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Scanning Tunneling Microscopy currents on locally disordered graphene
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We study the local density of states at and around a substituting impurity and use these results to compute
current versus bias characteristic curves of Scanning Tunneling Microscopy (STM) experiments done on the
surface of graphene. This allow us to detect the presence of substituting impurities on graphene. The case of
vacancies is also analyzed. We find that the shape and magnitude of the STM characteristic curves depend on
the position of the tip and on the nature of the defect, with the strength of the binging between the impurity and
the carbon atoms playing an important role. Also the nature of the last atom of the tip has an influence on the
shape of the characteristic curve.

PACS numbers: 73.20.Hb, 73.23.-b, 81.05.Uw

I. INTRODUCTION

Graphene1,2 consists of a monolayer of carbon atoms form-
ing a two-dimensional honeycomb lattice. It has been inten-
sively studied due to its fascinating physical properties3 and
potential applications. The honeycomb lattice consists oftwo
triangular sub-lattices and this is responsible for the linear dis-
persion of the low-energy excitations and for a pseudospin de-
gree of freedom for electrons in graphene. Many of the novel
properties of graphene follow from these two facts. Because
of the Dirac spectrum, disorder can have a significant effect
on the electronic properties of graphene, the effect being es-
pecially strong when the chemical potential crosses the Dirac
point. Extrinsic disorder in graphene can be in the form of
impurities,4,5,6,7,8 topological defects,9,10,11,12edges,13,14 and
substrate corrugations.15 In addition, there is also disorder in
the form of intrinsic ripples in the structure of graphene.16,17,18

Disorder in graphene occur naturally, but can also be induced
if this is advantageous, to tailor its transport properties. This
is the case for the recently produced material graphane.19

Among the several possibilities, the replacement of a carbon
atom by a different atom can occur. Atomic substitution in a
carbon honeycomb lattice is chemically possible for boron (B)
and nitrogen (N) atoms. There have been several experimen-
tal studies of B and N substitution in highly-oriented pyrolytic
graphite,20,21graphitic structures,22 and nanoribbons.23

In a previous publication24 the problem of chemical substi-
tution in graphene has been considered, and the local density
of states (LDOS) and local electronic structure and charge dis-
tribution have been numerically calculated. In this work, we
extend the calculation of the spatial dependence of the LDOS
at and around the impurity using analytical methods and ex-
tending the calculations for energies way beyond the Dirac
point, an essential ingredient for the calculation of Scanning
Tunneling Microscopy (STM) currents at finite bias. Using
these results we perform theoretical calculations of the tunnel-
ing current versus bias characteristic curves of STM studies
on graphene surfaces with dilute substitution impurities.The
STM technique is one of the most powerful tools for study-
ing surfaces. This is particularly convenient for the studyof
graphene, which is two-dimensional and exposed to the STM
tip. There has been several STM studies of both graphene

grown epitaxially on SiC,25,26,27and mechanically exfoliated
graphene on SiO2.15,28,29,30,31Our results can be used to in-
terprete the STM signal when the tip comes close to a sub-
stituting impurity. A related study, computing the LDOS for
point deffects in graphene, using first principle methods, was
recently performed.32 A study of the LDOS starting from the
Dirac equation considering the effect of magnetic impurities
was also recently considered.33 The effect of local potentials
with finite strength was studied in Ref. 34.

In Section II we present the tight binding model and the
Green’s function formalism used. For a single localized sub-
stitutional impurity, the Green’s function can be obtainedex-
actly in closed analytical form. In Section III we discuss re-
sults for the LDOS and in Section IV the results for the tun-
neling current are presented. Section V contain further dis-
cussions and conclusions.

II. CALCULATION OF THE GREEN’S FUNCTION FOR
DISORDERED GRAPHENE

A. Basic definitions

Let us consider that a carbon atom on the otherwise perfect
lattice of graphene has been replaced by a different type of
atom. What will happen is a renormalization of both the on-
site energy and the hoping parameter between that atom and
the nearest neighbor carbon atoms. If the hoping parameter of
clean graphene ist then the hoping between the impurity atom
and the carbon atoms can be parameterized by an additional
constant denotedt0, as shown in Fig. (1). The value oft0
can be varied: if the impurity atom is strongly coupled to the
carbon atom,t0 will be negative; if, on the other hand, the
coupling is weakt0 will be positive. The Hamiltonian of the
system will be that of clean graphene and a term representing
the renormalization of the hoping, as explained below.

Let us first introduce some definitions for latter use. The
honeycomb lattice has a unit cell represented in Fig. 1 by the
vectorsa1 anda2, such that|a1| = |a2| = a, with a ≃ 2.461
Å. In this basis any lattice vectorR is represented as

R = na1 + ma2 , (1)
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FIG. 1: (color on line) The honeycomb lattice with a substituting
atom replacing a carbon atom. The local hopping parameter changes
from t to t − t0 around theA atom. We assume all overt = 3 eV.

with n, m integers. In cartesian coordinates one has,

a1 =
a0

2
(3,

√
3, 0) , a2 =

a0

2
(3,−

√
3, 0) , (2)

wherea0 = a/
√

3 is the carbon-carbon distance.
If periodic boundary conditions are used, the Bloch states

are characterized by momentum vectors of the form

k =
m1

N1
b1 +

m2

N2
b2 , (3)

with m1 andm2 a set of integers running from0 to N1 − 1
and from 0 toN2 − 1, respectively. The numbersN1 andN2

are the number of unit cells along thea1 anda2 directions,
respectively. The total number of unit cells is, therefore,Nc =
N1N2. The reciprocal lattice vectors are given by:

b1 =
2π

3a0
(1,

√
3, 0) , b2 =

2π

3a0
(1,−

√
3, 0) , (4)

The vectors connecting anyA atom to its nearest neighbors
read:

δ1 =
a0

2
(−1,

√
3, 0) =

1

3
(a1 − 2a2), (5)

δ2 =
a0

2
(−1,−

√
3, 0) =

1

3
(a2 − 2a1), (6)

δ3 = a0(1, 0, 0) =
1

3
(a1 + a2) (7)

Using the above definitions the Hamiltonian for this prob-
lem can be written as

H0 = −t
∑

R

[a(R)b†(R) + a(R)b†(R − a2)

+ a(R)b†(R − a1) + h.c.] , (8)

which represents clean graphene (the spin index is omitted for
simplicity of writing), and the perturbation due to the impurity
atom is

Vi = t0[a(0)b†(0) + a(0)b†(−a2)

+ a(0)b†(−a1) + h.c.] . (9)

It is assumed that the impurity atom is in the unit cellR = 0,
but there is no loss of generalization due to this choice. In
the particular case oft0 = t, the scattering termVi represents
a vacancy, since the impurity atom is completely decoupled
from the carbon atoms. It is important to keep in mind that in
a given unit cell bothA andB type of atoms are described by
the same vectorR.

The calculation of the electronic properties of graphene re-
quires the calculation of the corresponding Green’s functions,
whose definitions are

Gaa(k, q, τ) = −
〈

T
[

ak(τ) a†
q(0)

]〉

, (10)

Gbb(k, q, τ) = −
〈

T
[

bk(τ) b†q(0)
]〉

, (11)

Gab(k, q, τ) = −
〈

T
[

ak(τ) b†q(0)
]〉

, (12)

Gba(k, q, τ) = −
〈

T
[

bk(τ) a†
q(0)

]〉

, (13)

and their Fourier transform to the Matsubara representation
are given in the Appendix A for the case of a perfect lattice.
Of particular interest to our calculations is the momentum in-
tegral of the retarded diagonal Green’s function

Ḡ0
AA(ω) =

1

Nc

∑

k

G0
AA(k, ω) . (14)

The integral is best performed using the density of states of
the honeycomb lattice. Since we want to take into account
the non-linearity of the bands, which allows us to describe the
properties of the system at large energies and not only closeto
the Dirac point, we have to use for the density of states an ex-
pression that goes beyond the usually used linear dependence
of this quantity on energy. In a previous work37 we derived
an expansion for the density of states (per unit cell, per spin)
valid for energies up to∼ 3 eV, reading (E = ~ω)

ρ(E) ≃ 2E√
3πt2

+
2E3

3
√

3πt4
+

10E5

27
√

3πt6
. (15)

The imaginary part of̄G0
AA(ω) reads

ℑḠ0
AA(ω) = −π

2
ρ(~ω) , (16)

and the real part has the form

ℜḠ0
AA(ω) = P1(~ω) + P2(~ω) ln

(~ω)2

D2
c − (~ω)2

, (17)

whereP1(x) andP2(x) are polynomial functions given by

P1(x) = − x

3t2
− 5

27t4

(x

2
D2

c + x3
)

, (18)

P2(x) =
x

D2
c

+
x3

3t2D2
c

+
5

27D2
c t

4
x5 . (19)

The energyDc is a cut-off energy chosen asD2
c =

√
3πt2.
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B. Exact Green’s Functions

We now want to determine the exact expressions for the
Green’s functions in the presence of the substituting atom.

This is best accomplished using the equation of motion
method. The equations of motion for the Green’s functions
can be readily established, and read

iωnGAA(ωn, k, p) = δk,p + tφ(k)GBA(ωn, k, p) − t0
Nc

∑

k′

φ(k′)GBA(ωn, k′, p) , (20)

iωnGBA(ωn, k, p) = tφ∗(k)GAA(ωn, k, p) − t0
Nc

φ∗(k)
∑

k′

GAA(ωn, k′, p) , (21)

iωnGAB(ωn, k, p) = tφ(k)GBB(ωn, k, p) − t0
Nc

∑

k′

φ(k′)GBB(ωn, k′, p) , (22)

iωnGBB(ωn, k, p) = δk,p + tφ∗(k)GAB(ωn, k, p) − t0
Nc

φ∗(k)
∑

k′

GAB(ωn, k′, p) . (23)

The complex numberφ(k) is defined as

φ(k) = 1 + eik·a1 + eik·a2

= 1 + eik·(δ3−δ1) + eik·(δ3−δ2) , (24)

which is the form factor of the threeB atoms as seen by an
atom inA. The above set of equations can be solved exactly.
The fact that the scattering termVi depends onφ(k) and that
a single impurity breaks particle-hole symmetry of the system
implies a complex form forT -matrix. In fact, the general ex-
pression for the Green’s functions does not have exactly the
same form as in the case of one-band electrons. The solution
of the equations of motion is rather lengthy and in the course
of the solution we use the two following identities:

iωn

∑

k

GAA(ωn, k, p) = 1+(t−t0)
∑

k

φ(k)GBA(ωn, k, p) ,

(25)
and

t0z = −[(iωn)2 + zt0(t − t0)]
∑

k

φ(k)GBA(ωn, k, p)

+ iωnt
∑

k

|φ(k)|2GAA(ωn, k, p) , (26)

with

z =
1

Nc

∑

k

|φ(k)|2 . (27)

The use of the relations (25) and (26) leads to

∑

k

GAA(ωn, k, p) =
N1(p, ωn)

D(ωn)
, (28)

with the following definitions

N1(p, ωn) = (t − t0)G
0
AA(ωn, p) + t0Ḡ

0
AA(ωn) , (29)

D(ωn) = (t − t0)(1 − t0/t) + iωn(2t0 − t20/t)Ḡ0
AA(ωn) ,(30)

Ḡ0
AA(ωn) =

1

Nc

∑

k

G0
AA(ωn, k) , (31)

and

G̃0
AA(ωn) =

1

Nc

∑

k

|φ(k)|2G0
AA(ωn, k) . (32)

The result (28) has the appropriate limiting behavior: when
t0 → t one obtains(iωn)−1, which agrees with (25); when
t0 → 0 one obtainsG0

AA(ωn, p), which is the result for the
perfect lattice.

Finally, the exact solution forGAA(ωn, k, p), considering
an arbitrary value oft0, has the following structure

GAA(ωn, k, p) = δk,pG0
AA(ωn, k) + G0

AA(ωn, k)Σ(ωn)

+ g(ωn) + G0
AA(ωn, k)TAA(k, p, ωn)G0

AA(ωn, p) , (33)

with

g(ωn) =
1

Nc

t20
t

Ḡ0
AA(ωn)

D(ωn)
, (34)

Σ(ωn) =
1

Nc

t0(1 − t0/t)

D(ωn)
, (35)

andTAA(k, p, ωn) given by

TAA(k, p, ωn) =
1

Nc
t0

t(t0 − t)|φ(k)|2 − (iωn)2

iωnD(ωn)
. (36)

Clearly, the solution (33) does not have the simple form of
theT−matrix as in the case of the solution of the scattering
problem by a local potential in the single energy-band case.
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The calculation forGBB(ωn, k, p) proceeds along the same
lines and gives

GBB(ωn, k, p) = δk,pG0
BB(ωn, k) +

+ G0
BB(ωn, k)TBB(k, p, ωn)G0

BB(ωn, p) , (37)

with TBB(k, p, ωn) given by

TBB(k, p, ωn) = − 1

Nc

φ∗(k)(2t − t0)tt0φ(p)

iωnD(ωn)
. (38)

It is interesting to note that is the case of Eq. (37) the
T−matrix has the traditional form. So, as long as one does
not sit on top of the impurity atom, the scattering equations
are similar to those of the scattering of the electron gas by a
local potential. The exact results (33) and (37) is what is need
to discuss the behavior of current versus bias in STM exper-
iments when the microscope tip comes near to a substituting
defect.

III. LOCAL DENSITY OF STATES

As we will see later, the properties of the STM current will
depend on the local density of states below the tip of the mi-
croscope. We therefore have to compute this quantity for dif-
ferent circumstances. Because each unit cell is identified by
a single vectorR, the local density of states (per spin) at the
atomsA andB of the unit cell localized in the positionR is
defined as

ρx(R, ω) = − 1

πNc
ImGxx(R, R, ω) , (39)

with Gxx(R, R, ω) (x = A, B) obtained from

Gxx(R, R, ωn) =
∑

k,p

ei(k−p)·RGxx(k, p, ωn) , (40)

after the usual analytical continuationωn → ω + i0+ of the
Matsubara Green’s function.

Let us first consider the caset0 = t. With this choice theA
atom is disconnected from the rest of the lattice and in this sit-
uation the momentum sum over the fullGAA(ωn, k, p) reads

∑

k

GAA(ωn, k, p) =
1

iωn
, (41)

which corresponds to an isolated atom. As a consequence the
local density of states is a delta function and no charge trans-
port can take place through that atom. In the material this
situation never happens and therefore we can interpreted this
result as the case where there is a vacancy in the lattice. There-
fore the presence of a vacancy can be detected by its influence
on the electronic density of states of the neighboring atoms
(theB atom in the case of Fig. 1). Using only the first term in
Eq. (15) it is possible to derive a relatively simple expression
for the local density of states at theB atom near the vacancy,
reading

ρB(0, ω) =
2√
3πt

∣

∣

∣

∣

~ω

t

∣

∣

∣

∣

(

1 − 1

9

∣

∣

∣

∣

~ω

t

∣

∣

∣

∣

2

+
1

3

∣

∣

∣

∣

t

~ω

∣

∣

∣

∣

2

L(ω)

)

.

(42)
with

L(ω) =

[

1 +
1

π2
ln2

(

1√
3π

∣

∣

∣

∣

~ω

t

∣

∣

∣

∣

2
)]−1

. (43)

It is also possible to determine general analytical expressions
for ρA(0, ω) andρB(0, ω) given an arbitrary value oft0, but
due to the form ofD(iωn) which in this case depends on both
t andt0, the final result is somewhat cumbersome. However,
if really needed, it is straightforward to use the full equations
for GAA andGBB and the given expressions for̄GAA(ω) to
write down analytical expression for the density of states.
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FIG. 2: (color on line) Local density of states (LDOS) at the unit cell
R = 0 for theA andB atoms and different values oft0 in electron-
volt. In panel (a) we plot the density of states of clean graphene and
the LDOS at theB atom near a vacancy at theA atom of the same
unit cell. Fort0 = 1, ρB(0, ω) is multiplied by 10 for clarity.

In Figure 2 we plot the local density of states for different
values oft0. In panel (a) of that figure we represent the density
of states at aB site in the unit cell where a vacancy exists in
theA atom of the same unit cell. The most significant feature
is a development of a logarithmic divergence at zero energy.
Therefore the clean density of states (also shown for compari-
son) is strongly modified by the presence of such a strong po-
tential. For a moderate value oft0 the change of the hoping is
not strong and the density of states at both theA andB atoms
retain the linearity of the clean density of states close to the
Dirac point. However, the absolute value of the two density of
states are not the same and a clear deviation from linearity is
seen to take place for lower energies when compared with the
clean case. If the impurity atom binds strongly to the carbon
atoms (t0 = −1) there is an increase of the density of states at
the neighbor atoms at the expenses of the density of states of
the impurity. On the other hand, if the impurity binds weakly
to the carbon atoms (t0 = 1), the density of states increases
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at the impurity and strong resonances develop on the impu-
rity density of states. Clearly these different behaviors of the
density of states will show up in the tunneling current.

It is also instructive to compute the local density of states
as one moves away from the defect. This amounts to perform
the Fourier transforms for finiteR in Eq. (40). In the case
of GAA(R, R, ω) the calculation of the integrals is facilitated
by the fact that the momentum space Green’s function on the
sub-latticeA depends on|φ(k)| only, whereas in the case of
the Green’s function on theB sub-lattice this in not the case.
Besides for finiteR the useful relation (A9) is valid no more.
However, for largeR = |R| values when compared toa, i. e.
a way from the defect, the details of the lattice are no longer
important and the behavior of the local density of states at
both theA andB sub-lattices must be similar. We will there-
fore give the density of states as function of|R| for the A
sub-lattice only. Performing the Fourier transforms usingthe
Dirac cone approximation (this is not a restriction, but helps
keeping the final result not too cumbersome) one obtains (for
the retarded function)

Gxx(R, R, ω) = NcḠ
0
AA(ω)+Nc

A2
cω

2π2v2
F D(ω)

Θ(ω) , (44)

wherevF = 3a0t/(2~) andΘ(ω) can be written as

Θ(ω) = t0(t0/t − 2)
ω2

2v2
F

I2(ω) , (45)

whereI(ω) is defined as

I(ω) = I0(ω) − iπ sgn(ω)J0(|ω|R/vF ) (46)

with J0(x) the Bessel function of integer ordern = 0, and
finally I0(ω) is the Cauchy principal value of the integral

I0(ω) = −
∫ kcR

0

dx
2xJ0(x)

α2 − x2
, (47)

which can be evaluated using standard numerical methods,

and we also havekc = 2
√

π/(
√

3
√

3a0), andα = ωR/vF .
In Figure 3 we depict the local density of states at the carbon
atoms located in theA sub-lattice, computed using Eq. (39).
The typical oscillations in the density of states close to im-
purity centers are clearly seen. Note that as one moves away
from the impurity the density of states approaches that of the
clean system. The Friedel oscillations in graphene can be ob-
tained from integrating the density of states up to the Fermi
energy.

IV. CALCULATION OF THE TUNNELING CURRENT

We now want to compute the tunneling current between
the tip of an STM microscope and graphene, when the tip is
closed to an impurity atom. We model the tip by a one di-
mensional tight-binding system, a standard approach.35,36Our
results will not depend significantly from this choice as long
as we assume a large value for the hoping parameter of the
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0.012
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S
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V
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t0=0.2 eV
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R/a0

0.0102

0.0103

0.0104

0.0105

0.0106
t0=-1 ev

FIG. 3: (color on line) Local density of states (LDOS) at distance
R from unit cellR = 0, where the impurity is located for different
values oft0. The energy is~ω = 0.5 eV. The case of the vacancy is
also illustrated.

electrons in the tip. This choice essentially corresponds to
represent the tip by a metal with a large bandwidth. Given the
above, the Hamiltonian for the tip has the form

H = −V

−1
∑

n=−∞

[c†(n−1)c(n)+c(n)c†(n−1)]+H0 , (48)

andH0 representing the Hamiltonian of the last atom of the
tip. This choice corresponds to the assumption that the surface
atom of the tip has a different nature from the atoms in the bulk
of tip. We therefore representH0 by

H0 = ǫ0c
†(0)c(0) − W1[c

†(−1)c(0) + c(0)c†(−1)] . (49)

It is essential that the Hamiltonian of the tip to be represented
by a semi-infinite metal, since otherwise there would be elec-
trons reflected at the far end of the tip modifying in this way
the tunneling current. Finally we need to include the tunnel-
ing of the electrons of the tip to graphene. There is a number
of ways we can do this. Here we assume that the coupling is
made directly either to the impurity atom or to the next neigh-
bor carbon atom. This choice corresponds to probing the local
electronic properties at or around the impurity. More general
types of coupling are easily included in the formalism. We
write this coupling as

HT = −W2[c
†(0)d(0) + d†(0)c(0)] , (50)

where the operatord(0) can represent either the impurity atom
at theA sub-lattice or the carbon atom at theB sub-lattice.

Since the Hamiltonian of the problem is bilinear we can
write it in matrix form (of infinite dimension) as

H =





Hb VL 0

V †
L H0 V †

R
0 VR Hg



 (51)

where the matricesVL andVR represent the coupling of the
last atom in the tip of the STM microscope to the bulk of the
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tip and to graphene, respectively, andHb andHg stand for the
bulk Hamiltonians of the tip and of graphene, including the
impurity potential (9), respectively.

The tunneling is a local property, controlled by the coupling
of the last atom of the tip to the bulk atoms and to graphene.
Since we want to compute local quantities, this is best accom-
plished using Green’s functions in real space. The full Green’s
function of the system is defined by

(1E + i0+ − H)G+ = 1 , (52)

where we have chosen the retarded function (denoted with the
+ superscript), and1 is the identity matrix. The matrix form
of the Green’s function is

G+ =





Gbb Gb0 Gbg

G0b G00 G0g

Ggb Gg0 Ggg



 . (53)

The quantity of interest isG00, which can be shown to have
the form

G+
00 = (E + i0+ − ǫ0 − Σ+

L − Σ+
R) , (54)

where the matricesΣ+
L andΣ+

R are the self energies and have
the form

Σ+
L = W 2

1 G+
s , Σ+

R = W 2
2 G+

xx , (55)

where the Green’s functionsG+
s and G+

xx are the surface
Green’s function of the HamiltoniansHb andHg at the impu-
rity unit cell (x = A, B), respectively. Note that the quantity
G+

xx is computed using Eq. (44) makingR = 0. It is possible
to find a close form forG+

xx, as we have shown in the previous
section. Also forG+

s a close form exists38,39,40

G+
s = [E + i0+ − V 2G+

s ]−1 . (56)

The solution of Eq. (56) is elementary and reads

G+
s =

E

2V 2
− i

2V 2

√

4V 2 − E2 , (57)

for E2 < 4V 2 and

G+
s =

E

2V 2
− sgn(E)

2V 2

√

E2 − 4V 2 , (58)

for E2 > 4V 2.
Our goal is to study the STM current at finite bias, which is

a particular case of non-equilibrium transport. This is done us-
ing the non-equilibrium Green’s function method or Keldysh
method. This method is particularly suited to study the regime
where the system has a strong departure from equilibrium,
such as when the bias potentialVb is large. We consider, how-
ever, that the system is in the steady state. Since the seminal
paper of Caroliet al. on non-equilibrium quantum transport,41

that the method of non-equilibrium Green’s functions started
to be generalized to the calculation of transport quantities of
nanostructures. There are many places where one can find a
description of the method,42,43 but a recent and elegant one

was introduced in the context of transport through systems
that have bound states, showing that the problem can be re-
duced to the solution of kind of quantum Langevin equation.44

The general idea in this method is that two perfect leads
are coupled to our system, which is usually called the device.
In our case the device is defined by the last atom at the tip
of the microscope. The Green’s function of the device has
to be computed in the presence of the bulk of the tip and of
graphene. This corresponds to ourG+

00 Green’s function. Be-
sides the Green’s function we need the effective coupling be-
tween the last atom of the tip and the bulk atoms as well as
that to the graphene atoms, which are determined in terms of
the self-energies

ΓL/R =
i

2π
(Σ+

L/R − Σ−
L/R) . (59)

Therefore the effective couplingΓL/R depends on the surface
Green’s function of the tip and of graphene. According to the
general theory, the two systems (bulk of the tip and graphene)
are in thermal equilibrium at temperaturesTL/R and chemical
potentialµL/R and are connected to the system at some time
t0. The bottom line is that the total current through the device
is given by (both spins included)

J =
2e

h

∫ ∞

−∞

dET (E)[f(E, µL, TL) − f(E, µR, TR)] ,

(60)
wheref(x) is the Fermi-Dirac distribution and the transmis-
sionT (E) is given by

T (E) = 4π2 Tr[ΓLG+
00ΓRG−

00] . (61)

Performing the trace (which in this case is only a product of
complex numbers) we obtain

T (E) = 4W 2
1 W 2

2 ℑG+
s ℑG+

xx

∣

∣G+
00

∣

∣

2
. (62)

Figure 4 representsT (E) in several conditions. In the clean
case, we see the effect the Dirac point has on the transmis-
sion, leading to a suppression of the tunnelling forE ≃ 0. It
is also clear that the parameters characterizing the last atom
of the tip strongly influences the form ofT (E), leading to an
asymmetry between negative and positive energies due to the
finiteness ofǫ0. When a vacancy is present at theA site, the
tunneling through the nearestB sites is strongly modified rel-
atively to the clean case, with strong tunneling taking place
at energies very close to the Dirac point. When an impurity
atom sits at theA site the behavior of the tunneling probabil-
ity depends on the coupling between the impurity and the car-
bon atoms. In the case of weak coupling to the carbon atoms
(t0 > 0) the tunneling through theA atom is facilitated rela-
tive to the tunneling between the nearest carbon atoms. When
the impurity is strongly coupled to the carbon atoms (t0 < 0),
the reverse happens. This behavior is easily understood, since
strong (weak) coupling to the carbon atoms is equivalent to
a weak (strong) coupling to the tip of the microscope, lead-
ing to weaker (stronger) tunnelling probability from the tip to
graphene.
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FIG. 4: (color on line) Transmission coefficientT (E) as function of
the energy for zero bias. The fixed parameters are:t = 3.0, V = 1,
W1 = 0.9, W2 = 0.2, all in electron-volt. Panel (a) depicts the case
of clean graphene and two different values ofǫ0. Panel (b) depicts
T (E) through aB site when a vacancy sits at theA site. Panel (c)
depictsT (E) throughA andB sites, when an impurity sits at theA
site, takingt0 = 1 eV andǫ0 = 0. Panel (d) is the same as panel (c)
for t0 = −1 eV.

All the above discussion applies to zero bias voltage. When
finite bias voltage is applied between the tip and graphene,
the behavior of the curves change. We will consider that
the chemical potentials of the tip and of graphene differ by
the electrostatic energyeVb, whereVb is bias potential. This
amounts to change the on-site energies relative to their value
in equilibrium. We choose to change the on-site energies of
the tip byeVb/2 and those of the carbon atoms by−eVb/2. In
Figure 5 we depictT (E) for a finite value of the biasVb. The
most distinctive difference relative to the case of zero bias is
the energy asymmetry induced by the bias relatively the case
of zero bias, even whenǫ0 = 0.

The calculation of the current also depends on the chemical
potential. In the case of graphene this can be tuned by a back
gateVg. The relation between the back gate voltage and the
chemical potential of graphene obeys the relation

µ = vF ~

√

πǫǫ0Vg

de
, (63)

which is numerically equal toµ = 0.03
√

V g in electron-volt.
The parameters in Eq. (63) areǫ = 3.9, the dielectric constant
of SiO2, d = 300 nm, the thickness of the SiO2 substrate, and
e the elementary charge. Taking a typical value ofVg = 100
V we obtainµ = 0.3 eV, which is the value we assume for the
chemical potential in the calculations below. Since we will
perform our calculations at zero temperature, the current is
given by

J =
2e

h

∫ µ−eVb/2

µ+eVb/2

dE T (E, Vb) . (64)

The results for the calculation ofJ versusVb is depicted in
Fig. 6. Looking at them, we see that there is an asymmetry
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FIG. 5: (color on line) Transmission coefficientT (E) as function
of the energy for finite biasVb = 0.5 volt. The parameters and the
description are the same listed in the caption of Fig. 4. The energy
scale in the case of the vacancy was increased in order to see the low
energy behavior close to the Dirac point.

between the negative and positive values ofVb. For the clean
case, it is clear that the magnitude of theJ current does not
depend much on the chemical potential, and therefore on the
gate voltageVg. The same is true for the vacancy case. Com-
paring the curves for the vacancy and for the clean case, we
see that the order of magnitude of the current is the same, but
the shape of the curves is notoriously different from that ofthe
clean case. When the impurity is weekly coupled (t0 > 0) to
the carbon atoms, the tunneling current is facilitated through
the impurity atom, as can be seen from panel (c) of Fig. 6,
with an absolute value five times larger forVb=1 volt. Also a
clear jump is seen inJ (panel (c)), a finger print of the res-
onances in the density of states seen in panel (c) of Fig. 3.
One note that in Fig. 3 the resonances are symmetrically po-
sitioned relatively to the Dirac point, but this is not so forthe
jumps in the current. The reason is due to finite on-site energy
at the atom in the tip of the microscope. On the other hand
for strong coupling, panel (d) of Fig. 6, there is not much dif-
ference from the clean case, apart from the fact that tunneling
current through the impurity or the neighbor carbon atom has
different magnitude.

Another important quantity to fully characterize the STM
current is the shot noise.45 For interacting systems this quan-
tity gives information on the possible existence of quasi-
particles with fractional charge. On disordered systems with
no interactions, information on transport open channels can
be obtained. For fermionic non-interacting electrons at zero
temperature the shot noise is defined as46

S =
2e2

~

∫ µL

µR

dE T (E)[1 − T (E)] . (65)

The relevant quantity is notS directly but the Fano factor45

defined as

F =
S

eJ
. (66)



8

-2 -1 0 1 2
-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008
Jh

/(
2e

t)
µ=0 eV
µ=0.3 eV

-2 -1 0 1 2
-0.02

-0.01

0

0.01

0.02

-2 -1 0 1 2
Vb (volt)

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Jh
/(

2e
t)

A
B

-2 -1 0 1 2
Vb (volt) 

-0.004

-0.002

0

0.002

0.004

0.006

0.008

A
B

(a) (b)

(c) (d)

t0=1 eV

t0=-1 eV

FIG. 6: (color on line) CurrentJ as function of the bias voltage
Vb. The parameters are the same listed in the caption of Fig. 4 and
ǫ0 = 0.2 eV. Panel (a) represents the clean the case for two values
of the chemical potentialµ. The case of the vacancy is represented
in panel (b), also for two values of the chemical potential. Panel (c)
represents the caset0 = 1 eV for µ = 0.3 eV, and panel (d) is the
same as (c) fort0 = −1 eV. In panels (c) and (d),A andB refer to
tunneling through the atom siting on sub-latticeA or B, respectively.

When the transmissionT (E) is strongly reduced we have
F → 1, and noise is said poissonian. On the other hand, if
the system has a finite density of open channels,T (E) → 1,
we haveF < 1 due to[1 − T (E)] ≪ 1. In Figure 7 we plot
the Fano factor as function of the bias voltage.
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FIG. 7: (color on line) Fano factorF as function of the bias voltage
Vb. The parameters are the same listed in the caption of Fig. 4 and
ǫ0 = 0.2 eV. Panel (a) represents the clean case for two values of the
chemical potentialµ =0 andµ =0.3 eV. The case of the vacancy is
represented in panel (b), also for two values of the chemicalpotential.
Panel (c) represents the caset0 = 1 eV for µ = 0.3 eV, and panel
(d) is the same as (c) fort0 = −1 eV. In panels (c) and (d),A and
B refer to tunneling through the atom siting on sub-latticeA or B,
respectively.

Clearly, for all case but the vacancy, the Fano factor is close
to the poissonian valuesF = 1. WhenVb → 0 and the chem-

ical potential is zero, the value ofT (E) quite small due to the
presence of the Dirac point, and the Fano factor take the lim-
iting valueF = 1. For the vacancy, we obtain much smaller
values ofF , which is indication of the presence of the strong
resonance seen in the local density of states for this case,
which leads to an increase of the transmission. It should be
noted that in the cases of finitet0, the concavity of the curves
for F as function ofVb allows to distinguish the case of week
couplingt0 > 0 from the case of strong couplingt0 < 0.

V. DISCUSSION AND CONCLUSIONS

We have studied in detail the electronic local density of
states in graphene close to a substituting atom. This quan-
tity turns out to be important in STM experiments, since the
tunneling of the electrons from tip of the microscope to the
sample is determined by this quantity. The shape and mag-
nitude of the tunneling current depends on the nature of the
substituting atom. In the case of the vacancy the shape of
the tunneling current has a very different signature from the
other cases. Also the magnitude of the current depends on the
strength of the bonding between the impurity and the carbon
atom.

The curves we have presented here are only indicative of the
general behavior of the density of states and of the tunneling
current. In order to obtain experimentally relevant curveswe
should have real numbers for the parameters of the tip, with
special importance for the last atom of tip. Also the parame-
ter W2 could be modeled more accurately by introducing the
spatial dependence between the tip and the graphene surface.
Density functional calculations can be used to model the tip
in realistic way.

In our analysis we have consider that the electrons can only
tunnel from the tip to the atom underneath, but when the tip
is between two atoms the tunnel will take place to more than
one atom. However, in this case the amplitudeW2 is strongly
reduced and the tunneling current will show a minimum. In
fact it can be shown that the self energy has in this case the
form

Σ+
R = W̃ 2

2 (G+
AA + G+

BB) , (67)

assuming the tip exactly in between theA andB atoms, and
therefore the value of the current will be controlled mainlyby
the value ofW̃2.

As we have seen in the calculation of the density of states,
the case of weak coupling leads to the appearance of reso-
nances at large energy values. The scan of the bias in our
calculations did not reach these energies, but if it does a clear
signature will be seen in the tunneling current. Also, for fixed
bias, moving the tip away form the impurity will show oscil-
lations in the STM current.

One ingredient not included in our model is the effect of
on-site energies at the impurities.47 As a consequence, a nat-
ural question is whether our results are strongly modified if
this effect is included. One should note that the values of the
on-site energy and the hopping are correlated with each other
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in the case of boron and nitrogen impurities. When the hop-
ping in enhanced the on-site energy is positive relatively to
that of the carbon atoms. In this case, the results of our calcu-
lations in the present work show no qualitative changes from
the more general model, as more detailed calculations show.
In the case of reduced hopping, the same resonances we see in
the local density of states of our work are also present in the
more general approach, but their position in energy changes
and an asymmetry of those resonances relatively to the Dirac
point develops. One should also note that the different chem-
ical nature of the atoms making the tip of the microscope also
induces an asymmetry in the current, even when the LDOS
does not show such asymmetry. Therefore, a careful study is
needed to disentangle the effects from the tip and from a finite
on-site energy at the impurity atoms.

Another relevant question is whether the the resonances see
in the density of state will broaden so much when the con-
centration of impurities increases leaving no trace of them
in the LDOS. Our calculations naturally refer to the diluted
limit, where the distance between impurities is large. When
the concentration increases the resonances will broaden, but
their finger prints still remains in the LDOS.48 In Ref. 48, Fig.
13(a) shows that the resonances remain well defined even for
concentration of impurities up to 10%. It is not possible to
give a characteristic length at the Dirac point such that above
it the impurities could be considered to act isolated. This is
so because Fermi momentum is zero. One was therefore to
rely on numerical calculations with a varying concentration
of impurities as in Ref. 48.
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APPENDIX A: FREE PROPAGATORS AND USEFUL
RELATIONS

The propagators for the perfect lattice are (~ = 1)

G0
AA(ωn, k, p) =

iωnδk,p

(iωn)2 − t2|φ(k)|2 , (A1)

G0
BA(ωn, k, p) =

δk,pφ∗(k)

(iωn)2 − t2|φ(k)|2 , (A2)

G0
BB(ωn, k, p) =

iωnδk,p

(iωn)2 − t2|φ(k)|2 , (A3)

G0
AB(ωn, k, p) =

δk,pφ(k)

(iωn)2 − t2|φ(k)|2 . (A4)

(A5)

From these, the integrals (31) and (32) are defined as

Ḡ0
AA(ωn) = iωn

∫

ρ(E)dE

(iωn)2 − E2
, (A6)

G̃0
AA(ωn) =

iωn

t2

∫

E2ρ(E)dE

(iωn)2 − E2

= −iωnt−2 + (iωn)2t−2Ḡ0
AA(ωn) , (A7)

and

ρ(E) =
Ac

4π2

∫

BZ

d2kδ(E − t|φ(k)|) . (A8)

whereAc = 3
√

3a0/2 is the area of the unit cell. With the
above definitionρ(E) is finite in the energy range0 < E <
3t. In addition we also have the useful relation

∑

k

φ(k)G0
AA(ωn, k) =

∑

k

φ∗(k)G0
AA(ωn, k)

=
Nc

3
G̃0

AA(ωn) . (A9)

Similar equations hold forG0
BB.
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