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Measurements of the intrinsic emittance and transverse momentum distributions ob-

tained from a metal (antimony thin film) photocathode near and below the photoe-

mission threshold are presented. Measurements show that the intrinsic emittance

is limited by the lattice temperature of the cathode as the incident photon energy

approaches the photoemission threshold. A theoretical model to calculate the trans-

verse momentum distributions near this photoemission threshold is presented. An

excellent match between the experimental measurements and the theoretical calcu-

lations is demonstrated. These measurements are relevant to low emittance electron

sources for Free Electron Lasers and Ultrafast Electron Diffraction experiments.
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Photoinjectors are the preferred sources of electrons for most 4th generation light sources

such as energy recovery lincas and free electron lasers, and for ultra-fast electron diffraction

(UED) setups1–4. The performance of these applications depends on the emittance of the

electron beam delivered by the photoinjector. Smaller emittance results in brighter electron

beams for light sources1,2 and longer transverse coherence lengths for UED applications3,4.

The emittance obtained from photoinjectors is limited by the intrinsic emittance of the

electron beam emitted from the photocathode5,6. Assuming no correlation between the

transverse position and the transverse momentum of the electrons at the cathode surface,

the intrinsic emittance is given by7

εx =
σx
mec

√
〈p2x〉 (1)

where me is the mass of a free electron, c is the speed of light, (σx) is the rms laser spot

size on the cathode and px is the momentum of the emitted electrons in the transverse (x)

direction. For a given electric field at the cathode, the minimum value of the laser spot size

is determined by the electron bunch charge required for the application leaving reduction

in the transverse momentum of the emitted electrons as the only route to lower intrinsic

emittance5.

The mean squared transverse momentum (〈p2x〉) depends on the photocathode material

and the photon energy of the incident light8. Following the three step model of photoemis-

sion, Dowell and Schmerge9 obtained the mean squared transverse momentum in terms of

the photocathode work function and the incident photon energy as

〈p2x〉
me

=
~ω − φ

3
(2)

where ~ω is the incident photon energy, φ is the work function of the photocathode and

their difference (~ω − φ) is called the excess energy. The derivation of equation 2 assumes

a Heaviside step function as the electron state occupation function and a constant density

of states. Despite these assumptions, equation 2 explains experimental data obtained from

metallic10 and alkali-antimonide cathodes11–13 when the excess energy is much larger than

the thermal energy, kBT (where kB is the Boltzmann constant and T is the cathode temper-

ature). This theory predicts that 〈p2x〉 should become arbitrarily small as the excess energy

goes to zero. However, this theory fails when the excess energy becomes comparable to

or lower than the thermal energy, i.e when the photon energy is very close to the photoe-
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mission threshold. Furthermore, there is no experimental data available for the transverse

momentum distribution near the photoemission threshold of metals.

In this paper, we present measurements of transverse momentum distributions obtained

from a metal (thin Sb film) as a function of the photon energy near and below the photoe-

mission threshold. Further, we extend Dowell and Schmerge’s theory to include the effects of

a realistic electron occupation function (Fermi function) and a realistic density of states. We

show that 〈p2x〉 approaches kBTme as the photon energy approaches kBT thus limiting the

smallest achievable intrinsic emittance. We find that the transverse momentum distributions

predicted by this modified Dowell’s theory agree perfectly with the measured distributions.

The Sb film was deposited on a Mo plug at room temperature by thermal evaporation

of Sb beads. The thickness of the film was estimated to be 30 nm using a quartz micro

balance. The work function of the deposited Sb film was found to be 4.5 eV by measuring

the photoelectron yield as a function of photon energy14. The base pressure in the deposition

chamber was less than 10−9 torr. The sample was then transferred into the transverse

momentum distribution measurement system in vacuum.

In the transverse momentum distribution measurement system, the light from a high

brightness laser driven UV-visible light source15 is focused to a 150 µm FWHM spot on the

sample (the cathode). The electrons emitted from this spot are accelerated towards a flat

parallel grid (the anode) located at a distance of 3 mm from the sample. A grid of 25 µm

spacing is used. The beam of light is incident on the sample after passing through the grid.

The diffraction pattern formed on the sample due to the grid is smaller than the spot size

and can be ignored. An acceleration voltage of 3-6 kV is applied to the cathode and the grid

is grounded. The electrons passing through the grid have a high kinetic energy (3-6 kV) and

form a beam which is allowed to drift in a field free region while expanding in the transverse

direction due to the transverse momenta of the emitted electrons. The cross section of the

beam is then imaged using an MCP-phosphor screen assembly located at a distance of 269

mm from the grid. The transverse momentum of the electron at a displacement L (in the x

direction) from the center of the spot measured on the phosphor screen is given by

px =
L

2g + d

√
2meeV (3)

where g is the gap between the cathode and the grid, d is the drift length between the grid

and the MCP-phosphor screen assembly, e is the electron charge and V is the accelerating
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FIG. 1. Measured electron beam image from a Sb film deposited on a Mo plug on the phosphor

screen by CCD camera. (a) 3 kV accelerating voltage and 260 nm incident light. (b) 3 kV

accelerating voltage and 280 nm incident light. (c) 6 kV accelerating voltage and 260nm incident

light. (d) 6 kV accelerating voltage and 280 nm incident light. The scale on the color bars is in

arbitrary units. One pixel corresponds to 0.035 mm

voltage. Thus the transverse momentum distribution can be obtained from the image of

the electron beam on the phosphor screen. In equation 3 it appears that the transverse

momentum has a square root dependence on the voltage V . However, the beam size L

has an inverse square root dependence on the voltage and they cancel out to make the

transverse momentum independent of the accelerating voltage. The electron beam currents

used are small enough for the space charge to be negligible. The details of this setup and

the measurement technique can be found elsewhere16.

Figure 1 shows the electron beam cross section imaged on the phosphor screen for incident

photon energies of 4.77 eV and 4.43 eV at accelerating voltages of 3 kV and 6 kV. Figure

2 shows the momentum distributions obtained from the images shown in figure 1 using

equation 3. The momentum distributions obtained at 3 kV and 6 kV are identical, re-

enforcing the validity of the measurement technique. Figure 3 shows the variation of the

intrinsic emittance (or equivalently 〈p2x〉) with the excess energy (~ω − φ) assuming a rms

laser spot size (σx) of 1 mm. We can see that the emittance reduces with excess energy at

higher values of excess energy but flattens out to a value of 0.23 µm as the excess energy

approaches zero. This corresponds to 〈p
2
x〉

me
= 25.9 meV which is same as the thermal energy

at room temperature.
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FIG. 2. Transverse momentum distributions from a Sb film deposited on a Mo plug. The momen-

tum distributions are obtained using equation 3 and the electron beam images shown in figure 1

(a) 3 kV accelerating voltage and 260 nm incident light. (b) 3 kV accelerating voltage and 280

nm incident light. (c) 6 kV accelerating voltage and 260nm incident light. (d) 6 kV accelerating

voltage and 280 nm incident light.

In order to explain these results, we extended Dowell and Schmerge’s theory to include

the effects of the non-zero width of the Fermi distribution and a realistic density of states.

As shown by Dowell9, the number of electrons emitted is proportional to

Ne =

∞∫
ε

dEf (E)N (E)

1∫
cos θm

d (cos θ)

2π∫
0

dΦ (4)

where, ε = Ef + φ − ~ω, Ef is the Fermi energy, θ is the angle made by the incoming

electron with the surface normal (polar angle), θm is the maximum polar angle at which

the electrons can still be emitted, Φ is the azimuthal angle, f (E) is the electron occupation

function and N (E) is the density of states. In this work we use the Fermi function as the

electron occupation function to accurately model the photoemission near threshold. Hence

f (E) = 1/

(
1 + e

E−Ef
kBT

)
. By transforming the coordinates in equation 4, Ne can be written

in terms of the energy E and the two transverse momenta px and py as

Ne =

∞∫
−∞

dpx

∞∫
Emin

dE
f (E)N (E)√

2meE

×

√
p2‖M−p2x∫

−
√
p2‖M−p2x

dpy
1√

2meE − p2x − p2y
(5)

5



where Emin = p2x
2me

+ ε and p‖M =
√

2me (E − ε). Integrating over py in equation 5 and

differentiating w.r.t px we obtain the expression for the transverse momentum distribution

in the x direction as

dNe

dpx
=C

∞∫
Emin

dE
f (E)N (E)√
2me (E + ~ω)

× arcsin

(√
2me (E − ε)− p2x

2me (E + ~ω)− p2x

)
(6)

where C is a constant of proportionality.

The transverse momentum distributions for two photon energies ~ω = 4.77 eV and 4.43

eV were calculated by numerically integrating the expression in equation 6. Work function

φ was assumed to be 4.5 eV and the density of states N (E) was assumed to be constant.

The calculated transverse momentum distributions are shown in figure 2. An exact match

with the experimental distributions was obtained.

The mean squared transverse momentum can be calculated as

〈p2x〉 = me

∞∫
ε

dEf (E)N (E)
1∫

cos θm

d (cos θ)
2π∫
0

dΦp2x

∞∫
ε

dEf (E)N (E)
1∫

cos θm

d (cos θ)
2π∫
0

dΦ

(7)

Integrating over the the polar and azimuthal angles as done by Dowell and Schmerege9, we

obtain

〈p2x〉 =

me

∞∫
ε

dE N(E)(E+~ω)

1+e(E−Ef)/kBT

[
2
3
−
√

Ef+φ

E+~ω + 1
3

(
Ef+φ

E+~ω

) 3
2

]
∞∫
ε

dE N(E)

1+e(E−Ef)/kBT

(
1−

√
Ef+φ

E+~ω

)
(8)

It is not possible to calculate the integrals in equation 8 analytically, however in the limiting

case of φ > φ − ~ω � kBT , i.e. when the photon energy is well below the photoemission

threshold and photoemission occurs only from the Fermi tail, one can show 〈p2x〉 → mekBT ,

assuming the density of states N (E) is constant. This limit corresponds to an emittance

of 0.23 µm for a rms laser spot size of 1 mm. The experimental data presented in figure 3

indeed shows that this limit has been reached.
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〈p2x〉 was calculated for various photon energies by numerically evaluating the integrals

in equation 8. The density of states obtained experimentally using XPS17 was used. The

results of the calculation as a function of the excess energy are presented in figure 3. It is

important to note that the calculation presented here does not involve any ad hoc parameters.

The perfect match obtained between the experiment and this modified Dowell’s theory is

noteworthy. It is important to include the variation in the density of states in order to

obtain this excellent fit, especially at excess energies greater than 0.5 eV. The density of

states is the only material dependent parameter used in the theory. Since the variation

in the density of states is very small near the threshold, the limit of mekBT for the mean

squared transverse momentum should be applicable for all metals.

This theory and measurements suggest that reducing the lattice temperature of the cath-

ode is a possible route to reducing the intrinsic emittance of metal cathodes near threshold.

Such a reduction has been experimentally demonstrated for near threshold photoemission

in alkali-antimonide semiconductor cathodes, however the thermal limit was not observed

because of other factors like surface non-uniformities and non-uniform density of states near

the threshold18,19.

In conclusion, we have made measurements of the transverse momentum distributions

obtained from a metal (Sb thin film) near the photoemission threshold. The measurements

show that the minimum intrinsic emittance attainable from metal photocathodes is lim-

ited by the lattice temperature of the cathode. Finally, we develop a theory to calculate

the transverse momentum distributions and the intrinsic emittance of metal photocathodes

near the photoemission threshold and show that the calculations perfectly match the mea-

sured values. Up to this point most simulations of beam dynamics in photoinjectors have

assumed a Maxwellian transverse velocity distribution of the photoelectrons leaving the

photocathode5. We have derived an exact shape for the distribution which will be helpful

in accurate simulations of photoinjectors and other applications.
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Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract
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FIG. 3. Transverse emittance as a function of excess energy for a Sb film measured at 3 kV and

6 kV accelerating voltages with a comparison with theory (equation 8). The results obtained

from Dowell’s theory (equation 2) are also shown for comparison. The excess energy is varied by

changing the photon energy.
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