Ω +(v,h)BΩh , (6.46)

where

a(v,u)Ω =
∫

Ω∪BΩ

∫
Ω∪BΩ

D∗vβD∗udydx (6.47)

(v,b)Ω =
∫

Ω

vbdx, (6.48)

(v,h)BΩh =
∫

BΩh

vhdx, (6.49)

which for Eq. (6.45) becomes:

a(v,un)Ω = (v,b)Ω +(v,h)BΩh, (6.50)

Now, let us consider a Galerkin approximation where we approximate the trial and test funcions

u and v with uh and vh, respectively, making Eq. 6.51

a(vh,uh)Ω = (vh,b)Ω +(vh,h)BΩh. (6.51)
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Now, let

u(x)≈ uh(x) =
NP

∑
J=1

ΨJ(x)dJ, (6.52)

and

v(x)≈ vh(x) =
NP

∑
I=1

Ψ(x)IvI, (6.53)

where

ΨI(x) =

{
ΨI(x), for x ∈Ω\BΩg

0, for x ∈BΩg

. (6.54)

Now, let us consider the n− th order completeness of uh [61]:

un =
NP

∑
J=1

ΨJdn
J , (6.55)

where un is the complete n− th order polynomial defined in Eq. (6.44), and

dn
J = ∑

|α|≤n
cαxα

J , ∀x ∈Ω. (6.56)

In a meshfree setting, with NP discretization nodes, the n− th order completeness is easily

satisfied by using the reproducing kernel particle method and associated shape functions. By

taking dJ = dn
J in Eq. (6.52) and by substituting Eqs. (6.52) and (6.53) into Eq. (6.51), we get:

NP

∑
J=1

a(ΨI,ΨJdn
J )Ω = (ΨI,b)Ω +(ΨI,h)BΩh, ∀I. (6.57)

Now considering all orders of completeness from 1 to n and employing numerical integration in

Eq. (6.57) we get

a〈ΨI,xα〉Ω =−〈ΨI,Lxα〉Ω + 〈ΨI,N (βD∗xα)〉BΩh, ∀I, |α|= 0,1...,n, (6.58)

where a〈·, ·〉Ω is the numerical quadrature version of a(·, ·)Ω, and 〈·, ·〉Ω and 〈·, ·〉BΩh are the
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numerical quadrature versions of (·, ·)Ω and (·, ·)BΩh , respectively. The equations in Eq. (6.58)

are called the n− th order integration constraints and when satisfied yield to n− th order Galerkin

exactness.

6.2.3 Integration constraints for the nonlocal linear bond-based steady-

state peridynamic problem

For illustration, let us consider the one-dimensional linear bond-based peridynamic

problem described by


−∫ x+δ

x−δ
cω(|ξ|)(u(x′)−u(x))dx′ = b(x), for x ∈Ω

u(x) = g(x), for x ∈BΩg

−∫ x+δ

x−δ
cω(|ξ|)(u(x′)−u(x))dx′ = h(x), for x ∈BΩh

, (6.59)

where Ω is the interior of the domain, and x ∈BΩg and x ∈BΩh are the Dirichlet and Neumann

boundaries, respectively. By multiplying by v(x) ∈ V (where v(x) = 0, ∀x ∈ BΩg) and by

employing the nonlocal version of integration by parts, the weak form of Eq. (6.59) can be

obtained:

1
2

∫
Ω

∫
Ω

[v(x′)− v(x)]cω(|ξ|)[u(x′)−u(x)]dx′dx =
∫

Ω

v(x)b(x)dx+
∫

BΩh

v(x)h(x)dx. (6.60)

Now, we introduce the approximations in Eq. (6.52) and Eq. (6.53) for the trial and test

functions, respectively, and obtain

NP

∑
J=1

1
2

∫
Ω

∫
Ω

[ΨI(x′)−ΨI(x)]cω(|ξ|)[ΨJ(x′)−ΨJ(x)]dx′dxdJ

=
∫

Ω

ΨI(x)b(x)dx+
∫

BΩh

ΨI(x)h(x)dx, ∀I.
(6.61)

Let us insert dJ = dn
J , the associated body force bn and Neumann boundary conditions hn, and
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use the completeness condition (see Eq. (6.55)):

NP

∑
J=1

1
2

∫
Ω

∫
Ω

[ΨI(x′)−ΨI(x)]cω(|ξ|)[ΨJ(x′)−ΨJ(x)]dx′dxdn
J

=
∫

Ω

ΨI(x)bn(x)dx+
∫

BΩh

ΨI(x)hn(x)dx, ∀I,
(6.62)

1
2

∫
Ω

∫
Ω

[ΨI(x′)−ΨI(x)]cw(|ξ|)[un(x′)−un(x)]dx′dx

=
∫

Ω

ΨI(x)bn(x)dx+
∫

BΩh

ΨI(x)hn(x)dx, ∀I,
(6.63)

1
2

∫
Ω

∫
Ω

[ΨI(x′)−ΨI(x)]cω(|ξ|)[un(x′)−un(x)]dx′dx =
∫

Ω∪BΩh

ΨI(x)b̃n(x)dx, ∀I, (6.64)

where

b̃n(x) =

{
bn(x), for x ∈Ω

hn(x), for x ∈BΩh

, (6.65)

where we recall that bn(x) and hn(x) are the body force and Neumann boundary conditions

associated with the n− th order polynomial solution un(x), respectively. Considering all orders

of completeness from 1 to n and employing numerical integration in Eq. (6.64), we obtain the

following integration constraints:

1
2

∫̂
Ω

∫̂
Ω

[ΨI(x′)−ΨI(x)]cω(|ξ|)[x′s− xs]dx′dx =
∫̂

Ω∪BΩh

ΨI(x)b̃s(x)dx, ∀I, s = 1,2, ...,n,

(6.66)

where, from Eq. (6.59),

b̃s(x) =−
∫ x+δ

x−δ

cω(|ξ|)(x′s− xs)dx′, ∀x ∈Ω∪BΩh. (6.67)
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6.3 Node-based variationally consistent integration method:

symmetrical weights

In this section, we propose a node-based variationally consistent integration method

for the weak form of peridynamics. We illustrate it on the problem presented in Section 6.2.3.

Node-based approaches are simple and computationally efficient compared to other methods,

and therefore well-suited for engineering applications, but are limited in integration accuracy.

We consider a discretization of NP nodes. The peridynamic weak form in Eq. (6.60), nodally

integrated becomes

1
2

NP

∑
L=1

NP

∑
P=1

[v(xP)− v(xL)]cω(xL,xP)[u(xP)−u(xL)]VPVL =
NP

∑
Q=1

v(xQ)b̃(xQ)VQ, (6.68)

where ω(xL,xP) = ω(|ξ|) = ω(|xP− xL|), b̃ is defined as in Eq. (6.65), and NP and NP are the

nodes in Ω and Ω∪BΩh, respectively. It can be noted that the contribution of P and L to the

left-hand side of Eq. (6.69) is symmetrical, i.e.,

[v(xP)− v(xL)]cω(xL,xP)[u(xP)−u(xL)]VPVL = [v(xL)− v(xP)]cω(xP,xL)[u(xL)−u(xP)]VLVP.

(6.69)

Now, by introducing the approximations in Eq. (6.52) and Eq. (6.53) for the trial and test functions

in Eq. (6.69), we get

NP

∑
J=1

1
2

NP

∑
L=1

NP

∑
P=1

[ΨI(xP)−ΨI(xL)]cω(xL,xP)[ΨJ(xP)−ΨJ(xL)]VPVLdJ =
NP

∑
Q=1

ΨI(xQ)b̃(xQ)VQ, ∀I,

(6.70)
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which, by taking d = dn and using the n-th order completeness of the shape functions (see

Eq. (6.55)), becomes

1
2

NP

∑
L=1

NP

∑
P=1

[ΨI(xP)−ΨI(xL)]cω(xL,xP)[un(xP)−un(xL)]VPVL =
NP

∑
Q=1

ΨI(xQ)b̃n(xQ)VQ, ∀I.

(6.71)

Satisfaction of the integration constraints in Eq. (6.66) for the node-based integration approach

requires:
1
2

NP

∑
L=1

NP

∑
P=1

[ΨI(xP)−ΨI(xL)]cω(xL,xP)[(xs
P− xs

L)]VPVL

=
NP

∑
Q=1

ΨI(xQ)b̃s(xQ)VQ, ∀I, s = 1,2, ...,n,

(6.72)

1
2

NP

∑
L=1

NP

∑
P=1

[ΨI(xP)−ΨI(xL)]cω(xL,xP)[xs
P− xs

L]VPL =
NP

∑
Q=1

ΨI(xQ)b̃s(xQ)VQ, ∀I, s = 1,2, ...,n,

(6.73)

where VPL =VPVL =VLP. One way of satisfying Eq. (6.72) is to replace the integration weights

VPL with modified ones:

V g
PL =

n

∑
r=1

αr(|xP− xL|)rVPVL. (6.74)

It is clear from the definition in Eq. (6.67) that V g
PL =V g

LP, i.e. the symmetry of interaction between

P and L is retained. This leads, ∀I, to the following system of equations where s = 1, ...,n:

n

∑
r=1

1
2

NP

∑
L=1

NP

∑
P=1

[ΨI(xP)−ΨI(xL)]cω(xL,xP)(xs
P− xs

L)αr(|xP− xL|)rVPVL =
NP

∑
Q=1

ΨI(xQ)b̃s(xQ)VQ,

(6.75)

which can be rewritten as:

Aαα= b, (6.76)

where

Aα
sr =

1
2

NP

∑
L=1

NP

∑
P=1

[Ψ(xP)−Ψ(xL)]cω(xL,xP)(xs
P− xs

L)(|xP− xL|)rVPVL, (6.77)
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αT = [α1, ...,αn] (6.78)

and

bT = [
NP

∑
Q=1

ΨI(xQ)b̃1(xQ)VQ, ...,
NP

∑
Q=1

ΨI(xQ)b̃n(xQ)VQ]. (6.79)

As long as Aα is invertible, α can be found and the modifications to the weights VPL

that guarantee the n-th order integration constraint to be satisfied can be found. Lastly, it can be

argued that, by modifying the integration weights for the given node-based integration scheme,

we are indirectly scaling and modifying the test functions in the weak form, similarly to the spirit

of the variationally consistent integration methods proposed in [61] for PDEs.

6.4 Numerical example: one-dimensional static peridynamic

problem

Figure 6.1: 1D domain Ω := Ω∪BΩg

Consider a unit length one-dimensional domain (see Figure 7.8) Ω = [0,1], with inner

domain Ω = (δ,1−δ) and boundary layer BΩg = [0,δ]∪ [1−δ,1], and a one-dimensional force

state.

T[x, t]〈ξ〉= 1
2

cw(|ξ|)(u(x′)−u(x)), (6.80)
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where ξ = x′− x. The associated static linear bond-based peridynamic problem is

{
−∫ x+δ

x−δ
cw(|ξ|)(u(x′)−u(x))dx′ = b(x), for x ∈Ω

u(x) = g(x), for x ∈BΩg

(6.81)

where w(|ξ|) is the influence function, g(x) is a prescribed Dirichlet boundary condition function,

and c is a constitutive constant. In this example, the influence function is taken to be Boolean:

w(|ξ|) =
{

1, for |ξ| ≤ δ

0, for |ξ|> δ

(6.82)

and the constitutive constant c is taken as

c =
2K
m

, (6.83)

where K is a constant and m is the weighted volume [18][24][95]:

m =
∫

δ

−δ

w(|ξ|)ξ2dξ (6.84)

Manufactured solutions of polynomial form up to third-order are considered, i.e. u(x) =

k3x3 + k2x2 + k1x+ k0 with k3, k2, k1, and k0 being constant coefficients. The body force density

for Eq. (6.81) is then

b(x) =−
∫ x+δ

x−δ

cw(|ξ|)[k3(x′3− x3)+ k2(x′2− x2)+ k1(x′− x)]dx′

=−
∫

δ

−δ

cw(|ξ|)[k3((x+ξ)3− x3)+ k2((x+ξ)2− x2)+ k1ξ]dξ

=−2K(3k3x+ k2),

(6.85)
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The weak form associated with Eq. (6.81):

1
2

∫
Ω

∫
Ω

[v(x′)− v(x)]cω(x,x′)[u(x′)−u(x)]dx′dx =
∫

Ω

v(x)b(x)dx, (6.86)

where v(x) ∈V , v = 0 ∈BΩg.

6.4.1 Uniform discretization

First, we solve the static linear problem with manufactured polynomial solution (see

Eq. (6.81)) by considering a uniform discretization and an RKPM approximation. The discretiza-

tion contains N = 100 equally spaced nodes with spacing h in the problem domain interval

[0,1]. We consider three problems: one with manufactured linear solution, one with a quadratic

solution and one with a cubic solution. First-order, second-order, and third-order bases for the RK

approximation are used for each problem, respectively. A cubic B-spline kernel was selected in all

cases, with support sizes a = 1.5h, 2.5h, and 3.5h, respectively. We select an horizon δ = 0.04.

It has to be noted that for a uniform discretization, the linear integration constraint is

automatically satisfied for symmetrical weights. Furthermore, it was noticed that, though scaled,

the equation imposing third-order variational consistency was the same equation (i.e, linearly

dependent) as the one imposing the second-order integration constraint, making Aα in Eq. (6.76)

singular. For this reason, for the uniform discretization we reduce the system in Eq. (6.75) by only

considering r = s = 2. As shown in Figures 6.2, 6.3, and 6.4, these integration weights satisfy the

first, second and third-order integration constraints, respectively.
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Figure 6.2: First-order variational consistency condition obtained with imposition of second-
order integration constraint, linear RK shape functions and a uniform point distribution
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Figure 6.3: Second-order variational consistency condition obtained with imposition of second-
order integration constraint, quadratic RK shape functions and a uniform point distribution
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Figure 6.4: Third-order variational consistency condition obtained with imposition of second-
order integration constraint, cubic RK shape functions and a uniform point distribution

6.4.2 Non-uniform discretization

Here, the behaviour of the proposed node-based variationally consistent integration

approach is investigated for a non-uniform discretization. We solve again the static linear problem

with manufactured polynomial solution (see Eq. (6.81)). The non-uniform discretization is

obtained by perturbing a uniform discretization with N = 100 nodes (and corresponding spacing

of size h) in the problem domain interval [0,1]. This was achieved by moving each node in

(0,1) from their original position xI in the uniform grid to a new randomly selected position

xnu
I ∈ [xI − εh,xI + εh], where ε is a perturbation factor, selected randomly in [0,0.5]. As for

the uniform case, we consider problems with manufactured linear, quadratic and cubic solution,

and used first-order, second-order, and third-order basis for the RK approximation, respectively.

A cubic B-spline kernel was selected in all cases, with support sizes a = 1.5h, 2.5h, and 3.5h,

respectively. We select an horizon δ = 0.04. For the non-uniform case, the first-order, second-

order and third-order integration variational consistency conditions are linearly independent

and can therefore be imposed simultaneously. Integration constraints up to first, second, and

third-order are imposed for the problems with manufactured linear, quadratic, and cubic solutions,
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respectively. Figures 6.5, 6.6, and 6.7, show that the node-based integration, modified to satisfy

the chosen integration constraints, leads to recovering the exact solution for the considered

problems.
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Figure 6.5: First-order variational consistency condition obtained with imposition of first-order
integration constraint, linear RK shape functions and a non-uniform point distribution.
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Figure 6.6: Second-order variational consistency condition obtained with imposition of second-
order integration constraint, quadratic RK shape functions and a non-uniform point distribution.
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Figure 6.7: Third-order variational consistency condition obtained with imposition of third-
order integration constraint, cubic RK shape functions and a non-uniform point distribution.
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Chapter 7

A Waveform Relaxation Newmark Method

for Transient RKPM Modelling of

Dynamic Problems
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7.1 The Waveform Relaxation scheme

The Waveform Relaxation scheme is an iterative method used to solve systems of time

dependent differential equations. To briefly review the key ideas of the WR method we start

by considering a dynamical system that can be described as a set of p second-order ordinary

differential equations, with associated initial conditions, of the form:

d̈ = f(t,d) t ∈ [0,T ],

d(0) = d0,

ḋ(0) = v0,

(7.1)

where T > 0 is the final simulation time, f : [0,T ]×Rp → Rp is a generalized load vector,

d(t) = [d1(t)d2(t) ...dp(t)]t ∈ Rp is the displacement vector, and Rp denotes a real valued vector

space of dimension p. d0 = [d1,0 d2,0 ...dp,0]
t ∈ Rp and v0 = [v1,0 v2,0 ... vp,0]

t ∈ Rp are vectors

which contain the initial displacements di,0 and initial velocity values vi,0, respectively.

The key idea of the WR algorithm is to (i) uncouple the set of equations, (ii) integrate efficiently

the uncoupled set of equations in time, (iii) repeat the process with the additional information

generated from the previous integration step until convergence is reached. Equation decoupling

in step (i) is achieved through an assignment-partitioning process, while steps (ii)-(iii) consist of

an iterative relaxation procedure. In the assignment-partitioning process, each unknown variable

is assigned to one equation of the original system (7.1), which is then partitioned into disjoint

subsystems consisting of one (point-wise decomposition) or more (block-wise decomposition)

equations [68]. Therefore, within each subsystem there are the assigned internal variables to be

solved for and external variables, which are internal variables of the other subsystems. Each

subsystem is then solved iteratively over the time domain during the relaxation process. In order

to accelerate convergence and reduce storage, the time domain can be divided into intervals called
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windows. The solution of each subsystem can be performed independently, even on different

processors, and the information is exchanged once the solution over the considered time window

has taken place [41].

Figure 7.1 illustrates the underlying WR concept for a 1D space-time domain. The

space domain is first discretized into independent function variables (indicated by the dots) and

assigned an arbitrary value over the time window at iteration ν = 0; each subsystem is then solved

iteratively by using the information coming from the other subsystems (external variables) until

convergence (dashed line) for its assigned internal variable is achieved. The values of the external

variables get updated using the information from the current or previous iterations, depending on

the chosen decoupling WR scheme [68]. As shown in Figure 7.1, once convergence is reached in

one time window the obtained result is then used as a starting point for the successive window. In

Figure 7.1, the continuous lines represent the solutions obtained for each iteration ν while the

dashed lines are the converged solutions; the dot points represent the values at the end of each

time window, taken as initial conditions for the subsequent one.
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Figure 7.1: Space decomposition and iterations over the time windows.

In this work we will limit ourselves to the two most commonly used types of relaxation

schemes: the Gauss-Seidel (GS) WR and the Jacobi WR. When the Gauss-Seidel relaxation

is used, the uncoupled equations are solved sequentially and the waveform solution of one

decomposed subsystem is used immediately as input to update the approximate waveforms of the

other subsystems. The point-wise GS iteration scheme can therefore be expressed as
d̈(ν+1)

i = fi(t,d
(ν+1)
1 , ...,d(ν+1)

i−1 ,d(ν+1)
i ,d(ν)

i+1, ...,d
(ν)
p )

d(ν+1)
i (0) = d0i

ḋ(ν+1)
i (0) = v0i

, (7.2)

where the superscripts ν and ν+1 denote the iteration count and p as before is the number of

unknown variables. Figure 7.2 shows the flow of information if a Gauss-Seidel WR scheme is

used.
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Figure 7.2: Information flow for the Gauss-Seidel WR scheme

Instead, if the Jacobi WR is used, all the uncoupled equations could be solved simul-

taneously using the information on the external variables available from the previous iteration

ν, updated at the beginning of each iteration [68]. The point-wise Jacobi WR scheme can be

mathematically expressed as
d̈(ν+1)

i = fi(t,d
(ν)
1 , ...,d(ν)

i−1,d
(ν+1)
i ,d(ν)

i+1, ...,d
(ν)
p )

d(ν+1)
i (0) = d0i

ḋ(ν+1)
i (0) = v0i

. (7.3)

The flow of information for the Jacobi WR is illustrated in Figure 7.3.

153



Space

Time

Space

Time

Δt

Δt

Iteration 
   ν+1

Iteration 
    ν

di di+1di-1

di di+1di-1

Figure 7.3: Information flow for the Jacobi WR scheme

In addition, a block-wise schemes can also be defined in a similar way by considering

multiple equations for each subsystem. For example, a two block Jacobi scheme can be expressed

as [131] 

d̈(ν+1)
2i−1 = fi(t,d

(ν)
1 , ...,d(ν)

2i−2,d
(ν+1)
2i−1 ,d(ν+1)

2i , ...,d(ν)
p )

d̈(ν+1)
2i = fi(t,d

(ν)
1 , ...,d(ν)

2i−2,d
(ν+1)
2i−1 ,d(ν+1)

2i , ...,d(ν)
p )

d(ν+1)
2i−1 (0) = d02i−1

ḋ(ν+1)
2i−1 (0) = v02i−1

d(ν+1)
2i (0) = d02i

ḋ(ν+1)
2i (0) = v02i

. (7.4)

Both Jacobi and Gauss-Seidel relaxation schemes are carried out until satisfactory conver-

gence is achieved and are started with an initial approximation d(0)(t) defined over the considered
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time interval. For known initial conditions, this initial approximation is usually taken to be

constant over time and equal to the values specified by the initial conditions [131] so that

d(0)
i (t) = d0i, ∀t ∈ [0,T ], i = 1, ..., p. (7.5)

The Jacobi type approach allows more parallelization at the expense of slower convergence rates

with respect to the Gauss-Seidel WR scheme [41].

As mentioned in Chapter 2, the WR method was first developed as a continuous-time

scheme. In practical applications though, the time domain is usually discretized and the differential

equations composing the WR subsystems are solved by using conventional numerical integration

methods [68][131]; in this study the solution is performed by means of a standard Newmark-β

integration scheme, resulting in the proposed WR-Newmark method (WRNβ).

In the system defined by Eq. (7.1), the equation coupling was present through the di

variables while the d̈i terms were already uncoupled. In the remaining of this section we

present the approach of the WR method for linear systems describing damped structural dynamic

problems. General linear structural dynamic problems are governed by a linear second order

hyperbolic system of ODEs, which is written in the well-known standard semi-discrete form as
Md̈+Cḋ+Kd = f

d(0) = d0

ḋ(0) = v0

, (7.6)

where d is the displacement vector, f is the vector of applied forces, M, C and K are respectively

the mass, damping and stiffness matrices, and a dot denotes a time-derivative.

The key idea is to split the mass matrix M into matrices M+ and M−, the damping matrix

into C+ and C− and the stiffness matrix K into K+ and K− so that M=M+−M−, C=C+−C−
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and K = K+−K− and to then consider the following iteration form:


M+d̈(ν+1)+C+ḋ(ν+1)+K+d(ν+1) = M−d̈(ν)+C−ḋ(ν)+K−d(ν)+ f

d(ν+1)(0) = d0

ḋ(ν+1)(0) = v0

. (7.7)

The chosen splitting for the matrices influences the convergence and the computational complexity

of the solution [131]; based on the splittings proposed in the literature for systems of first-order

linear differential equations, we assume M, C and K to be decomposed as L+D+U, where D is a

diagonal matrix (block diagonal if a block-wise partitioning is used) and L and U are respectively

strictly lower and strictly upper triangular matrices [131]. The splitting corresponding to the WR

Jacobi and WR Gauss-Seidel schemes are as follows:

- Jacobi: M+ = DM M− =−(LM +UM)

C+ = DC C− =−(LC +UC)

K+ = DK K− =−(LK +UK)

- Gauss-Seidel: M+ = LM +DM M− =−UM

C+ = LC +DC C− =−UC

K+ = LK +DK K− =−UK

It has to be noted that if lumped mass matrices are considered no splitting of M is required.

Once the desired splitting has been performed, the system in Eq. (7.7) is integrated over the

chosen time interval t ∈ [t0, tn] using the Newmark algorithm. The WR iteration is then terminated

when the error between two successive iterations is smaller than a specified tolerance

max{
∥∥dν+1(t)−dν(t)

∥∥} ≤ ε, (7.8)
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for some small positive positive constant ε. Convergence of the WR method to the free-vibration

displacement of a two mass system is shown in Figure 7.4, for illustration purposes.

The procedure of the WR-Newmark method is summarized in tables corresponding to

algorithms 1 and 2. As for the rest of this paper, bold capital letters indicate matrices while bold

lower case letters indicate vectors. Bold capital letters followed by (t) (as in Xd(t)) indicate a

column in a matrix corresponding to discrete time t. Waveforms are stored in Xd , Xv and Xa,

which denote respectively the space-time displacement, velocity and acceleration matrices. ∆t

is the time integration time step while β and γ are the parameters of the Newmark method. d, v

and a indicate the displacement, velocity and acceleration vectors, respectively. The Splitting

function corresponds to matrix splitting as described earlier in this section. It can be noted that,

if the Jacobi WR scheme is used, the solution step in line 10 of Algorithm 2 does not require

any matrix solve and is thus performed at the cost of an explicit scheme even when the overall

scheme is unconditionally stable (as traditional Newmark implicit schemes).

Lastly, Algorithm 1 and 2 describe the procedure for a chosen time step ∆t. However, in

the WRNβ method each subsystem or groups of subsystems in the WRNβ method can be solved

using a different time step (hence Algorithm 2 would be called separately for each subsystem).

As mentioned in the introduction and in Section ??, though, this requires the introduction of an

interpolatory scheme.

Remark: Note that the WR-Newmark method is well suited for parallel implementation. The

key issues with parallelization correspond to two main aspects: (i) frequency of processors

communication and (ii) solver parallelization algorithms. Below we compare these two aspects

for standard Newmark and WR-Newmark algorithms.

• A standard Newmark method is said to be an inherently sequential algorithm, since commu-

nication between processors must be done after every time step and the algorithm cannot

proceed in time without exchange of information between processors. On the other hand, a

WR-Newmark algorithm is said to be time-parallel, since each subsystem coming from the
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WR assignment-partitioning process can be solved independently on different processors as

it is decoupled from all the other subsystems. Hence, communication between processors

does not need to be performed after each time step. This can speed up the solution and

be especially advantageous when different time steps are used for different subsystems.

However, the optimal time-window size needs to be determined by considering the cost of

each WR iteration versus the cost for processor communication. This corresponds to the

time loop, lines 5-16 in Algorithm 2.

• In case of a standard Newmark method a parallel solver is required to solve the set of

equations at every time step. While the systems that arise in linear structural dynamics are

sparse and symmetric, scalable parallel solvers are needed to solve these systems efficiently.

On the other hand, the WR-Newmark method with Jacobi type splitting does not require

any solvers and the solution of the system is obtained automatically. This corresponds to

the solver phase, line 10 in Algorithm 2.

Algorithm 5 Waveform Relaxation Newmark scheme

1: [K,C,M, f,d0,v0,a0, t0, tn,∆t,β,γ] = setup()
2: FX = [t0, tn,β,γ]
3: Xd ← [d0, ...,dn] . initialize on space-time
4: Xv← [v0, ...,vn]
5: Xa← [a0, ...,an]
6: [M+,M−,C+,C−,K+,K−] = Splitting(M,C,K)
7: S+ = [M+,C+,K+],S− = [M−,C−,K−]
8: while NormE≥ ε do
9: X0

d = Xd
10: X0

v = Xv
11: X0

a = Xa
12: [Xd,Xv,Xa] = NKβ(S+,S−, f,Xd,Xv,Xa,FX,∆t)
13: NormE←max

t
{
∥∥Xd−X0

d

∥∥} . compute residual

14: end while
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Algorithm 6 Newmark method (a-form)

1: function [Xd,Xv,Xa] = NKβ(S+,S−, f,Xd,Xv,Xa,FX,∆t)
2: d← d0 . initial conditions
3: v← v0
4: a← a0
5: for t = t1 : ∆t : tn do
6: d̂ = d+∆tv+ ∆t2

2 (1−2β)a . predictor phase
7: v̂ = v+∆t(1− γ)a
8: fWR = M−Xa(t)+C−Xv(t)+K−Xd(t) . solution phase
9: f̄ = f+ fWR−K+d̂−C+v̂

10: (M++ γ∆tC++β∆t2K+)a = f̄ . solve for a
11: d = d̂+β∆t2a . corrector phase
12: v = v̂+ γ∆ta
13: Xd(t) = d . update waveforms
14: Xv(t) = v
15: Xa(t) = a
16: end for
17: end function

In the following subsection a simple undamped two-mass free-vibration problem is

presented along with the results obtained with the time-continuous WR scheme.

Example problem: Free vibration of spring-mass system with two degrees of freedom

To illustrate the key ideas of the Waveform Relaxation method, we begin by considering

the following system with two discrete masses and springs. The governing system of equations

for this problem is 
m1d̈1 +(k1 + k2)d1− k2d2 = 0

m2d̈2− k2d1 + k2d2 = 0
, (7.9)

with d1(0) = d1,0, d2(0) = d2,0, ḋ1(0) = v1,0 and ḋ2(0) = v2,0. The exact analytical solution to

Eq. (7.9) can be found in Appendix 7-A. Applying the Jacobi and the Gauss-Seidel WR schemes

we obtain the following iterative systems:
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- Jacobi: 
m1d̈(ν+1)

1 +(k1 + k2)d
(ν+1)
1 = k2d(ν)

2

m2d̈(ν+1)
2 + k2d(ν+1)

2 = k2d(ν)
1

(7.10)

- Gauss-Seidel: 
m1d̈(ν+1)

1 +(k1 + k2)d
(ν+1)
1 = k2d(ν)

2

m2d̈(ν+1)
2 + k2d(ν+1)

2 = k2d(ν+1)
1

(7.11)

with the initial conditions 
d(ν+1)

i (0) = d0i

ḋ(ν+1)
i (0) = v0i

.

In this example, the initial waveform corresponding to iteration ν = 0 was taken to be constant

over time and equal to the values specified by the initial conditions. Note that in this illustrative

example the waveform relaxation method is solved analytically with continuous time functions

reported in Appendix 7-B. Figure 7.4a and Figure 7.4b show the first five iterations for the

continuous Gauss-Seidel WR solution and the first ten iterations for the continuous Jacobi WR

solution, respectively, along with the exact analytical solution for the system in Eq. (7.9). It can be

observed that convergence is slower for the Jacobi WR scheme with respect to the Gauss-Seidel

WR. As noted in [52], for systems with strong coupling each iteration lengthens the time for

which the WR solution is close to the exact analytical solution.
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Figure 7.4: Space-time convergence of Gauss-Seidel and Jacobi waveform relaxation method;
the dashed line represents the analytical solutions while the continuous lines represent the WR
solution at each iteration ν.

7.2 Stability and convergence analysis

7.2.1 Stability

The stability of the WR iteration is analyzed following the procedure outlined in [45]

since each iteration employs a Newmark scheme. Let us start by recalling the split matrix system

for the undamped case defined in Eq. (7.7):

M+d̈(ν+1)+K+d(ν+1) = F, (7.12)

where F = M−d̈(ν)
+K−d(ν)+ f.

Next, the system described in Eq. (7.7) is reduced to a single degree of freedom SDOF

form through modal decomposition. To this end, we solve the eigenvalue problem associated with

Eq. (7.12) for the ν+1 iteration. Since the matrices M+ and K+ do not change for the various

iterations, the eigenvalue problem will be the same for every iteration and if one iteration ν+1
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is stable, so will the others. Hence, stability of the method is analyzed for a generic iteration

ν+1 and the associated superscript will be omitted. The eigenvalue problem to be considered is

therefore:

(K+− (ωh+
l )2M+)Ψl = 0, l ∈

{
1,2...,neq

}
, (7.13)

with

0≤ (ωh+
1 )2 ≤ (ωh+

2 )2 ≤ ...≤ (ωh+
neq

)2, (7.14)

where ω
h+
l and neq represent the l-th system natural frequency and the number of system

degrees of freedom, respectively. Note that the eigenvalues and eigenvectors in Eq. (7.13)

are associated with the split WRNβ system and not with the original system, which would be

considered if the Newmark’s method was directly implemented.

In order to analyze the stability of the proposed WR-Newmark method, we follow the

procedure in [45] and rewrite the system as a set of first order ODE system as follows:

yn+1 = Ayn +Ln , y =

d

ḋ

 , (7.15)

where A is the amplification factor, given as

A = A−1
1 A2, (7.16)

Ln = A−1
1


∆t2

2 [(1−2β)Fn +2βFn+1]

∆t[(1− γ)Fn + γFn+1]

 , (7.17)

A1 =

1+∆t2β(ωh+)2 0

(ωh+)2γ∆t 1

 , A2 =

1− ∆t2

2 (ωh+)2(1−2β) ∆t

−∆t(1− γ)(ωh+)2 1

 , (7.18)

where Fn and Fn+1 are the forcing terms of the modal equations defined at time n and n+ 1
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respectively, ∆t is the discretized time step and the parameters β and γ determine accuracy,

stability and type of the Newmark algorithm. In order for A to be spectrally stable the following

conditions are required:

a) ρ(A)≤ 1, where ρ(A) is the spectral radius of A, defined as

ρ(A) = maxi |λi(A)|

b) Eigenvalues of A of multiplicity greater than one are strictly less than one in modulus

The aforementioned conditions on A lead to the same stability conditions as for the standard

Newmark scheme for β, γ and time step ∆t, which are given by [45]:

• Unconditional stability:

2β≥ γ≥ 1
2

• Conditional stability:

γ≥ 1
2 , 2β < γ

2 ; ωh+∆t ≤Ωcrit

where the critical sampling frequency Ωcrit for an undamped system is Ωcrit = ( γ

2 −β)−
1
2 .

Several conclusions can be drawn from this analysis: (i) the stability analysis of WRNβ

approach is similar to that of traditional Newmark scheme but with the natural frequencies

computed using Eq. (7.13) rather than the original mass and stiffness matrices, (ii) the traditional

implicit Newmark method requires the solution of systems of equations while the proposed

implicit WRNβ does not, i.e. it is an implicit method at the cost of an explicit scheme with several

repeated time sweeps (iii) the critical time step in case of traditional conditionally stable Newmark

method is more restrictive than the similar (same β and γ parameters) conditionally stable WRNβ.
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In other words, a standard Newmark method will require smaller time steps than WR-Newmark

to maintain stability. The proof for this last statement follows.

Let us start by considering the eigenvalue problem associated with the use of the traditional

Newmark scheme:

(K−λM)Φ̂ = 0, (7.19)

where λ and Φ̂ are an eigenvalue and an eigenvector of the system.

Recalling the Rayleigh quotient [45], for any arbitrary vector Φ the following inequality

holds
ΦT KΦ

ΦT MΦ
≤ λmax, (7.20)

where λmax is the largest eigenvalue associated with Eq. (7.19). The equality holds true only when

Φ is the eigenvector of Eq. (7.19) associated with the largest eigenvalue.

By considering the Jacobi splitting (M+ = DM, K+ = DK):

ΦT (K++K−)Φ
ΦT (M++M−)Φ

=
ΦT K+Φ+ΦT K−Φ

ΦT M+Φ+ΦT M−Φ
≤ λmax. (7.21)

Now, let us assume an eigenvector of the WR-Jacobi scheme given in Eq. (7.13), Ψ that is

associated with the largest eigenvalue of the system such that

ΨT K+Ψ

ΨT M+Ψ
= λ

+
max, (7.22)
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where λ+
max is the largest eigenvalue. Since M+ and K+ are diagonal matrices, i.e.,

M+ =



m11 0 0 0

0 m22 0 0

0 0 ... 0

0 0 0 mneqnneq


, K+ =



k11 0 0 0

0 k22 0 0

0 0 ... 0

0 0 0 kneqnneq


, (7.23)

Ψ is such that it is only non-zero in the i-th position corresponding to max
i

(
ki
mi

)
. Specifically,

ΨT = [0...1...0], where 1 is in the i-th position, which corresponds to max
i

(
ki
mi

)
= λ+

max. Since

both M− and K− are matrices with zero diagonals,

ΨT K−Ψ = 0, (7.24)

ΨT M−Ψ = 0. (7.25)

Therefore, by choosing Φ = Ψ in Eq. (7.21) we get

ΨT K+Ψ+ΨT K−Ψ

ΨT M+Ψ+ΨT M−Ψ
=

ΨT K+Ψ

ΨT M+Ψ
= λ

+
max ≤ λmax. (7.26)

Furthermore, given that Φ̂ 6= Ψ, the inequality in Eq. (7.26) becomes strict, meaning that

λ
+
max < λmax. (7.27)

Since the largest eigenvalue associated with the WRNβ scheme is smaller than the maximum

eigenvalue associated with the traditional Newmark problem, the critical time step for stability of

the WRNβ method is larger than the one for standard Newmark.

Additionally, if instead of a Jacobi partitioning a Gauss-Seidel one is used, both M+ and

K+ are lower triangular matrices. The largest eigenvalue associated with Eq. (7.13) is still the
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maximum ratio between the diagonal values of K+ and M+. The same discussion and conclusions

therefore hold. Lastly, it can be noted that the derivation above provides an inequality between

the maximum eigenvalue and the largest diagonal element of any matrix that can be expressed as

(M+)
−1K , with M+ being diagonal with positive diagonal entries.

7.2.2 Convergence

Next, we analyze the convergence of the WR-Newmark method by considering a fixed-

point in time with successive iterations ν, assuming a stable method for time integration is chosen,

as discussed in the previous section. Consider the semi-discrete dynamic equation at some time

n+1, neglecting the damping of the system :

Md̈n+1 +Kdn+1 = fn+1. (7.28)

Application of the WR splitting leads to

(M+−M−)d̈n+1 +(K+−K−)dn+1 = fn+1, (7.29)

and by rewriting as an iterative scheme, one gets

M+d̈ν+1
n+1 +K+dν+1

n+1 = fn+1 +M−d̈ν
n+1 +K−dν

n+1. (7.30)

Considering the Newmark’s predictor-corrector scheme, the predictor phase is

d̂ν+1
n+1 = dν+1

n +∆tḋν+1
n +

∆t2

2
(1−2β)d̈ν+1

n , (7.31)

v̂ν+1
n+1 = ḋν+1

n +∆t(1− γ)d̈ν+1
n , (7.32)
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the solution phase becomes

(M++β∆t2K+)d̈ν+1
n+1 = fn+1 +K−dν

n+1 +M−d̈ν
n+1−K+d̂ν+1

n+1, (7.33)

and the corrector phase updated from the previous iteration ν is

dν
n+1 = d̂ν

n+1 +β∆t2d̈ν
n+1, (7.34)

leading to

(M++β∆t2K+)d̈ν+1
n+1 = fn+1 +(M−+β∆t2K−)d̈ν

n+1 +K−d̂ν
n+1−K+d̂ν+1

n+1. (7.35)

Since we are considering the convergence of the displacement iteration at time n+1 between

successive iterations ν and ν+1 we rewrite Eq. (7.33) as

Pdν+1 = Qdν + f̃, (7.36)

where the subscript (n+1) has been dropped and where P = M++β∆t2K+, Q = M−+β∆t2K−

and f̃ = f+K−d̂ν−K+d̂ν+1, which leads to

d̈ν+1 = P−1Qd̈ν +P−1f̃. (7.37)

Eq. (7.36) can further be rewritten in the following form:

d̈ν+1 = [I−P−1(P−Q)]d̈ν +P−1f̃, (7.38)
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that leads to

d̈ν+1 = d̈ν +P−1[f̃− (P−Q)dν], (7.39)

d̈ν+1 = d̈ν +P−1rν, (7.40)

where rν = f̃− (P−Q)d̈ν is the residual at ν with respect to the system described by Eq. (7.36)

at the considered time n+ 1. By denoting with d̈∗ the exact solution to Eq. (7.33), we define

eν+1 = d̈ν+1− d̈∗ as the error at ν+1 at time n+1; Rewriting Eq. (7.40) in terms of the errors,

one gets

eν+1 = eν +P−1rν, (7.41)

eν+1 = eν +P−1[−(P−Q)eν], (7.42)

eν+1 = [I−P−1(P−Q)]eν, (7.43)

eν+1 = P−1Qeν = Reν, (7.44)

where R = P−1Q is the error propagation matrix, which relates the errors in two successive

iteration steps and therefore relates the error at every iteration ν+1 to the initial one: eν+1 =

Rν+1e0. Iteration (7.36) converges to the true solution if limν→∞ eν+1 = 0. The error converges

to zero and therefore (7.36) converges to the true solution if and only if all the eigenvalues of R

have magnitudes less than unity [68]:

ρ(R)< 1, (7.45)

ρ(P−1Q)< 1, (7.46)

ρ[(M++β∆t2K+)
−1(M−+β∆t2K−)]< 1. (7.47)

Furthermore, if matrix P−Q is diagonally dominant, then the convergence condition will be

satisfied [68]. As presented in Section 7.1, depending on the type of chosen WR iteration scheme,
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different splittings will be performed, resulting in different error propagation matrices R. The

above derivation is for the a-form of the WR-Newmark method; a similar derivation for the

d-form is presented in Appendix 7-C.

7.3 Numerical results

In this section we analyze the performance of the WR-Newmark method on free vibration

problems considering the effect of number of degrees of freedom, time integration window

and splitting schemes. Four example problems are considered: a two mass-spring system both

undamped and damped, a nonlocal one-dimensional wave propagation, and a two dimensional

plate subjected to a prescribed initial displacement. In order to show the effectiveness of the

proposed algorithm for different structures of mass and stiffness matrices, this last problem is

solved not only using an RKPM meshfree method but also a finite element discretization. To

assess the accuracy of the algorithm we track the displacements of the nodal points over time and

compare them with the analytical solution in the two mass-spring system and with those obtained

through the use of the traditional Newmark method for the 2D plate problems. The parameters

β = 1
4 and γ = 1

2 are used for the time integration and a tolerance ε = 10−14 is used as the iteration

convergence criterion.

7.3.1 Free vibration of a two mass-spring system

In this section we consider the free vibration of a two-mass-dashpot-spring system.

We begin by the numerical solution of the free vibration of the undamped case that was pre-

sented as a model problem in subsection 7.1, for which the analytical solution is known. To

assess the accuracy of the WRNβ, Jacobi, and Gauss-Seidel algorithms we track the displace-

ment/velocity/acceleration of mass m2 over time and compare it with its analytical solution and

the traditional Newmark method, as shown in Figure 7.5. The mass matrix M for this problem is
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diagonal as in the case of lumped mass matrices and C = 0.

An initial displacement d0(t) = (6,12)T [m] was imposed and the ratios between k1 and k2 and m1

and m2 were taken respectively as k1
k2
= 1 and m1

m2
= 2 with chosen values: k2 =

1
6 [

N
m ], m2 = 3[kg].

A time step size of ∆t = 0.01[s] is taken for all integration schemes.

Absolute errors in the displacement, velocity and accelerations solutions of the considered

numerical schemes are also reported in Figure 7.5. It can be seen that the error remains quite

small on the order of 10−5 but increases with the simulation time.
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Figure 7.5: Undamped two-mass system dynamic results reported for the m2 degree of freedom.
(Left) Comparison of displacement/velocity/acceleration, ∆t = 0.01[s]; and (right) corresponding
absolute error.
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Figure 7.6 shows the L∞ norm of the errors for the different considered schemes for

various values of ∆t; a convergence rate of 2 with respect to the time step size is observed for all

methods.
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Figure 7.6: L∞ norm of the error for different values of ∆t. The continuous lines represent the
error in the displacement solution while the dashed and dotted ones represent the error in the
velocity and acceleration, respectively.

Inspection of Figure 7.5 and Figure 7.6 shows that, as expected, the presented WR-

Newmark algorithm is comparable to the traditional Newmark method and converges to the exact

solution. Note that the rate of convergence for all methods/fields is 2.

Table 7.1 shows the spectral radii of the error propagation matrix R for the numerical

schemes used. It can be noted that the spectral radius of R for the Gauss-Seidel-WRNβ is lower

with respect to the Jacobi-WRNβ, indicating a higher convergence rate of the former. This

is confirmed by the number of iterations needed for convergence for the two methods for the
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chosen ∆t = 0.01[s], reported in the same table. The maximum natural frequency for each of the

considered methods is also reported in the Table. It can be seen that the frequency of the standard

Newmark method is greater than those of the WR systems.

Table 7.1: Spectral radii of the error propagation matrix R and number of iterations for for Jacobi
WRNβ and Gauss-Seidel WRNβ and maximum natural frequency for the different methods.
∆t = 0.01[s].

Method ρ(R) Number of iterations ωh
max[Hz]

standard Newmark - - 0.31

Jacobi WR 0.9820×10−6 35 0.24

Gauss-Seidel WR 0.9645×10−12 18 0.24

In order to demonstrate the applicability of the proposed method to damped systems, a

case with C 6= 0 is also considered. As for the undamped example, the accuracy of the proposed

algorithm is assessed through comparison of the numerically obtained displacement of mass m2

and its analytical solution. An initial displacement d0(t) = (1,2)T [m] was imposed and the ratios

between k1 and k2 and m1 and m2 were taken respectively as k1
k2

= 2 and m1
m2

= 2 with chosen

values: k2 = 3[N
m ], m2 = 1[kg]. The damping matrix was taken as

C =

 0.2 −0.1

−0.1 0.1

[Ns
m

]

The displacement solutions and absolute errors obtained by using the WR-Newmark algorithm

with Jacobi and Gauss-Seidel splittings with a time step ∆t = 0.01[s] are presented in Figure 7.7

together with the traditional Newmark solution and the analytical solution; We note that even for

damped systems, the results of the proposed WRNβ method are comparable with those obtained

from the traditional Newmark scheme.
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Figure 7.7: Damped two-mass system dynamic results reported for the m2 degree of freedom.
(Left) Comparison of displacement; and (right) corresponding absolute error.

Finally, we study the optimal window size in terms of computational cost for all WRNβ

methods. That is, convergence is achieved in each time window before moving on to the next

one. In order to find the optimal time window size, the CPU time necessary to solve the

monodimensional two mass problem with the Jacobi and Gauss-Seidel WR-Newmark methods is

studied with increasing time window sizes. A time step ∆t = 0.01[s] and an overall time domain

of 120[s] are used. The obtained results shown in Table 7.2 suggest that a single time step is the

least computationally expensive time-window for WR methods. Hence in subsequent examples

we employ a single time step as our choice for time window length.

Table 7.2: CPU time for different time windows dimensions.

Time Window WR Jacobi CPU [s] WR Gauss-Seidel CPU [s]
1∆t 0.0008 0.0008

10∆t 0.0012 0.0012
50∆t 0.021 0.023

100∆t 0.038 0.04
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7.3.2 One-dimensional dynamic linear nonlocal problem

xL xR

Figure 7.8: 1D domain Ω := Ω∪BΩ.

In order to show the applicability of the proposed WRNβ to nonlocal problems, we

consider the problem of the relaxation of an initially deformed infinite bar composed of a linear

microelastic material presented in [90]. For x ∈ R, t ∈ [0,T ], the associated initial value problem

is 
ρ0ü(x, t) =

∫
∞

−∞
C(x′− x)(u(x′, t)−u(x, t))dx′+b(x, t)

u(x,0) = u0(x)

u̇(x,0) = v0(x)

, (7.48)

where b(x, t) is the externally applied force density, C(x′− x) is the material micromodulus

function, and u0(x) and v0(x) are the initial displacement and velocity, respectively. The chosen

initial conditions are

u0(x) =Ue−(
x
L)

2

, v0(x) = 0, (7.49)

while the micromodulus function C(x′− x) is taken to be the following Gaussian function:

C(x′− x) =
4E

l3
√

π
e−
(

x′−x
l

)2

, (7.50)

where E is the Young’s modulus of the material in classical linear elasticity, l is a material

length-scale parameter that captures the effect of long-range forces, L is a length-scale associated

with the initial conditions and λ = l/L.
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For b(x, t) = 0, the exact solution for the problem in Eq. (7.48) is [90]:

u(x, t) =U
∞

∑
j=0

(−4) j

(2 j)!

 j

∑
m=0

(−1)m
(

j
m

)
e−

(x/L)2

1+mλ2

√
1+mλ2

(tc0

Lλ

)2 j
. (7.51)

In order to solve the problem in Eq. (7.48) numerically, its infinite domain has to be

reduced to a finite size. First, it can be noted that, for given data, one can identify a finite distance

δ such that

C(x′− x)< 10−16, for |x′− x| ≥ δ, (7.52)

meaning that the micromodulus function can be considered to be zero for distances larger than

δ. Furthermore, given the nature of the problem and the considered initial conditions, the initial

deformation will propagate only for a finite length during [0,T ]. Hence, we consider a finite

domain composed of an internal domain Ω = [xL,xR] and a boundary layer BΩ = [xL−δ,xR+δ]

(see Figure ), such that for the chosen data,

u(x, t) = 0≈ u0(x), ∀(x, t) ∈BΩ× [0,T ]. (7.53)

For our parameters we choose T = 3 [s], λ = 0.75, E = 1, L = 1, U = 1, xL = −15, xR = 15,

and δ = 5. For time integration a time step ∆t = 0.005 [s] was used. The problem is solved by

means of an RKPM meshfree approach. The one-dimensional bar was discretized with 1000

nodes and a first order basis, a cubic B-spline kernel and a normalized support size of 1.001 were

used. Domain integration was performed by a background mesh with 8 Gauss integration points

between every two adjacent nodes. In this work, the transformation method was applied [56][29]

and boundary conditions were imposed strongly by collocation.
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Figure 7.9: Nonlocal 1D dynamic problem spatially discretized with RKPM: comparison
between Newmark and Jacobi WRNβ method. (Left) Comparison of displacement; and (right)
corresponding absolute error.

The displacement solution and absolute error obtained by using the WR-Newmark al-

gorithm with Jacobi splitting is presented in Figure 7.9 together with the traditional Newmark

solution and the analytical solution. As it can be observed, also for semi-discrete systems arising

from meshfree discretizations of nonlocal problems, the proposed WRNβ method are comparable

with those obtained from the traditional Newmark scheme.

7.3.3 Two-dimensional plate

This example considers the free vibration of a two-dimensional plate subjected to an

initial horizontal displacement. Herein the motion is described by Eq. (7.6) without damping,

i.e. C = 0. The problem is solved by means of two different discretization methods: an RKPM

meshfree discretization and a a standard finite element discretization. The plate has a total length

of L = 4[m] and a height of H = 1.25[m]. Initial horizontal displacement with value equal to three

times the nodal abscissa coordinate is applied and then immediately released. A fixed boundary

displacement condition is present at the leading edge of the plate. Its Young’s modulus, density
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and Poisson’s ratio have been chosen to be respectively: E = 1[ N
m2 ], ρ = 1[ kg

m2 ] and ν = 0.3. Plane

stress conditions are considered. Because of the complexity of the problem, an analytical solution

is not available; therefore the solution obtained with the Newmark’s method, using a refined time

step (∆t = 0.0001[s]) with respect to the one utilized for the WRNβ schemes (∆t = 0.01[s]), is

taken as the reference solution.

RKPM meshfree solution

In this subsection, We repeat the same problem using the RKPM meshfree method. As

discussed in Chapter 3, different from finite elements, where the shape functions and the related

approximation space are strictly linked to element connectivity, in RKPM the approximate

solutions are constructed over a node-based meshfree discretization of the considered domain

[56][138] (Figure 7.10), hence the system is denser and not compactly supported.

   x

   y

Δd

Figure 7.10: Two dimensional plate discretized with discrete points

To assess the accuracy of the WRNβ method, the plate was discretized with 54 nodes

and a second order basis, a cubic B-spline kernel and a normalized support size of 2.001 in both

directions were used. Domain integration was performed by a background mesh with 2x2 Gauss

integration over each nodal integration cell. In this work, boundary conditions were imposed

through a penalty approach. Figure 7.11(a) shows the horizontal displacement of the free-end

midpoint tip computed with the traditional implicit Newmark method and with the point-wise

Jacobi and Gauss-Seidel WR-Newmark algorithms, while the corresponding errors of the WRNβ
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schemes are presented in Figure 7.11(b). The L2 norm values of the absolute error accumulated

over time are equal to 0.5651 for all the different considered methods, meaning that the obtained

results are comparable.

It has to be noted that the RKPM method recovers the solution and accuracy of a linear

finite element solution as the support size approaches 1 if a tent function is chosen as kernel.

Given the nonlocal characteristic of the Meshfree approximation, different partitioning choices

and integration schemes specifically designed for an RKPM approximation [59][74] might be

more appropriate; however, the aim of this example is to show the flexibility of the proposed

scheme and its possibility of being applied to systems coming from both Meshfree discretizations

and the Finite Element.

(a) Horizontal displacement (b) Absolute error

Figure 7.11: RKPM meshfree solution; (a) Horizontal displacement of the tip central point over
time for the WRNβ methods, and (b) the error compared with a refined Newmark method

The effectiveness of the proposed WRNβ algorithms is shown in Figure 7.12 where the

required CPU time for an increasing number of nodes and a time window of one time step was

compared to the one required by the traditional Newmark’s method. The presented results were

obtained for a serial implementation in MATLAB on a macOS machine with a single double-core

processor (3.1 GHz Intel Core i7). An LU decomposition was used for the solution step of the
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standard Newmark method. One can clearly see a trend reversal in terms of CPU time required

to solve the problem. Initially, for a small number of nodes, the standard Newmark method

performs well and requires the minimum time. However, as the number of nodes increases, the

trend is reversed and all WRNβ methods outperform the standard Newmark method, confirming

the effectiveness of the Waveform Relaxation Newmark algorithm as a new class of more efficient

time integrators.

The main reason is due to the matrix solve time in the Newmark method which increases

dramatically with the size of the system, while in the WR Jacobi method there is no need to solve

any system (each relaxation iteration is an explicit Newmark scheme) and the WR Gauss-Seidel

method requires only to solve forward substitutions. Therefore even if the solution has to be

computed as many times as required to obtain convergence of the iterations, its cost is still lower

than the one to invert the original dense matrix for complex problems.
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Figure 7.12: CPU time vs number of nodes. Newmark and WRNβ methods. Notice that as the
system increases, WRNβ methods converge faster than the Newmark method.
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Finite element solution

In this subsection, we repeat the same problem using a finite element discretization (see

Figure 7.13).

   x

   y

Δd

   8x8 d.o.f.s block

   2x2 d.o.f.s block

Figure 7.13: Two dimensional plate discretized with finite elements. The nodes on the edge at
x = 0 are fixed. The degrees of freedom associated with 2x2 and 8x8 partitioning block sizes
are shown.

M and K are therefore obtained by assembling the mass and stiffness matrices, mel and

kel, respectively, of the bilinear quad elements used for the discretization. The element node

numbering has been chosen so as to obtain a largely sparse coefficient matrix. The problem is

solved by employing point-wise Jacobi, point-wise Gauss-Seidel and block Jacobi Waveform

Relaxation Newmark algorithms. Unless otherwise specified, a point-wise scheme is inferred. In

addition, we also consider a block Jacobi WRNβ scheme with blocks containing two and eight

degrees of freedom; these, as shown in Figure 7.13, refer to the degrees of freedom associated

respectively with single nodes and individual elements.

Figure 7.14(a) shows the displacement of the free-end tip midpoint computed with the

standard implicit Newmark method and with the WR-Newmark algorithms for 40 elements, while

the corresponding error of the WRNβ schemes is presented in Figure 7.14(b). We note that for all

the considered methods the L2 norm of the absolute error is equal to 0.1743. The absolute errors

were computed by comparing the solutions of the different methods to the reference solution over

the total time domain. It can be observed that all the WRNβ methods attain the same solution
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accuracy of the standard Newmark scheme. The maximum natural frequencies for the traditional

system used in the Newmark method and for the point-wise Jacobi and Gauss-Seidel ones are

presented in Table 7.3. The frequency of the traditional system is greater than those of the

partitioned systems.

(a) Horizontal displacement (b) Absolute error

Figure 7.14: Finite Element solution; (a) Horizontal displacement of the tip central point over
time for the WRNβ methods, and (b) the error compared with a refined Newmark method.

Table 7.3: Maximum natural frequency for different methods.

Partitioning scheme ωh
max[Hz]

standard Newmark 8.36

Jacobi 5.05

Gauss-Seidel 5.05

Figure 7.15 presents the eigenvalues of the error propagation matrix R for the point-wise

Jacobi-WRNβ and the point-wise Gauss-Seidel-WRNβ methods for the considered 40 element

discretization. Note that the eigenvalues are all within the unit circle and that the Gauss-Seidel-

WRNβ eigenvalues are more clustered and closer to zero than the Jacobi ones, which indicates
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faster convergence of the Gauss-Seidel iterative scheme. Furthermore, Table 7.4 shows the

number of iterations and the spectral radius of the error propagation matrix R of the point-wise

Jacobi and point-wise Gauss-Seidel numerical schemes for different number of elements. The

results show that there is almost no change in their spectral radius, and therefore no change in the

convergence behaviour in terms of WR iterations, with increase of system size.
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Figure 7.15: Eigenvalues of the error propagation matrix R for the 2D plate problem.

Finally, we study the computational efficiency of the proposed WRNβ algorithms in the

solution of system of linear second order hyperbolic differential equations for an increasing

number of elements as compared with the traditional Newmark’s method. Figure 7.16 shows

the cpu timings for a time window of one time step. The presented results were obtained for a

serial implementation in MATLAB on a macOS machine with a single double-core processor
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Table 7.4: spectral radii of R and number of iterations for increasing number of elements.

- ρ(R) number of iterations
number of elements Jacobi GS Jacobi GS

500 0.5158 0.1223 11 7
1000 0.5310 0.1267 11 7
1500 0.5338 0.1275 11 7
2000 0.5347 0.1277 11 7
2500 0.5350 0.1278 11 7

(3.1 GHz Intel Core i7). An LU decomposition was used for the solution step of the standard

Newmark method. Similar to the RKPM results, a clear trend reversal is also observed in the

Finite Element time integration, with the WRNβ outperforming the traditional Newmark method

as the size of the system increases. This, together with the previous example, confirms that the

Waveform Relaxation Newmark algorithm is effective for different structures of the mass and

stiffness matrices, regardless whether they arise from a meshfree or a finite element discretization.
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Figure 7.16: CPU time vs number of elements. Newmark and point-wise WRNβ methods.
Notice that as the system increases, WRNβ methods converge faster than the Newmark method.
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7.4 Appendix 7-A

The exact analytical solution to (7.9) can be expressed as:

d1(t) = X̂11[g10 cos(ω1t)+
˙g10

ω1
sin(ω1t)]+ X̂12[g20 cos(ω2t)+

˙g20

ω2
sin(ω2t)]

d2(t) = X̂21[g10 cos(ω1t)+
˙g10

ω1
sin(ω1t)]+ X̂22[g20 cos(ω2t)+

˙g20

ω2
sin(ω2t)]

Where the analytical expressions for X̂11, X̂12, X̂21, X̂22,g10, ˙g10,g20, ˙g20,ω1 and ω2 are as follows:

X̂11 =
k1m1− k1m2− k2m2 + â

2k2m1

√
m2 +

(k1m1−k1m2−k2m2+â)2

4k2
2m1

X̂12 =
k1m1− k1m2− k2m2− â

2k2m1

√
m2 +

(−k1m1+k1m2+k2m2+â)2

4k2
2m1

X̂21 =
1√

m2 +
(k1m1−k1m2−k2m2+â)2

4k2
2m1

X̂22 =
1√

m2 +
(−k1m1+k1m2+k2m2+â)2

4k2
2m1

g10 =
d1,0â+d1,0k1m1−d1,0k1m2−d1,0k2m2 +2d2,0k2m2

2k2

√
m2 +

(k1m1−k1m2−k2m2+â)2

4k2
2m1

g20 =
−d1,0â+d1,0k1m1−d1,0k1m2−d1,0k2m2 +2d2,0k2m2

2k2

√
m2 +

(−k1m1+k1m2+k2m2+â)2

4k2
2m1
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˙g10 =
v1,0â+ v1,0k1m1− v1,0k1m2− v1,0k2m2 +2v2,0k2m2

2k2

√
m2 +

(k1m1−k1m2−k2m2+â)2

4k2
2m1

˙g20 =
−v1,0â+ v1,0k1m1− v1,0k1m2− v1,0k2m2 +2v2,0k2m2

2k2

√
m2 +

(−k1m1+k1m2+k2m2+â)2

4k2
2m1

ω1 =

√
k1m1 + k1m2 + k2m2− â

2m1m2

ω2 =

√
k1m1 + k1m2 + k2m2 + â

2m1m2

where

â =
√

k2
1m2

1−2k2
1m1m2 + k2

1m2
2−2k1k2m1m2 +2k1k2m2

2 +4k2
2m1m2 + k2

2m2
2

The results shown in Figure 7.4a and Figure 7.4b were obtained for m1 = 6[kg], m2 = 3[kg],

k1 =
1
6 [

N
m ], k2 =

1
6 [

N
m ], d1,0 = 6[m], d2,0 = 12[m], v1,0 = 0[m

s ] and v2,0 = 0[m
s ].
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7.5 Appendix 7-B

Initialization ν=0:

d(0)
1 (t) = 6

d(0)
2 (t) = 12

Jacobi WR:

• Iteration ν=1:
6d̈(1)

1 (t)+
1
3

d(1)
1 (t) = 2

3d̈(1)
2 (t)+

1
6

d(1)
2 (t) = 1

Solution:
d(1)

1 (t) = 6

d(1)
2 (t) = 6[1+ cos(

t
3
√

2
)]

• Iteration ν=2:


6d̈(2)

1 (t)+
1
3

d(2)
1 (t) = 1+ cos(

t
3
√

2
)

3d̈(2)
2 (t)+

1
6

d(2)
2 (t) = 1

188



Solution:
d(2)

1 (t) = 3+3cos(
t

3
√

2
)+

t
2
√

2
sin(

t
3
√

2
)

d(2)
2 (t) = 6[1+ cos(

t
3
√

2
)]

• Iteration ν=3:


6d̈(3)

1 (t)+
1
3

d(2)
3 (t) = 1+ cos(

t
3
√

2
)

3d̈(3)
2 (t)+

1
6

d(2)
3 (t) =

1
2
+

1
2

cos(
t

3
√

2
)+

t
12
√

2
sin(

t
3
√

2
)

Solution:
d(3)

1 (t) = 3+3cos(
t

3
√

2
)+

t
2
√

2
sin(

t
3
√

2
)

d(3)
2 (t) = 3+(9− t2

48
)cos(

t
3
√

2
)+

5t
8
√

2
sin(

t
3
√

2
)

• ...

Gauss-Seidel WR:

• Iteration ν=1:
6d̈(1)

1 (t)+
1
3

d(1)
1 (t) = 2

3d̈(1)
2 (t)+

1
6

d(1)
2 (t) = 1
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Solution:
d(1)

1 (t) = 6

d(1)
2 (t) = 6[1+ cos(

t
3
√

2
)]

• Iteration ν=2:


6d̈(2)

1 (t)+
1
3

d(2)
1 (t) = 1+ cos(

t
3
√

2
)

3d̈(2)
2 (t)+

1
6

d(2)
2 (t) =

1
2
+

1
2

cos(
t

3
√

2
)+

t
12
√

2
sin(

t
3
√

2
)

Solution:
d(2)

1 (t) = 3+3cos(
t

3
√

2
)+

t
2
√

2
sin(

t
3
√

2
)

d(2)
2 (t) = 3+(9− t2

48
)cos(

t
3
√

2
)+

5t
8
√

2
sin(

t
3
√

2
)

• Iteration ν=3:



6d̈(3)
1 (t)+

1
3

d(2)
3 (t) =

1
6
[3+(9− t2

48
)cos(

t
3
√

2
)+

5t
8
√

2
sin(

t
3
√

2
)]

3d̈(3)
2 (t)+

1
6

d(2)
3 (t) =

1
6
[
3
2
− 1

64
(−288+ t2)cos(

t
3
√

2
)+

−
√

2t
3456

(−1458+ t2)sin(
t

3
√

2
)]
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Solution:

d(3)
1 (t) =

3
2
− 1

64
(−288+ t2)cos(

t
3
√

2
)−
√

2t
3456

(−1458+ t2)sin(
t

3
√

2
)

d(3)
2 (t) =

3
2
+

1
82944

(870912−3294t2 + t4)cos(
t

3
√

2
)+

+

√
2t

13824
(6831−7t2)sin(

t
3
√

2
)

• ...
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7.6 Appendix 7-C

Md̈n+1 +Kdn+1 = fn+1

(M+−M−)d̈n+1 +(K+−K−)dn+1 = fn+1

M+d̈ν+1
n+1 +K+dν+1

n+1 = fn+1 +M−d̈ν
n+1 +K−dν

n+1

Now considering the Newmark’s scheme with ∆t 6= 0 and predictor:

âν+1
n+1 =

1
β∆t2 dν+1

n +
1

β∆t
ḋν+1

n +(
1

2β
−1)d̈ν+1

n

The solution phase then becomes:

(
M+

β∆t2 +K+)dν+1
n+1 = fn+1 +K−dν

n+1 +M−d̈ν
n+1−M+âν+1

n+1

From the corrector step coming from the previous iteration ν, d̈ν
n+1 =

1
β∆t2 dν

n+1− âν
n+1, leading

to:

(
M+

β∆t2 +K+)dν+1
n+1 = fn+1 +(K−+

M−
β∆t2 )d

ν
n+1−M−âν

n+1−M+âν+1
n+1

Rewrite as:

Pdν+1 = Qdν + f̃

where the subscript (n+ 1) has been dropped and where P = M+

β∆t2 +K+, Q = K−+ M−
β∆t2 and

f̃ = f−M−âν−M+âν+1, which leads to

dν+1 = P−1Qdν +P−1f̃
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The relationship between the error of two successive iterations can be written as:

eν+1 = P−1Qeν = Reν

where R = P−1Q is the error propagation matrix. For convergence:

ρ(R)< 1

ρ(P−1Q)< 1

ρ[(
M+

β∆t2 +K+)
−1(K−+

M−
β∆t2 )]< 1

ρ[(M++β∆t2K+)
−1(M−+β∆t2K−)]< 1
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Chapter 8

Conclusions
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8.1 Conclusions

Meshfree discretizations of local and nonlocal mechanics (e.g., peridynamics) have been

shown to be effective for problems involving large deformations, crack propagations or material

fragmentation. However, achieving good accuracy while keeping a low computational cost in

such numerical simulations can be difficult.

To this end, for local problems, a Lagrangian/semi-Lagrangian reproducing kernel cou-

pling approach was developed in a meshfree framework by blending the shape functions and

shape function gradients of the Lagrangian RK and semi-Lagrangian RK approximations. This

method allows for the use of semi-Lagrangian RK approximation only in those portions of the

domain where it is required by the nature of the deformation, i.e. the deformation gradient is no

longer invertible and the Lagrangian RK formulation breaks down. In this way, large deformation

and fragmentation problems can be solved at a reduced computational cost with respect to full

semi-Lagrangian simulations. The continuity and stability of the proposed coupling approach

were analysed and its ability to save computational run-time compared to full semi-Lagrangian

simulations was demonstrated through a suite of numerical examples.

For nonlocal problems, we proposed an RK enhanced approach for strong form peri-

dynamics. The introduction of RK shape functions in the solution approximation allows for

arbitrary smoothness and completeness of the approximation. This allowed for the achievement

of higher convergence rates with respect to the commonly used node-based approach, which

is based on a piecewise-constant approximation of numerical solutions is characterized by a

convergence rate limited to first order. Another key element in achieving higher convergence rates

was the integration scheme. Inaccurate integration can lead to oscillatory convergence behavior.

To mitigate this behavior, a Gauss integration scheme that positioned Gauss integration points

into a Cartesian background grid was considered. The ability of the RK enhanced peridynamic

approach to achieve high-order convergence was demonstrated through the solution of 1D and
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2D bond-based static linear peridynamic problems characterized by quadratic, cubic (1D and 2D),

and exponential (1D) displacement fields. A preliminary study for problems involving cracks was

also performed.

Also, for the variational form of peridynamics n-th order integration constraints were

identified. This was achieved by first considering an arbitrary order polynomial solution field

and associated body force and boundary conditions. The RK approximation (which can be

easily built to be n-th order complete) was then employed for the trial and test functions. By

introducing numerical integration in the weak form, we obtained the conditions (i.e., integration

constraints) that the discrete variational form of peridynamics needs to satisfy in order to be

n-th order variationally consistent. This lead to the construction of a high-order symmetrical

nodal quadrature scheme, with the goal of reducing the costs associated with the integration

procedure required for the solution of variational form peridynamic problems. To this end, we

first considered a nodal discretization of the peridynamic weak form, which turned the double

integration present in the variational equation into a double-sum. However, instead of considering

each integration weight for each node separately, we considered a single integration weight for

each couple of nodes present in the double summation, so to retain their symmetry of interaction

at the discrete level. Following an idea similar to the one employed to construct the RK shape

functions, we then proceeded to define these integration weights as the combination of a chosen

basis and a set of unknown coefficients to be determined through the imposition of the n-th

order integration constraints. As long as the resulting system can be solved and the unknown

coefficients determined, the resulting integration weights will be symmetrical and satisfy n-th

order variational consistency. This was verified through the solution a one-dimensional variational

form static peridynamic example, discretized using both a uniform and non-uniform meshfree

grid.

Finally, to further reduce the overall computational cost, a Waveform Relaxation Newmark

algorithm for the solution of linear structural dynamics hyperbolic systems was developed
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by pairing the implicit form of the Newmark’s method and the iterative waveform relaxation

schemes. This method has several notable features as compared with traditional Newmark

methods: it requires iterations in the time domain, however, the convergence can be obtained

quickly depending on the integration time window size, it retains unconditional stability but

requires significantly lower computational costs which is emphasized for larger problem sizes,

it is unstructured in time domain and well suited for time parallelization compared with the

inherently sequential Newmark method.

8.2 Recommendations for future work

The work presented in this dissertation, in the author’s opinion, shows some potential for

further investigations. Some suggested directions for future research are the following:

1) For the proposed blended Lagrangian/semi-Lagrangian RK approach:

• Investigation of the effect of different ramping functions (for example smoother ones) from

the linear one here employed.

• Study of the completeness of the blended approach in the current configuration.

• Numerical verification of the theoretical time stability analysis presented in this work.

• Incorporation of other integration schemes, such as the variationally consistent integration

(VCI) and the naturally stabilized nodal integration (NSNI) in the blended approach.

2) For the proposed RK Enhanced Peridynamic approach:

• Further investigation of the proposed RK Enhanced Peridynamic approach to problems

involving dynamics, cracks and discontinuities. Though here a preliminary study using

Lagrangian RK shape functions was conducted using nodal integration, the effect of employ-

ing higher order quadrature in conjunction with RK for these problems is still to be studied.
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Furthermore, the use of Lagrangian RK shape functions can lead to interaction between

particles that have had their bond broken due to the reconstruction of the displacement

field. The use of a reconstructed approximation (i.e., of semi-Lagrangian RK) could be

investigated and maybe used in conjunction with the blended Lagrangian/semi-Lagrangian

approach, in order to reduce computational cost.

• Study of the effect of field approximation for problems involving cracks. When a field

approximation or interpolation is used, the displacement at a point near the boundary of a

neighbourhood can happen to be evaluated using information from outside the neighbour-

hood itself: this effectively increases the size of the nonlocal interaction. While this was

shown not to majorly affect convergence behaviour for smooth problems by means of study-

ing the effect of changing the RK approximation support size, this could be investigated

also for problems involving discontinuities.

• Extension of the work to nonlinear problems.

3) For the variationally consistent integration in weak form peridynamics:

• Test the proposed approach in higher dimensions.

• Develop and implement a Nitsche’s approach for the nonlocal peridynamic equation so

to impose Dirichlet’s boundary conditions without zeroing out the test functions on the

Dirichlet’s boundary.

• Check the performance of the proposed approach in improving convergence behaviour

of peridynamic meshfree numerical solutions. This could be achieved by looking at the

resulting convergence rates for problems with non-polynomial solutions.

• Compare the integration weights obtained through the proposed variationally consistent

integration with those obtained with other quadrature rules, to see if any similarities are

present.
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4) For the waveform relaxation Newmark method:

• Application of the scheme to general nonlinear structural problems

• Implement the method in parallel.

• Study optimal splitting schemes for denser systems like the one coming from RKPM and

Isogeometric discretizations.
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