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Abstract

0.1. Background—In the area of connectomics, there is a significant gap between the time 

required for data acquisition and dense reconstruction of the neural processes contained in the 

same dataset. Automatic methods are able to eliminate this timing gap, but the state-of-the-art 

accuracy so far is insufficient for use without user corrections. If completed naively, this process 

of correction can be tedious and time consuming.

0.2. New Method—We present a new semi-automatic method that can be used to perform 3D 

segmentation of neurites in EM image stacks. It utilizes an automatic method that creates a 

hierarchical structure for recommended merges of superpixels. The user is then guided through 

each predicted region to quickly identify errors and establish correct links.

0.3. Results—We tested our method on three datasets with both novice and expert users. 

Accuracy and timing were compared with published automatic, semi-automatic, and manual 

results.

0.4. Comparison with Existing Methods—Post-automatic correction methods have also 

been used in [1] and [2]. These methods do not provide navigation or suggestions in the manner 

we present. Other semi-automatic methods require user input prior to the automatic segmentation 

such as [3] and [4] and are inherently different than our method.
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0.5. Conclusion—Using this method on the three datasets, novice users achieved accuracy 

exceeding state-of-the-art automatic results, and expert users achieved accuracy on par with full 

manual labeling but with a 70% time improvement when compared with other examples in 

publication.

Keywords

Semi-automatic segmentation; Image segmentation; Electron microscopy; Neuron reconstruction; 
3D segmentation; Connectomics

1. Introduction

1.1. Motivation

In the field of neuroscience, there is a long-standing interest in mapping the neural pathways 

that combine to create the networks that control the functions of most animals. One of the 

more prominent examples of studying a complete neural network is reconstruction of the C. 

elegans nematode [5, 6]. With advances in technology, research has begun trying to extend 

this type of work to portions of more complex organisms such as the Drosophila [4] and the 

mouse neuropil [7]. In addition, a multi-institutional collaborative website funded by the 

NIH has recently been set up to facilitate mapping the human connectome [8].

Early work on neuronal network mapping [5] used electron micrographs as the imaging 

modality, while current work [4, 7, 8] generally uses some form of digital electron 

microscopy [9]. The datasets that we use in this paper were created using serial section 

transmission electron microscopy (ssTEM), serial block-face scanning electron microscopy 

(SBFSEM), and serial section scanning electron microscopy (ssSEM) with in-plane 

resolutions of 3 – 6 nm and section thicknesses of 30 – 50 nm. An 8-bit grayscale image 

stack of just 1 mm ×1 mm ×1 mm with a resolution of 6 nm × 6 nm × 50 nm requires over 

500 terabytes of space to store. Complete manual labeling as was done for the original C. 

elegans [5] is impractical for a dataset this large. The anisotropy of the data, however, 

creates difficulty in developing fully automatic 3D approaches with sufficient accuracy. This 

difficulty can be seen in the results from the 2013 3D segmentation of Neurites in EM 

Images Challenge [10]. In this paper, we introduce a method that utilizes the information 

contained in the automatic segmentation results to allow the user to quickly label a dataset of 

interest.

1.2. Related Work

For our method, we require the user to verify both the 2D segmentation and 3D linking that 

are suggested by automated processing. In [11], several semi-automatic methods for both 2D 

segmentation and 3D linking are reviewed. Semi-automatic methods can be separated into 

two distinct classes: 1) pre-automatic user input methods (pre-auto) and 2) post-automatic 

user input methods (post-auto). The pre-auto methods require the user to give input prior to 

an automatic method taking over the segmentation. Some examples of these include [3], 

which uses manual input with a level-set method, and [4], which uses skeleton tracing. 

These methods do not use the automatic method to assist the user and are very different 

from the method we present here.
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Post-auto methods are sometimes called proofreading methods as in [1] and [2]. In [1], the 

authors use proofreading to complete the labeling of their dataset; however, the specific 

method used is not described. In [2], the authors present a method that requires the user to 

manually search for errors without specific guidance and then provides tools for correcting 

those errors; this differs from our method which specifically guides the user to review each 

segmentation. Another post-auto method is Eyewire [12]. The method requires users to 

navigate through the volume and add regions to a selected cell until it is completely labeled 

within the provided volume. Users self-navigate and are required to move forward and 

backward regularly through the volume to ensure correctness and completeness. Our 

method, on the other hand, allows the user to navigate if needed, but provides a controlled 

navigation between cells automatically. In addition, whereas Eyewire focuses on labeling 

only one cell at a time, we proceed one 2D section at a time, i.e., we have the user 

completely label one section before moving onto the next sections.

In the following sections, we will describe the specific semi-automatic method that we use 

to completely label a dataset volume along with results and conclusions. More specifically, 

in section 2 we describe both the 2D semi-automatic and 3D linking methods along with a 

description of timing considerations for those methods. In section 3 we present our 

segmentation results for several datasets and users. Finally, in section 4 we provide the 

conclusions we have been able to draw from these results.

2. Method

Consider an image volume  consisting of m image slices  that is to be segmented into a 

set of n true regions, tl, such that the true segmentation is  = {t1, t2, …, tn}. Each tl in  has 

a unique integer label and consists of a set of pixels vi,j,k ⊂  that are 26-connected. We will 

produce a set of q predicted regions, , such that the final predicted segmentation is 

. Throughout the remainder of this paper, primary subscripts are used 

to indicate indices and superscripts and secondary subscripts are used to distinguish a label. 

Superscript T indicates a true version of the corresponding label, superscript F indicates a 

final prediction of the corresponding label, and superscript I indicates an intermediate 

prediction of the corresponding label.

2.1. Automatic Segmentation

The semi-automatic segmentation method described in section 2.2 depends on an automatic 

method that segments the image into r highly oversegmented superpixels, oj. In an ideal 

segmentation, each region tl is comprised of a set of these superpixels such that

(1)

for each tl in  where  is the set of superpixel indices included in region l. Each oj will be 

used exactly once in . Moving from the ideal to the predictive scenario
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(2)

for each intermediate region, , in the intermediate segmentation  and each oj are used 

exactly once. In addition, the automatic segmentation must also build a hierarchy of merged 

oj for the semi-automatic segmentation to work efficiently. Figure 1 shows each piece of the 

hierarchy where figure 1(a) represents  with superpixels, oj, labeled with numbers; figure 

1(b) shows a segmentation with each tl highlighted; and figure 1(c) shows an example tree 

structure for building . Presently we use the modular hierarchical approach introduced in 

[13] with some 2D refinements described in [14].

The modular hierarchical approach uses a 2D classification to generate its initial 

oversegmented superpixels oj by applying 2D watershed [15] from the ITK library [16] to 

the results of a 2D cell membrane detection method such as the cascaded hierarchical model 

[17] or deep neural networks [18]. From this initial segmentation, the water level is 

gradually raised to merge neighboring superpixels together. Each merge represents a new 

node in an unbalanced binary tree consisting of the two merged nodes as children. This 

merging continues until all nodes have been merged into one large tree with the node from 

the final merge as the root and each oj as the leaf nodes. Figure 1 shows a toy example of 

this merging process from [13].

Using this tree, a set of features to be used for classification purposes is generated for every 

merge. These features include both geometry based features such as region area and 

boundary curvatures and intensity based features such as intensity histograms and texton 

histograms. The merges are then classified using a random forest classifier to assign the 

probability that a given merge is a true merge in the truth. For example, in figure 1(c), the 

merge of superpixels o5 and o6 to form node 8 should have a high probability and the merge 

of node 9 and node 10 to form node 11 should have a low probability.

Based on the results of this classification, a potential is generated for each node. This 

potential is computed by multiplying the probability that the current merge should happen 

with the probability that the merge forming the parent node should not happen. Referring 

again to figure 1(c), the potential for node 8 is computed by multiplying the probability that 

superpixels o5 and o6 merge with the probability that node 8 and superpixel o2 do not merge. 

This results in the nodes with the highest potential being those with the highest likelihood of 

being a true segmentation. This potential is what will determine the examination order for 

the semi-automatic segmentation.

2.2. Semi-Automatic Segmentation

For the semi-automatic segmentation, we assume that each  is sufficiently oversegmented 

into r superpixels, oj, such that each true region, tl, can be generated from oj as in equation 1. 

Using this assumption, we seek to implement a method that reorganizes the initial 

segmentation, , predicted by the automatic method by utilizing the hierarchical structure, 

each superpixel oj, and user input to generate the final predicted segmentation, . If the 

results are ideal then  = . Due to the 2D nature of the automatic segmentation method 
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used, both proofreading the 2D segmentation and linking the resulting 2D segments using 

automated suggestions will be necessary. By completing both of these steps simultaneously 

we seek to reduce the amount of time required from the user.

2.2.1. Implementation—The following method was implemented in C++ using the 

Visualization Toolkit [19] for both interaction and visualization. This library was chosen for 

easy integration with the automatic method, which utilizes the Insight Toolkit [16] 

extensively. It is currently implemented as a stand-alone command line program with a 

windowed interface as described below. The program is compiled using CMake [20] to 

allow for easier cross-platform compilation. It has been successfully compiled on both Mac 

OS X (10.6.8 and later) and Linux operating systems.

2.2.2. Interface—The interface presents the user with four images to assist in completing 

the semi-automatic segmentation. The first image, appearing in the top right of the interface 

as shown in figure 2, is a portion of the raw EM image for the image slice  being processed 

and is zoomed in and centered on the current proposed segmentation region, . We 

highlight the border of  in one color and the interior of  in a different color, which 

makes it easy for the user to quickly identify which region is being considered. Additionally, 

each of the superpixels, oj, in  are outlined in a third color to show the user all possible 

segmentations.

The second image displayed on the interface in figure 2 appears in the top left corner and is 

a portion of the raw EM image for the previous image slice, , with the same zoom and 

position as . On this image we highlight the border of the proposed link region, , in one 

color and its interior in another color as was done for . As will be described in section 

2.2.3, each region, , for the previous slice, , is completed prior to the final 

segmentation regions, , for the current slice, , making it unnecessary to highlight each 

superpixel, oj, on . Instead we highlight the border of each  from . This allows the 

user to select a different link region if the predicted region is incorrect or to select multiple 

regions if it is a branch merge point.

The third image displayed appears in the bottom right corner of figure 2 and is initially a 

portion of the raw EM image for the current image slice, , with the zoom and position 

matching the top left and top right images. This image does not have the proposed 

segmentation region, , highlighted in any way. As the user generates new final 

segmentations, , these segmentations will appear highlighted in a new color to show the 

user what he or she has already completed. As will be described in section 2.2.3, the user has 

the ability to sequence this image forward or backward to see additional slices. When the 

user looks ahead to slices not yet processed, this image will be only the raw EM image for 

that slice with no highlighting. When the user looks backward to slices already completed, 

this image will be the raw EM image for that slice with the segmented region borders 

highlighted.
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Finally, the last image appears in the bottom left corner of figure 2 and is initially a portion 

of the raw EM image for the previous image slice, , again with the zoom and position 

matching the other images in the interface. No highlighting of any kind appears on this 

image. As the user scrolls through the slices forward or backward, this image will display 

the raw EM image for the slice exactly one previous to the one on display in the third image 

on the bottom right. An example of this can be seen in the bottom left of figure 2. The 

overall resulting interface display has the images on the left being exactly one slice previous 

to the images on the right.

2.2.3. Process—The purpose of the semi-automatic method is to take advantage of as 

much information contained in the automatic segmentation as possible to limit the amount of 

input required from the user. We also reduce the user input to be single-clicks or single 

keystrokes to further minimize the amount of time required for a single response. The 

specific keystrokes used in our implementation can be found in the appendix in table A.5. 

This reduction of user input results in the user being unable to split the individual 

superpixels, oj, and thus a sufficient oversegmentation is necessary initially.

The process begins with the user being presented with a proposed 2D segmentation and 

recommended link. For the recommended 2D segmentation, the automatic segmentation 

node with the highest potential of being a true segmentation as described in section 2.1 is 

presented to the user. This recommendation will result in the user first visiting the regions 

with the highest likelihood of being in the true segmentation and make it easier for the user 

to resolve the more difficult regions later on. The suggested 3D link that is simultaneously 

presented to the user is given as the region, , in the previous image slice, , that shares 

the most overlap with the current proposed region, .

The user will first consider the accuracy of the 2D segmentation. The four possible scenarios 

for the accuracy of the segmentation as seen in figure 3 are correct segmentation, 

oversegmentation, undersegmentation, and bad segmentation. To assist the user in difficult 

segmentations, we have included the ability to look to previously segmented images as well 

as the raw images of the next slices. By looking at previously segmented images, the user 

can see the general shift of the cell from slice to slice and also see the shape of a previous 

segmentation that may have provided better contrast, both of which can make the current 

decision easier. Looking to the unprocessed raw images can provide similar assistance but 

without a resolved segmentation to use as a baseline. We have also included the ability to 

zoom out and navigate to other areas of the image for correcting segmentations that may 

exceed the zoom window. The accuracy of the current proposed segmentation will affect 

how the user responds to the 3D linking. Those scenarios are described below.

In the case of an accurate 2D segmentation where , the user will ensure the correct 

3D link and select the proper keystroke for a good segmentation. If the suggested 3D link is 

not correct, the user is able to add and remove individual regions, , from the previous 

slice until the correct regions are linked. The proposed region  and all the linked regions 

are assigned the same label. If there are no linked regions for the proposed region, , it is 
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assigned a new label. In the tree structure, the node for  and all of its descendants and 

direct ancestors are removed from the tree and the region corresponding to the node with the 

next highest potential is presented to the user.

Oversegmentation refers to a scenario where the proposed segmentation, , is such that

(3)

where tl is the corresponding true segmentation region and  is the set of indices for the 

superpixels to be included in the region. This scenario is handled with the user clicking 

additional superpixels, oj, until . The corresponding 3D link, as in the case of a good 

segmentation, is verified by the user and then the user indicates a good segmentation. In the 

tree, clicking regions will result in leaf nodes being removed and the tree being restructured. 

The restructuring happens with the parent node of each removed leaf node being replaced 

with the sibling node of that corresponding leaf node. The potentials and all other node 

information remain the same. In addition, the original recommended node,  and all of its 

descendants and direct ancestors are removed from the tree and the region corresponding to 

the node with the next highest potential is once again presented to the user. Figure 4(b) 

shows a toy example of this oversegmentation process. In the first column is a segmentation 

where regions o4 and o3 make up the oversegmentation proposed by the automatic method 

and o2 is clicked by the user, in the second column is the labeled result, in the third column 

is the tree structure for the first column, and in the fourth column is the tree structure 

remaining after the result.

Undersegmentation results when the proposed segmentation, , is such that

(4)

where once again tl is the corresponding true segmentation region and  is the set of 

indices for the superpixels to be included in the region. In this scenario, the user will 

indicate an undersegmentation and the current node and all its ancestors are removed from 

the tree and the next region is presented. To simplify the visual processing for the user, we 

present the child node of the removed node that has the higher potential as the next proposed 

region. Because the user is already focused on resolving this region, the user is able to more 

quickly process what the correct response should be. This process continues until a correct 

segmentation or an oversegmentation is found in which case the procedure follows as 

described previously. 3D linking can be ignored for undersegmentation until a correct 

segmentation or oversegmen-tation result because no region labels are assigned. Figure 4(c) 

shows a toy example of this undersegmentation process. In the first column is a proposed 

segmentation where regions o4, o3 and o1 make up the undersegmentation proposed by the 

automatic method, in the second column is the new proposed segmentation after 
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undersegmentation is indicated by the user, in the third column is the tree structure for the 

first column, and in the fourth column is the tree structure after the result.

Bad segmentation is when the segmentation is not correct and both equations 3 and 4 fail to 

be satisfied. As seen in 3(e), it is a segmentation where portions of multiple regions are 

included, but no complete region is included. Although different from undersegmentation in 

that a correct segmentation cannot be obtained, we proceed in the same fashion as the 

undersegmentation with the current node and all its ancestors being removed from the tree 

and the child node with the higher potential being presented as the next proposed region. 

This process continues until an oversegmentation is found and the user is able to resolve as 

described above. Figure 4(d) shows a toy example of this bad segmentation process. In the 

first column is a proposed segmentation where regions o3, o6, and o2 make up the bad 

segmentation proposed by the automatic method, in the second column is the new proposed 

segmentation after bad segmentation is indicated by the user and o5 is manually clicked, in 

the third column is the tree structure for the first column, and in the fourth column is the tree 

structure after bad segmentation is indicated by the user and o5 is manually clicked.

The goal with each of these steps is to be as efficient as possible. When both the 

segmentation and 3D linking are clearly correct, a user typically requires approximately one 

second to assess the accuracy and respond. When the segmentation is correct, but the 3D 

linking is inaccurate, the time to complete is limited by how quickly the user is able to click 

the correct link regions. Because fixing the segmentation is often done in just one or two 

clicks, the time required is also minimal. Correcting the 2D segmentation, on the other hand, 

may require more time to complete depending on how close to accurate the segmentation 

was. For oversegmentation, the number of oj that need to be added may be significant if the 

associated true region, tl, is large and the time required to complete this correction may be 

tens of seconds. In the case of undersegmentation and bad segmentation, typically the 

number of responses to get to either a correct segmentation or an oversegmentation is small, 

and so the time required for these results is nearly the same as the time required for 

oversegmentation. Finally the last real limitation in time is related to the quality of the image 

set and the ease of determining an accurate segmentation.

3. Results

To test the effectiveness of our method, we applied it to three datasets with fully labeled 3D 

ground truths. For each dataset used, we split the data into training and testing for the 

automatic method and then applied the semi-automatic method to only the testing set. The 

justification for this is that in a live application the training set needed for the automatic 

method will be assumed to have full labels and not require any manual labeling. The 

accuracy of each test is measured using the adapted Rand error, which is an F-score error 

computed from the pairwise precision and pairwise recall scores as described in [14] and 

also used in the International Symposium on Biomedical Imaging as the grading metric for 

the 2012 Segmentation of Neuronal Structures in EM Stacks Challenge [21] and the 2013 

3D segmentation of Neurites in EM Images Challenge [10]. This F-score error metric 

provides a robust 3D segmentation metric that emphasizes both topological accuracy of 
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regions and geometric accuracy of membrane locations but with minimal dependence on 

accurate membrane thicknesses.

The tests were carried out on two different machines. For the Mouse Neuropil dataset, the 

tests were performed on a machine with 32 Intel Xeon CPU E5-2670 processors at 2.60GHz 

with 126 GB of RAM running CentOS 6.4. The other datasets were completed on a machine 

with 32 Intel Xeon x7350 processors at 2.93GHz with 196GB of RAM running SUSE Linux 

Enterprise Server 11 (×86 64). Additionally, all of the datasets have been used on a machine 

with 2 6-Core Intel Xeon Processors at 2.66GHZ with 32 GB of RAM running OS X 10.6.8, 

although this machine was not used for any of the complete testing results reported here. On 

each machine, there was no noticeable delay when moving from slice to slice as long as 

there was sufficient available RAM for the loaded dataset. For the largest of these datasets, 

the amount of free RAM required by the interface when the entire dataset was loaded was a 

little over 20GB.

3.1. Drosophila VNC

As used in the ISBI 2012 segmentation challenge [21], this dataset is described as consisting 

of two stacks of 30 sections from a ssTEM dataset of the Drosophila first instar larva ventral 

nerve cord (VNC). The microcube measures approximately 2×2×1.5 μm with a resolution of 

4×4×50 nm/voxel, resulting in an image stack of size 512 × 512 × 30 for both the training 

and testing stacks. The training set with corresponding 2D membrane labels and the testing 

set were downloaded from the challenge site [21].

For this dataset we were able to obtain the 3D labels necessary to compute the accuracy of 

the tests for only the 30 training images. As a result our tests were carried out using a split of 

the stack such that the last 20 images in the stack were used as training images and the first 

10 images in the stack were used as testing images. The automatic method was trained on 

the 20 training images and then applied to the 10 testing images. We then used both the 

semi-automatic method and automatic 3D linking as described in [14] for comparison. In 

addition, the semi-automatic method was completed twice by a user who was familiar with 

EM images and segmentations, but was not an expert in neuroanatomy. In the first semi-

automatic test, the user completed the 3D segmentation without any extra assistance, but for 

the second semi-automatic test the user completed the 3D segmentation using the 3D ground 

truth as a guide. The purpose of the first test is to show the results that are achieved by a 

novice user and the second test is to show the best results that could be achieved by an 

expert neuroanatomist using our method. Table 1 shows the segmentation results and figure 

5 gives a 3D view of a few neurites from the novice segmentation of this dataset.

In table 1 the semi-automatic method with a novice user shows a small decrease in the pair 

precision but a significant improvement in the pair recall, resulting in a 2.3% improvement 

in the error value. The slight decrease in the pair precision indicates more assignments of 

pixels within the same region that should belong in different regions, whereas the 

improvement in pair recall indicates fewer assignments of pixels to different regions that 

should belong to the same region. Therefore, we conclude that the effect of the user 

interaction in this case is to largely correct oversegmentation errors. The expert user is 
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largely able to correct the remaining errors as the results shown in table 1 indicate a 1.4% 

total error.

3.2. Mouse Cortex

The second dataset comes from the ISBI 2013 3D segmentation challenge [10]. It consists of 

two stacks of 100 images to be used as training and testing sets. Both stacks come from a 

mouse cortex and are acquired using ssSEM, respectively. The microcube is approximately 

6 × 6 × 3 μm at a resolution of 6 × 6 × 30 nm/voxel, resulting in an image stack of size 

1024×1024×100 for both the training and testing stacks. These stacks were downloaded 

from the challenge site [10].

For this dataset we once again applied the semi-automatic method to a portion of the training 

stack not used in training the automatic method and completed it with both a novice user and 

a simulated expert user as described for the Drosophila VNC dataset. We split the training 

set so that the first 50 images of the stack were used for training and the last 50 images of 

the stack were used for testing. Table 2 shows the results of the novice and expert users 

compared to the automatic method for this test. These results are consistent with the 

Drosophila experiment where the the novice user showed a slight drop in the precision and a 

modest improvement in the recall and the expert user showed a significant improvement in 

both precision and recall. In addition, we applied the semi-automatic method to the testing 

stack with a novice user for submission to the challenge to compare against the state-of-the-

art methods. A domain expert was not available for this dataset. Table 3 shows the results 

for this semi-automatic method along with other top results listed on the challenge site. For 

the challenge results, the pair precision and pair recall are not available. Figure 7 shows a 

3D view of a few neurites obtained from segmenting the testing stack of this dataset.

In Table 2 our approach with a novice user on the split training set was able to do 

considerably better than the automatic method, with an even more significant improvement 

in accuracy achieved by an expert user. For the challenge submission results shown in Table 

3 our approach with a novice user is able to achieve accuracy exceeding the current state of 

the art automatic method by nearly 2%. We anticipate that having an expert user complete 

the full challenge testing set would result in an improvement such that our error would rival 

the error in two human experts manually labeling the same dataset but with our method 

requiring significantly less effort.

3.3. Mouse Neuropil

This dataset was acquired at the National Center for Microscopy and Imaging Research at 

the University of California, San Diego using SBFSEM. The complete dataset consists of a 

stack of 400 images each of size 4096×4096 at a resolution of 10 × 10 × 50 nm/voxel [7]. 

For evaluation purposes, we use a subset of this dataset that has been manually labeled in 2D 

by expert neuroanatomists. This subset is 7 × 7 × 3.5 μm, resulting in 70 images with 700 × 

700 voxels/image.

In the following results, the automatic method was trained for 2D using the method 

described in [13] with a representative sample of 14 slices from throughout the dataset. 
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Seven of the slices used in training do come from among the 35 slices used in the final 3D 

testing set because the automatic 2D segmentation performed poorly when trained on 

consecutive slices. The poor performance in 2D segmentation was due to the dataset having 

an uneven distribution of large structures. The 3D automatic linking used the last 30 slices in 

the dataset as training and used the method described in [14]. Finally the testing for both the 

automatic method and the semi-automatic method used the first 35 slices of the dataset. 

There were five slices in the middle that were discarded due to errors in the 2D ground truth 

labeling. Table 4 shows the final segmentation results. In spite of the significant error found 

in the automatic results, an expert 1 using this proofreading method was able to largely 

correct these errors and achieve a more acceptable result. Figure ?? provides a 3D view of a 

few select neurites from the expert labeling of this dataset.

3.4. Timing Analysis

For the mouse cortex dataset in section 3.2, the novice user was able to complete each slice 

of the image stack in just under 30 minutes on average. Extending this time per slice out 

over the entire dataset, the total time required to fully label 100 slices of this data would be 

approximately 50 hours or equivalently 8 minutes 15 seconds to do 3D labeling of 10 slices 

of a 1 μm2 section. Using a similar analysis for the Drosophila VNC dataset in section 3.1, 

the novice user required just over 12 minutes for each slice of the image stack or 

equivalently 30 minutes 16 seconds to do 3D labeling of 10 slices of a 1 μm2 section. 

Finally, for the mouse neuropil dataset in section 3.3, the expert user required just over 11 

minutes for each slice of the image stack or equivalently 2 minutes 15 seconds to do 3D 

labeling of 10 slices of a 1 μm2 section. By comparison, the proofreading done in [1] reports 

a time of 160 hours, including training, for a non-expert user to complete the proofreading of 

a 167 μm3 volume or equivalently 25 minutes 48 seconds to complete 10 slices of a 1 μm2 

section. In [1], the authors also cite significant time improvements for completion by an 

expert to 8 minutes 2 seconds for 10 slices of a 1 μm2 section. These indicate that 

proofreading by a novice user using this method compares favorably with [1], and the time 

required by an expert user improves upon the time required by the expert in [1] by over 

70%.

4. Conclusion

In this paper, we presented a semi-automatic method that can be used to perform 3D 

segmentation of neurites in EM image stacks. First, an automatic method creates a 

hierarchical structure for recommended merges of superpixels. The user then visits each 

node in this structure from highest accuracy potential to lowest potential until all nodes have 

been visited or removed. At each node the user interacts with the semi-automatic method via 

mouse clicks or single keystrokes to indicate the quality of or to correct the 2D segmentation 

and the 3D linking simultaneously.

When completed by a novice user, we were able to demonstrate significant improvement 

over using automatic methods. We were also able to demonstrate accuracy that is 

1The expert for this dataset is a researcher at the University of California, San Diego.
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approximately the same as manual labeling for three different datasets when our method is 

used by an expert in neuroanatomy. Additionally, we have been able to demonstrate that our 

timing is better than currently published timing for other proofreading methods with a 

novice user and comparable to other methods with an expert user. This timing improvement 

is achieved by utilizing the information contained in the automatic method.

The test datasets presented here are relatively small portions of much larger datasets. The 

entire Mouse Neuropil dataset for example is 4096×4096×400. The limiting factor in 

applying this method to the full dataset directly is memory usage. Completing the entire 

dataset could be done by breaking it into smaller memory-manageable blocks and then 

stitching them together. Additionally, as with any method relying on user input, user fatigue 

may contribute to judgement errors as these blocks get larger. Limiting the length of time a 

user spends completing the proofreading in a single sitting can help to eliminate these errors.

Our method also relies on the assumption that initial superpixels are sufficiently 

oversegmented such that they do not need to be split. We have found this to not always be 

the case. We are researching efficient ways to correct superpixels that are undersegmented. 

We anticipate that with the addition of this ability, an expvert user would be able to create 

near perfect segmentations of any dataset. Additionally, further research into identifying 

nodes that could be skipped because the automatic method is correct could result in further 

time improvements as skipping nodes reduces the amount of interaction required from the 

user.
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Table A.5

Summary of possible user input.

Input: Usage

p: View previous slice

n: View next slice

g: Indicate suggested region is acceptable

u: Indicate suggested region is an undersegmentation or bad segmentation

Left Click: Recenter view on clicked point

Shift + Left Click: Add or removed user selected supervoxel to region

+/=: Increase zoom

−/−: Decrease zoom

0: Recenter current region in view areas

1: Reset to original view for the current region

s: Save volume and exit

d: Indicate the user has completed the current slice and is ready to move to the next slice

q Quit without saving
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Highlights

• Proposed a semi-automatic approach to proofreading segmentations of EM 

images

• Achieved accuracy by experts approaching manual labeling quality

• Showed a significant time reduction for dense segmentation of EM images by 

experts
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Figure 1. 
In the above figure, 1(a) gives an example of an image  segemented into superpixels oj 

represented by the numbered regions, 1(b) shows each oj merged into the predicted 

segmentation regions  represented by the colored regions, and 1(c) shows the 

corresponding tree structure with labeled nodes. The colored nodes in 1(c) correspond to the 

colored regions in 1(b).
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Figure 2. 
Screen shot of the interface. The top left shows the image that highlights the proposed link 

in yellow with all other regions outlined in red. The image on the top right highlights the 

proposed segmentation in yellow, the oj in light blue, and the resolved segmentations in dark 

blue. The image on the bottom left is the raw image of . The image on the bottom right is 

the raw image of  with the resolved segmentations highlighted in dark blue.
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Figure 3. 
In the above figure, 3(a) is an example of a correct segmentation, 3(b) is an example of an 

oversegmentation with a portion of just one region suggested, 3(c) is the true segmentation 

for 3(b), 3(d) is an example of an undersegmentation with all of one region and a portion of 

another region suggested, 3(e) is an example of a bad segmentation with portions of multiple 

regions but no entire region suggested, and 3(f) is the true segmentation for both 3(d) and 

3(e).
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Figure 4. 
In the above figure, (a) is the truth image label where each color represents a true region for 

(b)–(d). In (b)–(d) the first column shows the initial proposed segmentation in yellow the 

second column shows the result of resolving the section as described in the method section, 

the third column is the tree associated with the first column, and the fourth column is the 

tree associated with the second column. (b) is an oversegmentation example where yellow is 

the suggested and final segmentation and red is the manually clicked region, (c) is an 

undersegmentation example where yellow is the suggested and final segmentation, and (d) is 

a bad segmentation example where yellow is the suggested segmentation and red is the 

manually clicked region.
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Figure 5. 
The above figure is a 3D view of a few neurites selected from the novice segmentation of 

the Drosophila VNC dataset.
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Figure 6. 
A 3D view of a few neurites selected from the segmentation of the mouse cortex testing 

stack.
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Figure 7. 
A 3D view of a few neurites selected from the segmentation by an expert of the mouse 

neuropil dataset.
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Table 1

The 3D accuracy results on the Drosophila VNC dataset for the automatic method without user input, the 

semi-automatic method with a novice user, and the semi-automatic with a simulated expert user. Note the 

automatic results differ from the challenge results [21] because the challenge was for 2D results and here we 

report 3D results.

No. Approach Testing Error Pair Precision Pair Recall

1 Automatic [14] 0.131 0.908 0.834

2 Semi-automatic (Novice) 0.108 0.896 0.887

3 Semi-automatic (Expert) 0.014 0.990 0.982
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Table 2

The 3D accuracy results on the mouse cortex dataset for the automatic method without user input, the semi-

automatic method with a novice user, and the semi-automatic with a simulated expert user. Note the automatic 

results are worse than the challenge results [10] because the difficulty is greater for the training set than for the 

testing set.

No. Approach Testing Error Pair Precision Pair Recall

1 Automatic [14] 0.239 0.922 0.647

2 Semi-automatic (Novice) 0.131 0.913 0.897

3 Semi-automatic (Expert) 0.051 0.980 0.920
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Table 3

The 3D accuracy results as reported on the challenge site [10] with the semi-automatic results inserted into the 

rankings.

No. Group Testing Error

1 Human 0.060

2 Our Approach (Novice) 0.081

3 Team Gala 0.100

4 Automatic approach [14] 0.124

5 FlyEM [22] 0.125

6 rll 0.131

7 Rhoana [23] 0.148

8 shahab 0.167
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Table 4

The 3D accuracy results on the mouse neuropil dataset for the automatic method without user input and the 

semi-automatic method with an expert from the National Center for Microscopy and Imaging Research.

No. Approach Testing Error Pair Precision Pair Recall

1 Automatic [14] 0.366 0.867 0.499

2 Semi-automatic (Expert) 0.106 0.892 0.896
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