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Abstract. We review a suite of stochastic vector computational approaches
for studying the electronic structure of extended condensed matter systems.
These techniques help reduce algorithmic complexity, facilitate e�cient paral-
lelization, simplify computational tasks, accelerate calculations, and diminish
memory requirements. While their scope is vast, we limit our study to ground-
state and �nite temperature density functional theory (DFT) and second-order
perturbation theory. More advanced topics, such as quasiparticle (charge) and
optical (neutral) excitations and higher-order processes, will be covered else-
where. We start by explaining how to use stochastic vectors in computations,
characterizing the associated statistical errors. Next, we show how to estimate
the electron density in DFT and discuss highly e�ective techniques to reduce
statistical errors. Finally, we review the use of stochastic vector techniques for
calculating correlation energies within second-order Møller-Plesset perturba-
tion theory (MP2) and its �nite temperature variational form (GF2). Several
appendices o�er a succinct explanation of background theory and techniques.
Example calculation results are presented and used to demonstrate the e�cacy
of the methods.
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CHAPTER 1

Introduction

Stochastic orbital or vector techniques are emerging as valuable tools for study-
ing the electronic structure of extended materials [1�3]. They provide a framework
for reducing algorithmic complexity, facilitating e�cient parallelization, breaking
down computational tasks into smaller, more manageable parts, accelerating calcu-
lations, and diminishing memory requirements. While stochastic vector approaches
share features with more traditional Quantum Monte Carlo techniques [4�14], they
di�er sharply by targeting much larger systems and relying on conventional density
functional and many-body perturbation theories.

The primary tool central to stochastic vector techniques is the stochastic trace
formula [15], which was used in the '90s to compute the density of states, absorp-
tion spectra, and dielectric constants of extended materials under tight-binding
or semiempirical Hamiltonians [16�19]. In recent years, the stochastic vector ap-
proaches' scope and reach in electronic structure have increased dramatically. The
cornerstone was ground-state density functional theory [1] using real-space-grids [20�
23] and Gaussian basis sets [24, 25]. These techniques were later extended to include
range-separated hybrid functionals [26, 27] and treat �nite temperature e�ects for
the warm dense matter regime [28�30]. In addition, the stochastic estimates of the
forces on nuclei were used to drive Langevin molecular dynamics simulations to de-
termine the structural properties of extended systems [31, 32]. The stochastic vector
techniques were next used to describe ground state correlations beyond DFT [33�
39], where they enabled lowering the algorithmic scaling and the memory require-
ments. Finally, their use in describing quasiparticle (charge) excitations [2, 40�48],
optical (neutral) excitations [3, 49, 50], and other higher-order processes [51�53],
has been rather remarkable.

This review presents key concepts and primary techniques of stochastic vector
approaches in the electronic structure of extended systems. For clarity, we focus
on ground-state calculations, either within DFT or in second-order perturbation
theories; we will cover more advanced topics elsewhere. We start in Section 2 with
a brief overview of probability and statistics theory, de�ning random variables and
discussing sampling techniques for estimating their distribution parameters. Next,
we de�ne stochastic vectors and describe how they convert algebraic calculations
into statistical estimations of the expected value of certain random variables. We
then characterize the statistical errors associated with these procedures. Section 3
shows how to estimate, using stochastic vector approaches, the electron density
directly from a given Kohn-Sham (KS) Hamiltonian. We do this in a real-space grid
representation and also within atom-centered non-orthogonal basis sets. We then
discuss the statistical errors and present highly e�ective techniques for reducing
them, central to achieving chemical accuracy. Section 4, we review the use of
stochastic vector techniques for calculating correlation energies within second-order
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1. INTRODUCTION 5

Møller-Plesset perturbation theory (MP2) and its �nite temperature variational
form, the second-order Born approximation to the single-particle Green's function
(GF2). Finally, in Section 5, we provide a summary and a brief discussion of the
conclusions.



CHAPTER 2

Basic stochastic vector techniques

The beating heart of a stochastic calculation is an algorithm for repeatedly
generating specially crafted random variable samples. The variable's distribution is
usually unknown, yet, its expected value measures exactly the physical quantity we
are after (density, quasiparticle energy, force on a nucleus, Young modulus, etc.).
The samples must be statistically independent and can be produced in parallel
within a high-performance computation. The statistical analysis of the results
enables us to �nd the intervals likely to include our target physical quantity with
a known degree of con�dence. This chapter reviews the basic de�nitions, concepts,
and results that enable stochastic vector calculations in the electronic structure of
extensive electronic systems.

2.1. Random variables

A probability distribution of a (real or complex) random variable r assigns to
each of its possible values a probability p (r) such that

∑
r p (r) = 1 (for continuous

variables we replace the sum by an integral and p (r) becomes the probability den-
sity). The expected value of the random variable is E [r] =

∑
r rp (r). Any function

f (r) is also a random variable, and its expected value is E [f (r)] =
∑
r f (r) p (r).

The variance of the random variable is Var [r] = E
[
|r − E [r]|2

]
and can be cal-

culated from the equivalent expression Var [r] = E
[
|r|2

]
− |E [r]|2. The standard

deviation, σ [r] =
√
Var [r], is the scale by which we measure the deviation of r

from its expected value E [r]. Irrespective of the distribution p (r), the probability
for r to deviate from E [r] by more than nσ is smaller than 1

n2 (the Chebyshev
inequality in probability theory). This implies that the typical values of r tend to
be in the σ−vicinity of E [r].

2.2. Estimating E [r]

If we know the probability distribution p (r), we can predict what values the
random variable can take. But often, the situation is reversed: we do not know this
distribution explicitly, but have a large set of independent random samples of the
r. Then our task is to deduce the essential characteristics (such as expected value
and standard deviation) of the distribution from these samples.

From the sampled values r1, r2, . . . , rI of the random variable r we calculate
the sample mean

(2.2.1) mI =
1

I

I∑
α=1

rα.

6



2.3. BIASED ESTIMATORS: NONLINEAR FUNCTIONS OF E [r] 7

mI itself is a random variable and its expected value provides an unbiased estimator
for E [r]:

(2.2.2) E [mI ] = E [r]

with variance that decreases as the number of samples grows:

(2.2.3) Var [mI ] =
1

I
Var [r]⇐⇒ σ [mI ] =

σ [r]√
I

As an example, we say that for I = 100 samples the scale of deviance of mI from
E [r] is 10 times smaller than that of r.

The formal way to estimate the uncertainty in mI is through the concept of
a level-p con�dence interval. This is a range of values which includes E [r] with
probability p. For building a con�dence interval, we need to estimate Var [r] from
the sample data. An unbiased estimator for this is the square of the corrected
sample standard deviation

(2.2.4) s2I =
1

I − 1

I∑
α=1

(rα −mI)
2
.

For large values of I (e.g., for I > 30),
[
mI − c sI√

I
,mI + c sI√

I

]
is a p-level con�dence

interval for E [r] where c = 1, 2, 3 corresponds to p = 0.68, 0.95, 0.995 respectively.1

2.3. Biased estimators: nonlinear functions of E [r]

Often we need to assess the value of f (E [r]), where f is a smooth nonlinear
function. SincemI is an estimator for E [r], then f (mI) can be used as an estimator
for f (E [r]). However, as explained below, the expected value of f (mI) is not
guaranteed to equal f (E [r]): we say that it is a biased estimator with a bias
de�ned as:

(2.3.1) bf,I = E [f (mI)]− f (E [r]) .

When I is large mI is close to E [r] and we use Taylor's expansion of the function
f around the point E [r] to learn of the bias's characteristics and sources:

f (mI) ≈ f (E [r]) + f ′ (E [r]) (mI − E [r]) +
1

2
f ′′ (E [r]) (mI − E [r])

2
+ . . .

Then, taking the expected value and using Eqs. (2.2.2)-(2.2.3) we �nd:

(2.3.2) bf,I ≈
1

2
f ′′ (E [r])

Var [r]

I
+ . . .

We see that a combination of two factors produces the bias: (1) Fluctuations in r
depending on the magnitude of its variance; and (2) the non-linearity of f at the
point E [r], expressed as the magnitude of its second derivative. Eq. (2.3.2) shows
that the bias diminishes asymptotically as I−1.

1The theory applies to random variables mI which are normally distributed. According to
the central limit theorem, mI indeed converges to a normally distributed variable when I → ∞.
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2.4. Stochastic vectors

2.4.1. The stochastic resolution of the identity and the stochastic

trace formula. Stochastic column vectors, χ =


χ1

χ2

...
χK

 have K independent

random variables χk, each taking values from the set of unit modulus numbers,
|χk| = 1, with uniform probability. If the variables are real, χk is drawn from
a uniform distribution of {±1}, and if complex, χk is a number drawn from the
complex unit circle, exp (iθ), where θ is uniform random angle between {0, 2π}.
Since there is a negative value −χk for each value of χk, the expected value must
be zero E [χk] = 0, or as a vector identity: E [χ] = 0. Products like χkχ

∗
k′ , when

k = k′ are equal to 1 and when k ̸= k′ their expected value equals zero. Hence,
E [χkχ

∗
k′ ] = δkk′ is the identity matrix:

(2.4.1) E
[
χχ†] = I.

where I is the K × K unit matrix and χ† = (χ∗
1, . . . , χ

∗
K) is the row vector.

Eq. (2.4.1), called the stochastic resolution of the identity, can be used to �convert�
algebraic expressions into expected values of random variables. Once we have such
a conversion, we use the statistical parameter estimation techniques of section (2.2)
to obtain con�dence intervals for the expected values.

2.4.2. The stochastic trace formula. The stochastic trace formula [15] con-
cerning a K ×K matrix A, expresses the trace of A as the expected value of the
random variable r = χ†Aχ2:

(2.4.2) Tr [A] = E [r] .

A calculation of the variance of r shows that it is given by the sum of the square
modulus of the non-diagonal elements of A:3

(2.4.3) Var [r] =

{ ∑
k<k′ |Akk′ +Ak′k|2 χ ∈ RK∑

k ̸=k′ |Akk′ |
2

χ ∈ CK .

With the above relations for the stochastic trace formula and the corresponding
variance, we conclude that:

(1) The variance is zero, i.e.the stochastic trace is exact when:
(a) A is diagonal

(b) χ ∈ RK and Akk′ = −Ak′k (for all k ̸= k′).

2Proof of this claim based on Eq. (2.4.1): Tr [A] = Tr [IA] = Tr
[
E
[
χχ†]A] =

Tr
[
E
[
χχ†A

]]
= E

[
Tr

[
χχ†A

]]
= E

[
Tr

[
χ†Aχ

]]
= E

[
χ†Aχ

]
.

3The variance is Var [r] = E
[
|r|2

]
− |E [r]|2 and |E [r]|2 = |Tr [A]|2 . For χ ∈ CK :

E
[
|r|2

]
= E

[(
χ†Aχ

)∗ (
χ†Aχ

)]
=

∑
kk′qq′ A

∗
kk′Aqq′E

[
χ∗
kχk′χ∗

qχq′
]

and for χ ∈ RK :

E
[
|r|2

]
= E

[(
χTAχ

)∗ (
χTAχ

)]
=

∑
kk′qq′ A

∗
kk′Aqq′E

[
χkχk′χqχq′

]
. In the former case

use E
[
χ∗
kχk′χ∗

qχq′
]

= δkk′δqq′ + δkqδk′q′ − δkk′δkqδkq′ and in the latter E
[
χkχk′χqχq′

]
=

δkk′δqq′ + δkqδk′q′ + δkq′δk′q − 2δkk′δkqδkq′ . The result is Eq. (2.4.3).
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(2) For real symmetric matrices the variance o�ered by the χ ∈ CK is a
factor two smaller than that by χ ∈ RK . Hence it may be bene�cial to
use complex χ′s for estimating the trace.

(3) For Hermitean matrices and χ ∈ RK the variance is not a�ected by the
imaginary part of the elements of A. Hence, it may be bene�cial to use
real stochastic vectors for estimating the trace of Hermitean matrices with
very large imaginary parts.

2.4.3. Stochastic resolution in the presence of a metric. We sometimes
need to work in a vector space with a positive-de�nite metric S−1, which is used
to de�ne the inner product between two vectors as u†S−1v, see Appendix A for
an explanation and discussion in the context of computational quantum chem-
istry/physics. A stochastic resolution of the metric can be obtained by drawing the
stochastic vectors χ from the following normal distribution

(2.4.4) pS (χ) =

√
det

(
S
2π

)
e−

1
2χ

T Sχ.

When S is sparse this can be done e�ciently using the Metropolis algorithm [54].
It is possible to show that for such vectors 4,

(2.4.5) E
[
χχ†] = S−1.

When S is sparse the Metropolis sampling procedure is fast . Often, we need to
evaluate expressions such as Tr

[
S−1A

]
. In such cases we de�ne again r = χ†Aχ,

(but now χ are sampled from the distribution of Eq. (2.4.4)):

(2.4.6) Tr
[
S−1A

]
= E [r] .

2.4.4. Variance reduction in the stochastic trace formula. Here, we
discuss how Var

[
χ†Aχ

]
of Eq. (2.4.3) can be reduced by projection. This approach

allows to zoom into a speci�ed portion of a system with reduced bias. The �zooming
in� can be formulated algebraically as introducing a projection matrix P (e.g. it
is Hermitean and P2 = P) for the component of interest and Q = I − P, the
complementary projection, for the rest of the system. One can easily check that
Q is also a projection Q2 = Q , and that the two spaces are �orthogonal�, i.e.
PQ = QP = 0. We use the relation Tr [A] = Tr [PAP] + Tr [QAQ],5 and Q
contributions:

(2.4.7) Tr [A] = E
[
χ†
PAχP

]
+ E

[
χ†
QAχQ

]
.

4Note that for

√
det

(
I
2π

) ∫
e−

1
2
χT IχχχT dχ = I. Then, in the integral√

det
(

S
2π

) ∫
e−

1
2
χT SχχχT dχ, make a substitution for the integration variable χ̃ = S1/2χ.This

will lead to the integral in E
[
χχ†] = S−1.

5The trace of QAP and QAP is zero. For example, Tr [PAQ] = Tr [AQP] = 0 where the
�rst equality is due to the invariance of the trace to a cyclic permutation of the products and the
second is due to the orthogonality of the projected spaces: QP = 0.
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Here, χP (χQ) is a random vector in the P (Q) space.6 The variance associated
with this procedure may be signi�cantly reduced, as seen in example (2.1).

Example 2.1. Here we show an example of reducing the variance using pro-

jection. Consider the stochastic trace evaluation of A =

 1 −1 3
3 2 9
5 7 3

, the re-

sult is 10 and according to Eq. (2.4.3) (with real χ's) the variance is 324. Setting

P =

 1 0 0
0 1 0
0 0 0

, and evaluating the trace with Eq. (2.4.7), where χP =

 χ1

χ2

0


and χQ =

 0
0
χ3

 , is equivalent to using the stochastic trace formula of (2.4.2)

on the matrix PAP + QAQ =

 1 −1 0
3 2 0
0 0 3

 for which the variance is 4. The

procedure lead to a factor of 81 reduction in the variance 7.

Another way to reduce variance, is to use various types of similarity transforms.
For example, if a unitary transform of A, e.g. A′ = U†AU results in a reduction of
the magnitude of the o�-diagonal elements, the stochastic trace formula Tr [A] =

E
[
χ†
UAχU

]
with χU = Uχ will show a smaller variance, since χ†

UAχU = χ†A′χ.

2.4.5. How variance changes as systems grow. In many situations, the
trace operation is applied to a matrix representing some physical quantity in a
physical system. As the size of the physical system increases, the dimension of
matrix A increases but some essential physically related characteristics of matrix
A do not change appreciably. Here we consider what to expect from using the
stochastic trace formula Eq. (2.4.2) for increasingly larger system sizes.

(1) Extensive quantities. Here we assume that as the dimension K grows
(in proportion to system size) but the matrix A remains diagonally dom-
inant, i.e., |Akk| >

∑
k′ ̸=k |Akk′ |, with real diagonal elements that fall

within a �nite interval 0 < Amin < Akk < Amax.
8 For each row k of the

matrix A, we de�ne a �radius� qk =
√∑

k′ ̸=k |Akk′ |
2
when χ′s are com-

plex and qk =
√∑

k′<k |Akk′ +Ak′k|2 when they are real. Note that: qk is
bounded from above by Akk and σ [r] =

√∑
k q

2
k.
9 From this,

∑K
k=1 q

2
k <∑K

k=1A
2
kk < A2

maxK, so σ [r] < Amax

√
K. Combine this result with the

6For our purposes, we can take χP and χQ as projections from the same stochastic vector

χ, with χP = Pχ and χQ = Qχ. Then χ = χP + χQ and E
[
χPχ

†
P

]
= P , E

[
χQχ

†
Q

]
= Q and

E
[
χPχ

†
Q

]
= 0.

7Note, however, that reducing the variance this way involves twice as much numerical work
(the matrix A was applied to two stochastic vectors instead of just one). So usually, working twice
as hard for a factor 9 reduction in the standard deviation is an excellent �deal.�

8A similar treatment could be given if Amin < Akk < Amax < 0, i.e., if Akk are all negative.
9For χ ∈ CK qk =

√∑
k′ ̸=k |Akk′ |2 ≤

∑
k′ ̸=k |Akk′ | ≤ |Akk|. For χ ∈ RK : qk =√∑

k′<k |Akk′ +Ak′k|2 ≤
∑

k′<k |Akk′ +Ak′k| ≤
∑

k′<k (|Akk′ |+ |Ak′k|) ≤ |Akk|. In both



2.4. STOCHASTIC VECTORS 11

following lower bound of the expected value: E [r] =
∑
k Akk ≥ AminK,

�nding that :

(2.4.8) relative uncertainty =
σ [r]

E [r]
≤ Amax

Amin

√
K
.

Hence, the relative uncertainty diminishes as the system size grows in
proportion to ∝ 1/

√
K.

(2) Local quantities. The projection operators of the type discussed in
section (2.4.4) can be used to de�ne physically local observable in the
physical system, which leads to a matrix PAP of a low rank. The rank
is often system size independent and thus, the corresponding variance
associated with its self-�uctuation does not signi�cantly change with the
system size and the same can be said of the trace. The relative error in
this trace calculation is therefore, independent of the system size.

2.4.6. Sampling and algorithmic complexity of the stochastic trace
approach. Once the trace of operator A is represented as the expected value E [r]
of the random variable r = χ†Aχ, we use statistical methods to estimate it. For this,
we take a sample of I stochastic vectors χ(α), α = 1, . . . , I, with rα = χ(α)†Aχ(α),
and use their mean mI of Eq. (2.2.1) and their standard deviation sI of Eq. (2.2.3)
to determine the con�dence intervals for A's trace, as explained in Section 2.2.

To appreciate the bene�t of using the stochastic trace approach, we consider the

algorithmic complexity of a deterministic trace operation, Tr [A] =
∑K
k=1

(
u(k)

)†
Au(k)

where u(k) are orthonormal vectors spanning the vector space. The scaling is cubic,
O
(
K3

)
, since for each vector u(k) the computational cost of calculating Au(k) is

quadratic for each of the K vectors in the basis. However, when A can be applied
in a linear scaling e�ort, using sparse matrix techniques, the overall scaling of the
deterministic trace calculation is reduced to quadratic O

(
K2

)
.

In contrast, the stochastic trace formula uses I stochastic vectors χ(α) that
replace the K orthonormal vectors u(k) in the deterministic approach. As a result,
the scaling is reduced I/K times, showing that the stochastic approach is much
more e�cient whenever I ≪ K. Moreover, if I is independent of the size of the
system, the computational complexity is reduced to linear scaling. However, for a
given level of accuracy, I could be a function of K, and in such cases, the scaling
can become either superlinear or sublinear with system size. It all depends on how
the relative standard deviation σ [r] /E [r] in r = χ†Aχ changes with system size.
In Section 2.4.5, we examined two cases, extensive and local quantities: we saw
that for extensive thermodynamical observables, the relative standard deviation
decreases as 1/

√
K. Since the standard deviation of mI is also proportional to

1/
√
I (Eq. 2.2.3), we �nd that for constant relative error, I×K should be constant,

i.e., as K grows I can be made smaller. Hence emerges regime of sublinear scaling
(in stochastic DFT, this was indeed observed [1, 21, 20, 23]). On the other hand,
in local quantities, the variance does not decrease as system size grows but stays
constant . The stochastic approach then is of linear scaling complexity since then
I is constant as the system size increases.

cases, the leftmost inequality is valid because it's shorter to walk along the diagonal (the hy-
potenuse) in a right angled triangle than along the sides. The rightmost inequality is due to the
diagonal dominance of A.



CHAPTER 3

Density functional theory with stochastic vectors

3.1. Basic stochastic density functional theory

The Kohn-Sham density functional theory (KS-DFT) is used to determine the
energy and real-space density of a large many-electron system in contact with a
reservoir at inverse temperature β and chemical potential µ. It does so by consid-
ering the unique system of non-interacting electrons with the same density under

a one-body Kohn-Sham Hamiltonian operator ĥKS . The density at �nite temper-
atures is then given by:

(3.1.1) n (r) = 2×
∑
k

∣∣∣fβ,µk ψk (r)
∣∣∣2 ,

where fβ,µk = f (εk;β, µ) =
(
1 + eβ(εk−µ)

)−1/2
, and

(
fβ,µk

)2

is the Fermi-Dirac

occupation of energy levels εk corresponding to the eigenstate ψk (r) of ĥKS . Note,
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Figure 3.1.1. Left panel: A log-log plot of the CPU wall time as a
function of the number of electrons for bulk silicon with increasing
supercell size. The black symbols are results obtained from efsDFT
with scaling O

(
N0.77
e

)
and the red symbols are deterministic DFT

results with scaling O
(
N2.7
e

)
). More details are given in Refs. [1]

and [20]. Right panel: A semi-log plot of the total CPU wall time
as a function of the temperature for Si64 using I = 80 stochas-
tic orbitals (black curve) compared to deterministic calculations
(red curve, using Quantum Espresso [55]) . The computational
e�ort increases as O

(
T 2.1

)
for the deterministic calculations but

decreases with temperature as O
(
T−0.8

)
for the stochastic calcu-

lations. More details can be found in Refs. [28] and [29].
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that in the limit of β →∞ the sum of Eq. (3.1.1) reduces to the standard expression

for the ground state density, n (r) = 2
∑Nocc

k=1 |ψk (r)|
2
where Nocc is the number of

occupied KS eigenstates. The factor two in these equations is due to the dual spin
occupation of the single electron eigenstate.

For numerical calculations, a �nite representation is used, either a plane waves
or a real-space localized basis or a real space Cartesian grid. We will concentrate
here on the Cartesian grid representation, common to applications of DFT to ex-
tended materials, where the KS Hamiltonian is represented as a grid operator H.1

The density vector at a grid point rg is then a sum over orbital densities

(3.1.2) ng = 2×
∑
k

∣∣∣fβ,µk ψkg

∣∣∣2
where now fβ,µk are the eigenvalues (and ψk eigenvectors) of the square-root Fermi-

Dirac operator F β,µ ≡ f (H;β, µ) and therefore can be obtained from diagonalizing
the matrix H which involves O

(
K3

)
operations and O

(
K2

)
memory. The com-

putational e�ort and memory requirements can be alleviated (see Fig. 3.1.1) by
stochastic DFT (sDFT), involving the application of the stochastic trace formula,
where the density is obtained using:

(3.1.3) ng = 2× E
[∣∣ηβ,µg ∣∣2] ,

where

(3.1.4) ηβ,µ = F β,µχ

and χ is a stochastic vector with elements χg. The rate determining step in the
stochastic calculation is the operation of F β,µ on the stochastic vector χ. This step
can be executed in a linear scaling e�ort using a sparse representation of H while
expanding the square root of the Fermi-Dirac operator F β,µ using the Chebyshev
approach, as explained in Appendix C. Moreover, unlike deterministic DFT, which
requires memory storage of all occupied KS orbitals (scaling as O

(
K2

)
), sDFT

needs to store only three stochastic orbitals (O (K)) at any given time.
Besides the density, one usually needs to estimate the expected values of other

one-body operators ⟨ô⟩ = 2×Tr
[
F β,µOF β,µ

]
where O is the grid representation of

ô. Within the stochastic formulation, the quantum mechanical expectation value
is converted into a statistical expected value in terms of the stochastic-projected
vectors of Eq. 2

(3.1.5) ⟨ô⟩ = 2× E
[(
ηβ,µ

)†
Oηβ,µ

]
.

Eqs. (3.1.3) and (3.1.5) also apply for other representations, for example using
a basis of spatially local non-orthogonal functions ϕk (r) (k = 1, . . . ,K), more
common in quantum chemistry calculations. As explained in more detail in the
Appendix A, a one-body operator ô is represented as OS−1 in the Hilbert space
spanned by ϕk, where Okk′ = ⟨ϕk |ô|ϕk′⟩ and the overlap matrix Skk′ = ⟨ϕk |ϕk′ ⟩.
Moreover, expectation values are given as ⟨ô⟩ = Tr

[
S−1F β,µ†OF β,µ

]
where F β,µ ≡

1The Cartesian grid spacing is h. If rg is a grid point then the electron density n (rg) and KS
eigenstates ψk (rg) are represented by the dimensionless vectors ng = n (rg)h and the orthonormal

vector ψk
g = ψk (rg)h3/2, (

∑
g

(
ψk
g

)∗
ψk′
g = δkk′ and

∑
g ng = Ne is the total number of electrons

in the system). The KS Hamiltonian ĥKS is an Hermitean and linear operator on the vector space
spanned by ψk.
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f
(
S−1H;β, µ

)
(H is the matrix representing the KS Hamiltonian). The metric

form of the stochastic trace in Eq. 2.4.6, Eq. (3.1.5) and Eq. (3.1.3) can be used
to estimate ⟨ô⟩ and the density, with χ given by a stochastic column vector of K

components sampled from pS (χ) =
√
det

( S
2π

)
e−

1
2χ

T Sχ (cf., Eq. (2.4.4)).

sDFT is frequently used to study systems with a speci�ed average number of
electrons Ne. We do not have direct access to Ne since the ensemble expectation

value of the number of electron operator
〈
N̂e

〉β,µ
= 2×E

[(
ηβ,µ

)†
ηβ,µ

]
is a result

of the calculation. We therefore need to �nd a value for µ which obeys the equation:〈
N̂e

〉β,µ
= Ne. The search for µ is done with the bisection method or the Newton-

Raphson method and involves repeated evaluations of the left-hand side of the
equation, each time with a di�erent value of µ. It would be very time consuming to
have to recalculate ηβ,µ every time we change µ. In order to address this problem we
use the technique of power or Chebyshev moments, developed in Refs. [56, 16, 57].
The basic idea is to expedite repeated evaluations of traces of functions of the

Hamiltonian, e.g. the average electron number
〈
N̂e

〉β,µ
, the KS density of states

as a function of the energy ρ (ε) =
〈
∂
∂µN

βµ
〉
µ=ε

[1], and the entropy [28]. We

explain how moments are used in sDFT in Appendix C.2.

3.2. Statistical errors and techniques for their reduction

The random �uctuations in the sample estimates of the electron density of
Eq. (3.1.3) propagate into the density-dependent Hartree and the exchange-correlation
potentials. The latter potential depends non linearly on the density and therefore
exhibits a bias (see discussion in Section (2.3)). As the self-consistent electron den-
sity depends non-linearly on the �uctuating and biased KS Hamiltonian (through
a Chebyshev expansion) it too is biased.

Refs. [24, 25, 28] studied the �uctuation and bias errors in sDFT demonstrating
that (1) The relative �uctuations in the density reduce as systems grow in size;
sources for this e�ect were discussed in Section (2.4.5) and (2) the relative bias
in the electron density, forces and energy are small (especially when embedded
fragments discussed below are used) and do not grow with system size.

Reducing statistical errors is always possible by more sampling. This however
is pricey and a lot can be achieved with deterministic methods, as a preparatory
steps for the sampling itself. We discuss several of these approaches below

3.2.1. Embedded fragments. An important class of techniques designed to
reduce the stochastic errors is based on the embedded fragmented sDFT (efsDFT)
approach [58, 31, 20, 24]. We decompose our system into F fragments such that each
atom belongs to one fragment. The electron density in each fragment is calculated
using: (1) deterministic DFT ndDFT,fg (f = 1, . . . , F ) and (2) a stochastic estimate

nI,fg of the expected value of Eq. (3.1.3), based on a sample of I stochastic vectors.

We then use the sum of all fragment density di�erences ∆nI,fg ≡ ndDFT,fg − nI,fg
as a correction for the stochastic estimate of the density for the entire system:

nI,EFg = nIg +
∑F
f=1 ∆n

I,f
g . When I → ∞, nI,fg → ndDFT,fg and the corrections

∆nI,fg tend to zero, while at the same time the stochastic density nIg tends to the

deterministic ndDFTg . The expectation value of any operator of interest ô can also
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Figure 3.2.1. Left panel: The total energy per electron relative
to a deterministic DFT calculation for bulk silicon in a supercell
with Na = 512 Si atoms (Ne = 2048 valance electrons) as a func-
tion of the number of electrons for increasing supercell size. Inset:
The standard deviation of the density along the [100] direction.
Red/blue curves/symbols correspond to sDFT/efsDFT calcula-
tions with I = 800 (red) and I = 80 (blue), respectively. Note the
signi�cant reduction in the standard deviation for efsDFT (much
smaller error bars obtained from ten runs) for IefsDFT ≪ IsDFT.
More details can be found in Ref. [20]. Right panel: The expec-
tation value of the force along the [100] direction of representative
atoms for bulk silicon withNa = 512 Si atoms in the supercell. The
results obtained from ewsDFT with Nw = 100 windows (blue sym-
bols) are compared to sDFT (red symbols) with I = 512 stochastic
orbitals. Inset: The standard deviation of the force averaged for
all atoms as a function of the number of windows Nw. The results
for Nw=1 correspond to sDFT. A signi�cant reduction in the stan-
dard deviation is obtained already for Nw ≈ 10. More details can
be found in Ref. [21].

be corrected as: ⟨ô⟩I,EF = ⟨ô⟩I +
∑
f ⟨∆ô⟩

I,f
where ⟨∆ô⟩I,f = ⟨ô⟩dDFT,f − ⟨ô⟩I,f .

This scheme leads to a signi�cant reduction in the bias and in the statistical error,
as illustrated in the left panel of Fig. 3.2.1.

3.2.2. Energy windows. In the energy windows technique [21], we divide the
energy axis ε into NW �windows� by introducing a monotonic sequence of chemical
potentials: µ1 < µ2 < · · · < µNW

= µ (the last potential is the physical chemical
potential µ). With these, we de�ne �energy window� functions

f1 (ε)
2
= fβµ1 (ε)

fw (ε)
2
= fβµw (ε)− fβµw−1 (ε) , w = 2, . . . , NW .

Note that
∑
w f

w (ε)
2
=

(
fβµ

)2
and thus, the KS expectation value of a one-body

operator can be expressed as ⟨ô⟩ = 2 × Tr
[∑NW

w=1 F
wOFw

]
where Fw = fw (H).
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Figure 3.2.2. Left panel: Comparison of the expectation value
of the force along the [100] direction of representative atoms for
G-center impurity embedded bulk silicon with Na = 512 atoms
in the supercell for ewsDFT (red) and ew-efsDFT (blue). Error
bars in the forces on the nuclei were obtained from �ve runs. Also
shown are the deterministic results (green). Right panels: The ab-
solute value of the electron density di�erence (|∆n(r)|) between the
stochastic and a deterministic calculation (upper panel) and the
standard deviation of the electron density (σ [n (r)]) (lower panel)
along the [100] direction. Results for efsDFT and ew-efsDFT are
shown in red and blue, respectively. More details can be found in Ref. [23]

The corresponding stochastic trace formula is then:

(3.2.1) ⟨ô⟩ = 2×
NW∑
w=1

E
[
ηw

†
Oηw

]
,

where ηw = Fwχ and the calculation of the NW vectors, ηw, involves a Chebyshev

expansion ηw =
∑NC−1
n=0 awnχn with coe�cients

{
aw0 , a

w
1 , · · · , awNC−1

}
, which depend

on the function fw (ε) (see C for details). We see, that each ηw has its own set
of coe�cients

{
aw0 , a

w
1 , · · · , awNC−1

}
but all the η′s share the same set of Chebyshev

vectors {χ0, χ1, · · ·χNC−1}. All ηw's use the same Chebyshev vectors χn but each
requires a distinct set of coe�cients awi . The calculation of χn is by far the dominant
part of the computation therefore the numerical e�ort is almost entirely independent
of the number of windows Nw.

The above energy window scheme can be rather useful in reducing the statis-
tical noise at a small computational cost, but only for an observable, O, that does
not commute with H. This may (or may not, depending on O) yield a lower overall
statistical error. When O commutes with H, the Fw's and ρw's commute with O
and the energy windowing has absolutely no e�ect on the statistical error. Our
previous calculations suggest that the energy window is highly useful in reducing
the bias and the statistical error on the forces on nuclei [21]. An even more impres-
sive reduction in the bias and statistical noise can be obtained when windowing is
combined with the embedded fragment approach [23], as illustrated in Fig. 3.2.2.
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3.2.3. Tempering. Another approach that is useful to reduce the statistical
error and the bias is based on introducing a reference system which is kept at a
higher temperature. This allows us to rewrite the Fermi-Dirac operator fµβ (ε)
appearing in Eq. (3.1.4) as a sum of two terms, a high temperature term (βw < β)
and a correction term [59]:

(3.2.2) fβµ (ε)
2
= fβ

wµ (ε)
2
+∆f (ε) ,

where β is the target inverse temperature. This leads to the following expression

for expectation values ⟨ô⟩βµ = ⟨ô⟩β
wµ

+∆ ⟨ô⟩ composed of the following stochastic
traces:

∆ ⟨ô⟩ = 2× E
[
ηβµ

†
Oηβµ − ηβ

wµ†
Oηβ

wµ
]

and

⟨ô⟩β
wµ

= 2× E
[
ηβ

wµ†
Oηβ

wµ
]
.

In the above, ⟨ô⟩β
wµ

is the larger contributor to the expected value of ⟨ô⟩ and
since this term ηβ

wµ is evaluated at higher temperatures, it requires Chebyshev
expansion lengths which are a factor ≈ β/βw shorter than that required to evaluate
ηβµ. On the other hand, the smaller correction term (∆f (ε)) requires a small
number of samples I since it overall magnitude is rather small. Thus, we use a large
number of stochastic vectors to evaluate ηβ

wµ with a short Chebyshev expansion
and a small number of stochastic vectors to evaluate ∆ ⟨ô⟩ with a long Chebyshev
expansion. This allows to reduce the overall bias and statistical error for the same
computational cost.



CHAPTER 4

Stochastic vectors for weakly correlated systems

beyond DFT

In this section we show how stochastic vectors can help reduce the workload
or scaling in post Kohn-Sham calculations. We focus on weakly correlated systems
that can be described within the second order Born approximation to the self en-
ergy within Matsubara Green's Function theory [60]. In Appendix B we present
a brief review of the Matsubara Green's Function theory and its application to
electronic structure theory. In brief, the central variable of the theory is the many
body thermal Green's function, G (τ) which depends on a parameter τ ∈ [0, β]
called �imaginary time�. To compute G (τ), one requires as input the self energy,
Σ (τ), which is the most time-intensive operation. Within the second order Born
approximation the calculations of Σ (τ) scales as O

(
K5

)
for K basis functions, cf.

Eq. (B.3.4). Here we describe how stochastic vector techniques can reduce this
steep scaling to either quadratic O

(
K2

)
or cubic O

(
K3

)
scaling.

4.1. Quadratic scaling calculation of the GF2 self energy

The basic idea here is to use a grid representation for the two-electron integrals,
which can be carried out in O (Ng logNg) operations, where Ng is the number of
grid-points (proportional to the system size). The method uses three independent
stochastic K-vectors: ξ, η and ζ. The di�erent steps for every τ can be summarized
as follows [37]:

(1) De�ne ξ′ = G (β − τ) ξ, η′ = G (τ) η and ζ ′ = G (τ) ζ. Note that the
matrix elements of the Green's function are given by the expected value:
Gk′k (β − τ) = E [ξkξ

′
k′ ]. Similarly, Gk′k (β − τ) = E [ηkη

′
k′ ] andGk′k (β − τ) =

E [ζkζ
′
k′ ] . Scaling O

(
K2

)
.

(2) De�ne wave functions on the grid, ψξ (r) =
∑
k ξkϕk (r), and similarly for

ψξ′ , ψη, ψη′ , ψζ , ψζ′ . Scaling O (Ng).

(3) Calculate the stochastic two-electron integral (γη|ξζ) ≡
∫
dr1ϕγ (r1)

∗
vξζ (r1)ψη (r1)

where vξζ (r1) =
∫
dr2

ψξ(r2)
∗ψζ(r2)
r12

. Note that the calculation of vξζ (r1)

involves O (Ng logNg) complexity but the integral over r1 in (γη|ξζ) is
O (1) for each γ (since ϕγ (r) is localized in space). Repeat this for (γζ|ξη)
and (γ′η′|ξ′ζ ′). Scaling O (Ng logNg).

(4) The self energy can be represented as an expected value of direct and
exchange contributions (at each τ):

(4.1.1) Σγγ′ (τ) = E [− (γ′η′|ξ′ζ ′) (2 (γη|ξζ)− (γζ|ξη))] .

18
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Note that the only term that depends on τ is (γ′η′|ξ′ζ ′), this fact greatly
expedites the Fourier transform of Σ (τ) into a frequency dependent quan-
tity (which is required in some implementations).

Algorithmic complexity: The overall calculation of all (γη|ξζ)'s is of linear
scaling algorithmic complexity, hence for a sample of size I, the overall e�ort is
I × Nτ × Ng logNg (Nτ is the order to the time representations as discussed in
Appendix B). The dependence of I on the system size may be an issue. For �xed
relative correlation energy error, I was found independent of system size for the
MP2 calculation [37]. However, for self consistent GF2, where the self energy is
used to generate the GF, G (τ), a small bias was found that mildly depends on the
system size, suggesting that for a �xed bias, the scaling is somewhat steeper than
linear.

4.2. Stochastic vectors for the resolution of the identity (RI)

An alternative to the above approach is based on the resolution of the iden-
tity (RI), which is often used in deterministic MP2 and coupled cluster calcula-
tions [61, 62]. The resolution of identity uses atom-centered auxiliary charge distri-
butions ρr (r), r = 1, . . . ,K ′ (typically K ′ is a factor 3 larger than K) spanning the
space of basis function products ϕk (r)ϕk′ (r) to represent the K

2×K ′ three-center

(kk′|A) ≡
∫
dr1dr2

ϕk(r1)ϕk′ (r1)ρA(r2)
r12

and two-center (A|B) =
∫
dr1dr2

ρA(r1)ρB(r2)
r12

integrals, forming a positive de�nite symmetric K ′ × K ′ matrix, decomposed as
(A|B)

−1
= ΛTΛ where Λ is an invertible matrix. In a stochastic implementation of

the resolution of identity (sRI) [36] we reduce the quintic scaling of calculating the

self-energy to cubic by introducing two independent stochastic vectors ξ and ξ̃ of
dimension K ′ and representing the 4-index Coulomb integral as an expected value:
(4.2.1)

(kk′|qq′) ≡
∫
dr1dr2

ϕk (r1)ϕk′ (r1)ϕk (r1)ϕk′ (r1)ϕq (r2)ϕq′ (r2)

r12
= E [Rkk′Rqq′ ]

with

(4.2.2) Rkk′ =
∑
A

(kk′|A) ΛT ξ.

Note, that we never calculate all two electron integrals but instead we merely plug
their stochastic representation into Eq. (B.3.4) and after a few manipulations we
obtain:

(4.2.3) Σ [G] (τ) = −E [Γ (τ) (2Tr [G (β − τ) Γ (τ)] I−G (β − τ) Γ (τ))]

where Γ (τ) = 1
2

(
RG (τ) R̃T + R̃G (τ)RT

)
and R and R̃ are given by Eq. (4.2.2)

with di�erent random vectors ξ and ξ̃. The stochastic representation allows us to
express Σ as a product of K ×K matrices (operations scaling as K3), which is the
formal scaling of the stochastic self energy (see right panel of Fig. 4.2.1). Since
other steps are also cubic (decomposition of (A|B) matrix) there is no point in
reducing the scaling further. Fig. 4.2.1 provides analysis of the correlation energy,
the bias, and the statistical error in hydrogen chains (left and middle panel) and
the scaling (right panel) of two �avors of stochastic GF2 (see Refs. [45] and [48] for
more details).
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Figure 4.2.1. The correlation energy per electron as a function of
1/I for three di�erent hydrogen chains obtained using the range-
separated stochastic resolution of identity (RS-sRI) within GF2
theory. For the largest value of I = 800 we also show the result
for the stochastic resolution of identity (sRI). Note that, for clar-
ity, we have shifted slightly the values of the x axis for di�erent
system sizes. Middle panel: The correlation energy per electron
as a function of the number of hydrogen atoms (NH). The results
obtained using RS-sRI (red curve) show a signi�cant lower bias
and statistical errors compared to the sRI (blue curve). Note that
both approaches agree with the deterministic approach (calculated
only for the smaller system sizes) within the statistical error. Right
panel: Log-log plot of the computational wall time of the di�erent
GF2 approaches as a function of NH. Scaling were obtained by
using linear regression with O

(
N5.1

H

)
for deterministic calculation,

O
(
N2.2

H

)
for RS-sRI-GF2, and O

(
N3.2

H

)
for sRI-GF2. The stan-

dard deviation is set to 10 meV in both approaches. More details
can be found in Refs. [45] and [48].



CHAPTER 5

Summary

This review presented essential concepts and techniques of stochastic vector ap-
proaches to electronic structure, focusing on the ground-state. We showed how sto-
chastic vectors could reduce algorithmic complexity and memory requirements. For
example, in sDFT, we avoided calculating the Kohn-Sham eigenstates and reduced
the scaling in time and memory to linear. Furthermore, estimating the ground state
correlation energy, the stochastic vector methods allowed to signi�cantly reducing
the quintic scaling of MP2/GF2 self-energy calculations.

Stochastic vector techniques enjoy many practical bene�ts. For example, they
o�er a systematic process of giving up accuracy for gaining e�ciency. In addition,
they provide a natural route for parallelizing calculations based on the requirement
that samples must be statistically independent. However, perhaps their most signif-
icant bene�t is their �exibility, allowing them to combine seamlessly with localized
deterministic calculations in multiscale and embedding applications.
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APPENDIX A

Hilbert-space representation in a non-orthogonal

basis

A Hilbert space is the complex vector space with all wave functions representing
physical states of our system. Each element is a ket |ψ⟩ and the space is endowed
with an inner product ⟨φ |ψ ⟩ ∈ C, for which ⟨φ |ψ ⟩ = ⟨ψ |φ ⟩∗. The inner product
of a function with itself is non-negative.

In computational quantum chemistry/physics we use the inner product of our
system's Hilbert space to map the kets onto column vectors in a K dimensional
vector space by introducing a basis of kets |ϕk⟩, k = 1, . . . ,K:

|ψ⟩ 7→ ψ : ψk = ⟨ϕk |ψ ⟩ .

The inner product in the K dimensional column space is de�ned as following
ψ†S−1φ =

∑
kk′ ψ

∗
kS

−1
kk′φk′ , where S−1 is called the metric of the representation and

Skk′ = ⟨ϕk |ϕk′ ⟩. The reason for this strange looking inner product is the equal-
ity of the inner product with the parent Hilbert space: if |ψ⟩ 7→ ψ and |φ⟩ 7→ φ
then ψ†S−1φ = ⟨ψ |ϕ ⟩ . We may interpret this procedure of using the metric as a
transform of kets and bras:

ψ† → ⟨ψ| : ⟨ψ| =
∑
k

ψ†
k ⟨ϕk|

φ→ |φ⟩ : |φ⟩ =
∑
k

|ϕk⟩
(
S−1φ

)
k

If ô is a linear operator in the Hilbert space then the matrix OS−1, where

(A.1) Okk′ = ⟨ϕk |ô|ϕk′⟩

is a linear map in the K vector space having �the same e�ect� as ô in the Hilbert
space: if |ψ⟩ 7→ ψ and |φ⟩ 7→ φ and if |φ⟩ = ô |ψ⟩ then φ = OS−1ψ. The quantum

mechanical expectation value transforms as ⟨ψ |ô|ψ⟩ =
∑
kk′ ψ

†
k′

(
OS−1

)
k′k

ψk =

Tr
[
S−1ψψ†O

]
. In �nite temperature DFT the KS density matrix (KS DM) is

ρ̂ =
(
1 + eβ(ĥ−µ)

)−1

so in the vector space the corresponding matrix is

(A.2) P =
(
1 + eβ(HS−1−µ)

)−1

where, as in Eq. (A.1), Hkk′ =
〈
ϕk

∣∣∣ĥKS∣∣∣ϕk′〉 and ĥKS is the Kohn-Sham Hamil-

tonian. Hence

(A.3) ⟨ô⟩ = Tr
[
S−1PO

]
22
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We can symmetrize this expression by de�ning F =
(
1 + eβ(S

−1H−µ)
)−1/2

so FTFT =

P and then, using the identity S−1FT = FS−1 we �nd

(A.4) ⟨ô⟩ = Tr
[
S−1FTOF

]



APPENDIX B

2nd-order Matsubara Green's functions

In this section we describe the Matsubara Green's function (GF) grand canon-
ical formalism for electronic structure and give a second order perturbation theory
for its self energy.

B.1. Preliminaries

The Hamiltonian of an interacting electron system, written in second quanti-
zation

(B.1.1) Ĥ =
∑
σ

∑
kk′

Hkk′ â
†
kσâk′σ +

1

2

∑
σσ′

∑
kk′qq′

(kk′|qq′) â†kσâ
†
qσ′ âq′σ′ âk′σ.

where âkσ (â
†
kσ) are Fermionic annihilation (creation) operators for a σ-spin electron

in the basis function ϕk (r) described in Appendix A, obeying the anti-commutation
relations:

(B.1.2) âkσâk′σ′ + âk′σ′ âkσ = 0, â†kσâk′σ′ + âk′σ′ â†kσ = δσσ′δkk′ .

For clarity, we henceforth drop the spin designation σ where unnecessary. The

matrix Hkk′ =
∫
drϕ∗k (r)

[
− ℏ2

2me
∇2 + ueN (r)

]
ϕk′ (r) appearing in Eq. (B.1.1),

represents the one-body kinetic and electron-nuclei potential energies, while1

(kk′|qq′) =
∫∫

dr1dr2
ϕk (r1)

∗
ϕq (r2)

∗
ϕq′ (r2)ϕk′ (r1)

r12
,

are the two-electron integrals involving the pairwise electron Coulomb repulsion

potential e2

4πϵ0|r1−r2| which is denoted brie�y as 1
r12

. The Matsubara GF describes

an open electronic system at inverse temperature β and chemical potential µ within

the grand canonical ensemble. The expression
〈
Ô
〉
= Tr

[
e−β(Ĥ−µN̂)

Tr
[
e−β(Ĥ−µN̂)

] Ô
]
de�nes

the expectation of an operator Ô where N̂ =
∑
kσ â

†
kσâkσ is the electron number

operator. For one-body operators Ô =
∑
kk′σ

(
S−1O

)
kk′ â

†
kσâk′σ where the matrix

Okk′ is de�ned in Eq. A.1, and the expectation value is given in Eq. (A.3), but now

(B.1.3) Pσkk′ ≡
〈
â†k′σâkσ

〉
is the interacting density matrix (DM). For non-interacting electrons P , the KS
DM, is the Fermi Dirac function of Eq. A.2.

1We use the notation of ref. [63], for the two-electron integrals between spatial orbitals with
the following symmetries: (kk′|qq′) = (kk′|q′q)∗ = (qq′|kk′) and for real (kk′|qq′) = (kk′|q′q) =
(qq′|kk′) = (q′q|k′k).

24
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B.2. The Fermionic Matsubara Green's function

Matsubara's GF [64] is the real symmetric matrix:

Gkk′ (τ) ≡ θ (−τ)
〈
â†k′ âk (τ)

〉
− θ (τ)

〈
âk (τ) â

†
k′

〉
,(B.2.1)

depending on imaginary time −β < τ < β, where X̂ (τ) = eτ(Ĥ−µN̂)X̂e−τ(Ĥ−µN̂),
and θ (τ) is 1 when τ is positive and 0 otherwise. When τ > 0 the GF's ma-
trix elements are the signed probability amplitudes for �creating an electron now
and deleting it later�. When τ < 0 they are the amplitudes for �creating a hole
in the past and deleting it now�. It is readily checked that GF is anti-periodic
G (τ) = −G (β + τ) and thus expandable as an odd-frequency Fourier series G (τ) =
1
β

∑∞
n=−∞ G̃ (iωn) e

−iωnτ where ωn = (2n+ 1) πβ and G̃ (iωn) =
∫ β
0
G (τ) eiωnτdτ .

For carrying out calculations, the τ -dependent functions are spanned by orthogonal
polynomials up to order Nτ (typically of the order of 100-300 points). Chebyshev or
Legendre expansions are possible, the latter enjoying a highly e�cient convolution
formula.[65, 66] From Eqs. (B.1.2), (B.2.1), and (B.1.3):

(B.2.2) P = −G (β) , I− P = −G
(
0+

)
.

One of the attractive features of the GF is the direct accessibility to the total fully
interacting energy[67]:

E = Tr
[
Ġ (β)

]
+ Tr

[
S−1HP

]
+ µN(B.2.3)

where here G (τ) =
∑
σ G

σ (τ) is the �total� GF, P = −G (β), and N =
〈
N̂
〉
=

TrP .

B.3. Perturbation theory

The perturbation theory is based on a reference non-interacting Hamiltonian,
with the following (so-called Fock-) matrix elements:

Fkk′ = Hkk′ +
∑
qq′

Pqq′ (2 (kk
′|qq′)− (kq′|qk′)) ,(B.3.1)

for which the τ - dependent GFs take a simple �non-interacting� form:

g (τ) = [θ (−τ)P − θ (τ) (1− P )] e−τ(S
−1F−µ)(B.3.2)

In terms of the frequency-dependent quantities, the GF can be obtained from g by
a self-energy matrix, Σ ≡ g−1 −G−1 or more concretely from

(B.3.3) G (τ) = g (τ) + [g ⋆ Σ [G] ⋆ G] (τ) ,

known as the Dyson equation, where the star operation is a imaginary-time convolu-

tion: [A ⋆ B]kk′ (τ) =
∑
q

∫ β
0
Akq (τ − τ ′)Bqk′ (τ ′) dτ ′. The self-energy encapsulates

implicitly the electron correlation, beyond the non-interacting F matrix. It can be
obtained using the Luttinger-Ward variational perturbation theory [68], as a func-

tional derivative Σ (τ) = − δΦ[G]
δG(β−τ) of a functional constructed from appropriate

Feynman's diagrams. In second-order perturbation theory (summing over all pairs

of identical indices) Φ [G] = 1
4

∫ β
0
dτGp′q′ (τ)Go′k′ (τ)Gok (β − τ)Gpq (β − τ)× (po′|op′) (2 (qk′|kq′)− (qq′|kk′))

from which:
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(B.3.4)
Σqp [G] (τ) = −Gp′q′ (τ)Go′k′ (τ)Gok (β − τ) (2 (po′|op′)− (pp′|oo′)) (qk′|kq′)

This leads to the following algorithm for obtaining the GF: start from the Hartree-
Fock matrix F and the non-interacting GF gHF , and set G = gHF . Then, iterate
one of the following loops until convergence:

←−


P
F
Σ
G

 (B.3.1)←−−−−

 P
Σ
G

 (B.2.2)←−−−−
(B.3.4)

G←−−−−
(B.3.3)

 g
Σ
G

 (B.3.2)←−−−−


P
F
Σ
G

←−
The �nal G and P are used to compute the energy from Eq. (B.2.3). The resulting
theory is variational, respecting physical conservation laws[68]. The procedure is
known as the second-order Green's function approach, GF2. If we perform just the
�rst iteration we obtain the MP2 GFGMP2 (τ) = gHF (τ)+[gHF ⋆ Σ [gHF ] ⋆ gHF ] (τ)
and from Eq. (B.2.3) the Møller-Plesset (MP2) energy EMP2, from which the MP2
correlation energy is:

(B.3.5) EcorrMP2 = −Tr [[Σ [gHF ] ⋆ gHF ] [β]] .

The MP2 energy calculated for various systems is typically very close to that of the
fully converged GF2 energy. Perhaps this is not a surprise in view of the variational
nature of GF2.[69]



APPENDIX C

The Chebyshev expansion

C.1. Chebyshev expansion of an operator function

The Chebyshev polynomials Tn (x) (n = 0, 1, . . . ) are a family of orthogonal
polynomials in −1 < x < 1. In this interval the polynomials are covert cosine
functions: Tn (cos θ) = cos (nθ).

The application of a function operator, e.g F β,µ ≡ f (H;β, µ) on the stochastic
vector χ carried out as a Chebyshev expansion[70, 18, 16, 71, 72]:

ηβ,µ =

NC∑
n=0

aβ,µn χn(C.1.1)

where the wave functions χn, result of the operation of the nth's Chebyshev poly-
nomial Tn (HS) on the stochastic wave function χ. In a computation we compute
these functions on the go, from the Chebyshev recursion

(C.1.2) χ0 = χ, χ1 = HSχ
0, χn+1 = 2HSχ

n − χn−1.

The operator HS = H−Ē
∆E is the shifted-scaled Hamiltonian, where ∆E and Ē deter-

mine an energy interval
[
Ē −∆E, Ē +∆E

]
designed so as to contain all the eigen-

values ofH. The length of the series is given by the condition
∣∣aβ,µn ∣∣ < 10−9 or 10−10.

For e�ciency, we strive to have the interval with the smallest ∆E, since NC ≈
4β∆E (depending also on µ). Finally, the expansion coe�cients, depending on

β and µ, are de�ned by aβ,µn = 2
NC+1

∑NC

j=0 f
(
∆E cos θj + Ē;β, µ

)
cos (nθj), with

θj =
j+ 1

2

NC+1π.

C.2. Chebyshev moments in sDFT

The Chebyshev moments are de�ned as the operator traces of the Chebyshev
polynomials:[73] Mn = Tr [Tn (HS)] . In sDFT we use the stochastic trace formula
to express each of the the moments as an expectation value of a random variable:

(C.2.1) Mn = E [⟨χ |χn ⟩] , n = 0, . . . , NC .

They can be calculated inNC/2Hamiltonian applications [73] sinceM2n = 2 ⟨χn |χn ⟩−
M0 andM2n+1 = 2 ⟨χn |χn+1 ⟩−M1 (exploiting the Chebyshev relations: Tn+m (x)+
T|n−m| (x) = 2Tn (x)Tm (x) for −1 ≤ x ≤ 1).

Whenever we need to evaluate the trace of some function of the Hamiltonian
g(H, p) for many values of the parameter p we use Chebyshev moments to save
on computational cost. For each value of p we calculate (see Section C.1.1) the
Chebyshev expansion coe�cients apn, n = 0, . . . , NC and evaluate the trace by a

27
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contraction with the p-independent moments:

(C.2.2) Tr [g (H; p)] = E
[
χ†g (H; p)χ

]
=

NC∑
n=0

apnMn.
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