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Abstract

Using RNA Sequencing Data to Detect Variants of Interest

by

Jon Akutagawa

The primary function for RNA sequencing (RNA-seq) is to investigate the transcrip-

tome through differential gene expression. For cancer and other genetic diseases, de-

tecting variants in the genome is critical for our understanding of how these diseases

begin and progress. Here, I will present computational methods focused on using RNA-

seq to detect disease-associated variants. We developed RNA-VACAY, a containerized

high-throughput pipeline that automates somatic variant calling in RNA-seq data. We

analyzed 1,349 RNA-seq samples from the Pan-Cancer Analysis of Whole Genomes

(PCAWG) Project and found that RNA-VACAY can accurately identify somatic vari-

ants of interest using tumor RNA-seq, alone. Our pipeline also does not require a

matched normal sample to detect somatic variants, which is commonly unavailable in

research or clinical settings. RNA-VACAY can also successfully identify 5’ and 3’ UTR

variants, which are overlooked when using WES data. Additionally, we analyzed RNA-

seq data to characterize splicing variants. We found a splice site variant associated with

a previously detected variant of uncertain significance in a patient with an undiagnosed

genetic disorder. We also developed a computational method for efficiently design-

ing guide RNAs for a CRISPR/Cas9 screen to detect exon skipping events associated

vii



with tumor formation. Our work demonstrates the impact of RNA-seq for detecting

functional variants in genetic diseases.
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Chapter 1

Introduction

RNA sequencing (RNA-seq) has transformed our understanding of the relation-

ships between the transcriptome and the genome. This method is most often used to

quantify changes in gene expression in different conditions and has been instrumental

in illuminating how alterations in the genome alter phenotype. Harnessing the power

of RNA-seq data, its applications have been extended to various aspects of the tran-

scriptome, including splicing, RNA structure, single-cell gene expression, translation,

and spatial transcriptomics. Its ubiquity in molecular biology has made it an essential

tool for any researcher interested in discerning how RNA biology is linked to develop-

ment and disease. The motivation behind this thesis is to build methods that harness

the power of RNA-seq to further reveal how dysregulation within the genome leads to

cancer and other genetic diseases.
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The first chapter of this thesis highlights the development of a somatic variant call-

ing pipeline that can analyze tumor RNA-seq. I illustrate how the core components

of this pipeline, RNA-VACAY, were chosen and designed. I also highlight its perfor-

mance with synthetic data and a large dataset of over 1,300 samples. This pipeline can

detect somatic variants well in cancer-related genes and can be used as a lightweight

and lower cost approach to either confirm existing somatic variant calls or detect novel

somatic mutations.

The second chapter details how splicing variant detection can be used to demon-

strate how aberrant splicing could potentially contribute to diseases. I establish how

MESA, our splicing analysis tool, can efficiently look for splicing changes between

samples. Using RNA-seq from pediatric patients with an undiagnosed genetic disease,

we were able to find multiple splicing variants of interest, including a variant in DEGS1

that may be linked to the disease.

The third chapter focuses on my contributions to the development of a splice site

CRISPR assay that seeks to model exon skipping events in cancers. We created a work-

flow to computationally identify potential exon skipping events in lung adenocarcinoma

and create guide RNAs that serve as the backbone of the molecular assay.

These three methods together demonstrate novel applications of RNA-seq and con-

tinue to build on our current understanding of both the transcriptome and genome. The

downstream applications of these methods will serve to further reveal the connections

2



between aberrant molecular mechanisms and genetic disease.
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Chapter 2

Using RNA sequencing to detect

somatic mutations

2.1 Background

The detection of somatic variants through next generation sequencing (NGS) has

enabled researchers and clinicians to associate genetic mutations and disease pheno-

types. The rapid improvement and falling costs of these technologies have led to the

discovery of a whole host of crucial cancer-driving mutations and have opened new

doors for targeted therapies in many cancers. Discovering EGFR mutations in lung can-

cer (Rusch et al., 1993) and BRAF mutations in melanoma (Long et al., 2011) have led

directly to novel treatments (Chapman et al., 2011; Fukuoka et al., 2003) that have rede-
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fined standard of care options for eligible cancer patients. Continued advances in NGS

technology, particularly whole exome sequencing (WES), whole genome sequencing

(WGS), and RNA sequencing (RNA-seq), have allowed researchers to generate mas-

sive amounts of NGS data and subsequently detect novel somatic variants (McKenna

et al., 2010). Variant calling tools are built to differentiate somatic mutations from in-

herited or de novo germline mutations, neutral polymorphisms, and artifacts derived

from misalignments, sequencing errors, or PCR errors (Depristo et al., 2011; Koboldt

et al., 2012; H. Li, 2011; Xu et al., 2012). These existing variant callers are designed

primarily to handle WES or WGS data. RNA-seq is commonly employed for gene ex-

pression and alternative splicing analyses, which has given researchers an opportunity

to uncover the transcriptional and post-transcriptional phenotypes of cancer cells. The

transcriptome’s inherent complexity can prove to be technically challenging when de-

tecting variants. RNA-seq data often contain reads that span intronic regions or harbor

variants in genes with low expression, which pose problems for many of these current

variant calling tools (Quinn et al., 2013). WES also utilizes probes designed for exonic

regions, which introduces annotation biases and would miss the UTR data captured by

RNA-seq. Researchers have demonstrated that identification of somatic variants in this

data is possible (Garcı́a-Nieto, Morrison, & Fraser, 2019; Piskol, Ramaswami, & Li,

2013; Yizhak et al., 2019), but there has yet to be an integrated pipeline with its results

validated by a matched whole-genome variant list.
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2.2 Somatic mutations and their importance in under-

standing cancer biology

Both normal cells and cancer cells are direct descendants of the fertilized egg. How-

ever, the DNA sequence within these cells has specific differences when compared to

the fertilized egg genome; these differences are known as somatic mutations. Somatic

mutations typically arise from replication errors or unrepaired or incorrectly repaired

DNA damage. Both exogenous (UV light, chemical and radiation exposure, viruses

(Talbot & Crawford, 2004) and endogenous (mitotic errors, reactive oxygen species

factors) factors can cause DNA damage. Most somatic mutations found in a cell have

no phenotypic effect. However, particular mutations that alter gene function or a reg-

ulatory element may allow for increased growth or survival. These driver mutations

refer to positively selected mutations within a cell population (Fig. 2.1). The counter-

part passenger mutations are mutations that do not give the cell a selective advantage.

Cells can acquire hundreds or thousands of passenger mutations with no contribution

to cancer development, but the appearance of one or more driver mutations can con-

fer the growth advantage necessary to transform a normal cell into a cancer cell. The

identification of these driver mutations and their effect on cancer cells is essential to

uncovering the biological underpinnings of how these tumors arise and develop.
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Figure 2.1: Somatic mutations transform normal cells into cancer cells. Normal
cells accumulate mutations over time. Passenger mutations (shown in blue) are not
known to be involved with oncogenesis, but driver mutations (shown in blue) are re-
sponsible for the transformation of normal cells into cancer cells.

2.3 Historic use of RNA-seq

The introduction of NGS has revolutionized our understanding of the genome.

RNA-seq is the dominant technique for transcriptome profiling and the measurement of

gene expression levels (Marioni, Mason, Mane, Stephens, & Gilad, 2008). Prior to the

introduction of RNA-seq, cDNA microarrays were primarily used to quantify the tran-

scriptome. Microarrays had several limitations, including requiring a priori knowledge

of the genomic sequence, cross-hybridization leading to high background, and com-

plicated normalization methods between experiments. This made it difficult to design

arrays for both full sequence and transcriptome comprehensiveness and to detect splice

events. RNA-seq does away with these limitations and is now routinely used to investi-

gate differential gene expression in samples undergoing different conditions. RNA-seq

also allows for the identification and quantification of isoforms and novel mRNA tran-
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scripts, drastically increasing our understanding of splicing mechanisms (E. T. Wang

et al., 2008) and regulation by non-coding RNAs (Djebali et al., 2012) and enhancer

RNAs (Kim et al., 2010).

2.4 Previous attempts to develop/evaluate variant call-

ing tools/workflows

The massive amounts of reads produced by NGS have given researchers an incredi-

ble source of sequencing data to better understand the genetics of cancer. Bioinformatic

tools known as variant callers were initially built to distinguish these variants from

noise. Typical variant calling pipelines consist of read processing, mapping and align-

ment of reads to a reference genome, and finally, variant calling. Sequence adapters,

primers, unique molecular identifiers, and other exogenous sequences are first removed.

These cleaned reads are then mapped to a reference genome and aligned. Once all

reads are properly aligned, variant callers identify real variants from sequencing errors,

mismapped bases, and other sources of noise. As germline variants have allele frequen-

cies of 0.5 or 1, somatic variant callers are tasked with determining whether variants

with low allele frequencies are artifacts or a rare true variant. Multiple algorithms

exist to detect mutations and most prefer the inclusion of a matched normal sample

during analysis. Heuristic thresholding is the most straightforward approach, applying
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thresholds and statistical tests to detect potential variants. Joint genotype analysis cal-

culates the posterior probability of the joint genotypes by Bayes’ rule. Other tools ex-

tend this approach to calculate joint allele frequencies to better capture rare subclones.

Haplotype-based algorithms locally assemble reads in a region using a de Bruijn graph

to generate candidate haplotypes. Reads are aligned to these haplotypes and read sup-

port of each haplotype is used to calculate the likelihood of the candidate haplotypes.

Recent variant callers have also incorporated machine learning techniques to classify

variants as somatic mutations or artifacts. Methods such as random forest, support vec-

tor machines, logistic regression, and regression trees are trained on the features of a

ground truth set of somatic variants.

Using RNA-seq as a data source for variant calling has been attempted previously.

Variants detected in RNA-seq are expressed and more likely to affect the phenotype of

a cell. Similarly, rare variants in highly expressed genes are less likely to be labeled as

artifacts. However, there are several limitations with RNA-seq variant calling includ-

ing alignment errors near splice junctions, missing variants in lowly expressed genes,

variants in genes with allele specific expression, and often missing matched normal

samples. Several variant callers accept RNA-seq data, including VarDict, VarScan2,

RADIA (Radenbaugh et al., 2014), Seurat (Christoforides et al., 2013), Platypus, and

GATK. RADIA and Seurat both use RNA-seq with matched tumor and normal DNA

data to improve the variant detection performance. The remaining tools accept either

9



Requires DNA Matched Normal Preprocessing

GATK No No Yes

Platypus No No Yes

VarDict No No No

FreeBayes No No No

Samtools No No No

Strelka2 No No No

SNPiR No No No

RADIA Yes Yes No

VarScan2 No Yes No

Table 1: Existing variant callers that can process RNA-seq data. Most variant callers
are built for WES or WGS data, but these 9 tools have been reported to work with RNA-
seq. Some of these tools require additional data or processing, including a matched
DNA or normal sample, to properly function.

DNA or RNA-seq data, but their ability to accurately detect variants in RNA-seq has

not been fully explored.
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2.5 Evaluation of existing variant calling tool perfor-

mance with RNA-seq

We first surveyed multiple open-source variant callers (Table 1) and cataloged their

relevant features, including their ability to call variants without a matched normal sam-

ple. Platypus (Rimmer et al., 2014), GATK (McKenna et al., 2010), VarDict (Lai et

al., 2016), and FreeBayes (Garrison & Marth, 2012) were all evaluated for their abil-

ity to detect somatic variants in RNA-seq data. FreeBayes was quickly eliminated as

an option due to its massive requirements for both time and computational resources

(Fig. 2.2a). Platypus, GATK, and VarDict all have multithreading options, allowing

the user to decrease the total time necessary to run each tool when using a multicore

system. We first created a synthetic dataset, using normal RNA-seq aligned reads from

Pan-Cancer Analysis of Whole Genomes Consortium (PCAWG) of the International

Cancer Genome Consortium (IGCG). We spiked 300 somatic SNVs into 20 of these

samples to test the tools. Platypus had the best combination of recall and positive pre-

dictive value (PPV) of these three tools when analyzing this dataset (Fig. 2.2b). VarDict

had the highest recall, but also detected a large number of false positives. We further

curated a small subset of matched tumor and normal RNA-seq data from 8 tumor types

within PCAWG to measure the performance of the tools with real world data. The vari-

ants detected in the normal RNA-seq were used to identify germline calls and potential

11



false positives. We compared RNA-seq-based variants with the consensus WGS variant

calls from the same samples to measure recall. As expected, we saw higher recall at

higher levels of expression and coverage across all tools (Fig. 2.2c). GATK had the

highest recall in this analysis, but is likely due to GATK being a major component of

the PCAWG WGS variant calling pipeline. Platypus had the next best performance

after GATK and was again significantly faster and less resource intensive. As a result,

Platypus was chosen to be incorporated into a new pipeline to detect somatic mutations

in RNA-seq data.
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Figure 2.2: Platypus is the tool best fit for a fast and sensitive variant calling
pipeline. a, Four variant callers were evaluated for runtime using 5 synthetic RNA-seq
samples. The mean time was reported. Together Platypus and Opossum - a preprocess-
ing step - were significantly faster and consumed less resources than all other variant
callers. b, Three variant callers were evaluated for recall and positive predictive value
(PPV) with a synthetic RNA-seq dataset of aligned reads with spiked-in somatic muta-
tions. Platypus had the highest median F-score. c, The three tools were then evaluated
with a small test dataset (12 samples from diverse cancer types) curated from PCAWG.
All variant callers generally were more sensitive in genes with higher expression (log2
FPKM) and variants with higher coverage.
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Figure 2.3: Filtering strategy for RNA-VACAY. An example filtering strategy for a
single lung squamous cell carcinoma sample. RNA-VACAY uses multiple filters to re-
move false positives from the raw variant candidates. The majority of these variants are
removed using a combination of either germline, common, or normal variant databases.
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Figure 2.4: A scalable variant calling pipeline to detect somatic variants in RNA-
seq data. Schematic of RNA-VACAY, a somatic variant calling pipeline designed for
RNA-seq data. The pipeline consists of 4 main modules - data download, preprocess-
ing, variant calling, and analysis. Taskboss, a controller module, assigns tasks accord-
ing to available resources and can assist in resuming pipeline operations after interrup-
tions. Multiple filtering options (green and red) can be toggled to keep known cancer
mutations and remove likely false positives. Variants from matched normal samples, if
available, can also be used to filter common variants. White boxes refer to components
of the pipeline and gray parallelograms refer to outputs generated by the pipeline.
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2.6 Variant calling pipeline design

Since PCAWG samples have both whole genome and RNA-seq data, we used this

data as an opportunity to benchmark the RNA variant callers by comparing variant

calls from RNA-seq data with known somatic variant calls from the whole genome

sequencing data. Unlike previous whole exome variant calling studies, this allows us

to eliminate annotation biases associated with WES (Barbitoff et al., 2020). We first

broadly examined the performance of our initial pipeline detecting variants in known

cancer-associated genes within a specific cancer type. We previously found that a large

number of variants reported by Platypus alone did not replicate the consensus variants

found in the matched WGS data. Preliminary analysis of the candidate variants re-

vealed significant amounts of noise, particularly around insertions and deletions and in

specific regions of the genome. Gene ontology analysis was performed on potential

false positive variants and a striking number were found in immunoglobulin (Ig) and

human leukocyte antigen (HLA) genes. Transcripts from these genes often feature ex-

treme levels of diversity, making accurate mapping to these regions difficult for most

tools (Degner et al., 2009; Watson & Breden, 2012). Previous studies also applied

similar filters, such as removing variants found at known RNA editing sites and near

splice junctions (Garcı́a-Nieto et al., 2019). Other potential false positives were also

found nearby homopolymer tracts and on reads with multiple variants in close prox-

imity (within 50bp). These events were deemed to be likely sequencing or alignment

16



artifacts and were removed from the candidate variant list. These filtering steps were

incorporated into the final variant calling pipeline, which we have titled RNA-VACAY

(Fig. 2.3). Our pipeline can download aligned reads from popular cancer data reposi-

tories or accepts a manifest of aligned read data already in a specified location on the

user’s computer. Once the reads are available, the pipeline automates the entire variant

calling process and delivers a list of candidate variants. RNA-VACAY is easy to use,

scalable, and resource efficient (Fig. 2.4).
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Figure 2.5: Increased recall when focused on cancer-related genes. Median recall
across all tumor types was 0.25. Focusing on a subset of genes provided by the Cancer
Gene Census, median recall increases to 0.48.
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Figure 2.6: RNA-VACAY identifies cancer-related variants found in WGS data at
the gene level. Stickplot of RNA-seq and WGS mutations found in the genes NOTCH1
and NFE2L2 of lung squamous cell carcinoma samples. NFE2L2 R34* is a known
hotspot mutation.
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Figure 2.7: Potential stop codon creating variants not detected in RNA-seq data.
In lung squamous cell carcinoma samples, the median count of stop codon creating
variants detected in WGS data alone was 14, while the median count from RNA-seq
alone was 0. The median count of stop codon creation variants found in both datasets
was 3.
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2.7 Gene-level performance

We found that the majority of variants reported by RNA-VACAY matched their

whole genome counterparts and significantly lowered the number of false positives.

For example, in lung squamous cell carcinoma (LUSC), we detected 3,577,489 variants

across the entire cohort using Platypus alone. Our pipeline delivered 7,326 candidate

variants; 4,319 candidate variants were found in the WGS data. When we subsetted for

only cancer-related genes in this cohort, we found 241 candidate variants were found in

both RNA-seq and WGS data. 177 variants found in the WGS data were not detected by

RNA-VACAY, showing a marked increase in recall. This finding was mirrored across

all tissue types in the study (Fig. 2.5). We specifically looked at the performance of

the pipeline in two genes, NOTCH1 and NFE2L2, that have been linked to cancer for-

mation in LUSC (Fig. 2.6). While the variants reported by Platypus alone point to a

false hotspot mutation, RNA-VACAY largely replicated the WGS mutations found in

NOTCH1. The NFE2L2 R34 hotspot mutation was detected with RNA-VACAY with

no false positives across the rest of the gene. Of the missed variants, many resulted in

truncations or stop codon creation (Fig. 2.7), which in turn commonly lead to degra-

dation of the transcript by nonsense-mediated decay (Amrani et al., 2004); therefore,

expression of these variants is low and subsequently were not detected by our pipeline.

For example, truncating mutations in TP53 reported in lung adenocarcinoma (LUAD)

WGS data were not identified by RNA-VACAY. Many driver genes are often highly
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expressed (Ohshima et al., 2017) and therefore our pipeline detects these high impact

variants with confidence.

Figure 2.8: Mutation frequencies of cancer-related genes are similar in RNA-seq
and WGS Heatmap compares frequency of samples in a tissue type containing muta-
tions in known cancer-associated genes. Barplot displays the total number of mutations
found in each gene - RNA-VACAY variants are orange and WGS variants are blue.

2.8 Cancer-type performance

Using this finalized pipeline, we detected 161,809 single nucleotide somatic vari-

ants in all 1,403 RNA-seq samples from the PCAWG dataset (PCAWG Transcriptome

Core Group et al., 2020). We surveyed several known cancer-associated genes with

published hotspot mutations (Chang et al., 2016) (KRAS G12 (Riely et al., 2008), BRAF
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V600 (Long et al., 2011), PIK3CA H1047 (Mandelker et al., 2009), etc.) in multiple

cancer types to assess the pipeline performance in all of the cancer types analyzed by

PCAWG. Over 78% of the WGS calls were detected by RNA-VACAY, demonstrat-

ing the pipeline’s ability to detect these variants in cancer-related genes while analyz-

ing only RNA-seq data across different tumors (Fig. 2.8). TP53, the most frequently

mutated gene in this study, recapitulated the WGS mutational frequency profile and

demonstrated similar high mutational frequencies in liver cancer, colon adenocarci-

noma, bone cancer, and breast adenocarcinoma using RNA-seq variants. Similarly,

mutation frequencies and counts in KRAS, MYC, CREBBP, and SOCS1 were very sim-

ilar in both RNA-seq and WGS data. Both KMT2D and ARID1A surprisingly had a

larger share of RNA-seq only variants. After individual confirmation with the WGS

aligned reads, the variants were present in both datasets, suggesting that these particu-

lar WGS variants were removed during the consensus variant calling process in WGS

analysis.
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Figure 2.9: Driver mutation profiles from RNA-VACAY variants match WGS. a,
Quantile-quantile (QQ) plots of p-values generated from oncodriveFML. Red line dis-
plays where observed and expected p-values match. Blue dots represent genes with Q-
values ≥ 0.1, red < 0.1. Genes with Q-values < 0.1 are indicated. b, Plots of q-values
from genes with detected RNA-seq and WGS variants. Quadrants show significance in
RNA-seq, WGS, or both. 24
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Figure 2.10: Driver analysis for other cancer types. Quantile-quantile (QQ) plots of
p-values generated from oncodriveFML across 12 other cancer types. Red line displays
where observed and expected p-values match. Blue dots represent genes with Q-values
≥ 0.1, red < 0.1. Genes with Q-values < 0.1 are indicated.
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Figure 2.11: Potential driver genes contain variants found in lowly expressed genes.
a, Quantile-quantile (QQ) plots of p-values generated from oncodriveFML in skin cuta-
neous melanoma (SKCM). b, Density plot of gene expression of top WGS driver gene
candidates in SKCM samples.

2.9 Driver analysis

The advent of next generation sequencing technologies have revealed an entirely

new landscape of somatic mutations linked to tumors. The majority of these mutations

are passenger mutations, which mostly have no functional consequence. Identifying

which of these mutations are driver mutations continues to be a huge hurdle for cancer
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researchers. Driver mutations are mutations that undergo positive selection within a

cell population and give these cells a selective advantage that often leads to abnormal

proliferation and growth. Currently, many methods that detect genes with abnormal

mutational patterns often focus on calculating the mutational frequency of a tumor co-

hort. If the mutational frequency is significantly higher than the background mutation

rate, this is an indicator of positive selection and potentially, the existence of a driver

gene.

In order to assess our pipeline’s ability to detect cancer driver genes, we used onco-

driveFML (Mularoni, Sabarinathan, Deu-Pons, Gonzalez-Perez, & López-Bigas, 2016)

to compare the driver mutation profiles of matched RNA-seq and WGS samples in mul-

tiple cancer types. OncodriveFML predicts which genes harbor driver mutations using

functional impact scores derived from the Combined Annotation Dependent Depletion

(CADD) tool. The mean functional impact (FI) score of the mutations within a gene

are compared with the distribution of mean functional impact scores of randomly gen-

erated mutations. Genes with significant differences in FI scores are likely to be driver

genes. We used single nucleotide variants in coding regions from the RNA-seq data

across all tumor types to generate driver gene profiles and compared these profiles to

their matched WGS samples. The driver mutation profile of RNA-seq variants called

by Platypus alone initially resulted in a multitude of potential driver genes, which can

be attributed to the inclusion of germline or false positive variants (Fig. 2.9a). However,
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RNA-seq variants called from our RNA-VACAY pipeline are often consistent with their

WGS equivalents (Fig. 2.9a,b, 2.10). Known driver genes were identified such as TP53,

KMT2D, CDKN2A, and NFE2L2 in both LUSC RNA-seq and WGS data. NOTCH1,

another cancer-related gene, was also predicted to be a driver gene using RNA-VACAY

variants, but not WGS. Similarly, TP53 and KDM6A were reported to have driver muta-

tions in bladder adenocarcinoma RNA-seq and WGS data. SPTAN1 and KMT2D were

also predicted to be driver genes from RNA-VACAY variants, but not WGS. The mu-

tations in NOTCH1, SPTAN1 and KMT2D detected by RNA-VACAY were also found

in the WGS consensus calls. However, additional synonymous mutations found in the

WGS lower the mean FI score of those genes. Interestingly, the mutations in NOTCH1

and TP53 not found in the RNA-seq data are either synonymous or missense muta-

tions, suggesting that the variants are not expressed and may not be functional. TP53,

the gene with the most recurrent mutations, was most commonly reported as being a

driver gene in 13 cancer types using WGS variants. RNA-VACAY delivered the same

finding in 11 cancer types. In chronic lymphocytic leukemia (CLLE) and renal cell

carcinoma (RECA), there were significantly more driver gene candidates found in the

RNA-VACAY variants than the WGS variants (Fig. 2.10). Upon inspection, there was a

significantly higher number of variants found on the same reads and in close proximity

to one another, which may point to either a technical artifact introduced during sample

preparation or alignment. However, in cancer types with a high mutation frequency
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such as skin cutaneous melanoma (SKCM), we saw less overlap between the RNA-seq

and WGS data; multiple genes from the protocadherin alpha gene cluster (PCDHA6,

PCDHA10, PCDHA7, PCDHA1, etc.) were reported as potential driver using the WGS

data (Fig. 2.11a). These genes are lowly expressed in this cancer type, which could

explain why RNA-VACAY was unable to detect these variants (Fig. 2.11b). Overall, 16

cancer types reported one or more driver genes using WGS variants and RNA-VACAY

was able to detect at least 1 matching gene in 13 of them. RNA-VACAY described 1 or

more potential driver genes in 15 of 16 cancer types that were also listed in the Cancer

Gene Census, a curated database of mutations implicated in cancer (Tate et al., 2019).

The driver gene profiles generated from somatic variants detected by RNA-VACAY

largely match the driver gene profiles generated from variants found in the correspond-

ing WGS data, demonstrating the ability to use RNA-seq alone to find driver genes.

2.10 5’ and 3’ UTR analysis

Previous PCAWG studies identified recurrent noncoding point mutations in multi-

ple genes as being strong candidate drivers (Rheinbay et al., 2020). As RNA-seq cap-

tures both 5’ and 3’ untranslated regions (UTRs), we decided to test RNA-VACAY’s

ability to detect these same UTR mutations. Somatic variants in the 5’ UTR of MTG2

and 3’ UTR of TOB1 and NFKBIZ were detected by RNA-VACAY (Fig. 2.12). RNA-

VACAY was unable to detect 5’ UTR mutations in PTDSS1 and DTL, as the vast major-
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ity of RNA-seq samples had virtually no aligned reads in the specified region of those

genes. This may be because somatic variants in this region can often downregulate or

upregulate the expression of these genes, particularly in a cancer context (Lim et al.,

2021). An alternative explanation is that RNA-seq data can exhibit a 3’ end coverage

bias due to the cDNA amplification process, resulting in reduced 5’ UTR coverage.

Provided there is satisfactory coverage, RNA-VACAY is successfully able to detect

recurrent UTR variants.
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Figure 2.12: RNA-VACAY detects 5’ and 3’ UTR driver mutations. RNA-VACAY
detected previously discovered candidate driver mutations in the 5’ UTR of MTG2 and
and 3’ UTR of TOB1 and NFKBIZ.

33



2.11 Cost savings associated with using RNA-seq for so-

matic variant calling

RNA-VACAY is capable of harnessing existing RNA-seq data and provides a cost-

effective and reliable option for the validation of variants found through other methods

(Fig. 2.13). RNA-VACAY only requires the use of a tumor RNA-seq sample, unlike

many WES and WGS methods that require both a tumor and a matched normal sample.

RNA-seq data are also significantly smaller in size, so storage requirements for this data

are much less demanding. For the size of the PCAWG study of 1,349 samples, we esti-

mate that the cost of detecting somatic mutations from RNA-seq of only tumor samples

to be $592,487, while the cost of WGS is estimated at $1,472,926 (DNA Technologies

Core, n.d.; Yung et al., 2017). Using RNA-seq would also cut the runtime from 68,326

hours to 16,275 hours.

Figure 2.13: RNA-VACAY lowers the cost of variant calling. Variant calling with
RNA-seq data significantly lowers time and cost constraints of a randomly selected
sample compared to WGS sequencing.
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2.12 Conclusion

WES and WGS continue to be the main sources of genomic data for identifying

cancer-associated somatic variants, but the function and cost of RNA-seq make it an

increasingly attractive option for characterizing tumors. In situations where no WES or

WGS data are available, existing RNA-seq data collected for differential gene expres-

sion or gene fusion analysis can also be used for somatic variant detection. We applied

RNA-VACAY to over 1,300 RNA-seq samples and were able to detect somatic variants

with high recall. Across all samples, the median recall was 0.25, but increases to 0.48

when looking specifically at cancer-related genes (Fig. 2.5). Our study demonstrates

that RNA-seq data can function both as a supplement and as a substitute for WES and

WGS data when detecting somatic variants. These variants were detected in actively

expressed regions, so they are more likely functionally relevant and significant. RNA-

VACAY has demonstrated its ability to detect somatic variants in RNA-seq that match

the driver gene profiles of variants detected in WGS.

Using RNA-seq also allows for the discovery of somatic variants in the 5’ and 3’

UTR, allowing for further discovery of the functional impact of these noncoding vari-

ants. While we currently filter out previously identified RNA editing sites, future ap-

plications of our pipeline could also be to measure the RNA editing profile of a tran-

scriptome or detect novel RNA editing sites. However, our pipeline is also limited by

the biological underpinnings of RNA-seq. Variants in lowly expressed genes or that
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decrease expression are difficult to detect. Genes with tissue-specific expression can

also make variant discovery challenging.

Our pipeline does not currently detect insertions and deletions. The preprocessing

step with Opossum has only been evaluated in the context of single nucleotide variant

detection. Platypus has been reported to detect indels in WES and WGS data, so ex-

tending the scope to detect indels would be a natural goal for updated versions of this

pipeline. A consensus strategy, incorporating multiple variant callers into the pipeline,

could also be used to increase both recall and PPV.

Tumor-only sequencing can also misidentify germline variants as being somatic

variants. Our filtering approach utilizing multiple public variant and mutation databases

is designed to minimize this scenario. Sequencing adjacent normal tissue can decrease

the number of inaccurately defined somatic variants. Our driver analyses of cancer

cohorts also decrease the chances of a rare germline mutation being identified as a

significant somatic mutation. Using RNA-VACAY also lowers the cost and time often

necessary for somatic mutation detection.

Next generation sequencing technologies continue to enter into the clinic and have

become the gold standard in the genetic diagnosis of cancer and other genetic diseases.

The importance of RNA-seq as a clinical diagnostic tool requires robust and straight-

forward pipelines such as RNA-VACAY to automate analysis of this data.
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2.13 Methods

2.13.1 Aligned reads processing

We used data from The Pan-Cancer Analysis of Whole Genomes (PCAWG) Con-

sortium (ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium, 2020) of

the International Cancer Genome Consortium (ICGC). We downloaded 1,349 RNA-seq

samples from the PCAWG data portal. This dataset features 30 cancer types. 161 of

these samples originate from normal solid tissue or tissue adjacent to the tumor. These

reads were aligned with STAR (v2.4.0i) and hs37d5 or Gencode (release 19) as the

reference gene annotation. Matched WGS data for these samples were used to evalu-

ate pipeline performance. To generate a synthetic dataset, 300 randomly selected so-

matic single-nucleotide variants (SNVs) were manually added to aligned reads from 20

PCAWG normal tissue RNA-seq samples to simulate tumor RNA-seq data. All variants

were located in the coding regions of the genome and had random allele frequencies. A

test dataset of 8 donors with matched tumor and normal RNA-seq from 8 tumor types

were curated and used to evaluate the performance of the variant calling tools. Normal

tissue samples were downloaded from the Genotype-Tissue Expression (GTEx) project

(Ardlie et al., 2015) portal and re-aligned with identical parameters. Somatic variants

detected in these samples were then used to generate a panel of normal variants. 2

samples from 11 different tissue types were incorporated into this panel.
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2.13.2 Pipeline description

The RNA-VACAY pipeline is a modular workflow built on Python 2.7 that auto-

mates task assignment, downloading and preprocessing data, tool execution, and vari-

ant analysis. Each task is completed within a Docker container.

1. Data retrieval

This pipeline is built to specifically handle RNA-seq reads aligned with STAR

(add link to document with commands) currently stored in either PCAWG or

TCGA repositories. The download module includes the recommended tools by

each consortium. RNA-VACAY accepts file manifests generated by these data

repository portals and automates downloading. It can also accept user-generated

file manifests to call variants in previously downloaded data.

2. Preprocessing data

Aligned reads are sorted and indexed by samtools (H. Li et al., 2009) if necessary

and then preprocessed with Opossum (v0.2) (Oikkonen & Lise, 2017). Opossum

prepares RNA-seq data for variant calling by Platypus, GATK, and other callers.

It splits reads mapped across splice junctions and ensures that minimal infor-

mation is lost at read ends by merging overlapping reads and modifying base

qualities at the edges of these reads. Opossum also eliminates duplicate reads.

3. Variant calling
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Platypus is a Bayesian haplotype-based variant caller that uses local de novo

assembly and realigns sequences to detect variants. Platypus also shares variant

information between multiple samples, increasing the confidence of calls that are

weakly supported in one sample, but strongly supported in related samples.

4. Filtering

Raw variant calls from Platypus are first filtered with a custom panel of normal

variants generated from RNA-seq samples from the GTEx repositories. Subse-

quent filters incorporate a combination of preexisting common and normal vari-

ant databases - dbSNP (Sherry et al., 2001), gnomAD (Karczewski et al., 2020),

and REDIportal (RNA editing sites) (Picardi, D’Erchia, Lo Giudice, & Pesole,

2017). Variants with low quality scores or sequencing depth (< 7) were filtered.

Variants found in certain locations, such as known decoy regions, and repeat

regions were excluded. Variants found in human leukocyte antigen genes, im-

munoglobulin genes, and pseudogenes were also excluded. Variants found within

50 bases of other variants with similar allele frequencies or within 10 bases ad-

jacent to homopolymer tracts of 5+ bases were also excluded. An optional filter

will prevent removal of variants found in known cancer hotspots, regardless of

call quality. Normal variants from matched normal RNA-seq samples, if avail-

able, can also be incorporated as an optional filter.

5. Annotation and analysis
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Filtered variants were annotated with SnpEff (v4.3t) (Cingolani et al., 2012).

SnpEff categorizes the variants based on their genomic locations and predicts the

coding effects of these variants. These candidate variants were then analyzed

using custom Python scripts. Driver analysis was performed by oncodriveFML.

OncodriveFML calculates a profile of somatic mutations in specific genomic re-

gions and identifies genes that have a higher mutational frequency compared to

their background mutation rate. All calls outside of the coding region and any

non-single nucleotide variants were filtered before running oncodriveFML.

2.13.3 Initial variant caller evaluation

We first evaluated four open-source variant callers previously reported to be com-

patible with RNA-seq data – Platypus (v0.8.1.1) , GATK (v4.1.9), VarDict (v1.5.5),

and FreeBayes (v1.1). We ran the tools using default recommended options and rec-

ommended preprocessing steps for Platypus (Opossum (Oikkonen & Lise, 2017)) and

GATK (SplitNCigarReads). We measured the speed, recall, PPV, and resource require-

ments of the four variant callers processing 10 RNA-seq samples, comparing the results

between the 5 pairs of normal and tumor samples.
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2.13.4 PCAWG RNA-seq data analysis

RNA-seq samples were downloaded as cohorts based on cancer type. RNA-VACAY

was run on multiple OpenStack instances in parallel. Custom python scripts were de-

veloped to handle and aggregate results.

2.13.5 Single gene variant comparison

The variants in particular genes were visualized as stickplots with cBioPortal

(Cerami et al., 2012; Gao et al., 2013). Known cancer-related genes in specific cancer

types were chosen and plotted using the MutationMapper tool. Custom python scripts

were written to analyze the overlap between the RNA-VACAY and WGS variant sets.

2.13.6 Cancer type variant comparison

The RNA-VACAY and WGS mutational frequencies of the 25 most mutated cancer-

related genes were compared across each PCAWG tumor type using a custom python

script.

2.13.7 Driver mutation profiling

OncodriveFML (v2.2.0) was used to identify genes with potential driver mutations.

We ran oncodriveFML with default settings on filtered variants, using the whole-exome

sequencing option.
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2.13.8 5’ and 3’ UTR mutation confirmation and visualization

Custom python scripts were written to uncover variants detected by RNA-VACAY

that matched previously published genes with recurrent 5’ and 3’ UTR mutations. We

used Integrated Genomics Viewer (v2.8.3) (Robinson et al., 2011) to visually confirm

the variants.
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Chapter 3

Using RNA sequencing to detect

splicing variants of interest

3.1 Background

During RNA splicing, introns are removed from the precursor messenger RNA (pre-

mRNA) and exons are joined together to form a mature transcript. Exons and introns

can be differentially included (Berget, Moore, & Sharp, 1977) and excluded to create

multiple transcripts from a singular template DNA. Alternative splicing (AS) is one of

the main drivers of transcriptome complexity. It is a highly regulated cellular mecha-

nism where pre-mRNA is processed into different mature mRNA molecules. 95% of

genes in humans undergo some level of alternative splicing (Pan, Shai, Lee, Frey, &
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Blencowe, 2008). When alternative splicing occurs, the splicing mechanisms can cre-

ate multiple protein products from a single gene by modifying the splicing of the exons.

These transcripts or isoforms might encode functionally different proteins, which can

depend on cell type or environment. These proteins may be missing a transactivation

domain, lack a DNA-binding domain, have altered affinities in their binding sites, or

localize to a different region of cell. Genetic diseases associated with alternative splic-

ing events mainly arise from changes in core splicing consensus sequences. Mutations

in or near splice sites that alter the 5’ GT or 3’ AG can cause usage of cryptic splice

sites, intron retention, or exon skipping. Mutations can also create new splice sites or

reduce the strength of existing splice sites by altering the surrounding context. Altered

splicing can also create frameshifts that lead to degradation of mRNA by nonsense-

mediated decay (Sun, Zhang, Sinha, Karni, & Krainer, 2010). Changes in the core

spliceosome machinery, enhancer and repressor sequences, RNA polymerase II, and

histone modifications also alter splicing regulation and lead to disease.

3.2 Calculating percent spliced with existing tools

Historically, alternative splicing was measured by the percent spliced in (PSI) value.

This score is a ratio of inclusion reads (i.e. reads overlapping with exons) and exclu-

sion reads (i.e. reads spanning splice junctions) that summarizes the AS events across

individual exons. Percent spliced (PS) is similar to PSI, but instead of focusing on exon
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counts, PS uses junction counts exclusively. The two values can be similar in situations

featuring alternative splice sites or mutually exclusive exons. However, these values

will differ significantly when quantifying complex splicing event combinations or exon

skipping events. Junction-based quantification has a distinct advantage over exon-based

quantification as junctions better reflect RNA processing. Information regarding splic-

ing changes to either side of the exon is captured. Short-read sequencing data is ideal

for this data, as each junction is found on a single aligned read.

Multiple tools for analyzing splicing events exist - SUPPA2 (Trincado et al., 2018),

LeafCutter (Y. I. Li et al., 2018), JuncBASE (Brooks et al., 2011), MAJIQ (Vaquero-

Garcia et al., 2016), SplAdder (Kahles, Ong, Zhong, & Rätsch, 2016), and Whippet

(Sterne-Weiler, Weatheritt, Best, Ha, & Blencowe, 2018). JuncBASE, LeafCutter, MA-

JIQ, and SplAdder are able to detect novel splice events, unlike SUPPA2 and Whippet.

3.3 MESA tool development

We developed a new splicing analysis tool named MESA (Mutually Exclusive

Splicing Analysis) to detect alternative splicing events (Fig. 3.1). The tool performs

junction-based quantification and counts splicing events based on donor and acceptor

sites, where transcripts are connected when mapped to a reference genome. MESA

specifically identifies mutually exclusive junctions - these are where intronic intervals

cannot coexist on the same transcript due to overlap. These junctions must be found on
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different transcripts or isoforms of a gene. For each junction, MESA creates a mutually

exclusive cluster of the entire set of all junctions that overlap it. The inclusion count

is calculated as being the number of reads for this junction. The exclusion count is

then calculated by taking the number of other junctions from this mutually exclusive

cluster appear in reads for this sample. The PS value is finally calculated by dividing

the inclusion count by the sum of the inclusion and exclusion count. Each junction

will have a PS value between 0 and 1, except for junctions where exclusion count is

0 and the PS value is reported as NaN. This straightforward calculation allows for a

brisk analysis that analyzes all splicing events within a sample that can easily scale

and is easy to interpret. MESA also does not require alignment files and can be run

on junction count files alone. This significantly reduces the requirements necessary to

obtain splicing information, particularly in situations where alignment or sequence data

is inaccessible.
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Figure 3.1: MESA performs junction-based quantification of splicing events. Read
counts supporting each event in a mutually exclusive cluster of splice junctions are used
to calculate the percent spliced value (Mulligan, 2022).

3.4 Clinical genetic splicing analysis

Germline RNA-seq data from 3 probands and their families were initially provided

by UCSF. A second set of 2 probands and their families was subsequently provided.

Each proband was previously diagnosed with a genetic disease of unknown origin.

Variant and outlier expression analysis was completed. Some variants of unknown

significance (VUS) were reported, but outlier expression analysis revealed nothing re-

markable. After analysis with MESA, the splicing patterns of all three proband groups

featured notable changes in junction usage. We first created a reference splicing event

list, using all TCGA samples to generate distributions for each splicing event in those
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samples (Fig. 3.2). These served as a reference point to compare the PS values from

the clinical samples we received. In order to determine the PS values for relevant splice

junctions were generated from 670 GTEx whole blood samples using MESA. For each

clinical sample, the PS of each candidate splicing event was first compared to the distri-

bution of PS values generated from the GTEx whole blood samples. Events that were

initially deemed as outlier events would undergo pairwise comparisons using Fisher’s

exact test between the PS values of that event for each clinical sample. An event with

a PS higher or lower than all other samples as well as a Fisher’s P-value less than

0.05 between the proband and its parents, other probands, and all other parents were

selected. Finally, gene lists previously provided by UCSF were used to curate events.

Genes with variants being potentially associated with patient symptoms were generated

by Phenomizer (Köhler et al., 2009, 2014) and further used to curate events.
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Figure 3.2: PS distributions from TCGA. Using MESA, we generated PSI values for
all splice junctions in whole blood samples. We used 11,123 splice junction files and
created distributions of the PSI values as a baseline comparison for potential splicing
events. These 9 splicing events are a snapshot of distribution patterns.
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3.5 STT3B and SMAD4 alternative splicing events

One outlier splicing event was found in STT3B of proband GML1000 - the sample

had an alternative 5’ splice site usage at the end of exon 15 (Fig 3.3). Inclusion of this

intron features a premature stop codon, which may cause the protein product to be trun-

cated and have altered functionality. STT3B mediates post-translational glycosylation

and mutations in this gene are connected with microcephaly and developmental delays

(Shrimal, Ng, Losfeld, Gilmore, & Freeze, 2013). Another outlier splicing event in this

proband was found in SMAD4, where intron inclusion between the 4th and 5th exon

was found (Fig 3.4). A potential SMAD4 homolog (AC091551.1) with these exons has

been previously identified, which could explain the changes in junction usage for these

3 samples. SMAD4 is a transcription factor and part of the transforming growth factor

beta (TGF-β) pathway. It has been identified as a tumor suppressor gene (Liu, Poupon-

not, & Massagué, 1997). However, it has not been strongly linked to developmental

disorders, so these alternative splicing events in SMAD4 are not likely to be associated

with the diseases.
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Figure 3.3: MESA detected an alternative 5’ splice site in STT3B. STT3B, which
encodes for a oligosaccharyltransferase subunit, was found to have alternative 5’ splice
site usage in the proband. mutations are the deletion of a stop codon to extend an
existing uORF and the creation of a new stop codon and subsequently uORF.
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Figure 3.4: MESA detected an intron inclusion event in SMAD4. SMAD4 is a part of
the TGF-β signaling pathway and was found to have an intron inclusion event between
the 4th and 5th exon.

3.6 DEGS1 alternative splicing events

Another proband, TH43 2695 S01, was also analyzed for splicing variants. Ear-

lier variant analysis revealed a homozygous variant of uncertain significance (VUS)
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in DEGS1 - c.825+5delAGinsTT. DEGS1 is a sphingolipid desaturase that has been

previously linked to hypomyelination and degeneration of the central and peripheral

nervous systems (Pant et al., 2019). Using MESA, we independently detected several

splicing variants in this gene and junctions from this gene were ranked in the top 100

of most differentially spliced junctions. Outlier analysis confirmed that the PS of these

events were significantly lower than the rest of the samples and the GTEx whole blood

samples (Fig. 3.5). We found a potential alternative 5’ splice site at the end of exon 2

as well as complete skipping of this exon (Fig. 3.6). The VUS detected in DEGS1 is

located 4 base pairs away from the canonical splice site at the end of exon 2 and would

alter the splice site context, potentially lowering the strength of the canonical splice

site. With this splice site weakened, the use of a cryptic splice site downstream could

explain the changes in splicing in this patient (Fig. 3.7).
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Figure 3.5: Outlier analysis reveals DEGS1 is differentially spliced. Splicing outlier
analysis found multiple splice variants in the proband. PS values for this DEGS1 splice
event were calculated from GTEx whole blood samples. The detected outlier splicing
event is an alternative 5’ splice site. The other samples had similar PS values for this
event, while the proband had a significantly lower PS value.
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Figure 3.6: MESA detected multiple alternative splicing events in DEGS1. Both
alternative 5’ splice site usage and exon skipping are shown in this IGV snapshot.
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Figure 3.7: DEGS1 VUS affects splice site context. This variant of uncertain signifi-
cance alters context downstream of the 5’ splice site and alters the strength and usage
of this site, which could explain the alternative splicing events found in this gene.
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3.7 Conclusion

MESA efficiently detects splicing variants and successfully performs comprehen-

sive alternative splicing quantification. Here we demonstrated a potential clinical appli-

cation of MESA and its ability to independently identify splice variants with potential

links to an undiagnosed genetic disease. In particular, a variant of unknown significance

was reported in DEGS1, which alters the splice site context of the 5’ splice site of the

splice junction event detected by MESA. We also outlined how a splicing event outlier

analysis can be used to quickly identify splicing variants of interest with PS values from

just one sample or a group of samples. As MESA quantifies splicing genome-wide, it

can be used to generate splicing profiles that can further reveal splicing dysregulation

can lead to disease.

3.8 Methods

Aligned reads from 670 whole blood samples were downloaded from the GTEx

portal. Reads were realigned using STAR 2.4.2a to the hg38 reference genome. Re-

aligned reads and associated junction files were analyzed with MESA. Realigned reads

were also analyzed with Leafcutter for comparison between PSI and PS values. Junc-

tion locations, PS values from MESA, and PSI values from Leafcutter were compared

and overlapping junctions were kept for outlier analysis. Custom python scripts to
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perform pairwise comparisons with a Fisher’s exact test were written to compare PS

values between samples and identify the most differentially spliced events. Using the

PS values generated by MESA, a distribution of PS values from the GTEx whole blood

samples was used to calculate the quartile ranges. Outlier splicing events were defined

as events that were larger than the third quartile (Q3) + 1.5 * the interquartile range

(IQR) or smaller than the first quartile (Q1) - 1.5 * IQR. PS values from probands and

family members were then compared to these cutoffs. Once outlier splicing events were

identified, splicing variants were visually inspected with IGV.
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Chapter 4

Modeling exon skipping events in lung

cancer cell lines

4.1 Background

Alternative splicing is an efficient way to expand both transcriptome and proteome

diversity by creating multiple mRNAs and proteins from a single gene through the

inclusion and exclusion of particular exons. Exon skipping is the most common alter-

native splicing event in mammals and can vary according to tissue type (Florea, Song,

& Salzberg, 2013) and developmental stages (Planells, Gómez-Redondo, Pericuesta,

Lonergan, & Gutiérrez-Adán, 2019). Exon skipping can occur when mutations disrupt

any of the core sequences specific to splicing: the 5’ or 3’ splice site, the branchpoint
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site, the polypyrimidine tract, or the splicing enhancers or silencers. With the absence

of a complete exon, these gene products can lack functional domains or sites and of-

ten have altered biological functions, which have been implicated in genetic diseases.

The FAS receptor (TNR6) is a cell surface receptor involved with apoptosis with two

isoforms whose functions are altered by exon skipping. Inclusion of exon 6 results in

the canonical membrane-bound form of Fas that promotes apoptosis when bound to

TNFS6. Skipping of exon 6 results in a splice variant that lacks the transmembrane do-

main and results in a soluble product that inhibits apoptosis by competing with TNFS6

(Izquierdo et al., 2005). Another anti-apoptosis gene, survivin, has multiple isoforms,

one of which is missing exon 3 (Mahotka, Wenzel, Springer, Gabbert, & others, 1999).

The skipped and full-length isoforms are apoptosis inhibitors, but the full-length iso-

form functions in the cytoplasm, while the skipped isoform functions in the nucleus

(Mahotka et al., 2002).

4.2 The genomic landscape of lung cancers

Lung cancer is the second most commonly diagnosed cancer and the leading cause

of cancer deaths in the world (Sung et al., 2021). While smoking and tobacco usage

has fallen in the United States (Sung et al., 2021), smoking rates continue to increase

in developing nations (Dela Cruz, Tanoue, & Matthay, 2011), leading to rising lung

cancer incidence levels. Men are twice as likely to be diagnosed with lung cancer
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than women and the mean age of diagnosis is 70 years old. Lung cancers are classified

based on cell of origin, with the two major types being small-cell lung (SCLC) and non-

small-cell lung cancers (NSCLC) (Nicholson et al., 2022). NSCLC accounts for 85%

of lung cancer cases, with the two most common subtypes being lung adenocarcinoma

(LUAD) and lung squamous cell carcinoma (LUSC) (Nicholson et al., 2022). 80% of

lung cancer cases in the Western world are found in patients with a history of smoking

(Alberg & Samet, 2003) and all major forms of lung cancers are connected to smok-

ing. NSCLC and SCLC are more associated with smoking patients and men, while

LUAD is more likely to be found in women and never smokers. For LUAD and LUSC,

the tumor suppressor gene TP53 is the most commonly mutated gene. In LUAD, the

oncogenes EGFR and KRAS and the tumor suppressor genes KEAP1, STK11, and NF1

are commonly mutated. In LUSC, the tumor suppressor gene CDKN2A is commonly

mutated. Less than a decade ago, half of lung cancers lacked personalized therapies

or actionable targets (Herbst, Morgensztern, & Boshoff, 2018). Fortunately, mortal-

ity from NSCLC has fallen as new targeted therapies have been approved. EGFR,

ALK, ROS1, RET, BRAF, MET, NTRK1, and HER2 are all drivers with inhibitors that

have either been approved or are undergoing clinical review. Immunotherapies centered

around the programmed cell death protein 1 (PD-1) or programmed cell death ligand 1

(PD-L1) checkpoint pathways have also been successful in improving outcomes (Seo,

Kim, Shin, & Kim, 2018) and have become first-line options for NSCLC patients who
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lack driver gene mutations (Hanna et al., 2020; Mezquita et al., 2018). This molecular

classification is also necessary to understand why lung cancer rates in never-smokers

continue to rise. Lung cancers found in never-smokers have a starkly different genetic

profile, as they tend to have a 10-fold drop in mutation frequency. EGFR, ALK, ROS1,

and RET mutations are more likely to be found in never-smokers, while KRAS, TP53,

NRAS, and MAP2K1 mutations are more common in smokers. Genetic profiling has

led to the detection of these actionable drivers and increased our understanding of the

molecular differences between lung cancer subtypes. As more promising therapies are

approved for treatment of lung cancers, classification by molecular features will be

absolutely crucial in selecting the most effective treatment course.

4.3 Exon skipping events in cancer and other genetic

diseases

Alternative splicing contributes not only to protein diversity, but is also closely

linked with genetic diseases. Up to 20% of genetic diseases arise from mutations

that alter pre-mRNA splicing. Changes in spliceosome machinery can also lead to

disease. The splicing factors splicing factor 3B, subunit 1 (SF3B1), serine/arginine-

rich 2 (SRSF2), and U2 small nuclear RNA auxiliary factor 1 (U2AF1) are recurrently

mutated in cancers (Dvinge, Kim, Abdel-Wahab, & Bradley, 2016); these mutations
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have been discovered in multiple tumor types, including myelodysplastic syndromes

(MDS) (Zhang et al., 2015), chronic lymphocytic leukemia (CLL) (L. Wang et al.,

2016), lung adenocarcinoma (LUAD) (Imielinski et al., 2012), and breast invasive car-

cinoma (BRCA) (Maguire et al., 2015). Cancer cells can express altered isoforms of

proteins, which can subsequently lead to tumor formation, progression, and drug resis-

tance. With respect to exon skipping, the most prominent example in cancer is MET

exon 14 (Kong-Beltran et al., 2006). This mutation occurs in approximately 3% of

lung adenocarcinomas and 2.3% in other lung cancer subtypes (Cancer Genome Atlas

Research Network, 2014) and does not co-occur with other known driver mutations in

KRAS, HER2, and EGFR (Frampton et al., 2015). MET encodes for a tyrosine kinase

receptor that activates cell proliferation, survival, and growth signaling pathways. Exon

14 encodes for the 47-amino acid juxtamembrane domain of MET; this region regulates

MET signaling. When the exon is missing, ubiquitination and degradation of MET de-

crease and often leads to hyperactive MET-mediated signaling (Peschard et al., 2001).

These exon skipping events can be caused by multiple mutations occurring in splice

acceptor site, splice donor site, or intronic regions surrounding the exon. Recent clini-

cal studies have demonstrated that capmatinib (Wolf et al., 2020) and tepotinib (Paik et

al., 2020) successfully target MET exon 14 and have been shown to improve outcomes.

Other studies have shown other exon skipping events as potentially targetable sites,

mostly in lung cancers. HER2 exon 16 skipping had first been identified as a driver
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mutation in breast cancer (Turpin et al., 2016) and has also been detected in gastric

and colorectal cancers. The skipping event has been shown to transform lung epithe-

lial cells in vitro and in vivo (Smith et al., 2020) and may even mediate resistance to

targeted therapies. Similarly, EGFR exon 19 skipping is another major mutation found

in lung cancers. Multiple recurrent somatic mutations have been found in EGFR and

two small molecule inhibitors - gefitinib and erlotinib - have shown promise as poten-

tial targeted therapies. Patients with EGFR exon 19 skipping have been shown to have

better outcomes when treated with gefitinib or erlotinib compared to patients with the

EGFR L858R hotspot mutation (Jackman et al., 2006).

4.4 Criteria for selecting exon skipping events

Previous studies have found that mutations in the splicing factors U2AF1 and

RBM10 are associated with splicing changes in lung adenocarcinomas. We first used

juncBASE to quantify the level of alternative splicing in 495 LUAD RNA-seq samples

from the The Cancer Genome Atlas (TCGA). JuncBASE calculates a PSI value for

each alternative splicing event and can detect novel splicing events, which will likely

be missing from current gene annotations. These LUAD samples had matched whole

exome mutation calls, which can be linked to these detected splicing events. We de-

fined a splice site alteration as being any variant 3 base pairs into an annotated exon

or 30 base pairs into its adjacent intron. Aberrant exon skipping was defined as any
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cassette exon splicing event with a PSI 3 standard deviations below the mean. We

found 635 candidate exon skipping events that were nearby a somatic splice site mu-

tation. We also identified 11 samples with a U2AF1 S34F mutation and 28 samples

with RBM10 LOF mutations. Differential splicing analysis revealed 94 splicing events

associated with U2AF1 S34F mutation and 15 splicing events associated with RBM10

LOF mutations that had significantly increased exon skipping levels. We also found

that 106 samples lacked a known oncogenic driver mutation. From these samples, we

identified 50 cassette splicing events that were differentially spliced. Additional splice

site mutations were provided by Guardant Health. This data was generated from se-

quencing circulating tumor DNA in blood samples collected from patients with lung

adenocarcinoma.

4.5 Guide RNA design

In order to introduce the candidate exon skipping events into a lung cell line, we

designed a library of CRISPR/Cas9 guide RNAs (gRNAs) to efficiently target their as-

sociated candidate exons. The candidate exon skipping events were first divided into

two pools based on their oncogenic potential. The first subpool featured events that did

not result in a frameshift after the exon skipping and were not previously detected in

normal samples. The second subpool included all skipping events. From these sub-

pools, we used custom python scripts and the CRISPOR gRNA design tool (Haeussler
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et al., 2016) to create gRNA sequences that would disrupt the target exon splice sites

using the CRISPR/Cas9 system. CRISPOR outputs potential gRNA sequences, com-

plete with PAM sites, and attempts to predict the efficiency and off-target effects of

these sequences. We designed a total of 5,461 gRNAs targeting the splice sites and the

center of all 794 candidate exons. 6 unique gRNAs were chosen for each splice site of

every candidate exon and gRNAs with a cut site closest to the splice site, the highest

specificity score, and the highest cutting efficiency score were prioritized (Fig 4.1). gR-

NAs targeting the middle of each associated exon and the first exon of each candidate

gene were included as negative controls. We expect gRNAs that target the center of an

exon are less likely to alter the splicing of an exon. gRNAs that target the first exon

are likely to result in a loss of function. We also included gRNAs that have no known

target in the human genome as another negative control. As described early, MET exon

14 skipping was detected as one of the candidate events and confirms that the pipeline

is properly identifying potential exon skipping events.

Figure 4.1: gRNA targeting strategy for ssCRISPR. 6 gRNAs target the exon of
interest. 3 gRNAs also target the first exon as a negative control.
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4.6 Conclusion

Using the CRISPR/Cas9 gene editing system to introduce exon skipping events,

our ssCRISPR screen is designed to measure the oncogenic potential of these events in

lung cancer cell lines. Candidate events from this assay can reveal new mechanisms for

tumor formation and could function as new targets for therapeutics. Early functional

validation of this assay has already demonstrated gRNAs targeting HER2 exon 16 re-

sults in cells with increased survival in low attachment growth environments, consistent

with other transformed cells. While our focus is on discovering novel sites for targeted

therapies, this computational pipeline for creating gRNAs can easily be adapted to de-

tect exon skipping events in other tumor types.

4.7 Methods

495 RNA-seq samples were downloaded from the TCGA portal. All samples were

run through JuncBASE (v1.2) to generate PSI values for splicing events. To find events

with a significant difference in PSI values, a Wilcoxon rank sum test with Benjamini-

Hochberg multiple testing correction was performed. Matched somatic mutation calls

and genomic metadata for these samples were also downloaded from the TCGA portal.

Differentially spliced events were then pooled into candidate groups for gRNA design.

CRISPOR (v3.1) was used to generate the sequences for the gRNAs. These sequences
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were then altered using custom python scripts in preparation for library design.
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Chapter 5

Conclusion

With the introduction of RNA sequencing over a decade ago, the method is now the

de facto tool for studying the transcriptome and its links to the genome. New techniques

and analysis methods continue to be built on the core technology and have expanded

its scope to encompass single-cell gene expression, isoform analysis, translation effi-

ciency, and spatial transcriptomics. Extending its reach to the detection of variants - so-

matic and splicing - demonstrates another potential use for RNA-seq. Accurate variant

detection continues to be vital in our quest to determine the causes of genetic diseases.

Methods founded on next generation sequencing technology have already uncovered

novel targets that now have successful therapies, but there are an incredible number of

diseases that still remain genetically unexplained. In this dissertation, I demonstrated

three methods designed to shed light on the molecular mechanisms behind genetic dis-
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eases. RNA-VACAY can harness existing RNA-seq data to find somatic mutations that

are actively expressed. MESA can generate comprehensive splicing signatures that can

be used to identify alternative splicing and splicing variants. ssCRISPR can help re-

searchers design a CRISPR/Cas9 assay to study the effects of exon skipping in a cancer

cell line. These methods provide novel biomarkers for researchers to interrogate dur-

ing drug development. Alternatively, the field of precision medicine has rapidly grown

and robust genetic profiling is also playing a pivotal role for clinicians who now rely

on the status of key genes in a tumor when making therapeutic decisions. The cost of

sequencing platforms has declined significantly in the past decade and the data being

generated by NGS is absolutely critical to augmenting existing frameworks for disease

management. These tools can provide comprehensive profiles of somatic mutation fre-

quencies and splicing changes, giving clinicians another approach to utilize molecular

pathology to better diagnose diseases, predict outcomes, and deliver precise treatment

options.
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Kahles, A., Ong, C. S., Zhong, Y., & Rätsch, G. (2016, June). SplAdder: identifica-
tion, quantification and testing of alternative splicing events from RNA-Seq data.
Bioinformatics, 32(12), 1840–1847.

Karczewski, K. J., Francioli, L. C., Tiao, G., Cummings, B. B., Alföldi, J., Wang, Q., . . .
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Liu, F., Pouponnot, C., & Massagué, J. (1997, December). Dual role of the
Smad4/DPC4 tumor suppressor in TGFβ-inducible transcriptional complexes.
Genes Dev., 11(23), 3157–3167.

Long, G. V., Menzies, A. M., Nagrial, A. M., Haydu, L. E., Hamilton, A. L., Mann,
G. J., . . . Kefford, R. F. (2011, April). Prognostic and clinicopathologic asso-
ciations of oncogenic BRAF in metastatic melanoma. J. Clin. Oncol., 29(10),
1239–1246.

Maguire, S. L., Leonidou, A., Wai, P., Marchiò, C., Ng, C. K., Sapino, A., . . . Natrajan,
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