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Scanning Tunneling Microscopy currents on locally disordeed graphene
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We study the local density of states at and around a suldsgjtirpurity and use these results to compute
current versus bias characteristic curves of Scanning dlintnMicroscopy (STM) experiments done on the
surface of graphene. This allow us to detect the presencebstituting impurities on graphene. The case of
vacancies is also analyzed. We find that the shape and mdgrifuhe STM characteristic curves depend on
the position of the tip and on the nature of the defect, withdtrength of the binging between the impurity and
the carbon atoms playing an important role. Also the natfithelast atom of the tip has an influence on the
shape of the characteristic curve.

PACS numbers: 73.20.Hb, 73.23.-b, 81.05.Uw

I. INTRODUCTION grown epitaxially on SiG2:2%:2”and mechanically exfoliated
graphene on Si©!®:28:29.30.310yr results can be used to in-
12 . terprete the STM signal when the tip comes close to a sub-

_ Graphene“ consists of a monolayer of carbon atoms form- ity ting impurity. A related study, computing the LDOS for
ing a two-dimensional honeycomb lattice. It has been '”te”'point deffects in graphene, using first principle methodas w
sively studied due to its fascinating physical propeftiesd recently performed? A study of the LDOS starting from the
potential applications. The honeycomb lattice consistsvof i 5c equation considering the effect of magnetic impesiti
triangular sub-lattices and this is responsible for thedirdis- a5 also recently consider8#The effect of local potentials
persion of the low-energy excitations and for a pseudospin d \yith finite strength was studied in R&f34.
gree of freedom for electrons in graphene. Many of the novel In Section(l we present the tight binding model and the
properties of graphene follow from these two facts. Becausg; oen's function formalism used. For a single localized-sub
of the Dirac spectrum, di_sorder can have a significant. efrecgtitutional impurity, the Green'’s function can be obtairesd
on the electronic properties of graphene, the effect besng e actly in closed analytical form. In Sectignllll we discuss re

pecially strong when the chemical potential crosses thadir sults for the LDOS and in Sectigm]lV the results for the tun-

pomt._t_ExEr’Lr?Gs’;%;jlsozde_r ml griphfghleo,ﬁ?lg bde 'nclghﬁ for(;n Ofneling current are presented. Sectioh V contain further dis
IMpUrtties; opoogical detects; edges,= an cussions and conclusions.

substrate corrugatiod8.In addition, there is also disorder in
the form of intrinsic ripples in the structure of graphéfié’:18
Disorder in graphene occur naturally, but can also be indluce

if this is advantageous, to tailor its transport propertigisis Il.  CALCULATION OF THE GREEN’S FUNCTION FOR
is the case for the recently produced material grapR&ne. DISORDERED GRAPHENE

Among the several possibilities, the replacement of a qarbo

atom by a different atom can occur. Atomic substitution in a A. Basic definitions

carbon honeycomb lattice is chemically possible for bo&jn (

and nitrogen (N) atoms. There have been several experimen- | ot ys consider that a carbon atom on the otherwise perfect

tal stu_d|e§2cifB and N substitution in highly-oriented pyt@  |atiice of graphene has been replaced by a different type of

graphite??! graphitic structure&; and nanoribbong’ atom. What will happen is a renormalization of both the on-
In a previous publicatic¥ the problem of chemical substi- Site energy and the hoping parameter between that atom and

tution in graphene has been considered, and the local gensithe nearest neighbor carbon atoms. If the hoping paramieter o

of states (LDOS) and local electronic structure and chaigge d clean graphene isthen the hoping between the impurity atom

tribution have been numerically calculated. In this worle, w and the carbon atoms can be parameterized by an additional

extend the calculation of the spatial dependence of the LDOSONstant denoteth, as shown in Fig. [{1). The value &f

at and around the impurity using analytical methods and excan be varied: if the impurity atom is strongly coupled to the

tending the calculations for energies way beyond the Diragarbon atom¢, will be negative; if, on the other hand, the

point, an essential ingredient for the calculation of Sdagn  coupling is weak, will be positive. The Hamiltonian of the

Tunneling Microscopy (STM) currents at finite bias. Using System will be that of clean graphene and a term representing

these results we perform theoretical calculations of theels  the renormalization of the hoping, as explained below.

ing current versus bias characteristic curves of STM studie Let us first introduce some definitions for latter use. The

on graphene surfaces with dilute substitution impuritilse ~ honeycomb lattice has a unit cell represented in [Hig. 1 by the

STM technique is one of the most powerful tools for study-vectorsa; andas, such thata:| = |az| = a, with a ~ 2.461

ing surfaces. This is particularly convenient for the stofly A. In this basis any lattice vectd® is represented as

graphene, which is two-dimensional and exposed to the STM

tip. There has been several STM studies of both graphene R =na; + mas, (1)
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an impurity atom

FIG. 1: (color on line) The honeycomb lattice with a subsititgy
atom replacing a carbon atom. The local hopping parametarges
from¢ tot¢ — to around thed atom. We assume all oveér= 3 eV.

with n, m integers. In cartesian coordinates one has,
ag ago
a; = ?(37\/570)1 as = ?(37_\/570)1 (2)

whereaq = a/+/3 is the carbon-carbon distance.

If periodic boundary conditions are used, the Bloch states

are characterized by momentum vectors of the form

my

k =
Ny

ma
bl + EbQ ; (3)

with m; andms a set of integers running fromto Ny — 1
and from 0 toN, — 1, respectively. The numberg, and N,
are the number of unit cells along tlae anda- directions,
respectively. The total number of unit cells is, therefdvg =
N1 N,. The reciprocal lattice vectors are given by:

2 2
bi==(1,V3,0), b= (1, -v3,0), (&
0

3&0

The vectors connecting any atom to its nearest neighbors

read:
b= W(1,VE0) = %(al — %a,), (5)
5y = %(—1,—\/5,0):%(@_2@), (6)
85 = ao(1,0,0) = %(a1+a2) 7

Using the above definitions the Hamiltonian for this prob-

lem can be written as
Hy = —t» [a(R)b'(R) + a(R)V' (R — ay)
R

+ a(R)D'(R—ay) + h.c], (8)

which represents clean graphene (the spin index is omitted f
simplicity of writing), and the perturbation due to the inmjy
atom is

Vi = tola(0)bT(0) + a(0)bf (—as)
+ a(0)b'(—ay) + h.c]. 9)

It is assumed that the impurity atom is in the unit dgll= 0,
but there is no loss of generalization due to this choice. In
the particular case a@f, = ¢, the scattering terrix; represents
a vacancy, since the impurity atom is completely decoupled
from the carbon atoms. It is important to keep in mind that in
a given unit cell bottA and B type of atoms are described by
the same vectaR.

The calculation of the electronic properties of graphenre re
quires the calculation of the corresponding Green’s fumatj
whose definitions are

Gaalk,q,7) = — (T [ar(7) al(0)]) , (10)
Guw(k,q,7) = — (T [be(r) b}(0)]) , (11)
Gap(k,q,7) = — (T [ax(7) b}(0)]) , (12)
Gra(koq,m) = — (T [be(7) af(0)]) ., (13)

and their Fourier transform to the Matsubara represemtatio
are given in the AppendixJA for the case of a perfect lattice.
Of particular interest to our calculations is the momentom i
tegral of the retarded diagonal Green'’s function

Ghalw) = NL Z Ghalk,w). (14)
C ok

The integral is best performed using the density of states of
the honeycomb lattice. Since we want to take into account
the non-linearity of the bands, which allows us to descitige t
properties of the system at large energies and not only those
the Dirac point, we have to use for the density of states an ex-
pression that goes beyond the usually used linear depeadenc
of this quantity on energy. In a previous wéfkve derived

an expansion for the density of states (per unit cell, par)spi
valid for energies up te- 3 eV, reading £ = hw)

2F 2E3 10E°

FE) ~ + + . 15
o(E) V3mt2 33wt 27/3ntb (15)
The imaginary part o6 , (w) reads
3GhAw) = ~Fplhw). (16)
and the real part has the form
~ (hw)?
RGYA (W) = Pi(hw) + Po(hw) In D2 = (hw)? 17)

whereP; () and P> (z) are polynomial functions given by

x 5 T g 3
Pia) =~ — 3o (§Dc+x ) , (18)
3
Pyz) = = 4 2 S (19)

D2 T 3ep2 T orpeat

The energyD. is a cut-off energy chosen @ = /3¢,
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B. Exact Green’s Functions This is best accomplished using the equation of motion
method. The equations of motion for the Green'’s functions

We now want to determine the exact expressions for th&an be readily established, and read
Green'’s functions in the presence of the substituting atom.

iWnGAA(Wn, kvp) = 5k,p + t¢( )GBA(wna k p 0 Z ¢ k/ GBA(wnv k 7p) (20)

’ t
iwnGpa(wn, k,p) = t¢"(k)Gaa(wn, k., p) — ]\?C ZGAA wn, K p), (21)
iwnGap(wn, k,p) = té(k)Gpp(wn, k,p) — — Z¢ k')Gpp(wn, k', p), (22)
iWnGBB(Wn, k:,p) = 5k:.,p + to* ( )GAB (Wna k p Z GAB Wna ap) (23)

[
The complex numbep(k) is defined as D(wy) = (t —to)(1 — to/t) + iwn 2ty — 3 /)G 4 (w)(30)
p(k) = 1+ekar peika

= 14t (Fs01) | gik(85-82) (24) GO u(wn) = ZGAA (wWn, k), (31)

which is the form factor of the threB atoms as seen by an

atom in A. The above set of equations can be solved exactlyang

The fact that the scattering tervi) depends o (k) and that .

a single impurity breaks particle-hole symmetry of the eyst %0 _ 20

implies a complex form foff’-matrix. In fact, the general ex- Gaalwn) = N, Z [¢(R)"Gas(wn, k) (32)

pression for the Green’s functions does not have exactly the

same form as in the case of one-band electrons. The solutiofhe result[(2B) has the appropriate limiting behavior: when

of the equations of motion is rather lengthy and in the course, — ¢ one obtaingiw, )™, which agrees with({25); when

of the solution we use the two following identities: to — 0 one obtaing?Y , (wy, p), which is the result for the
perfect lattice.

. Finally, the exact solution foG 4 4 (w,,, k, p), considering

tn Xk: Gaa(wn, k,p) = 1+(t—to) Zk: ¢(k)Gpa(wn, k. p),  gp arbitrary value ofy, has the foIIOV\(/ing struz:ture

k

25
and B3 G k) = Gp Gl (wn k) + Gs (w0 ) D)
+ g(wn) + G%A (Wn, k)TAA(kvpa u}n)G%A(Wn,p) ) (33)
toz = —[(iwn)? + zto(t — to)] Zq&(k)GBA(wn, k,p) with
t2 GY 4 (wn,
ot 360" Caa (s op) (26) olon) = 3 B halen), (34
with ( /)
1 to(l —to/t
1 Y(wn) = ——=7—— 35
= D lok). (27) ) = 5 = Bl (35)
‘K
The use of the relations (R5) aid [26) leads to andTs4(k, p,wn) given by
N1 (p, wn) _ i t(tO - t)|¢(k)|2 — (iwn)2
% GAA((U»,“ k,p) = m s (28) TAA(kapa wn) NCtO zwnD(wn) . (36)
with the following definitions Clearly, the solution[(33) does not have the simple form of

- the T'—matrix as in the case of the solution of the scattering
Ni(p,wn) = (t — t0)GY 4(wn,P) +t0G%Y4(wn), (29)  problem by a local potential in the single energy-band case.



The calculation folG s 5 (wn, k, p) proceeds along the same
lines and gives

ooy 2 |hel (1 hwl? 1]t 2L
G, b, ) = G p Gy (s o) + pue) = I\ el Talhel P9 )
+ GOBB(wnvk)TBB(kapawn)GOBB(wnap)7 (37) (42)
with
with T (k, p, w,) given by )
16" (k) (2t — to)Ho(p) L) = |1+ —1 ( L )] (43)
_ — to)tto w) = — 7| — = .

It is interesting to note that is the case of Eq_1(37) thelt is also possible to deterr_nine generql analytical expoass
T—matrix has the traditional form. So, as long as one doefor £4(0,w) andpp(0,w) given an arbitrary value of, but

not sit on top of the impurity atom, the scattering equationsiue to the form oD (iw,, ) which in this case depends on both
are similar to those of the scattering of the electron gas by 42ndto, the final result is somewhat cumbersome. However,
local potential. The exact resulfS{33) ahdl(37) is what &dhe if really needed, it is stra|gh'Ff0rward to use the full edoas

to discuss the behavior of current versus bias in STM expeffor G4 andGpp and the given expressions fof4(w) to

defect.
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Ill. LOCAL DENSITY OF STATES
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As we will see later, the properties of the STM current will

depend on the local density of states below the tip of the mi- oLt L sler b L) ol L
croscope. We therefore have to compute this quantity fer dif 7
ferent circumstances. Because each unit cell is identifjed b r
a single vectorR, the local density of states (per spin) atthe £*° 008"
atomsA and B of the unit cell localized in the positioR is S 0.04
defined as 8 i
0.5 0.02
pe(Row) = —— G (R Rw),  (39) 0 0
(&

with G4, (R, R,w) (z = A, B) obtained from
FIG. 2: (color on line) Local density of states (LDOS) at tmét gell
Geo(R, R wy,) = Z e*=P) R (k,p,wy,), (40) R = 0forthe A andB atoms and different values of in electron-
kp volt. In panel (a) we plot the density of states of clean gesyghand
the LDOS at theB atom near a vacancy at theatom of the same
after the usual analytical continuation — w + i0* of the unit cell. Forto = 1, pp(0,w) is multiplied by 10 for clarity.
Matsubara Green’s function.

Let us first consider the cagg = ¢. With this choice thed In Figure[2 we plot the local density of states for different
atom is disconnected from the rest of the lattice and in ihkis s values ofty. In panel (a) of that figure we represent the density
uation the momentum sum over the fGlly 4 (w,,, k, p) reads  of states at & site in the unit cell where a vacancy exists in

the A atom of the same unit cell. The most significant feature
Z Ganlwn, k,p) = L 7 (41) is a development of a Iogarithmic divergence at zero energy.
W Therefore the clean density of states (also shown for compar
son) is strongly modified by the presence of such a strong po-
which corresponds to an isolated atom. As a consequence thential. For a moderate value f the change of the hoping is
local density of states is a delta function and no chargestran not strong and the density of states at bothAhend B atoms
port can take place through that atom. In the material thisetain the linearity of the clean density of states closento t
situation never happens and therefore we can interpreigd thDirac point. However, the absolute value of the two dendity o
result as the case where there is a vacancy in the latticeeThe states are not the same and a clear deviation from linearity i
fore the presence of a vacancy can be detected by its influenseen to take place for lower energies when compared with the
on the electronic density of states of the neighboring atomslean case. If the impurity atom binds strongly to the carbon
(the B atom in the case of Fifl] 1). Using only the first term in atoms {; = —1) there is an increase of the density of states at
Eq. (I5) it is possible to derive a relatively simple expi@ss the neighbor atoms at the expenses of the density of states of
for the local density of states at tli&atom near the vacancy, the impurity. On the other hand, if the impurity binds weakly
reading to the carbon atomg{ = 1), the density of states increases

k



0.010¢

at the impurity and strong resonances develop on the impu- "[— ey
rity density of states. Clearly these different behavidrthe 001z 2= YA
density of states will show up in the tunneling current.

It is also instructive to compute the local density of states
as one moves away from the defect. This amounts to perform
the Fourier transforms for finitd& in Eq. (40). In the case
of G4 (R, R,w) the calculation of the integrals is facilitated
by the fact that the momentum space Green’s function on the
sub-latticeA depends on¢(k)| only, whereas in the case of
the Green'’s function on th8 sub-lattice this in not the case.
Besides for finiteR the useful relatior (A9) is valid no more.
However, for largeR = | R| values when compared tg . e.

a way from the defect, the details of the lattice are no longer — 0.004- - 90104l 00102t
important and the behavior of the local density of states at Riay Riag Riag

both theA and B sub-lattices must be similar. We will there-
fore give the density of states as function|#| for the A
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At : : FIG. 3: (color on line) Local density of states (LDOS) at diste
sub-lattice only. Performing the Fourier transforms usimg R from unit cell R = 0, where the impurity is located for different

Dlrac_ cone apprOXImatlon (this is not a restriction, bul]_dsel values ofty. The energy igiw = 0.5 eV. The case of the vacancy is
keeping the final result not too cumbersome) one obtains (fof, ilustrated.

the retarded function)

Goo(R, R,w) = NG, (w)+ N, Alw o), (44) electrons in the tip. This choice essentially correspoinds t
AT eraa “272v2 D(w) ’ represent the tip by a metal with a large bandwidth. Given the

) above, the Hamiltonian for the tip has the form
wherevr = 3aot/(2h) and©(w) can be written as

e@pm(m/nz)%mw), wy TV > [ef(n=D)e(n) +e(n)c! (n—1)] + Ho,, (48)

and H, representing the Hamiltonian of the last atom of the
tip. This choice corresponds to the assumption that thaserf
atom of the tip has a different nature from the atoms in thie bul
of tip. We therefore represeii, by

with .Jo(x) the Bessel function of integer order= 0, and i t t

finally I, (w) is the Cauchy principal value of the integral Ho = o’ (0)e(0) = Wa[e!(=1)e(0) + c(0)c'(=1)] . (49)

wherel (w) is defined as

I(w) = I(w) — irsgn(@)Jo(w|R/vr)  (46)

It is essential that the Hamiltonian of the tip to be représegn
felt | 2ado(x) b i-infinite metal, since otherwise th Id be-el
Io(w) :][ d ’ (47) y a semi-infinite metal, since otherwise there would be-elec
0 a? — a2 trons reflected at the far end of the tip modifying in this way
. . . the tunneling current. Finally we need to include the tunnel
which can be evaluated using standard numerical method%g of the electrons of the tip to graphene. There is a number
and we also have. = 2./7/(v/3v/3a0), ande = wR/vp.  of ways we can do this. Here we assume that the coupling is
In Figure[3 we depict the local density of states at the carbofnade directly either to the impurity atom or to the next neigh
atoms located in thel sub-lattice, computed using Ed. {39). bor carbon atom. This choice corresponds to probing the loca
The typical oscillations in the density of states close te im electronic properties at or around the impurity. More gaher
purity centers are clearly seen. Note that as one moves awaypes of coupling are easily included in the formalism. We
from the impurity the density of states approaches that®f thyrite this coupling as
clean system. The Friedel oscillations in graphene can be ob
tained from integrating the density of states up to the Fermi Hy = —Wa[c' (0)d(0) + d'(0)e(0)], (50)

energy. . . .
9y where the operatai(0) can represent either the impurity atom

at theA sub-lattice or the carbon atom at tBesub-lattice.

IV. CALCULATION OF THE TUNNELING CURRENT Since the Hamiltonian of the prOblem is bilinear we can
write it in matrix form (of infinite dimension) as

We now want to compute the tunneling current between H, Vi 0
the tip of an STM microscope and graphene, when the tip is H= Vvl Hy, VI (51)
closed to an impurity atom. We model the tip by a one di- OL Vi le

mensional tight-binding system, a standard appré2é#Our
results will not depend significantly from this choice asgon where the matrice¥;, andVy represent the coupling of the
as we assume a large value for the hoping parameter of tHast atom in the tip of the STM microscope to the bulk of the



tip and to graphene, respectively, aiglandH, stand forthe was introduced in the context of transport through systems
bulk Hamiltonians of the tip and of graphene, including thethat have bound states, showing that the problem can be re-
impurity potential[(9), respectively. duced to the solution of kind of quantum Langevin equaffbn.
The tunneling is a local property, controlled by the couglin ~ The general idea in this method is that two perfect leads
of the last atom of the tip to the bulk atoms and to grapheneare coupled to our system, which is usually called the device
Since we want to compute local quantities, this is best aecomn our case the device is defined by the last atom at the tip
plished using Green's functions in real space. The full @se of the microscope. The Green’s function of the device has

function of the system is defined by to be computed in the presence of the bulk of the tip and of
- N graphene. This corresponds to @iff, Green’s function. Be-
(1E+i0" - H)G" =1, (52)  sides the Green’s function we need the effective coupling be

tween the last atom of the tip and the bulk atoms as well as

where we have chosen the retarded function (denoted with the 4t 1o the graphene atoms, which are determined in terms of
+ superscript), and is the identity matrix. The matrix form 4,4 self-energies

of the Green'’s function is

] _
G Gro Gy I'n/r= %(ZZ/R -3 R)- (59)
Gt = | Gop Goo G | - (53)
Ggp Ggo Ggg Therefore the effective coupliniy, /» depends on the surface

i ) ) , Green'’s function of the tip and of graphene. According to the
The quantity of interest i6/qo, which can be shown to have general theory, the two systems (bulk of the tip and graphene
the form are in thermal equilibrium at temperatufs, z and chemical
potentialy.r, r and are connected to the system at some time
to. The bottom line is that the total current through the device
is given by (both spins included)

Gl =(E+i0T —eo — 3] —X7), (54)

where the matriceE; andX}; are the self energies and have
the form 9 [
= dET(E)[f(E,pr,TL) — f(E, ur, Tr)],
Sp=WIGT,  Sh=WiGL, (55) e (60)
where the Green's function§ and G, are the surface wheref(z) is the Fermi-Dirac distribution and the transmis-
Green's function of the Hamiltoniarig, andH,, at the impu- ~ SionT'(E) is given by
rity unit cell (zx = A, B), respectively. Note that the quantity

. . . . . _ 2 + —
G} is computed using Eq_{#4) makitg = 0. It is possible T(E) = 47" Tr[L LG 'rGool - (61)
to find a close form fot7,, as we have shown in the previous . Co .
section. Also forG+ a close form exis§:32.40 Performing the trace (which in this case is only a product of

complex numbers) we obtain
GY =[E+i0" - V2GHt. (56) )
T(E) = AWiW3SGHSG, |G| (62)
The solution of Eq.[{36) is elementary and reads
P , Figurd4 represent8( ) in several conditions. In the clean
+_ Y Jav2_ g2 case, we see the effect the Dirac point has on the transmis-
@ 22 2v2 aVE- B S sion, leading to a suppression of the tunnelling for- 0. It
is also clear that the parameters characterizing the last at
of the tip strongly influences the form @f(E), leading to an
E son(E asymmetry between negative and positive energies due to the
Gy = vz gzv(Q )\/ E? —4V2, (58)  finiteness of,. When a vacancy is present at tHesite, the
tunneling through the neareBtsites is strongly modified rel-
for B2 > 4V2. atively to the clean case, with strong tunneling taking elac
Our goal is to study the STM current at finite bias, which isat energies very close to the Dirac point. When an impurity
a particular case of non-equilibriumtransport. Thisiselos-  atom sits at thed site the behavior of the tunneling probabil-
ing the non-equilibrium Green'’s function method or Keldyshity depends on the coupling between the impurity and the car-
method. This method is particularly suited to study themegi  bon atoms. In the case of weak coupling to the carbon atoms
where the system has a strong departure from equilibrium(f, > 0) the tunneling through thd atom is facilitated rela-
such as when the bias potenfiglis large. We consider, how- tive to the tunneling between the nearest carbon atoms. When
ever, that the system is in the steady state. Since the semirthe impurity is strongly coupled to the carbon atorys< 0),
paper of Carolet al. on non-equilibrium quantum transpdtt,  the reverse happens. This behavior is easily understou si
that the method of non-equilibrium Green'’s functions st@art strong (weak) coupling to the carbon atoms is equivalent to
to be generalized to the calculation of transport quastitie  a weak (strong) coupling to the tip of the microscope, lead-
nanostructures. There are many places where one can findray to weaker (stronger) tunnelling probability from the to
description of the methot#® but a recent and elegant one graphene.

for E?2 < 4V? and
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FIG. 4: (color on line) Transmission coefficieN{ ) as function of ~ FIG. 5: (color on line) Transmission coefficiefi{ ) as function
the energy for zero bias. The fixed parameters are:3.0, V =1, of the energy for finite bia¥, = 0.5 volt. The parameters and the
W1 = 0.9, W2 = 0.2, all in electron-volt. Panel (a) depicts the case description are the same listed in the caption of Elg. 4. Trergy
of clean graphene and two different valuescf Panel (b) depicts scale in the case of the vacancy was increased in order thedmt
T(F) through aB site when a vacancy sits at thesite. Panel (c) energy behavior close to the Dirac point.
depictsT'(E) throughA and B sites, when an impurity sits at thé
site, takingto = 1 eV andeg = 0. Panel (d) is the same as panel (c)
forip = —1eV. between the negative and positive valued/nf For the clean
case, it is clear that the magnitude of theurrent does not
All the above discussion applies to zero bias voltage. Wherﬂjle,':emll,[mué;/h 0_:_1hthe chemlctal p(:ter:ﬁal, and therefore((:)n the
finite bias voltage is applied between the tip and grapheneqa.evo age/,. 1he same IS frue for the vacancy case. L.om-
panng the curves for the vacancy and for the clean case, we

the behavior of the curves change. We will consider tha ; :
the chemical potentials of the tip and of graphene differ by;see that the order of magnitude of the current is the same, but

the electrostatic energyl;,, whereV,, is bias potential. This
amounts to change the on-site energies relative to thaieval
in equilibrium. We choose to change the on-site energies
the tip byeV; /2 and those of the carbon atoms by}, /2. In

he shape of the curves is notoriously different from thahef
clean case. When the impurity is weekly coupled$ 0) to

Oﬁhe carbon atoms, the tunneling current is facilitated ugro
the impurity atom, as can be seen from panel (c) of Fig. 6,

: . L ; with an absolute value five times larger figg=1 volt. Also a
Figurely we depicf (£) for a finite value of the bias),. The clear jump is seen iy (panel (c)), a finger print of the res-

most distinctive difference relative to the case of zer liga nances in the density of states seen in panel (c) of Big. 3.

the energy asymmetry induced by the bias relatively the Cas%ne note that in Fig.13 the resonances are symmetrically po-

of zero bias, even whefy = 0. " . - . o
The calculation of the current also depends on the chemicﬁmone.OI relatively to the Dirac point, but th|§ 1S not so te
mps in the current. The reason is due to finite on-site gnerg

potential. In the case of graphene this can be tuned by a ba&% . ! .
: the atom in the tip of the microscope. On the other hand
gateV,. The relation between the back gate voltage and th or strong coupling, Sanel (d) of Fifg 6,pthere is not much dif

chemical potential of graphene obeys the relation ference from the clean case, apart from the fact that tumgeli
current through the impurity or the neighbor carbon atom has
different magnitude.

Another important quantity to fully characterize the STM
current is the shot nois®.For interacting systems this quan-
tity gives information on the possible existence of quasi-
of SiO,, d = 300 nm, the thickness of the SiGubstrate, and particles with fractional charge. On disordered systenth wi
e the elementary charge. Taking a typical valué/pf= 100 no interactions, information on transport open channets ca
V we obtaing = 0.3 eV, which is the value we assume for the be obtained. For fermionic non-interacting electrons ab ze
chemical potential in the calculations below. Since we willtemperature the shot noise is definetfas

meegVy

de (63)

w=uvph

which is numerically equal tp. = 0.03v/V, in electron-volt.
The parameters in EJ_{B3) are= 3.9, the dielectric constant

perform our calculations at zero temperature, the curient i
given by

2¢ [H—eV/2
J = —/ dET(E, V). (64)
m

b Jyurevi/2

The results for the calculation of versusV; is depicted in
Fig. [8. Looking at them, we see that there is an asymmetry

g E/#L
h KR

dE T(E)[1 - T(E)].

F=—.

eJ

The relevant quantity is nof directly but the Fano factét
defined as

(66)

(65)
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ical potential is zero, the value @f(£') quite small due to the
presence of the Dirac point, and the Fano factor take the lim-
iting value ' = 1. For the vacancy, we obtain much smaller
values ofF’, which is indication of the presence of the strong
resonance seen in the local density of states for this case,

_0,02; : L : ] which leads to an increase of the transmission. It should be
] ‘ ‘ — ‘ noted that in the cases of finitg, the concavity of the curves
0.008 @7 for F as function ofl/, allows to distinguish the case of week

0.006
0.004
0.002;

couplingty > 0 from the case of strong couplirig < 0.

-0.002
-0.004

P I L N P

V. DISCUSSION AND CONCLUSIONS

N

Vp (SOH) ’ ) \'A (eolt) ) ) i ) i
We have studied in detail the electronic local density of

states in graphene close to a substituting atom. This quan-
FIG. 6: (color on line) Current/ as function of the bias voltage tity turns out to be important in STM experiments, since the
Vs. The parameters are the same listed in the caption ofFigd4 antunneling of the electrons from tip of the microscope to the
€0 = 0.2 eV. Panel (a) represents the clean the case for two valuesample is determined by this quantity. The shape and mag-
of the chemical potentigk. The case of the vacancy is representednitude of the tunneling current depends on the nature of the
in panel (b), also for two values of the chemical potentianét ()  substituting atom. In the case of the vacancy the shape of
represents the casg = 1 eV for . = 0.3 eV, and panel (d) isthe  the tunneling current has a very different signature from th
same as (C) fofo = —1 eV. In panels () and (d}l and B referto  ,ipar cases. Also the magnitude of the current depends on the
tunneling through the atom siting on sub-latti¢®r B, respectively. strength of the bonding between the impurity and the carbon
atom.
The curves we have presented here are only indicative of the
When the transmissioff’(E) is strongly reduced we have general behavior of the density of states and of the tungelin
F — 1, and noise is said poissonian. On the other hand, ifurrent. In order to obtain experimentally relevant cunwes
the system has a finite density of open chanriBig;) — 1,  should have real numbers for the parameters of the tip, with
we haveF < 1 dueto[l — T(E)] < 1. In Figure[T we plot  special importance for the last atom of tip. Also the parame-
the Fano factor as function of the bias voltage. ter W5 could be modeled more accurately by introducing the
spatial dependence between the tip and the graphene surface
________ Density functional calculations can be used to model the tip
in realistic way.

In our analysis we have consider that the electrons can only
tunnel from the tip to the atom underneath, but when the tip
is between two atoms the tunnel will take place to more than
one atom. However, in this case the amplitlitigis strongly
reduced and the tunneling current will show a minimum. In
fact it can be shown that the self energy has in this case the
form

1

0.998
0.996
0.994

w L
0.992
0.99
0.988—

o.ﬁs\@;

B

\
.

. Sk=W3(Gha+GEp), (67)
t=1 e\7\\\
L 9 assuming the tip exactly in between tHeand B atoms, and
-1 0 1 z . .
v, (volt therefore the value of the current will be controlled mainyy
the value ofi?/,.
As we have seen in the calculation of the density of states,

FIG. 7: (color on line) Fano factaf” as function of the bias voltage o case of weak coupling leads to the appearance of reso-
V». The parameters are the same listed in the caption oflFigd4 an onces at large energy values. The scan of the bias in our

€0 = 0.2 eV. Panel (a) represents the clean case for two values of the . - ; -
chemical potential: —0 andy —0.3 eV. The case of the vacancy is calculations did not reach these energies, but if it doesarcl

represented in panel (b), also for two values of the cherpiintial. ~ Signature will be seen in the tunneling current. Also, foedix

Panel (c) represents the case= 1 eV for u = 0.3 eV, and panel  Pias, moving the tip away form the impurity will show oscil-

(d) is the same as (c) fap = —1 eV. In panels (c) and (d)d and  lations in the STM current.

B refer to tunneling through the atom siting on sub-lattiter B, One ingredient not included in our model is the effect of

respectively. on-site energies at the impuriti€sAs a consequence, a nat-

ural question is whether our results are strongly modified if

Clearly, for all case but the vacancy, the Fano factor issclosthis effect is included. One should note that the values ef th

to the poissonian valugs = 1. WhenV;, — 0 and the chem-  on-site energy and the hopping are correlated with eachr othe

Al Ly Ly LAy

N[ T T T T TNt
I
I
@
7




in the case of boron and nitrogen impurities. When the hopFrom these, the integrals {31) andl(32) are defined as

ping in enhanced the on-site energy is positive relatively t
that of the carbon atoms. In this case, the results of ouuealc
lations in the present work show no qualitative changes from
the more general model, as more detailed calculations show.
In the case of reduced hopping, the same resonances we see in
the local density of states of our work are also present in the
more general approach, but their position in energy changes
and an asymmetry of those resonances relatively to the Dirac
point develops. One should also note that the different ehem
ical nature of the atoms making the tip of the microscope also
induces an asymmetry in the current, even when the LDOS
does not show such asymmetry. Therefore, a careful study is
needed to disentangle the effects from the tip and from &finit
on-site energy at the impurity atoms.

Another relevant question is whether the the resonances see
in the density of state will broaden so much when the con-
centration of impurities increases leaving no trace of them
in the LDOS. Our calculations naturally refer to the diluted
limit, where the distance between impurities is large. When
the concentration increases the resonances will broadegn, b
their finger prints still remains in the LDO%.In Ref.|48, Fig.
13(a) shows that the resonances remain well defined even for
concentration of impurities up to 10%. It is not possible to
give a characteristic length at the Dirac point such thavabo and
it the impurities could be considered to act isolated. This i
so because Fermi momentum is zero. One was therefore to
rely on numerical calculations with a varying concentnatio
of impurities as in Rel. 48.
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GO A (wn) = iw, / (zri(l)EQi)iEEQ , (A6)

~0 _iwn, [ E?p(E)dE
Gaalwn) = 72 m

= —jwpt 2+ (z’wn)Qt*QC_vﬁA(wn) , (A7)

pE) = 15 [ ERsE o). (a8

whereA. = 3/3ao/2 is the area of the unit cell. With the
above definitiorp(F) is finite in the energy range < F <
APPENDIX A: FREE PROPAGATORS AND USEFUL 3t. In addition we also have the useful relation

RELATIONS

The propagators for the perfect lattice ake<{ 1)

G on) = g A
Gl kod) = 4D
Ghalon k) = i 9
G (o by p) = —kep V) (Ad)

(iwn)? — 2o (k)|*

> d(k)GY 4 (wn k) =

¢" (k)G a(wn, k)
k

CX)|QZ E‘M

Ghalwn) . (A9)

(A5)  Similar equations hold fo% ;.
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