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RESEARCH ARTICLE
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Abstract

Polyploidy is increasingly seen as a driver of both evolutionary innovation and ecological

success. One source of polyploid organisms’ successes may be their origins in the merging

and mixing of genomes from two different species (e.g., allopolyploidy). Using POInT (the

Polyploid Orthology Inference Tool), we model the resolution of three allopolyploidy events,

one from the bakers’ yeast (Saccharomyces cerevisiae), one from the thale cress (Arabi-

dopsis thaliana) and one from grasses including Sorghum bicolor. Analyzing a total of 21

genomes, we assign to every gene a probability for having come from each parental subge-

nome (i.e., derived from the diploid progenitor species), yielding orthologous segments

across all genomes. Our model detects statistically robust evidence for the existence of

biased fractionation in all three lineages, whereby genes from one of the two subgenomes

were more likely to be lost than those from the other subgenome. We further find that a

driver of this pattern of biased losses is the co-retention of genes from the same parental

genome that share functional interactions. The pattern of biased fractionation after the Ara-

bidopsis and grass allopolyploid events was surprisingly constant in time, with the same

parental genome favored throughout the lineages’ history. In strong contrast, the yeast allo-

polyploid event shows evidence of biased fractionation only immediately after the event,

with balanced gene losses more recently. The rapid loss of functionally associated genes

from a single subgenome is difficult to reconcile with the action of genetic drift and suggests
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that selection may favor the removal of specific duplicates. Coupled to the evidence for

continuing, functionally-associated biased fractionation after the A. thaliana At-α event, we

suggest that, after allopolyploidy, there are functional conflicts between interacting genes

encoded in different subgenomes that are ultimately resolved through preferential duplicate

loss.

Author summary

Genome duplications/polyploidies can transiently double an organism’s gene content.

However, this doubled condition is unstable and descendants of polyploid founders rap-

idly lose many of their duplicate genes. Here, we describe a phylogenomic pipeline that

allows us to trace this history of gene loss across a set of modern genomes that all descend

from the same three polyploidy events (two in flowering plants and one in yeasts). Poly-

ploidy often occurs by the hybridization of related but not identical lineages, and previous

studies in single polyploid genomes have identified a tendency for one lineage to lose

fewer genes after polyploidy than the other (known as biased fractionation). However, sin-

gle genome studies can be misled into inferring biased fractionation by incorrectly assum-

ing that short regions of shared gene order are derived from the same parental genome.

By phylogenetically modeling the resolution of these three polyploidy events across 21

genomes (10 plants and 11 yeasts), we confirm the existence of biased fractionation in

plants and provide new evidence for it in yeasts (where it occurred only for a short interval

post-polyploidy). We also show that genes from alternative parental genomes tend to

encode products that do not physically interact, suggesting that selection to maintain

function in co-adapted complexes helped to drive this bias in loss patterns.

Introduction

Polyploidy events (also known as whole-genome duplications or WGDs) are widespread

across the eukaryotic tree of life [1] and have long interested geneticists and evolutionary biol-

ogists for reasons varying from the nature of interspecific crosses to the organismal effects of

changes in gene copy number to the origins of novel functions in evolution [2–5]. Recent

work has associated genome duplications with evolutionary innovations [6–9] and with shifts

in net diversification rates [10–13].

Understanding how polyploidy contributes to these biologically important processes

requires coming to grips with three key patterns in the evolution of polyploid genomes. The

first is the rapid loss of genetic redundancy after polyploidy. Most WGD-created duplicate

genes, termed “ohnologs” [14], do not survive: their losses start very soon after WGD [15–17]

and may be governed epigenetically in this period [18]. The net result of such losses can be dra-

matic: only 551 of an estimated 5000 duplicate gene pairs produced by the WGD in yeast sur-

vive in the Saccharomyces cerevisiae genome [19]. Nonetheless, the footprint of WGD is clear

in the extant patterns of double-conserved synteny [DCS; 20, 21]: homologs of genes from a

single genomic region in an non-polyploid relative will be split between two regions in the

polyploid genomes (upper and lower blocks of Fig 1).

The second key trend is that, despite the rapidity of these duplicate losses, they are nonran-

dom, with certain functional classes of genes being overly frequent among surviving ohnologs

and other being overly rare. In both yeasts and angiosperms, genes involved in DNA repair
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Fig 1. POInT’s inferences regarding the loss of genes post-WGD. The At-α duplication produced two sets of homoeologous regions, one from the parental

subgenome with more surviving genes (“Less fractionated subgenome,” upper track) and one with fewer (“More fractionated subgenome,” lower track). Genes in

these tracks may have surviving duplicates in at least some taxa (orange/tan), or they may be single-copy in all species (blue if derived from the less fractionated

Biased fractionation after polyploidy
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and those targeted to the organelles were rapidly returned to single copy after WGD [22, 23].

On the other hand, genes coding for transcription factors, ribosomal proteins and kinases

were over-retained in duplicate after independent WGD events across a phylogenetically wide

range of organisms from amoebae and plants to vertebrates and yeasts [24–28]. The force

underlying these convergent patterns of loss/retention is most likely selection to maintain dos-

age balance among interacting gene products [29]. The dosage balance hypothesis explains a

variety of observations about the evolution of both polyploid and non-polyploid genomes,

including the pattern of post-WGD duplicate retentions [28, 30–34] and the tendency of these

same gene families not to undergo single gene duplications, where balance would be perturbed

[26, 35, 36]. Similarly, genes in central network positions or whose products are parts of pro-

tein complexes are likely to show dosage phenotypes [37] and are over-retained after WGD

[22, 38].

The third and final trend in post-WGD evolution is that when genes are lost, they are

apparently not always lost equally from the paired DCS regions. This pattern of biased fraction-
ation has been observed across a range of WGD events, primarily in angiosperms [39–41] but

also from other taxa [42]. The most plausible current hypothesis for why biased fractionation

occurs is that the events in question were allopolyploidies [39, 43]. In the alternative case of

autopolyploidy, the paired genomic regions created by polyploidy are identical, and we know

of no mechanism by which these identical regions could be stably marked over evolutionary

time so as to differ strongly in their duplicate retention patterns. However, the converse is not
true: the absence of biased fractionation cannot be taken as evidence for autopolyploidy. If the

genomes that merged were from closely related taxa, bias is not necessarily expected.

As for the genetic mechanism behind the bias in ohnolog losses, biases in gene expression

between the two subgenomes in recent allopolyploids appear to be common [44, 45] and the

chromosomal regions with lowered expression also appear more prone to ohnolog loss [41,

46], leading to the suggestion that biased fractionation might result from a tendency for the

ohnolog with lower expression to be less likely to show a fitness defect when lost. One potential

source of these initial differences in expression might then be the difference in transposon load

between the subgenomes of an allopolyploid, with the transposon-rich genome facing greater

silencing and hence higher rates of gene loss [41, 43].

A difficulty that arises in the analysis of biased fractionation (BF) is that there has been a

degree of circularity in its detection. Because rearrangements occur after WGD events, the

duplicated regions in a paleopolyploid genome, which are identified by shared gene order or

synteny, will be separated from each other by breakpoints. Within each syntenic block, the

identification of the homeologous region with more retained genes is straight forward. How-

ever, when comparing a single polyploid genome to a diploid outgroup, it is difficult to for-

mally refute the possibility that the parent-of-origin of the highly retained subgenome in

one block might be the same as that of the lowly retained subgenome in another [but see; 42].

This difficulty in fact motivates the phylogenetic approach to studying polyploidy that we use

subgenome and green if from the more fractionated one). Under each taxon name is the number of single-copy genes predicted to have been retained from that

parental subgenome in that taxon. The branch length (numbers under the branches of the upper tree) gives the value of α×time in the model of Fig 2B: larger values

correspond to a relatively higher chance that a position with a ohnolog pair present at the start of a branch will be single-copy by its end. Numbers above the

branches give POInT’s estimate of the number of genes returned to single copy deriving from the less fractionated (upper panel) and more fractioned (lower panel)

subgenomes, respectively. Under the branches of the lower tree are the branch-specific ratio of genes retained from subgenome #2 relative to subgenome #1: these

values can be compared to the overall estimate of this parameter, which is 0.64, shown in the upper left. POInT’s estimates of the other global parameters for this

model are also given here. Above each pillar of genes is POInT’s estimate of the posterior probability of the set of subgenome assignments depicted, relative to the

other 2n-1 possible assignments (where n is the number of genomes). The two root branches are shown in red: these correspond to branches where the biased

fractionation parameter ε was allowed to differ from the rest of the tree in our analyses of temporal patterns of biased fractionation (Methods). Similar trees

depicting loss events for the grass and yeast WGDs are given as S1 Fig.

https://doi.org/10.1371/journal.pgen.1007267.g001
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below. There are also other potential factors that might be involved in driving BF that remain

to be investigated. For instance, the convergent pattern of rapid losses in gene coding for the

DNA repair enzymes [22, 23] suggests that there may be incompatibilities between the versions

of these genes contributed by the two allopolyploid parents. If such incompatibilities were

common, they could contribute to BF by favoring retention from a single subgenome once the

symmetry of a particular genetic module has been broken by the first loss.

Using POInT, the Polyploid Orthology Inference Tool, we analyzed the resolution of three

WGD events, one in yeasts [20], one in the grasses [the ρ event; 47, 48] and the most recent

event (At-α) in Arabidopsis thaliana and its relatives. Using POInT’s synteny-based estimates

of post-WGD gene losses, we show that BF was a genome-wide evolutionary pattern after the

At-α and ρ WGD events and persisted over long periods. In contrast, in yeasts we find evi-

dence for BF only in a very short time interval post-WGD. In Arabidopsis, we also find that

there is preferential co-retention of genes from the same subgenome whose products interact,

as opposed to interactions involving proteins from different parents. Collectively, these results

suggest that biased fractionation is at least in part a relic of conflicts between the paralogous

genes contributed by the two parents at the time of the allopolyploidy.

Methods

Identifying double-conserved synteny blocks in polyploid genomes

Our previous POInT analyses in yeast were based on human curated datasets [19, 49]. We do

not have such inferences for either the At–α or the grass ρ event. Instead, using experience

from previous projects [40, 50], we developed a new pipeline for inferring the paralogous

genomic regions created by a WGD in the genomes sharing that event. We then merged these

regions of DCS [20, 21] across all polyploid genomes and sought an ancestral gene order that

minimized the number of synteny breaks. Fig 1 shows examples of such DCS blocks for At-α.

The goal of the pipeline is to find a common set of DCS blocks shared by the genomes of

the six Brassicaceae species that possess At-α: Arabidopsis thaliana [51], Arabidopsis lyrata
[52], Capsella rubella [53], Shrenkiella parvula [54], formerly known as Thellungiella parvula or

erroneously as Thellungiella halophila [55], Eutrema salsugineum [56], and Aethionema arabi-
cum [57] and for the four grasses with ρ: Brachypodium distachyon [58], Oropetium thomaeum
[59], Setaria italica [60] and Sorghum bicolor [61]. To do so, we used outgroup genomes that

lacked the WGD in question. For the At-α event, we used the draft genome of the outgroup

plant Cleome violacea, which split from the six taxa studied prior to that event [11]: it

likewise lacks the WGD found in other taxa in the Cleomaceae [9]. The C. violacea genome is

available from the CoGe comparative genomics portal (https://genomevolution.org/coge/)

under accession number 23822. For the grass ρ event, we used the genome of the pineapple

Ananas comosus as an outgroup [62]. CoGe accession numbers for all plant genomes used are

listed in S1 Data.

The product of a WGD is a set of duplicated genes in a genome that each originate from a

single ancestral gene. Here, the C. violacea and pineapple genomes give us an estimate of these

ancestral loci, and we seek to place either one (e.g., a duplicate loss has happened) or two genes

(the ohnologs survive) from the duplicated genome in a “pillar” with each such ancestral gene

(see Fig 1). Genome annotation files for these 12 plant genomes were obtained from CoGe

[63]. With these data in hand, the inference of the shared DCS blocks that serve as POInT’s

input is a three step process: 1) a homology search of each polyploid genome against the dip-

loid outgroup, 2) inference of species-specific DCS blocks and 3) inference of a common set of

DCS blocks across all genomes along with an estimate of their ancestral order at the time of

the polyploidy.

Biased fractionation after polyploidy
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Step 1: Homology search. For At-α, we used a fast homology search program based on the

SeqAn package [64, 65] to identify pairs of homologous genes, one from a genome with At-α
and one from C. violacea. We defined a pair of genes as being homologous for the purposes of

DCS inference if their protein sequences: 1) share two 7 amino acid residue exact matches, 2)

have the shorter sequence having 80% of the length of the longer, and 3) show 70% amino acid

identity overall. Because of the greater evolutionary distances involved in the grass ρ event, we

used a slower but more sensitive BLAST-based search, employing our tool GenomeHistory to

do so [66, 67]. In this case, we required a maximal BLAST E-value of 10−8 to identify matches

between the four duplicated grasses and pineapple: we then used the same 70% identity and

80% aligned length cutoffs as used with At-α to select homologs.

Step 2: Genome-specific DCS inference. Sequence homology alone is insufficient to identify

the DCS blocks given the angiosperms’ history of nested polyploidy [1]. Instead, for the second

step of the pipeline, we used gene order information (synteny) to identify which of the poten-

tially many homologs in each polyploid genome are the WGD-produced ohnologs. We frame

this problem as follows. First, we define a set A of n DCS blocks that consists of ancestral pillars

Ai such that Ai 2 A|1� i� n. Each pillar is linked to a unique gene from C. violacea or pineap-

ple and has elements Ai(p1) and Ai(p2), which represent the potential homologous genes created

by WGD. Each pillar Ai also has associated a set of genes {h1. . .hh} from the polyploid genome

that are homologous to the pillar’s ancestral gene. A maximum of two of these homologs can

be assigned to Ai(p1) and Ai(p2). We next define O(A1. . .An) to be the order of the pillars in A
for our analysis. Hence, AO(i) represents the ith pillar in this ordering. For a given AO(i) (pk)|1�

k� 2, define AO(i+j) (pk) such that j = min(x; i+1�x�n) where AO(i+x) (pk) 6¼ ;: in other words,

i+j is the next pillar after i in O(A1. . .An) with an assigned gene for parental genome k. We

define the score s of such a combination of homolog assignments and pillar orders:

s ¼
Xn

i¼1

X2

k¼1

1

0

�
�
�
AOðiÞðpkÞ and AOðiþjÞðpkÞ are neighbors

otherwise
ð1Þ

In other words, the score is the sum of the number of positions in O(A1. . .An) where the

genes in each pillar are the genomic neighbors of the genes in the next non-empty position.

We cannot simply use the pillar order seen in the outgroup, because neither C. violacea nor

pineapple is the true ancestor of the WGD events in question: both have evolved indepen-

dently for many millions of years. Instead we must optimize O(A1. . .An). Note that, through-

out this pipeline, neighbor is understood to exclude any genes that are not part of the current

analysis set. For instance, a gene in Arabidopsis thaliana with no identified C. violacea homolog

is ignored in the neighbor computation because it could never appear in an ancestral pillar. By

the same logic, any position for which AO(i) (pk) and AO(i+j) (pk) are not neighbors is defined as

a synteny break, and, if this situation is true for both k = 1 and k = 2, we refer to position i as

having a double synteny break.

To infer the combination of the homolog assignments Ai (pk) | 1� i� n, 1� k� 2 and the

ordering O(A1. . .An), we used simulated annealing [68, 69]. This algorithm proposes random

changes to either O(A1. . .An) or to the Ai(pk) assignments with the goal of maximizing s, which

recomputed after each such change. We used the extant C. violacea and pineapple gene orders

as our initial orders and made increasingly long runs until longer run times no longer pro-

duced meaningfully higher values of s.
A. thaliana and its relatives share a history of WGD [26]: prior to the WGD-α event mod-

eled here there was another WGD, termed WGD-β, which is shared with C. violacea. One

might wonder if our simulated annealing algorithm has mistaken synteny blocks surviving

from WGD-β for the more recent products of WGD-α. We suspect that any such errors are

Biased fractionation after polyploidy
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quite rare for two reasons. First, C. violacea also experienced WGD-β and hence also possesses

the corresponding synteny blocks, meaning that they are accounted for in the inputs to our

simulated annealing routines. Second, we only considered homology relationships between

genes in C. violacea and in A. thaliana, A.lyrata, C. rubella, S. parvula and E. salsugineum with

nonsynonymous divergence (Ka) less than 0.1 and between C. violacea and A. arabicum with

Ka�0.2. As a result, between 41% and 45% of the genes from C. violacea have only a single

homolog identified in the other 6 genomes and hence cannot represent ambiguous surviving

blocks from WGD-β in C. violacea. Hence, it is difficult to see how ancestral WGD-β blocks

would have infiltrated our inferences in significant numbers.

Step 3: Inferring a global ancestral ordering for POInT analyses. Using the four/six individ-

ually optimized set of ancestral pillars (for ρ and At-α, respectively) with assigned genes (the

Ai(pk) values for each genome), we extracted, for each genome, only ancestral pillars for which

each gene in the pillar had synteny support (i.e., each gene was a neighbor of at least one other

gene in that pillar set). Using the outgroup gene from each ancestral pillar as an index, we then

merged all of these inferences. Because we required that at least one gene from each genome

be in each pillar, the effect of this merging was to limit our analyses to a set of m = 7243

and = 3091 ancestral pillars for At-α and ρ, respectively. However, those pillars have shared

syntenic support across all genomes. The optimal ancestral order for each extant genome dif-

fers, so once the ancestral pillars were assembled, we inferred a globally-optimal ancestral

order O(AG1..AGm), again using simulated annealing. The optimality criterion here was to

maximize the number of neighbor relationships, but in this case the Ai(pk) assignments were

held constant and only O(AG1..AGm) was changed.

To assess the influence of the ancestral ordering on POInT’s estimates, we fit the WGD-bf
model (Fig 2B) to both the initial C. violacea order and to the 10 inferences of O(AG1..AGm)

with the largest simulated annealing scores, using the order with the highest likelihood for fur-

ther analyses (S1 Table). We similarly used the ancestral ordering of highest likelihood for our

ρ analyses.

Extracting a “high synteny” subset of ancestral pillars. To assess if the fragmentation of

synteny blocks was artificially leading us to invoke BF, we also extracted from our full At-α
dataset a smaller set of ancestral loci with strong syntenic support, including only pillars with

full syntenic support in at least one direction (e.g., two links per pillar per genome). The result

was a dataset of mh = 4556 ancestral loci for which we also inferred an optimal ancestral order-

ing. No such analysis was performed for ρ due to the small total number of ancestral pillars

found. Table 1 gives the parameter estimates from all four datasets for various ancestral orders.

Modeling the evolution of WGD events with POInT

We have previously described POInT [22, 70], which fits a Markov model to duplicate loci cre-

ated by WGD. The model has four states (Fig 2B), namely U (undifferentiated duplicated

genes), F (fixed duplicate genes) and S1 and S2 (the single copy states): it is a generalization of

a model proposed by Lewis [71]. Note that once the genes of each post-WGD genome have

been assembled into ancestral pillars using the simulated annealing approach above, the

sequences of the genes of the post-WGD genomes are never used again: all of POInT’s infer-

ences are based on shared DCS information. Since our prior work, we have completely re-writ-

ten POInT to allow for user-defined evolutionary models, computing the resulting transition

probabilities by exponentiating the user-supplied instantaneous rate matrix [72]. Using this

new version of POInT, we fit five models to our four datasets (two from At-α and one each

from the yeast and grass WGD events, Fig 2). We used likelihood ratio tests to assess whether

more complex models better fit the loss data than did simpler models [73].

Biased fractionation after polyploidy
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Fig 2. Modeling WGD resolution with POInT. We employed a number of models of the fates of the duplicates

produced by WGD. A) Statistical relationships between the various models for the yeast WGD (blue), At-α (green) and

ρ (brown) events. The simplest model (WGD-n) considers only a balanced process of gene loss. From this model, we

can either allow duplicate genes to become fixed (for instance by neo- or sub-functionalization, WGD-f) or for one of

the two parental subgenomes to lose more genes than the other (WGD-b). Using a likelihood ratio test (LRT), we find

that, for all three WGD events, allowing duplicate fixation significantly improves the fit of the data to the models

(P<10−10, LRT, Methods). However, for the yeast dataset, there is no significant evidence for biased fractionation

(P>0.5, LRT), while for the two plant WGDs, adding it significantly improves the fit (P<10−10; LRT). From these two

models, we can then allow the other process. Again, for yeast, there is significant evidence for fixation but not biased

fractionation (P<10−10 and P>0.5, respectively, LRT) while for At-α and ρ, there is significant evidence for both

(P<10−10 in each case, LRT). We also tested a model where the biased fractionation parameter ε (see panel B) was

allowed to differ on the shared root branch of the tree (WGD-btf) compared to all of the other branches. For the two

plant WGD events, there is no significant evidence that the level of biased fractionation differed early in history of the

WGD relative to later in time (P�0.19, Results). On the other hand, for the yeast WGD, biased fractionation was much

more intense soon after the polyploidy event and weakened later (P = 0.001; Results). B) Model states and parameters.
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POInT’s focus on WGD has advantages over applying more general gene birth-death mod-

els to polyploid species [74, 75]. POInT models the process of duplicate loss and retention

jointly across all genomes and along a phylogeny. Hence, the probability of a particular model

state at a given ancestral locus is conditioned on all other loci and all other genomes. This con-

ditioning is performed by analogy to the linkage analysis model of Lander and Green [76]

using the hidden-Markov approach of Felsenstein and Churchill [77]. The states the Markov

model considers are the set of 2n possible orthology relationships between the 2n different loci

(e.g., 2 duplicated loci in each of n genomes). The likelihood of site i+1 having orthology state j
given that site i has that orthology assignment is (1-θ), where θ is a small constant estimated

from data (0.0004�θ�0.0081 across these analyses). In cases where there is a double break in

gene order in a particular genome, θ = 0.5.

From this model structure, we can infer orthologous chromosomal regions produced by

WGD between the genomes studied, along with confidence estimates in these inferences (Fig

1). The previous version of POInT did not distinguish between states S1 and S2. The result was

degeneracy in the inferences of orthologous regions. In other words, assigning the first mem-

ber of each DCS pair to subgenome 1 and the second to subgenome 2 produced orthology

assignment 111111 across the six genomes, which was identical in likelihood to assignment

222222. (The computation is completely analogous for the other two WGD events studied.)

Effectively, this degeneracy corresponds to flipping the upper and lower panels of Fig 1,

because each of the 2n possible orthology assignments has an equivalent assignment with all 1s

converted to 2s and vice versa.

To model the process of BF, we relaxed this assumption by introducing parameter ε (Fig

2B). This parameter makes losses to state S2 potentially less common than to S1. If BF is pres-

ent in the data, the maximum likelihood estimate of ε will be less than 1.0, and the likelihood

of orthology assignment 111111 will no longer be the same as 222222. We can then use the

Our model has four states, two duplicated ones (U = undifferentiated duplicates and F = fixed duplicates) and two

single copy states (S1 and S2, corresponding to the two parental subgenomes). The base loss rate (α) is compounded

with the estimated time to give the branch lengths of Fig 1. The relative fixation rate γ (0�γ<1) gives the rate of

duplicate fixation relative to the loss rate α. Likewise, the fractionation bias parameter ε (0�ε�1) gives the excess of

preservations from subgenome 1 relative to subgenome 2 (assumed to be the more fractionated subgenome).

https://doi.org/10.1371/journal.pgen.1007267.g002

Table 1. POInT estimates for different datasets and ancestral orders.

Description Ancestral locia # breaksb #double breaksc WGD-bf lnLd Fixation rate (γ)e Bias strength (ε)f

At-α, Full: C. violacea order 7243 6614 3021 -25357.46 0.160 0.538

At-α, Full: Optimized order 7243 5468 1129 -24497.04 0.169 0.645

At-α, High-synteny: C. violacea order 4556 3544 1039 -12837.67 0.205 0.718

At-α, High-synteny: Optimized order 4556 2266 252 -12442.51 0.220 0.786

Grass ρ, Pineapple order 3091 4387 2299 -8822.89 0.049 0.400

Grass ρ, Optimized order 3091 2457 434 -8199.10 0.061 0.730

Yeast WGD 4065 4346 796 -19374.10 0.137 0.955g

a: Number of ancestral loci studied.
b: Number of synteny breaks across the polyploid genomes.
c: Number of cases where both parental subgenomes showed a synteny break after an ancestral locus (see Methods).
d: ln-likelihood from fitting WGD-bf to this ancestral order.
e: Maximum likelihood estimate of the relative duplicate fixation rate for this ancestral order (see Fig 2).
f: Maximum likelihood estimate of the relative rate of retention from the more fractionated subgenome for this ancestral order (see Fig 2).
g: ε not significantly different from 1.0; see Fig 2.

https://doi.org/10.1371/journal.pgen.1007267.t001
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POInT model to estimate the posterior probability of the subgenome assignments (the num-

bers shown above every column in Fig 1) at every pillar. For convenience we refer to the result-

ing two regions as deriving from allopolyploid parents 1 and 2 [43], respectively, defining

parent 1 as containing genes in state S1 (e.g., it is potentially less fractionated), similar to

Thomas et al., [39].

In previous work in yeast [15, 22, 70], we found evidence for “convergent” gene losses that

were phylogenetically independent and yet more often from the same subgenome than could

be explained by chance. We modeled these events by adding two duplicated converging states

to our model, C1 and C2. Gene losses from C1 were always to S1 and similarly for C2. We fit

versions of this model both with (0� ε�1.0) and without (ε = 1) BF to our yeast, grass and At-

α data: while these models improved the fit relative to the WGD-bf model used here, we pres-

ent our results in terms of the WGD-bf model because both model classes give similar parame-

ter estimates (S2 Table), and the more complex models do not add insight for the questions

considered here.

Dependence of POInT parameter estimates on the assumed phylogeny

Because we analyzed only four genomes sharing the grass ρ event, it was possible to use POInT

to test all 15 possible rooted phylogenetic trees for these taxa to assess the dependence of our

inferences on the inferred phylogeny. We present our results in terms of the optimal tree, but

the global parameter estimates for the WGD-bf model were very similar for all topologies

(0.061�γ�0.067; 0.719�ε�0.739; 0.0061�θ�0068; Fig 2).

Network analyses of biased losses

We asked whether genes surviving from one or the other of the subgenomes showed patterns

of interconnection in the networks of Arabidopsis thaliana. We use the BioGrid database [78]

to extract known protein-protein interactions [79]. We tested for paucity of interactions

between the products of genes from different subgenomes with a randomization approach.

We thus compared the number of interactions between gene products from alternative subge-

nomes in the actual data to this value computed after 1000 randomizations of the subgenome

assignments. To assess the degree to which our conclusions were potentially affected by errors

in the assignment of genes to subgenomes, we conducted our tests at a range of confidences in

subgenome assignment (Fig 3).

GO analyses of biased losses

We used the Gene List Analysis tool from the PANTHER classification system [80] to perform

statistical overrepresentation tests to find over/under-represented Gene Ontology (GO) terms

associated with biological processes, molecular functions, or cellular components. The input

of our analysis consists of two sets of genes: the target list to analyze, and a reference list. The

expected number of genes for a GO term in the target list was calculated based on the number

of genes with that term in the reference list: binomial statistics for each GO term associated

with genes in the target list were then computed from these expectations [81].

We first performed an overrepresentation test for 4,086 single copy genes from both subge-

nomes against the reference set of 4,152 surviving duplicated genes. The over/under repre-

sented GO terms in the analysis were filtered with a threshold P-value� 0.01 after Bonferroni

correction, and only terms with a fold-enrichment larger than 1.5 (overrepresented) or smaller

than 0.67 (underrepresented) are reported. We next compared 2,552 single copy genes from

subgenome 1 (dominant) relative to the terms for the 1,534 genes from subgenome 2 (more

fractionated) with a similar approach. To compensate for the smaller number of terms found
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to be enriched in this second analysis, we used an FDR-corrected P-value of 0.05 as a thresh-

old. Full lists of all significantly enriched terms for any comparison with associated GO identi-

fiers are given as S3–S5 Tables.

Results

Modeling WGD evolution with POInT

Using POInT, we analyzed the resolution of three phylogenetically widely-spaced polyploidy

events: the WGD in the ancestor of Saccharomyces cerevisiae and relatives [20, 82], the ρ event

found in the ancestor of the grasses [47, 48] and the At-α event shared by the model plant Ara-
bidopsis thaliana and its relatives [26, 83]. Previous work has suggested that all of these WGDs

were allopolyploid events [43, 82], meaning the duplicated regions in the extant polyploid

genomes (hereafter subgenomes) derive from parental genomes from differing species. What-

ever their origins, however, these subgenomes produced by polyploidy are now distinct due to

their individual histories of gene loss. In order to assign the extant genes to one of the two sub-

genomes, we applied new duplicate resolution models that distinguished between a less frac-

tionated genome (more surviving genes) and the more fractionated genome [fewer surviving

genes; 39, 43].

As previously described [15, 22, 70], we used ohnologs from the Yeast Genome Order

Browser project and an inferred ancestral genome order as POInT’s inputs for the yeast

Fig 3. Protein interactions between single-copy genes from alternative subgenomes are rarer than expected. We

extracted single-copy genes for a range of values of POInT’s overall confidence in pillar assignments to subgenomes

(x-axis) and computed the P-value for the test of the null hypothesis of no fewer protein-protein interactions between

products of genes from alternative subgenomes than expected (y-axis; panel A: see Methods). We also computed the

frequency of such “crossing” interactions relative to interactions between products of the same subgenome (y-axis,

panel B).

https://doi.org/10.1371/journal.pgen.1007267.g003
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analyses [19, 49]. For the At-α and ρ events, no such data exist, so we developed a new pipeline

that uses sequence homology and shared gene order (synteny) to assign genes from the poly-

ploid genomes to a “pseudo-ancestral” gene from the extant outgroups Cleome violacea (for

At-α) and pineapple (for ρ). First, we used simulated annealing to assign genes from each of

the polyploid genomes to double-conserved synteny (DCS) blocks. These assignments were

made forcing pairs of regions in the polyploid genomes to possess one or two homologous

genes to one gene from a single region in outgroup genome: the simulated annealing algorithm

then sought such assignments that maximized the shared gene order (see Methods for addi-

tional details). We then merged these single-genome inferences into a set of 7243 and 3091

(for At–α and ρ, respectively) ancestral gene pillars, each consisting of at least one gene from

every genome that shared synteny with at least one other gene (see Fig 1). We then again used

simulated annealing to optimize our estimate of ancestral genome order of these loci by maxi-

mizing the synteny among the pillars. Fig 1 gives an example of the estimates made by POInT

based on these inferred pillars: from the inferred pillar order, POInT is able to estimate the

probability associated with assigning each genome segment from each species to either of the

two subgenomes (numbers above the columns in that figure).

Using these data, we tested the hypothesis that biased fractionation (BF) was observed after

the three WGD, explored its temporal characteristics and sought to associate it with functional

properties of the genes in question.

Biased fractionation was common after At-α and ρ. By fitting nested models of evolu-

tion to these datasets, we tested for the presence of ohnolog fixation and biased fractionation

after the three WGD events. Fixation (WGD-f, Fig 2A) is inferred when a WGD-produced

duplicate pair has persisted across the tree longer than would be expected given the loss rates.

There is evidence of such fixation events after all three WGDs (P<10−10, likelihood ratio test,

Fig 2 and Methods). We model biased fractionation (BF, WGD-b, Fig 2A) as a preference for

losses of genes from subgenome 2 (0�ε�1, Fig 2B) over subgenome 1. Note that the identity

of subgenome 2 is inferred from the data and bespeaks no lack of generality in our model.

At-α and ρ show strong evidence of BF (P<10−10, likelihood ratio test, Fig 2A and Methods).

However, similar to previous analyses of the yeast WGD [21], we find no statistical evidence

for a general BF process after the yeast WGD (P>0.5, likelihood ratio test, LRT, Fig 2A). Our

estimate of the strength of BF after At-α is nearly identical to that found by Thomas and coau-

thors when considering only the A. thaliana genome [39], with the more fractionated subge-

nome showing approximately 2 single copy genes deriving from it for every 3 from the less

fractionated subgenome. The bias estimated for the ρ event was slightly weaker: 3 genes from

the more fractionated genome retained for every 4 from the other subgenome. We note that

these estimates vary somewhat depending on the quality of the syntenic data used as the input

for POInT: when we used the highly non-optimal C. violacea gene order (which has many

more syntenic breaks), the estimated ratio of single copy genes from the more and less fraction-

ated genomes was closer to 1:2 (S1 Table). However, it is unlikely that further order optimiza-

tion would raise the estimates of the BF parameter ε (e.g., imply less fractionation): all of the

estimated ancestral orders gave similar estimates of ε, with no trend of increasing ε with

smaller numbers of breaks (S1 Table). Likewise, we inferred a “highly syntenic” dataset of 4556

ancestral pillars for At-α that included only pillars with fully syntenic connections to at least

one other pillar (Methods). While the estimate of ε for this dataset is higher than that for the

full dataset (Table 1), it is still significantly different from 1.0 (P<10−10). Moreover, some of the

increase in ε here may be attributable to the greater number of surviving duplicates (larger γ,

see Table 1).

Biased fractionation occurred in a brief interval after the yeast WGD but has been a

continuous process after At-α and ρ. The process of duplicate loss immediately post-WGD
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differs from that observed later [22, 23]. We hence fit a model where the strength of BF was

allowed to differ on the shared root branch (Fig 1) relative to the remaining branches. For At-

α and ρ, there is no significant evidence for such a difference (εearly = 0.67/0.74, εlate = 0.63/

0.73, for At-α and ρ, respectively; P� 0.19). However, the strength of biased fractionation

immediately after the yeast WGD was much higher than that seen later (εearly = 0.47, εlate =

0.99; P = 0.001), showing that our initial conclusion of no BF in yeast was an artifact of low

temporal resolution in the WGD-bf model. Approximately 277 single-copy genes from the less

fractionated parent, and only 135 from the more fractionated one, were returned to single-

copy along the shared root branch following the yeast WGD (S1 Fig). We note that it is diffi-

cult to directly compare the yeast and plant results because of the differing shape of the post-

WGD phylogenies for the datasets. The yeast WGD was characterized by very rapid post-

WGD speciation [15, 84]: thus only 412/4099 (10%) of the ohnolog pairs had lost a gene before

the first speciation (S1 Fig). On the other hand, the taxa sharing At-α had undergone ohnolog

losses at 4008/7243 (55%) of the ancestral positions before the speciation event that split

Aethionemae arabicum from the other Brassicaceae (Fig 1), with a similar proportion of losses

on the root branch after ρ (S1 Fig). The phylogenies reflect this difference, with POInT’s esti-

mate of the length of the root branch in the yeast analysis being 0.063 verses 0.55 for At-α and

0.63 for ρ (recall that branch lengths are proportional to the probability of an ohnolog loss

along that branch). The tribe Aethionemae is sister to the remainder of all extant Brassicaceae

species [85]. Hence, at least for At-α, there might have been short period of more intense

biased fractionation that we cannot detect due to the lack of an extant early diverging lineage

such as those we have studied in the yeasts.

Biased fraction is a genome-wide phenomenon

As mentioned, it is not guaranteed that two genomic regions each showing a higher retention

rate than their homeologous partners necessarily originate from the same parental subgenome

(the circularity problem in measuring BF). We used the high-synteny subset of the At-α data

to assess the degree of this problem. From it, we produced a visual representation of the set of

ancestral synteny blocks POInT was using for its inferences. In Fig 4B, we show how often 5, 4,

or 3 genomes agree from pillar to pillar in their subgenome assignments. Notably, when only 3

of 6 genomes are required to agree at high probability, the model infers a relatively small num-

ber of ancestral syntenic blocks, consistent with a set of ancestral chromosomes prior to At-α.

Moreover, these blocks are identifiable without the assumption of BF (e.g., they are also infer-

able from the WGD-f model, Fig 4B) and, at least for most of the larger blocks, give estimates

of BF similar to the dataset as a whole (Fig 4C). Hence, it is clear that biased fractionation is

not an artifact of synteny-block inference. Similar diagrams for the full At-α dataset, the ρ
dataset and yeast are given in S2 Fig.

Protein products of single copy genes from different subgenomes rarely

physically interact

Using data from BioGrid [78, 79], we asked whether protein-protein interactions between the

products of A. thaliana single-copy genes from alternate subgenomes were rarer than would

be expected by chance. Across a large range of subgenome confidence estimates from POInT,

there were fewer such “crossing” interactions than expected (Fig 3A), and the frequency of

such interactions decreases as our confidence in the subgenome assignments increases (Fig

3B). Similar analyses were not performed for the ρ and yeast WGD events due to the lack of

large-scale interaction data and the lack of substantial fractionation, respectively.
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Fig 4. Consistency across the ancestral genome of POInT’s estimates of the subparental genome of origin. A) In the six panels, we illustrate how often POInT’s

assignment of parental subgenome of origin for At-α changes between two successive pillars when considering the “high synteny” dataset. A red tick at position i
corresponds to a situation where POInT assigned parents-of-origin to two chromosomal regions at position i-1 with probability of�85% and either the opposite
combination of parents at position i or with the same assignment but with confidence less than 85%. Gray ticks, in turn, correspond to those positions immediately after a

red tick where the confidence in the parental assignments is less than 85%. The blue ticks in the lower half of each block indicate positions where there is a double synteny

break after position i-1 (see Methods). At these positions, the parental inferences at position i are independent of those at i-1. Locations where all 6 genomes have such

breaks are shown with the pink dotted lines. B) Estimates of shared parental blocks across genomes. With very few exceptions, locations where POInT finds a change in

subgenome assignments correspond to these six-fold synteny breaks from A. Each blue/green colored block corresponds to a situation where at least 5, 4, or 3 genomes

(top, middle and bottom, respectively) agree between every neighbor as to the subgenome assignment at a confidence of 85% or more. Narrower black regions are regions

where there is no position-to-position agreement in assignment for any number of genomes (e.g., these are regions where our confidence in subgenome assignments is

low overall). Any shared loss of synteny can induce a new block: such synteny breaks might, for instance, reflect a shift to new ancestral chromosome. For reference, we

also show the set of blocks inferred with the WGD-f model as the smaller set of red/purple blocks. This model does not include BF, making it degenerate, so that

subgenome 1 and 2 can be swapped. We therefore define one region of one genome as being subgenome #1 and make the block assignments correspondingly. Almost all

of the phasing of blocks can be done without the assumption of BF, as is seen with the similarity between the blue/green and red/purple blocks. The implication of this

fact is that the blocks are defined by the pattern of shared gene losses and that including BF in the model serves only to allow us to assign unlinked blocks to the same
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BF has retained genes of distinct functions from each subgenome

As seen in previous analyses [23, 25, 26, 30], the surviving At-α ohnologs are enriched or

depleted for a number of GO ontology categories (Fig 5 and S3 Fig). We had anticipated that

those categories that were depleted for ohnolog pairs might represent a set of single-copy

genes drawn preferentially from the dominant subgenome. However, such was not the case:

even at a quite liberal FDR-corrected significant threshold (P�0.05), there are relatively few

GO terms significantly differentially retained between the single copy genes of the two subge-

nomes. Moreover, these terms do not overlap with the ohnolog-depleted terms: instead the

single copy genes operating in the endoplasmic reticulum more often derive from the less-frac-

tionated subgenome (Fig 5). Similarly, genes involved in the cell cycle and circadian rhythm

are preferentially drawn from the more fractionated subgenome and those for developmental

genes in phloem or xylem from the less-fractionated subgenome (S3 Fig).

Discussion

There is considerable and accumulating evidence for the actions of biased fractionation (BF)

after WGD in angiosperms [39–42] and strong suggestions that allopolyploidy is more likely

to produce such biases than autopolyploidy [43]. Nonetheless, there remains at least a theoreti-

cal danger that analyses of BF that consider only a single polyploid genome at a time [often by

comparison to a diploid outgroup; 40, 41, 46, 86, 87] could mistake the random variation in

preservation in small synteny blocks for biases in fractionation.

The results presented here refute this concern, and indicate that, at a minimum, BF acts

consistently across regions at the chromosome scale. Our confidence in this conclusion is

driven by the concordance of multiple lines of evidence as to the presence and strength of BF.

At a methodological level, POInT integrates across multiple genomes, such that lineage-spe-

cific synteny breaks are passed through using data from genomes without such breaks (subject

to limitations in genome assemblies and in the degree of shared history in the genomes). This

approach dramatically increases synteny block size (see Fig 4). Moreover, POInT employs a

very strict and transparent definition of synteny: only genomic neighbors are considered to be

in synteny, meaning that POInT employs no parameters such as a window size that need to be

tuned by the user and that could confound inferences. POInT also employs a robust modeling

framework similar to those used in sequence evolution studies [88] and allows for explicit sta-

tistical tests for the presence of BF. Using this framework, we have shown very strong statistical

support for BF after two independent WGD events: At-α and the grass ρ event, with a ratio of

single copy genes from the less and more fractionated subgenomes somewhere between 3:2

and 5:4, in line with previous estimates [39]. This modeling approach has the further advan-

tage of avoiding the circularity in block estimation: POInT infers parental genome assign-

ments on the basis of shared gene losses, a point we have exploited previously [22, 89–91]. As

a result, POInT effectively recovers the same shared parental genome assignments under a

model without biased fractionation (red/purple blocks in Fig 4) as it does under the BF model.

subgenomes based on their BF patterns. C) For the 16 blocks with more than 100 pillars, we show the estimates of the strength of BF (maximum likelihood estimate of ε;

y-axis) judged solely from that block (block mid-point on the x-axis). These values indicate strong BF in all but three cases: in most of the larger blocks the estimated

strength of BF is nearly identical to that for the full dataset (blue line). For the three blocks with weak evidence for BF (ε�1.0), we further interrogated the patterns of

gene loss (tables at bottom). In two of three cases, the signal of BF is relatively strong along the shared root branch where most losses occurred, with conflicting patterns

on other branches. We attribute these differences to sampling effects among the relatively small number of losses along each branch. For the final block, with coordinates

from pillars 2113 to 2318, the inferred pattern of losses contradicts the subgenome assignment, with more inferred losses from subgenome 1. When we examined the

pattern of synteny breaks in this region, we discovered an anomaly: all of the genomes except Eutrema salsugineum had a synteny break at the end of this block: E.

salsugineum instead had a break six pillars later (the pink shaded region). Hence, this synteny pattern caused the block to be linked to the next, larger, block, giving rise to

the incongruous gene loss inferences. Equivalent figures for the full At-α dataset, the yeasts and the grasses are given as S2 Fig.

https://doi.org/10.1371/journal.pgen.1007267.g004
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Moreover, the simultaneous consideration of multiple genomes allows us to assess if the evi-

dence for BF is consistent across those genomes: our loss estimates for each branch of the phy-

logeny all show BF of roughly similar magnitude, despite the fact that losses on the different

tip branches of the phylogeny in Fig 1 are necessarily independent (an estimate of the BF ratio

is given under each branch of the lower tree in that Figure). Finally, the absence of evidence

for BF on most branches of the post-WGD yeast phylogeny [which was recently conclusively

found to be an allopolyploidy; 82] illustrates that POInT is fully capable of rejecting the

hypothesis of BF when evidence for it is weak (or temporally variable in this case).

One might argue instead that BF favored some chromosomes from one parental genome and

some from another. However, this position is inconsistent with the results of our interaction

Fig 5. Statistically overrepresented GO terms from the cellular component hierarchy associated with At-α duplication status and parental subgenome of origin

(see Methods). On the y axis is the ln(fold-enrichment) of each GO terms among the single copy genes relative to the surviving duplicates from At-α. Dots represent

cellular component terms that are significantly over (positive values) or underrepresented (negative values) among single copy genes relative to duplicates (Bonferroni

corrected P-value� 0.01 and a fold-enrichment of> ± 1.5). On the x axis is the ln(fold-enrichment) of GO terms of genes from subgenome 1 (the less fractionated

genome) relative to those from subgenome 2 (the more fractionated one). GO terms that are overrepresented in genes from subgenome 1 with a P-value� 0.05 after

Bonferroni correction are shown as triangles. Points are colored based on the compartment in question, as indicated in the key at right. The patterns seen for the

“Molecular Function” and “Biological Process” categories of terms are presented in S3 Fig.

https://doi.org/10.1371/journal.pgen.1007267.g005
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data and GO term analyses, since such interactions more often occur between products of genes

from the same subgenome than between products of genes encoded on different subgenomes,

and genes assigned to the same subgenome show consistency in low-level GO term associations.

Likewise, there is a good accordance between the estimates of the strength of BF in three of the

four largest synteny blocks of Fig 4 and the overall estimate: were BF a chromosome-by-chro-

mosome phenomenon, it is difficult to understand why its strength would be so consistent

across blocks.

While POInT represents a significant improvement over analyses of single polyploid

genomes, there are always limitations to any modeling framework. From a practical point of

view, our inferences are limited by the quality of the genomic data used as inputs: the more

fragmented these genome assemblies, the less power POInT has to infer parental genomes of

origin. The inference of DCS blocks by simulated annealing is a costly and computationally

difficult problem, and while our scoring functions are reasonable, they may not be the optimal

method for inferring ancestral genome orders [49]. As mentioned in the Methods section,

there is also a potential for older polyploidies that are shared by the outgroup genome to mis-

lead our scaffolding, although we do not believe this problem was significant here. Finally,

POInT itself is imperfect in how it treats uncertainty in parental genome assignments: the

error parameter θ estimates the degree to which the input data fails to conform to POInT’s

underlying model. While our results above appear to be robust to these various sources of

error, future studies of polyploid genomes with improved approaches could give more refined

estimates of parental genomes of origin and fine-scale temporal patterns of post-polyploidy

gene losses.

Having reaffirmed that BF is a robustly detectable phenomenon in the evolution of poly-

ploid genomes, it is reasonable to try to better understand its origins. In this vein, several of

our observations, which arise from POInT’s unique capacity to probe polyploidy phylogeneti-

cally, serve to again suggest a link between BF and the hypothesized effects of allopolyploidy.

The association of genes that physically interact with the same parental genome is one example

of such an observation. Another is the conclusion that, after the At-α and ρ events, the strength

of BF was uniform in time, but in yeast, BF was associated only with the very earliest stages of

WGD resolution. We have previously found that a very particular group of genes, involved in

DNA repair and mitochondrial function, were returned to single copy immediately after the

yeast WGD [22]. Given the biases in those losses found here, it appears likely that BF in yeast

was a result of selection for the removal of some ohnolog copies in order to prevent the mixing

of genes for these two functions from the two diploid progenitor species. It is likely that the

DNA repair enzymes and nuclear-encoded proteins targeted to the mitochondria have co-

evolved separately in each parental genome (and that only one of the two parents contributed

a mitochondrial genome to the hybridization). If true, these hypotheses would suggest that BF

in yeast resulted from selection to maintain co-adapted genes after hybridization. Because

these losses, in addition to being biased towards one subgenome and a limited set of functions,

occurred very rapidly after the WGD event [15], it is difficult to believe they occurred through

purely neutral processes: the proposal by De Smet et al., [23] that forces such as dominant

negative interactions may have driven selection to favor certain losses seems increasingly plau-

sible. These results also reinforce a point we have made several times before: one’s understand-

ing of the forces acting on a polyploid genome may depend on when in its history you look

[22, 34, 92].

Our analyses are compatible with differences in gene expression driving BF [41, 93]. How-

ever, the BF process does not appear to be solely a product of expression: the presence of co-

evolved modules in the two parental genomes also apparently plays a role. Not only do we see

a strong bias in the retention of DNA repair enzymes and mitochondrially-targeted proteins
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in yeast, but we also see a relative absence of protein-protein interactions between proteins

encoded by different subgenomes in A. thaliana. This hypothesis would also explain our previ-

ous observation that both ribosomal proteins and histones underwent post-WGD gene con-

versions in yeasts [89, 90], as gene conversion represents a second mechanism for resolving

parent-of-origin conflicts induced by polyploidy.

Returning to our point about the timing of post-WGD events, we propose that the process

of BF and the selection that retains some ohnologs to preserve dosage balance are linked. In

this view, some genetic modules [a vague but still useful concept; 94] do not tolerate being

duplicated and are quickly returned to single-copy [23]. Others remain duplicated as pre-

dicted by the DBH [3, 30]. However, these duplications are not necessarily stable over long

timescales [22, 34]: any incompatibilities between the subgenomes will favor one subgenome

when duplicates are in the end lost. The origins of these conflicts most likely arise through

co-evolution between genes in individual genomes [95]. From our GO analyses, it appears

that the effects of this co-evolution decay quickly as one moves away from directly interact-

ing genes: hence many biological processes have “mixed and matched” set of genes from the

two subgenomes.

The three WGD events considered here cannot completely resolve these questions: the

yeast WGD mostly lacks prolonged BF, while the early events after At-α and ρ are difficult to

identify because of the long shared post-WGD branch. In the future, we will perform similar

analyses with the recent Brassica hexaploidy to further refine our understanding of post-WGD

functional evolution. So doing will not only improve our understanding of polyploidy but also

of the nature of the functional links and the degree of co-evolution inherent in the interacting

macromolecules that make up the cell.
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