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Disease progression manifests through a broad spectrum of statically and longitudinally

linked clinical features and outcomes. This leads to heterogeneous progression patterns that

may vary greatly across individual patients and makes the survival and quality of a patient’s

life substantially different. Recently, the rapid increase of healthcare databases, such as

electronic health records (EHRs) and disease registries, has opened new opportunities for

“data-driven” approaches to clinical decision support systems. This dissertation addresses the

question of how machine learning (ML) techniques can capitalize on these data resources and

provide actionable intelligence to move away from a rules-based clinical care toward a more

data-driven and personalized model of care.

To this end, we develop a set of data-driven ML frameworks that can better predict and

understand disease progression under two broad clinical setups: (I) the static setup where

patients’ observations are collected at a particular point of time and (II) the longitudinal

setup where observations of each patient are repeatedly collected over a period of time. In

ii



these setups, we focus on building ML methods that are (i) accurate by providing better

performance in predicting disease-related outcomes, (ii) automated by freeing clinicians from

the concern of choosing one particular model for a given dataset at hand, and (iii) actionable in

a sense that the model is capable of answering “what if” questions and discovering subgroups

of patients with similar progression patterns and outcomes.

We highlight the following technical contributions. In the static setting, we present a

set of novel ML algorithms for survival analysis, a framework that informs the relationships

between the clinical features and the events of interest (such as death, onset of a certain

disease, etc.), and predicts what type of event will occur and when it will occur. We start

off by developing a deep learning (DL) method that makes no modeling assumptions about

the underlying survival process and that flexibly allows for competing events. Then, we

propose an automated ML for survival analysis that combines the collective intelligence of

different survival models to produce a valid survival function that is both discriminative and

well-calibrated. Lastly, we develop a DL model that can accurately estimate heterogeneous

treatment effects in survival analysis by adjusting for covariate shifts from multiple sources

which makes the problem unique and challenging. In the longitudinal setting, we first develop

a DL model for dynamic survival analysis which provides personalized and event-specific

survival predictions based on a patient’s heterogeneous and historical context. Then, we

provide a novel temporal clustering method that can transform the raw information in the

complex longitudinal observations into clinically relevant and interpretable information to

recognize future outcomes as well as life-changing disease manifestations which may cause a

patient to transit between clusters.

To show the utilities of the proposed models, we evaluate the performance on various

real-world medical datasets on breast cancer, prostate cancer, and cystic fibrosis patient

cohorts. We demonstrate that the proposed models consistently outperform clinical scores and

state-of-the-art ML methods in predicting disease progression, estimating the heterogeneous

treatment effects, and providing insights into underlying disease mechanisms.
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CHAPTER 1

Introduction

Due to the rapid digitization of healthcare, modern clinical data – including electronic health

records (EHRs) and disease registries – has become increasingly available [1–3]. This provides

extensive opportunities for building clinical decision support systems that move away from a

rules-based model of care toward a more data-driven and personalized model of care, allowing

clinicians to better understand disease progression, anticipate future health-related outcomes,

and design treatment guidelines. However, the availability of large-scale data by itself is

not sufficient to build such clinical decision support systems: modern clinical data is often

heterogeneous and complex as the progression of diseases – thus, the health-related outcomes

– manifests through a broad spectrum of statically- and longitudinally-linked clinical features

that may vary greatly across individual patients.

To overcome this, we need to build data-driven machine learning (ML) models that can

unravel the heterogeneous progression patterns to better predict health-related outcomes

based on patients’ traits and to better transform the raw information into more clinically

relevant and interpretable information. In this dissertation, we develop novel ML frameworks

to achieve such models that can assist clinicians to provide patients a better personalized

care and have significant clinical impact.

In the rest of this Chapter, we provide an overview of the type of problems and clinical

setups that we focus on throughout the dissertation. Then, we summarize the contributions

presented in each of the following chapters. In Chapters 2, 3 and 4, we focus on the static

setup for developing ML frameworks for personalized care, whereas in Chapter 5 and 6,

1



we address the longitudinal setup to further unravel the disease progression patterns. In

Chapters 7 and 8, we demonstrate the clinical impact of the ML models developed in earlier

chapters by applying these models to real-world clinical datasets comprising cohorts of stage

3 breast cancer patients and non-metastatic prostate cancer patients, respectively.

1.1 Machine Learning Frameworks for Personalized Care

We focus on developing ML frameworks towards data-driven and personalized care under

the following two broad clinical setups: the static setup where patients’ observations are

collected at a specific point of time and the longitudinal setup where observations of a patient

are repeatedly collected over a period of time. In these setups, we want the ML models

to provide high performance in predicting disease-related outcomes, to free clinicians from

the concern of choosing one particular model for a given dataset at hand, and to provide

actionable intelligence in the sense that the proposed model is capable of giving answers to

“what if” questions or is capable of discovering patient subgroups with similar progression

patterns and outcomes.

1.1.1 Modeling Disease Progression for Static Data

In the statistic – also called as cross-sectional – setup, patients’ clinical features and health-

related outcomes of many diseases are typically encoded in the form of survival data [4].

That is, some patients experience an event of interest (e.g., death due to a particular disease)

providing the information about the time-to-event outcomes (i.e., what type of event was

occurred and when it occurred), while some patients are right-censored (e.g., lost to follow-up)

providing partial information about the event of interest (i.e., the patient had not experienced

the event up to the censored time). Survival analysis, which is also known as time-to-event

analysis, informs our understanding of the relationships between the (distribution of) time-to-

event outcomes and features, and enables us to issue corresponding risk assessments in terms
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of the probability of an event occurring as a function of time. Due to the right-censoring and

the additional dimension (i.e., time) to consider, building ML models for survival analysis

is inherently more challenging when compared to conventional classification or regression

problems [5].

In this context, we develop novel ML frameworks that address the three criteria mentioned

above: high performance, automation, and actionable intelligence. In Chapter 2, we develop

a deep learning model that boosts the performance of predicting the time-to-event outcomes.

This is achieved by making no modeling assumptions about the underlying time-to-event

process and by flexibly allowing for right-censoring and competing events. In Chapter 3,

we propose an automated ML model for survival analysis that can free clinicians from the

concern of choosing one particular model for a given survival dataset at hand by combining

the collective intelligence of different survival models. In Chapter 4, we develop a deep

learning model that can accurately estimate heterogeneous treatment effects and give answers

to “what if” questions under survival analysis by adjusting for covariate shifts from multiple

sources.

1.1.2 Modeling Disease Progression for Longitudinal Data

In the longitudinal setup, patients are followed up over a period of time (e.g., the span

of years for patients with chronic diseases) with repeated observations on clinical features

(e.g., biomarkers and risk factors) and/or health-related outcomes. This creates the disease

progression patterns and related outcomes remarkably varied across individual patients [6, 7].

Information contained in such longitudinal data is of significant importance: capitalizing these

observations in their heterogeneous and historical context can improve the risk assessments

on the health-related outcomes [8, 9] and can offer an explanation for how the underlying

disease progresses [10, 11].

Existing (longitudinal) survival models typically utilize only a small fraction of the

available longitudinal (repeated) observations of clinical features. Moreover, these models
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often make relatively strong assumptions about the underlying stochastic models for the

time-to-event process [12] or on both the longitudinal and time-to-event processes [13]. This

discards valuable information that has been accrued over time, significantly limiting the

utilization of high performing ML models. In Chapter 5, we tackle the problem of improving

the performance of predicting health-related outcomes in the longitudinal setup. To this

goal, we develop a deep learning model for dynamic survival analysis using a recurrent

neural network that can flexibly incorporate longitudinal observations without discarding

any information accrued over time, thereby allowing us to make better individualized risk

assessments on the time-to-event outcomes.

Transforming the learned information from ML models or the raw information from

complex longitudinal observations into clinically relevant and interpretable information is

crucial. However, due to the “black-box” nature of ML models and complicated progression

patterns of longitudinal observations, clinicians may fail to gain “actionable information”

even from a very sophisticated well-performing ML model [10, 14]. In Chapter 6, we address

such a challenge by applying temporal clustering which aims at grouping “clinically similar”

patients based on how the underlying disease progresses. To do so, we introduce a new

notion – i.e., outcome-oriented temporal clustering – to characterize temporal clusters of the

underlying disease progression in relevance to the health-related outcomes and to flexibly

update cluster assignments as we collect more observations about the underlying disease

progression for a patient. By doing so, we ensure that clinicians can leverage temporal clusters

as an actionable tool to recognize similar past patients (for whom an entire trajectory with an

endpoint was already collected) for reasoning about future outcomes as well as life-changing

disease manifestations which may cause a patient to transit between clusters.

1.2 Summary of Technical Contributions

In this section, we summarize the technical contributions of each chapter.
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1.2.1 Contribution of Chapter 2

In Chapter 2, we develop a deep learning approach to survival analysis that learns the

distribution of time-to-event outcomes directly from the data without making any assumption

about the form of the underlying stochastic process. This is very different from much of

the previous work which has approached the problem by assuming a specific form of the

underling survival process and therefore limiting the flexibility of ML models to learn complex

interactions between clinical features and the survival outcomes that may present in the

available data. In addition, an important aspect of our method is that it smoothly handles

situations in which there are multiple competing risks, i.e., settings where there is more than

one possible events of interest and observing one event hinders observation of the other event.

We employ a network architecture that consists of a single shared sub-network and a family

of cause-specific sub-networks that are jointly trained by using novel loss function specifically

designed to handle right-censoring and competing risks.

1.2.2 Contribution of Chapter 3

In Chapter 3, we develop an automated ML method that combines the collective intelligence

of different underlying survival models to produce a valid survival function that is both

discriminative and well-calibrated. This is challenging because the survival models produced

by various approaches – ranging from (semi-)parametric to non-parametric – offer different

strengths and weaknesses in terms of both discriminative performance and calibration, and

their relative performance varies across different datasets and at different time horizons

within a single dataset. The core part of our method is an algorithm for configuring the

weights sequentially over a grid of time intervals. To render the problem tractable, we apply

constrained Bayesian Optimization (BO), which to yields good discriminative performance at

different time horizons while providing a valid and well-calibrated survival function.
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1.2.3 Contribution of Chapter 4

In Chapter 4, we study the problem of inferring heterogeneous treatment effects from survival

data. While both the related problems of (i) estimating treatment effects for binary or

continuous outcomes and (ii) predicting survival outcomes have been well studied in the

recent ML literature, their combination – albeit of high practical relevance in healthcare – has

received considerably less attention. With the ultimate goal of reliably estimating the effects

of treatments on instantaneous risk and survival probabilities, we focus on the problem of

learning (discrete-time) treatment-specific conditional hazard functions. We find that unique

challenges arise in this context due to a variety of covariate shift issues that go beyond a mere

combination of well-studied confounding and censoring biases. We theoretically analyze their

effects by adapting recent generalization bounds from domain adaptation and treatment effect

estimation to our setting and discuss implications for model design. We use the resulting

insights to propose a novel deep learning method for treatment-specific hazard estimation

based on balancing representations.

1.2.4 Contribution of Chapter 5

In Chapter 5, we develop a novel deep learning architecture using a recurrent neural network

structure that flexibly incorporates the available longitudinal data comprising various repeated

measurements (rather than only the last available measurements) to issue dynamically updated

survival predictions for one or multiple competing risk(s). Our method learns the time-to-

event distributions without the need to make any assumptions about the underlying stochastic

models of the longitudinal or the survival processes. Thus, unlike existing works in statistics

such as landmarking and joint modeling, our method is able to learn data-driven associations

between the longitudinal data and the various associated risks.
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1.2.5 Contribution of Chapter 6

In Chapter 6, we develop a deep learning approach for clustering time-series data, where each

cluster comprises patients who share similar future outcomes of interest (e.g., adverse events,

the onset of comorbidities). Such an outcome-oriented clustering offers actionable information

from heterogeneous electronic health records stored in the form of time-series because it can

provide (i) patient phenotyping, (ii) anticipating patients’ prognoses by identifying “similar”

patients, and (iii) designing treatment guidelines that are tailored to homogeneous patient

subgroups. To encourage each cluster to have homogeneous future outcomes, the clustering

is carried out by learning discrete representations that best describe the future outcome

distribution based on novel loss functions.

1.2.6 Contribution of Chapter 7 and Chapter 8

In these Chapters, we present the clinical impact of applying our novel methods in real-world

cancer registries. Chapter 7 demonstrates the power of applying the proposed automated ML

method for survival analysis to a US population-based cohort of 171,942 men diagnosed with

non-metastatic prostate cancer from the prospectively maintained Surveillance, Epidemiology,

and End Results Program. By automatically combining optimal attributes from different

survival models, it provides better discriminative and calibration performance when compared

to commonly used clinical scores and conventional survival models. Chapter 8 shows the

impact of applying dynamic survival analysis and the outcome-oriented clustering to a

heterogeneous cohort of 11,779 stage III breast cancer patients from the UK National Cancer

Registration and Analysis Service. Based on the discovered temporal clusters, we identify

the key driving factors that lead to transitions between clusters which can be translated into

actionable information to support better clinical decision-making.
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Part I

Modeling Disease Progression for

Static Data
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CHAPTER 2

A Deep Learning Approach to Survival Analysis with

Competing Risks

2.1 Introduction

Survival analysis – also called time-to-event analysis – is fundamental in many areas, including

economics and finance, engineering and medicine. A long and diverse literature approaches

survival analysis by viewing the event of interest as the first hitting time of an underlying

stochastic process; i.e. the first time at which the stochastic process reaches a prescribed

boundary. Depending on the context, the first hitting time may represent the time until

a stock option can profitably be exercised, the time to failure of a mechanical system or

the length of time a patient survives following treatment (or non-treatment); see [15] for

many other examples. A fundamental problem of survival analysis in all of these areas is to

understand the relationship between the (distribution of) hitting times and the covariates,

such as the characteristics of the stock on which the option is written, the physical environment

in which the mechanical system must operate, and the features of the individual patient.

Especially in medical setting, the survival analysis is further applied to discovering risk factors

affecting the survival [16], comparison among risks of different subjects at a certain time of

interest [17], decision of a cost-efficient sensing period (e.g. screening for cancer) [18].

Most of the previous work in this area has approached the problem by assuming a specific

form for the underlying stochastic process, using available data to learn the relationship

between the covariates and the parameters of the model, and then deducing the relationship
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between covariates and the distribution of first hitting times – the risk of the event. (In the

medical setting, this is typically the risk of death or onset of a certain disease.) The Cox

proportional hazards model [19] is the most widely-used model in the medical setting but

it makes many strong assumptions about the underlying stochastic process and about the

relationship between the covariates and the parameters of that process. Other models allow

for various other specific forms of the underlying stochastic process and for more general

relationships between covariates and the parameters, but still maintain strong parametric

assumptions (especially that the relationship between covariates and parameters of the

stochastic process are time-invariant).

This work proposes a very different approach to survival analysis: we construct and

use a deep neural network that learns the distribution of first hitting times directly. An

important aspect of our method, which we call DeepHit, is that it smoothly handles situations

in which there is a single underlying risk (cause) and situations in which there are multiple

competing risks (causes). DeepHit employs a network architecture that consists of a single

shared sub-network and a family of cause-specific sub-networks. We train the network by

using a loss function that exploits both survival times and relative risks. DeepHit makes

no assumptions about the form of the underlying stochastic process; it therefore allows for

the possibility that, even for a fixed cause or causes (e.g. a disease or diseases), both the

parameters and the form of the stochastic process depend on the covariates.

Although our approach is quite general and applies to all the settings mentioned above,

and many others, we focus here on the medical setting (and so we will use medical language,

and speak of patients rather than instances, etc.). In the medical context, competing risks

are extremely common. (For example, patients suffering from a particular disease, such as

cancer, frequently have co-morbidities, such as cardiovascular disease.) With the exception of

the Fine-Gray model [20], existing work on survival analysis either cannot be applied or is

inadequate in the presence of competing risks except under the assumption that the risks are

independent, which is very seldom the case. (To refer to the same example: studies [16] have
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shown that various treatments for breast cancer increase the risk of a cardiovascular event;

the risks are not at all independent.) Survival analysis with competing risks is a challenging

problem, and made all the more important because the choice of treatment must take account

of these competing risks. We note that right-censoring of data is extremely common in the

medical setting: patients are frequently lost to follow-up (often for unknown reasons).1

We are not the first to apply neural networks to time-to-event analysis; for example,

[21–23] have employed neural networks for modeling non-linear representations for the relation

between covariates and the risk of a clinical event. However, these studies have maintained

the basic assumptions of the Cox model, weakening only the assumption of the form of

the relationship between covariates and the hazard rate. In particular, the time-dependent

influence of covariates on time-to-event cannot be addressed by these models.

To demonstrate the usefulness of our approach, we compare its predictive performance

with that of competing approaches using three medical datasets and one synthetic dataset.

For all these datasets, we compare the performance of DeepHit with previous state-of-the

art competing methods, using as the metric of performance the time-dependent concordance

index Ctd [24]. (Ctd measures the extent to which the ordering of actual survival times of

pairs agrees with the ordering of their predicted risk; it is the most-widely-used metric for

evaluating the performance of survival models [25].) DeepHit provides large and statistically

significant performance improvements over previous state-of-the-art methods. (Detailed

descriptions of these datasets, the competing methods, and the performance comparisons are

presented in the following sections.)

1Throughout this chapter, we follow the literature and assume that right-censoring occurs completely at

random.
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2.2 Related Work

The survival model most widely used in the statistical and medical research literature is the

Kaplan-Meier estimator [26], which has the advantage of being able to learn very flexible

survival curves, but the disadvantage of not incorporating patients’ covariates. Hence it

is useful at the population level but not useful at the individual level. As we have noted

already the Cox proportional hazard model [19] (CPH) is capable of incorporating patients’

covariates, but assumes that the hazard rate is constant and that the log of the hazard

rate is a linear function of covariates. Other models make different assumptions about the

underlying stochastic processes and about the relationship between the covariates and the

parameters of the assumed process. For instance [27, 28] assume a Wiener process, while [29]

assumes a Markov Chain; see [27] for other examples and discussion of the literature. An

advantage of these models is that, because they formulate survival analysis as the problem

of determining the distribution of the first time at which the prescribed stochastic process

hits a prescribed boundary, they are able to incorporate competing risks. The disadvantage

of these models is that they are tied to the specific form of stochastic process that they

assume. Put differently: the models are of limited use unless we have already learned the

underlying stochastic process. In the medical setting this means learning the underlying

disease process, which would seem to be an even more complicated problem than survival

analysis itself – especially since the states of the disease or diseases are typically hidden and

not directly observable. An alternative to this family of models is the one offered by [20],

which modifies the traditional proportional hazard model by direct transformation of the

cumulative incidence function, but the Fine-Gray model is also severely limited by strong

assumptions on the form of the hazard rates and on the way in which the parameters depend

on covariates.

The problem of survival analysis has also received substantial recent attention in the

machine learning literature. Recently developed survival models include random survival
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forests [30], deep exponential families [31], dependent logistic regressors [32], and semi-

parametric Bayesian models based on Gaussian processes [33]. All of these methods are

capable of incorporating the individual patient’s covariates, but none of them has considered

the problem of competing risks, and none of them seems readily adaptable to this problem.

(In principle, these models could be applied to the problem of competing risks by fixing

a single event and simply treating all other events right-censoring, but this approach is

inadequate unless the competing risks are independent, which is frequently not the case.).

Recently, deep multi-task Gaussian process was used to develop a nonparametric Bayesian

model for survival analysis with competing risks [34] while still relying on assumption that

the latent stochastic process follows Gaussian process.

[21] represents the first application of neural networks to survival analysis. In contrast to

the standard CPH model, this work uses a feed-forward network to learn the relationship of

the covariates to the hazard function. More recently, [22] and [23] have followed the same

general approach, although using more sophisticated network architectures and loss functions.

These works have improved on the CPH model by relaxing the specific functional relationship

between covariates and the hazard function in the standard CPH model while maintaining

the other central assumption– that the hazard rate is constant over time. As a result, these

works do not fully exploit the potential capacity of deep neural networks to learn complex

representations of risk and in particular to capture the time-dependent influence of covariates

on survival.

DeepHit improves on existing models because it suffers from none of the difficulties

identified above. Because DeepHit learns the (joint) distribution of survival times and events

directly, it avoids the problems inherent in assuming a particular form for the underlying

stochastic process or a particular form for the relationship of covariates to the underlying

stochastic process or any kind of time-invariance. As we shall see, the performance of DeepHit

improves dramatically on the performance of previous models in the setting of competing

risks and significantly even in the (simpler) setting of a single risk.
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2.2.1 Survival Data

Survival data provides three pieces of information for each instance/patient: 1) observed

covariates, 2) time elapsed since covariates were first collected, and 3) a label indicating the

type of event (e.g. adverse clinical event or death) that occurred.2 We treat survival time

as discrete and the time horizon as finite (e.g. no patients lived longer than 100 years) so

the time set is T = {0, . . . , Tmax} for a predefined maximum time horizon Tmax. We consider

K ≥ 1 possible events of interest; we assume that at exactly one event eventually occurs for

each instance/patient (e.g. a patient eventually dies, but can die from only one cause [35]).3

Because events of interest are not always observed (e.g. patients may be lost to follow-up),

survival data are frequently right-censored; handling this difficulty will be a crucial aspect of

the analysis. We indicate right-censoring as the “event” ∅ and therefore represent the set of

possible events – including right-censoring – as K = {∅, 1, · · · , K}. Each data point/instance

(e.g. patient history) is therefore a triple (x, s, k) where x ∈ X is a D-dimensional vector of

covariates, s ∈ T is the time at which the (unique) event or censoring occurred, and k ∈ K is

the event or censoring that occurred at time s. Note that s is either the time at which an event

(death) occurred or the time at which the patient was censored (disappeared from follow-up),

but in either case the patient was known to be alive at times prior to s. We are given a

dataset D = {(x(i), s(i), k(i))}Ni=1 that describe a finite set of observed instances/patients.

Figure 2.1 illustrates survival data of the SEER dataset (see Experiment section for

more details) for 6 patients and two possible events (causes of death); patient 2 and 5 died

from cause 1, patient 1 and 6 died from cause 2; patient 3 and 4 were lost to follow-up

(right-censored).

For each tuple (x∗, s∗, k∗) with k∗ 6= ∅, we are interested in the true probability P (s =

2We use medical terms for convenience but we emphasize that our framework and results are quite general.

3We leave for later work the more complicated setting in which several events – e.g. the onsets of various

diseases – might occur.
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Figure 2.1: An illustration of survival data (the SEER dataset).

s∗, k = k∗|x = x∗); i.e. the true ex-ante probability that a (new) patient with covariates x∗

will experience the event k∗ at time s∗. Of course the true probability cannot be known on

the basis of any finite dataset, so our task is to find estimates P̂ of the true probabilities.

2.3 Model: DeepHit

In this Section we describe our formal model.

2.3.1 Model Description

Our goal is to train the network to learn P̂ , the estimate of the joint distribution of the first

hitting time and competing events. As illustrated in Figure 2.2, DeepHit is a multi-task

network [36] which consists of a shared sub-network and K cause-specific sub-networks. Our

architecture, differs from that of conventional multi-task network in two ways. First, we

utilize a single softmax layer as the output layer of DeepHit in order to ensure that the

network learns the joint distribution of K competing events not the marginal distributions of

each event. Second, we maintain a residual connection [37] from the input covariates into the

input of each cause-specific sub-network.
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Figure 2.2: The architecture of DeepHit with two competing events.

The shared sub-network and the k-th cause-specific sub-network for k = 1, · · · , K are

comprised of LS and LC,k fully-connected layers, respectively. The shared sub-network takes

as inputs the clinical covariates x and produces as output a vector fs(x) that captures the

(latent) representation that is common to the K competing events.

Each cause-specific sub-network takes as inputs the pairs z = (fs(x),x) and produces as

output a vector fck(z), which corresponds to the probability of the first hitting time of a

specific cause k. More specifically, the inputs to the sub-networks include both the output

of the shared network and the original covariates; this gives the sub-networks access to the

learned common representation fs(x) while still allowing them to learn non-common part

of the representation as well. (If only the learned common representation were used as an

input to the sub-networks, the non-common part of the representation would be lost.) The
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totality of these outputs is a joint probability distribution on the first hitting time and event

so the cause-specific sub-networks are learning the distribution for the first hitting time

for each cause in parallel. The output of the softmax layer is a probability distribution

y = [y1,1, · · · , y1,Tmax , · · · , yK,1, · · · , yK,Tmax ]: given a patient with covariates x, an output

element yk,s is the (estimated) probability P̂ (s, k|x) that the patient will experience the

event k at time s. This architecture drives the network to learn potentially non-linear, even

non-proportional, relationships between covariates and risks.

The (cause-specific) cumulative incidence function (CIF) expresses the probability that

a particular event k∗ ∈ K occurs on or before time t∗ conditional on covariates x∗; as in

the Fine-Gray model [20], understanding the CIF is key to the analysis of survival under

competing risks. By definition, the CIF for the event k∗ is:

Fk∗(t
∗|x∗) = P (s ≤ t∗, k = k∗|x = x∗) =

t∗∑
s∗=0

P (s = s∗, k = k∗|x = x∗). (2.1)

However, since the true CIF, Fk∗(s
∗|x∗), is not known, we utilize the estimated CIF,

F̂k∗(s
∗|x∗) =

∑s∗

m=0 y
∗
k,m, in order to compare the risk of event occurring and to assess

how models discriminate across cause-specific risks among patients.

2.3.2 Loss Function

To train DeepHit, we minimize a total loss function LTotal that is specifically designed to

handle censored data. This loss function is the sum of two terms LTotal = L1 + L2; L1 is the

log-likelihood of the joint distribution of the first hitting time and event; L2 incorporates a

combination of cause-specific ranking loss functions.

L1 is the log-likelihood of the joint distribution of the first hitting time and corresponding

event, modified to take account of the right-censoring of the data [15] considering K competing

risks. For patients who are not censored, it captures both the event that has occurred and

the time at which the event has occurred; for patients who are censored, it captures the time

at which the patient is censored (lost to follow-up) which provides the information that the
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Figure 2.3: An illustration of a computational graph to compute the training loss of DeepHit.

patient was alive up to that time. We define L1 by

L1 = −
N∑
i=1

[
1(k(i) 6= ∅) · log

(
y

(i)

k(i),s(i)

)
+ 1(k(i) = ∅) · log

(
1−

K∑
k=1

F̂k(s
(i)|x(i))

)]
, (2.2)

where 1(·) is an indicator function. The first term captures the information provided by

uncensored patients; the second term captures the censoring bias by exploiting the knowledge

that they are alive at the censoring time, so that that the first hitting event will occur among

one of the K causes after the given censoring time); see [38].

L1 drives DeepHit to learn the general representation for the joint distribution of the

first hitting time and events; L2 incorporates estimated CIFs calculated at different times

(i.e. the time at which an event actualy occurs) in order to fine-tune the network to each

cause-specific estimated CIF. To do so, we utilize a ranking loss function which adapts the

idea of concordance [25]: a patient who dies at time s should have a higher risk at time s than

a patient who survived longer than s. Write Ak,i,j , 1(k(i) = k, s(i) < s(j)) for the indicator

function of pairs (i, j) who experience risk k at different time, and whose risks for event k

can therefore be directly compared; we call these pairs acceptable for event k. Now define

L2 =
K∑
k=1

αk ·
∑
i 6=j

Ak,i,j · η
(
F̂k(s

(i)|x(i)), F̂k(s
(i)|x(j))

)
(2.3)
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where the coefficients αk are chosen to trade off ranking losses of the k-th competing event,

and η(x, y) is a convex loss function. For convenience, we assume here that the coefficients

αk are all equal (i.e. αk = α for k = 1, · · · , K and some α to be chosen), and we use the

loss function η(x, y) = exp(−(x−y)
σ

). Incorporating L2 into the total loss function penalizes

incorrect ordering of pairs (with respect to each event) and so minimizing the total loss

encourages correct ordering of pairs (with respect to each event).

In Figure 2.3, we illustrate a computational graph to compute the training loss of the

proposed network: the inputs are the covariates x and the output is the vector y. Double-

circled nodes imply inputs or outputs of DeepHit or those of sub-networks, and single-circled

nodes indicate calculation blocks (e.g. sub-networks or loss functions). In training stage, the

network exploits {k(i), s(i)}Ni=1 in order to calculate the indicator functions, to find acceptable

pairs, and, hence, to compute the loss function corresponding to input covariates. Based on

this computational graph, we can obtain the gradient on the nodes (including hidden nodes

of all the sub-networks) and parameters for training the proposed network.

2.4 Experiments

The prognostic performance of DeepHit was evaluated by comparing it with the performance

of conventional benchmarks in analyzing three real-world clinical datasets and one synthetic

dataset. We give brief descriptions of the datasets below; we take 30 days = 1 month as the

basic time interval.

2.4.1 Dataset Description

UNOS. The United Network for Organ Sharing (UNOS) database4 consists of patients who

underwent heart transplantation in the period 1985-2015. Of the total of 60,400 patients who

4https://www.unos.org/data/
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received heart transplants, 29,436 patients (48.7%) were followed until death; the remaining

30,964 patients (51.3%) were right-censored. We used a total of 50 features (30 recipient-

relevant, 9 donor-relevant and 11 donor-recipient compatibility). For details on selected

features and pre-processing methods, see to [39].

METABRIC. The Molecular Taxonomy of Breast Cancer International Consortium

dataset contains gene expression profiles and clinical features used to determine breast

cancer subgroups. Of the total of 1,981 patients in the dataset, 888 patients (44.8%) were

followed until death; the remaining 1,093 patients (55.2%) were right-censored. We restricted

attention to 21 publicly available clinical features including tumor size, number of positive

lymph nodes, etc.; for details see [40]. Missing values were replaced by the mean value for

real-valued features and by the mode for categorical features. One-hot encoding was applied

for categorical features.

SEER. The Surveillance, Epidemiology, and End Results Program (SEER)5 dataset

provides information on breast cancer patients during the years 1992-2007. Among the 72,809

patients, we focused on 68,325 patients who died due to breast cancer or cardiovascular

disease (CVD), or who were right-censored. (So we have two competing risks.) We have 23

patient features, including age, race, gender, morphology information, diagnostic information,

therapy information, tumor size, tumor type, etc. Missing values were replaced by mean

value for real-valued features and by the mode for categorical features.

SYNTHETIC. We also created a synthetic dataset with two competing risks, in the

spirit of [34]. To do this we constructed two stochastic processes with parameters and the

hitting times described as follows:

x
(i)
1 ,x

(i)
2 ,x

(i)
3 ∼ N (0, I)

T
(i)
1 ∼ exp

(
(γT3 x

(i)
3 )2 + γT1 x

(i)
1

)
T

(i)
2 ∼ exp

(
(γT3 x

(i)
3 )2 + γT2 x

(i)
2

) (2.4)

5https://seer.cancer.gov/causespecific/
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where x(i) = (x
(i)
1 ,x

(i)
2 ,x

(i)
3 ) is the vector of clinical covariates for patient i and consists of

three 4-dimensional variables: for k = 1, 2, the covariates xk only have an effect on the

hitting time for event k while x3 has an effect on the hitting times of both events. Note that

we assume hitting times are exponentially distributed with a mean parameter depending

on both linear and non-linear (quadratic) function of covariates. For convenience, we set

γ1 = γ2 = γ3 = 10. Given the parameters, we first produced 30, 000 patients; among those, we

randomly selected 15, 000 patients (50%) to be right-censored at a time s
(i)
c randomly drawn

from the uniform distribution on the interval [0,min{T (i)
1 , T

(i)
2 }]. (This censoring fraction

was chosen to be roughly the same censoring fraction as in the real datasets, and hence to

present the same difficulty as found in those datasets.) The data for each patient i is therefore

(x(i), s(i), k(i)) where s(i) = min{T (i)
1 , T

(i)
2 } and k(i) = arg minT

(i)
k for patients who were not

censored and s(i) = s
(i)
c and k(i) = ∅ for patients who were censored.

2.4.2 Benchmarks

Single Risk. The performance of DeepHit was compared with two families of other survival

models6. The first of these families consists of conventional survival regression models:

including Cox Proportional Hazards (Cox) [41], Threshold Regression (ThresReg) [15], and

Random Survival Forests (RSF) with # of trees = 100 [42]. The second consists of survival

models which are derived from mortality prediction performed by machine learning algorithms:

Random Forest (MP-RForest), Logistic Regression (MP-LogitR), and AdaBoost (MP-

AdaBoost). We train these conventional ML algorithms to predict new labels which indiates

whether a patient is dead or alive over different time horizon m where m = 0, · · · , Tmax. The

last consists of the cutting-edge deep neural network (DeepSurv), which is developed upon

Cox proportional assumption [22]7.

6We did not compare with [23] because that paper did not provide detailed information to permit

implementation.

7https://github.com/jaredleekatzman/DeepSurv
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Competing Risks. The performance of DeepHit was compared with survival models

under competing risks: the Fine-Gray proportional sub-distribution hazards model (Fine-

Gray) [20], deep multi-task Gaussian process (DMGP) [34], and with a cause-specific

versions of the single risk survival models – e.g., the cause-specific Cox Proportional Hazards

Model (cs-Cox) – that were created by fixing an event (e.g. death from CVD) and treating

the other event (e.g. death from breast cancer) simply as a form of censoring; see [43].

2.4.3 Experimental Setting

For evaluation, we applied 5-fold cross validation: we randomly separated the data into

training set (80%) and testing set (20%). We reserved 20% of the training set as a validation

set. (In all of these sets, we maintained a constant ratio of patients who experienced each

event and patients who were censored.) The hyper-parameters for LTotal, including α and σ,

were selected based on the discriminative performance on the validation set. Early stopping

was performed based on the total loss. DeepHit is a 4-layer network consisting of 1 fully-

connected layer for the shared sub-network and 2 fully-connected layers for each cause-specific

sub-network and a softmax layer as the output layer. (Note that if there is a single event,

this reduces to 3 fully-connected layers and a softmax layer as the output layer.) For hidden

layers, the number of nodes were set as 3, 5, and 3 times of the covariate dimension for the

layer 1, 2, and 3, respectively, with ReLu activation function. The network was trained by

back-propagation via Adam optimizer with a batch size of 50 and a learning rate of 10−4.

Dropout probability of 0.6 and Xavier initialization was applied for all the layers (DeepHit

was implemented in a Tensorflow environment).
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2.4.4 Discriminative Performance

2.4.4.1 Performance Metric

As our metric of performance, we use the time-dependent concordance index (Ctd-index) [24].

(Recall that the ordinary concordance index (C-index) [25] is a widely used discriminative

index based on the assumption that patients who lived longer should have been assigned a

lower risk than patients who lived less long. However the ordinary C-index is computed only

at the initial time of observation and hence cannot reflect the possible change in risk over

time. The time-dependent concordance index takes time into account.) Given the estimated

CIF in Eq. (2.1), the Ctd-index for event k is defined as

Ctd= P
(
F̂k(s

(i)|x(i))>F̂k(s
(i)|x(j))|s(i) < s(j)

)
≈

∑
i 6=jAk,i,j · 1

(
F̂k(s

(i)|x(i)) > F̂k(s
(i)|x(j))

)
∑

i 6=j Ak,i,j
(2.5)

where, as before, Ak,i,j is the indicator function for a pair (i, j) to be acceptable for an event

k and the approximation comes from the empirical definition. Thus, the Ctd-index for event

k is derived from comparison of pairs in which one patient has experienced event k at a

particular time while the other has not experienced any event nor been censored by that

time. Because this discriminative index does not depend on a single fixed time, it provides an

appropriate assessment for situations in which the influence of covariates on survival varies

over time (in other words, risks are non-proportional over time). (Note that the Ctd-index is

equivalent to the usual C-index of [25] in the case of a single event and a survival model for

which the proportional hazards assumption holds.)

2.4.4.2 Competing Events/Competing Risks

Comparisons of the performance of DeepHit with other models for the SEER and the

SYNTHETIC datasets are shown in Table 2.1 and 2.2, respectively. In the SEER dataset,

there are two events – competing risks: death from cardiovascular disease (CVD) and from
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Breast Cancer. As can be seen, DeepHit provides performance improvements over other

models; with the exception of cs-Cox for death by CVD, the performance improvements

were all statistically significant (p < 0.05 and often p < 0.001). The comparisons for death

by breast cancer are particularly striking. Fine-Gray and cs-Cox both perform poorly

with respect to the risk of breast cancer, while DeepHit performs much better. Because

Fine-Gray and cs-Cox assume linear proportional hazards and DMGP model assumes the

underlying stochastic process to follow Gaussian process, while DeepHit makes no such

assumption, the performance comparison strongly suggests that non-proportional and/or

non-linear relationships between covariates and survival times is crucial for assessing the risk

of breast cancer.

Table 2.1: Comparison of cause-specific Ctd-index performance (mean ± 95% confidence

interval) for the SEER dataset.

Algorithms CVD Breast Cancer

cs-Cox 0.672±0.008 0.639±0.006∗

cs-RSF 0.280±0.018∗ 0.584±0.010∗

cs-ThresReg 0.664±0.007‡ 0.645±0.017∗

cs-MP-RForest 0.281±0.018∗ 0.584±0.010∗

cs-MP-AdaBoost 0.671±0.006 0.741±0.006‡

cs-MP-LogitR 0.665±0.020 0.657±0.009∗

Fine-Gray 0.663±0.007‡ 0.639±0.007∗

DMGP 0.657±0.025 0.742±0.004‡

DeepHit (α = 0) 0.674±0.013 0.736±0.003

DeepHit 0.684±0.010 0.752±0.004

∗, ‡ indicate p-value < 0.001, < 0.05
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We also compared the discriminative performance of DeepHit with that of Fine-Gray

and cs-Cox on the SYNTHETIC dataset where there are again two events/competing risks:

death from Event 1 and from Event 2. As can be seen in Table 2.2, DeepHit outperformed

all the benchmarks and the performance improvements were all statistically significant

(p < 0.001). This is expected since the cs-Cox and Fine-Gray restrict the relationship

between covariates and risks to be linear. Thus, they are not able to capture the quadratic

relationship introduced when generating the synthetic data. However, DeepHit allows the

network to learn the representation of the non-linear relation of covariates.

Table 2.2: Comparison of cause-specific Ctd-index performance (mean ± 95% confidence

interval) for the SYNTHETIC dataset

Algorithms Event 1 Event 2

cs-Cox 0.578±0.008∗ 0.588±0.004∗

cs-RSF 0.669±0.005∗ 0.657±0.005∗

cs-ThresReg 0.579±0.005∗ 0.588±0.003∗

cs-MP-RForest 0.620±0.009∗ 0.610±0.007∗

cs-MP-AdaBoost 0.607±0.007∗ 0.607±0.006∗

cs-MP-LogitR 0.579±0.007∗ 0.586±0.003∗

Fine-Gray 0.579±0.007∗ 0.589±0.004∗

DMGP 0.663±0.005∗ 0.666±0.006∗

DeepHit (α = 0) 0.739±0.004 0.737±0.005

DeepHit 0.755±0.006 0.755±0.007

∗ indicates p-value < 0.001
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2.4.4.3 Single Event/Single Risk

As we have noted in the Introduction, an important aspect of DeepHit is that it smoothly

handles competing risks. However, it also provides improved performance when there is only

a single risk. To show this, we compared the performance of DeepHit with other models for

the UNOS and METABRIC (single event) datasets in Table 2.3. As can be seen, DeepHit

consistently provided the best performance for both the UNOS and METABRIC datasets.

For the UNOS dataset, the improvement of DeepHit over all the competing methods other

than AdaBoost was highly statistically significant (p < 0.01 and often p < 0.001). For the

METABRIC data set, the improvement of DeepHit over all the competing methods other

than RSF was statistically significant (p < 0.001, p < 0.05, and often p < 0.01).

We suspect that for the single risk setting, the performance improvement of DeepHit comes

from its capacity to capture the complicated relationship between covariates and risk, especially

in the presence of many covariates. Because the other models make restrictive parametric

assumptions, they are unable to capture this complicated relationship. In particular, when

compared with DeepSurv, we suspect the performance improvement comes from not relying

on the proportional assumption.

2.5 Conclusion

This chapter presents a novel approach, DeepHit, to the analysis of survival data. DeepHit

trains a neural network to learn the estimated joint distribution of of survival time and event,

while capturing the right-censored nature inherent in survival data. We train the network

by using a loss function that exploits both survival times and relative risks. As a test, we

compared the performance of DeepHit with the performance of previous models. In settings

with competing risks, the performance of DeepHit is much better than that of previous

models; even in settings with a single risk the performance of DeepHit is significantly better

than that of previous models.
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Table 2.3: Comparison of cause-specific Ctd-index performance (mean ± 95% confidence

interval) for single event datasets.

Algorithms
Datasets

UNOS METABRIC

Cox 0.566±0.003∗ 0.648±0.014†

RSF 0.575±0.004† 0.672±0.017

ThresReg 0.571±0.003∗ 0.649±0.016†

MP-RForest 0.552±0.004∗ 0.650±0.020†

MP-AdaBoost 0.582±0.004 0.633±0.016∗

MP-LogitR 0.571±0.004∗ 0.661±0.016‡

DeepSurv 0.563±0.008∗ 0.648±0.012†

DeepHit (α = 0) 0.573±0.002 0.646±0.012

DeepHit 0.589±0.003 0.691±0.012

∗, †, ‡ indicate p-value < 0.001, < 0.01, < 0.05
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CHAPTER 3

Automated Machine Learning Approach to Survival

Analysis

3.1 Introduction

Survival analysis (time-to-event analysis) plays an important role in many disciplines and

especially in medicine. The importance of survival analysis has prompted the development

of a variety of approaches to model the survival function (the probability of surviving past

a given time as a function of the covariates). Parametric and semi-parametric approaches

construct models that rely on specific assumptions about the true underlying distribution;

non-parametric approaches take a more agnostic point of view to construct models that

rely on (variants of) familiar machine learning methods. The models produced by these

various approaches offer different strengths and weaknesses in terms of both discriminative

performance and calibration, and their relative performance varies across different datasets

and at different time horizons within a single dataset. In particular, no single model is best

across all datasets, and frequently no single model is best across all time horizons within a

single dataset. This presents a challenge to familiar methods of model selection or ensemble

creation. An additional challenge is that survival analysis needs to yield good performance

at different time horizons while providing a valid and well-calibrated survival function; this

makes the conventional model selection or ensemble methods actually inapplicable.

The usefulness of a survival model should be assessed both by how well the model

discriminates among predicted risks and by how well the model is calibrated. The necessity of
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Figure 3.1: A toy example of temporal quilting with prescribed weights for survival models in

M = {Cox,RSF,CISF} at t1, t2, and t3. A risk function is constructed by stitching together

the weighted increment functions of each survival model between two adjacent time horizons.

keeping both criteria in mind is illustrated by the case of heart transplantation, which is the

treatment of last resort for patients with end-stage heart failure. Successful transplantation

can mean many additional years of life for such patients, but there are many more patients

in need of transplants than there are available donor hearts. So, it is important to correctly

discriminate/prioritize recipients on the basis of risk. However, if the risk predictions of a

given model are not well calibrated to the truth – i.e. if there is poor agreement between

predicted and observed outcomes – then the model will have little prognostic value for

clinicians.

This work offers a novel approach that addresses these challenges. Our approach combines

the collective intelligence of different underlying survival models to produce a valid survival

function that is both discriminative and well-calibrated. Because we piece together these

underlying models according to (endogenously determined) weights that vary over time, we

refer to our construction as temporal quilting, and to the resultant model as a Survival Quilt.

An illustration of temporal quilting (for given weights) is provided in Figure 3.1. The core part

of our method is an algorithm for configuring the weights sequentially over a (perhaps very

fine) grid of time intervals. To render the problem tractable, we apply constrained Bayesian
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Optimization (BO) [44], which models the discrimination and calibration performance metrics

as black-box functions, whose input is an array of weights (over different time horizons) and

whose output is the corresponding performance achieved. Based on the constructed array of

weights, our method makes a single predictive model – a Survival Quilt.

Our empirical results demonstrate that Survival Quilts provide significant performance

gains over the underlying models (which we take as benchmarks) on a variety of real-world

survival datasets. Because our approach automatically finds (an approximation to) the best

temporal quilting of the underlying survival models, it provides a way to free clinicians from

the concern of choosing one particular survival model for each dataset and for each time

horizon of interest.

3.2 Related Work

Different approaches, ranging from statistical methods to machine learning based methods,

have been proposed for survival analysis. One approach employs (semi-)parametric models

that are constructed on the basis of assumptions on the true underlying distribution. This

includes i) survival models based on the Cox proportional hazard (Cox-PH) assumption [19],

and a variety of extensions [22, 45, 46] and ii) the accelerated failure time (AFT) model based

on the Weibull distribution, and extensions [34, 47]. Other approaches employ nonparametric

models, including i) ensembles of survival trees constructed via bagging [30, 48] or boosting

[49], and ii) deep learning methods [50]. In general, nonparametric models provide better

survival predictions than do (semi-)parametric models when the true underlying distribution

is unknown or is mis-specified. However, nonparametric models often yield inaccurate

predictions at time horizons for which the number of subjects in the dataset who are “at risk”

is small [5].

As we have noted in the Introduction, methods based on model selection and ensemble

creation that are familiar for classification problems (including the Auto-ML framework
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Figure 3.2: A schematic depiction of Survival Quilts and its pattern optimization at step k.

Survival Quilts provide risk functions that are constructed on the basis of the final quilting

pattern W∗
K . Here, colored boxes are the three main components of our method and dotted

lines imply feedback loops for sequential computations.

[51, 52]) do not extend to the survival setting because we need to construct a valid survival

function that provides good discriminative performance at different time horizons and is also

well-calibrated. Our work is most closely related to a model based on stacking [53], which

estimates an optimally weighted combination of different survival models on the basis of

calibration performance. However, in order to produce a valid survival function, that model

requires the weights to be independent of time. By contrast, our approach exploits weights

that depend on time to provide a valid survival function that is well-calibrated and achieves

superior discriminative performance at different time horizons. To the best of our knowledge,

this work is the first that combines different survival models in a time-dependent manner to

provide both discriminative and prognostic power.

3.3 Problem Formulation

For convenience, we couch our description in the medical setting, although our approach is

entirely applicable to any time-to-event problem. In our setting, some patients experience

the event of interest (e.g. death) and some are censored (lost to follow-up). The data for

an individual patient i therefore consists of a vector of covariates xi ∈ X (X is the space of
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all covariates), either a time-to-event, Ti ∈ R+, or a time-to-censoring, Ci ∈ R+ (both from

the initial moment of observation), and an indicator ∆i = I(Ti < Ci); ∆ = 1 if the patient

experienced the event of interest and ∆ = 0 if the patient was right-censored. Note that

censoring provides the information that the patient had not experienced the event (e.g. was

alive) up to time Ci. We are given data for N patients so the entire time-to-event dataset is

D = {(xi,∆iTi + (1−∆i)Ci,∆i)}Ni=1.

Our goal is to estimate the risk function R : X × R+ → [0, 1]

R(t|x) = P(T ≤ t|x), (3.1)

which is the probability of the event occurring at or before time t given the covariates x.

(Equivalently, we could estimate the survival function S : X × R+ → [0, 1]; S(t|x) = P(T >

t|x) = 1−R(t|x) is the probability of the event occurring after time t, given covariates x.)

Since we aim at finding the best predictive model among the set of all models that

provide well-calibrated risk functions, it is natural to formulate the optimization problem as

maximizing discriminative performance subject to a constraint on calibration. If we write R

for the set of all risk functions, f(·) for a metric of discriminative performance, and g(·) as a

metric of calibration, then our problem is to find the risk function R∗ ∈ R that solves the

following maximization problem:

max
R∈R

f(R)

s.t. g(R) ≤ c,

(3.2)

where c > 0 is some prescribed tolerance of predictive error. (In the experiments reported

below, we take f and g to be the time-dependent C-index and Brier Score, respectively, but

other metrics could be used.)
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3.4 Method: Survival Quilts

As noted in the introduction, the existing survival models may fail to capture the true survival

behavior in different settings and over different time horizons. (See also the discussion in

Section 3.5.) Survival Quilts address both these failings by forming time-varying ensembles

of different survival models.

Table 3.1: List of survival models used in Survival Quilts

Cox-PH model AFT model Survival Forest

Cox Weibull RSF

CoxRidge LogNormal CISF

CoxBoost Exponential

Given a time-to-event dataset D and a set of survival models M e.g., Cox, Weibull,

RSF, and etc., (a full list of survival models used in this work is provided in Table 3.1), our

method outputs a predictive model – a Survival Quilt – that provides a valid risk function.

A Survival Quilt is constructed endogenously from the data following three steps. The first

step is temporal quilting which constructs valid risk functions for a given array of weights (a

quilting pattern) for survival models in M over time horizons. The second step models the

performance of these risk functions as black-box functions and applies constrained BO to

(approximately) optimize the quilting pattern. The final step splits the time horizons in order

to insure robustness of the (approximately optimized) quilting pattern. A schematic overview

of our method is illustrated in Figure 3.2; details of each of these steps are described in the

following subsections.
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3.4.1 Temporal Quilting: Constructing a New Risk Function

Constructing a survival model entails learning a risk function that spans a continuum of

time horizons. We do not treat predictions at each time horizon as separate problems, but

rather provide a natural construct for the entire risk function; risk predictions at past time

horizons are carried forward to future time horizons to provide a consistent risk function.

More specifically, given an increasing sequence of time horizons T = {t0 = 0, t1, · · · , tK},

we first break down the risk functions provided by each survival model in M into pieces by

focusing on the increment between two adjacent time horizons, tk−1 and tk for k = 1, · · · , K.

We then assemble the pieces in a quilting pattern that, on each time interval, assigns weights

to each of the increment functions of the underlying survival models and then sums the

weighted combination of the increment functions over time.

We define the increment function of model m ∈M on the interval [a, b], given covariate

x, to be

im(a, b|x) = Rm(b|x)−Rm(a|x), (3.3)

where Rm is the risk function issued by model m ∈ M. Because Rm is non-decreasing on

the interval [a, b], im is non-decreasing and non-negative on the interval [a, b]. Let w be a

|M|-dimensional weight vector, where w[m] ∈ [0, 1] indicates the weight for model m and∑
m∈Mw[m] = 1. Given w, the weighted increment function on the interval [a, b] is defined

to be

Iw(a, b|x) =
∑
m∈M

w[m] · im(a, b|x). (3.4)

Then, given weights w1, . . . ,wk and a time t ∈ [tk−1, tk], we set

R0(t|x) =
k−1∑
`=1

Iw`(t`−1, t`|x) + Iwk(tk−1, t|x), (3.5)

where the first term is the aggregate risk up to time tk−1 and the second term is the incremental

from time tk−1 to time t ∈ [tk−1, tk]. Now, we define the risk function at time t to be

R(t|x) = min
{

1, R0(t|x)
}
. (3.6)
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A few words of explanation may be useful.

• Note that Rm(0|x) = 0 (patients are alive at the beginning of the observation period) so

that im(0, t|x) = Rm(t|x). Hence, if t ∈ [0, t1], then R(t|x) =
∑

m∈Mw1[m] ·Rm(t|x).

• R0 might exceed 1, in which case it could not be a valid risk function. (The probability

that the event has occurred cannot exceed 1.) Hence, we truncate by setting R =

min{1, R0}.

• Because the weighted increment functions are non-decreasing and non-negative, the

functions R0, R are also non-decreasing – hence R is a valid risk function.

We frequently refer to the array of weights WK = (w1, · · · ,wK) as a quilting pattern; we

refer to the construction above as temporal quilting. Figure 1 illustrates a quilting pattern

and the resulting risk function constructed via temporal quilting.

3.4.2 Quilting Pattern Optimization via BO

Let WK = (w1, · · · ,wK) be a quilting patterns (configuration of weights); write Wk =

(w1, · · · ,wk) for the configuration up to time t. Our approach is to find the best risk function

R that can be formed as in (3.6). Because R is completely defined by the configuration of

weights, this amounts to finding the best quilting pattern W∗
K – i.e., the quilting pattern

that solves the following maximization problem:

max
WK

f(WK)

s.t. g(WK) ≤ c,

(3.7)

where c > 0 is the prescribed tolerance of predictive error. In (3.7), we take the function

f to be the average of functions fk that are the metric of time-dependent discriminative

performance at tk (see the definition below in (3.11)); similarly we take the function g to

be the average of functions gk that are the metric of time-dependent calibration perfor-

mance at tk (see the definition below in (3.12)). Formally, f(WK) = 1
K

∑K
k=1 fk(Wk) and
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g(WK) = 1
K

∑K
k=1 gk(Wk). Since the objective and constraint functions in (3.7) have no

analytic form, we treat them as black-box functions f, g : [0, 1]K×|M| → R. That is, given a

quilting pattern WK , we can only evaluate the noisy versions of f and g which are given

by 1
J

∑J
j=1 Lf (WK ;D(j)

tr ,D
(j)
va ) and 1

J

∑J
j=1 Lg(WK ;D(j)

tr ,D
(j)
va ), respectively. Here, Lf and Lg

are the empirical values for the given performance metrics f and g, respectively, and D(j)
tr

and D(j)
va denote training and validation splits of D in the j-th fold of J-fold cross-validation.

To search for the optimal quilting pattern W∗
K , we use Bayesian optimization (BO) and

solve a black-box optimization problem under a black-box constraint [44]. The BO algorithm

specifies a Gaussian process (GP) prior on f and g as

f ∼ GP(µf (WK), κf (WK ,W
′
K))

g ∼ GP(µg(WK), κg(WK ,W
′
K))

(3.8)

where µf (WK) and µg(WK) are the mean functions, encoding the expected performance of

different quilting patterns, and κf(WK ,W
′
K) and κg(WK ,W

′
K) are the covariance kernels

[54], encoding the similarity between different quilting patterns for f and g, respectively. We

refer to the optimization problem in (3.7) as the Quilting Pattern Composition Problem

(QPCP).

3.4.3 Sequential BO for QPCP

The functions f, g are defined over a space of dimension D = K × |M|. Note that D is

large even for relatively small sets M of underlying survival models and a relatively coarse

grid of time horizons; e.g. D = 80 if |M| = 8 (as in our experiments) and K = 10. (In

practice, it seems desirable to allow the grid of time horizons to be much finer than this;

e.g. if the most distant horizon is 10 years we might want the grid to consist of 40 quarters

or 120 months or perhaps even something finer. Moreover, although here we use only eight

underlying models, it might well be desirable to use many more models – and one of the

virtues of our approach is that this is possible.) This high-dimensionality renders standard
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GP-based BO infeasible because both the sample complexity of nonparametric estimation of

the functions f, g and the computational complexity of maximizing the acquisition function

are exponential in D [52, 55]. For these reasons, we propose instead a sequential greedy

algorithm that incrementally selects a time horizon and performs constrained BO on that

time horizon.

Let W∗
k−1 = (w∗1, · · · ,w∗k−1) be the configuration of weights found through step k − 1

(i.e., the time horizon tk−1). Following the greedy approach, we find the weights at step k

(i.e., the time horizon tk) by solving the following BO:

max
wk

fk(wk; W
∗
k−1)

s.t. gk(wk; W
∗
k−1) ≤ c,

(3.9)

where we have written wk; W
∗
k−1 as shorthand for (w∗1, · · · ,w∗k−1,wk). We have chosen

this notation to emphasize that W∗
k−1 is fixed so fk, gk depend only on wk. BO spec-

ifies GP priors on fk and gk as fk ∼ GP(µfk(wk; W
∗
k−1), κfk(wk,w

′
k; W

∗
k−1)) and gk ∼

GP(µgk(wk; W
∗
k−1), κgk(wk,w

′
k; W

∗
k−1)). From this point forward we simplify notation by

omitting the dependence on W∗
k−1.

3.4.3.1 Black-box Constrained BO

At step k, to solve the black-box constrained BO in (3.9), we approximate the problem by an

augmented Lagrangian framework as proposed in [56]. In particular, (3.9) can be relaxed to

minimizing the augmented Lagrangian problem given by

L(wk;λ, ρ) = −fk(wk) + λ · (gk(wk)− c) +
1

ρ
max

(
0, gk(wk)− c

)2
, (3.10)

where ρ > 0 and λ ≥ 0 indicate a penalty parameter and a Lagrange multiplier, respectively.

An efficient algorithm in [57] transforms the original constrained problem into a sequence

of subproblems: at the n-th subproblem, we find a weight vector at tk, which is denoted as

w
(n)
k , by solving (3.10) given ρ(n−1) and λ(n−1). After finding a candidate solution w

∗(n)
k , the
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Algorithm 1 Augmented Lagrangian optimization

Initialize: λ(0) ≥ 0, ρ(0) > 0, and w
(0)
k

for n = 1, 2, · · · , nmax do

Find w
∗(n)
k that approximately solve (3.10)

Update λ(n) ← max
(

0, λ(n−1) + 1
ρ(n−1) (gk(w

∗(n)
k )− c)

)
Update w†k ← w

∗(n)
k

if gk(w
†
k) ≤ c then

Update ρ(n) ← ρ(n−1)

else

Update ρ(n) ← 1
2ρ

(n−1)

end if

end for

penalty parameter and approximate Lagrange multipliers are updated and the process repeats

until termination conditions are satisfied. We denote the final output of the constrained

BO at step k by w†k. (Throughout the experiments, we set the terminal condition to be

satisfaction of the constraint by w†k or n reaching the maximum number of subproblems

nmax.) Algorithm 1 gives the specific updates utilized in this work.

3.4.3.2 Endogenous Time Horizon Splitting

In principle, we could always use w†k to extend the sequence of weights. However, doing so

would make the construction fragile because the optimal weights might become over-fitted. In

order to make the construction more robust, we introduce a required margin of improvement

δ > 0; if using w†k to extend the sequence of weights leads to an improvement in discriminative

performance of at least δ, we set w∗k = w†k; otherwise we set w∗k = w∗k−1. In the former case,

tk represents an endogenously learned split in the time horizon – a time when the quilting

pattern changes. The overall process of our method is illustrated in Algorithm 2.

Computational Complexity. By following the greedy sequential approach, we have
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Algorithm 2 Sequential BO for QPCP

Initialize: W∗
0 = ∅, δ > 0, and ∆t > 0

for k = 1, 2, · · · ,K do

Set tk ← tk−1 + ∆t

Obtain w†k from Algorithm 1 with W∗
k−1 and tk

if fk(w
†
k)− fk(w

∗
k−1) > δ then

Update w∗k ← w†k

else

Update w∗k ← w∗k−1

end if

Set W∗
k ← (w∗1,w

∗
2, · · · ,w∗k)

end for

side-stepped the main challenge of scaling BO to the high dimensionality [55] by reducing the

number of computations to maximize the acquisition function from O(nK×|M|) to O(K×n|M|).

To quantify the computational complexity of training Survival Quilts which can be carried

out off-line, we first denote the computational complexity of the overall quilting pattern

optimization and that of training the m-th baseline survival model as CBO and Cm where

m ∈M, respectively. Then, the computational complexity of training Survival Quilts can

be given as CBO + J
∑

m∈M Cm. (Recall that J is the number of cross-validations.) Albeit

the increased complexity in the training due to the optimization of quilting pattern, the

computational complexity of Survival Quilts for prediction – which must be carried out

on-line – is bounded by the sum of the computational complexity of the baseline survival

models in M for predicting the risk.

3.5 Experiments

In this section, we present discriminative performance results in comparison to competitive

baseline algorithms on six real-world time-to-event datasets. We set K = 50 and ∆t = Tmax

K
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Table 3.2: Descriptive statistics on the six real-world datasets. Mean (standard deviation)

times in days are provided for the time-to-event/censoring.

Statistics
Datasets

MAGGIC SUPPORT METABRIC UNOS-I UNOS-II BPD

No. Patients 5000 9105 1981 792 5000 2510

Events 1827 (36.5%) 6201 (68.1%) 888 (44.8%) 363 (45.8%) 2395 (47.9%) 1999 (79.6%)

Censored 3173 (63.5%) 2904 (31.9%) 1093 (55.2%) 429 (54.2%) 2605 (52.1%) 511 (20.4%)

Time-to-Event 885.3 (957.0) 206.0 (321.9) 2318.5 (1613.8) 141.0 (213.9) 2161.3 (2084.0) 613.5 (853.0)

Time-to-Censoring 927.7 (1032.4) 1060.3 (516.1) 3464.8 (1773.7) 327.6 (380.5) 2733.1 (2151.8) 1331.8 (1407.9)

No. Features 33 42 21 16 50 48

where Tmax indicates the maximum of time-to-event and time-to-censoring in each dataset.

Throughout the evaluation, we report results using the average of 5 random 80/20 train/test

splits.

3.5.1 Experimental Setup

3.5.1.1 Survival Models

The survival models that are used for constructing Survival Quilts and for the compar-

isons are listed below along with description of the implementations used to compute them:

the standard Cox-PH model (Cox) [19] and the modification with ridge regression (taking

α = 1) (CoxRidge) are implemented with Python package scikit-surv; the survival re-

gression models using the Weibull (Weibull), Log-normal (LogNormal) and Exponential

(Exponential) distributions are implemented with R package survival; the Cox-PH model

with the component-wise likelihood-based boosting algorithm [46] (CoxBoost) is imple-

mented with R package CoxBoost with 500 iterations; the bagging-based Random Survival

Forest [30] (RSF) is implemented with the R package RandomForestSRC with 1000 trees; and
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the Conditional Inference Survival Forest [48] (CISF) is implemented with the R package

pec with 1000 trees.

3.5.1.2 Performance Metrics

As discussed above, we assess the predictions of all the survival models with respect to how

well the predictions discriminate among individual risks and how accurate the predictions

are. As the metric of discriminative power, we use the time-dependent concordance index

(C-index) [58], defined by

C(t)=P(R(t|xi)>R(t|xj)|∆i=1, Ti≤ t, Ti<Tj). (3.11)

As the metric of calibration, we use the Brier Score (BS) [59] which is the mean square error

adjusted for the survival setting:

BS(t) = E
[
(1(Ti ≤ t)−R(t|xi))2

]
. (3.12)

These metrics can be evaluated over different time horizons and are adjusted for censoring as

defined in [58] and [59].

3.5.2 Datasets

We conducted experiments to investigate the performance of Survival Quilts on six real-

world medical datasets from a variety of clinical settings: a preventive care database on

chronic heart failure (MAGGIC) [60], a study to understand seriously ill hospitalized adults

(SUPPORT) [61], a study on breast cancer subgroups (METABRIC) [62], databases on

heart transplant management for patients (UNOS-I) wait-listed for transplantation and on

patients who underwent a heart transplant (UNOS-II)1, and preventative care records on

bipolar disorder (BPD) [63]. In Table 3.2, we provide a summary of these time-to-event

datasets.

1Available at https://www.unos.org/data/
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3.5.3 Performance Evaluation

In Tables 3.3 - 3.5, we report the discriminative performance of the various survival models

for the MAGGIC, SUPPORT, and METABRIC datasets at three different time horizons,

representing the 25%, 50%, and 75%-quantiles of time-to-event. We emphasize that the time

horizons used for testing are different from the time horizons that are used in the construction

of Survival Quilts, so we are not prejudicing the evaluations in our favor.

Overall, several things are important to note: i) the best performing benchmarks are

different across the datasets and time horizons, ii) not all of the benchmarks satisfy the

Brier Score constraints; i.e., they are not sufficiently well-calibrated, iii) in most cases

the performance of Survival Quilts is better than that of the best benchmark, and the

improvement is statistically significant over most of the benchmarks, and iv) in some cases

(i.e., the UNOS-II and BPD datasets), the performance of Survival Quilts coincides with the

best benchmark because it gives full weight to that benchmark.

3.5.3.1 Endogenous Time-Horizon Splits

To illustrate the impact of choosing the quilting patterns endogenously, we call attention to

Figure 3.4. The discriminative performance of RSF and CISF usually decreases at longer

time horizons. In large part this is because RSF and CISF are nonparametric models and

do less well over time horizons in which the number of patients at risk and the number of

events are smaller. In contrast, the discriminative performances of the (semi-)parametric

models decrease less over longer time horizons. Because our method constructs quilting

patterns that change over time, it is able to give greater weight to models whose increments

of risk predictions provide good discriminative performance in different time horizons. For

example, in the SUPPORT dataset, the weights on RSF and CISF decrease and the weights

on the Cox, CoxRidge and LogNormal increase at around t = 100 because the performance

of RSF and CISF degrade earlier and more abruptly compared to that of Cox, CoxRidge,
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(a) Discriminative performance

(b) Quilting Pattern

Figure 3.3: Discriminative performance and quilting patterns over time for the MAGGIC

dataset. The dotted black lines depict the 25%, 50%, and 75%-quantiles of time-to-event.
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Table 3.3: C-index (mean±std) for the MAGGIC dataset at different time horizons. Blue

highlighting indicates that the Brier Score constraints are satisfied.

Models
Time-Horizons (quantiles)

25% 50% 75%

Best benchmark RSF RSF RSF

Cox 0.709±0.01∗ 0.694±0.02∗ 0.679±0.01∗

CoxRidge 0.711±0.01∗ 0.695±0.02∗ 0.679±0.01∗

Weibull 0.710±0.01∗ 0.695±0.02∗ 0.679±0.01∗

LogNormal 0.719±0.02∗ 0.699±0.01∗ 0.676±0.01∗

Exponential 0.708±0.02∗ 0.695±0.02∗ 0.679±0.01∗

CoxBoost 0.707±0.02∗ 0.689±0.02∗ 0.672±0.01∗

RSF 0.755±0.02 0.725±0.01 0.692±0.01†

CISF 0.740±0.02 0.708±0.01∗ 0.683±0.01∗

Survival Quilts

exog. K=1 0.761±0.02 0.730±0.01 0.701±0.00

exog. K=2 0.759±0.02 0.731±0.01 0.702±0.00

exog. K=3 0.758±0.02 0.731±0.01 0.702±0.00

endogenous 0.764±0.02 0.735±0.01 0.705±0.00

∗, † indicate p-value < 0.01, < 0.05

and LogNormal.

Tables 3.3 - 3.5 compare the performance of Survival Quilts against the benchmarks at

three time horizons. To highlight the gain achieved by our endogenous construction, we

also provide the performance of Survival Quilts constructed using exogenous time horizons.

When K = 1, we are using weights that do not vary with time as an alternative of the

time-independent stacking [53]; for K = 2, 3, we have chosen exogenous time horizons with
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(a) Discriminative performance

(b) Quilting Pattern

Figure 3.4: Discriminative performance and quilting patterns over time for the SUPPORT

dataset. The dotted black lines depict the 25%, 50%, and 75%-quantiles of time-to-event.
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Table 3.4: C-index (mean±std) for the SUPPORT dataset at different time horizons. Blue

highlighting indicates that the Brier Score constraints are satisfied.

Models
Time-Horizons (quantiles)

25% 50% 75%

Best benchmark RSF CISF CISF

Cox 0.786±0.01∗ 0.750±0.01∗ 0.726±0.01∗

CoxRidge 0.786±0.01∗ 0.750±0.01∗ 0.727±0.01∗

Weibull 0.778±0.01∗ 0.745±0.01∗ 0.724±0.01∗

LogNormal 0.797±0.01∗ 0.759±0.01∗ 0.731±0.01†

Exponential 0.772±0.01∗ 0.742±0.01∗ 0.722±0.01∗

CoxBoost 0.785±0.01∗ 0.745±0.01∗ 0.719±0.01∗

RSF 0.849±0.02 0.784±0.01 0.740±0.01

CISF 0.847±0.02 0.787±0.01 0.741±0.01

Survival Quilts

exog. K=1 0.842±0.02 0.782±0.01 0.743±0.01

exog. K=2 0.843±0.02 0.781±0.01 0.742±0.01

exog. K=3 0.846±0.01 0.784±0.01 0.743±0.01

endogenous 0.851±0.02 0.789±0.01 0.750±0.01

∗, † indicate p-value < 0.01, < 0.05

very coarse grids. As seen in the tables, the endogenous construction of Survival Quilts

provides the best performance because it chooses the time intervals endogenously and allows

for different weights in different time intervals. In the tables, we highlight in blue the results

for models and time horizons in which the Brier Score constraints are satisfied; note that

satisfaction of the constraints changes over different horizons. Asterisks and daggers indicate

that the performance improvements of Survival Quilts are statistically significant at the 0.01
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(a) Discriminative performance

(b) Quilting Pattern

Figure 3.5: Discriminative performance and quilting patterns over time for the METABRIC

dataset. The dotted black lines depict the 25%, 50%, and 75%-quantiles of time-to-event.
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Table 3.5: C-index (mean±std) for the METABRIC dataset at different time horizons. Blue

highlighting indicates that the Brier Score constraints are satisfied.

Models
Time-Horizons (quantiles)

25% 50% 75%

Best benchmark CISF RSF CISF

Cox 0.663±0.02∗ 0.676±0.01∗ 0.669±0.01†

CoxRidge 0.674±0.03∗ 0.682±0.01∗ 0.674±0.01†

Weibull 0.660±0.02∗ 0.673±0.01∗ 0.668±0.01∗

LogNormal 0.679±0.02∗ 0.686±0.01∗ 0.673±0.01†

Exponential 0.661±0.02∗ 0.674±0.01∗ 0.670±0.01†

CoxBoost 0.674±0.03∗ 0.676±0.01∗ 0.668±0.01∗

RSF 0.757±0.04 0.741±0.03 0.694±0.02

CISF 0.758±0.02 0.739±0.01 0.698±0.01

Survival Quilts

exog. K=1 0.753±0.03 0.739±0.02 0.698±0.02

exog. K=2 0.752±0.03 0.740±0.02 0.698±0.02

exog. K=3 0.752±0.04 0.739±0.02 0.693±0.02

endogenous 0.761±0.03 0.744±0.02 0.701±0.02

∗, † indicates p-value < 0.01, < 0.05

and 0.05 levels, respectively.

3.5.4 Effect of Constrained BO

In this subsection, we address the effect of using constrained BO and how the optimal weight

vector, w†k, changes as the number of BO iterations increases. Figure 3.6 illustrates the change

in augmented Lagrangian objective in (3.10) and the change in time-dependent Brier-Score,
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Figure 3.6: An illustration of change in the augmented Lagrangian objective (3.10) and

Brier Score (g) with respect to the number of BO optimization iterations. The stars mark

the minimal point of the objective for each subproblem. We set the maximum number of

subproblems, nmax, and the number of BO steps to 3 and 100, respectively. The constrained

BO is solved at the time horizon t1 for the MAGGIC dataset.

gk, with setting k = 1 for the MAGGIC dataset. As seen in the figure, if a strict constraint c

is chosen (e.g., c = thres 3 in the figure), the optimal weights for the first two subproblems

of (3.10) do not satisfy the Brier Score constraint. Thus, our BO solves the next subproblem

with updated λ and ρ, which in turn gives more weight to the calibration performance than

in the previous subproblems. In this example, the optimal weight of the third subproblem

satisfies the Brier Score constraint and, thus, is selected as w†1.

Table 3.6 shows the optimal weight vector w†k that is chosen as we set a stricter constraint

as illustrated in Figure 3.6. As seen in the table, Survival Quilts puts more weights on

the Cox-PH based methods (Cox, CoxRidge, and CoxBoost), and Exponential when the

constraint in (3.10) is less strict. However, with stricter constraints, our method reduces

weights on the Cox-PH based methods and Exponential, and instead assigns higher weights

on Weibull and LogNormal.
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Table 3.6: Optimal weights, w†1 with varying Brier Score constraints in Figure 3.6.

Models
Constraint

thres 1 thres 2 thres 3

Cox 0.07 0 0

CoxRidge 0.06 0.04 0

Weibull 0 0.14 0.15

LogNormal 0 0.21 0.20

Exponential 0.19 0 0

CoxBoost 0.02 0 0

RSF 0.35 0.42 0.44

CISF 0.31 0.19 0.21

3.6 Conclusion

This work offers a novel approach to survival analysis that creates time-varying ensembles

of existing survival models that we call Survival Quilts. Survival Quilts exploit existing

models by giving them greater weight in time intervals where these models provide better

incremental performance and lesser weight in time intervals where these models provide less

good incremental performance. The superiority of Survival Quilts over previous survival

models is demonstrated over six real-world datasets. One of the virtues of our approach is

that we can adapt to use other survival models as those become available and prove their

value.
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CHAPTER 4

Learning Heterogeneous Treatment Effects from

Time-to-Event Data

4.1 Introduction

The demand for methods evaluating the effect of treatments, policies and interventions on

individuals is rising as interest moves from estimating population effects to understanding

effect heterogeneity in fields ranging from economics to medicine. Motivated by this, the

literature proposing machine learning (ML) methods for estimating the effects of treatments

on continuous (or binary) end-points has grown rapidly, most prominently using tree-based

methods [64–68], Gaussian processes [69, 70], and, in particular, neural networks (NNs) [71–

78]. In comparison, the ML literature on heterogeneous treatment effect (HTE) estimation

with time-to-event outcomes is rather sparse. This is despite the immense practical relevance

of this problem – e.g. many clinical studies consider time-to-event outcomes; this could be

the time to onset or progression of disease, the time to occurrence of an adverse event such

as a stroke or heart attack, or the time until death of a patient.

In part, the scarcity of HTE methods may be due to time-to-event outcomes being

inherently more challenging to model, which is attributable to two factors [79]: (i) time-to-

event outcomes differ from standard regression targets as the main objects of interest are

usually not only expected survival times but the dynamics of the underlying stochastic process,

captured by hazard and survival functions, and (ii) the presence of censoring. This has led to

the development of a rich literature on survival analysis particularly in (bio)statistics, see e.g.
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[79, 80]. Classically, the effects of treatments in clinical studies with time-to-event outcomes

are assessed by examining the coefficient of a treatment indicator in a (semi-)parametric model,

e.g. Cox proportional hazards model [19], which relies on the often unrealistic assumption

that models are correctly specified. Instead, we therefore adopt the nonparametric viewpoint

of van der Laan and colleagues [81–84] who have developed tools to incorporate ML methods

into the estimation of treatment-specific population average parameters. Nonparametrically

investigating treatment effect heterogeneity, however, has been studied in much less detail in

the survival context. While a number of tree-based methods have been proposed recently

[85–88], NN-based methods lack extensions to the time-to-event setting despite their successful

adoption for estimating the effects of treatments on other outcomes – the only exception

being [89], who directly model event times under different treatments with generative models.

Instead of modeling event times as regression targets like [89], we consider adapting

machine learning methods, with special focus on NNs, for estimation of (discrete-time)

treatment-specific hazard functions. We do so because many target parameters of interest

in studies with time-to-event outcomes are functions of the underlying temporal dynamics;

that is, hazard functions can be used to directly compute (differences in) survival functions,

(restricted) mean survival time, and hazard ratios. We begin by exploring and characterising

the unique features of the survival treatment effect problem within the context of empirical

risk minimization (ERM); to the best of our knowledge, such an investigation is lacking in

previous work. In particular, we show that learning treatment-specific hazard functions is a

challenging problem due to the potential presence of multiple sources of covariate shift : (i)

non-randomized treatment assignment (confounding), (ii) informative censoring and (iii) a

form of shift we term event-induced covariate shift, all of which can impact the quality of

hazard function estimates. We then theoretically analyze the effects of said shifts on ERM,

and use our insights to propose a new NN-based model for treatment effect estimation in the

survival context.

Contributions (i) We identify and formalize key challenges of heterogeneous treatment
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effect estimation in time-to-event data within the framework of ERM. In particular, as

discussed above, we show that when estimating treatment-specific hazard functions, multiple

sources of covariate shift arise. (ii) We theoretically analyse their effects by adapting recent

generalization bounds from domain adaptation and treatment effect estimation to our setting

and discuss implications for model design. This analysis provides new insights that are of

independent interest also in the context of hazard estimation in the absence of treatments.

(iii) Based on these insights, we propose a new model (SurvITE) relying on balanced rep-

resentations that allows for estimation of treatment-specific target parameters (hazard and

survival functions) in the survival context, as well as a sister model (SurvIHE), which can be

used for individualized hazard estimation in standard survival settings (without treatments).

We investigate performance across a range of experimental settings and empirically confirm

that SurvITE outperforms a range of natural baselines by addressing covariate shifts from

various sources.

4.2 Problem Definition

Assume we observe a time-to-event dataset D = {(ai, xi, τ̃i, δi)}ni=1 comprising realizations of

the tuple (A,X, T̃ ,∆) ∼ P for n patients. Here, X ∈ X and A ∈ {0, 1} are random variables

for a covariate vector and an indicator whether treatment was administered at baseline. Let

T ∈ T and C ∈ T denote random variables for the time-to-event and the time-to-censoring.

Then, the time-to-event outcomes of each individual patient are described by T̃ = min(T,C)

and ∆ = 1(T ≤ C), which indicate the time elapsed until either an event or censoring occurs

and whether the event was observed or not, respectively. Throughout, we treat survival time

as discrete1 and the time horizon as finite with pre-defined maximum tmax, so that the set of

possible survival times is T = {1, · · · , tmax}.

1Where necessary, discretization can be performed by transforming continuous-valued times into a set of

contiguous time intervals, i.e., T = τ implies T ∈ [tτ , tτ + δt) where δt implies the temporal resolution.
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4.2.1 Long and Short Data Structures.

We transform the short data structure outlined above to a so-called long data structure

which can be used to directly estimate conditional hazard functions using standard machine

learning methods [82]. We define two counting processes NT (t) and NC(t) which track events

and censoring, i.e. NT (t) = 1(T̃ ≤ t,∆ = 1) and NC(t) = 1(T̃ ≤ t,∆ = 0) for t ∈ T ; both

are zero until either an event or censoring occurs. By convention, we let NT (0) = NC(0) = 0.

Further, let Y (t) = 1(NT (t) = 1 ∩NT (t−1) = 0) be the indicator for an event occuring at

time t; thus, for an individual with T̃ = τ and ∆ = 1, Y (t) = 0 for all t 6= τ , and Y (t) = 1 at

the event time t = τ . The conditional hazard is the probability that an event occurs at time

τ given that it does not occur before time τ , hence it can be defined as [84]

λ(τ |a, x) = P(T = τ |T ≥ τ, A = a,X = x) = P(T̃ = τ,∆ = 1|T̃ ≥ τ, A = a,X = x)

= P(Y (τ) = 1|NT (τ−1) = 0, NC(τ−1) = 0, A = a,X = x)
(4.1)

It is easy to see from (4.1) that given data in long format, λ(τ |a, x) can be estimated for any

τ by solving a standard classification problem with Y (τ) as target variable, considering only

the samples at-risk at time τ in each treatment arm (individuals for which neither event nor

censoring has occurred until that time point; i.e. the set I(τ, a)
def
= {i ∈ [n] : NT (τ−1)i =

NC(τ−1)i = 0 ∩ Ai = a}). Finally, given the hazard, the associated survival function

S(τ |a, x) = P(T > τ |A = a,X = x) can then be computed as S(τ |a, x) =
∏

t≤τ
(
1−λ(t|a, x)

)
.

The censoring hazard λC(t|a, x) and survival function SC(t|a, x) can be defined analogously.

4.2.2 Target Parameters

While the main interest in the standard treatment effect estimation setup with continuous

outcomes usually lies in estimating only the (difference between) conditional outcome means

under different treatments, there is a broader range of target parameters of interest in the

time-to-event context, including both treatment-specific target functions and contrasts that

represent some form of heterogeneous treatment effect (HTE). We define the treatment-specific
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(conditional) hazard and survival functions as

λa(τ |x) = P(T = τ |T ≥ τ, do(A = a), X = x)

Sa(τ |x) = P(T > τ |do(A = a), X = x) =
∏

t≤τ

(
1− λa(t|x)

) (4.2)

Here, do(A = a) denotes [90]’s do-operator which indicates an intervention in which every

individual is assigned treatment a; below we discuss assumptions that are necessary to identify

such interventional quantities from observational datasets.

Given λa(τ |x) and Sa(τ |x), possible HTEs of interest2 include the difference in treatment-

specific survival times at time τ , i.e. HTEsurv(τ |x) = S1(τ |x) − S0(τ |x), the difference in

restricted mean survival time (RMST) up to time L, i.e. HTErmst(x) =
∑

tk≤L
(
S1(tk|x)−

S0(tk|x)
)
· (tk − tk−1), and hazard ratios. In the following, we will focus on estimation of

the treatment specific hazard functions {λa(t|x)}a∈{0,1},t∈T as this can be used to compute

survival functions and causal contrasts.

4.2.3 Assumptions

As in [82–84], we assume the fairly general causal structure encoded in the DAG in Figure

4.1. By assuming that observed data was generated from this DAG, the classical identifying

assumptions (No Hidden Confounders, Censoring At Random, and Consistency) are implicitly

formalized [82]. Equivalently, we can restate the assumptions using potential outcomes [91]

notation. As in e.g. [92], we let Ta denote the potential event time that would have been

observed had treatment a been assigned, and C = tmax been externally set. Then, the

following assumptions are implied by the DAG:

Assumption 1 (1.a No hidden confounders (unconfoundedness)). Treatment assignment is

random conditional on covariates, i.e. Ta |= A|X.

2Note: All parameters of interest to us are heterogeneous (also sometimes referred to as individualized), i.e.

a function of the covariates X, while the majority of existing literature in (bio)statistics considers population

average parameters that are functions of quantities such as P(T > τ |do(A = a)), which average over all X.
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Figure 4.1: The assumed underlying DAG. Covariates X can be split into (possibly overlap-

ping) subsets X1, X2 and X3, determining treatment selection, informative censoring, and

event times, respectively.

Assumption 2 (1.b Censoring at random). Censoring and outcome are conditionally inde-

pendent, i.e. Ta |= C|X,A.

Assumption 3 (1.c Consistency). The observed outcomes are the potential outcomes under

the observed intervention, i.e. if A = a then T = Ta.

Then, we can write

λa(τ |x) = P(T = τ |T ≥ τ, do(A = a), X = x)

= P(Ta = τ |Ta ≥ τ, A = a,X = x)

= P(Ta = τ |Ta ≥ τ, C = tmax, A = a,X = x)

= P(T̃ = τ,∆ = 1|T̃ ≥ τ, C = tmax, A = a,X = x) = λ(τ |a, x)

Here, the equalities in line one and two follow by definition, line three follows by assumption

1.a, line four follows by assumption 1.b, the equality in line five follows by assumption 1.c,

and the final line follows by definition.

To enable nonparametric estimation of λa(τ |x) for some fixed τ ∈ T , we additionally

consider a number of conditions on the likelihood of observing certain events.
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Assumption 4 (2.a Overlap/positivity (treatment assignment)). Treatment assignment is

non-deterministic, i.e. for some ε1 > 0, we have that ε1 < P(A = a|X = x) < 1− ε1

Assumption 5 (2.b Positivity (censoring)). Censoring is non-deterministic, i.e. for some

ε2 > 0, we have that P(NC(t) = 0|A = a,X = x) = P(C > t|A = a,X = x) => ε2 ∀t < τ .

Assumption 6 (2.c Positivity (events)). Not all events deterministically occur before time

τ , i.e. P(NT (τ−1) = 0|A = a,X = x) > P(T > τ−1|A = a,X = x)ε3 > 0

Assumptions 1.a, 1.c and 2.a are standard within the treatment effect estimation literature

[70, 72]; assumptions 1.b and 2.b are standard within the literature with survival outcomes

[88, 92]. Assumption 2.c is needed only if we aim to estimate λa(t|x) for all t, otherwise

it would suffice to follow a convention such as setting λa(t|x) = 1 whenever P(NT (τ−1) =

0|A = a,X = x) = 0.

4.3 Challenges in Learning Treatment-Specific Hazard Functions

using ERM

Preliminaries: ERM under Covariate Shift Recall that in problems with covariate shift,

the training distribution X, Y ∼ Q0(·) used for ERM and the target distribution X, Y ∼ Q1(·)

are mismatched: One assumes that the marginals do not match, i.e. Q0(X) 6= Q1(X),

while the conditionals remain the same, i.e. Q0(Y |X) = Q1(Y |X) [93]. If the hypothesis

class H used in ERM does not contain the truth (or in the presence of heavy regulariza-

tion), this can lead to suboptimal hypothesis choice as arg minh∈H EX,Y∼Q1(·)[`(Y, h(X))] 6=

arg minh∈H EX,Y∼Q0(·)[`(Y, h(X))] in general.

4.3.1 Sources of Covariate Shift

We now consider how to learn a treatment-specific hazard function λa(τ |x) from observational

data using ERM. As detailed in Section 4.2, we exploit the long data format by realizing
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that λa(τ |x) can be estimated by solving a standard classification problem with Y (τ) as

dependent variable and X as covariates, using only the samples at risk with treatment status

a, i.e. I(τ, a), which corresponds to solving the empirical analogue of the problem

λ̂a(τ |x) ∈ arg min
ha,τ∈H

EX,Y (τ)∼Pa,τ (·)[`(Y (τ), ha,τ (X)] (4.3)

where we use Pa,τ to refer to the observational (at-risk) distribution Pa,τ (X, Y (τ)) =

λaT (τ |X)Pa,τ (X) with Pa,τ (X) = P(X|NT (τ−1) = NC(τ−1) = 0, A = a) = P(X|T̃ ≥

τ, A = a). If the loss function ` is chosen to be the log-loss, this corresponds to optimizing

the likelihood of the hazard.

The observational (at-risk) covariate distribution Pa,τ (X), however, is not our target

distribution: instead, to obtain reliable treatment effect estimates for the whole population,

we wish to optimize the fit over the population at baseline, i.e. the marginal distribution

X ∼ P(X) which we will refer to as P0(X) below to emphasize it being the baseline at-risk

distribution.3. Here, differences between P0(X) and the population at-risk Pa,τ (X) can arise

due to three distinct sources of covariate shift:

• (Shift 1) Confounding/treatment selection bias: if treatment is not assigned completely

at random, then P(X|A = a) 6= P0(X) and the distribution of characteristics across the

treatment arms differs already at baseline, thus Pa,τ (X) 6= P0(X) in general.

• (Shift 2) Censoring bias: regardless of the presence of confounding, if the censoring

hazard is not independent of covariates, i.e. λC(τ |a, x) 6= λC(τ |a), then the population

at-risk changes over time such that Pa,τ1(X) 6= Pa,τ2(X) 6= P0(X) in general. If, in

addition, there are differences between the treatment-specific censoring hazards, then

the at-risk distribution will also differ across treatment arms at any given time-point, i.e.

Pa,τ (X) 6= P1−a,τ (X) for τ > 1 in general.

3With slight abuse of notation, we will use P0 and Pa,τ also to refer to densities of continuous x
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• (Shift 3) Event-induced shifts : Counterintuitively, even in the absence of both confounding

and censoring, there will be covariate shift in the at-risk population if the event-hazard

depends on covariates, i.e. if λ(τ |a, x) 6= λ(τ |a) then Pa,τ1(X) 6= Pa,τ2(X) 6= P0(X) in

general. Further, if there are heterogenous treatment effects, then Pa,τ (X) 6= P1−a,τ (X)

for τ > 1 in general.

4.3.2 What makes the survival treatment effect estimation problem unique?

While Shift 1 arises also in the standard treatment effect estimation setting, Shift 2 and

Shift 3 arise uniquely due to the nature of time-to-event data. Thus, estimating treatment

effects from time-to-event data is inherently more involved than estimating treatment effects

in the standard static setup, as covariate shift at time horizon τ > 1 can arise even in a

randomized control trial (RCT). Thus, in addition to the overall at-risk population changing

over time, both treatment effect heterogeneity and treatment-dependent censoring can lead to

differences in the composition of the population at-risk in each treatment arm. Further, Shifts

1, 2 and 3 can also interact to create more extreme shifts; e.g. if treatment selection is based

on the same covariates as the event process (i.e. X1 = X3 in Fig. 4.1) then event-induced

shift can amplify the selection effect over time.

Interestingly, changes of the at-risk population over time arise also in standard survival

problems (without treatments); yet in the context of prediction these do not matter: as

the at-risk population at any time-step is also the population that will be encountered

at test-time, this shift in population over time is not problematic, unless it is caused by

censoring. If, however, our goal is estimation of a target parameter over the whole population,

this corresponds to a setting where the ideal evaluation is performed on a ‘counterfactual’

population (i.e. the population resulting if all individuals had survived until time τ) which is

never encountered in test sets – and hence requires careful consideration of the consequences

of the covariate shifts discussed above. To see why fixing one target population is necessary,

note that when the goal is estimation of the difference in survival curves, i.e. HTEsurv(τ |x),
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this requires estimation of 2×τ hazard functions; if each of them was optimized for a different

target population, this would make the final survival curves and their differences hard to

interpret.

Finally, we note that Shifts 2 and (particularly) 3 seemingly appear only because we

chose to represent the data in long format. However, many ML-based discrete-time models

targeting hazard or survival function directly implicitly rely on the long data-format (or

similar transformations), making these shifts problematic for them too. Thus, representation

in long format and the use of the classification approach only helps to make these shifts

explicit. Survival models which model (log) time as a regression target do not suffer from

Shift 3; however, as we show in the experiments using the model of [89], their performance

on estimating survival functions can be poor.

4.3.3 Possible Remedies and Theoretical Analysis

A natural solution to tackle bias in ERM caused by covariate shift is to use importance

weighting [94]; i.e. to reweight the empirical risk by the density ratio of target P0(X) and

observed distribution Pa,τ (X). In our context, for any (τ, a), optimal importance weights are

given by

w∗a,τ (x) =
P0(x)

Pa,τ (x)
=

pτ,a
ea(x)ra(x, τ)

(4.4)

with pτ,a = P(T̃ ≥ τ, A = a), ea(x) = P(A = a|X = x) the propensity score, and ra(x, τ) =

P(T̃ ≥ τ |A = a,X = x) the probability to be at risk, i.e. the probability that neither event

nor censoring occurred before time τ . These weights are well-defined due to the overlap

assumptions detailed in Sec. 4.2; however, they are in general unknown as they depend on

the unknown target parameters λa(τ |x) through ra(x, τ). Further, especially for large τ , these

weights might be very extreme even if known, which can lead to highly unstable results [95] –

making biased yet stabilized weighting schemes, e.g. truncation, a good alternative. Therefore,

we only assume access to some (possibly imperfect) weights wa,τ (x) s.t. EX∼Pa,τ [wa,τ (x)] = 1,
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so that we can create a weighted distribution Pwa,τ = wa,τ (x)Paτ (x). (Note: Paτ (x) can be

recovered by using wa,τ (x) = 1.)

Either instead of [71, 72] or in addition to weighting [73, 75, 77, 96], the literature

on learning balanced representations for static treatment effect estimation has focused on

finding a different remedy for distributional differences between treatment arms: creating

representations Φ : X → R which have similar (weighted) distributions across arms as

measured by an integral probability metric (IPM), motivated by generalization bounds. As

we show below, we can exploit a similar feature in our context by finding a representation

that minimizes the IPM term not between treatment arms, but between covariate distribution

at baseline P0 and Pwa,τ . The proposition below bounds the target risk of a hazard estimator

λ̂aT (τ |x) = h(Φ(x)) relying on any representation. The proof extends the concept of excess

target information loss, proposed recently to analyze domain-adversarial training [97], and

the standard IPM arguments made in e.g. [96].

Proposition 1. For fixed a, τ and representation Φ : X → R, let PΦ
0 , PΦ

a,τ and Pw,Φa,τ denote

the target, observational, and weighted observational distribution of the representation Φ.

Define the pointwise losses

`h,Q(x; a, τ)
def
= EY (τ)|x,a∼Q[`(Y (τ), h(Φ(X)))|X = x,A = a]

`h,QΦ(φ; a, τ)
def
= EY (τ)|φ,a∼QΦ [`(Y (τ), h(Φ))|Φ = φ,A = a]

(4.5)

of (hazard) hypothesis h ≡ ha,τ : R → [0, 1] w.r.t. distributions in covariate and representation

space, respectively. Assume there exists a constant CΦ > 0 s.t. CΦ
−1`h,Pw,Φa,τ

(φ, a, τ) ∈ G for

some family of functions G. Then we have that

EX∼P0 [`h,P(X; a, τ)]︸ ︷︷ ︸
Target Risk

≤ EX∼Pa,τ [wa,τ (X)`h,P(X; a, τ)]︸ ︷︷ ︸
Weighted observational risk

+CΦ IPMG(PΦ
0 ,Pw,Φa,τ )︸ ︷︷ ︸

Distance in Φ-space

+ ηlΦ(h)︸ ︷︷ ︸
Info loss

(4.6)

where IPMG(P,Q) = supg∈G
∣∣∫ g(x)(P(x)−Q(x))dx

∣∣ and we define the excess target in-

formation loss η`Φ(h) analogously to [97] as η`Φ(h)
def
= EX∼P[ξPΦ

0 ,P(X) − ξPw,Φa,τ ,P(X)] with

ξQΦ,Q(x)
def
= `h,QΦ(φ; a, τ)− `h,Q(x; a, τ). For invertible Φ, η`Φ(h) = ξQΦ,Q(x) = 0.
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Unlike the bounds provided in [72, 73, 77, 89, 96], this bound does not rely on repre-

sentations to be invertible; we consider this feature important as none of the works listed

actually enforced invertibility in their proposed algorithms. Given bound (4.6), it is easy to

see why non-invertibilty can be useful: for any (possibly non-invertible) representation for

which it holds that Y (τ) |= X|Φ(X), A, it also holds that η`Φ(h) = ξPΦ,P(x) = ξPw,Φa,τ ,P(x) = 0

and the causally identifying restrictions continue to hold. A simple representation for which

this property holds is a selection mechanism that chooses only the causal parents of Y (τ)

from within X; if X can be partitioned into variables affecting the instantaneous risk (X3

in Fig. 4.1), and variables affecting only treatment assignment (X1 \X3) and/or censoring

mechanism (X2 \X3), then the IPM term can be reduced by a representation which drops the

latter sets of variables – or irrelevant variables correlated with any such variables – without

affecting η`Φ(h). As a consequence, event-induced covariate shift can generally not be fully

corrected for using non-invertible representations (unless the variables affecting event time

are different at every time-step). Further, given perfect importance weights w∗, both η`Φ(h)

and IPM term are zero.

Except for the dependence on η`Φ(h), this bound differs from the regression-based bound

for survival treatment effects stated in [89] (which is identical to the original treatment effect

bound in [72]) in that we have dependence on τ in the IPM term, which, among other things,

explicitly captures the effect of censoring. Our bound motivates that, instead of finding

representations that balance treatment- and control group at baseline (or at each time step)

we should find representations that balance PΦ
a,τ towards the baseline distribution PΦ

0 for

each time step, which motivates our method detailed below. Note that this bound motivates

the use of balanced representations for modeling time-to-event outcomes in the presence of

informative censoring even in the standard prediction setting, which is a finding that could

be of independent interest for the ML survival analysis literature.
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Figure 4.2: The architecture of SurvITE.

4.4 Method: SurvITE

Based on the theoretical analysis above, we propose a novel deep learning approach to HTE

estimation from observed time-to-event data, which we refer to as SurvITE (Individualized

Treatment Effect estimator for Survival analysis). The network architecture is illustrated

in Figure 4.2. Note that even in the absence of treatments we can use this architecture

for estimation of hazards and survival functions by using only one treatment a = 0. As

we show in the experiments, this version of our method – SurvIHE (Individualized Hazard

estimator for Survival analysis) – is of independent interest in the standard survival setting,

as it corrects for Shifts 1 & 2. Below, we describe the empirical loss functions we use to find

representation Φ and hypotheses ha,τ .

Let Φ : X → R denote the representation (parameterized by θφ) and ha,τ : R → [0, 1] the

hazard estimator for treatment a and time τ (parameterized by θha,τ ), each implemented as a

fully-connected neural network. While the output heads are thus unique to each treatment-

group time-step combination, we allow hazard estimators to share information by using one

shared representation for all hazard functions. This allows for both borrowing of information

across different a, τ and significantly reduces the number of parameters of the network.
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Then, given the time-to-event data D, we use the following empirical loss functions for the

observational risk and the IPM term:

Lrisk(θφ, θh) =
1

tmax

tmax∑
t=1

∑
i:τ̃i≥t

n−1
1,tai`

(
yi(t), h1,t(Φ(xi))

)
+ n−1

0,t (1−ai)`
(
yi(t), h0,t(Φ(xi))

)
,

Lipm(θφ) =
∑

a∈{0,1}

tmax∑
t=1

Wass
(
{Φ(xi)}ni=1, {Φ(xi)}i:τ̃i≥t,ai=a

)
,

where Wass(·, ·) is the finite-sample Wasserstein distance [98]. Further, na,t = |I(τ, a)| is

the number of samples at-risk in each treatment arm, its presence ensures that each a, τ -

combination contributes equally to the loss. Overall, we can find Φ and ha,τ ’s that optimally

trade off balance and predictive power as suggested by the generalization bound (4.6) by

minimizing the following loss:

Ltarget(θφ, θh) = Lrisk(θφ, θh) + βLipm(θφ) (4.7)

where θh = {θha,τ}a∈{0,1},τ∈T , and β > 0 is a hyper-parameter.

Uniform vs. non-uniform weighting. In (4.7), all samples are weighted uniformly

(within each a, τ combination). We tested non-uniform, estimated importance weights ŵ∗a,τ (x),

and, in synthetic experiments, even considered ‘oracle’ weights. Across both strategies for

weighting and different truncation thresholds, we found that non-uniform weighting did

not improve the performance of SurvITE. This is in line with recent empirical [99] and

theoretical [100] findings indicating that weighting may have little impact in deep learning –

overparametrized NNs have sufficient capacity to not have to trade-off between classifying

different training points [99], which is the problem of low-capacity misspecified models (e.g.

linear models) in this context. We conjecture that the IPM-term, on the other hand, does

help as it fulfills a slightly different purpose than weighting; it forces Θ to act similarly to a

variable selection mechanism (making the subsequent learning problem easier) and encourages

‘shift-invariant’ representations that generalize better in the presence of different shifts.
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4.5 Related work

Heterogeneous treatment effect estimation (non-survival) has been studied in great

detail in the recent ML literature. While early work built mainly on tree-based methods

[64–67], many other methods, such as Gaussian processes [69, 70] and GANS [101], have been

adapted to estimate HTEs. Arguably the largest stream of work [71–78] built on NNs, due to

their flexibility and ease of manipulating loss functions, which allows for easy incorporation

of balanced representation learning as proposed in [71, 72] and motivated also the approach

taken in this work. Another popular approach has been to consider model-agnostic (or ‘meta-

learner’ [102]) strategies, which provide a ‘recipe’ for estimating HTEs using any predictive

ML method [78, 102–104]. Because of their simplicity, the single model (S-learner) – which

uses the treatment indicator as an additional covariate in otherwise standard model-fitting –

and two model (T-learner) – which splits the sample by treatment status and fit two separate

models – strategies [102], can be directly applied to the survival setting by relying on a

standard survival (prediction) method as base-learner.

ML methods for survival prediction continue to multiply; here we focus on the most

related class of methods – namely on those nonparametrically modeling conditional hazard

or survival functions – and not on those relying on flexible implementations of the Cox

proportional hazards model (e.g. [22, 23, 105]) or modeling (log-)time as a regression problem

(e.g. [48, 106–108]). One popular nonparametric estimator of survival functions is [30]’s

random survival forest, which relies on the Nelson-Aalen estimator to nonparametrically

estimate the cumulative hazard within tree-leaves. The idea of modeling discrete-time hazards

directly using any arbitrary classifier and long data-structures goes back to at least [109],

with implementations using NN-based methods presented in e.g. [110–113]. [114] models the

probability mass function instead of the hazard, and [115] use labels 1{T > t}t∈T to estimate

the survival function directly using multi-task logistic regression.

Estimating HTEs from time-to-event data has been studied in much less detail.
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[85, 87] use tree-based nearest-neighbor estimates to estimate expected differences in survival

time directly, and [86] use a BART-based S-learner to output expected differences in log-

survival time. [116] performed a simulation study using different survival prediction models

as base-learners for a two-model approach to estimating the difference in median survival

time. Based on ideas from the semi-parametric efficiency literature, [88] and [92] propose

estimators that target the (restricted) mean survival time directly and consequently do not

output estimates of the treatment-specific hazard or survival functions. We consider the

ability to output treatment-specific predictions an important feature of a model if the goal

is to use model output to give decision support, given that it allows the decision-maker

to trade-off relative improvement with the baseline risk of a patient. Finally, [89] recently

proposed a generative model for treatment-specific event times which relies on balancing

representations to balance only the treatment groups at baseline. This model does not output

hazard- or survival functions, but can provide approximations by performing Monte-Carlo

sampling.

4.6 Experiments

Unfortunately, when the goal is estimating (differences of) survival functions (instead of

predicting survival), evaluation on real data will not reflect performance w.r.t. the intended

baseline population. Therefore, we conduct a range of synthetic experiments with known

ground truth. We evaluate the effects of different shifts separately by starting with survival

estimation without treatments, and then introduce treatments. Finally, we use the real-world

dataset TWINS [117] which has uncensored survival outcomes for twins (where the treatment

is ‘being born heavier’), and is hence free of Shifts 1 & 2.
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4.6.1 Baselines

We compared SurvITE with baselines ranging from commonly used survival methods to

the state-of-the-art HTE methods based on deep neural networks. The details of how we

implemented the benchmarks are described as the following:

• Cox4 [19] and RSF4 [30]: When there are treatments, we use these models in a two-

model (T-learner) approach by training a separate model using samples in the treated

(A = 1) and controlled (A = 0) groups, respectively. For Cox, we set the coefficient for

ridge regression penalty as α = 0.001. For RSF, we use the default hyper-parameter

setting (i.e., n estimators = 100 using a survival tree as the baseline estimator and

min samples leaf = 3 without maximum depth restriction).

• LR-sep: We utilize the long data format as described in Section 2 of the manuscript and

train a separate logistic regression model5 at each time step t ∈ T to solve the hazard

classification problem utilizing only “at-risk” samples whose time-to-event/censoring is at

or after t. Formally, the logistic regression models are trained based on the log-loss. When

there are treatments, we use LR-sep in a two-model (T-learner) approach by training

a separate model using samples in the treated (A = 1) and controlled (A = 0) groups,

respectively.

• CSA6 [89]: We use the CSA-INFO model of [89], where we use its generative capabilities to

approximate target quantities via monte-carlo sampling. We use the code and specifications

provided by the authors, in particular we use a hidden dimension of 100, set the imbalance

penalty α = 100 and train for 300 epochs. To create monte carlo approximations, we

sample 1000 times from the model for each observation in the test set.

4Python package scikit-survival [118]

5Python package scikit-learn

6https://github.com/paidamoyo/counterfactual_survival_analysis
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• SurvITE (CFR-1) and SurvITE (CFR-2): We consider two variants of SurvITE by

replacing our Lipm(θφ) with a balancing term based on the CFRNet7 proposed in [72]:

– SurvITE (CFR-1) creates a representation balancing treatment groups at baseline

only which is formally given as:

Lipm(θφ) = Wass
(
{Φ(xi)}i:ai=1, {Φ(xi)}i:ai=0

)
(4.8)

– SurvITE (CFR-2) creates a representation optimizing for balance of treatment groups

at each time step

Lipm(θφ) =
tmax∑
t=1

Wass
(
{Φ(xi)}i:τ̃i≥t,ai=1, {Φ(xi)}i:τ̃i≥t,ai=0

)
(4.9)

Note that, in both variants, there is no balancing towards P0. We implement SurvITE

(CFR-1) and SurvITE (CFR-2) with the same network architecture and hyper-parameters

with those of SurvITE.

4.6.2 Performance Metrics

Once SurvITE (or SurvIHE) is trained, we can simply estimate the (treatment-specific)

survival function based on the estimated hazard functions as the following:

Ŝa(τ |x) =
∏
t≤τ

(
1− ha,t(Φ(x))

)
for a ∈ {0, 1}. (4.10)

Heterogeneous Treatment Effects. For synthetic experiments where we have the

ground-truth treatment-specific survival functions i.e., S1(τ |x) and S0(τ |x), we evaluate

HTEsurv(τ |x) = S1(τ |x)− S0(τ |x) and HTErmst(x;L) =
∑

tk≤L
(
S1(tk|x)− S0(tk|x)

)
· (tk −

7https://github.com/clinicalml/cfrnet

68

https://github.com/clinicalml/cfrnet


tk−1) in terms of the averaged root mean squared error (RMSE) of the estimation:

εHTEsurv(t) =

√√√√ 1

n

n∑
i=1

(
HTEsurv(t|xi)− ĤTEsurv(t|xi)

)2
, (4.11)

εHTErmst(L) =

√√√√ 1

n

n∑
i=1

(
HTErmst(xi;L)− ĤTErmst(xi;L)

)2
. (4.12)

Here ĤTEsurv(t|x) = Ŝ1(τ |x)− Ŝ0(τ |x) and ĤTErmst(x;L) =
∑

tk≤L
(
Ŝ1(tk|x)− Ŝ0(tk|x)

)
·

(tk − tk−1) where (tk − tk−1) may vary depending on how the continuous time is discretized

(e.g., non-uniform time intervals for the Twins dataset).

For semi-synthetic experiments where we have the ground-truth treatment-specific time-to-

event outcomes but not the treatment-specific survival functions, we only report εHTErmst(L)

in (4.12) where the ground-truth HTErmst(x;L) is defined in terms of the ground-truth

time-to-event outcomes, i.e., HTErmst(x;L) = (min(T (1), L)−min(T (0), L)) where T (1) and

T (0) are the time-to-event given a = 1 and a = 0, respectively.

(Treatment-Specific) Survival Functions. For evaluating the estimation performance

of the (treatment-specific) survival functions, we evaluate the averaged RMSE of these

estimations as the following:

εSa(t) =

√√√√ 1

n

n∑
i=1

(
Sa(t|xi)− Ŝa(t|xi)

)2
. (4.13)

Discriminative Performance. For assessing the survival predictions of all the survival

models with respect to how well the predictions discriminate among individual risks, we use

the concordance index (C-Index) [119]:

C(t) = P
(
Ŝ(t|xi) < Ŝ(t|xj)

∣∣τ̃i < τ̃j, τ̃i ≤ t, δi = 1
)

(4.14)

where Ŝ(t|x) = a · Ŝ1(t|x) + (1 − a) · Ŝ0(t|x) is the survival prediction given treatment a.

The resulting C-Index in (4.13) tells us how well the given survival model discriminates the

individual risks among the events that occur before or at time t.
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Figure 4.3: RMSE of estimating the survival function S0(t|x) (top) and the treatment effect

HTEsurv(t|x) (bottom) for different time steps across synthetic settings. Averaged across 5

runs.

4.6.3 Synthetic Experiments

We consider a range of synthetic simulation setups (S1-S4) to highlight and isolate the effects

of the different types of covariate shift. As event and censoring processes, we use

λa(t|x) =


0.1σ(−5x2

1 − a · (1{x3 ≥ 0}+ 0.5)) for t ≤ 10

0.1σ(10x2 − a · (1{x3 ≥ 0}+ 0.5))) for t > 10

, λC(t|x) = 0.01σ(10x2
4)

with treatment assignment mechanism a ∼ Bern(ξ ·σ(
∑

p∈P xp)), with σ the sigmoid function.

Additionally, we assume administrative censoring at t = 30 throughout, i.e., λC(30|x) = 1,

marking e.g. the end of a hypothetical clinical study. Covariates are generated from a

10-dimensional multivariate normal distribution with correlations, i.e. X ∼ N (0,Σ) where

Σ = (1− ρ)I + ρ11> with ρ = 0.2. We use 5000 independently generated samples each for

training and testing.

In S1, we begin with the simplest case – no treatments and no censoring – using only

λ0(t|x) to generate events, considering only event-induced shift (Shift 3). In S2, we introduce

informative censoring using λC(t|x) (Shift 2+3). In S3, we use treatments and consider biased
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treatment assignment (without censoring) (Shift 1+3). In S4, we consider the most difficult

case with all three types of shift (Shift 1+2+3). In the latter two settings, we vary treatment

selection by changing (i) whether the covariate set overlaps with the event-inducing covariates

(P={1, 2}) or not (P={9, 10}) and (ii) the selection strength ξ ∈ {1, 3}.

Fig. 4.3 (top) shows performance on estimating S0(t|x) =
∏

k≤t
(
1 − λ0(k|x)

)
for all

scenarios and methods, while Fig. 4.3 (bottom) shows performance on estimating the

difference in survival functions (HTEsurv(t|x)) for a selection of methods. In Table 4.1,

we further evaluate the estimation of differences in RMST (HTErmst(x)). We observe that

SurvITE (/SurvIHE) performs best throughout, and that introduction of the IPM term leads

to substantial improvements across all scenarios. In S1 with only event-induced covariate

shift and in S3/4 when treatment selection and event-inducing covariates overlap (P={1, 2}),

balancing cannot remove all shift as the shift-inducing covariates are predictive of outcome;

however, even here the IPM-term helps as it encourages dropping other covariates (which

appear imbalanced due to correlations in X). As expected, both Cox and LR-sep do not

perform well as they are misspecified, while the nonparametric RSF is sufficiently flexible to

capture the underlying DGP and usually performs similarly to SurvITE (architecture only),

but is outperformed once the IPM term is added.

A comparison with ablated versions highlights the effect of using the appropriate baseline

population to define balance; naive balancing across treatment arms (either at baseline –

SurvITE(CFR-1), or over time – SurvITE(CFR-2)) is not as effective as using the baseline

population as a target, especially at the later time steps where the effects of bias worsen.

While SurvITE(CFR-2) almost matches the performance of the full SurvITE in S3, it performs

considerably worse in S4, indicating that this form of balancing suffers mainly due to its

ignorance of censoring. Finally, a comparison with CSA highlights the value of modeling

hazard functions directly: we found that Monte-Carlo approximation of the survival function

using the generated event times gives very badly calibrated survival curves as event times

generated by CSA were concentrated in a very narrow interval, leading to survival estimates of
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Table 4.1: RMSE on estimation of HTErmst(x) (mean ± 95%-CI) for different times for the

SYNTHETIC dataset (L values are selected as the 25th and 75th percentiles of event times).

Methods
S3 (ζ = 3, no overlap) S4 (ζ = 3, no overlap)

L = 10 L = 20 L = 10 L = 20

Cox 0.434±0.03 1.073±0.05 0.424±0.02 1.047±0.04

RSF 0.328±0.02 1.027±0.03 0.332±0.02 1.058±0.03

LR-sep 0.412±0.02 1.111±0.07 0.418±0.02 1.149±0.04

CSA 0.421±0.01 2.098±0.26 0.406±0.01 1.932±0.12

SurvITE (no IPM) 0.275±0.04 0.843±0.11 0.310±0.05 0.930±0.11

SurvITE (CFR-1) 0.269±0.04 0.825±0.09 0.341±0.02 1.016±0.10

SurvITE (CFR-2) 0.236±0.04 0.691±0.08 0.294±0.07 0.815±0.15

SurvITE 0.225±0.03 0.687±0.08 0.237±0.03 0.703±0.06

0 and 1 elsewhere. Its performance on estimation of RMST was likewise poor; we conjecture

that this is due to (i) CSA modeling continuous time, while the outcomes were generated using

a coarse discrete time model, and (ii) the significant presence of administrative censoring.

4.6.4 Real-World Dataset: TWINS

Finally, we consider the TWINS benchmark dataset, containing survival times (in days,

administratively censored at t=365) of 11,400 pairs of twins, which is used in [101, 117] to

measure HTEs of birthweight on infant mortality. We split the data 50/50 for training and

testing (by twin pairs), and similar to [101], use a covariate-based sampling mechanism to

select only one twin for training to emulate selection bias. Further, we consider a second

setting where we additionally introduce covariate-dependent censoring. For all discrete-

time models, we use a non-uniform discretization to construct classification tasks because
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Table 4.2: RMSE on estimation of HTErmst(x) (mean ± 95%-CI) for different times for the

TWINS dataset (L values are selected as the 75th and 95th percentiles of event times).

Methods
TWINS (no censoring) TWINS (censoring)

L = 30 L = 180 L = 30 L = 180

Cox 2.85±0.10 20.33±0.50 2.88±0.09 20.60±0.50

RSF 3.15±0.07 22.42±0.36 3.18±0.08 22.62±0.46

LR-sep 2.94±0.10 20.60±0.53 2.94±0.10 20.66±0.52

CSA 3.42±0.12 26.20±1.21 4.41±0.54 47.79±1.55

SurvITE (no IPM) 2.80±0.10 19.80±1.01 2.85±0.22 20.00±1.07

SurvITE (CFR-1) 2.68±0.06 19.16±0.37 2.67±0.15 19.10±0.85

SurvITE (CFR-2) 2.61±0.12 18.69±0.64 2.69±0.22 19.20±1.44

SurvITE 2.53±0.09 18.34±0.70 2.63±0.10 18.76±0.56

most events are concentrated in the first weeks. To create an observational time-to-event

dataset, we selectively observed one of the two twins (no censoring) with selection bias and

(censoring) with both selection bias and censoring bias as follows: the treatment assignment

is given by a|x ∼ Bern(σ(w>1 x + e)) where w ∼ Uniform(−0.1, 0.1)39×1) and e ∼ N (0, 12),

and the time-to-censoring is given by C ∼ Exp(100 · σ(w>2 x)) where w2 ∼ N (0, 12). As

the data is real and ground truth probabilities are unknown, HTErmst(x) is suited best to

evaluate performance on estimating effect heterogeneity. The results presented in Table 4.2

largely confirm our findings on relative performance in the synthetic experiments; only RSF

performs relatively worse on this dataset.
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4.7 Conclusion

We studied the problem of inferring heterogeneous treatment effects from time-to-event data

by focusing on the challenges inherent to treatment-specific hazard estimation. We found that

a variety of covariate shifts play a role in this context, theoretically analysed their impact, and

demonstrated across a range of experiments that our proposed method SurvITE successfully

mitigates them.

Limitations. Like all methods for inferring causal effects from observational data,

SurvITE relies on a set of strong assumptions which should be evaluated by a domain

expert prior to deployment in practice. Here, the time-to-event nature of our problem adds

an additional assumption (‘random censoring’) to the standard ‘no hidden confounders’

assumption in classical treatment effect estimation. If such assumptions are not properly

assessed in practice, any causal conclusions may be misleading.
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Part II

Modeling Disease Progression for

Longitudinal Data
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CHAPTER 5

A Deep Learning Approach for Dynamic Survival

Analysis based on Longitudinal Data

5.1 Introduction

Survival analysis informs our understanding of the relationships between the (distribution of)

first hitting times of events of interest (such as death, onset of a certain disease, etc.) and the

covariates, and enables us to issue corresponding risk assessments for such events. Clinicians

use survival analysis to make screening decisions or to prescribe treatments, while patients

use the information about their clinical risks to adjust their lifestyles in order to mitigate

such risks. Since the Cox proportional hazard model [19] was first introduced, a variety of

methods have been developed for survival analysis, ranging from statistical models to deep

learning techniques [20, 22, 23, 30, 34, 50, 120].

A key limitation of existing survival models is that they utilize only a small fraction of

the available longitudinal (repeated) measurements of biomarkers and other risk factors. In

particular, even though biomarkers and other risk factors are measured repeatedly over time,

survival analysis is typically based on the last available measurement. This represents a

severe limitation, since the evolution of biomarkers and risk factors has been shown to be

informative in predicting the onset of disease and various risks. For example, Cystic Fibrosis

(CF), which is the most common genetic disease in Caucasian populations [121], gives rise to

different forms of dysfunction involving the respiratory and gastrointestinal systems, which

primarily lead to progressive respiratory failure [6, 7]. Forced expiratory volume (FEV1), and
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its development, is a crucial biomarker in assessing the severity of CF as it allows clinicians to

describe the progression of the disease and to anticipate the occurrence of respiratory failures

[7, 8]. Therefore, to provide a better understanding of disease progression, it is essential to

incorporate longitudinal measurements of biomarkers and risk factors into a model. Rather

than discarding valuable information recorded over time, this allows us to make better risk

assessments on the clinical events.

This work presents a deep neural network, which we call Dynamic-DeepHit, that extends

our previous work in [50] to dynamic survival analysis. Dynamic-DeepHit learns, on the basis

of the available longitudinal measurements, a data-driven distribution of first hitting times of

competing events. Thus, the proposed method completely removes the need for explicit model

specifications (i.e., no assumption about the form of the underlying stochastic processes are

made) and learns the complex relationships between trajectories and survival probabilities.

An important aspect of our method is that it naturally handles situations in which there

are multiple competing risks where more than one type of event plays a role in the survival

setting. (Competing risks are not independent and must be treated jointly; for example, [16]

has shown that various treatments for breast cancer increase the risk of a cardiovascular

event. See [20, 50] for details of existing survival models that address competing risks.)

To enable dynamic survival analysis with longitudinal time-to-event data, Dynamic-

DeepHit employs a shared subnetwork and a family of cause-specific subnetworks. The

shared subnetwork encodes the information in longitudinal measurements into a fixed-length

vector (i.e., a context vector) using a recurrent neural network (RNN), which has achieved

a great success in various applications handling time-series data (e.g, machine translation

[122], image caption generation [123], and speech recognition [124]). We employ a temporal

attention mechanism [125] in the hidden states of the RNN structure when constructing the

context vector. This renders Dynamic-DeepHit to access the necessary information, which

has progressed along with the trajectory of the past longitudinal measurements, by paying

attention to relevant hidden states across different time stamps. Then, the cause-specific
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subnetworks take the context vector and the last measurements as an input and estimate the

joint distribution of the first hitting time and competing events that is further used for risk

predictions.

To demonstrate the usefulness of our method, we compare its performance with that

of competing approaches using a longitudinal data which was collected by the UK Cystic

Fibrosis Registry. This data contains a cohort of 5,883 adult patients (from age 18 onwards)

suffering from CF, who had annual follow-ups between 2009-2015. Throughout the evaluation,

we define two competing events: death from respiratory failures and that from other causes.

It is essential to jointly account for competing risks to take preventative steps for CF patients:

CF is a systemic disease which gives rise to different forms of dysfunctions in multiple systems

and organs – CF-associated liver disease has been reported as the third most frequent cause of

death [126]. We show that our method achieves significant improvements on the discriminative

performance over the state-of-the-art methods and provides the calibration performance that

was comparable to the best performing benchmarks. Particularly, Dynamic-DeepHit achieved

improvements of 4.36% and 9.67% over the best benchmark (6.26% and 14.97% over the

joint model) on average in terms of discriminative performance for death from respiratory

failure and death from other causes, respectively. In addition, while the vast majority of

clinical literature has focused on spirometric biomarkers, e.g., FEV1% predicted1, as the main

CF risk factors, Dynamic-DeepHit confirmed the importance of the history of intravenous

antibiotic treatments and nutritional status in the risk assessment of CF patients.

5.2 Related Work

We start by noting that in this work we focus on dynamic survival analysis with competing

risks outside the hospital, where the measurements are sparse and irregular, and a disease

1FEV1% predicted is a ratio of the maximum volume of air blown out during lung function test to the

predicted value for a ‘normal’ person of the similar age, sex, and body composition in percentage.
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develops or progresses over the duration of months or even years. Hence, our work differs

from existing work on predicting risks in the hospital setting, where numerous measurements

are available and a patient is recovering or deteriorating over the course of a few hours or

possibly days. For instance, with chronic diseases such as CF, patients are followed up over

the span of years, usually as part of regular physical examinations. The clinical status of

the patient also evolves slowly, allowing for the development of related comorbidities (e.g.

CF-induced diabetes), which in turn affect key biomarkers that reflect a patient’s clinical

status and rate of deterioration, such as lung function scores (e.g., FEV1% predicted) in

CF. Thus, we examine related work on dynamic survival analysis that utilizes measurements

collected repeatedly, but infrequently, outside the hospital.

The most widely used dynamic survival methods in this setting are joint models which

jointly describe both longitudinal and survival processes [13, 127–132]. In particular, a joint

model comprises two sub-models – one for repeated measurements of the longitudinal process

and the other for the time-to-event data (e.g., typically, a linear mixed model and a Cox model)

– linking them using a function of shared random effects. Overall, joint models find to learn a

full representation of the joint distribution of the longitudinal time-to-event data. From a

dynamic prediction perspective, the full representation of joint models leads to a reduced bias

in estimation [127] providing flexibility to make predictions at any time points of interest.

However, learning such full representation requires an optimization of the joint likelihood and

relies on fixed model specifications for both processes. Thus, model mis-specifications (e.g.,

the assumption on longitudinal process and proportional hazard assumption on time-to-event)

will limit the overall performance and the optimization of the joint likelihood requires severe

computational challenges when applied to high-dimensional datasets [130]. Nonparametric

specification of the longitudinal process was previously explored in [128] and [129], which

models the longitudinal process via individual-level penalized splines and cubic B-splines,

respectively, at the cost of higher computational complexity. Joint models integrating latent

classes [131, 132] have been recently developed to account for heterogeneous population.
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However, these approaches still maintain a proportional hazard assumption which we refrain

from doing by adopting deep learning.

Landmarking is another approach for dynamic survival analysis on the basis of longitudinal

data [12, 133–135]. The basic idea behind landmarking is to build a survival model (e.g.,

a Cox model), fitted to the subjects from the original dataset who are still at risk at the

landmarking time (usually, the prediction time of the interest). Thus, landmarking is “partially

conditional” since each survival model is conditioned on the available information accrued

by the corresponding landmarking time, rather than incorporating the entire longitudinal

history, and predictions on survival probabilities are issued using the last measurements as an

estimate of biomarkers at the landmarking time. Even though longitudinal measurements are

not fully explored, it is shown that, in practice, landmarking is competitive with joint models

and significantly easier to implement [135]. However, landmarking is not fully dynamic;

survival predictions are only available at the predefined landmarking times, not at times at

which new measurements are obtained. Moreover, it makes assumptions about the underlying

stochastic process for the survival model, which may not be true in practice, thereby limiting

the model in terms of learning the relationships between the covariates and events of interest.

Lastly, it only incorporates a subset of the longitudinal history up to the landmarking time,

which may result in information loss when making predictions.

Deep networks have been shown to achieve significantly improved performance in survival

analysis [22, 23, 34, 50, 120] owing to the ability to represent complicated associations between

features and outcomes. Authors in [22, 23] have employed deep neural networks for modeling

non-linear representations of the relationships between covariates and the risk of a single

clinical event. However, these networks are limited to the conventional Cox proportional

hazard assumption without addressing time-dependent influences of covariates on the time-

to-event. Recently, deep networks have been utilized to develop a nonparametric Bayesian

model using the Gaussian process [34], to construct the tree-based Bayesian mixture model

[120], and to directly learn the distribution of survival times [50] for survival analysis with
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competing risks. However, all of these methods provide only static survival analysis: they

use only the current information to perform the survival predictions and most of the works

focus on a single risk rather than multiple risks. To our best knowledge, this work is the first

to investigate a deep learning approach for dynamic survival analysis with competing risks

on the basis of repeated measurements (longitudinal data).

5.3 Problem Formulation

5.3.1 Time-to-Event Data

Time-to-event (survival) data provides three pieces of information for each subject: i) observed

covariates, ii) time-to-event(s), and iii) a label indicating the type of event (e.g., death or

adverse clinical event) including right-censoring. Observed covariates include static (time-

invariant) and time-varying covariates that are recorded for a period of time. We suppose

that the longitudinal measurement times, event times, and censoring times are aligned based

on a synchronization event, such as the entry to a clinical trial, the date of an intervention,

and the onset of a condition.

Formally, for each subject i, a sequence of longitudinal observations until time t is described

as a dx-dimensional multivariate time-series X i(t) = {xi(tij) : 0 ≤ tij ≤ t for j = 1, · · · , J i},

where xi(tj) can be simplified as xij = [xij,1, · · · , xij,dx ] which includes both static and time-

varying covariates recorded at time tj . Covariates are not necessarily measured at regular time

intervals and not every covariate is observed at each measurement (i.e., partially missing).

Thus, we i) distinguish notations between time stamps j = 1, · · · , J i and the corresponding

actual times tij = ti1, · · · , tiJi and ii) set xij,d = ∗ to denote that the d-th element of xij was

not measured (otherwise, xij ∈ R). For notational simplicity, we use X i = X i(tiJi) to denote

a whole set of longitudinal observations available for subject i until the last measurement

time tiJi of that subject.

We treat survival time as discrete (e.g., a temporal resolution of one month) and the time
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horizon as finite (e.g., no patients lived longer than 100 years). Thus, a set of possible survival

times is denoted as T = {0, 1, · · · , Tmax} where Tmax is a predefined maximum time horizon.

Discretization is performed by transforming continuous-valued times into a set of contiguous

time intervals, i.e., T = τ implies T ∈ [τ, τ + δt) where δt implies the temporal resolution.

We assume that every subject experiences exactly one event among K ≥ 1 possible events

of interest within T . (We cannot observe the occurrence of the other events once one event

is observed.) For instance, a patient eventually dies, but can die from only one cause [35].

This includes cause-specific deaths due to CF, where deaths from other causes are competing

risks for death due to respiratory failure. Survival data is frequently right-censored because

events of interest are not always observed (i.e., subjects are lost to follow-up). The set of

possible events is K = {∅, 1, 2, · · · , K}, with ∅ denoting right-censoring. Throughout this

work, we assume that censoring is uninformative. This assumption is common in the survival

literature and implies that whether a subject withdraws from the study depends only on the

observed history but not on the clinical outcomes [12, 13, 128, 133, 136].

We consider a dataset D = {(X i, τ i, ki)}Ni=1 comprising survival data for N subjects who

have been followed up for a certain amount of time. Here, τ i = min(T i, Ci) is the time-to-

event with T i ∈ T and Ci ∈ T indicating the event and the censoring times, respectively, and

ki ∈ K being the event or censoring that occurred at time τ i. Note that τ is either the time

at which an event (e.g., death) occurred or the time at which the subject was censored (e.g.,

disappeared from follow-up); in either case, the subject was known to experience no event at

times prior to τ . Figure 5.1 depicts a survival dataset comprising histories of longitudinal

measurements with different numbers of measurements at irregular time intervals, where each

subject experiences either event type 1 or type 2, or has its endpoint censored.

5.3.2 Cumulative Incidence Function

Our goal is to analyze the cause-specific risk given the history of observations over time and

to issue dynamic risk predictions when new measurements are available. To do so, we use the
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Figure 5.1: An illustration of survival data with longitudinal measurements where subjects

are aligned based on the synchronization event. Colored dots indicate the times at which

longitudinal measurements are observed.

(a) The network architecture with K competing risks. (b) A schematic depiction

Figure 5.2: An illustration of (a) the network architecture of Dynamic-DeepHit with K

competing risks and (b) a schematic depiction of the network at training/testing stages.

cause-specific cumulative incidence function (CIF) which is key to survival analysis under

the presence of competing risks. As defined in [20], the CIF expresses the probability that a

particular event k∗ ∈ K occurs on or before time τ ∗ conditioned on the history of longitudinal

measurements X ∗. The fact that longitudinal measurements have been recorded up to t∗J∗
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implies survival of the subject up to this time point. Thus, the CIF is defined as follows:

Fk∗(τ
∗|X ∗) , P (T ≤ τ ∗, k = k∗|X ∗, T > t∗J∗) =

∑
τ≤τ∗

P (T = τ, k = k∗|X ∗, T > t∗J∗). (5.1)

Whenever a new measurement is recorded for this subject at time t > t∗J∗ , we can update

(5.1) accounting for that information in a dynamic fashion.

Similarly, the survival probability of a subject at time τ ∗ given X ∗ can be derived by

S(τ ∗|X ∗) , P (T > τ ∗|X ∗, T > t∗J∗) = 1−
∑
k 6=∅

Fk(τ
∗|X ∗). (5.2)

However, the true CIF, Fk∗(τ
∗|X ∗), is not known; we utilize the estimated CIF, F̂k∗(τ

∗|X ∗),

in order to perform dynamic risk prediction of event occurrences and to assess how models

discriminate between cause-specific risks among subjects. The estimated CIF will be described

in the next section.

5.4 Method: Dynamic-DeepHit

In this section, we describe our novel Dynamic-DeepHit architecture for survival analysis with

competing risks on the basis of longitudinal measurements. We seek to train the network to

learn an estimate of the joint distribution of the first hitting time and competing events given

the longitudinal observations. This representation is then used to estimate the cause-specific

CIFs (5.1) and survival probability (5.2).

Before describing the network architecture in detail, we redefine the history of longitudinal

measurements in order to provide the information on measurement times and missing

observations to the network as described in the previous section. Let X i = (Xi,Mi,∆i)

where Xi = {xi1, · · · ,xiJi}, Mi = {mi
1, · · · ,mi

Ji} which is a sequence of mask vectors that

indicate which covariates are missing, and ∆i = {δi1, δi2 · · · , δiJi} which is a sequence of time

intervals between two adjacent measurements. Here, mi
j = [mi

j,1, · · · ,mi
j,dx

] with mi
j,d = 1 if

xij,d = ∗ and mi
j,d = 0 otherwise, and δij implies the actual amount of time that has elapsed
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until the next measurements are collected, i.e., δij = tij+1 − tij for 1 ≤ j < J i, and δiJi = 0.

Then, the entire training set can be given as a set of tuples D = {(Xi,Mi,∆i, τ i, ki)}Ni=1.

5.4.1 Network Architecture

Dynamic-DeepHit is a multi-task network, which consists of two types of subnetworks: a

shared subnetwork that handles the history of longitudinal measurements and predicts the

next measurements of time-varying covariates, and a set of cause-specific subnetworks which

estimates the joint distribution of the first hitting time and competing events. As the

multi-task learning has been successful across different applications [36, 137–139], we jointly

optimize the two subnetworks to help the overall network capture associations between

the time-to-event under competing risks and i) the static covariates and ii) the progression

of underlying process that governs the time-varying covariates. Figure 5.2 illustrates (a)

the overall architecture of Dynamic-DeepHit which comprises a shared subnetwork and K

cause-specific subnetworks and (b) the conceptual framework of the proposed network at

training/testing stages. Throughout this subsection, we omit the dependence on i for ease of

notation.

5.4.1.1 Shared Subnetwork

The shared subnetwork consists of two components: i) a RNN structure to flexibly handle

the longitudinal data with each subject having different numbers of measurements, that

are captured at irregular time intervals and are partially missing and ii) an attention

mechanism to unravel the temporal importance of the history of measurements in making

risk predictions. For each time stamp j = 1, · · · J − 1, the RNN structure takes a tuple

of (xj,mj, δj) as an input and outputs (yj,hj), where yj is the estimate of time-varying
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covariates after time δj has elapsed, i.e., xj+1
2 and hj is the hidden state at time stamp j.

Utilizing the Gated Recurrent Unit (GRU) RNN [140], hj can be derived as follows:

zj = σ(Wzhj−1 + Uz[xj mj δj] + bz),

rj = σ(Wrhj−1 + Ur[xj mj δj] + br),

h̃j = tanh(Wh(rj � hj−1) + Uh[xj mj δj] + bh),

hj = (1− zj)� hj−1 + zj � h̃j,

(5.3)

where W , U , and b are weight matrices and vectors which parameterize the shared subnetwork,

� is element-wise multiplication, and σ(·) is the sigmoid function. Note that we illustrate

the subnetwork with GRUs but other RNNs, such as vanilla RNNs, LSTMs [141], and

bidirectional RNNs [142], can be also utilized.

The temporal attention mechanism [125] on the hidden states helps our network decide

which parts of the previous longitudinal measurements to pay attention to. Formally, it

outputs a context vector, c, as an weighted sum of the previous hidden states as follows:

c =
J−1∑
j=1

ajhj, (5.4)

where aj =
exp(ej)∑J−1
`=1 exp(e`)

represents the importance of the j-th measurements. Here, ej =

fa(hj,xJ ,mJ) is used to score the importance of the j-th measurement by referencing on

the last measurement, (xJ ,mJ). We set fa(·) as a two-layer feed-forward network that takes

the hidden state at time stamp j, hj, and the tuple of (xJ ,mJ) as the input and outputs a

scalar ej for j = 1, · · · , J − 1. The temporal mechanism is jointly trained with all the other

components of our network.

2The time elapsed until the next-time measurements is available since the shared subnetwork only takes

the past measurements as inputs.
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5.4.1.2 Cause-specific Subnetworks

Each cause-specific subnetwork utilizes a feed-forward network composed of fully-connected

layers to capture relations between the cause-specific risk and the history of measurements.

The inputs to these subnetworks is the context vector of the shared subnetwork. This gives

the subnetworks access to the learned common representation of the longitudinal history,

which has progressed along with the trajectory of the past longitudinal measurements, by

paying attention to relevant hidden states across the time stamps. Overall, each cause-specific

subnetwork captures the latent patterns that are distinct to each competing event. Formally,

the k-th cause-specific subnetwork takes as input the vector c and the last measurement

(xJ ,mJ) and outputs a vector, fck(c,xJ ,mJ).

5.4.1.3 Output Layer

Dynamic-DeepHit employs a soft-max layer in order to summarize the outcomes of each

cause-specific subnetwork, fc1(·), · · · , fcK (·), and to map into a proper probability measure.

Overall, the network produces an estimated joint distribution of the first hitting time and

competing events. In particular, given a subject with X ∗, each output node represents the

probability of having event k at time τ , i.e., o∗k,τ = P̂ (T = τ, k = k|X ∗). Therefore, we can

define the estimated CIF for cause k∗ at time τ ∗ as follows:

F̂k∗(τ
∗|X ∗) =

∑
t∗
J∗<τ≤τ

∗ o∗k∗,τ

1−
∑

k 6=∅
∑

n≤t∗
J∗
o∗k,n

. (5.5)

Note that (5.5) is built upon the condition that this subject has survived up to the last

measurement time.

5.4.2 Training Dynamic-DeepHit

To train Dynamic-DeepHit, we minimize a total loss function Ltotal that is specifically designed

to handle longitudinal measurements and right-censoring. The total loss function is the sum
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of three terms:

Ltotal = L1 + L2 + L3, (5.6)

where L1 is the negative log-likelihood of the joint distribution of the first hitting time

and events, which is necessary to capture the first hitting time in the right-censored data,

and L2 and L3 are utilized to enhance the overall network. More specifically, L2 combines

cause-specific ranking loss functions to concentrate on discriminating estimated individual

risks for each cause, and L3 incorporates the prediction error on trajectories of time-varying

covariates to capture the hidden representations of the longitudinal history and to regularize

the network.

5.4.2.1 Log-likelihood Loss

The first loss function is the negative log-likelihood of the joint distribution of the first hitting

time and corresponding event considering the right-censoring [15], which is extended to the

survival setting where the history of longitudinal measurements and K competing risks are

available. More specifically, for a subject who is not censored, it captures both the event that

occurs and the time at which the event occurs; for a subject who is censored, it captures the

time at which the subject is censored (lost to follow-up) in both cases conditioned on the

longitudinal measurements recorded until the last observation. We define L1 as follows:

L1 = −
N∑
i=1

[
1(ki 6= ∅) · log

( oiki,τ i

1−
∑

k 6=∅
∑

n≤ti
Ji
oik,n

)
+ 1(ki= ∅) · log

(
1−

∑
k 6=∅

F̂k(τ
i|X i)

)]
,

(5.7)

where 1(·) is the indicator function. The first term captures the information provided by

uncensored subjects. The second term follows from the knowledge that they are alive at

the censoring time, and so the first hitting time of each event k ∈ K occurs after the given

censoring time; see [38].
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5.4.2.2 Ranking Loss

The second loss function incorporates estimated CIFs calculated at different times (i.e., the

time at which an event actually occurs) in order to fine-tune the network to each cause-

specific estimated CIF. To do so, we utilize a ranking loss function which adapts the idea of

concordance [25]: a subject who dies at time τ should have a higher risk at time τ than a

subject who survived longer than τ . However, the longitudinal measurements of subjects

can begin at any point in their lifetime or disease progression [31], and this makes direct

comparison of the risks at different time points difficult to assess. Thus, we compare the risks

of subjects at times elapsed since their last measurements, that is, for subject i, we focus

on si = τ i − tiJi instead of τ i. Define a pair (i, j) an acceptable pair for event k if subject i

experiences event k at time si while the other subject j does not experience any event until

si (i.e., sj > si).3

Then, the estimated CIF satisfies the concordance if F̂k(s
i + tiJi |X i) > F̂k(s

i + tj
Jj
|X j).

We define the ranking loss among acceptable pairs of subjects having different histories of

measurements as follows:

L2 =
K∑
k=1

αk
∑
i 6=j

Akij · η
(
F̂k(s

i+ tiJi|X i), F̂k(s
i+ tj

Jj
|X j)

)
, (5.8)

where Akij , 1(ki = k, si < sj) is an indicator for acceptable pairs (i, j) for event k, αk ≥ 0 is

a hyper-parameter chosen to trade off ranking losses of the k-th competing event, and η(·) is

a differentiable loss function. For convenience, we choose here that the coefficients αk are all

equal (i.e., αk = α for k = 1, · · · , K), and the loss function η(a, b) = exp(−a−b
σ

). Incorporating

L2 into the total loss function penalizes incorrect ordering of pairs and encourages correct

ordering of pairs with respect to each event.

3An acceptable pair (i, j) naturally captures the right-censoring of subject j since it only considers

subjects who lived longer than si.
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5.4.2.3 Prediction Loss

Longitudinal measurements on time-varying covariates, such as the trajectory of biomarkers

and the presence of comorbidities over time, may be highly associated with the occurrence of

clinical events. Thus, we introduce an auxiliary task in the shared subnetwork, which makes

predictions, yj, on the step-ahead covariates, xj+1, of our interest, to regularize the shared

subnetwork such that the hidden representations preserve information for the step-ahead

predictions. Taking account missing measurements into consideration, the prediction loss is

defined as follows:

L3 = β ·
N∑
i=1

Ji−1∑
j=0

∑
d∈I

(1−mi
j+1,d) · ζ(xij+1,d, y

i
j,d), (5.9)

where β ≥ 0 is a hyper-parameter and ζ(a, b) = |a − b|2 for continuous covariates and

ζ(a, b) = −a log b − (1− a) log(1− b) for binary covariates. By incorporating the missing

indicators, the loss is calculated for the step-ahead predictions whose actual measurements are

not missing. We select I as a set of time-varying covariates (e.g., biomarkers or comorbidities)

on which we aim to focus the network to be regularized.

5.4.3 Discussion on the Scalability

For an accurate estimation of CIFs in (5.5), it is desirable to have the time interval resolution

for discretizing the time horizon (i.e., T in Section 5.3) to be fine rather than coarse to

maintain more information on time-to-event/censoring. However, Dynamic-DeepHit might

become over-fitted as it requires the number of output nodes equivalent to |T | (i.e., inversely

proportional to the resolution of the time horizons). To prevent this, we utilize i) early

stopping based on the performance metric of our interest (i.e., discriminative performance)

and ii) L1 regularization over weights in the cause-specific subnetworks and the output layer.

Throughout the experiments, we discretized the time with a resolution of one month that

is a fine resolution for longitudinal data with regular follow-ups on a yearly basis, since

the time information in the data was mostly available in month format. We show that
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Dynamic-DeepHit achieves a significant gain in terms of the discriminative performance and

provides the calibration performance comparable to the best performing benchmark. We

provide more details in the subsequent sections.

5.5 Dataset

Experiments were conducted using retrospective longitudinal data from the UK Cystic Fibrosis

Registry; this database is sponsored and hosted by the UK Cystic Fibrosis Trust4. The

registry comprises a cohort of 10,995 patients during annual follow-ups between 2008-2015 with

covariates for individual CF patients including demographics, genetic mutations, bacterial

infections, comorbidities, hospitalization, lung function scores and therapeutic management.

Lung transplantation (LT) is recommended for patients with end-stage respiratory failure as

a means to improve life expectancy [143, 144]. Unfortunately, there are more LT candidates

than available lung donors, and in addition, the LT procedure is accompanied with serious

risks of subsequent post-transplant complications [145].

Meanwhile, complications due to organ transplantation and CF-associated liver disease

have been reported as the most frequent causes of death among CF patients after lung-related

disease, which share a number of risk factors with respiratory failure [126]. Hence, it is

important that patients who are at risk of respiratory failure and other causes be provided

with a joint prognosis in order to properly manage LT. More specifically, an effective LT

referral policy should efficiently allocate the scarce donor lungs by identifying high-risk

patients as candidates for transplant, without overwhelming the LT waiting list with low-risk

patients for whom a LT might be an unnecessary exposure to the risk of post-transplant

complications or be at risk of other CF-associated diseases [146].

In this work, we focused on follow-up variables that are available from 2009 – this was

due to covariate mismatch between measurements recorded in 2008 and those recorded in the

4https://www.cysticfibrosis.org.uk/the-work-we-do/uk-cf-registry
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rest of the years. Since transplantation decisions are mostly relevant for adults and deaths

in children with CF are now very rare in developed countries [147], we excluded pediatric

patients, and included only patients who were aged 18 years or older. Overall, out of 10,995

patients, experiments were conducted on 5,883 adult patients with total of 90 features (11

static covariates and 79 time-varying covariates). For each patient, longitudinal measurements

were conducted roughly every year; the time interval between two adjacent measurements

ranges from 0 to 69 months with mean of 9.20 months. Here, we discretized the time with a

resolution of one month since the date information in the data was mostly available in month

format. The number of yearly follow-ups was from 1 to 7 with mean of 5.34 measurements

per patients. Among the total of 5,883 patients, 605 patients (10.28%) were followed until

death and the remaining 5,278 patients (89.72%) were right-censored (i.e., lost to follow-up).

We divided the mortality cause into: i) 491 (8.35%) deaths due to respiratory failures and ii)

114 (1.94%) deaths due to other causes including complications due to organ transplantation

and CF-associated liver failure.

5.6 Experiments

The usefulness of a survival model should be assessed primarily by how well the model

discriminates among predicted risks and secondarily by how well the model is calibrated. As

an illustration in CF, lung transplant is the treatment of last resort for patient with end-stage

respiratory failure. Successful transplant can mean many additional years of life for such

patients, but there are many more patients in need of transplants than there are available

donor lungs. Therefore, it is important to correctly discriminate/prioritize recipients on the

basis of risk. However, if the risk predictions of a given model are not well calibrated to the

truth (i.e., if there is poor agreement between predicted and observed outcomes), then the

model will have little prognostic value for clinicians. As discussed above, we assess the risk

predictions of Dynamic-DeepHit with respect to how well the predictions discriminate among
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individual risks and how accurate the predictions are.

Throughout the experiments, all patients are aligned based on their date of birth to

synchronize the time for comparing risk predictions made at different points. More specifically,

the time at which measurements are recorded and that at which events or censoring occur is

defined as the amount of time elapsed since births. We define the set of possible survival

times to be up to 100 years with a monthly time interval, i.e., Tmax = 1200). Our results

are obtained using 5 random 80/20 train/test splits: we randomly separated the data into a

training set (80%) and a testing set (20%) and then reserved 20% of the training set as a

validation set for hyper-parameter optimization and for early-stopping to avoid over-fitting.

The hyper-parameters, such as the coefficients, the activation functions, and the number

of hidden layers and nodes of each subnetwork, are chosen utilizing Random Search [148].

The permitted values of the hyper-parameters are listed in Table 5.1.

For the prediction loss in (5.9), we considered two scenarios: i) I = {FEV1% predicted} for

a fair comparison with the joint models, where FEV1% predicted is a well-known biomarker

of the respiratory failure and ii) I includes all the time-varying covariates including lung

function scores, nutritional status, and comorbidities.

5.6.1 Benchmarks

We compared Dynamic-DeepHit with state-of-the-art methods that account for dynamic

survival analysis under the presence of longitudinal measurements including the joint model

[13], the joint model based on latent classes [132], and survival methods under landmarking

approaches [12].

In particular, the joint model (JM)5 was implemented using a Bayesian framework that

uses MCMC algorithms [149] by modeling the time-to-event data using a cause-specific Cox

proportional hazards regression and the longitudinal process using a multivariate linear mixed

5https://cran.r-project.org/web/packages/JMbayes/
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Table 5.1: Hyper-parameters of Dynamic-DeepHit

Block Sets of hyper-parameters

Initialization
Xavier initialization for weight matrix

Zero initialization for bias vector

Optimization Adam Optimizer

RNN architecture {GRU, LSTM}

Dropout 0.6

Learning rate 10−4

Mini-batch size {32, 64, 128}

α, β, σ {0.1, 1, 3, 5}

Nonlinearity (Attention) {ReLU, eLU, tanh}

No. of layers (Attention) 2

No. of nodes (Attention) {50, 100, 200, 300}

Nonlinearity (Cause-Specific) {ReLU, eLU, tanh}

No. of layers (Cause-Specific) {1, 2, 3, 5}

No. of nodes (Cause-Specific) {50, 100, 200, 300}

Nonlinearity (Shared) {ReLU, eLU, tanh}

No. of layers (Shared) {1, 2, 3}

No. of nodes (Shared) {50, 100, 200, 300}

model. (Due to the computational limitations of standard joint models [130], we selected only

FEV1% predicted for the longitudinal process.) To account for the competing risks setting,

the cause-specific Cox was created by fixing an event (e.g., death from respiratory cause)

and treating the other event (e.g., death from other causes) simply as a form of censoring;

see [43]. The joint models integrating latent class (JM-LC)6 to characterize the underlying

6https://cran.r-project.org/web/packages/lcmm/
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heterogeneity of the cohort [132] was implemented with G = 3 latent classes whose parameters

are associated with each class with the similar model specifications to JM.

For the landmarking approaches, we chose the landmarking times as the prediction times,

which is age at 30, 40, and 50, and only patients who are at risk at these landmarking

times (patients who have not experienced any event or been censored) are considered when

we fit survival models at each landmarking time. Overall, the landmarking approaches are

implemented utilizing the following survival models: the cause-specific version of the Cox

proportional hazards model (cs-Cox)7 and random survival forests under competing risks

(RSF)8 [30] with 1000 trees, as a non-parametric alternative of the Cox model.

5.6.2 Discriminative Performance

In this subsection, we present the performance metric that is extended to the survival

setting with competing risks and longitudinal measurements, and then we evaluate Dynamic-

DeepHit in terms of this metric. To assess the discriminative performance of the various

methods, we use a cause-specific time-dependent concordance index (Ck(t,∆t)), which is

an extension of the time-dependent concordance index9 in [58] adapted to the competing

risks setting with longitudinal measurements; similar extensions10 are made in [150, 151].

More specifically, Ck(t,∆t) takes both prediction and evaluation times into account to reflect

7https://cran.r-project.org/web/packages/survival/

8https://cran.r-project.org/web/packages/randomForestSRC/

9This metric is suitable for evaluating discriminative performance at different time horizons once risk

predictions are issued with the same condition. However, since the time horizon at which risk predictions are

made is not considered, this metric cannot be directly used in the longitudinal setting.

10This metric provides area under ROC curve (AUC) considering both the prediction and evaluation

times. However, it quantifies how well a survival model can order risks at given evaluation time, while our

proposed metric quantifies how well a survival model can order risks up to that evaluation time, which better

represents the time-to-event setting with right-censoring
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possible changes in risk over time compared to the ordinary concordance index [25], which is

a widely used discriminative index in survival analysis.11 Given the estimated CIF in (5.5),

Ck(t,∆t) for event k is defined as

Ck(t,∆t) = P
(
F̂k(t+ ∆t|X i(t)) > F̂k(t+ ∆t|X j(t))

∣∣∣τ i < τ j, ki = k, τ i < t+ ∆t
)
, (5.10)

where t indicates the prediction time which is the time when the prediction is made to

incorporate dynamic predictions and ∆t denotes the evaluation time which is the time elapsed

since the prediction is made. Throughout the evaluations, F̂k(t+ ∆t|X (t)) implies the risk of

event k occurring in ∆t years, which is predicted at age t given the longitudinal measurements

until that age.

The discriminative performance of Dynamic-DeepHit on the CF dataset is reported in

Table 5.2; means and standard deviations were obtained via 5 random splits. Throughout the

evaluation, the tested prediction and evaluation times are in years. Dynamic-DeepHit out-

performed the benchmarks for all evaluated prediction and evaluation times with respect

to Ck(t,∆t) for both causes. All the improvements over the benchmarks were statistically

significant; we denoted ∗ for p-value < 0.01 and † for p-value < 0.05. More specifically,

on average, Dynamic-DeepHit achieved improvements of 4.36% and 9.67% over the best

benchmark (6.26% and 14.97% over JM) for death from respiratory failure and death from

other causes, respectively.

To provide more fair comparison with JM, we also reported the discriminative performance

of simplified versions of Dynamic-DeepHit: i) the proposed network (denoted as FEV1%)

whose L3 is computed only based on I = {FEV1% predicted} and ii) the proposed network

(denoted as cause-spec.) that is separately trained for each cause in a cause-specific manner

11The concordance index and its variations are based on the assumption that patients who experienced an

event should be assigned a higher risk than those who lived longer (i.e., patients experienced event or was

censored afterward). Thus, it naturally handles right-censoring – for example, if both patients are censored,

we do not include this pair of patients as defined in (5.10).
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Table 5.2: Comparison of Ck(t,∆t) (mean ± std) for various methods. Higher the better.

Algorithms
Resp. Failure Other Causes

∆t = 1 ∆t = 3 ∆t = 5 ∆t = 10 ∆t = 1 ∆t = 3 ∆t = 5 ∆t = 10

Prediction Time t = 30

cs-Cox 0.840±0.09† 0.837±0.08† 0.837±0.08† 0.837±0.08† 0.667±0.10∗ 0.664±0.10∗ 0.665±0.10∗ 0.665±0.10∗

RSF 0.936±0.01† 0.932±0.01 0.931±0.02† 0.929±0.01† 0.798±0.04∗ 0.792±0.04∗ 0.773±0.05∗ 0.776±0.05∗

JM 0.882±0.03∗ 0.896±0.01∗ 0.896±0.01∗ 0.897±0.01∗ 0.760±0.02∗ 0.795±0.03∗ 0.802±0.02∗ 0.812±0.01∗

JM-LC 0.897±0.04† 0.894±0.05† 0.894±0.05† 0.894±0.05† 0.856±0.02∗ 0.855±0.02∗ 0.855±0.02∗ 0.855±0.02∗

[50] 0.910±0.02∗ 0.907±0.02∗ 0.907±0.02∗ 0.907±0.01∗ 0.819±0.07† 0.831±0.07† 0.834±0.07† 0.839±0.07†

Exponential 0.895±0.03∗ 0.890±0.03∗ 0.890±0.03∗ 0.890±0.02∗ 0.824±0.05∗ 0.825±0.05∗ 0.824±0.05∗ 0.824±0.05∗

Proposed

FEV1% 0.948±0.01 0.939±0.01 0.938±0.01 0.937±0.01 0.924±0.02 0.922±0.02 0.921±0.02 0.921±0.02

cause-spec. 0.946±0.01 0.937±0.02 0.936±0.02 0.933±0.02 0.875±0.04† 0.867±0.05† 0.862±0.05† 0.866±0.05†

full-fledged 0.949±0.01 0.941±0.01 0.942±0.01 0.941±0.01 0.929±0.02 0.927±0.02 0.925±0.02 0.926±0.02

Prediction Time t = 40

cs-Cox 0.842±0.03∗ 0.842±0.03∗ 0.842±0.03∗ 0.842±0.03∗ 0.748±0.10∗ 0.749±0.10∗ 0.749±0.10∗ 0.749±0.10∗

RSF 0.888±0.01∗ 0.887±0.02∗ 0.886±0.03∗ 0.891±0.03∗ 0.803±0.06† 0.771±0.05∗ 0.749±0.05∗ 0.746±0.05∗

JM 0.906±0.01∗ 0.905±0.01∗ 0.908±0.01∗ 0.909±0.01∗ 0.818±0.03∗ 0.814±0.03∗ 0.813±0.02∗ 0.840±0.02∗

JM-LC 0.911±0.04† 0.910±0.04† 0.910±0.04† 0.910±0.04† 0.851±0.02∗ 0.851±0.02∗ 0.850±0.02∗ 0.850±0.02∗

[50] 0.913±0.02∗ 0.923±0.02∗ 0.923±0.01∗ 0.923±0.01∗ 0.837±0.07† 0.845±0.07† 0.846±0.07† 0.849±0.07†

Exponential 0.883±0.03∗ 0.883±0.03∗ 0.882±0.03∗ 0.882±0.03∗ 0.816±0.04∗ 0.817±0.04∗ 0.816±0.04∗ 0.816±0.04∗

Proposed

FEV1% 0.956±0.01 0.958±0.01 0.957±0.01 0.957±0.01 0.934±0.02 0.931±0.02 0.931±0.02 0.931±0.02

cause-spec. 0.955±0.01 0.957±0.01 0.957±0.01 0.958±0.01 0.907±0.02† 0.909±0.02† 0.906±0.03† 0.909±0.02†

full-fledged 0.961±0.01 0.963±0.01 0.963±0.01 0.963±0.01 0.939±0.01 0.938±0.01 0.939±0.01 0.939±0.01

Prediction Time t = 50

cs-Cox 0.851±0.11† 0.851±0.11† 0.851±0.11† 0.851±0.11† 0.721±0.09∗ 0.720±0.09∗ 0.720±0.09∗ 0.720±0.09∗

RSF 0.898±0.01∗ 0.890±0.03∗ 0.892±0.02∗ 0.891±0.02∗ 0.741±0.05∗ 0.764±0.03∗ 0.763±0.03∗ 0.768±0.04∗

JM 0.900±0.01∗ 0.902±0.01∗ 0.908±0.01∗ 0.908±0.01∗ 0.824±0.03∗ 0.823±0.02∗ 0.826±0.01∗ 0.843±0.02∗

JM-LC 0.916±0.04∗ 0.916±0.04∗ 0.916±0.04∗ 0.916±0.04∗ 0.852±0.02∗ 0.852±0.02∗ 0.852±0.02∗ 0.853±0.02∗

[50] 0.929±0.01∗ 0.929±0.01∗ 0.929±0.01∗ 0.929±0.01∗ 0.851±0.07† 0.858±0.06† 0.859±0.06† 0.862±0.06†

Exponential 0.875±0.02∗ 0.874±0.02∗ 0.874±0.02∗ 0.873±0.02∗ 0.806±0.04∗ 0.806±0.04∗ 0.806±0.04∗ 0.806±0.04∗

Proposed

FEV1% 0.962±0.01 0.962±0.00 0.962±0.00 0.961±0.00 0.926±0.03 0.935±0.02 0.930±0.02 0.934±0.02

cause-spec. 0.962±0.01 0.961±0.01 0.944±0.03 0.954±0.02 0.896±0.04† 0.929±0.03 0.929±0.03 0.925±0.03

full-fledged 0.968±0.00 0.968±0.01 0.967±0.01 0.967±0.01 0.941±0.01 0.942±0.01 0.943±0.01 0.936±0.02

∗ indicates p-value < 0.01, † indicates p-value < 0.05

(by fixing an event and treating the other event as right-censoring). As seen in Table 5.2, the

simplified versions still achieved significant performance improvements over JM. It is worth

to highlight that, especially for predicting the risk of death from other causes, the full-fledged

network achieved performance improvement over the cause-specific version by jointly learning

latent representations that are common to competing events.
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To further understand the source of gains, we compare Dynamic-DeepHit with the

following variations: the network in [50] which performs risk predictions based only on the

last available measurements (the dynamic-RNN in the shared subnetwork is replaced with a

feed-forward network and the network is trained without L3) and a deep network utilizing

the same architecture with that of Dynamic-DeepHit whose output layer is modified to model

the time-to-event data via the Exponential distribution (denoted as Exponential). For the

comparison, the same hyper-parameter optimization is applied. Dynamic-DeepHit leverages

the RNN architecture to learn the associations between the longitudinal measurements

and the time-to-events, and to incorporate the history of the measurements when making

risk predictions. Hence, as expected, our method outperformed our previous work in [50],

which discards the historical information and relies only on the last available measurements.

In contrast to the network which specifies the underlying survival process as Exponential

distribution and, thus, is limited to learn the complex interactions with the covariates, our

network better discriminates individual risks by directly learning the joint distribution of the

first hitting time and the competing events.

5.6.3 Calibration Performance

In this subsection, we present the calibration performance metric that is extended to the

survival setting with competing risks and longitudinal measurements. More specifically, to

assess the calibration performance of the various methods, we use a cause-specific time-

dependent Brier score (BSk(t,∆t)), which is an extension of the Brier score [59] that implies

the mean squared error adjusted for right-censoring; the same extension in Ck(t,∆t) is applied.

Given the estimated CIF, BSk(t,∆t) for event k is defined as

BSk(t,∆t) = E
[(
1(T i<t+ ∆t, ki = k)− F̂k(t+ ∆t|X i(t))

)2]
(5.11)

where t indicates the prediction time which is the time when the prediction is made to

incorporate dynamic predictions and ∆t denotes the evaluation time which is the time elapsed
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Table 5.3: Comparison of BSk(t,∆t) (mean ± std) for various methods. Lower the better.

Algorithms
Resp. Failure Other Causes

∆t = 1 ∆t = 3 ∆t = 5 ∆t = 10 ∆t = 1 ∆t = 3 ∆t = 5 ∆t = 10

Prediction Time t = 30

cs-Cox 0.085±0.02 0.145±0.01 0.225±0.02 0.377±0.03 0.060±0.02 0.084±0.02 0.156±0.01 0.256±0.02

RSF 0.044±0.01 0.053±0.00 0.058±0.00 0.059±0.00 0.012±0.00 0.012±0.00 0.013±0.00 0.013±0.00

JM 0.050±0.01 0.051±0.00 0.051±0.00 0.066±0.01 0.012±0.00 0.012±0.00 0.014±0.00 0.018±0.00

JM-LC 0.053±0.01 0.062±0.00 0.065±0.00 0.066±0.00 0.012±0.00 0.012±0.00 0.013±0.00 0.013±0.00

Proposed 0.058±0.01 0.059±0.01 0.059±0.01 0.060±0.00 0.011±0.00 0.012±0.00 0.013±0.00 0.017±0.00

Prediction Time t = 40

cs-Cox 0.150±0.04 0.309±0.08 0.354±0.08 0.433±0.07 0.016±0.00 0.055±0.04 0.133±0.09 0.133±0.09

RSF 0.057±0.00 0.051±0.00 0.054±0.00 0.056±0.00 0.015±0.00 0.015±0.00 0.016±0.00 0.016±0.00

JM 0.058±0.00 0.052±0.00 0.055±0.00 0.087±0.01 0.015±0.00 0.016±0.00 0.018±0.00 0.031±0.00

JM-LC 0.063±0.00 0.064±0.00 0.065±0.00 0.067±0.00 0.015±0.00 0.016±0.00 0.017±0.00 0.016±0.00

Proposed 0.067±0.00 0.063±0.00 0.062±0.00 0.059±0.00 0.015±0.00 0.015±0.00 0.016±0.00 0.019±0.00

Prediction Time t = 50

cs-Cox 0.442±0.24 0.616±0.28 0.658±0.30 0.658±0.30 0.315±0.21 0.428±0.23 0.428±0.23 0.737±0.20

RSF 0.055±0.00 0.065±0.01 0.069±0.01 0.069±0.01 0.018±0.00 0.021±0.00 0.021±0.00 0.021±0.00

JM 0.056±0.00 0.057±0.00 0.066±0.01 0.111±0.01 0.017±0.00 0.022±0.00 0.028±0.00 0.054±0.01

JM-LC 0.069±0.00 0.072±0.00 0.073±0.00 0.075±0.00 0.017±0.00 0.017±0.00 0.017±0.00 0.016±0.00

Proposed 0.074±0.00 0.071±0.00 0.070±0.00 0.069±0.00 0.016±0.00 0.016±0.00 0.017±0.00 0.022±0.00

since the prediction is made. Throughout the evaluations, F̂k(t+ ∆t|X (t)) implies the risk of

event k occurring in ∆t years, which is predicted at age t given the longitudinal measurements

until that age.

In Table 5.3, we report the calibration performance in terms of Brier score (lower the

better) for the CF dataset. As seen in the tables, our method achieves the performance

comparable to the best performing benchmark, i.e., RSF and JM-LC, for most of the tested

prediction and evaluation times.

5.6.4 Interpreting Dynamic-DeepHit Predictions

Although deep networks offer tremendous success in predictive ability including survival

analysis, low interpretability of the inference process has prevented them from being widely

used in medicine. In this subsection, we utilize a post-processing statistic that can be used
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by clinicians to interpret predictions issued by Dynamic-DeepHit and to understand the

associations of covariates and survival over time. It is worth drawing a distinction between

interpreting a model, versus interpreting its decision [152, 153]. While interpreting complex

models (e.g deep neural networks) may sometimes be infeasible, it is often the case that

clinicians only want explanations for the prediction made by the model for a given subject.

To help interpret predictions issued by Dynamic-DeepHit, we leverage the partial dependence

introduced in [154] by extending it to the survival setting with longitudinal measurements.

Let Xd be a chosen target subset of the input covariates X and X\d be its complement, i.e.,

Xd ∪ X\d = X . Then, we can rewrite the estimated CIF in (5.5) as F̂k(τ |X ) = F̂k(τ |Xd,X\d)

to explicitly denote the dependency on variables in both subsets. The partial dependence

function at time ∆t, which is the time elapsed since the last measurement, for event k can be

defined as a function of Xd as follows:

γk(∆t,Xd) = EX\d
[
F̂k(tJ + ∆t|Xd,X\d)

]
≈ 1

N

N∑
i=1

F̂k(t
i
Ji + ∆t|Xd,X i

\d), (5.12)

where tJ indicates the time of the last measurement. Thus, from (5.12), we can approximately

assess how the estimated CIFs are affected by different values of Xd on average.

To see the influence of covariates on risk predictions issued by Dynamic-DeepHit, we

calculated the change in (5.12) for each covariate Xd for d = 1, · · · , dx by varying the value

from its minimum, xd,min, to its maximum, xd,max:

γk(∆t,Xd = xd,min)− γk(∆t,Xd = xd,max). (5.13)

Table 5.4 illustrates the fifteen most influential covariates for the death from respiratory

failure and the death from other causes, respectively. Here, we set ∆t = 5 year and the

amount of increase/decrease is used to rank the influence. Here, the values imply the averaged

increase/decrease of the risk predictions (by varying the covariate from its minimum to

maximum) and the signs indicate whether the increase of each covariate increases (+) or

decreases (-) the risk predictions.
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Table 5.4: The top 15 most influential covariates with ∆t = 5 year. The values indicate the

amount of increase(+)/decrease(-) in the predicted risks on average and the covariates are

ranked by the absolute values.

Rank
Death Cause

Resp. Failure Other Causes

1 FEV1 Predicted (-0.033) IV ABX Days Hosp. (+0.014)

2 IV ABX Days Hosp. (+0.032) Gram-Negative (-0.013)

3 Gram-Negative (-0.029) FEV1 Predicted (-0.012)

4 FEV1 (-0.026) FEV1 (-0.012)

5 Weight (-0.026) Weight (-0.011)

6 BMI (-0.025) BMI (-0.010)

7 Colonic Stricture (-0.024) Oral Hypo. Agents (-0.008)

8 Oral Hypo. Agents (-0.019) Class IV Mutation (-0.008)

9 Class IV Mutation (-0.017) IV ABX Days Home (+0.007)

10 B. Cepacia (+0.016) Cancer (+0.007)

11 GI Bleed (non-var.) (-0.016) GI Bleed (var.) (+0.007)

12 O2 Continuous (+0.015) HypertonicSaline (-0.006)

13 Drug Dornase (-0.015) Bone Fracture (-0.006)

14 IV ABX Days Home (+0.014) Colonic Stricture (-0.006)

15 O2 Nocturnal (+0.013) O2 Nocturnal (+0.006)

IV: intravenous, ABX: antibiotics

Previous studies in respiratory failures of CF patients have identified FEV1% predicted

as a strong surrogate for the survival, and have shown that a decrease in FEV1% predicted

severely increases the mortality of CF patients [6, 121]. Notably, the risk predictions on the

respiratory failure made by Dynamic-DeepHit was highly influenced by FEV1% predicted in
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a similar manner. In addition, days of intravenous (IV) antibiotics (ABX), which are used to

treat severe bacterial infections, both in hospital and at home, and body mass index (BMI)

and weight turned out to be highly influential covariates. This finding is consistent with the

domain knowledge, which finds the IV ABX and hospitalization periods are often considered

as key risk factors for CF patients [7] and the occurrence of malnutrition, which is often

indicated by BMI, is associated with reductions in their survival [155]. More interestingly,

the predicted risks for respiratory failure were significantly increased when a patient has

Burkholderia cepacia (B. Cepacia), which is a rare but significant threat to CF patients

colonizing in the lungs that causes infection and inflammation that deteriorates lung function

[156].

For death from other causes, the partial dependence displayed the similar trend, while

IV ABX days was more influential to the predicted risks than FEV1% predicted was. In

particular, the risk predictions for the death from other causes showed slightly different

influences from other covariates, such as the indicators of cancer and GI bleeding in variceal

source that is a strong sign of liver failure. Therefore, the risk factors and corresponding

risk predictions issued by Dynamic-DeepHit need to be carefully interpreted with different

priorities depending on the events.

5.6.5 Temporal Importance of Longitudinal Measurements

The temporal attention mechanism in the shared subnetwork renders Dynamic-DeepHit to

pay special attention to time stamps at which the measurements are important for making

risk predictions. To investigate the attention mechanism, we aim this subsection at finding

to which patients the network focuses on the long-term (or short-term) dependency of the

measurements. For ease of illustration, we define j∗ = arg maxj∈{1,··· ,J−1} aj as the time stamp

at which the proposed network pays the most attention to.

We divide the patients into two groups based on their temporal dependency: the long-

term dependency group comprises patients having the highest attention weight to earlier
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(a) Mean and 95% CI for continuous covariates (b) Odds ratio and 95% CI for binary covariates

Figure 5.3: Forest plots on (a) continuous covariates and (b) binary covariates with the

smallest p-values. The left column displays the covariate names and the right column denotes

the corresponding p-values. (The covariates are ordered from smallest to largest.)

measurements, i.e., j∗ < J − 1, and the short-term dependency group consists of patients

having the highest attention weight to the most recent measurement, i.e., j∗ = J − 1. Among

3710 patients with at least three measurements (i.e., J ≥ 3), our network focused on the

long-term dependency of longitudinal measurements for 290 patients (7.82%) and on the

short-term dependency for 3420 patients (92.18%). Then, the characteristics of the two

groups were compared using independent two-sample t-test for continuous covariates and

Fisher’s exact test for discrete covariates.

In Figure 5.3, we illustrated forest plots on twenty covariates (ten for the continuous

and ten for binary covariates) with the smallest p-values, which implies strong evidence that

their distributions are different in the two groups. More specifically, for each continuous

covariate in Figure 5.3(a), we aligned the mean and the 95% confidence interval (CI) of

each group with the overall population – this implies that how much the distribution of

each group is different from the mean of the overall population in terms of its standard

deviation. For an example of Best FEV1, the mean of the long-term dependency group (i.e.,
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3.37) was approximately a standard deviation (i.e., 0.92) larger than the overall mean (i.e.,

2.44) while that of the short-term dependency group (i.e., 2.36) was very close to the overall

mean. For each binary covariate in Figure 5.3(b), we displayed the odds ratio (OR) and the

95% CI, which is the ratio of the odds of being in the long-term dependency group in the

presence of the covariate and the odds of being in the long-term dependency group without

the presence of the covariate – this statistic quantifies the strength of the association between

each covariate and being in the long-term dependency group. For instance, if the OR is

greater than 1, then the presence of the covariate raises the odds of being in the long-term

dependency group.

Interestingly, patients in the long-term dependency group displayed, on average, factors

that mitigate the predicted risks compared to those in the short-term dependency group.

For continuous covariates, as seen in Figure 5.3(a), the factors include higher lung functions

scores (i.e., FEV1, FEV1% predicted, Best FEV1, and Best FEV1% predicted), shorter IV

ABX periods (i.e., IV ABX days at home and in hospital), richer nutritional status (i.e.,

weight and BMI), that decrease the predicted risks for both death from the respiratory

failure and that from other causes as reported in Table 5.4. For binary covariates, as seen in

Figure 5.3(b), the factors include lower bacterial infection rate (i.e., pseudomonas aeruginosa

and aspergillus whose infection increases the risk of the respiratory failure [156]) and lower

therapy/treatments rate (i.e., dornase alpha, cortico combo, chronic oral ABX, and tobi

solution). Indeed, Dynamic-DeepHit issued lower risk predictions for patients in the long-term

group; the predicted risks were 38.98% and 35.20% lower on average for respiratory failure

and death from other causes, respectively.

5.6.6 Dynamic Survival Prediction

At run-time, Dynamic-DeepHit issues cause-specific risk predictions as defined in (5.5) for

each subject incorporating his/her medical history. Owing to the RNN structure utilized in

the shared subnetwork, whenever a new observation is made for that subject, the proposed
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(a) A patient died of respiratory failure (k = 1)

(b) A patient died of other causes (k = 2)

(c) A censored patient (k = ∅)

Figure 5.4: An illustration of dynamic risk predictions issued by Dynamic-DeepHit for patients

with (a) k = 1, (b) k = 2, and (c) k = ∅. Gray solid lines, yellow dotted lines, and stars

indicate times at which measurement are taken, the time at which a patient is censored, and

the time at which an event occurred, respectively.
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method is easily able to integrate this information into the history of measurements and

to issue new risk predictions in a fully dynamic fashion. It is worth highlighting that the

landmarking methods can only provide risk assessment at the predefined landmarking times

[12]. In Figure 5.4, we have illustrated the dynamic survival analysis for representative

patients in order to show how Dynamic-DeepHit issues and updates risk predictions for

different causes (including right-censoring) with new measurements being collected. Along

with the predicted risks, trajectories of two highly influential covariates, FEV1% predicted

and IV ABX Days in Hospital, are illustrated to show their associations. As demonstrated

in Figure 5.4, Dynamic-DeepHit was able to flexibly update the cause-specific risks by

incorporating new measurements in a dynamic fashion. For example, the predicted risks for

the patient in Figure 5.4(a) was relatively high compared to that of the patient in Figure

5.4(c), presumably due to the high and increasing IV ABX days in hospital and the decreasing

FEV1% predicted. The importance of this dynamic approach can be seen in Figure 5.4(a)

when a sudden increase in the number of IV ABX days around at age 23 resulted in a steep

increase in predicted risks.

5.7 Conclusion

In this work, we developed a novel approach, Dynamic-DeepHit, to perform dynamic survival

analysis with competing risks on the basis of longitudinal data. Dynamic-DeepHit is a deep

neural network which learns the estimated joint distributions of survival times and competing

events, without making assumptions regarding the underlying stochastic processes. We train

the network by leveraging a combination of loss functions that capture the right-censoring

and the associations of longitudinal measurements with disease progression, both of which are

inherent in time-to-event data. We demonstrated the utility of our proposed method through

a set of experiments conducted on a cohort of 5,883 adult CF patients whose follow-ups have

been recorded in the UK Cystic Fibrosis Registry. The experiments show that the proposed
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method significantly outperforms the cutting-edge benchmarks in terms of discriminative

performance. Supported with a post-processing statistic to interpret risk predictions issued

by the proposed method, the results suggest the possibility of improved dynamic analysis on

disease progression that will result in more effective health care.
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CHAPTER 6

Temporal Phenotyping using Deep Predictive

Clustering of Disease Progression

6.1 Introduction

Chronic diseases – such as cystic fibrosis and dementia – are heterogeneous in nature, with

widely differing outcomes even in narrow patient subgroups. Disease progression manifests

through a broad spectrum of clinical factors, collected as a sequence of measurements in

electronic health records, which gives a rise to complex progression patterns among patients

[9, 157]. For example, cystic fibrosis evolves slowly, allowing for development of comorbidities

and bacterial infections, and creating distinct responses to therapeutic interventions, which

in turn makes the survival and quality of life substantially different [158, 159]. Identifying

patient subgroups with similar progression patterns can be advantageous for understanding

such heterogeneous diseases. This allows clinicians to anticipate patients’ prognoses by

comparing to “similar” patients and to design treatment guidelines tailored to homogeneous

subgroups [11].

Temporal clustering has been recently used as a data-driven framework to partition

patients with time-series observations into subgroups of patients. Recent research has

typically focused on either finding fixed-length and low-dimensional representations [11, 160]

or on modifying the similarity measure [161, 162] both in an attempt to apply the existing

clustering algorithms to time-series observations. However, clusters identified from these

approaches are purely unsupervised – they do not account for patients’ observed outcomes
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Figure 6.1: A conceptual illustration of our (real-time) clustering procedure. Here, a new

patient is assigned over time to one of the four phenotypes based on the expected future

event – either Event A or Event B – as new observations are collected.

(e.g., adverse events, the onset of comorbidities, etc.) – which leads to heterogeneous clusters if

the clinical presentation of the disease differs even for patients with the same outcomes. Thus,

a common prognosis in each cluster remains unknown which can mystify the understanding

of the underlying disease progression [163, 164]. To overcome this limitation, we focus on

predictive clustering [165] to combine predictions on the future outcomes with clustering.

More specifically, we aim at finding cluster assignments and centroids by learning discrete

representations of time-series that best describe the future outcome distribution. By doing

so, patients in the same cluster share similar future outcomes to provide a prognostic value.

Figure 6.1 illustrates a pictorial depiction of the clustering procedure.

In this work, we propose an actor-critic approach for temporal predictive clustering, which

we call AC-TPC.1 Our model consists of three networks – an encoder, a selector, and a

predictor – and a set of centroid candidates. The key insight, here, is that we model temporal

1Source code available at https://github.com/chl8856/AC_TPC.
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predictive clustering as learning discrete representations of the input time-series that best

describe the future outcome distribution. More specifically, the encoder maps an input

time-series into a continuous latent encoding; the selector assigns a cluster (i.e., maps to

a discrete representation) to which the input belongs by taking the latent encoding as an

input; and the predictor estimates the future outcome distributions conditioned on either

the encoding or the centroid of the selected cluster (i.e., the selected discrete representation).

The following three contributions render our model to achieve our goal. First, to encourage

homogeneous future outcomes in each cluster, we define a clustering objective based on the

Kullback-Leibler (KL) divergence between the predictor’s output given the time-series, and

that given the assigned centroids. Second, we transform solving a combinatorial problem

of identifying clusters into iteratively solving two sub-problems: optimization of the cluster

assignments and optimization of the centroids. Finally, we allow “back-propagation” through

the sampling process of the selector by adopting actor-critic training [166].

Throughout the experiments, we show significant performance improvements over the

state-of-the-art clustering methods on two real-world medical datasets. To demonstrate the

practical significance of our model, we consider a more realistic scenario where the future

outcomes of interest are high-dimensional – that is, development of multiple comorbidities in

the next year – and interpreting all possible combinations is intractable. Our experiments

show that our model can identify meaningful clusters that can be translated into actionable

information for clinical decision-making.

6.2 Problem Formulation

Let X ∈ X and Y ∈ Y be random variables for an input feature and an output label (i.e.,

one or a combination of future outcome(s) of interest) with a joint distribution pXY (and

marginal distributions are pX and pY ) where X is the feature space and Y is the label space.
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Here, we focus our description on C-class classification tasks, i.e., Y = {1, · · · , C}.2 We

are given a time-series dataset D = {(xnt , ynt )T
n

t=1}Nn=1 comprising sequences of realizations

(i.e., observations) of the pair (X, Y ) for N patients. Here, (xnt , y
n
t )T

n

t=1 is a sequence of T n

observation pairs that correspond to patient n and t ∈ T n , {1, · · · , T n} denotes the time

stamp at which the observations are made. From this point forward, we omit the dependency

on n when it is clear in the context and denote x1:t = (x1, · · · ,xt).

Our aim is to identify a set of K predictive clusters, C = {C(1), · · · , C(K)}, for time-series

data. Each cluster consists of homogeneous data samples, that can be represented by its

centroid, based on a certain similarity measure. There are two main distinctions from

the conventional notion of clustering. First, we treat subsequences of each times-series as

data samples and focus on partitioning {{xn1:t}T
n

t=1}Nn=1 into C. Hence, we define a cluster as

C(k) = {xn1:t|t ∈ T n, snt = k} for k ∈ K , {1, · · · , K} where snt ∈ K is the cluster assignment

for a given xn1:t. This is to flexibly update the cluster assignment (in real-time) to which

a patient belongs as new observations are being accrued over time. Second, we define the

similarity measure with respect to the label distribution and associate it with clusters to

provide a prognostic value. More specifically, we want the distribution of output label for

subsequences in each cluster to be homogeneous and, thus, can be well-represented by the

centroid of that cluster.

Let S be a random variable for the cluster assignment – that depends on a given

subsequence x1:t – and Y |S = k be a random variable for the output given cluster k. Then,

such property of predictive clustering can be achieved by minimizing the following Kullback-

Leibler (KL) divergence: KL(Yt|X1:t = x1:t‖Yt|St = k) for x1:t ∈ C(k) which is defined as∫
y
p(y|x1:t)

(
log p(y|x1:t)− log p(y|st)

)
dy where p(y|x1:t) and p(y|st) are the label distributions

conditioned on a subsequence x1:t and a cluster assignment st, respectively. Note that the

KL divergence achieves its minimum when the two distributions are equivalent.

2Simple modifications can be made for regression, i.e., Y = R and M -dimensional binary classification

tasks, i.e., Y = {0, 1}M .
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Figure 6.2: The block diagram of AC-TPC. The red line implies the procedure of estimating

p(y|St = st) via a sampling process and the blue line implies that of estimating p(y|X1:t = x1:t).

Finally, we establish our goal as identifying a set of predictive clusters C that optimizes

the following objective:

minimize
C

∑
k∈K

∑
x1:t∈C(k)

KL
(
Yt|X1:t = x1:t

∥∥Yt|St = k
)
. (6.1)

Unfortunately, the optimization problem in (6.1) is highly non-trivial. We need to estimate

the objective function in (6.1) while solving a non-convex combinatorial problem of finding

the optimal cluster assignments and cluster centroids.

6.3 Method: AC-TPC

To effectively estimate the objective function in (6.1), we introduce three networks – an

encoder, a selector, and a predictor – and an embedding dictionary as illustrated in Figure 6.2.

These components together provide the cluster assignment and the corresponding centroid

based on a given sequence of observations and enable us to estimate the probability density

p(y|st). More specifically, we define each component as follows:

• The encoder, fθ :
∏t

i=1X → Z, is a RNN (parameterized by θ) that maps a (sub)sequence

of a time-series x1:t to a latent representation (i.e., encoding) zt ∈ Z where Z is the latent
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space.

• The selector, hψ : Z → ∆K−1, is a fully-connected network (parameterized by ψ) that

provides a probabilistic mapping to a categorical distribution from which the cluster

assignment st ∈ K is being sampled.

• The predictor, gφ : Z → ∆C−1, is a fully-connected network (parameterized by φ) that

estimates the label distribution given the encoding of a time-series or the centroid of a

cluster.

• The embedding dictionary, E = {e(1), · · · , e(K)} where e(k) ∈ Z for k ∈ K, is a set of

cluster centroids lying in the latent space which represents the corresponding cluster.

Here, ∆D−1 = {q ∈ [0, 1]D : q1 + · · · + qD = 1} is a (D − 1)-simplex that denotes the

probability distribution for a D-dimensional categorical (class) variable.

At each time stamp t, the encoder maps a input (sub)sequence x1:t into a latent encoding

zt , fθ(x1:t). Then, based on the encoding zt, the cluster assignment st is drawn from

a categorical distribution that is defined by the selector output, i.e., st ∼ Cat(πt) where

πt = [πt(1), · · · , πt(K)] , hψ(zt). Once the assignment st is chosen, we allocate the latent

encoding zt to an embedding e(st) in the embedding dictionary E . Since the allocated

embedding e(st) corresponds to the centroid of the cluster to which x1:t belongs, we can,

finally, estimate the density p(y|st) in (6.1) as the output of the predictor given the embedding

e(st), i.e., ȳt , gφ(e(st)).

6.3.1 Loss Functions

In this subsection, we define loss functions to achieve our objective in (6.1); the details of

how we train our model will be discussed in the following subsection.

Predictive Clustering Loss: Since finding the cluster assignment of a given sequence

is a probabilistic problem due to the sampling process, the objective function in (6.1) must

be defined as an expectation over the cluster assignment. Thus, we can estimate solving the
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objective problem in (6.1) as minimizing the following loss function:

L1(θ, ψ, φ, E) = Ex,y∼pXY

[∑
t∈T

Est∼Cat(πt)
[
`1(yt, ȳt)

]]
(6.2)

where `1(yt, ȳt) = −
∑C

c=1 y
c
t log ȳct . Here, we slightly abuse the notation and denote y =

[y1 · · · yC ] as the one-hot encoding of y, and yc and ȳc indicates the c-th component of y and

ȳ, respectively. It is worth to highlight that minimizing `1 is equivalent to minimizing the

KL divergence in (6.1) since the former term of the KL divergence is independent of our

optimization procedure.

One critical question that may arise is how to avoid trivial solutions in this unsupervised

setting of identifying the cluster assignments and the centroids [167]. For example, all

the embeddings in E may collapse into a single point or the selector simply assigns equal

probability to all the clusters regardless of the input sequence. In both cases, our model will

fail to correctly estimate p(y|st) and, thus, end up finding a trivial solution. To address this

issue, we introduce two auxiliary loss functions that are tailored to address this concern. It is

worth to highlight that these loss functions are not subject to the sampling process and their

gradients can be simply back-propagated.

Sample-Wise Entropy of Cluster Assignment: To motivate sparse cluster assign-

ment such that the selector ultimately selects one dominant cluster for each sequence, we

introduce sample-wise entropy of cluster assignment which is given as

L2(θ, ψ) = Ex∼pX

[
−
∑
t∈T

∑
k∈K

πt(k) log πt(k)
]

(6.3)

where πt = [πt(1) · · · πt(K)] = hψ(fθ(x1:t)). The sample-wise entropy achieves its minimum

when πt becomes an one-hot vector.

Embedding Separation Loss: To prevent the embeddings in E from collapsing into a

single point, we define a loss function that encourages the embeddings to represent different

label distributions, i.e., gφ(e(k)) for k ∈ K, from each other:

L3(E) = −
∑
k 6=k′

`1(gφ(e(k)), gφ(e(k′))) (6.4)
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where `1 is reused to quantify the distance between label distributions conditioned on each

cluster. We minimize (6.4) when updating the embedding vectors e(1), · · · , e(K).

6.3.2 Optimization

The optimization problem in (6.1) is a non-convex combinatorial problem because it comprises

not only minimizing the KL divergence but also finding the optimal cluster assignments

and centroids. Hence, we propose an optimization procedure that iteratively solves two

subproblems: i) optimizing the three networks – the encoder, selector, and predictor – while

fixing the embedding dictionary and ii) optimizing the embedding dictionary while fixing the

three networks. We provide the pseudo-code for optimizing our AC-TPC in Algorithm 3 and

that for initializing the parameters in Algorithm 4.

6.3.2.1 Optimizing the Three Network

Finding predictive clusters incorporates the sampling process which is non-differentiable.

Thus, to render “back-propagation”, we utilize the training of actor-critic models [166]. More

specifically, we view the combination of the encoder (fθ) and the selector (hψ) as the “actor”

parameterized by ωA = [θ, ψ], and the predictor (gφ) as the “critic”. The critic takes as input

the the output of the actor (i.e., the cluster assignment) and estimates its value based on

the sample-wise predictive clustering loss (i.e., `1(yt, ȳt)) given the chosen cluster. This, in

turn, renders the actor to change the distribution of selecting a cluster to minimize such loss.

Thus, it is important for the critic to perform well on the updated output of the actor while

it is important for the actor to perform well on the updated loss estimation. As such, the

parameters for the actor and the critic need to be updated iteratively.

Given the embedding dictionary E fixed (thus, we will omit the dependency on E), we

train the actor, i.e., the encoder and the selector, by minimizing a combination of the

predictive clustering loss L1 and the entropy of cluster assignments L2, which is given by
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Algorithm 3 Pseudo-code for Optimizing AC-TPC

Input: Dataset D = {(xnt , ynt )T
n

t=1}Nn=1, number of clusters K, coefficients (α, β),

learning rate (ηA, ηC , ηE), mini-batch size nmb, and update step M

Output: AC-TPC parameters (θ, ψ, φ) and the embedding dictionary E
Initialize parameters (θ, ψ, φ) and the embedding dictionary E via Algorithm 4

repeat

Optimize the Encoder, Selector, and Predictor

for m = 1, · · · ,M do

Sample a mini-batch of nmb data samples: {(xnt , ynt )T
n

t=1}
nmb
n=1 ∼ D

for n = 1, · · · , nmb do

Calculate the assignment probability: πnt = [πnt (1) · · ·πnt (K)]← hψ(fθ(xn1:t))

Draw the cluster assignment: snt ∼ Cat(πnt )

Calculate the label distributions: ȳnt ← gφ(e(snt )) and ŷnt ← gφ(fθ(xn1:t))

end for

Update the encoder fθ and selector hψ :

θ ← θ − ηA

 1

nmb

nmb∑
n=1

Tn∑
t=1

`1(ynt , ȳ
n
t )∇θ log πnt (snt )− α∇θ

K∑
k=1

πnt (k) log πnt (k)


ψ ← ψ − ηA

 1

nmb

nmb∑
n=1

Tn∑
t=1

`1(ynt , ȳ
n
t )∇ψ log πnt (snt )− α∇ψ

K∑
k=1

πnt (k) log πnt (k)


Update the predictor gφ:

φ← φ− ηC
1

nmb

nmb∑
n=1

Tn∑
t=1

∇φ`1(ynt , ȳ
n
t )

end for

Optimize the Cluster Centroids

for m = 1, · · · ,M do

Sample a mini-batch of nmb data samples: {(xnt , ynt )T
n

t=1}
nmb
n=1 ∼ D

for n = 1, · · · , nmb do

Calculate the assignment probability: πnt = [πnt (1) · · ·πnt (K)]← hψ(fθ(xn1:t))

Draw the cluster assignment: snt ∼ Cat(πnt )

Calculate the label distributions: ȳnt ← gφ(e(snt ))

end for

for k = 1, · · · ,K do

Update the embeddings e(k):

e(k)← e(k)− ηE

(
1

nmb

nmb∑
n=1

Tn∑
t=1

∇e(k)`1(ynt , ȳ
n
t )− γ

K∑
k′=1
k′ 6=k

∇e(k)`1
(
gφ(e(k)), gφ(e(k′))

))

end for

Update the embedding dictionary: E ← {e(1), . . . e(K)}
end for

until convergence
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Algorithm 4 Pseudo-code for pre-training AC-TPC

Input: Dataset D = {(xnt , ynt )T
n

t=1}Nn=1, number of clusters K, learning rate η, mini-batch size nmb

Output: AC-TPC parameters (θ, ψ, φ) and the embedding dictionary E
Initialize parameters (θ, ψ, φ) via Xavier Initializer

Pre-train the Encoder and Predictor

repeat

Sample a mini-batch of nmb data samples: {(xnt , ynt )T
n

t=1}
nmb
n=1 ∼ D

for n = 1, · · · , nmb do

Calculate the label distributions: ŷnt ← gφ(fθ(xn1:t))

end for

θ ← θ − η
1

nmb

nmb∑
n=1

Tn∑
t=1

∇θ`1(ynt , ŷ
n
t ) φ← φ− η

1

nmb

nmb∑
n=1

Tn∑
t=1

∇φ`1(ynt , ŷ
n
t )

until convergence

Initialize the Cluster Centroids

Calculate the embedding dictionary E and initial cluster assignments cnt

E, {{cnt }T
n

t=1}Nn=1 ← K-means({{znt }T
n

t=1}Nn=1,K)

Pre-train the Selector

repeat

Sample a mini-batch of nmb data samples: {(xnt , ynt )T
n

t=1}
nmb
n=1 ∼ D

for n = 1, · · · , nmb do

Calculate the assignment probability: πnt = [πnt (1) · · ·πnt (K)]← hψ(fθ(xn1:t))

end for

Update the selector hψ :

ψ ← ψ + η
1

nmb

nmb∑
n=1

Tn∑
t=1

K∑
k=1

cnt (k) log πnt (k)

until convergence

LA(θ, ψ, φ) = L1(θ, ψ, φ) + αL2(θ, ψ) where α ≥ 0 is a coefficient chosen to balance between

the two losses. To derive the gradient of this loss with respect ωA = [θ, ψ], we utilize the

ideas from actor-critic models [166] in (6.5).

∇ωALA(θ, ψ, φ) = Ex,y∼pXY

[
∇ωA

(
T∑
t=1

Est∼Cat(πt)
[
`1(yt, ȳt)

])]
+ α∇ωAL2(θ, ψ)

= Ex,y∼pXY

[
T∑
t=1

Est∼Cat(πt)
[
`1(yt, ȳt)∇ωA log πt(st)

]]
+ α∇ωAL2(θ, ψ),

(6.5)
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where the second equality comes from the following derivation of the former term:

Ex,y∼pXY

[
∇ωA

(
T∑
t=1

Est∼Cat(πt)
[
`1(yt, ȳt)

])]
= Ex,y∼pXY

[
∇ωA

(
T∑
t=1

∑
st∈K

πt(st)`1(yt, ȳt)

)]

= Ex,y∼pXY

[
T∑
t=1

∑
st∈K

∇ωAπt(st)`1(yt, ȳt)

]

= Ex,y∼pXY

[
T∑
t=1

∑
st∈K

∇ωAπt(st)
πt(st)

πt(st)`1(yt, ȳt)

]

= Ex,y∼pXY

[
T∑
t=1

∑
st∈K

πt(st)`1(yt, ȳt)∇ωA log πt(st)

]

= Ex,y∼pXY

[
T∑
t=1

Est∼Cat(πt)
[
`1(yt, ȳt)∇ωA log πt(st)

]]
.

Note that since no sampling process is considered in L2(θ, ψ), we can simply derive∇ωAL2(θ, ψ).

Iteratively with training the actor, we train the critic, i.e., the predictor, by minimizing the

predictive clustering loss L1 as the following: LC(φ) = L1(θ, ψ, φ) whose gradient with respect

to φ can be givens as ∇φLC(φ) = ∇φL1(θ, ψ, φ). Note that since the critic is independent of

the sampling process, the gradient can be simply back-propagated.

6.3.2.2 Optimizing the Cluster Centroids

Now, once the parameters for the three networks (θ, ψ, φ) are fixed (thus, we omit the

dependency on θ, ψ, and φ), we updated the embeddings in E by minimizing a combination

of the predictive clustering loss L1 and the embedding separation loss L3, which is given by

LE(E) = L1(E) + βL3(E) where β ≥ 0 is a coefficient chosen to balance between the two

losses.

6.3.2.3 Initializing AC-TPC via Pre-Training

Since we transform the combinatorial optimization problem in (6.1) into iteratively solving

two sub-problems, initialization is crucial to achieve better optimization as a similar concern
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has been addressed in [167].

Therefore, we initialize our model based on the following procedure. First, we pre-train

the encoder and the predictor by minimizing the following loss function based on the predicted

label distribution given the latent encodings of input sequences, i.e., ŷt , gφ(zt) = gφ(fθ(x1:t)),

as the following:

LI(θ, φ) = Ex,y∼pXY

[
−
∑
t∈T

`1(yt, ŷt)
]
. (6.6)

Minimizing (6.6) encourages the latent encoding to be enriched with information for accurately

predicting the label distribution. Then, we perform K-means (other clustering method can

be also applied) based on the learned representations to initialize the embeddings E and the

cluster assignments {{snt }T
n

t=1}Nn=1. Finally, we pre-train the selector hψ by minimizing the

cross entropy treating the initialized cluster assignments as the true clusters.

6.4 Related Work

Temporal clustering, also known as time-series clustering, is a process of unsupervised

partitioning of the time-series data into clusters in such a way that homogeneous time-

series are grouped together based on a certain similarity measure. Temporal clustering is

challenging because i) the data is often high-dimensional – it consists of sequences not only

with high-dimensional features but also with many time points – and ii) defining a proper

similarity measure for time-series is not straightforward since it is often highly sensitive to

distortions [168]. To address these challenges, there have been various attempts to find a

good representation with reduced dimensionality or to define a proper similarity measure for

times-series [169].

Recently, [170] and [171] proposed temporal clustering methods that utilize low-dimensional

representations learned by RNNs. These works are motivated by the success of applying deep

neural networks to find “clustering friendly” latent representations for clustering static data

[167, 172]. In particular, authors in [170] utilized a modified LSTM auto-encoder to find the
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latent representations that are effective to summarize the input time-series and conducted

K-means on top of the learned representations as an ad-hoc process. Similarly, authors in

[171] proposed a bidirectional-LSTM auto-encoder that jointly optimizes the reconstruction

loss for dimensionality reduction and the clustering objective. However, these methods do

not associate a target property with clusters and, thus, provide little prognostic value about

the underlying disease progression.

Our work is most closely related to SOM-VAE [173]. This method jointly optimizes a

static variational auto-encoder (VAE), that finds latent representations of input features,

and a self-organizing map (SOM), that allows to map the latent representations into a

more interpretable discrete representations, i.e., the embeddings. However, there are three

key differences between our work and SOM-VAE. First, SOM-VAE aims at minimizing

the reconstruction loss that is specified as the mean squared error between the original

input and the reconstructed input based on the corresponding embedding. Thus, similar

to the aforementioned methods, SOM-VAE neither associates future outcomes of interest

with clusters. In contrast, we focus on minimizing the KL divergence between the outcome

distribution given the original input sequence and that given the corresponding embedding to

build association between future outcomes of interest and clusters. Second, to overcome non-

differentiability caused by the sampling process (that is, mapping the latent representation

to the embeddings), [173] applies the gradient copying technique proposed by [174], while we

utilize the training of actor-critic model [166]. Finally, while we flexibly model time-series

using LSTM, SOM-VAE handles time-series by integrating a Markov model in the latent

representations. This can be a strict assumption especially in clinical settings where a

patient’s medical history is informative for predicting the future clinical outcomes [31].
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6.5 Experiments

In this section, we provide a set of experiments using two real-world time-series datasets.

We iteratively update the three networks – the encoder, selector, and predictor – and

the embedding dictionary as described in Section 6.3.2. For the network architecture, we

constructed the encoder utilizing a single-layer LSTM [141] with 50 nodes and constructed

the selector and predictor utilizing two-layer fully-connected network with 50 nodes in each

layer, respectively. The parameters (θ, ψ, φ) are initialized by Xavier initialization [175] and

optimized via Adam optimizer [176] with learning rate of 0.001 and keep probability 0.7.

We chose the balancing coefficients α, β ∈ {0.001, 0.01, 0.1, 1.0} utilizing grid search that

achieves the minimum validation loss in (6.2); the effect of different loss functions are further

investigated in the experiments. Here, all the results are reported using 5 random 64/16/20

train/validation/test splits.

6.5.1 Real-World Datasets

We conducted experiments to investigate the performance of AC-TPC on two real-world

medical datasets.

UK Cystic Fibrosis registry (UKCF)3: This dataset records annual follow-ups for

5,171 adult patients (aged 18 years or older) enrolled in the UK CF registry over the period

from 2008 and 2015, with a total of 25,012 hospital visits. Each patient is associated with 89

variables (i.e., 11 static and 78 time-varying features), including information on demographics

and genetic mutations, bacterial infections, lung function scores, therapeutic managements,

and diagnosis on comorbidities. We set the development of different comorbidities in the next

year as the label of interest at each time stamp.

3https://www.cysticfibrosis.org.uk
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Alzheimer’s Disease Neuroimaging Initiative (ADNI)4: This dataset consists of

1,346 patients in the Alzheimer’s disease study with a total of 11,651 hospital visits, which

tracks the disease progression via follow-up observations at 6 months interval. Each patient is

associated with 21 variables (i.e., 5 static and 16 time-varying features), including information

on demographics, biomarkers on brain functions, and cognitive test results. We set predictions

on the three diagnostic groups – normal brain functioning, mild cognitive impairment, and

Alzheimer’s disease – as the label of interest at each time stamp.

6.5.2 Benchmarks

We compare AC-TPC with clustering methods ranging from conventional approaches based

on K-means to the state-of-the-art approaches based on deep neural networks. All the

benchmarks compared in the experiments are tailored to incorporate time-series data as

described below:

Dynamic time warping followed by K-means: Dynamic time warping (DTW) is

utilized to quantify pairwise distance between two variable-length sequences and, then,

K-means is applied (KM-DTW).

K-means with deep neural networks: To handle variable-length time-series data, we

utilize our encoder and predictor that are trained based on (6.6) for fixed-length dimensionality

reduction. Then, we apply K-means on the latent encodings z (KM-E2P (Z)) and on the

predicted label distributions ŷ (KM-E2P (Y)), respectively.

Extensions of DCN [167]: Since the DCN is designed for static data, we replace their

static auto-encoder with a sequence-to-sequence network to incorporate time-series data

(DCN-S2S).5 To associated with the label distribution, we compare a DCN whose static

4https://adni.loni.usc.edu

5This extension is a representative of recent deep learning approaches for clustering of both static data

[167, 172] and time-series data [170, 171] since these methods are built upon the same concept – that
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Table 6.1: Comparison table of benchmarks.

Methods
Handling

Time-Series

Clustering

Method

Similarity

Measure

Label

Provided

Label

Associated

KM-DTW DTW K-means DTW N N

KM-E2P (Z) RNN K-means Euclidean in Z Y Y (indirect)

KM-E2P (Y) RNN K-means Euclidean in Y Y Y (direct)

DCN-S2S RNN K-means Euclidean in Z N N

DCN-E2P RNN K-means Euclidean in Z Y Y (indirect)

SOM-VAE Markov model embedding mapping reconstruction loss N N

SOM-VAE-P Markov model embedding mapping prediction loss Y Y (direct)

Proposed RNN embedding mapping KL divergence Y Y (direct)

auto-encoder is replaced with our encoder and predictor (DCN-E2P) to focus dimensionality

reduction while preserving information for label prediction.

SOM-VAE [173]: We compare with SOM-VAE – though, this method aims at visualizing

input – since it naturally clusters time-series data (SOM-VAE). In addition, we compare

with a variation of SOM-VAE by replacing the decoder with our predictor to find embeddings

that capture information for predicting the label (SOM-VAE-P). For both cases, we set

the dimension of SOM to K.

It is worth highlighting that the label information is provided for training DCN-E2P,

KM-E2P, and SOM-VAE-P while the label information is not provided for training KM-

DTW, DCN-S2S, and SOM-VAE. We compared and summarized major components of the

benchmarks in Table 6.1.

is, applying deep networks for dimensionality reduction to conduct conventional clustering methods, e.g.,

K-means.
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6.5.3 Performance Metrics

Clustering Performance: We applied the following three standard metrics for evaluat-

ing clustering performances when the ground-truth cluster label is available: purity score,

normalized mutual information (NMI) [177], and adjusted Rand index (ARI) [178]. More

specifically, the purity score assesses how homogeneous each cluster is (ranges from 0 to 1

where 1 being a cluster consists of a single class), the NMI is an information theoretic measure

of how much information is shared between the clusters and the labels that is adjusted for

the number of clusters (ranges from 0 to 1 where 1 being a perfect clustering), and ARI is

a corrected-for-chance version of the Rand index which is a measure of the percentage of

correct cluster assignments (ranges from -1 to 1 where 1 being a perfect clustering and 0

being a random clustering).

When the ground-truth label is not available, we utilize the average Silhouette index (SI)

[179] which measures how similar a member is to its own cluster (homogeneity within a cluster)

compared to other clusters (heterogeneity across clusters). Formally, the SI for a subsequence

xn1:t ∈ Ck can be given as follows: SI(n) = b(n)−a(n)
max(a(n),b(n))

where a(n) = 1
|Ck|−1

∑
m 6=n ‖ynt − ymt ‖1

and b(n) = mink′ 6=k
1
|Ck′ |

∑
m∈Ck′ ‖ynt − ymt ‖1. Here, we used the L1-distance between the

ground-truth labels of the future outcomes of interest since our goal is to group input

subsequences with similar future outcomes.

Prediction Performance: To assess the prediction performance of the identified

predictive clusters, we utilized both area under receiver operator characteristic curve (AUROC)

and area under precision-recall curve (AUPRC) based on the label predictions of each cluster

and the ground-truth binary labels on the future outcomes of interest. Note that the prediction

performance is available only for the benchmarks that incorporate the label information

during training.
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Table 6.2: Performance comparison on the UKCF and ADNI datasets.

Dataset Method Purity NMI ARI AUROC AUPRC

UKCF

KM-DTW 0.573±0.01∗ 0.010±0.01∗ 0.014±0.01∗ N/A N/A

KM-E2P (Z) 0.719±0.01∗ 0.211±0.01∗ 0.107±0.01∗ 0.726±0.01∗ 0.425±0.02∗

KM-E2P (Y) 0.751±0.01∗ 0.325±0.01∗ 0.440±0.02∗ 0.807±0.00∗ 0.514±0.01∗

DCN-S2S 0.607±0.06∗ 0.059±0.08∗ 0.063±0.09∗ N/A N/A

DCN-E2P 0.751±0.02∗ 0.275±0.02∗ 0.184±0.01∗ 0.772±0.03∗ 0.487±0.03∗

SOM-VAE 0.573±0.01∗ 0.006±0.00∗ 0.006±0.01∗ N/A N/A

SOM-VAE-P 0.638±0.04∗ 0.201±0.05∗ 0.283±0.17† 0.754±0.05∗ 0.331±0.07∗

Proposed 0.807±0.01 0.463±0.01 0.602±0.01 0.843±0.01 0.605±0.01

ADNI

KM-DTW 0.566±0.02∗ 0.019±0.02∗ 0.006±0.02∗ N/A N/A

KM-E2P (Z) 0.736±0.03† 0.249±0.02 0.230±0.03† 0.707±0.01∗ 0.509±0.01
KM-E2P (Y) 0.776±0.05 0.264±0.07 0.317±0.11 0.756±0.04 0.503±0.04
DCN-S2S 0.567±0.02∗ 0.005±0.00∗ 0.000±0.01∗ N/A N/A

DCN-E2P 0.749±0.06 0.261±0.05 0.215±0.06† 0.721±0.03† 0.509±0.03
SOM-VAE 0.566±0.02∗ 0.040±0.06∗ 0.011±0.02∗ N/A N/A

SOM-VAE-P 0.586±0.06∗ 0.085±0.08∗ 0.038±0.06∗ 0.597±0.10† 0.376±0.05∗

Proposed 0.786±0.03 0.285±0.04 0.330±0.06 0.768±0.02 0.515±0.02

∗ indicates p-value < 0.01, † indicates p-value < 0.05

6.5.4 Clustering Performance

We start with a simple scenario where the true class (i.e., the ground-truth cluster label)

is available and the number of classes is tractable. In particular, we set C = 23 = 8 based

on the binary labels for the development of three common comorbidities of cystic fibrosis

– diabetes, ABPA, and intestinal obstruction – in the next year for the UKCF dataet and

C = 3 based on the mutually exclusive three diagnostic groups for the ADNI dataset. We

compare AC-TPC against the aforementioned benchmarks with respect to the clustering and

prediction performance in Table 6.2.

As shown in Table 6.2, AC-TPC achieved performance gain over all the tested benchmarks

in terms of both clustering and prediction performance – where most of the improvements were

125



(a) The averaged purity score. (b) The averaged NMI. (c) The averaged ARI.

Figure 6.3: The purity score, NMI, and ARI (mean and 95% confidence interval) for the

UKCF dataset (C = 8) with various K.

statistically significant with p-value < 0.01 or p-value < 0.05 – for both datasets. Importantly,

clustering methods – i.e., KM-DTW, DCN-S2S, and SOM-VAE – that do not associate with

the future outcomes of interest identified clusters that provide little prognostic value on the

future outcomes (note that the true class is derived from the future outcome of interest). This

is clearly shown by the ARI value near 0 which indicates that the identified clusters have no

difference with random assignments. Therefore, similar sequences with respect to the latent

representations tailored for reconstruction or with respect to the shape-based measurement

using DTW can have very different outcomes.

In Figure 6.3, we further investigate the purity score, NMI, and ARI by varying the

number of clusters K from 4 to 16 on the UKCF dataset in the same setting with that stated

above (i.e., C = 8). Here, the three methods – i.e., KM-DTW, DCN-S2S, and SOM-VAE –

are excluded for better visualization. As we can see in Figure 6.3, our model rarely incur

performance loss in both NMI and ARI while the benchmarks (except for SOM-VAE-P)

showed significant decrease in the performance as K increased (higher than C). This is

because the number of clusters identified by AC-TPC (i.e., the number of activated clusters

where we define cluster k is activated if |C(k)| > 0) was the same with C most of the times,

while the DCN-based methods identified exactly K clusters (due to the K-means). Since

the NMI and ARI are adjusted for the number of clusters, a smaller number of identified
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(a) AUROC (b) AUPRC (c) Average SI

Figure 6.4: AUROC, AUPRC, and average SI (mean and 95% confidence interval) and the

number of activated clusters for the UKCF dataset (C = 222) with various K.

clusters yields, if everything being equal, a higher performance. In contrast, while our model

achieved the same purity score for K ≥ 8, the benchmark showed improved performance as K

increased since the purity score does not penalize having many clusters. This is an important

property of AC-TPC that we do not need to know a priori what the number of cluster is

which is a common practical challenge of applying the conventional clustering methods (e.g.,

K-means).

The performance gain of our model over SOM-VAE-P (and, our analysis is the same for

SOM-VAE) comes from two possible sources: i) SOM-VAE-P mainly focuses on visualizing

the input with SOM which makes both the encoder and embeddings less flexible – this is

why it performed better with higher K – and ii) the Markov property can be too strict for

time-series data especially in clinical settings where a patient’s medical history is informative

for predicting the future clinical outcomes [31].

6.5.5 Multiple Future Outcomes – a Practical Scenario

In this experiment, we focus on a more practical scenario where the future outcome of interest

is high-dimensional and, thus, the number of classes based on all the possible combinations of

future outcomes becomes intractable. Suppose that we are interested in the development of

M comorbidities in the next year whose possible combinations grow exponentially C = 2M .

Interpreting such a large number of patient subgroups will be a daunting task which hinders
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Figure 6.5: Clusters with high-risk of developing diabetes.

the understanding of underlying disease progression. Since different comorbidities may

share common driving factors [180], we hope our model to identify much smaller underlying

(latent) clusters that govern the development of comorbidities. Here, to incorporate with

M comorbidities (i.e., M binary labels), we redefine the output space as Y = {0, 1}M and

modify the predictor and loss functions, accordingly.

We identified 12 clusters of patients based on the next-year development of 22 different

comorbidities in the UKCF dataset and reported 5 clusters in Figure 6.5 – Cluster 0, 5, 7, 8,

and 10 – with the frequency of developing important comorbidities in the next year. Here,

we selected the 5 clusters that have the highest risk of developing diabetes in the next year,

and the frequency is calculated in a cluster-specific fashion using the true label.

Although all these clusters displayed high risk of diabetes, the frequency of other co-

occurred comorbidities was significantly different across the clusters. In particular, around

89% of the patients in Cluster 5 experienced asthma in the next year while it was less than

3% of the patients in the other cluster. Interestingly, “leukotriene” – a medicine commonly

used to manage asthma – and “FEV1% predicted” – a measure of lung function – were

the two most different input features between patients in Cluster 5 and those in the other

clusters. We observed similar findings in Cluster 7 with ABPA, Cluster 8 with liver disease,

and Cluster 10 with osteopenia. Therefore, by grouping patients who are likely to develop

a similar set of comorbidities, our method identified clusters that can be translated into

actionable information for clinical decision-making.
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6.5.6 Trade-Off between Clustering and Prediction

In predictive clustering, the trade-off between the clustering performance (for better inter-

pretability) – which quantifies how the data samples are homogeneous within each cluster

and heterogeneous across clusters with respect to the future outcomes of interest – and the

prediction performance is a common issue. The most important parameter that governs this

trade-off is the number of clusters. More specifically, increasing the number of clusters will

make the predictive clusters have higher diversity to represent the output distribution and,

thus, will increase the prediction performance while decreasing the clustering performance.

One extreme example is that there are as many clusters as data samples which will make the

identified clusters fully individualized; as a consequence, each cluster will lose interpretability

as it no longer groups similar data samples.

To highlight this trade-off, we conduct experiments under the same experimental setup

with that of Section 6.5.5. For the performance measures, we utilized the AUROC and

AUPRC to assess the prediction performance, and utilized the average SI to assess the

clustering performance. To control the number of activated clusters, we set β = 0 and β = 1

(since the embedding separation loss in (6.4) controls the activation of clusters) and reported

the performance by increasing the number of possible clusters K, i.e., the dimension of the

embedding dictionary.

As can be seen in Figure 6.4, the prediction performance increased with a increasing

number of identified clusters due to the higher diversity to represent the label distribution

while making the identified clusters less interpretable. That is, the cohesion and separation

among clusters become ambiguous as shown in the low average SI. On the other hand,

when we set β = 1.0 (which is selected based on the validation loss in 6.2), our method

consistently identified a similar number of clusters for K > 20, i.e., 13.8 on average, in a

data-driven fashion and provided slightly reduced prediction performance with significantly

better interpretability, i.e., the average SI 0.120 on average.
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6.5.7 How Does the Temporal Phenotypes Change over Time?

In this subsection, we demonstrate run-time examples of how AC-TPC flexibly updates the

cluster assignments over time with respect to the future development of comorbidities in the

next year. Figure 6.6 illustrates three representative patients:

• Patient A had diabetes from the beginning of the study and developed asthma as an

additional comorbidity at t = 2. Accordingly, AC-TPC changed the temporal phenotype

assigned to this patient from Cluster 0, which consists of patients who are very likely

to develop diabetes but very unlikely to develop asthma in the next year, to Cluster 5,

which consists of patients who are likely to develop both diabetes and asthma in the next

year, at t = 1.

• Patient B had ABPA from the beginning of the study and developed diabetes at t = 5.

Similarly, AC-TPC changed the temporal phenotype assigned to this patient from Cluster

2, which consists of patients who are likely to develop ABPA but not diabetes in the next

year, to Cluster 7, which consists of patients who are likely to develop both ABPA and

diabetes in the next year, at t = 4.

• Patient C had no comorbidity at the beginning of the study, and developed asthma and

liver disease as additional comorbidities, respectively at t = 3 and t = 6. AC-TPC changed

the temporal phenotypes assigned to this patient from Cluster 1 to Cluster 9 at t = 2

and then to Cluster 3 at t = 5. The changes in the temporal phenotypes were consistent

with the actual development of asthma and liver disease considering the distribution of

comorbidity development in the next year – that is, Cluster 1 consists of patients who are

not likely to develop any comorbidities in the next year, Cluster 9 consists of patients

who are likely to develop asthma but not liver disease, and Cluster 3 consists of patients

who are likely to develop asthma and liver disease in the next year.
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Figure 6.6: An illustration of run-time examples of AC-TPC on three representative patients.

6.6 Conclusion

In this work, we introduced AC-TPC, a deep learning approach for predictive clustering

of time-series data. We defined novel loss functions to encourage each cluster to have

homogeneous future outcomes (e.g., adverse events, the onset of comorbidities, etc.) and

designed optimization procedures to avoid trivial solutions in identifying cluster assignments

and the centroids. Throughout the experiments on two real-world datasets, we showed

that our model achieves superior clustering performance over state-of-the-art methods and

identifies meaningful clusters that can be translated into actionable information for clinical

decision-making.

We believe ASAC has wide-ranging applications, both in cost reduction but also for things

such as planning, in which patients can be told when they might expect to need their next

check-up and for what (i.e. personalized screening).
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Part III

Application to Clinical Data
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CHAPTER 7

Clinical Impact: Predicting Cancer-Specific Mortality

in Prostate Cancer

7.1 Contributions

Accurate prognostication is crucial in treatment decisions made for men diagnosed with

non-metastatic prostate cancer. Current models rely on pre-specified variables, which limits

their performance. We aimed to investigate a novel machine learning approach to develop

an improved prognostic model for predicting 10-year prostate cancer-specific mortality and

compare its performance with existing validated models.

Evidence before this study. Prognostic models for non-metastatic prostate cancer

have hitherto been built using traditional statistical modeling with pre-specified variables

and interactions. These typically place patients into risk ‘groups’ or ‘categories’ using clinico-

pathological variables. A major aim for future healthcare however is to make treatment

decisions more personalized. This is particularly important for men diagnosed with non-

metastatic prostate cancer, where treatment choices and decisions are complex. Machine

learning systems offer the possibility of individualizing predictions for these men but there

are no such tools in use. We searched PubMed up to April 10, 2020, using the search phrase

“prostate cancer artificial intelligence”. This identified very few previous machine learning

studies in prostate cancer prognostics, with the majority being relatively small, single ethnic

cohort and proof-of-concept studies. In particular, there are no studies in large population

cohorts and importantly none that have compared model performance or added value against
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currently used risk prediction models.

Added value of this study. This study used a very large (n =171,942) multiethnic,

population-based, prospectively-maintained dataset to produce a machine learning-trained

model to predict 10-year prostate cancer-specific mortality (PCSM). To do this we used a

novel algorithm called Survival Quilts which exploits an ensemble of traditional and machine

learning-based modeling techniques. The survival function learned by Survival Quilts is a

combination of survival profiles from these techniques, and is therefore optimized to account

for both discriminative performance and calibration. The Survival Quilts model produced in

this study predicted 10-year PCSM with good discrimination and was well calibrated. In

comparison to 9 other models in current clinical use, the model derived by the Survival Quilts

algorithm showed comparable discrimination in predicting outcome and this was maintained

when stratified by age and ethnicity. We further observed that it may add benefit when

applied in a clinical decision model analysis. This study adds value by demonstrating for the

first time the advantages inherent with a data-driven, variable-agnostic, machine-learning

approach in predicting PCSM. This approach will only improve with further training on

new datasets and the addition of further variables (for example, new imaging or molecular

markers). With further development and refinement, this could be used clinically to provide

superior, more individualized survival predictions.

Implications of all the available evidence. Clinicians and patients need to balance

the risks of treatment benefit versus harms and consider multiple variables that may affect

prognosis. Machine learning algorithms inherently lend themselves to quickly integrating data

from multiple variables, such as those in prostate cancer for individual prognostic modeling.

The data-driven and variable-agnostic approach inherent to machine learning also allows

for an ‘information-gain’ from hitherto unsuspected contributing factors. Machine learning

therefore could form the basis for a new era of prognostic models that more accurately predict

individualized survival outcomes and enhance decision making information in prostate cancer

and indeed other cancers.
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Findings. 647,151 men with prostate cancer were enrolled into the SEER database, of

whom 171,942 were included in this study. Discrimination improved with greater granularity,

and multivariable models outperformed tier-based models. The Survival Quilts model showed

good discrimination (C-index 0.829, 95% CI 0.820-0.838) for 10-year prostate cancer-specific

mortality, which was similar to the top-ranked multivariable models: PREDICT Prostate

(0.820, 0.811-0.829) and Memorial Sloan Kettering Cancer Center (MSKCC) nomogram

(0.787, 0.776-0.798). All three multivariable models showed good calibration with low Brier

scores (Survival Quilts 0.036, 95% CI 0.035-0.037; PREDICT Prostate 0.036, 0.035-0.037;

MSKCC 0.037, 0.035-0.039). Of the tier-based systems, the Cancer of the Prostate Risk

Assessment model (C-index 0.782, 95% CI 0.771-0.793) and Cambridge Prognostic Groups

model (0.779, 0.767-0.791) showed higher discrimination for predicting 10-year prostate

cancer-specific mortality. C-indices for models from the National Comprehensive Cancer Care

Network, Genitourinary Radiation Oncologists of Canada, American Urological Association,

European Association of Urology, and National Institute for Health and Care Excellence

ranged from 0.711 (0.701-0.721) to 0.761 (0.750-0.772). Discrimination for the Survival Quilts

model was maintained when stratified by age and ethnicity. Decision curve analysis showed

an incremental net benefit from the Survival Quilts model compared with the MSKCC and

PREDICT Prostate models currently used in practice.

7.2 Introduction

Prostate cancer is the commonest male cancer worldwide and its global incidence is rising

[181]. Of men diagnosed, over 80% present with non-metastatic disease. Treatment decisions

are particularly complex, needing to balance the risks of progression with therapy-related

morbidity [182]. Accurate prognostication is therefore crucial for identifying who benefits

most from treatment [183, 184].

Many nationally and internationally-endorsed tools for risk modeling are available. Most
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stratify men into risk groups and are derived from the 3-tiered D’Amico system, originally

developed to predict biochemical recurrence (BCR) [185–190]. However, BCR is a poor

surrogate for survival and prognostic models should therefore be based upon survival out-

comes [191, 192]. As demonstrated recently, the simple combination of prostate-specific

antigen (PSA), grade, and stage can enable effective prognostic models, and refining group-

stratification systems can improve model discrimination [185, 189, 190, 193]. Work from our

group and others have further demonstrated that using continuous data rather than catego-

rization can make prognostication more accurate and personalized for clinical decision-making

[194–196]. For example, the PREDICT Prostate tool and Memorial Sloan Kettering Cancer

Center (MSKCC) nomogram have demonstrated high discriminative ability for predicting

survival in robust external validation, and both are available as accessible web-based decision

aids for patients and clinicians [194, 195].

However, even these more individualized models rely on traditional statistical modeling,

with pre-specified variables and interactions. Machine learning (ML) is a data-driven ap-

plication of artificial intelligence whereby systems automatically learn and improve without

explicit programming. Accordingly, ML is able to autonomously exploit datasets to identify

new variables and more complex relationships between them. Its application is growing

rapidly in healthcare and is increasingly being used to develop novel prognostic models in

several diseases [197]. We hypothesize that ML may produce a superior predictive model in

prostate cancer too. For prostate cancer prognostication, ML has so far been restricted to

small, proof-of-concept studies without comparison to reference standards [198–201]. Here,

using a recently described, novel ML survival model, Survival Quilts, we exploited a large,

national observational dataset to test a ML-trained model for predicting 10-year prostate

cancer-specific mortality (PCSM) in men with non-metastatic disease [202]. We further

compared its performance against available models in current clinical practice.
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7.3 Methods

7.3.1 Data source and study population

Data collected through the prospectively-maintained Surveillance, Epidemiology, and End

Results (SEER) program were used for this study. SEER collects data regarding cancer

diagnoses and survival for approximately 30% of the United States population, and benefits

from extensive quality review [203]. Men aged between 35 and 95 years diagnosed with

histologically confirmed non-metastatic prostate cancer (site code C61.9) between January

1, 2000 and December 31, 2016 were included. Intact data were required for PSA, Gleason

score, stage and prostate cancer specific mortality (PCSM). The primary outcome of interest

was PCSM at 10 years. Time-to-event/censoring was derived from the date of diagnosis or

the date of last contact (either death or the last follow-up). Biopsy core involvement was

available in 66,885/171,942 (38.9%) of the men in the final cohort and derived by mean

imputation where missing. Biopsy core involvement was defined as the number of cares

positive for cancer as a percentage of the total number of cores taken. Access to the SEER

database does not need formal ethics approval and is covered by its open access policy:

https://seer.cancer.gov/data/access.html.

7.3.2 Model development

The following variables, measured at diagnosis, were included in model development: age, PSA,

primary and secondary Gleason grades/Grade groups, T-stage, total number of cores examined,

and core positivity (number of cancerous cores divided by number of cores taken). Magnetic

resonance imaging (MRI), comorbidity, and treatment received data were not available. We

derived our ML-based survival model using Survival Quilts; an open-source software developed

to automate deployment of ML in survival analysis [202]. Survival Quilts is an ensemble

of different survival models. Because the different models exhibit varying discriminative

performance and calibration accuracy from one dataset to another, Survival Quilts learns
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to automatically weigh these models and tune the parameters of each individual model in a

single ensemble for the dataset at hand. The survival function learned by Survival Quilts is a

combination of the survival profiles produced by many models, optimized to account for both

discriminative performance and calibration. This renders Survival Quilts a superset of many

existing statistical models and ML-based models for survival prediction. As it is automated,

Survival Quilts also provides a way to free researchers from choosing one particular survival

model without need for in-depth knowledge of ML. The 4 models included in this study ranged

from traditional statistical models to state-of-the-art deep learning models: Cox proportional

hazards, random survival forest, conditional inference survival forest, and DeepHit models [204–

206]. The turning parameters were chosen via grid search based on the validation performance

on the C-index for predicting PCSM at 10 years, as described [202]. The SEER cohort was

randomly split into a 64:16:20 ratio for training, validation, and testing sets and was generated

using the Python package scikit-learn. For model evaluation, we used bootstrapping of 10,000

patients in the testing set, averaging over 100 iterations. Time-dependent concordance

indices (C-index) and Brier scores for model discrimination and calibration, respectively, were

calculated. Model calibration, reflecting predicted versus observed outcomes, was also assessed

by visual inspection of calibration plots. Discrimination was assessed in the full cohort and

then stratified by age groups based on the cohort median. This resulted in the following

age groups: age <65 (n =79,003) and age ≥65 (n =92,939). We also stratified by different

ethnicities (Black, White, other). The code for this analysis is freely available at: https:

//bitbucket.org/mvdschaar/mlforhealthlabpub/src/master/alg/survivalquilts.

7.3.3 Head-to-head comparison

The Survival Quilts model was compared with 9 other prognostic models in current clinical use.

These included the tier-based Cambridge Prognostic Groups (CPG), European Association

of Urology (EAU), National Institute for Health and Care Excellence (NICE), Genitourinary

Radiation Oncologists of Canada (GUROC), American Urological Association (AUA), and
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National Comprehensive Cancer Care Network (NCCN) models [185–190]. Comparison was

also made against the point-based Cancer of the Prostate Risk Assessment (CAPRA) score,

and the multivariable MSKCC nomogram and PREDICT Prostate model [194–196]. Due to

the lack of treatment and co-morbidity data for the PREDICT Prostate model, we removed

this variable from hazard calculation. Using the testing set, model performance at 10 years

was compared by calculating C-index to demonstrate how well models discriminate PCSM

risk. A sensitivity analysis was also performed without the biopsy core involvement variable.

Decision curve analysis (DCA) was used to calculate a clinical “net benefit” for one or more

prediction model in comparison to default strategies of treating all or no patients regardless of

prognosis. Risk predictions on the probability of 10-year PCSM for each of the three models

was calculated across a range of threshold probabilities and plotted versus intervention for no

patients (none) and intervention for all patients (all). We then compare the net benefit of

following these intervention strategies against use of the top 3 models for an intervention

based on prognosis i.e. that an intervention is prescribed for patients with a predicted risk

that exceeds a given risk threshold. We defined the net benefit as the value achieved by

making decisions based on model predictions. The statistical tools used for these analyses

included R and Python.

7.4 Results

7.4.1 Cohort description

Figure 7.1 shows our data assembly process. 647,151 men were enrolled into the SEER

database with prostate cancer in the study period. Of these, 7,340 did not have survival

data, 21,528 presented with evidence of lymph nodes or metastasis and 446,294 had missing

data for at least 1 of the essential domains of PSA, Gleason Grade, or clinical stage. 47

men outside of the age range 35-95 years were also excluded. The final study population

therefore included 171,942 men. Mean age was 65.6 years with mean PSA 10.1 ng/ml. The
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Figure 7.1: Patient data selection process.

majority of men were White (134,139/171,942 (78.0%)), with 24,488/171,942 (14.2%) and

8,925/171,942 (5.2%) of Black and Asian ethnicity, respectively. The majority of cancers

were stage T1-T2 (168,573/171,942 (98.0%)) and grade group 1-3 (146,666/171,942 (85.3%)).

Only a very low proportion of patients (0-0.01%) had primary Gleason <3, and so were not

excluded. Median time to event for men who died with prostate cancer was 4.4 years and

for the remaining cohort (including other causes of death) was 6.2 years, giving an overall

median follow up of 6.1 years. By 10 years, 2,469/171,942 of the cohort died of prostate

cancer, and 26,488/171,942 of other causes.

7.4.2 Survival Quilts model performance

The Survival Quilts model in this study incorporated age, PSA, biopsy involvement, clinical

stage, and histological grade. The C-index for predicting PCSM was consistently high in

training, validation and testing sets (0.829, 95% confidence interval (CI): 0.820-0.838) and

with excellent calibration (Brier score 0.036, 95% CI: 0.035-0.037) (Table 7.1, Figure 7.2).
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Table 7.1: Discrimination and calibration of each model at predicting 10-year prostate

cancer-specific mortality.

Model C-index (95% CI) Brier score (95% CI)

Survival Quilts 0.829 (0.820, 0.838) 0.036 (0.035, 0.037)

PREDICT Prostate 0.820 (0.811, 0.829) 0.036 (0.035, 0.037)

MSKCC 0.787 (0.776, 0.798) 0.037 (0.035, 0.039)

CAPRA 0.782 (0.771, 0.793) 0.037 (0.035, 0.039)

CPG 0.779 (0.767, 0.791) 0.037 (0.035, 0.039)

NCCN 0.761 (0.750, 0.772) 0.038 (0.036, 0.040)

GUROC 0.750 (0.739, 0.761) 0.039 (0.037, 0.041)

AUA 0.749 (0.738, 0.760) 0.039 (0.037, 0.041)

EAU 0.711 (0.701. 0.721) 0.039 (0.037, 0.041)

NICE 0.711 (0.701. 0.721) 0.039 (0.037, 0.041)

C-index was also high when the cohort was subdivided by age (Table 7.2). Here model

performance was marginally better in men aged under 65 (C-index 0.834, 95% CI: 0.817-0.851)

compared to older men (C-index 0.797, 95% CI: 0.786-0.808). We next tested performance in

different ethnic groups. Here the Survival Quilts model performed consistently well with very

little difference in the C-index between White, Black and men of other ethnicities (C-indices

0.815-0.836) (Table 7.2).

7.4.3 Head-to-head comparison

Survival Quilts model performance compared favorably to current tier-based and multivariable

models. Table 7.1 shows C-index and Brier score for each model. Amongst the tier-based

systems, the CAPRA and CPG models showed higher discrimination for predicting PCSM
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(a) vs PREDICT Prostate (b) vs MSKCC model

Figure 7.2: Calibration plots of observed versus predicted risk. Prostate cancer-specific

mortality at 10 years, assessed in men aged 35–95 years with non-metastatic prostate cancer.

Survival Quilts model compared with the top two performing prognostic models: (left)

PREDICT Prostate and (right) MSKCC model.

Table 7.2: Comparative C-index for 10-year prostate cancer-specific mortality (age-stratified)

Model
Age < 65 (n = 79, 003)

C-index (95% CI)

Age ≥ 65 (n = 92, 939)

C-index (95% CI)

Survival Quilts 0.834 (0.817, 0.851) 0.797 (0.786, 0.808)

PREDICT Prostate 0.819 (0.802, 0.836) 0.789 (0.778, 0.800)

MSKCC 0.830 (0.813, 0.847) 0.749 (0.737, 0.761)

CAPRA 0.818 (0.801, 0.835) 0.742 (0.730, 0.754)

CPG 0.824 (0.807, 0.841) 0.742 (0.729, 0.755)

NCCN 0.807 (0.790, 0.824) 0.725 (0.713, 0.737)
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with C-indices of 0.782 (95% CI: 0.771-0.793) and 0.779 (95% CI: 0.767-0.791), respectively.

C-indices for NCCN, GUROC, AUA, EAU and NICE models ranged from 0.711 (95% CI:

0.701-0.721) to 0.761 (95% CI: 0.750-0.772). The multivariable models generally discriminated

patients better with C-indices of 0.820 (95% CI: 0.811-0.829) and 0.787 (95% CI: 0.776-0.798)

for the PREDICT Prostate and MSKCC models, respectively. The Survival Quilts model

had similarly high C-index in this cohort (0.829). Model discrimination was also maintained

when the cohort was stratified by age (Table 7.2). All 3 models also showed good calibration

with low Brier scores (Survival Quilts 0.036, 95% CI: 0.035-0.037; PREDICT Prostate 0.036,

95% CI: 0.035-0.037; MSKCC 0.037, 95% CI: 0.035-0.039) (Table 7.1, Figure 7.2). We

further tested if these comparisons were valid given that the PREDICT Prostate and MSKCC

models were originally derived from different cohorts. To do this we re-fitted the PREDICT

Prostate and MSKCC models to the training set, before reapplying them to the validation

set. Here we found similar performance characteristics for the PREDICT Prostate model and

a better MSKCC model performance. Both models continued to perform comparably with

the Survival Quilt model. Finally, given that biopsy core data was only available in less than

half the cohort, we reassessed the PREDICT Prostate and Survival Quilts models without

this variable and found similar comparative performance characteristics.

7.4.4 Decision curve analysis

We next assessed model performance using DCA in the context of considering the impact on

decision making for treatment (e.g. surveillance versus radial therapy). The heterogeneous

profile of the patient population renders a uniform treatment strategy (treat all or treat none)

inferior to strategies informed by any one of the 3 models (Figure 7.3). Across the 3 models

MSKCC provided the least net benefit while the Survival Quilts provided the greatest gain.

The gain from the Survival Quilts model was particularly seen with threshold probabilities of

risk between 0.1 and 0.3 with added net incremental benefits across each threshold compared

to the PREDICT Prostate model. The difference was even greater when compared to the
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MSKCC model.

Figure 7.3: Decision curve analysis. The clinical net benefit for each prediction model

is calculated across a range of risk threshold probabilities. Clinical net benefit is defined

as the minimum probability of disease at which further intervention would be warranted.

MSKCC=Memorial Sloan Kettering Cancer Center.

7.4.5 Discussion

In this paper we have used a very large dataset to develop and test a ML-trained prognostic

model for predicting 10-year PCSM and assessed its performance against a range of tiered

and multivariable prediction models. To our knowledge, our study is also the first to use the

SEER cohort to compare numerous models for predicting PCSM. In comparative analysis we

observed that multivariable models consistently outperform tiered systems consistent with
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previous head to head comparisons [193, 207]. Our study further introduces a potentially

better approach by utilizing a novel ML algorithm that automatically combines optimal

attributes from different modeling methods.

There are very few ML studies in prostate cancer prognostics, and these have included

relatively small cohorts in terms of model development. The only study to assess PCSM

trained several artificial neural network (ANN) models with 19 pretreatment variables in

7,267 Korean men [198]. Koo et al.’s [198] ‘long short-term memory’ ANN model produced a

C-index of 0.815 for both 10-year PCSM and all-cause mortality discrimination. However, the

model has never been externally validated. The largest study to date using ML in prostate

cancer prognostics was performed by Lin et al., utilizing data from 8581 Taiwanese men.

Using a support vector machine-trained model incorporating comorbidity data with standard

clinico-pathological variables (but not PSA), an accuracy of 0.852 was achieved in predicting

cancer-related post-treatment recurrence and mortality [199].

At present, datasets are often limited by which variables prostate cancer specialists have

traditionally considered important and therefore collected (for example, clinico-pathological

and comorbidity variables). Our study supports the intuitive notion that model performance

improves with greater granularity, and ML-trained models should have a particular advantage

when considering incorporating new variables [193, 198–201, 208]. As an example, Donovan et

al. combined standard variables with 5 molecular biomarkers and automated histopathological

image analysis to derive a prediction tool for BCR after treatment [200]. Their Precise Post-

Op model had a C-index of 0.77 for recurrence-free survival. Zhang et al. combined somatic

mutation signatures in a 43 gene panel with the NICE risk criteria and improved the area

under the curve for prediction of post-surgical BCR from 0.62 to 0.75 [201].

The data-driven and variable-agnostic approach inherent to ML also allows for an

‘information-gain’ from hitherto unsuspected contributing factors. For example, the ML

AutoPrognosis model for predicting cardiovascular risk was trained on 473 variables and

identified walking pace as the third most important variable for death after systolic blood
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pressure and body mass index [197]. The Survival Quilts method used in our paper similarly

permits a ‘modeling-gain’ whereby the most robust model amongst several can be objectively

chosen without prior presumptions regarding model characteristics and variable interactions

[202]. Notably, by just using a few standard clinico-pathological factors, the method was able

to achieve high C-indices and excellent calibration. In DCA, we also found an incremental

gain in net benefit when the Survival Quilts was applied in comparison to using the other 2

top performing models. There is no accepted consensus on what is a clinically useful range

for net benefit in treatment prognostic models [209]. In clinical practice if the uncertainty is

10% or less, then a decision model is not really needed. We therefore reasoned that threshold

probabilities higher than this would gain from using a decision model. In this analysis we

particularly found gain when the threshold probabilities of risk were between 10% and 30%.

We accept that there may be other interpretations of a clinically important range but believe

that this is a pragmatic approach to define a range where prognostic model improvements

have a net clinical benefit. It is likely that training the Survival Quilts framework on multiple

large datasets incorporating more factors will produce an even more superior model than

we have so far achieved. Owing to the relatively autonomous nature of ML, such models

could be quickly and automatically updated whenever new data become available. A further

opportunity is the ability to continuously add new data as the patient’s treatment journey

progresses and visualize how this impacts prognosis; something not currently possible with

static prognostic models.

This study does have some important limitations. Our ML-based model was trained in a

large, contemporary, ethnically-heterogeneous population using real world data from a high-

quality database [204]. Indeed, it is by far the largest study applying ML to prostate cancer

prognostics so far described in the literature. However, the cohort distribution is heavily

slanted to earlier stage disease as it represents a predominantly PSA-screened population.

Consequently, it also had relatively few death events and follow-up was limited. It was

encouraging, however, to observe that the performance of the other prognostic models we
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tested was very consistent with the results seen in other large population studies where there

is a more balanced case-mix [193, 207]. Although our final cohort included over 170,000

men, we did not have data for a larger starting population so cannot account for any bias

this missingness might have introduced when the final cohort was derived. We also did not

explore the geographical distribution of this United States cohort nor any social differences,

so cannot comment on any impact this may have had on our results. Similarly, biopsy core

data had to be imputed for a significant portion of the included cohort. We acknowledge,

however, that using imputation for such a large amount of information may have introduced

a bias in our study. As the SEER database does not collect comorbidity data, we also

could not model the impact of comorbidity on outcomes, nor could we consider the effects of

treatment, both of which are key parameters of other tested models (for example, PREDICT

Prostate). Comparison between different models also may introduce inherent bias because of

input variable heterogeneity. Changes in performance may therefore reflect the input variable

heterogeneity. Furthermore, SEER also does not collect data on prostate MRI though it is

unclear if MRI findings will improve current prognostic capabilities [210]. We additionally

did not have any molecular markers to assess, although their addition to standard models

does show some promise [211]. It remains to be seen how useful these tests are and how

their addition to models like Survival Quilts, or indeed the PREDICT Prostate or MKSCC

nomogram, improve performance given their significant additional cost burden. This study

was specially focused on non-metastatic cancer but in future work we would be keen to take

the methods here and apply it to the metastatic setting where there is a paucity of robust

and validated models.

7.5 Conclusion

A novel ML-trained model is capable of predicting PCSM at 10 years with comparable per-

formance to the best existing models. ML may confer numerous potential future advantages,
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especially its potential to readily incorporate new data, self-training and evolving variables.

Consequently, ML represents a unique future framework for producing more granular, indi-

vidualized and iterative prognostic models. This study also demonstrates, in a PSA-screened

population, the critical need to move away from tier-based risk grouping and increasingly

utilize multivariable and more personalized prognostic models to guide patient management.
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CHAPTER 8

Clinical Impact: Outcome-Oriented Deep Temporal

Phenotyping of Breast Cancer Progression

8.1 Contribution

Chronic diseases evolve slowly throughout a patient’s lifetime creating heterogeneous progres-

sion patterns that make clinical outcomes remarkably varied across individual patients. A

tool capable of identifying temporal phenotypes based on the patients’ different progression

patterns and clinical outcomes would allow clinicians to better forecast disease progression

by recognizing a group of similar past patients, and to better design treatment guidelines

that are tailored to specific phenotypes.

Added value of this study. To build such a tool, we adopt and improve a deep

learning-based temporal phenotyping method [212] to discover outcome-oriented temporal

phenotypes of disease progression considering what type of clinical outcomes will occur and

when based on the longitudinal observations. More specifically, we model clinical outcomes

throughout a patient’s longitudinal observations via time-to-event (TTE) processes whose

conditional intensity functions are estimated as non-linear functions using a recurrent neural

network.

Findings. We perform a set of experiments on real-world data which was collected by

the UK National Cancer Registration and Analysis Service (NCRAS). The data contains

a cohort of 11,779 female patients (between age 15 to 90) diagnosed with stage III breast

cancer, whose observations are collected over their follow-up periods. We focused on stage III
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breast cancer patients due to their heterogeneity in disease progression and the development

of adverse clinical events (e.g., recurrence) and earlier death [213, 214]. For these patients,

identifying temporal phenotypes and understanding the underlying progression can provide

actionable intelligence. Throughout the evaluation, we show that the proposed method

identifies temporal phenotypes that are strongly associated with future clinical outcomes and

achieves significant gain in the homogeneity and heterogeneity measures over existing methods.

In addition, we analyze driving factors that lead to transitions between the identified temporal

phenotypes and thereby enable us to better understand the underlying disease progression

within the longitudinal context.

8.2 Introduction

The progression of chronic diseases (such as cancer and diabetes) manifests through a broad

spectrum of longitudinally-linked clinical features and outcomes, which we refer to as clinical

pathways. This leads to heterogeneous progression patterns that may vary greatly across

individual patients. Therefore, temporal phenotyping has become a crucial tool in identifying

patient subgroups to address such heterogeneity. By transforming the raw information

in clinical pathways into clinically relevant and interpretable information [10], temporal

phenotypes allow clinicians to better forecast disease progression with reduced uncertainty

and design treatment guidelines that are tailored to patient subgroups [11].

The fundamental idea of temporal phenotyping to understand the underlying disease

progression is to group patients based on the similarity in their clinical pathways. However,

there are many different notions of similarity which make the identified phenotypes substan-

tially different [11, 161, 170, 215]. Under the traditional notion of clustering (e.g., K-means

[216]), recent approaches focused on either adjusting similarity measures for longitudinal

observations [161, 215] or finding low-dimensional representations [11, 170] of longitudinal

observations to group clinical pathways. However, these approaches identify temporal pheno-
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types in a purely unsupervised fashion, thereby discarding already available information about

patients’ clinical outcomes (such as recurrence of cancer and death) and the timing when

these outcomes occurred which both play a significant role in understanding the underlying

disease progression and in reasoning about the future clinical outcomes. Therefore, discarding

this valuable information may lead to problems in effectiveness and timeliness of clinical

interventions as past researches (see e.g., [163, 164, 212]) have shown that clinical outcomes

and the timing of such outcomes can significantly vary for patients even in the same temporal

phenotype.

In this work, we introduce a different notion: outcome-oriented temporal phenotyping.

This characterizes temporal phenotypes of the underlying disease progression in relevance to

the type and the timing of clinical outcomes which will occur based on the clinical pathways.

More specifically, patient pathways are grouped together into the same phenotype such

that these pathways share similar future outcomes and timing. Additionally, the phenotype

assigned to a patient needs to be flexibly updated as the disease evolves which can be

manifested through new observations of clinical features and/or clinical outcomes accrued

over time. By doing so, we ensure that clinicians can leverage temporal phenotyping as an

actionable tool to recognize similar past patients (for whom a pathway with an endpoint

was already collected) for reasoning about future outcomes as well as life-changing disease

manifestations which may cause a patient to transit between phenotypes. A pictorial depiction

of our notion of temporal phenotyping in comparison to the traditional notion is illustrated

in Figure 8.1.

To this goal, we utilize and extend a deep learning-based temporal clustering method

[212] to discover outcome-oriented deep temporal phenotypes, which we call ODTP, of

clinical pathways based on the framework of neural discrete representation learning [173, 174].

ODTP models clinical outcomes in the variable-length and irregularly-spaced clinical pathways

as time-to-event (TTE) processes whose conditional intensity functions are estimated as

non-linear functions of the latent representations of a recurrent neural network (RNN).
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Figure 8.1: A conceptual illustration of our (real-time) temporal phenotyping procedure. In

this example, we focus on patients who are diagnosed with breast cancer where the clinical

outcomes of our interest are the recurrence of cancer and cancer-related death. Note that,

during run-time, the new patient is assigned to one of three phenotypes as new observations

are collected over time. In our notion (i.e. outcome-oriented) of phenotyping, the new patient

is assigned to Phenotype 2 at time t1, which consists of past patients with a high risk of

recurrence. Then, this new patient is assigned to Phenotype 3 at time t2, which consists of

past patients who died from cancer-related death in the near future, due to the increased risk

of cancer-related death. However, in the traditional notion of phenotyping, the new patient

remains at the same phenotype at both t1 and t2 since the longitudinal observations remained

very similar (in entire sequence perspective) to the past patients of this phenotype.

Temporal phenotypes are identified by our novel loss function that is designed to learn

discrete latent representations that best characterize the TTE processes for the clinical

pathways. The key insight here is that learning the centroids of each phenotype and the

assignments of the pathways to these phenotypes can be achieved by learning a finite number

of discrete representations, called embeddings, and the mapping from input pathways to

these embeddings, respectively.

We demonstrate the power of ODTP by applying it to a real-world heterogeneous cohort
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of 11,779 stage III breast cancer patients from the UK National Cancer Registration and

Analysis Service. The experiments show that ODTP identifies temporal phenotypes that are

strongly associated with the future clinical outcomes and achieves significant gain on the

homogeneity and heterogeneity measures over existing methods. Furthermore, we are able to

identify the key driving factors that lead to transitions between phenotypes which can be

translated into actionable information to support better clinical decision-making.

8.3 Methods

8.3.1 Data source and study population

The UK National Cancer Registration and Analysis Service (NCRAS)1 comprises clinical

pathways of patient care in the form of clinical observations, therapeutic interventions, and

clinical incidents that occur to cancer patients. Overall, out of 14,254 female patients between

15 and 90 years who were diagnosed with stage III breast cancer between 2013 and 2016, we

focused our experiments on 11,779 patients who had properly scheduled cancer treatments.

More specifically, all breast cancer patients should start treatment – either drug treatment

first then surgery (e.g., neoadjuvant therapy) or breast cancer surgery first (e.g., mastectomy

or lumpectomy) – within the first 1 to 2 months after the diagnosis. In the case of neoadjuvant

therapy which is often given for a total of 3 to 6 months, breast cancer surgery should take

place within the next 1 to 2 months. Hence, we first excluded patients who were not given

any therapeutic interventions within the first two months after diagnosis and without having

any terminal events (i.e., death or right-censoring). Then, patients without any breast cancer

surgery record within the first eight months after the diagnosis were excluded. Figure 8.2

depicts a flow chart of the data assembly process involved in our analysis.

Among 11,779 patients, 1,922 patients died from cancer, other cancer, and other causes

1http://www.ncin.org.uk/home
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Figure 8.2: Patient data selection process.

(including cardiovascular disease) and 9,857 patients were right-censored. The follow-up

period (i.e., time-to-event/censoring) ranges from 1 to 2,049 days with an average of 795.4

days. Overall, we consider 4 clinical outcomes of our interest: 2 recurrent events and 2

terminal events. The terminal events are i) 1,409 (11.96%) deaths due to cancer, and ii) 513

(4.36%) deaths due to other causes. It is important for patients who are at risk of death

from cancer to be provided with a joint prognosis of risk of other causes in order to properly

manage therapeutic interventions. For instance, chemotherapy, which maintains a prominent

role in treating many forms of cancer, increases the risk of cardiovascular side effects [16, 217].

The recurrent events are other tumor diagnosis and recurrence (including local, regional, and

distant recurrence). These recurrent events are crucial since the diagnosis of other tumors

or recurrence of cancer leads to a significant rise in mortality due to cancer. Among 11,779,

patients, 464 patients (3.94%) and 1,936 patients (16.44%) experienced other tumor diagnosis

and recurrence during their pathways, respectively. Throughout the experiments, all patients

are aligned based on the diagnosis of breast cancer.

The data comprises of 14 static features that are observed at the time of diagnosis and 26

time-varying features that are collected over follow-up periods. The static features include

demographics, tumor assessments – such as grades, morphology, and TNM (tumor, nodes,
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metastasis) stages –, hormone receptor status, laterality, and comorbidity information. The

time-varying features include indicators for in-patient hospital visits, tumor examinations (i.e.,

radiology and pathology), therapeutic interventions (i.e, chemotherapy, radiotherapy, and

hormone therapy), surgery, diagnosis of other tumors, and relapse/recurrence of the breast

cancer. For each patient, the time interval between two adjacent longitudinal measurements

ranges from 1 to 1,413 days with a mean of 19.95 days. Here, we discretized the time with a

resolution of days since the date information in the data was mostly available in that format.

The number of follow-up observations was from 1 to 373 with a mean of 40.87 observations

per patient.

8.4 Model Development

8.4.1 Clinical Pathway Data

A clinical pathway is a longitudinally-linked series of clinical features and outcomes that are

systematically collected in disease registries data as well as in data from EHRs to describe the

disease progression of a patient. Each pathway consists of an observation sequence containing

longitudinal observations of static and time-varying covariates, and an outcome sequence

containing a series of one or more clinical outcome event(s) that occurred to a patient during

his/her follow-up. Outcome events include recurrent events (such as relapse of cancer) that

can repeatedly occur throughout a patient’s pathway and terminal events (such as death

from cancer or right-censoring) that terminate further observations. We assume that every

patient experiences exactly one terminal event at the end of his/her pathway. Figure 8.3

depicts clinical pathways of representative patients dying due to cancer or having the endpoint

censored.

Formally, for each patient n, define X n
Jn = (xnj , t

n
j )J

n

j=1 to be an observation sequence which

comprises Jn longitudinal observations where xnj ∈ Rd denotes the observed covariates and

tnj ∈ R≥0 is the timing at the j-th observation, respectively. Also, define YnLn = (mn
` , τ

n
` )L

n

`=1 to

155



Figure 8.3: An illustration of clinical pathways (observation sequence: antigen and BMI,

outcome sequence: recurrence and death) of representative patients diagnosed with breast

cancer with different terminal events.

be an outcome sequence which consists of Ln ≥ 1 outcome events where mn
` ∈ {1, · · · ,M,∅}

is the event type among M possible events and τn` ∈ R≥0 denotes the timing of the `-th

outcome event, respectively, with ∅ indicating right-censoring. Note that irregular time

intervals between observations and/or outcome events can be generally described by the

actual timestamps tnj and τn` . Throughout, we assume that the observation times, event

times, and censoring times are aligned based on a synchronization event such as the entry to

a clinical study. Hereafter, we omit the dependency on n for ease of notation when it is clear

in the context.

For each clinical pathway, let x̃i be input features at time step i that aggregate both

observed covariates and outcome events available at the corresponding timestamp t̃i ∈ T as

the following:

x̃i=


(xj∗ ,m`∗ , t̃i) if t̃i ∈{t1, · · ·, tJ}, t̃i ∈{τ1, · · ·, τL}

(xj∗ , ∗, t̃i) if t̃i ∈{t1, · · ·, tJ}, t̃i /∈{τ1, · · ·, τL}

(∗,m`∗ , t̃i) if t̃i /∈{t1, · · ·, tJ}, t̃i ∈{τ1, · · ·, τL}

where T , {t̃i, · · · , t̃I} = {t1, · · · , tJ} ∪ {τ1, · · · , τL} indicates an ordered set of I available
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observation and/or event times. Here, ∗ indicates that the observation or the outcome

event is not available at the corresponding timestamp. j∗ = argj∈{1,··· ,J}(tj = t̃i) and

`∗ = arg`∈{1,··· ,L}(τ` = t̃i) indicate the covariates and the event that are observed at timestamp

t̃i, respectively. For example, X2 = (x1, 1), (x2, 3) and Y2 = (m1, 1), (m2, 4) can be expressed

as x̃1 = (x1,m1, 1), x̃2 = (x2, ∗, 3), x̃3 = (∗,m2, 4). Then, we can finally denote the history of

a patient’s clinical pathway up to time t̃i as x̃1:i , (x̃1, · · · , x̃i).

8.4.2 Modeling Clinical Pathways via Time-to-Event Processes

To understand the underlying progression of the target disease, we model the outcome

sequence throughout a clinical pathway via time-to-event (TTE) processes. That is, given

the history of observations and outcome events at each time step i, we focus on the type and

the timing of the next outcome event in chronological order.2

Define random variables (RVs) T1, · · · , TM and T∅ where Tm ∈ R≥0 denotes the time

to the next outcome event of cause m ∈ {1, · · · ,M} and T∅ ∈ R≥0 denotes the time to

censoring event. We assume that Tm for m ∈ {1, · · · ,M,∅} is drawn from a conditional

density function that depends on the history of a patient’s pathway. Given the pathway

of each patient up to a certain time point, we only observe the occurrence time for the

earliest next outcome event (including right-censoring), i.e., T = min(T1, · · · , TM , T∅) and

E = arg minm∈{1,··· ,M,∅} Tm.

The cause-specific conditional hazard function hm(s|x̃1:i) [218] represents the instantaneous

risk of the next outcome event of type m occurring given the history x̃1:i, and is formally

defined as:

hm(s|x̃1:i)= lim
ds→0

P (s ≤T ≤ s+ ds, E = m|x̃1:i, T ≥ s)

ds
(8.1)

2The main distinction from modeling the outcome sequence via multi-variate temporal point processes is

that we do not consider longitudinal observations as a part of the event sequence. This is because observations,

in general, are not event-driven but are collected based on clinical guidelines or regular physical examinations.
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where s denotes the time elapsed since the latest observation time t̃i. Then, we can express

the probability of the next outcome event (m, τ) given the history x̃1:i as the following:

P (T = τ − t̃i, E = m|x̃1:i) = hm(τ − t̃i|x̃1:i)S(τ − t̃i|x̃1:i) if event m occurred (i.e., m 6= ∅)

and P (T > τ − t̃i|x̃1:i) = S(τ − t̃i|x̃1:i) if right-censored (i.e., m = ∅). Here, S(s|·) =

exp
(
−
∫ s

0
h(u|·)du

)
is the survival function which captures the probability of a patient’s

event-free survival up to s and h(s|·) =
∑M

m=1 hm(s|·) denotes the overall hazard function.

Parametric Assumption. We assume that the cause-specific conditional hazard func-

tions follow the Weibull distribution [219], which is one of the most common parametric

forms to analyze TTE processes due to its convenient closed-form expressions. That is, given

the history x̃1:i, (8.1) can be simplified as:

hm(s|x̃1:i) = pλm(x̃1:i)
(
λm(x̃1:i)s

)p−1
(8.2)

where λm(x̃1:i) > 0 is the conditional intensity function given x̃1:i and p > 0 is the shape

parameter.3

Overall, the log-likelihood of the outcome sequence with L outcome events throughout a

patient’s entire pathway can be derived as
∑L

`=1

∑
i∈I` logP (E = m`, T = τ` − t̃i|x̃1:i) where

I` = {i : τ`−1 ≤ t̃i < τ`} (with τ0 = 0) denotes a set of time steps between the timestamp at

which the previous outcome event occurred (i.e., τ`−1) and that at which the next outcome

event occurs (i.e., τ`). Here, the conditional probability of an outcome event and the timing

(m, τ) given the history x̃1:i in the log-likelihood of the outcome sequence can be derived as

3The Weibull distribution is a generalization of the exponential distributions. For instance, when p = 1, it

reduces to the exponential distribution and has constant hazard function over time, while the hazard function

is increasing and decreasing over time when p > 1 and p < 1, respectively.
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follows:

logP (E = m,T = τ − t̃i|x̃1:i) = 1{m6=∅}·log
(
hm(τ − t̃i|x̃1:i)S(τ − t̃i|x̃1:i)

)
(8.3)

+ 1{m=∅}·logS(τ − t̃i|x̃1:i)

= 1{m6=∅}·log hm(τ − t̃i|x̃1:i) + logS(τ − t̃i|x̃1:i)

= 1{m6=∅}·log
(
pλm(x̃1:i)

p(τ − t̃i)p−1
)
− λ(x̃1:i)

p(τ − t̃i)p

where λ(·) =
∑M

m=1 λm(·). Hence, the problem of accurately estimating the log-likelihood

of an outcome sequence throughout a pathway boils down to accurately estimating the

conditional intensity functions λm(·) for m ∈ {1, · · · ,M} as a function of the pathway.

8.4.3 Modeling TTE Processes via NNs

We use an RNN to model the underlying dynamics of the outcome sequences throughout

clinical pathways. The key idea here is to determine the conditional intensity functions in

(8.2) from the latent representations (i.e., the hidden states) of the RNN. This allows learning

of complex dependencies of the cause-specific conditional hazard functions on the history of

observations and outcome events (i.e., previous event types and the timings). The network,

which we refer to as the TTE network, comprises an encoder that captures the underlying

dynamics given a pathway and an estimator that estimates the conditional intensity functions

based on the encoder output. The two biggest distinctions from the previous work in [159]

come from modeling a sequence of both recurrent and terminal events in a single framework,

and, more importantly, further utilizing the latent representations for temporal phenotyping.

The encoder, f θ :
∏i

j=1(Rd × {1, · · · ,M} × R>0)→ Z, is an RNN (parameterized by θ)

that takes a sequence of tuples x̃1:i – i.e., the pathway that contains available observations,

outcome events, and the timing up to the i-th time step – as inputs and maps the input

sequence to latent representations zi , f θ(x̃1:i) ∈ Z at each time step i.

The estimator, gφ : Z → RM
>0, is a fully-connected network (parameterized by φ) that

estimates the cause-specific conditional intensity functions in (8.2) given the latent represen-

159



Figure 8.4: An illustration of the network architecture. The network parameters that are

updated by each loss function are highlighted in the red dotted lines.

tation of the input sequence at each time step i, that is, λ(x̃1:i) = [λ1(x̃1:i), · · · , λM(x̃1:i)] ,

gφ(zi) = [gφ1 (zi), · · · , gφM(zi)] where gφm(·) denotes the m-th element of gφ(·).

8.4.4 Outcome-Oriented Deep Temporal Phenotyping

Our goal is to identify temporal phenotypes that characterize the underlying disease pro-

gression in terms of what type of outcome events will occur next and when, on the basis of

patients’ pathways. To ensure such a prognostic value, we want the identified phenotypes to

have the following properties: (i) patients’ pathways in the same phenotype need to share a

similar expected future in terms of the type and the timing of the next outcome event. (ii)

the phenotype assigned to a patient needs to be flexibly updated as new observations and/or

outcome events are accrued over time. To this end, we formalize temporal phenotyping as

learning discrete representations that best characterize the TTE processes of next outcome

events throughout the pathways. The key insight here is that learning embeddings (i.e., a

finite number of latent representations available for discrete representation learning) and the

mappings from pathways to these embeddings can be viewed as learning the centroids of each

phenotype (i.e., the representative representations of each phenotype) and the assignments of

the pathways to these phenotypes, respectively.
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In this section, we propose a deep learning method, which we call ODTP, that identifies

outcome-driven temporal phenotypes of clinical pathways under the framework of discrete

representation learning. The proposed method comprises the following components:

• an encoder, f θ, and an estimator, gφ, to flexibly model outcome sequences in the pathways

as introduced in the previous section; and

• an embedding dictionary E = {e(1), · · · , e(K)} that is a set of K embedding vectors and

mappings to those embedding vectors {sni } that together describe the phenotype centroids

and assignment to those phenotypes.

A schematic illustration of ODTP is depicted in Figure 8.4.

Let si ∈ {1, · · · , K} be the phenotype assignment at time step i and E = {e(1), · · · , e(K)}

where e(k) ∈ Z be the embedding dictionary. Then, we define z̄i , e(si) ∈ Z to be the

embedding, a discrete representation of clinical pathways in the latent space. At each time step

i, the discrete representation can be obtained via the following: First, we find an encoding

zi = f θ(x̃1:i) (i.e., a continuous representation in the latent space) of an input pathway x̃1:i

as an output of the encoder. Then, the encoding is mapped to the closest embedding based

on the phenotype assignments si and the embedding dictionary E ; formally, z̄i = e(si) where

sni = arg mink ‖e(k)− zni ‖2
2.

Since the embedding z̄i corresponds to the centroid of the phenotype to which x̃1:i

belongs, we can, finally, estimate the discretized conditional intensity function in (8.2) for

the assigned phenotype as an output of the estimator given the embedding, i.e., ψ(x̃1:i) =

[ψ1(x̃1:i), · · · , ψM(x̃1:i)] , gφ(z̄i).

We optimize the network components in an iterative fashion: i) updating network param-

eters of the encoder and the estimator (θ, φ) and ii) updating phenotype assignments si and

the embedding dictionary E .
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Table 8.1: Comparison of different similarity notions

Methods Similarity Notions

TTE-KM similarity in latent representations tailored for predicting

the type and the timing of the next clinical outcomes

S2S-DCN similarity in latent representations of observation sequences

SurvTree similarity in log-rank statistics of the timing of the next

clinical outcomes

JLCM similarity in model specifications for the longitudinal and

the TTE processes

ODTP similarity in latent representations and log-likelihoods of

(ours) the outcome sequences

8.4.5 Head-head comparison

We compare ODTP with four well-known clustering methods for temporal phenotyping with

different notions of similarity ; see Table 8.1 for the summary. Since the benchmarks are not

directly applicable to clinical pathway data, we adapted each method as described below:

• TTE-KM: the K-means clustering ch7:alg:orithm [216] requires quantification of the

pairwise similarity between clinical pathways that can contain a different number of

observations at irregular time intervals [220]. To address this issue, we first trained the

TTE network with the log-likelihood loss to provide fixed-length and low-dimensional

representations of clinical pathways. Then, we applied the K-means on the trained latent

representations {{zn1:i}I
n

i=1}Nn=1 based on the Euclidean distance.

• S2S-DCN: Following the recent success of Deep Clustering Network (DCN) [167], a

state-of-the-art method that utilizes a deep neural network to cluster complex static

data, we replaced the fully-connected networks of the encoder-decoder structure with a

sequence-to-sequence network as an extension of DCN to incorporate clinical pathways.
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In particular, we implemented the encoder and the decoder using GRU with the same

number of layers and nodes with those of the TTE network, respectively.4

• SurvTree: Survival tree [221] is a decision tree designed for TTE analysis that utilizes

the log-rank statistic as the splitting rule to measure the similarity between two children

nodes (i.e., leaves). Thus, each leaf in the tree naturally becomes a predictive cluster [165]

that contains instances with similar TTE outcomes. To train SurvTree, we model the

next clinical outcomes and the timing as TTE outcomes as defined in Section 8.4.2. The

difference is we only use the latest available observation (i.e., x̃i) as the input covariates

and treat each event type separately (by treating other event types as censored) to handle

the clinical pathways. The temporal phenotypes are identified as the leaves of the trained

survival tree for death due to cancer.

• JLCM: Joint latent class model (JLCM) is a mixture model (thus, a model-based clus-

tering method) that characterizes the heterogeneity in the population by integrating

K homogeneous latent classes each of which shares the same model specifications for

longitudinal and time-to-event processes. We implemented the JLCM in [169] utilizing R

package lcmm5. To avoid issues with collinearity, we first performed Cox regression (as

a validation step), and then, the JLCM is trained based on the retained features having

coefficient p-values < 0.1.

8.5 Results

In this section, we provide a set of experiments using the real-world longitudinal time-to-event

data described in the previous section. All the results are reported using 5 random 64/16/20

4This extension is a representative of the recently proposed deep learning approaches for clustering both

in the static setting [167, 172] and in the longitudinal setting [170, 171]. All these methods are built upon

the same concept of dimensionality reduction using an autoencoder followed by K-means clustering.

5https://cran.r-project.org/web/packages/lcmm
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train/validation/test splits. For the network architecture, we construct the encoder (f θ)

utilizing two-layer GRU [140] with 50 nodes in each layer and the estimator (gφ) utilizing

single-layer fully-connected network with 100 nodes in each layer. The parameters θ, φ

are initialized by Xavier initialization [175] and optimized via Adam optimizer [176] with

learning rate η1 = η2 = 0.001 applying dropout with keep probability 0.6. We fixed the

balancing coefficient α = 0.1 throughout the experiments where the coefficient is selected

among α = {0.001, 0.01, 0.1, 1.0} utilizing grid search that achieves the minimum validation

loss.

8.5.1 Cohesion and Separation

In this section, we evaluate the temporal phenotyping methods with respect to the Silhouette

index (SI) [179] which measures how similar a member is to its own phenotype (cohesion)

compared to members of other phenotypes (separation). To do so, we adopt the Jensen-

Shannon (JS) divergence between TTE distributions on the next outcomes given the clinical

pathways as the similarity measure.6 Due to our parametric assumption, the JS divergence

between two Weibull distributions can be easily computed in a closed-form: JS(λ||λ′) =

1
2

(
λ
λ′

)p
+ 1

2

(
λ′

λ

)p − 1 where λ and λ′ are intensity functions of the two Weibull distributions,

respectively; please refer to [223] for the full derivation. Let Ck =
{
n | snIn = k

}
be a set of

clinical pathways that are assigned to phenotype k. Then, the SI for patient n ∈ Ck can be

formally given as follows:

SI(n) =
b(n)− a(n)

max
(
a(n), b(n)

) (8.4)

a(n) =
1

|Ck| − 1

∑
n,`∈Ck,` 6=n

JS(λ(x̃n1:In)||λ(x̃`1:I )̀) and b(n) = min
k′ 6=k

1

|Ck′|
∑
`∈Ck′

JS(λ(x̃n1:In)||λ(x̃`1:I )̀)

6The JS divergence is a proper distance measure as it satisfies the non-negativity, identity, and symmetry

properties [222].

164



where a(n) and b(n) are the average intra-phenotype divergence and the average nearest-

phenotype divergence, respectively. A high SI indicates better cohesion within a phenotype

– such that the next clinical outcomes of a member in a phenotype are well matched to its

assigned phenotype – and better separation across phenotypes – such that the next clinical

outcomes of a member are poorly matched to its neighboring phenotypes.

Figure 8.5: The Silhouette index performance (mean and 95% confidence interval) with

various K. (Higher the better.)

In Figure 8.5, we reported the averaged SI by varying the number of phenotypes from

2 to 10 based on the clinical guidance of our medical collaborator.7 ODTP significantly

outperformed all the tested benchmarks in terms of the performance metric that assess

both intra-phenotype homogeneity (i.e, cohesion) and inter-phenotype heterogeneity (i.e.,

separation). In particular, our method achieved significant gain over S2S-DCN and the

JLCM whose phenotypes are not associated with predictions on the next clinical outcomes,

7For the JLCM, we instead reported the SI using the training set since the R package lcmm does not

provide latent class assignments for hold-out samples (i.e., the testing set).
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and, thereby, provide little prognostic value. This is because the latent representations in

which S2S-DCN performs clustering are focused on reconstructing the observation sequence

rather than predicting the type and the timing of the next clinical outcomes. Similarly,

the phenotypes identified by JLCM share the same model specifications for the underlying

longitudinal and TTE processes. Moreover, ODTP provided a significant improvement over

TTM-KM and SurvTree that identify phenotypes by associating the latent representations

with predictions on the next clinical outcomes or by splitting phenotypes based on the

log-rank statistic of the next clinical outcomes. The poor performance of TTE-KM comes

from two sources: i) the phenotype assignments and centroids of TTE-KM are obtained in

an ad-hoc fashion and ii) the phenotype centroids do not properly describe the distribution

of the next clinical outcomes. The gain of ODTP over SurvTree comes from the fact that

the predictions of SurvTree on the next clinical outcomes are not very accurate since only a

small number of leaves (equivalent to K) are used for building the tree and the history of

clinical pathways are not fully utilized.

Selecting the Number of Phenotypes. The main challenge of phenotyping is the

fact that, in general, we do not know a priori what the number of phenotypes should be. To

address this, the averaged SI has been commonly utilized as a useful criterion for selecting

the number of phenotypes in a data-driven fashion [224]. That is, the maximum value of the

averaged SI over different K implies the best number of phenotypes. Therefore, we choose

K = 3 in our analysis as it provides the maximum average SI (see Figure 8.5).

8.5.2 Analysis on the Identified Temporal Phenotypes

In this section, we further analyze the three identified temporal phenotypes. For ease

of illustration, we numbered them in order of risk of death due to cancer (the values in

parentheses imply the percentage of clinical pathways – at any time step i.e., {{x̃n1:i}I
n

i=1}Nn=1 –

assigned to each phenotype):
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(a) S2S-DCN

(b) SurvTree

(c) ODTP (ours)

Figure 8.6: Comparison of distributions of the next clinical outcomes in terms of Kaplan-Meier

curves for each type.

• Phenotype 1: A low-risk group (66.02%). Patients assigned to this phenotype have a

small probability of developing any adverse clinical outcomes in the near future.

• Phenotype 2: An intermediate-risk group (26.13%). Patients assigned to this phenotype

have an intermediate probability of death due to cancer or other causes but have a higher

chance of developing other tumor or recurrence in the near future compared to patients in

Phenotype 3.
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• Phenotype 3: A high-risk group (7.85%). Patients assigned to this phenotype have the

highest chance of dying due to cancer or dying due to other causes.

Each patient can stay in one of the three identified phenotypes throughout her pathway and

the phenotype assignment may change as new longitudinal observations or clinical outcomes

are accrued over time.

8.5.2.1 Clinical Outcome Perspective

We now visualize how the identified phenotypes have heterogeneous clinical outcomes utilizing

Kaplan-Meier (KM) curves on the ground truth time to the next outcome event for each

event type (treating other event types as censoring) in Figure 8.6c. It is worth highlighting

that the type and the timing of the next clinical outcomes are not available when phenotypes

are assigned. As can be seen in Figure 8.6c, the phenotypes identified by ODTP have very

heterogeneous clinical outcomes especially with respect to the time to death due to cancer or

death due to other causes. Moreover, Phenotype 2 and Phenotype 3 have distinguishable

distributions on the time to other tumor diagnosis or time to recurrence such that patients who

are assigned to Phenotype 2 have a higher chance of developing other tumors or recurrence.

Contrarily, Figure 8.6a and 8.6b show that phenotypes identified based on the traditional

notion of similarity do not properly group pathways based on the next clinical outcomes.

More specifically, S2S-DCN finds phenotypes that have distributions on the time to outcome

events that are indistinguishable across different phenotypes, except for the distribution on

the time to other tumor diagnosis. Similarly, phenotypes that are identified by SurvTree are

less heterogeneous than those identified by our method especially for time to death due to

other causes or time to other tumor diagnosis. To summarize, traditional notions of similarity

result in phenotyping often assigns heterogeneous phenotypes even for patients with similar

clinical outcomes. This results in a lack of common prognosis in each phenotype which may

mystify the understanding of the underlying disease progression [163, 164].
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(a) Transitions between Phenotype 1 and 2 (b) Transitions between Phenotype 2 and 3

Figure 8.7: Comparisons of the transitions between identified phenotypes based on the current

observation (x-axis) given the previous observation (y-axis) with respect to change in the

conditional intensities for death from cancer. The value (node size) is averaged over all the

observed transitions and the color indicates whether the transition is towards higher risk

phenotypes (blue) or towards lower risk phenotypes (orange).

8.5.2.2 Longitudinal Observation Perspective

To further investigate what makes ODTP change phenotype assignments under the context

of clinical pathways, we provide a scatter plot in Figure 8.7 that illustrates what the new

(current) observations (i.e., x̃i) and the previous observations (i.e., x̃i−1) were when phenotype

transitions were triggered. Here, larger points indicate a higher averaged value of the difference

between conditional intensity functions at the previous and those at the current observations

when the corresponding phenotype transitions are made. Formally, this can be quantified as

the following:
1

|Sp1,p2|
∑

(n,i)∈Sp1,p2

λm(x̃n1:i)− λm(x̃n1:i−1)

where Sp1,p2 = {(n, i)| sni−1 = p1, s
n
i = p2} denotes a set of clinical pathway n and time step i

pairs at which phenotype transitions from Phenotype p1 to Phenotype p2 are made. In Fig
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8.7, we select 10 (previous and current) observation pairs which give the biggest difference

for the corresponding phenotype transitions.

As seen in Figure 8.7, transitions from one phenotype to another phenotype behave

differently based on previous and current observations, and which phenotype a patient

currently belongs to. We make the following observations from Figure 8.7:

• Transitions from Phenotype 1 to Phenotype 2: Recurrence of breast cancer, addi-

tional tumor diagnoses – cancer in digestive organs (TUMOR-G2), other cancers (TUMOR-

G7) –, and pathology reports (PATH-R.) are strong indicators for recurrence of cancer or

additional tumor. Therefore, these observations significantly increased the risk of death

due to cancer and triggered the transition to the higher risk group i.e., Phenotype 2.

• Transitions from Phenotype 2 to Phenotype 1: Pathology report (PATH-R.) or

breast surgery following chemotherapy (CT) decreased the risk of death due to cancer

for patients in Phenotype 2 as it reflects the patient is under neoadjuvant treatments.

Moreover, additional tumor diagnosis on skin cancer (TUMOR-G4) also decreased the risk

as it is well-known as one of the least fatal cancers [225].

• Transitions from Phenotype 2 to Phenotype 3: Recurrence of breast cancer, addi-

tional tumor diagnoses in the lung (TUMOR-G3), and consecutive hormone therapies

(HT) were the top three driving factors that significantly increased the risk of death due to

cancer. This is consistent with domain knowledge that the recurrence of breast cancer may

increase the mortality rate due to cancer [226] and that lung cancer is by far the leading

cause of cancer death [225]. Moreover, we expect that consecutive hormone therapies after

initial treatment increased the risk as this implies new tumor diagnosis or recurrence.

• Transition from Phenotype 3 to Phenotype 2: Contrarily, recurrence of breast

cancer, diagnosis of skin cancer (TUMOR-G4), and diagnosis of benign tumor or carcinoma

in situ (TUMOR-G8) decreased the risk of death due to cancer. We presume that for
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(a) A patient died of cancer. (b) A patient right-censored.

Figure 8.8: An illustration of run-time examples of ODTP on two representative patients:

(a) a patient who died of cancer and (b) a patient who is right-censored. We displayed (top)

time-varying observations, (middle) phenotype assignments, and (bottom) risk predictions

– in terms of CIFs in (8.5) for the clinical outcomes of our interest – that are dynamically

updated as ODTP collects more observations along the pathways. Here, gray solid lines,

yellow dotted lines, and stars indicate times at which new observations are recorded, the

patient is censored, and an event occurred, respectively.

the patients in Phenotype 3 – who are at very high risk of death due to cancer – such

observations are less fatal compared to what would have been observed otherwise.

8.5.3 How Does the Phenotype Assignment Change over Time?

In this experiment, we demonstrate a run-time example of how ODTP flexibly updates the

phenotype assignment of a patient as new observations are collected over time. Figure 8.8
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illustrates two representative patients – (a) a patient who has died from cancer and (b) a

patient who was right-censored – with respect to the following components: the pathway, the

corresponding phenotypes assigned by ODTP over time with comparison to that of S2S-DCN,

and the predicted risks of the next clinical outcome. The predicted risk is given in terms of

cumulative incidence function, defined based on (8.2) as follows:

Fm(s|x̃1:i) =

(
λm(x̃1:i)

λ(x̃1:i)

)p
(1− exp(−(λm(x̃1:i)s)

p)) (8.5)

where Fm(s|x̃1:i) denotes the probability of next clinical outcome with type m occurs before

or at time s given the input pathway up to time step i. It is worth highlighting that ODTP re-

issues risk predictions that start from 0 due to the fact that this patient is alive at the time

when a new observation is collected.

There are two main points to be highlighted in Figure 8.8. First, ODTP provides

phenotype assignments that are well-associated with the risk predictions on the next clinical

outcomes. For Patient A, ODTP changed the phenotype assignment from Phenotype 1

to Phenotype 2 on around Day 750 (since diagnosis) because she had an increased risk of

recurrence which indeed occurred on Day 781. Furthermore, as a response to the recurrence

of breast cancer, this patient is reassigned to Phenotype 3 where she remains until she

died due to cancer on Day 1243. For Patient B, the risk predictions on the next clinical

outcomes were low and, thus, this patient remained in Phenotype 1 and Phenotype 2 until

she was censored without having any adverse clinical outcomes. In contrast, S2S-DCN issued

inconsistent phenotype assignments and thus frequent transitions across different phenotypes

throughout the representative patients’ pathways. Second, ODTP accurately predicts the

next clinical outcomes by capturing the influence of static covariates and by incorporating

new observations in a dynamic fashion. Particularly, the risk predictions on the next clinical

outcomes (especially death due to cancer and recurrence) for Patient A, who died from cancer

on Day 1243, were consistently higher (with a steeper slope) than those for Patient B, who

were right-censored on Day 1179. This is because Patient A had more risk factors such as

higher age, higher grade, HER2 negative – which is well-known for its difficulty in treating
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cancer with hormone therapy drugs [227, 228] – and comorbidity history of the previous

malignant neoplasm. Moreover, our method significantly increased the risk predictions for

death due to cancer as a response to the recurrence that occurred to Patient A.

8.6 Conclusion

In this work, we develop a deep learning approach to outcome-oriented phenotyping of clinical

pathways with variable-length and irregularly-spaced observations, and recurrent and terminal

clinical outcomes of interests. Our method models what type of clinical outcomes will occur

and when throughout the clinical pathways utilizing an RNN. Identification of outcome-

oriented temporal phenotypes is carried out by learning the discrete representations that best

characterize the clinical outcomes based on the proposed novel loss functions. Throughout

experiments on real-world data, we show that the proposed method identifies phenotypes that

are strongly associated with future clinical outcomes and achieves superior performance with

respect to homogeneity and heterogeneity measures compared to the benchmarks. Moreover,

our posthoc analyses find driving factors of transitions between the identified phenotypes

that can be translated into actionable information for better clinical decision-making.

While we provided a single clinical example, using the UK’s National Cancer Registry

data, our work is applicable and generalizable to other clinical datasets, which we leave as

future work, where temporal phenotyping is important for understanding chronic diseases

such as cancer.
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