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ABSTRACT OF THE DISSERTATION

Euler Equations on 2D Singular Domains

by

Zonglin Han

Doctor of Philosophy in Mathematics

University of California San Diego, 2023

Professor Andrej Zlatoš, Chair

The Euler equations are a fundamental yet celebrated set of mathematical equations

that describe the motions of inviscid, incompressible fluid on planar domains. They play a

critical role in various fields of study including fluid dynamics, aerodynamics, hydrodynamics

and so on. Though it was first written out in 1755, there are still many open questions

regarding to this rich system, including some fundamental questions of Euler equations on

singular domains. Unlike existence of weak solutions that were proven on considerably

general domains, uniqueness of such solutions are still quite open on singular domains, even

on convex domains. In this thesis, we will show uniqueness of weak solutions on singular

domains given two different assumptions of initial vorticity ω0 ∈ L∞:

1. ω0 is constant near the boundary.
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2. ω0 is constant near the boundary and has a sign (non-positive or non-negative).

Under the first assumption, the previous best uniqueness results can only be applied

to C1,1 domains except at finitely many corners with interior angles less than π. Here, we will

extend the result to fairly general singular domains which are only slightly more restrictive

than the exclusion of corners with angles larger than π, thus including all convex domains.

We derive this by showing that the Euler particle trajectories cannot reach the boundary in

finite time and hence the vorticity cannot be created by the boundary. We will also show

that if the given geometric condition is not satisfied, then we can construct a domain and a

bounded initial vorticity such that some particle could reach the boundary in finite time.

Under the second assumption with the sign condition, the previous best uniqueness

result can only be applied to C1,1 domains with finitely many corners with interior angels

larger than π
2
. Here, we will extend the result to a class of general singular open bounded

simply connected domains, which can be possibly nowhere C1 and there are no restrictions

on the size of each angle.
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Chapter 1

Introduction

Euler equations model the flow of an inviscid, incompressible fluid with constant

density. Mathematically, for any open domain Ω ⊆ Rd as well as positive time t > 0, these

motions are modeled by

∂tu+ (u · ∇)u = −∇p, (1.1)

∇ · u = 0, (1.2)

with u the fluid velocity and p its pressure. We also endow the domains with impermeable

boundaries, as well as the no-flow (or slip) boundary condition, which is

u · n = 0 (1.3)

on R+ × ∂Ω, with n the unit outer normal to Ω. In this thesis, we will focus on planar

spatial domains (d = 2), on which the Euler equations can be reformulated as the active

scalar equation (vorticity form):

∂tω + u · ∇ω = 0 (1.4)
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on R+ × Ω ⊆ R+ × R2, with

ω := ∇× u = ∂x1u2 − ∂x2u1

be the vorticity of the flow. This conveniently removes the pressure from the system, and

one can now also find the (divergence-free) velocity from the vorticity via the Biot-Savart

law

u = ∇⊥∆−1ω, (1.5)

with ∆ the Dirichlet Laplacian on Ω and ∇⊥ψ := (−∂x2ψ, ∂x1ψ).

This system was widely studied since 1755 when Euler first formulated it. Well-

posedness is also known on smooth domains but is still open on more singular ones. The

focus of this thesis is to show uniqueness of weak solutions on fairly large class of singular

domains. In this chapter, we first briefly review previous existence and uniqueness results on

domains with different kinds of singular boundaries. Then, we will introduce some definitions

and tools from complex analysis. Lastly we will show existence and uniqueness of solutions

on smooth domains, as well as existence of weak solutions on open bounded simply connected

domains.

1.1 Previous Existence and Uniqueness Results

Well-posedness of the equations (1.1)-(1.2) has been the focus of many works for many

decades. In 1933, Wolibner [32] and Hölder [12] showed global well-posedness for strong

solutions on bounded domains with smooth boundaries. After that, due to the property

of L∞ norm of ω0 in the equation (1.4), Yudovich proved global well-posedness for weak

solutions with ω0 ∈ L∞(Ω), and we say such solutions are in the Yudovich class (see also

[1, 21, 23, 28]). Existence of global weak solutions can also be proved for ω0 ∈ Lp(Ω) (see

[7]). However, all these results rely on the fact that the boundary of the domain Ω belongs

2



to C1,1 or better.

For more singular domains, global existence of weak solutions has been shown to hold

on convex domains by Taylor for ω0 ∈ Lp(Ω) [27]. Then Gérard-Varet and Lacave improved

the result to a class of very general domains including all open bounded simply connected

domains [9, 10]. We will prove existence of weak solutions in the Yudovich class on open

bounded simply connected domains later in this section by following the idea from [9]. On

the other hand, there are fewer results for uniqueness of solutions on domains with less

regular boundaries. Most uniqueness results require the velocity to be close to Lipschitz,

and sufficient smoothness of ∂Ω is typically needed to obtain a priori estimates on the Riesz

transform ∇∇⊥∆−1ω = ∇u. For example, Yudovich used Calderón-Zygmund inequalities

∥∇u(t, ·)∥Lp ≤ Cp∥ω(t, ·)∥Lp ,

with some uniform C for all p ∈ [2,∞), and the log-Lipschitz estimate

sup
x,y∈Ω

|u(t, x)− u(t, y)|
|x− y|max{1,− ln |x− y|}

≤ C∥ω(t, ·)∥L∞ (1.6)

(see, e.g., [23]). We will also prove the log-Lipschitz estimate for velocity on smooth domains

later in this chapter.

Nevertheless, on less regular domains these estimates no longer hold. Jerison and

Kenig showed that ∇u may not even be integrable on some C1 domains [13]. Uniqueness

results on non-C1,1 domains are only proved on piecewise C1,1 domains with possibly finitely

many acute corners. Bardos, Di Plinio, and Temam [2] first showed it on rectangles, and

then Lacave, Miot, and Wang [18] showed the uniqueness result on domains which are C2,γ,

with γ > 0, except at finitely many acute corners. Later Di Plinio and Temam [6] further

improved the results to domains that are C1,1 except at finitely many acute corners.

On general piecewise C1,1 domains, the velocity is not close to Lipschitz near the

corners with angles greater than π
2
even for initially smooth ω. Nevertheless Lacave and
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Zlatǒs ([16],[19]) recently showed the uniqueness of weak solutions on piecewise C1,1 domains

with finitely many corners with possibly non-acute angles by adding further assumptions on

initial vorticity. The key idea here is to establish uniqueness for solutions remaining forever

constant near ∂Ω where the velocity is not close to Lipschitz. For smooth domains, any

particle trajectory starting from inside of the domain Ω cannot reach ∂Ω in finite time since

the particle cannot reach the boundary faster than double-exponentially, which also implies

that the solution will remain constant near the boundary in time if it is initially. It turns

out that this extends to piecewise C1,1 domains with finite obtuse or reflex angles, which

Lacave ([16]) showed when also ω0 is non-negative (or non-positive) besides being constant

near ∂Ω. In this setting, the weak solution is unique and will remain constant near the

boundary. Later on, Lacave and Zlatǒs ([19]) showed the same result for ∂Ω being C1,1

except at finitely many corners with angles less than π and without the sign condition on ω0.

For both papers, the Euler particle trajectories cannot approach the boundary faster than

double-exponentially and will remain inside Ω for all t > 0. Moreover, for the latter one, the

authors also constructed a counter example showing that the particle trajectories can reach

the boundary in finite time even if ∂Ω is smooth except at a single corner with an arbitrary

angle from (π, 2π). However, it still remains open whether non-Lagrangian solutions exist

or not on these or other singular domains. Based on the results of [16] and [19], it is natural

to ask the following questions:

1. Without the sign condition on ω0, can we prove uniqueness of weak solutions on convex

domains, or on even more general domains with no angles larger than π?

2. With the sign condition on ω0, can we prove uniqueness of weak solutions on domains

with corners with arbitrary angles from (0, 2π)?

In this thesis, we will provide positive answers for both questions.
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1.2 Trajectory Approach andWell-posedness on Smooth

Domains

We consider solutions to the Euler equations on Ω from the Yudovich class

{
(ω, u) ∈ L∞ ((0,∞);L∞(Ω)× L2(Ω)

) ∣∣ ω = ∇× u, and (1.2)–(1.3) hold weakly
}
,

where the weak form of (1.2)–(1.3) is

∫
Ω

u(t, ·) · ∇h dx = 0 ∀h ∈ H1
loc(Ω) with ∇h ∈ L2(Ω), (1.7)

for almost all t > 0 (see [9, 10]). ω and u are equivalently related by the Biot-Savart law

(1.5), which can be expressed as

u(t, x) =

∫
Ω

KΩ(x, y)ω(t, y)dy (1.8)

where KΩ = ∇⊥
xGΩ and GΩ(x, y) is the Green’s function for the Dirichlet Laplacian on

domain Ω. Since u is uniquely determined by ω, we will simply say that ω is from the

Yudovich class. We say that ω from the Yudovich class is a weak solution to the Euler

equations on Ω, on time interval (0, T ) and with initial condition ω0 ∈ L∞(Ω), if

∫ T

0

∫
Ω

ω (∂tφ+ u · ∇φ) dxdt = −
∫
Ω

ω0φ(0, ·) dx ∀φ ∈ C∞
0 ([0, T )× Ω) . (1.9)

This is obviously the definition of weak solutions to the transport equation (1.4), but it is

also equivalent to the relevant weak velocity formulation of the Euler equations on Ω (see

[10, Remark 1.2]). When T = ∞, we call such solutions global.

Another way to characterize the system is to consider the particle trajectories Xx
t .
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For any divergence free velocity field u(t, x), we define the particle trajectory Xx
t as

d

dt
Xx

t = u(t,Xx
t ) and Xx

0 = x, (1.10)

on an interval (0, tx) such that

tx := sup{t > 0 |Xx
s ∈ Ω for all s ∈ (0, t)}. (1.11)

Here if the particle starting at x ∈ Ω reaches the boundary in finite time, then tx is the

first such time. Notice that since (1.4) is a transport equation, it is also natural to consider

whether the general weak solution is transported by u. In other words, we want to see if

ω(t,Xx
t ) = ω0(x), (1.12)

for a.e. t ∈ (0,∞) and a.e. x ∈ Ω such that tx > t. This will be shown to be true for general

open domains in Chapter 2 (Lemma 2.3.1), but that does not a priori exclude the possibility

of vorticity creation and depletion on ∂Ω unless tx = ∞ for a.e. x ∈ Ω (then ∇·u ≡ 0 shows

that |Ω \ {Xx
t |x ∈ Ω and tx > t}| = 0). If both these properties hold, so that ω(t, ·) is the

push-forward of ω0 via Xx
t for each t ∈ (0,∞), we call such ω a Lagrangian solution.

For the classical approach, in order to make the trajectories well-defined, we require

the velocity to be at least log-Lipschitz in space. In fact, assuming ω0 ∈ L∞ will ensure

this level of regularity of u on smooth domains. Furthermore, we can derive at most double-

exponential approach rate for the trajectories, uniqueness of weak solutions, as well as that

the vorticity is transported by the velocity. This approach uses the estimates on the Dirichlet

Green’s function and its derivatives. We will present the outline of the proof for log-Lipschitz

property of velocity on smooth domains from Chapter 2 in [23], and we will prove it using

this idea and complex analysis in later sections. First we need to state some estimates on

the Dirichlet Green’s function on smooth domains:
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Proposition 1.2.1. Let Ω ⊂ R2 be a domain with smooth boundary, then the Dirichlet

Green’s function GΩ(x, y), with x ̸= y, can be written as

GΩ(x, y) =
1

2π
log |x− y|+ h(x, y), (1.13)

where h(x, y) is a harmonic function such that for each y ∈ Ω, we have

∆xh = 0 on Ω, h|x∈∂Ω = − 1

2π
log |x− y|. (1.14)

Moreover we have that GΩ(x, y) is symmetric x, y ∈ Ω and equals zero if either x or y is on

∂Ω. Lastly there exists a constant C depending only on Ω such that the following estimates

on GΩ and its derivatives hold:

|GΩ(x, y)| ≤ C (| log |x− y||+ 1) (1.15)

|∇GΩ(x, y)| ≤ C
1

|x− y|
(1.16)

|∇2GΩ(x, y)| ≤ C
1

|x− y|2
(1.17)

We will skip the proof for these classical estimates, and now we are ready to show

log-Lipschitz continuity of u when ω0 ∈ L∞. Define

ϕ(r) =


r(1− log r) if 0 ≤ r < 1

1 if r ≥ 1

(1.18)

Theorem 1.2.2. If Ω ⊂ R2 is a domain with smooth boundary, ω ∈ L∞([0,∞)× Ω) and u

is generated by ω via (1.8), then there exists a C > 0 which depends only on Ω such that for

any x, x′ ∈ Ω and t > 0, we have

|u(t, x)− u(t, x′)| ≤ C||ω||L∞ϕ(|x− x′|) (1.19)
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The idea from [23] is that by using the property of ω0 ∈ L∞ and (1.16), it is enough

to show that ∫
Ω

|KΩ(x, y)−KΩ(x
′, y)|dy ≤ Cϕ(|x− x′|). (1.20)

where r = |x − x′| < 1. The integration is divided into two parts by defining A = {y ∈

Ω | |x − y| < 2r}, A1 = A ∩ Ω and A2 = Ac ∩ Ω. The integration over A1 is bounded by

CΩr using the triangle inequality and (1.16). The integration over A2 uses the Mean Value

Theorem and observing that for any point x′′ on the segment connecting x and x′, we have

|x′′−y| ≥ 1
2
|x−y| for all y ∈ Ω. Then using (1.17) and a direct computation yield the result.

However, here we assumed that the line segment connecting x and x′ is totally contained in

Ω. This can be fixed by using a curve, whose length is less than C ′|x − x′| and C ′ doesn’t

depend on the points because of the smoothness of the boundary. Instead of showing this

with more detail, we will prove it in the next section using the Riemann Mapping.

Now we want to show existence and uniqueness of solutions on smooth domains. In

fact we will actually show existence and uniqueness of solutions to the following system,

which is Lagrangian formulation of the Euler equations:

dXx
t

dt
= u(t,Xx

t ), X0
x = x (1.21)

ω(x, t) = ω0((X
x
t )

−1) (1.22)

u(t, x) =

∫
Ω

KΩ(x, y)ω(t, y)dy (1.23)

Theorem 1.2.3. If Ω is smooth and ω0 ∈ L∞(Ω), then there exists a unique triple (ω,u,Xx
t )

satisfying (1.21),(1.22) and (1.23).

Before proving this theorem, we first need to state an ODE result that guarantees

global existence and uniqueness of the Cauchy problem for log-Lipschitz functions:
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Lemma 1.2.4. Let Ω ⊂ R2 be a bounded smooth domain. Assume that the velocity field

b(t, x) satisfies

b ∈ L∞([0,∞)× Ω̄), |b(t, x)− b(t, y)| ≤ Cϕ(|x− y|), b(t, x) · n|∂Ω = 0, ∀t > 0, ∀x, y ∈ Ω

(1.24)

where ϕ is defined in (1.18) and n is the unit normal to ∂Ω at point x. Then the problem

dx

dt
= b(t, x), x(0) = x0 (1.25)

has a unique global solution ∀x0 ∈ Ω. Moreover, if x0 ∈ Ω, then x(t) ∈ Ω for all t ≥ 0.

The proof of this ODE result will be skipped here but could be find in [21]. Now we

would like to show Hölder continuity on the trajectories generated by log-Lipschitz velocities.

Lemma 1.2.5. Suppose Ω ⊂ R2 is a smooth bounded domain, and assume that Xx
t is

generated by a log-Lipschitz vector field b(x, t) satisfying the assumptions of Lemma 1.2.4.

Then for every x, y ∈ Ω and t ≥ 0 with |x− y|, |Xx
t −Xy

t | < 1
2
, we have

|x− y|eCt ≤ |Xx
t −Xy

t | ≤ |x− y|e−Ct

, (1.26)

where C only depends on the constant C from the (1.19).

Proof. For any fixed x, y ∈ Ω, let F (t) = |Xx
t −Xy

t |. Then we have

∣∣∣∣ ddtF (t)2
∣∣∣∣ = 2|(Xx

t −Xy
t ) · (b(t,Xx

t )− b(t,Xy
t ))|

≤ 2CF (t)ϕ(F (t)),

which yields (notice that F (t) ≤ 1
2
)

|F ′(t)| ≤ CF (t) log
1

F (t)
,

9



and this leads to

eCt logF (0) ≤ logF (t) ≤ e−Ct logF (0).

Taking the exponential and using the definition of F (t) finishes the proof.

Note that the same inequality could be applied to (Xx
t )

−1. Lastly before proving

Theorem 1.2.3, we need to prove the measure preserving property of trajectories generated

by log-Lipschitz velocities. If the velocity u is smooth, let X(t, x) := Xx
t be the trajectories

generated by u. The Jacobian of x 7→ X(t, x) is J(t, x) = det(∂Xi(t,x)
∂xj

)i,j=1,2, where Xi(t, x)

is the i-th coordinate of X(t, x). The measure preserving property is equivalent to dJ
dt

= 0

since J(0, x) = 1. Define the matrix H as Hij(t, x) =
∂Xi(t,x)

∂xj
, and we have

dHij

dt
=

2∑
k=1

∂ui
∂xk

∂Xk(t, x)

∂xj
(1.27)

Let A be any 2× 2 matrix, and the minors {Mij} of A are just {A3−i,3−j}. Hence we have

detA =
2∑

j=1

(−1)i+jA3−i,3−jAij,

and

∂

∂Aij

detA = (−1)i+jA3−i,3−j.

Combining these we have

d

dt
(detA) =

2∑
i,j=1

(−1)i+jA3−i,3−j
dAij

dt
. (1.28)

Moreover, recall that we can write the elements of A−1 as

(A−1)ij =
1

detA
(−1)i+jA3−j,3−i,

10



which gives us
2∑

j=1

(−1)i+jA3−i,3−jAkj = δik detA (1.29)

where δik = 1 if i = k and 0 otherwise. Apply (1.27), (1.28) and (1.29) to A = H gives us

dJ

dt
=

2∑
i,j=1

(−1)i+jA3−i,3−j
d

dt
(Hij) =

∑
i,j=1

∂ui
∂xj

Jδij = J(∇ · u) = 0.

This shows the measure preserving property for trajectory generated by smooth velocity.

Now we will show this property for trajectories generated by log-Lipschitz velocities.

Lemma 1.2.6. Let Ω ⊂ R2 be a bounded smooth domain and b(t, x) satisfy 1.2.4 and be

divergence free in distributional sense. Then the flow map X(t, x) generated by b is measure

preserving on Ω.

Proof. From Lemma 1.2.4 and Lemma 1.2.5, we see that X(t, x) is bijective and Hölder

continuous, hence it suffices to show X is measure preserving on any open ball inside Ω. Let

R ⊂ Ω be an open ball and let T > 0. By Lemma 1.2.4, there exists a d > 0 such that

dist(∂Ω, X(t, R)) ≥ d for all 0 ≤ t ≤ T . Now for any δ < d
2
, define

Rδ := {x ∈ Ω | dist(x,R) < δ} ⊂ Ω.

Let η(x) ∈ C∞
0 (R2) be non-negative with η(x) = 0 for x /∈ D and

∫
R2 η(x) = 1, as

well as we let ηϵ(x) = 1
ϵ2
η(x

ϵ
). Then for any ϵ < d

2
, we define the smooth divergence free

function bϵ = b ∗ ηϵ such that the flow map Xϵ(t, x) generated by bϵ. Since b is log-Lipschitz

and |b(t, x)− bϵ(t, x)| ≤
∫
R2 |b(t, x)− b(t, y)|ηϵ(x−y

ϵ
)dy ≤ ϕ(ϵ), we have

|X(t, x)−Xϵ(t, x)| ≤
∫ t

0

|b(s,X(s, x))− b(s,Xϵ(s, x))|+ |b(s,Xϵ(s, x))− bϵ(s,Xϵ(s, x))|ds

≤ C

(∫ t

0

ϕ
(
|X(s, x)−Xϵ(s, x)|

)
ds+ ϕ(ϵ)t

)
.

11



Now for 0 ≤ t ≤ T , let g(t) be a function such that g(0) = 0 and satisfying

g′(t) = C
(
ϕ(g(t)) + ϕ(ϵ)

)
,

and let h(t) be such that h(0) = Cϕ(ϵ)T and solving

h′(t) = Cϕ(h(t)).

Then we get |X(t, x) − Xϵ(t, x)| ≤ g(t) ≤ h(t), and if we choose ϵ small enough to make

h(t) < 1 for all t ∈ [0, T ], we see that

h(t) = h(0)exp(−Ct) exp(1− exp(−Ct)).

This and ϕ(ϵ) < ϵ0.5 for ϵ < 1 implies that if we let βT := exp(−CT )
2

> 0, then we have (for ϵ

small enough such that CTϵ0.5 < 1)

|X(t, x)−Xϵ(t, x)| ≤
(
CTϕ(ϵ)

)exp(−Ct)

exp(1− exp(−Ct)) ≤ CT ϵ
βT , (1.30)

which also ensures that when we choose ϵ small enough with CT ϵ
βT < d

2
so that Xϵ(t, x) will

not exit Ω up to time T for all x ∈ Rδ, hence the above arguments make sense. Now let

f ∈ C∞
0 (Rδ) such that ||∇f ||L∞ ≤ C ′ 1

δ
and f(x) = 1 for x ∈ R. By the definition of f and

the measure preserving property of Xϵ (since it is generated by a smooth velocity), we have

for all 0 ≤ t ≤ T ,

|X−1(t, R)| =
∫
Ω

1R(X(t, x))dx ≤
∫
Ω

f(X(t, x))dx ≤
∫
Ω

1Rδ
(X(t, x))dx = |X−1(t, Rδ)|,

(1.31)

|R| = |X−1
ϵ (t, R)| ≤

∫
Ω

f(Xϵ(t, x))dx ≤ |X−1
ϵ (t, Rδ)| = |Rδ| (1.32)

12



and

|
∫
Ω

f(X(t, x))− f(Xϵ(t, x))dx| ≤ ||∇f ||L∞|Ω| sup
x∈Rδ,0≤t≤T

|X(t, x)−Xϵ(t, x)| ≤ CT,Ω
1

δ
ϵβT .

(1.33)

Hence by taking ϵ < δ
2

βT , letting δ to 0, and using the last three inequalities will give

us |X−1(t, R)| ≤ |R|. A similar argument for X−1(t, R) gives us |X(t, R)| ≤ |R|. Combining

these two inequalities and the fact that X(t, ·) is injective on R, we have |X−1(t, R)| = |R| =

|X(t, R)| for all open balls R ⊂ Ω, hence it is also true for all open sets R ⊂ Ω, which implies

that the flow map is measure preserving.

Now we are ready to prove existence and uniqueness of solutions on smooth domains.

Proof of Theorem 1.2.3. Given a bounded initial vorticity ω0, we define an iterative sequence

of approximations as

un(t, x) =

∫
Ω

KΩ(x, y)ω
n−1(t, y)dy, (1.34)

d

dt
Xn(t, x) = un(t,Xn(t, x)), (1.35)

ωn(t, x) = ω0((X
n)−1(t, x)) (1.36)

Notice that these are well-defined because of Lemma 1.2.4 and ||ωn(t)||L∞ = ||ω0||L∞ . More-

over Lemma 1.2.5 implies that all Xn(t, x) are also Hölder continuous and the constant C

in Lemma 1.2.5 is uniform for all n (but depends on Ω and ||ω0||L∞). This implies that for

every T > 0, we have

||Xn(t, ·)||CαT ([0,T ]×Ω̄) ≤ CT (1.37)

for some αT , CT > 0 and independent of n. The Arzela-Ascoli Theorem implies (by taking

a subsequence, but we will keep using the same index for simplicity of the notations) that

Xn(t, x) convergences uniformly to a function X(t, x) ∈ CαT ([0, T ]× Ω̄), which also implies

X(t, x) ∈ Ω for all x, t. By the Dominated Convergence Theorem, uniform convergence and

measure preserving lemma 1.2.6, X(t, ·) is then also measure preserving for all t > 0.

13



To show it is surjective, fix 0 ≤ t ≤ T , y ∈ Ω and d = dist(y,∂Ω)
2

. Choose y1 ∈ B(y, d)

such that X(t, x1) = y1 with x1 ∈ Ω, which is possible by the measure preserving property.

Now let d′ = dist(x1,∂Ω)
2

. For each n > 1, we choose yn such that |y − yn| < ( d′

π2n2 )
exp(−Ct)

with C from lemma 1.2.5, xn ∈ Ω and X(t, xn) = yn. This is possible again by the measure

preserving property. We see that there exists a subsequence of xn such that it converges

to x ∈ Ω (by the first inequality in Lemma 1.2.5) and the continuity of X(t, ·) implies

X(t, x) = y. Hence X(t, x) is a bijection on Ω and its inverse X−1(t, x) is well defined,

measure preserving and satisfying Lemma 1.2.5. Thus we can define

ω(t, x) = ω0(X
−1(t, x)), (1.38)

u(t, x) =

∫
Ω

KΩ(x, y)ω(t, y)dy. (1.39)

If we can prove uniform convergence of un → u on [0, T ]×Ω, we will conclude the existence

claim. Define ynt (z) = Xn (t,X−1(t, z)) for z ∈ Ω, which is measure preserving. Given ϵ > 0,

choose N such that if n > N , we have |Xn(t, x)−X(t, x)| < δ for all (t, x) ∈ [0, T ]× Ω for

some δ < 1 chosen later. Hence we have for all z ∈ Ω, |ynt (z) − z| < δ for such n for all

0 ≤ t ≤ T . By the measure preserving property, we have for all x ∈ Ω,

|u(t, x)− un(t, x)| =
∣∣∣∣ ∫

Ω

(
KΩ(x,X(t, z))−KΩ(x,X

n(t, z))
)
ω0(z)dz

∣∣∣∣
≤ ||ω0||L∞

∫
Ω

∣∣∣KΩ(x, z)−KΩ(x, y
n
t (z))

∣∣∣dz
Now since Ω is smooth, then there exists a CΩ > 0 such that every x, y ∈ Ω can be joined

by a smooth curve with the length of curve lx,y satisfying

lx,y ≤ CΩ|x− y|, (1.40)
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if |x− y| ≤ 1
CΩ

. Then by (1.16) and triangle inequality

∫
B(x,(CΩ+1)δ)∩Ω

∣∣∣KΩ(x, z)−KΩ(x, y
n
t (z))

∣∣∣dz ≤ 2C

∫
B(x,2(CΩ+1)δ)

1

|x− z|
dz = 8πC(CΩ + 1)δ.

For the integration over rest of Ω, by (1.17), (1.40) and Mean Value Theorem we have

∫
B(x,(CΩ+1)δ)c∩Ω

∣∣∣KΩ(x, z)−KΩ(x, y
n
t (z))

∣∣∣dz ≤ CΩδ

∫
Bc(x,(CΩ+1)δ)∩Ω

|∇KΩ(x, p(z))|dz

≤ C ′
Ωδ

∫
Bc(x,(CΩ+1)δ)∩Ω

1

|x− p(z)|2
dz

≤ C ′
Ωδ

∫
Bc(x,δ)∩Ω

1

|x− z|2
dz

≤ C ′′
Ωδ log(

1

δ
)

where p(z) is some point on the curve connecting z and ynt (z) satisfying (1.40). Lastly, choose

δ < 1
CΩ

small enough such that |u(t, x)− un(t, x)| doesn’t exceed ϵ.

The argument above shows uniform convergence of un on [0, T ] × Ω, and by taking

n→ ∞ in

Xn(t, x) = x+

∫ t

0

un(s,Xn(s, x))ds,

we have

X(t, x) = x+

∫ t

0

u(s,X(s, x))ds,

which concludes that the triple (ω, u,X) satisfies (1.21)-(1.23).

Now if we get two such triples (ω, u,X) and (ω̄, ū, Y ), define

D(t) =
1

|Ω|

∫
Ω

|X(t, x)− Y (t, x)|dx.
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By Theorem 1.2.2 and the measure preserving property of X, Y, Y −1 in space, we have

|X(t, x)− Y (t, x)| ≤
∫ t

0

∣∣∣u(s,X(s, x)− u(s, Y (s, x)
∣∣∣ds+ ∫ t

0

∣∣∣u(s, Y (s, x)− ū(s, Y (s, x)
∣∣∣ds

≤ C||ω0||L∞

∫ t

0

ϕ(|X(s, x)− Y (s, x)|)ds

+ ||ω0||L∞

∫ t

0

∫
Ω

∣∣∣KΩ(Y (s, x), X(s, y))−KΩ(Y (s, x), Y (s, y))
∣∣∣dyds

= C||ω0||L∞

∫ t

0

ϕ(|X(s, x)− Y (s, x)|)ds

+ ||ω0||L∞

∫ t

0

∫
Ω

∣∣∣KΩ(x,X(s, y))−KΩ(x, Y (s, y))
∣∣∣dyds.

Applying the inequalities above and inequality (1.20) to D(t), we have

D(t) ≤ C

|Ω|
||ω0||L∞

∫ t

0

∫
Ω

ϕ(|X(s, x)− Y (s, x)|)dsdx

+
1

|Ω|
||ω0||L∞

∫ t

0

∫
Ω

∫
Ω

∣∣∣KΩ(x,X(s, y))−KΩ(x, Y (s, y))
∣∣∣dxdyds

≤ 2C||ω0||L∞

|Ω|

∫ t

0

∫
Ω

ϕ(|X(s, x)− Y (s, x)|)dsdx

≤ C(Ω, ||ω0||L∞)

∫ t

0

ϕ(D(s))ds.

Since D(0) = 0 and the inequalities above imply that D ≡ 0 and hence the solution is

unique.

1.3 Riemann Mapping and Boundary Behavior

In this section we will present some complex analysis definitions and results which

will be useful later. A complete introduction and rigorous proofs of this material can be

found in [25] and we will skip the details here.

It is well known that for any open bounded simply connected domain Ω ⊂ R2 ∼= C,

there is a conformal bijection T : Ω → D. We let S to be T −1, and by the Kelllogg-

16



Warschawski Theorem, both can be extended to the boundary continuously. In fact, if the

domain is smooth, then all derivatives of T and S can also be extended to the boundary

continuously.

After using the Riemann mapping and the explicit form of Green’s function on the

disc, the singular part of the Green’s function on original domain ’transfers’ to the derivatives

of the Riemann mapping, for which we have a good representation formula stated later.

Hence by using this trick we may get more accurate estimates near the singular part of

the boundary. In particular, using the Biot-Savart Law and the Dirichlet Green’s function

GD(ξ, z) =
1
2π

ln |ξ−z|
|ξ−z∗||z| for D (with z∗ := z|z|−2 and (a, b)⊥ := (−b, a)), we have

u(t, x) =
1

2π
DT (x)T

∫
Ω

(
T (x)− T (y)

|T (x)− T (y)|2
− T (x)− T (y)∗

|T (x)− T (y)∗|2

)⊥

ω(t, y) dy. (1.41)

Before stating the representation formula, we need to introduce several definitions.

Let Ω ⊂ R2 be any open bounded simply connected Lipschitz domain. For any θ ∈ R, the

unit forward tangent vector to Ω at S(eiθ) ∈ ∂Ω is the unit vector

ν̄T (θ) := lim
ϕ→θ+

S(eiϕ)− S(eiθ)
|S(eiϕ)− S(eiθ)|

, (1.42)

provided this limit exists. If it does for each θ ∈ R, and the limits limϕ→θ± ν̄T (ϕ) both

exist at each θ ∈ R, then the domain Ω is said to be regulated. In this case obviously

limϕ→θ+ ν̄T (ϕ) = ν̄T (θ), while the argument of the complex number ν̄T (θ) [limϕ→θ− ν̄T (ϕ)]
−1

equals π minus the interior angle of Ω at S(eiθ). We then let

β̄T (θ) := ¯arg ν̄T (θ), (1.43)

where ¯arg is the argument of a complex number plus some integer multiple of 2π. This

multiple is chosen so that β̄T (0) ∈ [0, 2π) and β̄T (θ) − limϕ→θ− β̄T (ϕ) ∈ [−π, π] for each
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θ ∈ R, and if Ω has cusps, we do it so that this difference is π at exterior cusps (with interior

angle 0) and −π at interior cusps (with interior angle 2π). Of course, then this difference is

again π minus the interior angle of Ω at S(eiθ). Since we only consider Lipschitz domains

here (i.e., without cusps), we will always have β̄T (θ)− limϕ→θ− β̄T (ϕ) ∈ (−π, π).

The above defines the right-continuous function β̄T : R → R uniquely, and it satisfies

β̄T (θ + 2π) = β̄T (θ) + 2π for all θ ∈ R. We will see that whether Euler particle trajectories

for general bounded solutions ω can reach ∂Ω in finite time depends on how quickly is β̄T

allowed to decrease locally (which happens when ν̄T turns clockwise), with no restrictions

on its increase. This will be quantified in terms of a modulus of continuity for one of two

components of β̄T , with the other component being an arbitrary non-decreasing function.

We will split β̄T in Chapter 2.

We call a function

m : [0, 2π] → [0,∞) (1.44)

with m(0) = 0 a modulus if it is continuous, non-decreasing, and satisfies m(a+ b) ≤ m(a)+

m(b) for any a, b ∈ [0, 2π] with a+ b ≤ 2π. If some f : R → R satisfies |f(θ)− f(ϕ)| ≤ m(r)

for all r ∈ [0, 2π] and all θ, ϕ ∈ R with |θ − ϕ| ≤ r, we say that f has modulus of continuity

m.

Now we are ready to state a key theorem (Theorem 3.15 in [25]) that gives a repre-

sentation of the derivative of the Riemann mapping in terms of β̄T above:

Theorem 1.3.1. Let f map D conformally onto a regulated domain. Then for z ∈ D, we

have

log f ′(z) = log |f ′(0)|+ i

2π

∫ 2π

0

eit + z

eit − z

(
β̄T (t)− t− π

2

)
dt (1.45)

where β̄T (t) is from (1.43).

Though not obvious, this is actually the generalized form of the Schwarz-Christoffel

formula. Lastly, in this section we will prove the log-Lipschitzness of the velocity u on smooth

domains, using the Riemann Mapping.
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Proof of Theorem 1.2.2. For any smooth domain Ω, let T be a Riemann mapping from Ω

to D and let S be its inverse. For x, x′ ∈ Ω, let ξ = T (x) and ξ′ = T (x′). Because T , S are

uniform continuous (by Kellogg-Warschawski) implying that there exists C̃, C̄ > 0 such that

C̃|ξ − ξ′| ≥ |x− x′| ≥ C̄|ξ − ξ′| for all x, x′ ∈ Ω. It is enough to consider x, x′ ∈ Ω such that

|x−x′| < max{1, C̄}, hence r = |ξ−ξ′| < 1. By using the expression (1.41), change variables

by letting z = T (y), ω0 ∈ L∞ and Kellogg-Warschawski theorem for smooth domains (which

implies both DT , and DS are uniformly bounded on Ω,D respectively, see [25] Chapter 3 ),

we obtain

|u(t, x)− u(t, x′)| ≤ 1

2π
|DT (x)|

∫
D
|KD(ξ, z)−KD(ξ

′, z)||ω(t,S(z))|| detDS(z)|dz

+
1

2π
|DT (x)−DT (x′)|

∫
D
|KD(ξ

′, z)||ω(t,S(z))|| detDS(z)|dz

≤ C

(∫
D
|KD(ξ, z)−KD(ξ

′, z)|dz + |DT (x)−DT (x′)|
∫
D
|KD(ξ

′, z)|dz
)
,

where C depends on Ω and ||ω0||L∞ . We will estimate the two components separately.

For the second one, Kellogg-Warschawski theorem implies the uniform continuity of

DT , and (1.16) give us

|DT (x)−DT (x′)|
∫
D
|KD(ξ

′, z)|dz ≤ C ′r,

where C ′ depends on Ω. The estimation of the first integration follows a standard approach.

Let A = {z ∈ D | |z − ξ| < 2r}, A1 = D ∩ A and A2 = D ∩ Ac. By triangle inequality and
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(1.16), we have

∫
A1

|KD(ξ, z)−KD(ξ
′, z)|dz ≤

∫
A1

|KD(ξ, z)|+ |KD(ξ
′, z)|dz

≤ C ′′
∫
A1

1

|x− z|
+

1

|x′ − z|
dz

≤ 16πC ′′r

For the integral over A2, by the Mean Value Theorem and by (1.17), there exists ξ′′ ∈ D,

lying on the line segment connecting ξ and ξ′, such that

∫
A2

|KD(ξ, z)−KD(ξ
′, z)|dz ≤ r

∫
A2

1

|ξ′′ − z|2
dz

≤ 2r

∫
D\B(ξ,r)

1

|ξ − z|2
dz

≤ 2πr(1− log(r))

where the second inequality is because |ξ′′− z| > 1
2
|ξ− z| for all ξ′′ lying on the line segment

connecting ξ and ξ′. Combining all the above, and C̃r ≥ |x− x′| ≥ C̄r for all x, x′ ∈ Ω with

r = |T (x)− T (x′)|, we get the result.

1.4 Existence of Weak Solutions on Open Bounded

Simply Connected Domains

In this section, we will prove existence of weak solutions satisfying (1.7) and (1.9) on

any general open bounded simply connected domain Ω. The idea is to first construct smooth

approximations Ωn of Ω and smooth approximations ωn(0, ·) of the initial data ω(0, ·). By

Theorem 1.2.3 there are unique weak solutions (un, ωn) solving the (1.4)-(1.5) on Ωn for each

n. We would like to find some uniform bounds on un to show convergence of the sequence,

as well as to show that the limit will solve the Euler equations weakly on Ω. Notice that in
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this section we will write the initial vorticity ω0 as ω(0, ·).

Theorem 1.4.1. If Ω ⊂ R2 is an open bounded simply connected domain with ω(0, ·) ∈

L∞(Ω) , then there exists

u ∈ L∞(R+;L2(Ω)) with ω = ∇× u ∈ L∞(R+;L∞(Ω)) (1.46)

satisfying (1.7) and (1.9).

Proof. Let T be a Riemann mapping from Ω to D and S be its inverse such that S ′(0) > 0.

Let Ωn := S(B(0, 1− 1
n
). Then Ωn are smooth Jordan domains with Ωn ⊂ Ω, and the Kellogg-

Warschaski theorem shows that Ωn converges to Ω in the Hausdorff metric. Further, by

convolutions with the molliffier functions and truncations, we can find a sequence ωn(0, ·) ∈

C∞
c (Ω) which converges strongly to ω(0, ·) in Lp(Ω) for all 1 ≤ p <∞ and

||ωn(0, ·)||Lp ≤ ||ω(0, ·)||Lp ∀p ∈ [1,∞]. (1.47)

Since for any K ⊂ Ω compact, K ⊂ Ωn for all n ≥ NK for some NK , we can construct ωn so

that supp(ωn(0, ·)) ⊂ Ωn for all n ∈ N.

Because each Ωn has a smooth boundary, Theorem 1.2.3 shows there exists unique

(un, ωn) solving equations (1.4)-(1.5) weakly on Ωn with initial vorticity ωn(0, ·). Hence we

have

un(t, x) = ∇⊥Ψn(t, x) (1.48)

where Ψn solves

∆Ψn = ωn = curl un in Ωn, Ψn|∂Ωn = 0 (1.49)

Now we want to prove convergence of ωn, Ψn and un. Let D be a fixed ball such that

Ωn ⊂ D for all n. For each ωn and Ψn, we extend ωn(·, x) = Ψn(·, x) = 0 for x ∈ D\Ωn.

Since ωn is a bounded sequence, by Alaoglu Theorem there exists a subsequence of {ωn} (for
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simplicity of notation, we will still use ωn denoting this subsequence) such that

ωn → ω weakly ∗ in L∞(R+ ×D). (1.50)

For Ψn, first by the Dirichlet energy estimate for the Poisson equation we have:

1

2
||∇Ψn(t, ·)||2L2(Ωn)

−||Ψnωn(t, ·)||L1(Ωn) ≤ 0

||∇Ψn(t, ·)||2L2(Ωn)
≤ 2||Ψnωn(t, ·)||L1(Ωn) ≤ 2||Ψn(t, ·)||L2(Ωn)||ωn(t, ·)||L2(Ωn)

for all t, n. Then by the Poincaré inequality on D, there is a CD > 0 such that

||Ψn||H1
0 (Ωn) ≤ CD||∇Ψn||L2(Ωn) ≤ CD

√
||Ψn||L2(Ωn)||ωn||L2(Ωn). (1.51)

This and ωn being uniformly bounded (because ω is) gives us

||Ψn||H1
0 (Ωn) ≤ C ′

D. (1.52)

Since the total energy 1
2
||un(t)||L2(Ωn) is conserved in time (because of the no-flow boundary

condition), we can conclude that C ′
D is a uniform L2(Ωn) bound for un for all n, t.

In order to derive weak star convergence of Ψn, we also need uniform estimate on the

H1
0 norm of ∂tΨn on D. Note that this time derivative satisfies the Poisson Equation

∆∂tΨn = ∂tωn = −div(unωn) in Ωn, ∂tΨn|∂Ωn = 0. (1.53)
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Using integration by parts, equation (1.53) and the divergence theorem, we have:

∫
D

|∇∂tΨn|2dx =

∫
Ωn

|∇∂tΨn|2dx

=

∫
Ωn

∂tΨn∆∂tΨndx

=

∫
Ωn

unωn · ∇(∂tΨn)dx

≤ ||ωn||L∞(Ωn)||un||L2(Ωn)||∇∂tΨn||L2(Ωn)

Using the uniform bound for ωn and un derived above, as well as the Poincaré inequality on

D, we thus have

||∂tΨn(t, ·)||H1
0 (Ωn) ≤ C̃D (1.54)

for all t, n. By the Banach-Alaoglu Theorem and the Aubin-Lions-Simon Lemma (see [26]),

there exists Ψ ∈ W 1,∞(R+, H1
0 (D)) and a subsequence of Ψn (we will use index n for sim-

plicity of notation) such that

Ψn → Ψ weakly∗ in W 1,∞(R+, H1
0 (D)), (1.55)

and

Ψn → Ψ strongly in C((0, T ), H1
0 (D)) ∀ T <∞. (1.56)

Note that although the extensions of Ψn to 0 on D\Ωn make ∆Ψn be the delta function

on ∂Ωn, since Ωn converges to Ω in the Hausdorff metric, hence for every compact set K,

K ⊂ Ωn for n > N for some N ∈ N. This means that for almost all t > 0,

∆Ψ(t, ·) = ω(t, ·) in D′(Ω). (1.57)

Now by Theorems 3.2.3 or 3.2.7 in [11], we can conclude that for each fixed t, there
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is a subsequence of {Ψn(t, ·)} (for simplicity of notations, we will use the same notation

denoting this subsequence) that converges weakly in H1
0 (D) to a limit in H1

0 (Ω). This means

that Ψ(t, ·) ∈ H1
0 (Ω) for all t. By this we have

∫ T

0

∫
D

|∇Ψ|2 =
∫ T

0

∫
Ω

|∇Ψ|2 = −
∫ T

0

∫
Ω

ωΨ = −
∫ T

0

∫
D

ωΨ (1.58)

and similarly we have

∫ T

0

∫
D

|∇Ψn|2 =
∫ T

0

∫
Ωn

|∇Ψn|2 = −
∫ T

0

∫
Ωn

ωnΨn = −
∫ T

0

∫
D

ωnΨn → −
∫ T

0

∫
D

ωΨ

(1.59)

where the last convergence is by (1.52), (1.56), and by the L2 norm for ω(t, ·) being con-

served and bounded uniformly in time. This shows strong convergence of Ψn to Ψ in

L2(0, T ;H1
0 (D)), which also yields strong L2 convergence of un to u where u = ∇⊥Ψ ∈

L∞(R+;L2(Ω)) and ω = curl u ∈ L∞(R+ × Ω). By construction, the divergence free and

boundary tangent conditions are satisfied. We also have un(0, ·) → u(0, ·) strongly in L2.

This is by the same argument as above we can derive that un(0, ·) has a convergent sub-

sequence, whose limit can be written as ũ(0, ·) = ∇⊥Ψ̃(0, ·) with Ψ̃(0, ·) ∈ H1
0 (Ω) and

∆Ψ(0, ·) = ω0, which also satisfies the divergence free and boundary tangent conditions.

Hence so does the difference v = u(0, ·)− ũ(0, ·), which is also curl free. This implies that v

is smooth on Ω by considering the Cauchy-Riemann equation for the function

z 7→ v1(z) + iv2(z),

where v = (v1, v2). Moreover by the Green’s Theorem and v0 is curl free, for any smooth

Jordan curve Γ in Ω, we have ∮
Γ

v · ds = 0, (1.60)
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which shows v = ∇p for some smooth p inside Ω. Define

H(Ω) := completion of{u ∈ D(Ω) : div u = 0} in the norm of L2 (1.61)

and

G(Ω) := {u ∈ L2(Ω) : u = ∇p for some p ∈ H1
loc(Ω)} (1.62)

where (1.7) can be re-written in terms of (1.62) (replacing∇h with u in G(Ω)). Then Lemma

III 2.1 in [8] states that if v satisfies (1.7), then it’s in H(Ω). Moreover the previous argument

shows it is also in G(Ω), and the intersection of H(Ω) and G(Ω) is {0}. Hence v ≡ 0.

Using above strong L2 convergences, and that for each ψ ∈ C∞
0 ([0,∞)× Ω), when n

is large enough such that supp ψ ⊂ Ωn, we have

∫ ∞

0

∫
Ω

ωn(∂tψ + un · ∇ψ) = −
∫
Ω

ωn(0, ·)ψ(0, ·). (1.63)

We get (1.9) by taking limits on both sides. This shows existence of solutions.

1.5 A General Uniqueness Lemma

In this section, we would like to state and reproduce a general uniqueness lemma

(lemma 1.4 from [19]) in the case that initial vorticity is constant near the singular parts of

the boundary. The idea of the proof is that when the particles are away from the singular

parts of the boundary, the standard estimates on the Green’s function still hold, which

implies that the log-Lipschitz property of the velocity still holds on any fixed subset of Ω

that is away from the singular part of the boundary (while the relevant constant depends

on the subset). Then we will use the log-Lipschitz estimate, transportation of the vorticity

and the measure perserving property of the flow to show that the mean absolute difference

between any two solutions, with the same ω(0, ·), will be zero. Let Ω ⊆ R2 be any open
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bounded simply connected domain and α > 0. We define

Γα := {x ∈ ∂Ω : ∂Ω ∩B(x, ϵ) /∈ C2,α for all ϵ > 0} (1.64)

In the following proof, to make the notation simpler we will let X(t, x) = Xx
t for x ∈ Ω.

Theorem 1.5.1. Let Ω be an open bounded simply connected domain and let u be a global

weak solution to the Euler equations on Ω from the Yudovich class such that ω(t, x) =

ω(0, X−1(t, x)) for all t > 0. If there is a constant a ∈ R such that supp(ω(0, ·)−a)∩Γα = ∅

for some a > 0, then u is the unique such solution with initial value ω0 until the first time t

such that supp(ω(t, ·)− a) ∩ Γα ̸= ∅

Proof. Without loss of generality, we assume ||ω0||L∞ ≤ 1. Let T > 0 be any time such that

∪0≤t≤T supp(ω(t, ·)−a)∩Γα = ∅. Let Ω0 ⊂ Ω be an open set such that ω0(x) = a if x ∈ Ω\Ω0

with the measure of ∂Ω0 = 0. Moreover, by definition of T , we have ∪t∈[0,T )X(t,Ω0)∩Γα = ∅.

Let GΩ be the Dirichlet Green’s function on Ω, with GΩ(x, y) = GD(T (x), T (y)) where T is

a Riemann mapping from Ω to D. By Kellogg-Warschawski, T (x) is at least C2 for x is away

from Γα. Hence we have standard Green’s function estimates away from Γα. Specifically,

there exists a domain ΩT with Ω∩∪t∈[0,T )X(t,Ω0) ⊆ ΩT ⊂ Ω and a constant CΩT
such that

if x, y ∈ ΩT with |x− y| < 1
CΩT

, then x, y can be joined by a smooth curve whose length is

no more than CΩT
|x− y|, and the estimates (1.16) and (1.17) still hold for any x ∈ ΩT and

y ∈ Ω.

By contradiction, if there’s another solution ω̃ with its associated flow map Y and

ω(0, Y −1(t, 0)) = ω̃(t, ·), we will show X = Y almost surely by showing that the following

function equals zero:

D(t) :=
1

|Ω0|

∫
Ω0

|X(t, x)− Y (t, x)|dx. (1.65)

The Biot-Savart Laws for ω, ω̃ can be written as:

u(t, x) :=

∫
Ω

KΩ(x, y)ω(t, y)dy (1.66)
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and

v(t, x) :=

∫
Ω

KΩ(x, y)ω̃(t, y)dy. (1.67)

Recall the definition (1.18) of ϕ(r). Applying the argument used to show u is log-Lipschitz

on smooth domains yields (since we have the same estimates for the Green’s function here)

max

{∫
Ω

|KΩ(x, y)−KΩ(x
′, y)|dy,

∫
Ω

|KΩ(y, x)−KΩ(y, x
′)|dy

}
≤ Cϕ(|x− x′|) (1.68)

for all x, x′ ∈ ΩT with C depends on Ω, ΩT and CT . Now let T ′ ≤ T be the largest T ′ such

that Ω ∩ ∪t∈[0,T ′)Y (t,Ω0) ⊆ ΩT . By ||ω0||L∞ ≤ 1, we also have

|u(t, x)− u(t, x′)| ≤ Cϕ(|x′ − x|) (1.69)

for all t < T ′ and x, x′ ∈ ΩT . Moreover, by the definition of Ω0, we have for any z ∈ Ω

∫
Ω\Ω0

KΩ(z,X(s, y))ω0(y)dy = a

(∫
Ω

KΩ(z,X(s, y))dy −
∫
Ω0

KΩ(z,X(s, y))dy

)
(1.70)

and the equation is also true if we replace X with Y . These inequalities and (1.70) plus the
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measure-preserving property of X and Y in space gives us

1

|Ω0|

∫
Ω0

|u(s, Y (s, x))− v(s, Y (s, x)|dsdx

=
1

|Ω0|

∫ t

0

∫
Ω0

∣∣∣∣ ∫
Ω

KΩ(Y (s, x), y)ω(s, y)−KΩ(Y (s, x), y)ω̃(s, y)dy

∣∣∣∣dxds
=

1

|Ω0|

∫ t

0

∫
Ω0

∣∣∣∣ ∫
Ω

(
KΩ(Y (s, x), X(s, y))−KΩ(Y (s, x), Y (s, y))

)
ω0(y)dy

∣∣∣∣dxds
≤ 1 + a

|Ω0|

∫ t

0

∫
Ω0

∫
Ω0

|KΩ(Y (s, x), X(s, y))−KΩ(Y (s, x), Y (s, y))|dydxds

≤ 2

|Ω0|

∫ t

0

∫
Ω0

∫
Ω0

|KΩ(Y (s, x), X(s, y))−KΩ(Y (s, x), Y (s, y))|dydxds

≤ 2

|Ω0|

∫ t

0

∫
Ω

∫
Ω0

|KΩ(x,X(s, y))−KΩ(x, Y (s, y))|dydxds

≤ 2C

|Ω0|

∫ t

0

∫
Ω0

ϕ(|X(s, y)− Y (s, y)|)dyds

≤ 2C

∫ t

0

ϕ(D(s))ds

for all t < T ′, where the last inequality is by Jensen’s inequality. By triangle inequality, the

log-Lipschitz estimate and the inequality above, we have

D(t) ≤ 1

|Ω0|

∫
Ω0

∫ t

0

|u(s,X(s, x))− v(s, Y (s, x))|dsdx

≤ 1

|Ω0|

∫
Ω0

∫ t

0

|u(s,X(s, x))− u(s, Y (s, x))|dsdx

+
1

|Ω0|

∫
Ω0

∫ t

0

|u(s, Y (s, x))− v(s, Y (s, x))|dsdx

≤ 3C

∫ t

0

ϕ(D(s))dx

for all t < T ′ with D(0) = 0. This implies D(t) ≡ 0 for all t ∈ [0, T ′), which means X = Y

and ω = ω̃ on [0, T ′)× Ω. Thus we have T ′ = T , and so Y ≡ X.
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1.6 Outline

This thesis focuses on proving uniqueness of weak solutions from Yudovich class on

singular domains. In Chapter 2, we will show a general sufficient condition on the geometry

of the domain’s boundary that guarantees global uniqueness of the weak solution when ω0 is

constant near the whole boundary ∂Ω. Moreover, we will show that this condition is sharp

in the sense by constructing domains that come arbitrarily close to satisfying it, and on

which Euler particles for bounded ω may reach the boundary in finite time. In Chapter 3,

we will show uniqueness of the weak solutions on more general domains, including domains

that contains corners with angles larger than π which are excluded in the result of Chapter

2, by further assuming that ω has a sign.
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Chapter 2

Planar Domains without Reflex

Corners

2.1 Main Results

In this chapter, we will consider general regulated (i.e. (1.42) exists for all θ) bounded

Lipschitz domains. We will obtain a general condition guaranteeing that Euler particle

trajectories for bounded weak solutions on these domains never reach ∂Ω, and also prove

uniqueness of global weak solutions for all vorticities initially constant near ∂Ω. This con-

dition is only slightly more restrictive than exclusion of corners with angles greater than π,

which was shown to be necessary in [19], and it places no restrictions on those segments of ∂Ω

where the argument of the forward tangent vector (1.43) is non-decreasing. This shows that

our results will include all convex Ω. Specifically, our condition is satisfied precisely when

the argument of the forward tangent vector to ∂Ω, composed with the Riemann mapping for

Ω, can be written as a sum of an arbitrary increasing function and a second function that

has a modulus of continuity m (recall (1.44)) from a precisely defined class of moduli (which

includes, e.g., m with m(r) = π
2| log r| for all small enough r > 0). Moreover, for any concave

modulus m from this class, we find the exact (up to a constant factor in time) asymptotic

30



rate of the fastest possible approach of Euler particle trajectories to ∂Ω among all domains

as above. We also show that no vorticity can be created by the boundary of these possibly

singular domains, a result that even extends in a weaker form to general bounded domains

(see Corollary 2.1.4). We also note that a priori the ODE (1.10) only holds for almost all

t ∈ (0, tx) (with X
x
t , the particle trajectory, continuous in time, for tx see (1.11)), but we will

show that u is continuous and therefore (1.10) holds for all t ∈ [0, tx) (see Corollary 2.1.4

below).

Finally, we show that our condition is essentially sharp. Specifically, for each concave

modulus not in the above class of moduli (e.g., m with m(r) = a
2| log r| for all small enough

r > 0, with any fixed a > π), we construct a domain as above in which particle trajectories

can reach the boundary in finite time. Hence this work pushes right up to the limits of the

philosophy from [17, 16, 19, 22], within the class of regulated domains at least, under the

assumption that the vorticity initially constant near the singular part of the boundary where

the velocity may be far from Lipschitz. Our Theorem 2.1.1(ii) and Corollary 2.1.4 below

represent a first step in this effort.

To state the results more rigorously, first recall the definitions (1.42), (1.43),(1.44).

Based on these, we let

qm(s) := s exp

(
2

π

∫ 1

s

m(r)

r
dr

)
,

and if
∫ 1

0
ds

qm(s)
= ∞, we let ρm : R → (0, 1) be the inverse function to y 7→ ln

∫ 1

y
ds

qm(s)
, so

ρm

(
ln

∫ 1

y

ds

qm(s)

)
= y.

Then ρm is decreasing with limt→−∞ ρm(t) = 1 and limt→∞ ρm(t) = 0, and we shall see that

it is the maximal asymptotic approach rate of Euler particle trajectories to ∂Ω (up to a

constant factor in time) among all domains for which β̄T above has modulus of continuity

m. In fact, our main results show that this statement extends to domains with β̄T being

a sum of a function with modulus m and any non-decreasing function (see hypothesis (H)
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below). Note also that
∫ 1

0
ds

qm(s)
= ∞ holds whenever

∫ 1

0
m(r)
r
dr < ∞, and functions with

such moduli m are called Dini continuous.

In our main results, we will assume the following hypothesis.

(H) Let Ω ⊆ R2 be a regulated open bounded Lipschitz domain with ∂Ω a Jordan curve.

Let T : Ω → D be a Riemann mapping and let βT , β̃T be functions on R with 2π-

periodic (distributional) derivatives such that βT is non-decreasing, β̃T has some mod-

ulus of continuity m with qm and ρm defined above, and the argument of the (counter-

clockwise) forward tangent vector to ∂Ω is β̄T = βT + β̃T .

Note that if βT , β̃T are as above and their sum is the argument of the forward tangent

vector to a Jordan curve ∂Ω, then the bounded domain Ω must automatically be regulated.

As mentioned above, neither (H) nor our results place any continuity restrictions on

βT . In particular, the following main result of the present paper holds for any convex domain

Ω, since then one can let βT := β̄T and β̃T ≡ 0 (and therefore m ≡ 0).

Theorem 2.1.1. Assume (H) and that
∫ 1

0
ds

qm(s)
= ∞. Let ω0 ∈ L∞(Ω) and let ω from the

Yudovich class be any global weak solution to the Euler equations on Ω with initial condition

ω0 (such solutions are known to exist by [9]).

(i) We have tx = ∞ for all x ∈ Ω, and for any R < 1 and all large enough t > 0,

sup
|T (x)|≤R

|T (Xx
t )| ≤ 1− ρm(300∥ω∥L∞t) (2.1)

(except when ω ≡ 0, but then Xx
t ≡ x). And if β̃T is Dini continuous, then the right-hand

side of (2.1) can be replaced by the m-independent bound 1− exp(−e300∥ω∥L∞ t).

(ii) We have {Xx
t |x ∈ Ω} = Ω for all t > 0, and for a.e. (t, x) ∈ R+× Ω we have

ω(t,Xx
t ) = ω0(x). Moreover, u is continuous on [0,∞)× Ω and (1.10) holds for all (t, x) ∈

[0,∞)× Ω.

(iii) If supp (ω0 − a) ∩ ∂Ω = ∅ for some a ∈ R, then the solution ω is unique.

32



Remarks. 1. This naturally extends to solutions on time intervals (0, T ) for T ∈

(0,∞).

2. Part (i) also shows that inf |T (x)|≤R d(X
x
t , ∂Ω) ≥ ρm(300∥ω∥L∞t) for any R < 1, due

to T being Hölder continuous for Lipschitz Ω (see, e.g., [20, Theorem 2]). This is because

our proof shows that (i) also holds with 299 in place of 300, and one can easily show that

ρm(300ct) ≤ 1
N
ρm(299ct)

N for any fixed c,N > 0 and all large enough t > 0.

3. A “borderline” case for the condition
∫ 1

0
ds

qm(s)
= ∞ is m(r) = a

| log r| for all small

r > 0 (with a ≥ 0). Here
∫ 1

0
ds

qm(s)
= ∞ holds precisely when a ≤ π

2
, while

∫ 1

0
m(r)
r
dr = ∞ for

all a > 0. In this case ρm is still a double exponential when a < π
2
, as for Dini continuous

β̃T , but a triple exponential when a = π
2
. The double-exponential rate is known to be the

maximal possible boundary approach rate for smooth domains, due to (1.6) holding there,

but (1.6) fails even for general convex domains. See also the remark after Theorem 2.1.2

below.

Our second main result, which applies to concave moduli m, shows that Theorem

2.1.1(i) is essentially sharp, even for stationary solutions. This involves analysis of Euler

particle trajectories on some special domains, which are more sophisticated versions of do-

mains with concave corners considered in [15, 19].

Theorem 2.1.2. For any concave modulus m, there is a domain Ω satisfying (H) and a

stationary weak solution ω from the Yudovich class to the Euler equations on Ω such that

the following hold.

(i) If
∫ 1

0
ds

qm(s)
<∞, then Xx

t ∈ ∂Ω for some x ∈ Ω and t > 0.

(ii) If
∫ 1

0
ds

qm(s)
= ∞, then |T (Xx

t )| ≥ 1− ρm(ct) for some x ∈ Ω, c > 0, and all t ≥ 0.

Remark. Note that if m(r) = a(L1(
1
r
) . . . Lk−1(

1
r
))−1 + π

2

∑k−2
j=1(L1(

1
r
) . . . Lj(

1
r
))−1 for

all small enough r > 0, with k ≥ 2, a ∈ [0, π
2
), and Lj(r) being ln r composed j times, then

ρm is essentially a k-tuple exponential. Therefore all such boundary approach rates do occur

on some domains Ω to which Theorem 2.1.1(i) applies.
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We also note that Theorem 2.1.1 has a natural analog when the forward tangent

vector is defined via arc-length parametrization of ∂Ω, rather than via S. If σ : [0, 2π] → ∂Ω

is the (counter-clockwise) constant speed parametrization of ∂Ω (extended to be 2π-periodic

on R, and obviously unique up to translation), then Lemma 1 in [31] shows that T ◦ σ and

its inverse (modulo 2π) are Hölder continuous. If we therefore use

ν̄Ω(θ) := lim
ϕ→θ+

σ(ϕ)− σ(θ)

|σ(ϕ)− σ(θ)|
, (2.2)

instead of (1.42), and the corresponding β̃Ω (with β̄Ω, βΩ, β̃Ω chosen analogously to β̄T , βT , β̃T )

has some modulus of continuity m, then β̃T has modulus of continuity m̃(r) := m(Crγ) for

some C, γ > 0. But since a simple change of variables shows that
∫ 1

0
m(r)
r
dr <∞ is equivalent

to
∫ 1

0
m(Crγ)

r
dr <∞, we obtain the following result.

Corollary 2.1.3. Theorem 2.1.1 continues to hold when (1.42) and β̄T , βT , β̃T in (H) are

replaced by (2.2) and β̄Ω, βΩ, β̃Ω, respectively, and if β̃Ω is also Dini continuous.

Remarks. 1. Of course, while β̄T , βT , β̃T depend on T , they can also be made to only

depend on Ω because we are free to choose T .

2. Note that if an open bounded simply connected Lipschitz domain Ω can be touched

from the outside by a disc of uniform radius at each point of ∂Ω (i.e., Ω satisfies the uniform

exterior sphere condition), and we replace (1.42) by (2.2), then these hypotheses are satisfied

with m(r) = Cr for some constant C. Hence Corollary 2.1.3 holds for all such domains.

Finally, we provide here a version of Theorem 2.1.1(ii) for general open bounded

domains, which follows from its proof and is also of independent interest. To the best of

our knowledge, such results previously required ∂Ω to be at least piecewise C1,1 (see, e.g.,

[16, 18, 19]).

Corollary 2.1.4. Let ω from the Yudovich class be a weak solution to the Euler equations

on an open bounded domain Ω ⊆ R2, on time interval (0, T ) for some T ∈ (0,∞] and with

initial condition ω0 ∈ L∞(Ω). Then ω(t,Xx
t ) = ω0(x) for a.e. t ∈ (0, T ) and a.e. x ∈ Ω with
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tx > t, the velocity u is continuous on [0, T ) × Ω (as well as on [0, T ] × Ω if T < ∞), and

(1.10) holds for all x ∈ Ω and t ∈ [0, tx).

Remark. So even when ∂Ω is very irregular, vorticity might be created (at ∂Ω) only

if enough particle trajectories “depart” from the boundary into Ω, so that Ω \ {Xx
t |x ∈ Ω}

has positive measure for some t ∈ (0, T ).

2.2 Proof of Theorem 2.1.1(i)

Take any x ∈ Ω and let

d(t) := 1− |T (Xx
t )|

be the distance of T (Xx
t ) from ∂D. Then we have

d′(t) = − T (Xx
t )

|T (Xx
t )|

·DT (Xx
t )
d

dt
Xx

t

as long as |T (Xx
t )| ∈ (0, 1). Since DT is of the form

 a b

−b a

 because T is analytic, we

have DT DT T = (detDT )I2. The Biot-Savart law (1.41) for d
dt
Xx

t now shows that

d′(t) =− detDT (Xx
t )

2π|T (Xx
t )|

∫
Ω

(
−T (Xx

t ) · T (y)⊥

|T (Xx
t )− T (y)|2

+
T (Xx

t ) · T (y)∗⊥

|T (Xx
t )− T (y)∗|2

)
ω(t, y) dy

=
detDT (Xx

t )(1− |T (Xx
t )|2)

2π|T (Xx
t )|

∫
Ω

|T (y)|2(1− |T (y)|2)T (Xx
t ) · T (y)⊥

|T (Xx
t )− T (y)|2 ||T (y)|2T (Xx

t )− T (y)|2
ω(t, y) dy.

where z∗ := z|z|−2 and (a, b)⊥ := (−b, a). After the change of variables z = T (y), we obtain

|d′(t)| ≤ d(t)
2∥ω∥L∞

π|T (Xx
t )|

detDT (Xx
t )

∫
D

(1− |z|)|T (Xx
t ) · z⊥|

|T (Xx
t )− z|2 ||z|2T (Xx

t )− z|2
detDT −1(z) dz.

This estimate already appeared in [19], but we will use the following crucial result to

tightly bound its right-hand side for much more general domains.
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Lemma 2.2.1. Assume (H) and that
∫ 1

0
ds

qm(s)
= ∞. There is C < 147π and a (T -dependent)

constant CT > 0 such that if |ξ| ∈ [1
2
, 1), then

detDT (T −1(ξ))

∫
D

(1− |z|)|ξ · z⊥|
|ξ − z|2 ||z|2ξ − z|2

detDT −1(z) dz

≤ C Qm(1− |ξ|)
(∫ 1

1−|ξ|

ds

sQm(s)
+ CT

)
, (2.3)

with Qm(s) := s−1qm(s) = exp
(

2
π

∫ 1

s
m(r)
r
dr
)
.

Remark. Note that Qm is non-increasing, and lims→0 s
αQm(s) = 0 for all α > 0

because sα = exp(−α
∫ 1

s
dr
r
).

Lemma 2.2.1 with ξ := T (Xx
t ) now yields

d′(t) ≥ −C∥ω∥L∞qm(d(t))

(∫ 1

d(t)

ds

qm(s)
+ CT

)

with some C < 300 and CT > 0 when d(t) ∈ (0, 1
50
]. Hence

d

dt
ln

(∫ 1

d(t)

ds

qm(s)
+ CT

)
≤ C∥ω∥L∞ ,

and so

ln

∫ 1

d(t)

ds

qm(s)
≤ C∥ω∥L∞t+ ln

(∫ 1

min{d(0),1/2}

ds

qm(s)
+ CT

)
for all t ≥ 0. Therefore

d(t) ≥ ρm

(
C∥ω∥L∞t+ ln

(∫ 1

min{d(0),1/2}

ds

qm(s)
+ CT

))
. (2.4)

This is no less than ρm (300∥ω∥L∞t) for all large t ≥ 0, uniformly in all x with |T (x)| ≤ R (for

any R < 1, except when ω ≡ 0). And if M :=
∫ 1

0
m(r)
r
dr < ∞, then ρm(z) ≥ exp(−ez+2M/π)

(because ρm(z) equals y such that ez =
∫ 1

y
ds

qm(s)
≥ e−2M/π

∫ 1

y
ds
s
), so this is no less than

exp(−e300∥ω∥L∞ t) for all large t ≥ 0, uniformly in all x with |T (x)| ≤ R.
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Hence, to conclude Theorem 2.1.1(i), it only remains to prove Lemma 2.2.1. Its proof,

which relies on the crucial representation formula (2.7) for DT , is somewhat involved. We

postpone it to Section 2.4 and first show how to obtain Theorem 2.1.1(ii,iii) from Theorem

2.1.1(i).

2.3 Proofs of Theorem 2.1.1(ii,iii) and Corollary 2.1.4

Theorem 2.1.1(iii) follows immediately from Theorem 2.1.1(ii) and Proposition 3.2 in

[19], which shows that solutions from Theorem 2.1.1(ii) are unique as long as they remain

constant near ∂Ω (constancy near the non-C2,γ portion of ∂Ω for some γ > 0, where u may

be far from Lipschitz, is in fact sufficient). It therefore suffices to prove Theorem 2.1.1(ii).

The first claim follows from the fact that the estimate (2.4) equally applies to the

solutions of the time-reversed ODE d
ds
Y (s) = −u(t−s, Y (s)) with Y (0) ∈ Ω (which of course

satisfy Y (s) = X
Y (t)
t−s ). The proof of the second claim was obtained in [16, 18, 19] for some

sufficiently regular domains by looking at (1.4) as a (passive) transport equation with given

u and ω0, and proving uniqueness of its solutions (using also that tx = ∞ for all x ∈ Ω).

This is because ω̃(t,Xx
t ) := ω0(x) can be shown to be its weak solution in the sense of (1.9).

The uniqueness proofs used the DiPerna-Lions theory, which required relevant extensions of

u and ω to R2 \ Ω (the latter by 0). This necessitated ∂Ω to be piecewise C1,1, in addition

to having tx = ∞ for all x ∈ Ω, so that the extension of u is sufficiently regular for the

DiPerna-Lions theory to be applicable.

We avoid this extension argument, and hence also extra regularity hypotheses on Ω,

thanks to the following result concerning weak solutions to the transport equation (1.4).

Lemma 2.3.1. Let Ω ⊆ Rd be open and T > 0. Let u ∈ L∞
loc([0, T ]× Ω) satisfy

sup
t∈[0,T ]

sup
x,y∈K

|u(t, x)− u(t, y)|
|x− y|max{1,− ln |x− y|}

<∞ (2.5)

for any compact K ⊆ Ω, as well as (1.2) on (0, T ) × Ω. If ω ∈ L∞
loc([0, T ] × Ω) is a weak
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solution to the linear PDE (1.4) with initial condition ω0 ∈ L∞
loc(Ω) and X

x
t is from (1.10),

then we have ω(t,Xx
t ) = ω0(x) for a.e. t ∈ (0, T ) and a.e. x ∈ Ω with tx > t.

Proof. Let Ω1 ⊆ Ω2 ⊆ . . . be smooth open bounded sets in R2 with Ω̄n ⊆ Ω =
⋃

n≥1Ωn.

Since ω is also a weak solution to (1.4) on Ωn and exit times tx,n of Xx
t from Ωn then satisfy

limn→∞ tx,n = tx for each x ∈ Ω, it obviously suffices to prove that ω(t,Xx
t ) = ω0(x) for

a.e. t ∈ (0, T ) and a.e. x ∈ Ωn such that tx,n > t. We can therefore assume that Ω is smooth

and bounded, (2.5) holds with K replaced by Ω, and u, ω, ω0 are all bounded. We can also

assume without loss that ω ≥ 0 and ω0 ≥ 0, by adding a large constant to them.

Extend the particle trajectories from (1.10) by Xx
t := lims↑tx X

x
s ∈ ∂Ω for all t ≥ tx,

and let Ωt := {Xx
t |x ∈ Ω & tx > t} for all t ∈ [0, T ) (these sets are open due to (2.5)).

Then the lemma essentially follows from Theorem 2 in [3] but in order to apply it, we need

to show that ω weakly satisfies some boundary conditions on (0, T )×∂Ω (even though these

do not affect the result). To this end we employ Theorem 3.1 and Remark 3.1 in [4], which

show that there is indeed some κ ∈ L∞((0, T )× ∂Ω) such that

∫ T

0

∫
Ω

ω (∂tφ+ u · ∇φ) dxdt = −
∫
Ω

ω0φ(0, ·) dx+
∫ T

0

∫
∂Ω

(u · n)φκ dσdt

holds for all φ ∈ C∞
0

(
[0, T )× Ω̄

)
.

Theorem 2 in [3] now shows that there is a positive measure η on Ω such that

∫
Ωt

ψ(y)ω(t, y) dy =

∫
Ω

ψ(Xx
t ) dη(x) (2.6)

for almost all t ∈ (0, T ) and all ψ ∈ C∞
0 (Ωt). (In fact, the measure in [3] is supported on

the set of all maximal solutions to the ODE d
dt
Y (t) = u(t, Y (t)) on (0, T ), and the relevant

formula holds for all ψ ∈ C∞
0 (Rd). But this becomes (2.6) when restricted to the ψ above,

with η the restriction of the measure from [3] to the set of solutions {{Xx
t }t∈(0,T ) |x ∈ Ω}.

This is because uniqueness of solutions for the ODE shows that the other solutions have
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Y (t) /∈ Ωt for any t ∈ (0, T ).) By taking t→ 0 in (2.6), we obtain

∫
Ω

ψ(y)ω0(y) dy =

∫
Ω

ψ(x) dη(x)

for any ψ ∈ C∞
0 (Ω), so dη(x) = ω0(x)dx. Letting ψ in (2.6) be approximate delta functions

near all y ∈ Ωt then shows that for almost all t ∈ (0, T ) we have ω(t,Xx
t ) = ω0(x) whenever

x and Xx
t are Lebesgue points of ω0 and ω(t, ·), respectively. This finishes the proof.

Since tx = ∞ for all x ∈ Ω, Lemma 2.3.1 with T → ∞ now proves the second claim

in Theorem 2.1.1(ii). As in [19], uniform boundedness of u on any compact subset of Ω then

yields ω ∈ C([0,∞);L1(Ω)), and continuity of u on [0,∞) × Ω follows from this and the

Biot-Savart law. Then also (1.10) holds pointwise, finishing the proof of Theorem 2.1.1(ii).

This argument actually applies on general open bounded Ω ⊆ R2, without needing

tx = ∞ for all x ∈ Ω. This is because boundedness of ω implies u ∈ L∞((0, T )×K) for any

compact K ⊆ Ω as well as (2.5) (for solutions on a time interval (0, T ) with T < ∞), and

these three facts then again yield ω ∈ C([0, T ];L1(Ω)) (with ω(0, ·) := ω0 and ω(T, ·) defined

by continuity). This yields Corollary 2.1.4.

2.4 Proof of Lemma 2.2.1

We can assume that β̃T (0) = 0, which is achieved by subtracting β̃T (0) from β̃T and

adding it to βT . Since T is analytic, we have detDT (z) = |T ′(z)|2, where T ′ is the complex

derivative when T is considered as a function on C. The same is true for its inverse S, and

we also have S ′(z) = T ′(S(z))−1.

Since Ω is regulated, Theorem 3.15 in [25] shows that

S ′(z) = |S ′(0)| exp
(
i

2π

∫ 2π

0

eiθ + z

eiθ − z

(
β̄T (θ)− θ − π

2

)
dθ

)
(2.7)
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for all z ∈ D, and from
∫ 2π

0
eiθ+z
eiθ−z

dθ = 2π ∈ R and Im eiθ+z
eiθ−z

= 2Im z
eiθ−z

we get

detDS(z) = detDS(0) exp
(
− 2

π

∫ 2π

0

Im
z

eiθ − z

(
β̄T (θ)− θ

)
dθ

)
(2.8)

(with β̄T (θ)− θ being 2π-periodic).

We note that if β̄T is itself Dini continuous (so we can have β̃T = β̄T and
∫ 1

0
m(r)
r
dr <

∞), then the integral in (2.8) is uniformly bounded by some m-dependent constant. Indeed,

letting θz := arg z, this follows from Im z
ei(θz−θ′)−z

= −Im z
ei(θz+θ′)−z

and | z
ei(θz+θ′)−z

| ≤ π
2|θ′| for

all θ′ (which show that
∫ 2π

0
Im z

eiθ−z
(β̄T (θz)−θ)dθ is uniformly bounded), and from the latter

bound also implying

∣∣∣∣ z

eiθ − z

(
β̄T (θ)− β̄T (θz)

)∣∣∣∣ ≤ π

2

m(|θ − θz|)
|θ − θz|

.

One can also easily show that
∫
D

(1−|z|)|ξ·z⊥|
|ξ−z|2 ||z|2ξ−z|2dz ≤ C| ln(1 − |ξ|)| for some C > 0 when

|ξ| ∈ [1
2
, 1), using (2.20) below and the argument following it, with the exponential terms

removed. So (2.3) with the right-hand side Cm| ln(1− |ξ|)| follows immediately in this case.

The rest of this section (and Section 2.6) proves (2.3) in the general case.

We will now split the exponential in (2.8) into the parts corresponding to βT and

β̃T . Let κ := 1
2π
(β̃T (2π) − β̃T (0)), so that β̃T (θ) − κθ and βT (θ) − (1 − κ)θ are both 2π-

periodic (note that we also have κ ∈ [−m(2π)
2π

,min{1, m(2π)
2π

}] because βT is non-decreasing).

Integration by parts then shows that

∫ 2π

0

z

eiθ − z
(βT (θ)− (1− κ)θ) dθ = i

∫ 2π

0

ln(1− ze−iθ) d (βT (θ)− (1− κ)θ) ,

so from
∫ 2π

0
ln(1− ze−iθ)dθ = ln 1 = 0 we obtain

∫ 2π

0

Im
z

eiθ − z
(βT (θ)− (1− κ)θ) dθ =

∫ 2π

0

ln |eiθ − z| dβT (θ). (2.9)
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In order to simplify notation, let β be the positive measure with distribution function

βT , and define the function β̃(θ) := β̃T (θ)− κθ. Then β̃ has modulus of continuity m̃(r) :=

m(r) + |κ|r, and we have m̃(r) ≤ m(r) + m(2π)
2π

r ≤ 3m(r) for r ∈ [0, 2π]. This is because

any modulus satisfies m(2−na) ≥ 2−nm(a) for any a ∈ [0, 2π] and n ∈ N (by induction), and

thus m(b) ≥ b
2a
m(a) whenever 0 ≤ b ≤ a ≤ 2π since m is non-decreasing. We also let

|β| := β((0, 2π]) = βT (2π)− βT (0) = 2π(1− κ) ∈ [0, 2π +m(2π)].

Next, for any z ∈ D, bounded measurable A ⊂ R, and θ∗ ∈ R, let

I(z, A) := 2

π

∫
A

ln |eiθ − z| dβ(θ),

J (z, A, θ∗) :=
2

π

∫
A

Im
z

eiθ − z
(β̃(θ)− β̃(θ∗)) dθ,

as well as

I(z) := I(z, (0, 2π]),

J (z) := J (z, (0, 2π], θ∗)

(with the latter independent of θ∗ due to
∫ 2π

0
Im z

eiθ−z
dθ = 0). Then (2.8) and (2.9) yield

detDS(z) = detDS(0) e−I(z)−J (z)

and

detDT (S(z)) = detDS(0)−1 eI(z)+J (z) (2.10)

(recall that β̃(0) = 0). In view of this, (2.3) becomes

∫
D

(1− |z|)|ξ · z⊥|
|ξ − z|2 ||z|2ξ − z|2

eI(ξ)−I(z)eJ (ξ)−J (z) dz ≤ C Qm(1−|ξ|)
(∫ 1

1−|ξ|

ds

sQm(s)
+ CT

)
. (2.11)
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To prove this, we need the following lemma, whose proof we postpone to Section 2.6.

Lemma 2.4.1. Let β be a (positive) measure on R and let I := [θ∗ − 2δ, θ∗ + 2δ] for some

θ∗ ∈ R and δ ∈ (0, π
2
]. Let H ⊂ D be an open region such that if rei(θ

∗+ϕ) ∈ H for some

r ∈ (0, 1) and |ϕ| ≤ π, then rei(θ
∗+ϕ′) ∈ H whenever |ϕ′| ≤ |ϕ| (i.e., H is symmetric and

angularly convex with respect to the line connecting 0 and eiθ
∗
). If α ≥ 1, then

∫
H

f(z)

[
g(z) +

1

β(I)

∫
I

h(|eiθ − z|)dβ(θ)
]α
dz ≤

∫
H

f(z)
[
g(z) + h(|eiθ∗ − z|)

]α
dz (2.12)

holds for any non-increasing h : (0,∞) → [0,∞) and non-negative f, g ∈ L1(H) such that

f(rei(θ
∗+ϕ′)) ≥ f(rei(θ

∗+ϕ)) and g(rei(θ
∗+ϕ′)) ≥ g(rei(θ

∗+ϕ)) whenever r ∈ (0, 1) and |ϕ′| ≤ |ϕ|.

Remark. The right-hand side of (2.12) is just the left-hand side for the Dirac measure

at θ∗ with mass β(I). That is, concentrating all the mass of β on I into θ∗ cannot decrease

the value of the integral in (2.12).

Next, we claim that there is δ > 0 such that β([θ−2δ, θ+2δ]) ≤ 4
3
π for all θ ∈ R (any

number from (π, 3
2
π) would work in place of 4

3
π here). Let δ′ > 0 be such that any interval

of length 4δ′ contains at most one θ with β({θ}) ≥ π
9
(there are only finitely many such θ in

(0, 2π]). Then for each θ ∈ [0, 2π], find δθ ∈ (0, δ′] such that β([θ−2δθ, θ+2δθ]) ≤ β({θ})+ π
9
.

Since {(θ−2δθ, θ+2δθ) | θ ∈ [−π, 3π]} is an open cover of [−π, 3π], there is a finite sub-cover

{(θk−2δθk , θk+2δθk) | k = 1, . . . , N}. If we let δ := min{δθk | k = 1, . . . , N} > 0, then indeed

β([θ − 2δ, θ + 2δ]) ≤ (π + π
9
) + (π

9
+ π

9
) = 4

3
π for all θ ∈ [0, 2π] (and so for all θ ∈ R). This

is because [θ − 2δ, θ + 2δ] ⊆ [θk − 2δθk , θk + 2δθk ] ∪ [θj − 2δθj , θj + 2δθj ] for some k, j such

that |θk − θj| ≤ 4δ′, and hence at most one of β({θk}) and β({θj}) is greater than π
9
(unless

k = j), while obviously each is at most π.

Moreover, let us decrease this constant so that δ ∈ (0, ln 2
103(1+m(2π))

] and m(2δ) ≤ ln 2
300

.

With this (T -dependent) δ, we can now prove the following estimates (recall (2.11)).

Lemma 2.4.2. Let β, β̃,m and δ be as above. There are C|β|,δ and Cm (depending only on
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|β|, δ and on m, respectively, so only on T ) such that for any ξ ∈ D we have

∫
D
z−1(1− |z|)5/6eI(ξ)−I(z)dz ≤ C|β|,δ, (2.13)

and for all z, ξ ∈ D also

eJ (ξ)−J (z) ≤ Cm
Qm(min{1− |ξ|, |ξ − z|})

Qm(|ξ − z|)
Qm(min{1− |z|, |ξ − z|})

Qm(|ξ − z|)
. (2.14)

Moreover, if |ξ − z| ≤ 4δ, then for θξ := arg ξ and I := [θξ − 2δ, θξ + 2δ] we have

eJ (ξ,I,θξ)−J (z,I,θξ) ≤ 2
Qm(min{1− |ξ|, |ξ − z|})

Qm(|ξ − z|)
Qm(min{1− |z|, |ξ − z|})

Qm(|ξ − z|)
. (2.15)

Proof. Let us start with (2.14). Let θξ := arg ξ and θz := arg z, as well as

A :=

{
θ ∈ (0, 2π]

∣∣∣ min{d(θ, θξ), d(θ, θz)} ≥ 1

2
|ξ − z|

}
,

where d is the distance in [0, 2π] with 0 and 2π identified. Then from

∣∣∣∣ ξ

eiθ − ξ
− z

eiθ − z

∣∣∣∣ = ∣∣∣∣ eiθ(ξ − z)

(eiθ − ξ)(eiθ − z)

∣∣∣∣ ≤ π2 |ξ − z|
d(θ, θξ) d(θ, θz)

we obtain

|J (ξ, A, π)− J (z, A, π)| ≤ 4π|ξ − z|m̃(π)

(∫ π

|ξ−z|/2

dr

r(r + 2a)
+

∫ a

b

dr

r(2a− r)

)
,

where a := 1
2
d(θξ, θz) and b := min{1

2
|ξ − z|, a} ≤ a, and we separately integrated over the 2

or 4 regions obtained by cutting A at the two midpoints between θξ and θz. That is,

|J (ξ, A, π)− J (z, A, π)| ≤ 4πm̃(π)

(
2 +

b

a
ln
a

b

)
≤ 10πm̃(π) ≤ Cm.

On the complement Ac := (0, 2π] \ A we can estimate the two J terms individually.
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To conclude (2.14), it now suffices to show

|J (z, Ac, π)| ≤ Cm + ln
Qm(min{1− |z|, |ξ − z|})

Qm(|ξ − z|)
(2.16)

because an analogous estimate then follows for J (ξ, Ac, π) as well. First note that if we let

A′ := {θ ∈ Ac | d(θ, θz) > 1
2
|ξ − z|}, then

|J (z, A′, π)| ≤ 2m̃(π)

∫ 3d(A′,θz)

d(A′,θz)

dr

r
≤ Cm.

With A′′ := {θ ∈ Ac | d(θ, θz) ≤ 1
2
min{1− |z|, |ξ − z|}} we also have

|J (z, A′′, π)| ≤ 2

π
m̃(π) ≤ Cm

due to |eiθ−z| ≥ 1−|z|. This proves (2.16) when |ξ−z| ≤ 1−|z|. If instead |ξ−z| > 1−|z|,

then we also use Im z
ei(θz−r)−z

= −Im z
ei(θz+r)−z

(note that the region Ac\(A′∪A′′) is symmetric

across θz, so
∫
Ac\(A′∪A′′)

Im z
ei(θz+r)−z

dθ = 0) and |eiθ − z| ≥ sin |θ − θz| to estimate

|J (z, Ac \ (A′ ∪ A′′), π)| ≤ 2

π

∫ |ξ−z|/2

(1−|z|)/2

m̃(2r)

sin r
dr ≤ Cm + ln

Qm(1− |z|)
Qm(|ξ − z|)

,

with the last inequality due to

∫ b/2

a/2

m̃(2r)

sin r
dr ≤

∫ b

a

m̃(s)

sin s
ds ≤

∫ b

a

m(s)

s
ds+

∫ b

a

(10m̃(s) + |κ|) ds ≤
∫ b

a

m(s)

s
ds+ Cm

for 0 ≤ a ≤ b ≤ 2 (because sups∈[0,2](
1

sin s
− 1

s
) ≤ 10). Hence (2.16) follows, proving (2.14).

To obtain (2.15), we repeat this argument with some minor adjustments. For

A :=

{
θ ∈ I

∣∣∣ min{d(θ, θξ), d(θ, θz)} ≥ 1

2
|ξ − z|

}
,
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we obtain the bound

|J (ξ, A, θξ)− J (z, A, θξ)| ≤ 4πm̃(2δ)

(
2 +

b

a
ln
a

b

)
≤ 10πm̃(2δ) ≤ 30πm(2δ) ≤ ln 2

3

(recall that m̃(s) ≤ 3m(s)). Hence it suffices to show (2.16) with Ac := I \ A, and with θξ

and ln 2
3

in place of π and Cm. As above, we now obtain

|J (z, A′, θξ)| ≤ 2m̃(2δ)

∫ 3d(A′,θz)

d(A′,θz)

dr

r
≤ 4 ln 3m(2δ) ≤ ln 2

9

and

|J (z, A′′, θξ)| ≤
2

π
m̃(2δ) ≤ 4

π
m(2δ) ≤ ln 2

9
.

Finally, if |ξ − z| > 1− |z|, then we also get

|J (z, Ac \ (A′ ∪ A′′), θξ)| ≤
2

π

∫ |ξ−z|/2

(1−|z|)/2

m̃(2r)

sin r
dr ≤ ln 2

9
+ ln

Qm(1− |z|)
Qm(|ξ − z|)

because
∫ b

a
(10m̃(s) + |κ|) ds ≤ 4δ(21m(2π)) ≤ ln 2

9
when 0 ≤ a ≤ b ≤ 4δ.

Now we prove (2.13). We obviously have

max{I(ξ), |I(z)|} ≤ 2 ln 2

π
|β| (2.17)

for all ξ ∈ D and all z ∈ B(0, 1
2
), so it suffices to prove

∫
D
(1− |z|)5/6e−I(z)dz ≤ C|β|,δ. (2.18)

The integrand is clearly bounded above by ( δ
2
)−2|β|/π on B(0, 1 − δ

2
). Since D \ B(0, 1 − δ

2
)

can be covered by O(1
δ
) disks with centers on ∂D and radii δ, it suffices to prove (2.18) with

H := B(eiθ
∗
, δ) ∩ D in place of D, for any θ∗ ∈ R.

Let I := [θ∗ − 2δ, θ∗ + 2δ] and α := 2β(I)
π

∈ [0, 8
3
]. Since I(z, (0, 2π] \

⋃
k∈Z(I + 2kπ))
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is bounded below by 2|β|
π

ln δ
2
for all z ∈ H, it in fact suffices to prove

∫
H

(1− |z|)5/6e−I(z,I)dz ≤ C. (2.19)

If α ∈ [0, 1], then from 1− |z| ≤ |eiθ − z| for all (z, θ) ∈ D× R we indeed have

∫
H

(1− |z|)5/6e−I(z,I)dz =

∫
H

(1− |z|)−α+5/6 exp

(
2

π

∫
I

ln
1− |z|
|eiθ − z|

dβ(θ)

)
dz

≤
∫
D
(1− |z|)−1/6dz,

as needed.

If α ∈ [1, 8
3
], then we instead use Jensen’s inequality and Lemma 2.4.1 with f(z) =

(1− |z|)5/6, g(z) = 0, and h(s) = 1
s
to obtain

∫
H

(1− |z|)5/6e−I(z,I)dz ≤
∫
H

(1− |z|)5/6 exp
[
α ln

(
1

β(I)

∫
I

1

|eiθ − z|
dβ(θ)

)]
dz

=

∫
H

(1− |z|)5/6
(

1

β(I)

∫
I

1

|eiθ − z|
dβ(θ)

)α

dz

≤
∫
H

(1− |z|)5/6|eiθ∗ − z|−αdz

≤
∫
H

|eiθ∗ − z|−α+5/6dz

≤ 12π.

This proves (2.19) and hence also (2.13).

Now we are ready to prove Lemma 2.2.1

Proof of Lemma 2.2.1. For the sake of simplicity, we first prove the result with C < 105, and

at the end indicate the changes required to obtain C < 147π. Consider the (T -dependent)

δ from above. Recall that we only need to prove (2.11), and note that ξ · z⊥ = (ξ − z) · z⊥

implies

|ξ · z⊥|
|ξ − z|2 ||z|2ξ − z|2

≤ 1

|ξ − z| |z| ||z|ξ − z
|z| |2

=
1

|ξ − z| |z|3 |ξ − z
|z|2 |2

. (2.20)
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Together with (2.17) and (2.14) this yields Cm such that for any ξ ∈ D \B(0, 1
2
) we have

∫
B(0, 1

4
)

(1− |z|)|ξ · z⊥|
|ξ − z|2||z|2ξ − z|2

eI(ξ)−I(z)eJ (ξ)−J (z)dz ≤ CmQm(1− |ξ|)

because |z| |ξ − z
|z|2 | = ||z|ξ − z

|z| | ≥ 1− |z| and the last fraction in (2.14) is bounded above

by exp
(

2
π

∫ 5/4

3/4
m(r)
r
dr
)
when z ∈ B(0, 1

4
) (note that the dependence of the constant on |β|

need not be indicated here because 0 ≤ |β| ≤ 2π +m(2π)).

If now |ξ| ∈ [1
2
, 1) and z ∈ B(ξ, 1−|ξ|

2
), then I(ξ)−I(z) ≤ 2|β|

π
due to |eiθ−ξ||eiθ−z|−1 ≤

2 for all θ ∈ R. Hence using |ξ − z
|z|2 | ≥ 1 − |ξ| ≥ 1−|z|

2
in (2.20) (because z

|z|2 /∈ D) and

|ξ − z| ≤ min{1− |ξ|, 1− |z|} in (2.14) yields

∫
B(ξ,

1−|ξ|
2

)

(1− |z|)|ξ · z⊥|
|ξ − z|2||z|2ξ − z|2

eI(ξ)−I(z)eJ (ξ)−J (z)dz ≤ Cm

∫
B(ξ,

1−|ξ|
2

)

1

|ξ − z|(1− |ξ|)
dz ≤ Cmπ.

For all other z ∈ D \ B(0, 1
4
), we can bound the right-hand side of (2.20) above by 64

|ξ−z|3 ,

using that | z
|z|2 | − 1 ≥ 1− |z| implies |ξ − z

|z|2 | ≥ |ξ − z|. This, (2.14), (2.13), and Qm being

non-increasing and satisfying the bounds Qm(1− |ξ|) ≥ 1 and Qm(1− |z|) ≤ Cm(1− |z|)−1/6

(see the remark after Lemma 2.2.1) now yield

∫
D\(B(ξ,δ3)∪B(0, 1

4
))

(1− |z|)|ξ · z⊥|
|ξ − z|2||z|2ξ − z|2

eI(ξ)−I(z)eJ (ξ)−J (z)dz ≤ Cm,δ Qm(1− |ξ|)

(note that the constant now also depends on δ). To obtain (2.11), it therefore suffices to

prove

∫
Hξ

1− |z|
|ξ − z|3

eI(ξ)−I(z)eJ (ξ)−J (z)dz ≤ C Qm(1− |ξ|)
(∫ 1

1−|ξ|

ds

sQm(s)
+ 1

)
(2.21)

when |ξ| ∈ [1−2δ3, 1), withHξ := [B(ξ, δ3)\B(ξ, 1−|ξ|
2

)]∩D and a universal C < 105(1−3δ3)3.

Since (1− 3δ3)3 ≥ (1− 3
109

)3 > 1− 1
108

, it suffices to obtain C ≤ 105 − 1 here

Let θξ := arg ξ, and again let I := [θξ − 2δ, θξ + 2δ] as well as α := 2β(I)
π

∈ [0, 8
3
].
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Then |eiθ − ξ| ≥ δ for all θ /∈
⋃

k∈Z(I + 2kπ), hence for all such θ and all z ∈ B(ξ, δ3) we

have |eiθ−ξ|
|eiθ−z| ≤

1
1−δ2

≤ 1 + π
2|β| (the last inequality follows from δ2 ≤ π

π+2|β| , which is due to

π
π+2|β| ≥

π
5π+2m(2π)

≥ ln 2
103(1+m(2π))

≥ δ). This yields for all z ∈ B(ξ, δ3),

I(ξ)− I(z) = 2

π

∫
(0,2π]

ln
|eiθ − ξ|
|eiθ − z|

dβ(θ) ≤ 1 +
2

π

∫
I

ln
|eiθ − ξ|
|eiθ − z|

dβ(θ). (2.22)

Similarly, for the same z and θ we have | ξ
eiθ−ξ

− z
eiθ−z

| = |ξ−z|
|eiθ−ξ||eiθ−z| ≤

δ
1−δ2

≤ 1
4m̃(2π)

, so

J (ξ)− J (z) = J (ξ, (0, 2π], θξ)− J (z, (0, 2π], θξ) ≤ 1 + J (ξ, I, θξ)− J (z, I, θξ). (2.23)

Using (2.15), combined with Qm(
1
2
(1− |ξ|))Qm(1− |ξ|)−1 ≤ e2m(2δ3)/π ≤ e1/100π (recall that

|ξ − z| ≥ 1−|ξ|
2

) and Qm(a)Qm(b)
−1 ≤ exp(1

6

∫ b

a
1
r
dr) = b1/6a−1/6 for 0 < a ≤ b ≤ δ3 (because

m(δ3) ≤ m(2δ) ≤ π
12
), we thus obtain

eJ (ξ)−J (z) ≤ 2 · 31/6e1+1/100π Qm(1− |ξ|)
Qm(|ξ − z|)

|ξ − z|1/6

(1− |z|)1/6
, (2.24)

where we also used that 1 − |z| ≤ 3|ξ − z| for all z ∈ D \ B(ξ, 1−|ξ|
2

). Estimates (2.22) and

(2.24), together with 2 · 31/6e1+1/100π ≤ 3e and

∫ 1−|ξ|

1
2
(1−|ξ|)

ds

sQm(s)
≤ ln 2

Qm(1− |ξ|)
≤
∫ 2(1−|ξ|)

1−|ξ|

ds

sQm(s)
≤
∫ 1

1−|ξ|

ds

sQm(s)
, (2.25)

now show that (2.21) will follow from

∫
Hξ

(1− |z|)5/6

|ξ − z|17/6
exp

(
2

π

∫
I

ln
|eiθ − ξ|
|eiθ − z|

dβ(θ)

)
dz

Qm(|ξ − z|)
≤ C

(∫ 1

1
2
(1−|ξ|)

ds

sQm(s)
+ 1

)
(2.26)

whenever |ξ| ∈ [1− 2δ3, 1), with some universal C ≤ 105−1
6e2

.

Consider now the case α ∈ [0, 1]. We have 1 − |z| ≤ |eiθ − z| for all (z, θ) ∈ D × R,
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and 1− |z| ≤ 3|ξ − z| for all z ∈ Hξ. This and the triangle inequality yield

|eiθ − ξ|
|eiθ − z|

≤ |ξ − z|
|eiθ − z|

+ 1 ≤ 4
|ξ − z|
1− |z|

(2.27)

for all (z, θ) ∈ Hξ × I. Therefore the left-hand side of (2.26) is bounded above by

4α
∫
Hξ

(1− |z|)−α+5/6

|ξ − z|−α+17/6

dz

Qm(|ξ − z|)
≤ 4α31−α

∫
Hξ

(1− |z|)−1/6

|ξ − z|11/6
dz

Qm(|ξ − z|)

≤ 4

∫ 1

1
2
(1−|ξ|)

(∫
As

s1/6

(1− |ξ + seiϕ|)1/6
dϕ

)
ds

sQm(s)

= 4

∫ 1

1
2
(1−|ξ|)

(∫
As

(s−1 − |s−1ξ + eiϕ|)−1/6dϕ

)
ds

sQm(s)
,

with

As := {ϕ ∈ (0, 2π]
∣∣ |ξ + seiϕ| < 1} = {ϕ ∈ (0, 2π]

∣∣ |s−1ξ + eiϕ| < s−1}.

It is not difficult to see that the inside integral is maximized when s = 1−|ξ| (i.e., (0, 2π]\As

is a single point) for any |ξ| ∈ [1− 2δ3, 1), in which case the integrand is bounded above by

[1
2
(1− cos(ϕ− θξ))]

−1/6 = [sin 1
2
(ϕ− θξ)]

−1/3 because δ ≤ 1
103

. But then the inside integral is

bounded above by 2
∫ π

0

(
ϕ
π

)−1/3
dϕ = 3π. Hence (2.26) holds with C = 12π.

Next consider the case α ∈ [1, 8
3
], and define the functions g(z) := min{ 1

|ξ−z| ,
2

1−|ξ|}

and

f(z) := min

{
(1− |z|)5/6

|ξ − z|−α+17/6Qm(|ξ − z|)
,

2−α+17/6(1− |z|)5/6

(1− |ξ|)−α+17/6Qm(
1
2
(1− |ξ|))

}
,

as well as H ′
ξ := B(ξ, δ3) ∩ D ⊇ Hξ. We can now use Jensen’s inequality, (2.27), and
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Lemma 2.4.1 to bound the left-hand side of (2.26) above by

∫
Hξ

(1− |z|)5/6

|ξ − z|17/6

(
1

β(I)

∫
I

|eiθ − ξ|
|eiθ − z|

dβ(θ)

)α
dz

Qm(|ξ − z|)

≤
∫
Hξ

(1− |z|)5/6

|ξ − z|17/6

(
1 +

1

β(I)

∫
I

|ξ − z|
|eiθ − z|

dβ(θ)

)α
dz

Qm(|ξ − z|)

=

∫
Hξ

(1− |z|)5/6

|ξ − z|−α+17/6

(
1

|ξ − z|
+

1

β(I)

∫
I

1

|eiθ − z|
dβ(θ)

)α
dz

Qm(|ξ − z|)

≤
∫
H′

ξ

f(z)

(
g(z) +

1

β(I)

∫
I

1

|eiθ − z|
dβ(θ)

)α

dz

≤
∫
H′

ξ

f(z)

(
g(z) +

1

|eiθξ − z|

)α

dz

≤ 35/62απ

Qm(
1
2
(1− |ξ|))

+

∫
Hξ

(1− |z|)5/6

|ξ − z|−α+17/6

(
1

|ξ − z|
+

1

|eiθξ − z|

)α
dz

Qm(|ξ − z|)

≤ 24π + 4

∫
Hξ

(1− |z|)5/6

|ξ − z|−α+17/6

(
1

|ξ − z|α
+

1

|eiθξ − z|α

)
dz

Qm(|ξ − z|)
.

Notice that Lemma 2.4.1 applies because 2
π
m(δ3) ≤ 2

π
m(2δ) ≤ 1

6
≤ 17

6
− α shows that

s−α+17/6Qm(s) is increasing on (0, δ3]. Using again 1− |z| ≤ 3|ξ − z| for z ∈ Hξ yields

∫
Hξ

(1− |z|)5/6

|ξ − z|17/6
dz

Qm(|ξ − z|)
≤ 35/6

∫
Hξ

1

|ξ − z|2
dz

Qm(|ξ − z|)
≤ 6π

∫ 1

1
2
(1−|ξ|)

ds

sQm(s)
,

and then we also have with H∗ := B(eiθξ , 1−|ξ|
2

) ∩ D,

∫
Hξ\H∗

(1− |z|)5/6

|ξ − z|−α+17/6|eiθξ − z|α
dz

Qm(|ξ − z|)
≤ 3α

∫
Hξ\H∗

(1− |z|)5/6

|ξ − z|17/6
dz

Qm(|ξ − z|)
(2.28)

≤ 162π

∫ 1

1
2
(1−|ξ|)

ds

sQm(s)
.

Finally, from 1− |z| ≤ |eiθξ − z|, α ≤ 8
3
, and Qm ≥ 1 on [0, 1] we obtain

∫
H∗

(1− |z|)5/6

|ξ − z|−α+17/6|eiθξ − z|α
dz

Qm(|ξ − z|)
≤
(
1− |ξ|

2

)α−17/6 ∫
H∗

|eiθξ − z|−α+5/6dz ≤ 12π.
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This proves (2.26) with C = 672π ≤ 105−1
6e2

.

Finally, to obtain C < 147π, we perform the following adjustments to the above

argument. We choose δ > 0 so that β([θ − 2δ, θ + 2δ]) ≤ 1.01π for all θ ∈ R, so we always

have α ∈ [0, 2.02]. The 1 in (2.22) and (2.23) can be replaced by an arbitrary positive

constant by lowering δ further. Similarly the 2 in (2.15) can be replaced by an arbitrary

constant greater than 1, and the power 1
6
in (2.24) by an arbitrarily small positive power

(which allows us to turn the 31/6 in (2.24) into an arbitrary constant greater than 1; this

power then also propagates through the rest of the proof). This means that the constant in

(2.24) with the new power can be made arbitrarily close to 1. The right-hand side of (2.25)

can be multiplied by an arbitrarily small positive constant if we replace the upper bound

in the second integral by a large multiple of 1 − |ξ| instead of 2(1 − |ξ|) (which is again

possible when δ > 0 is small enough), so it follows that it suffices to prove (2.26) with some

C < 147π. Since in (2.28) we can actually replace 3α by (
√
5)α ≤ 51.01 < 5.1, we indeed

obtain (2.26) with C = 4(6π + 30.6π) < 147π. While further lowering of C is possible, we

do not do so here.

2.5 Proof of Theorem 2.1.2

Let Ω ⊆ R2 be a regulated open bounded Lipschitz domain with ∂Ω a Jordan curve.

Also assume that Ω is symmetric with respect to the real axis, 0 ∈ ∂Ω, and (1−ε, 1)×{0} ⊆ Ω

for some ε > 0. Let Ω± := Ω ∩ (R × R±) and Ω0 := Ω ∩ (R × {0}) (these are obviously all

simply connected). Then there is a Riemann mapping T : Ω → D with T (Ω0) = (−1, 1) and

T (0) = 1, and therefore also T (Ω±) = D± := D ∩ (R × R±). Assume also that there are

βT , β̃T as in (H), and β̃T has bounded variation. Then I(z),J (z) from the last section are
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the integrals

I(z) = 2

π

∫
(−π,π]

ln |eiθ − z| dβT (θ),

J (z) =
2

π

∫
(−π,π]

ln |eiθ − z| dβ̃T (θ), (2.29)

where we replaced integration over (0, 2π] by (−π, π] for convenience, and the second formula

follows similarly to (2.9).

Given any concave modulus m and r0 ∈ (0, 1
2
] with m(2r0) ≤ π

6
, assume that there

are Ω and T as above with βT ≡ 0 on (−1, 1) and β̃T (θ) =
π
2
− sgn(θ)

2
m(2min{|θ|, r0}) for

θ ∈ (−π, π]. Concavity of m then guarantees that β̃T indeed has modulus of continuity m.

Notice also that dβ̃T (θ) = −χ(−r0,r0)m
′(2|θ|)dθ on (−π, π], as well as |βT | = 2π+m(2r0) ≤ 7.

We show at the end of this section that such Ω and T do exist for any m and r0 ∈ (0, 1
2
]

with m(2r0) ≤ π
6
.

We will first show that if
∫ 1

0
ds

qm(s)
< ∞ and x ∈ Ω0, then the trajectory Xx

t for the

stationary weak solution ω := χΩ+ − χΩ− to the Euler equations on Ω will reach 0 ∈ ∂Ω in

finite time. This will prove Theorem 2.1.2(i).

Due to symmetry, the particle trajectories Xx
t for this solution coincide with those for

the stationary solution ω ≡ 1 on Ω+. We will therefore now employ the Biot-Savart law on

Ω+. Let R : D+ → D be a Riemann mapping with R(1) = 1, so that T + := RT : Ω+ → D

is a Riemann mapping with T +(0) = 1. The (time-independent) Biot-Savart law for ω ≡ 1

on Ω+ can therefore be written as

u(x) = DT +(x)T
∫
Ω+

∇⊥
ξ GD(T +(x), T +(y)) dy, (2.30)

with GD(ξ, z) =
1
2π

ln |ξ−z|
|ξ−z∗||z| the Dirichlet Green’s function for D. If x ∈ Ω0 ⊆ ∂Ω+, we have

T +(x) ∈ ∂D, where GD(·, z) vanishes for any fixed z ∈ D (and GD(·, z) < 0 on D), so

∇⊥
ξ GD(T +(x), T +(y)) = |∇ξGD(T +(x), T +(y))|T +(x)⊥.

52



This suggests one to evaluate

DT +(x)TT +(x)⊥ = DT +(x)T (detDT +(x))−1/2DT +(x)(1, 0),

where (1, 0) is the counterclockwise unit tangent to Ω+ at x ∈ Ω0, and we used that the

action of the matrix DT +(x) is just multiplication by a complex number with magnitude√
detDT +(x). Since DT + is of the form

 a b

−b a

, we have

DT +(x)TDT +(x) = (detDT +(x))I2,

so (2.30) for x ∈ Ω0 becomes

u1(x) =
√
detDT +(x)

∫
Ω+

|∇ξGD(T +(x), T +(y))| dy and u2(x) = 0.

Since Ω0 is a smooth segment of ∂Ω+, standard estimates show that DT +(x) is continuous

and non-vanishing on Ω0. Since d
dt
Xx

t = u(Xx
t ), it follows that for each x ∈ Ω0, the trajectory

Xx
t either reaches 0 in finite time or converges to 0 as t→ ∞. It therefore suffices to analyze

u1(x) for x ∈ Ω0 close to 0.

If x ∈ Ω+ ∪ Ω0 is not close to the left end of Ω0, then T (x) ∈ D+ is not close to

−1, so standard estimates yield
√

detDR(T (x)) ∈ [c|T (x) − 1|, c−1|T (x) − 1|] for some

c = cT ∈ (0, 1] (because DR(z) ∼ z − 1 for z near 1, and DR only vanishes at ±1). So for

all x ∈ Ω+ ∪ Ω0 not close to the left end of Ω0 we have

√
detDT +(x)

(
|T (x)− 1|

√
detDT (x)

)−1

∈ [c, c−1]. (2.31)

From (2.10) we have

detDT (x) = detDT (T −1(0))eI(T (x))+J (T (x)). (2.32)
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Since βT is supported away from θ = 0, the term eI(T (x)) is bounded above and below by

positive numbers, uniformly in all x that are either close to 0 or not close to ∂D. Moreover,

(2.29) and the specific form of β̃T give us for z ∈ D,

J (z) ≥ − 4

π

∫ r0

0

ln(|z − 1|+ θ)m′(2θ)dθ = − 2

π
m(2r0) ln(|z − 1|+ r0) +

2

π

∫ r0

0

m(2θ)

|z − 1|+ θ
dθ.

We can now estimate (with a constant Cm,r0 changing from one inequality to another)

∣∣∣∣∫ r0

0

m(2θ)

|z − 1|+ θ
dθ −

∫ 1

|z−1|

m(r)

r
dr

∣∣∣∣ ≤
∣∣∣∣∣
∫ 1/2

|z−1|/2

m(2θ)

|z − 1|+ θ
dθ −

∫ 1/2

|z−1|/2

m(2θ)

θ
dθ

∣∣∣∣∣+ Cm,r0

≤

∣∣∣∣∣
∫ 1/2

|z−1|/2

|z − 1|m(2θ)

θ(|z − 1|+ θ)
dθ

∣∣∣∣∣+ Cm,r0

≤ ∥m∥L∞

∣∣∣∣∣
∫ 1/2

|z−1|/2

|z − 1|
θ2

dθ

∣∣∣∣∣+ Cm,r0

≤ Cm,r0 .

For z ∈ D0 := D ∩ (R× {0}), we now obtain

∣∣∣∣J (z)− 2

π

∫ 1

|z−1|

m(r)

r
dr

∣∣∣∣ ≤ Cm,r0 (2.33)

from this and from an opposite estimate via J (z) ≤ − 4
π

∫ r0
0

ln(1
2
(|z−1|+θ))m′(2θ)dθ. Hence,

for a new c = cT ,r0,m > 0 and all x ∈ Ω0 not close to the left end of Ω0 we obtain

detDT (x)Qm(|T (x)− 1|)−1 ∈ [c, c−1].

This and (2.31) show that there is c = cT ,r0,m > 0 such that for all x ∈ Ω0 close to 0 we have

u1(x) ≥ c|T (x)− 1|
√
Qm(|T (x)− 1|)

∫
Ω+

|∇ξGD(T +(x), T +(y))| dy and u2(x) = 0.
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If now Xx
t ∈ Ω0 is close to 0 and we let d(t) := 1− |T (Xx

t )| = |T (Xx
t )− 1|, then

d′(t) = −
∣∣∣∣DT (Xx

t )
d

dt
Xx

t

∣∣∣∣ = −
√

detDT (Xx
t )u1(X

x
t )

because DT is a multiple of I2 on Ω0. Therefore we have (with a new c > 0)

d′(t) ≤ −cd(t)Qm(d(t))

∫
Ω+

|∇ξGD(T +(Xx
t ), T +(y))| dy. (2.34)

Since |∇ξGD(ξ, z)| is uniformly bounded away from 0 in (ξ, z) ∈ ∂D × κD for any fixed

κ ∈ (0, 1), the integral is bounded below by a positive constant. But then d′(t) ≤ −cqm(d(t)),

which implies ∫ 1

d(t)

ds

qm(s)
≥ ct+

∫ 1

d(0)

ds

qm(s)

for some c = cT ,m,r0 ∈ (0, 1]. Since the left-hand side is bounded in t if
∫ 1

0
ds

qm(s)
< ∞, we

must have d(t) = 0 for some t <∞. This proves that Xx
t reaches 0 ∈ ∂Ω in finite time, and

hence Theorem 2.1.2(i).

This construction also allows us to prove Theorem 2.1.2(ii). When
∫ 1

0
ds

qm(s)
= ∞, we

can estimate the integral in (2.34) better after first rewriting it via a change of variables as

∫
D
|∇ξGD(T +(Xx

t ), z)|
[
detDT +((T +)−1(z))

]−1
dz. (2.35)

Now with ξ := T +(Xx
t ) (and still assuming Xx

t ∈ Ω0) we have

|∇ξGD(ξ, z)| =
∣∣∣∣ ξ − z

|ξ − z|2
− ξ − z∗

|ξ − z∗|2

∣∣∣∣ ≥ 10c

|ξ − z|
≥ c

|z − 1|

for some c > 0 (which will below change from one inequality to another and may also depend

on T ,m, r0) and all z ∈ D∩ (B(1, 1) \B(1, |ξ − 1|)) that also lie in the sector with vertex 1,

angle π
2
, and axis being the real axis (call this set Cξ and note that Cξ ⊆ C1).
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If z ∈ C1, then for y := (T +)−1(z) (so T (y) = R−1(z)) we have as above

detDT +(y) ≤ c|T (y)− 1|2Qm(|T (y)− 1|) = c|T (y)− 1|qm(|T (y)− 1|).

Indeed, this follows from (2.31), (2.32), and also (2.33) for T (y) in place of z. The latter

extends here even though T (y) ∈ R−1(C1) ⊆ D+ and so T (y) /∈ D0 because for some y-

independent C > 0 we have J (T (y)) ≤ − 4
π

∫ r0
0

ln( 1
C
(|T (y)−1|+ θ))m′(2θ)dθ (recall (2.29)).

This in turn is due to the distance of any v ∈ R−1(C1) to ∂D being comparable to |v − 1|,

since C1 has the same property.

So for z ∈ Cξ, the integrand in (2.35) can be bounded below by a multiple of

1

|z − 1||R−1(z)− 1|qm(|R−1(z)− 1|)
≥ c3

|z − 1|3/2qm(c|z − 1|1/2)
,

with the inequality due to |R(v) − 1| ∈ [c|v − 1|2, c−1|v − 1|2] for all v ∈ D+ as well as

qm(a
−1b) = a−1bQm(a

−1b) ≤ a−1bQm(b) = a−1qm(b) for a ∈ (0, 1]. The integral is therefore

bounded below by a multiple of

∫ 1

|ξ−1|

dr√
rqm(c

√
r)

=
2

c

∫ c

c
√

|ξ−1|

ds

qm(s)
.

Finally, since |ξ − 1| = |R(T (Xx
t )) − 1| ≤ c−1|T (Xx

t ) − 1|2 = c−1d(t)2, from (2.34) and

cqm(c
−1d) ≤ qm(d) for c ∈ (0, 1] and d ∈ (0, c] we obtain

d′(t) ≤ −cqm(d(t))
(∫ 1

c−1d(t)

ds

qm(s)
− C

)
≤ −c2qm(c−1d(t))

(∫ 1

c−1d(t)

ds

qm(s)
− C

)

whenever Xx
t ∈ Ω0 is close enough to 0, with some c = cT ,m,r0 ∈ (0, 1] and C = CT ,m,r0 ≥ 0.

But dividing this by the right-hand side and integrating yields (with a new C)

ln

∫ 1

d(t)

ds

qm(s)
≥ ln

(∫ 1

c−1d(t)

ds

qm(s)
− C

)
≥ ct+ ln

(∫ 1

c−1d(0)

ds

qm(s)
− C

)
≥ ct
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for all t > 0, as long as x ∈ Ω0 is close enough to 0 (so the last parenthesis is ≥ 1). This

now yields Theorem 2.1.2(ii).

Construction of a Domain Corresponding to a Given Modulus

We will now show that a domain as above does exist. We will do this by taking the

desired β̄T = βT + β̃T and obtaining the domain Ω := S(D) via the corresponding mapping

S from (2.7). Since β̄T has bounded variation, we can now use the equivalent formula

S ′(z) = S ′(0) exp

(
− 1

π

∫
(−π,π]

ln(1− ze−iθ) dβ̄T (θ)

)
(2.36)

(see [25, Corollary 3.16]). Our Ω will in fact be a perturbed isosceles triangle, with one

vertex and the center of the opposite “side” on the real axis, and the modulus m will be

“attained” at the center of that side (where Ω will therefore be concave).

Given any concave modulus m and r0 ∈ (0, 1
2
] with m(2r0) ≤ π

6
, let us define β̃(θ) :=

π
2
− sgn(θ)

2
m(2min{|θ|, r0}) on (−π, π] (and let its derivative be 2π-periodic). Then let β be

such that β(0) = 0 and

dβ|(−π,π] :=

(
2π

3
+ πm0

)
δπ +

2π

3
δπ/3 +

2π

3
δ−π/3,

where m0 := 1
π
m(2r0) and δθ0 is the Dirac measure at θ = θ0. Clearly β̄ := β + β̃ satisfies

β̄(π) = β̄(−π)+ 2π, and β̄− π
2
is odd on R (which is needed for symmetry of Ω with respect

to the real axis).

We now use (2.36) with the choice S ′(0) := 1 to define

V(z) := exp

(
− 1

π

∫
(−π,π]

ln(1− ze−iθ) dβ̄(θ)

)
= (1 + z3)−2/3v(z),

where we consider the branch of the logarithm with ln : R+ × R → R × (−π
2
, π
2
) (since
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Re(1− ze−iθ) > 0), use that Π2
k=0(1− ze−i(2k−1)π/3) = 1 + z3, and also define

v(z) := (1 + z)−m0 exp

(
2

π

∫ r0

0

ln(1− ze−iθ)m′(2θ) dθ

)
.

Since Im ln(1 − ze−iθ) ∈ (−π
2
, π
2
) for all (z, θ) ∈ D × R, the imaginary part of the above

exponent belongs to (−π
2
m0,

π
2
m0). This and Re(1 + z) > 0 now yield

| arg v(z)| < πm0 = m(2r0) ≤
π

6

for all z ∈ D. Since also | arg(1 + z3)| < π
2
, it follows that ReV(z) > 0 for all z ∈ D. But

then the mapping S : D → C given by

S(z) :=
∫ z

1

V(ξ) dξ

is injective, and T := S−1 is a Riemann mapping for Ω := S(D) with ∂Ω is a Jordan curve.

Note that Ω is bounded because V(z) = O(
∑2

k=0 |ei(2k−1)π/3−z|−5/6). Since V((−1, 1)) ⊆ R+,

we have S((−1, 1)) ⊆ R, and then S((−1, 1)) = Ω0, with S(1) = 0 ∈ ∂Ω its right endpoint.

Observe that arg(V(eiϕ)) is uniformly continuous on (ei(2k−1)π/3, ei(2k+1)π/3) for k =

0, 1, 2. This is because the same is true for the argument of (1 + e3iϕ)−2/3(1 + eiϕ)−m0 , while

arg
(
V(eiϕ)(1 + e3iϕ)2/3(1 + eiϕ)m0

)
=

2

π

∫ r0

0

arg(1− ei(ϕ−θ))m′(2θ) dθ,

which is continuous in ϕ becausem is continuous. We therefore have that for each ε > 0 there

are points 0 = ϕ0 < · · · < ϕN = 2π (with ei(2k−1)π/3 being among them) and a1, . . . , aN ∈ R

such that | arg(S(eiϕ′
) − S(eiϕ)) − an| < ε whenever ϕn−1 < ϕ < ϕ′ < ϕn. Then Ω is a

regulated domain by Theorem 3.14 in [25]. So it has a unit forward tangent vector from
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(1.42) for each θ ∈ R, and (2.7) shows that with its argument β̄T from (1.43) we have

V(z) = S ′(z) = exp

(
i

2π

∫ π

−π

eiθ + z

eiθ − z

(
β̄T (θ)− θ − π

2

)
dθ

)
(2.37)

because S ′(0) = V(0) = 1. In the definition of V , we can replace β̄(θ) by the 2π-periodic

function β̄(θ)− θ − π
2
because

∫ 2π

0
ln(1− ze−iθ)dθ = ln 1 = 0.

Integration by parts then yields

V(z) = exp

(
i

π

∫ π

−π

z

eiθ − z

(
β̄(θ)− θ − π

2

)
dθ

)
= exp

(
i

2π

∫ π

−π

(
eiθ + z

eiθ − z
− 1

)(
β̄(θ)− θ − π

2

)
dθ

)
.

From this and (2.37) we find that

1

2π

∫ π

−π

eiθ + z

eiθ − z

(
β̄T (θ)− β̄(θ)

)
dθ =

1

2π

∫ π

−π

(
β̄(θ)− θ − π

2

)
dθ + 2kπ = 2kπ

for some k ∈ Z and all z ∈ D (because β̄(θ)− π
2
and θ are odd). Hence β̄T − β̄ ≡ 2kπ, so Ω

and T are indeed the domain and Riemann mapping we wanted to construct.

2.6 Proof of Lemma 2.4.1

Monotone Convergence Theorem shows that it suffices to consider bounded f, g, h.

We will prove this via a series of “foldings” of β|I onto smaller and smaller intervals that

shrink toward θ∗. We will show that at each step the relevant integral cannot decrease.

Define β0 := β|I and let β1 be the measure for which

β1(A) =


β0(A) if A ⊆ (−∞, θ∗ − 2δ) ∪ (θ∗,∞),

0 if A ⊆ [θ∗ − 2δ, θ∗ − δ),

β0(A ∪ (2(θ∗ − δ)− A)) if A ⊆ [θ∗ − δ, θ∗]
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for any measurable A ⊆ R.

That is, we obtain β1 from β0 by reflecting β0|[θ∗−2δ,θ∗−δ) across θ
∗−δ onto (θ∗−δ, θ∗].

In particular, β1 is supported on [θ∗ − δ, θ∗ + 2δ] and both measures have total mass β(I).

We now let

Gj(z) := g(z) +
1

β(I)

∫
I

h(|eiθ − z|) dβj(θ),

and want to show that

∫
H

f(z)G0(z)αdz ≤
∫
H

f(z)G1(z)αdz. (2.38)

Let H̃ := {reiϕ ∈ H |ϕ ∈ [θ∗ − δ − π, θ∗ − δ]} and let H ′ := {rei(2(θ∗−δ)−ϕ) | reiϕ ∈ H̃}

be its reflection across the line connecting 0 and ei(θ
∗−δ). The properties of H ensure that

H ′ ⊆ H. If now z ∈ H \ H̃, then |eiθ − z| ≥ |ei(2(θ∗−δ)−θ) − z|

for any θ ∈ [θ∗−2δ, θ∗−δ). This and h being non-increasing show that G0(z) ≤ G1(z)

for all z ∈ H \ H̃, and in particular for all z ∈ H \ (H̃ ∪H ′). To conclude (2.38), it hence

suffices to show that

f(z)G0(z)α + f(z′)G0(z′)α ≤ f(z)G1(z)α + f(z′)G1(z′)α (2.39)

holds for any z = reiϕ ∈ H̃, with z′ := rei(2(θ
∗−δ)−ϕ) ∈ H ′ its reflection across the line

connecting 0 and ei(θ
∗−δ).

Note that the properties of f and g show that f(z′) ≥ f(z) and g(z′) ≥ g(z). Let

b+ := g(z) +
1

β(I)

∫
[θ∗−δ,θ∗+2δ]

h(|eiθ − z|) dβ0(θ) (≥ 0),

b− :=
1

β(I)

∫
[θ∗−2δ,θ∗−δ)

h(|eiθ − z|) dβ0(θ) (≥ 0),

b′+ := g(z′) +
1

β(I)

∫
[θ∗−δ,θ∗+2δ]

h(|eiθ − z′|) dβ0(θ) (≥ 0),

b′− :=
1

β(I)

∫
[θ∗−2δ,θ∗−δ)

h(|eiθ − z′|) dβ0(θ) (≥ 0).
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Then G0(z) = b+ + b−, G
0(z′) = b′+ + b′−, G

1(z) = b+ + b′−, and G
1(z′) = b′+ + b−, so

G0(z) +G0(z′) = G1(z) +G1(z′).

We also have b′+ ≥ b+ and b′− ≤ b− due to g(z′) ≥ g(z), h being non-increasing, and the

definition of z′. This implies

0 ≤ G1(z) ≤ min{G0(z), G0(z′)} ≤ max{G0(z), G0(z′)} ≤ G1(z′).

The last two relations, together with convexity of the function xα on [0,∞), now yield

G0(z)α +G0(z′)α ≤ G1(z)α +G1(z′)α.

From this and (f(z′)− f(z))(G1(z′)α −G0(z′)α) ≥ 0 we obtain (2.39), and therefore (2.38).

An identical (modulo reflection) argument shows that if β2 is obtained from β1 by

reflecting β1|(θ∗+δ,θ∗+2δ] across θ
∗ + δ onto [θ∗, θ∗ + δ), then we have

∫
H

f(z)G1(z)αdz ≤
∫
H

f(z)G2(z)αdz.

We can then repeat this with δ
2
in place of δ because β2 is supported on [θ∗ − δ, θ∗ + δ] and

has total mass β(I). Continuing in this way, we obtain a sequence of measures β0, β2, β4, . . . ,

each β2j having total mass β(I) and supported on [θ∗ − 21−jδ, θ∗ + 21−jδ], such that

∫
H

f(z)G2j(z)αdz ≤
∫
H

f(z)G2(j+1)(z)αdz

for j = 0, 1, . . . . Since the integrands are uniformly bounded and converge pointwise to

f(z)(g(z) + h(|eiθ∗ − z|))α as j → ∞, Dominated Convergence Theorem finishes the proof.
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Chapter 3

General Planar Domains

As we saw in Chapter 2, its main result is sharp and we cannot prove uniqueness of

weak solutions via this approach for general bounded vorticities on more general domains.

However, the example we constructed in Section 2.5 highly depends on oddness of the vor-

ticity across a line of a symmetry of the domain, so this approach might still work for some

more general domains (including domains containing corners with any interior angles) if we

add a sign condition on initial vorticity as in [16]. The main result of this chapter is to show

that the weak solutions are indeed Lagrangian on domains with possibly infinitely many

corners without any restrictions on their angles and less boundary smoothness in between

the corners. We will show that boudnary approach rate of particle trajectories is still no

faster than double-exponential in this case, and then uniqueness of weak solutions (again

when ω0 is constant near the boundary) will follow from Theorem 1.5.1. The idea of the

proof is similar to the one in last chapter but it uses a different Lyapunov functional.

3.1 Main Results

In this chapter, instead of using (1.42), we use another natural analog way to define

the unit forward tangent. Let Ω ⊆ R2 be a bounded open Lipschitz domain with ∂Ω a Jordan

curve, let L := |∂Ω| be the arc-length of ∂Ω, and let σ : [0, L] → C be a counter-clockwise
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arc-length parametrization of ∂Ω (so σ(L) = σ(0)). For any θ ∈ [0, L), the unit forward

tangent vector to Ω at σ(θ) is the unit vector

τ̄(θ) := lim
ϕ→θ+

σ(ϕ)− σ(θ)

|σ(ϕ)− σ(θ)|
, (3.1)

provided the limit exists (we also let τ̄(L) := τ̄(0)). If it does for each θ ∈ [0, L), and τ̄

has one-sided limits everywhere on [0, L], then Ω is said to be regulated. In that case τ̄ is

right-continuous, and if we identify R2 with C and let arg(z) ∈ (−π, π] for z ̸= 0, then

ᾱ(θ) := arg

(
τ̄(θ)

limϕ→θ− τ̄(ϕ)

)
∈ (−π, π) (3.2)

for θ ∈ (0, L] is such that π − ᾱ(θ) is the interior angle of Ω at σ(θ). Note that ᾱ(0) is

not defined, and ᾱ(θ) ∈ (−π, π) for θ ∈ (0, L] because Ω is Lipschitz. So corners of Ω are

precisely the points σ(θ) with θ ∈ (0, L] and ᾱ(θ) ̸= 0, and regulated domains clearly have

countably many of them. If also
∑

θ∈(0,L] |ᾱ(θ)| <∞, then

β̄c(θ) := ¯arg (τ̄(θ))−
∑
θ′≤θ

ᾱ(θ′) (3.3)

is a continuous function on [0, L] provided we let ¯arg(τ̄(θ)) be the argument of τ̄(θ) plus

an appropriate θ-dependent integer multiple of 2π. We will also assume that β̄c is Dini

continuous on [0, L]. That is, it has a modulus of continuity m : [0, L] → [0,∞) (1.44) with∫ L

0
m(r)
r
dr < ∞ holds for all θ, θ′ ∈ [0, L]). We recall that any Hölder modulus of continuity

is also a Dini modulus. The following theorem is the main result for this chapter.

Theorem 3.1.1. Assume that a bounded open Lipschitz domain Ω ⊆ R2 with ∂Ω a Jordan

curve is regulated. Let τ̄ be the forward tangent vector to Ω from (3.1), let ᾱ be from (3.2),

and assume that
∑

θ∈(0,L] |ᾱ(θ)| < ∞ and β̄c from (3.3) is Dini continuous. Consider any

0 ≤ ω0 ∈ L∞(Ω) and let ω ≥ 0 from the Yudovich class be any global weak solution to the

Euler equations on Ω with initial value ω0 (such ω is known to exist by [9]).
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(i) We have tx = ∞ for all x ∈ Ω and {Xx
t |x ∈ Ω} = Ω for all t > 0, and there is a

constant Cω <∞ such that for any ε > 0 and all large enough t > 0,

sup
dist(x,∂Ω)≥ε

dist(Xx
t , ∂Ω) ≥ exp(−eCωt) (3.4)

(except when ω ≡ 0, but then Xx
t ≡ x). Moreover, ω(t,Xx

t ) = ω0(x) for almost every

(t, x) ∈ (0,∞)× Ω (i.e., ω is Lagrangian), and u is continuous on [0,∞) × Ω and (1.10)

holds pointwise.

(ii) If supp (ω0−a)∩∂Ω = ∅ for some a ≥ 0, then ω is the unique non-negative weak

solution with initial value ω0.

Remarks. 1. Hence the well-known double-exponential bound on the rate of approach

of particle trajectories to the boundaries of smooth domains (going back to [12, 32]) still holds

on the domains considered here, even though u can be far from log-Lipschitz near ∂Ω and

even unbounded at corners with angles > π. A partial explanation is that ω ≥ 0 forces u

to “circulate” around ∂Ω counter-clockwise, thus keeping any particle trajectory near any

corner for only a short time during each passage through its neighborhood. However, our

domains can even have everywhere singular boundaries (e.g., a dense set of corners), so all

of ∂Ω could be the set of potential trouble spots rather than just a few individual corners.

2. Part (i) of this result suggests a natural open question: is there any planar domain

Ω and a weak solution ω ≥ 0 to the Euler equation on it that has a particle trajectory

starting inside Ω and reaching ∂Ω in finite time? Of course, a second one is whether such

solutions, if they exist, can fail to be Lagrangian (this is currently open even for unsigned

ω).

Let us briefly discuss our approach and its relation to [16, 19] and the result in

Chapter 2. In all four papers, the central ingredient is a non-negative Lyapunov functional

on (0,∞)×Ω that vanishes only on (0,∞)×∂Ω and its change on Euler particle trajectories

can be controlled sufficiently well to show that it can never become 0 unless it is 0 initially.
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Lacave first chose this functional to be the stream function Ψ := −∆−1ω of the fluid velocity

u [16] because its rate of change in the flow direction u is 0. When ω does not have a

sign, then Ψ can vanish inside Ω, and [19] as well as last chapter therefore used instead the

time-independent function 1− |T (x)|, with T : Ω → D a Riemann mapping. In the present

paper we consider again solutions ω ≥ 0, and so revisit the idea of using the stream function.

However, in Lemmas 3.2.2–3.2.5 we obtain sharper and more general estimates on Ψ and

∂tΨ than [16], which allows us to include much more general domains, with arbitrary corners

as well as considerably less regular boundaries overall.

In the next section we state these estimates and use them to prove Theorem 3.1.1,

leaving the proofs of the estimates and of a formula for ∂tΨ for the last two sections.

3.2 Proof of Theorem 3.1.1

We complete the proof in three steps. We always assume that Ω satisfies the hy-

potheses from Theorem 3.1.1, and (ω, u) is a weak solution to (1.1)–(1.3) on (0,∞)× Ω, as

defined next.

3.2.1 Weak Solutions and Space-time Differentiability of the Stream

Function

We again consider here weak solutions to (1.1)–(1.3) from the Yudovich class

{
(ω, u) ∈ L∞ ((0,∞);L∞(Ω)× L2(Ω)

) ∣∣ ω = ∇× u and (1.2)–(1.3) all hold weakly
}
,

where the weak form of (1.2)–(1.3) is

∫
Ω

u(t, x) · ∇h(x) dx = 0 ∀h ∈ H1
loc(Ω) with ∇h ∈ L2(Ω)
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for a.e. t ∈ (0,∞) (see [9, 10]). It is well-known that ∇×u ∈ L∞((0,∞)×Ω) implies that u

is bounded and log-Lipschitz on any compact K ⊆ Ω at a.e. time t ∈ (0,∞) (and uniformly

in these times), after possibly redefining it on a measure zero spatial set for each such t. If

we also redefine u at the exceptional measure-zero set of times (and also at t = 0), then for

any compact K ⊆ Ω we will have

sup
t≥0

sup
x,y∈K

(
|u(t, x)|+ |u(t, x)− u(t, y)|

|x− y|max{1,− ln |x− y|}

)
<∞ (3.5)

(this is also shown in the proof of Lemma 3.2.1 below). Let now Xs,x
t for (s, x) ∈ [0,∞)×Ω

be the unique continuous function satisfying

d

dt
Xs,x

t = u(t,Xs,x
t ) and Xs,x

s = x (3.6)

a.e. on the maximal interval Is,x ⊆ [0,∞) (containing s) such that Xs,x
t ∈ Ω for all t ∈

Is,x \ ∂Is,x. That is, Is,x is the (backward and forward) life-span of the particle trajectory

Xs,x
t . Of course, X0,x

t = Xx
t and I0,x = [0, tx] (or [0,∞) if tx = ∞) for all x ∈ Ω.

We say that (ω, u) from the Yudovich class is a weak solution to (1.1)–(1.3) on (0, T )×

Ω (for some T ∈ (0,∞]) with some initial condition ω0 ∈ L∞(Ω), if

∫ T

0

∫
Ω

ω (∂tφ+ u · ∇φ) dxdt = −
∫
Ω

ω0(x)φ(0, x) dx ∀φ ∈ C∞
c ([0, T )× Ω) . (3.7)

This is in fact the definition of a weak solution ω to the transport equation (1.4) when u is

some given vector field, but it is also equivalent to the relevant weak velocity formulation

of the Euler equations on Ω (see [10, Remark 1.2]). When T = ∞, we call such solutions

global. Existence of a global weak solution is guaranteed by [9] for any ω0 ∈ L∞(Ω) on very

general domains (while uniqueness is still open on most singular domains), and so for the

sake of notational simplicity we will always assume that T = ∞.

Lemma 2.3.1 now shows that for a.e. t ∈ (0,∞), a weak solution (ω, u) satisfies
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ω(t,Xx
t ) = ω0(x) for a.e. x ∈ Ω such that tx < t. We can therefore redefine ω on a set

of measure 0 so that ω(t,Xx
t ) = ω0(x) holds for all x ∈ Ω and all t ∈ (0, tx). Let now

s1 ∈ (0,∞) be any Lebesgue point of ω as a function from (0,∞) to L1(Ω). Replacing φ in

(3.7) by φψε, where ψε ∈ C∞([0,∞)) satisfies χ[s1,∞) ≤ ψε ≤ χ[s1−ε,∞), and taking ε → 0

shows that (ω, u) is also a weak solution to (1.1)–(1.3) on (s1,∞)×Ω with initial condition

ω(s1, ·) (i.e., (3.7) holds with (0, ω0) replaced by (s1, ω(s1, ·)). Doing the same with any

φ ∈ C∞
c ((0,∞)× Ω) and χ[0,s1] ≤ ψε ≤ χ[0,s1+ε] shows that (ω, u) is also a weak solution to

(1.1)–(1.3) on (0, s1)×Ω with terminal condition ω(s1, ·) (which becomes an initial condition

if we reverse the direction of time and replace u by −u). This and Lemma 2.3.1 show that

we can redefine ω on a set of measure 0 so that ω(t,Xs1,x
t ) = ω(s1, x) holds for all x ∈ Ω and

all t ∈ Is1,x \ ∂Is1,x (clearly the values on the curve (t,Xs1,x
t ) will not change for any x such

that 0 ∈ Is1,x). We can continue this way, with s2, s3, . . . consecutively in place of s1, where

{sj}j≥1 is dense in (0,∞). This allows us to change ω on a measure zero set so that for all

s ∈ [0,∞) (and with ω(0, ·) := ω0) we will from now have

ω (t,Xs,x
t ) = ω(s, x) ∀x ∈ Ω and t ∈ Is,x \ ∂Is,x. (3.8)

It is well known that since Ω is simply connected, ω from any weak solution (ω, u)

uniquely defines the velocity u via its stream function

Ψ(t, ·) := −∆−1ω(t, ·)

for all t ≥ 0 (the negative sign is chosen so that Ψ ≥ 0 when ω ≥ 0). Namely, after

redefinition of u on a measure zero set we have u = −∇⊥Ψ, where (v1, v2)
⊥ := (−v2, v1) and

∇⊥ := (−∂x2 , ∂x1). We can now use (3.8) to show that Ψ is space-time differentiable (we

postpone the proof of this to the last section).
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Lemma 3.2.1. We have Ψ ∈ C1([0,∞)×K) for each compact K ⊆ Ω, and ∇Ψ = u⊥ and

∂tΨ(t, x) = − 1

2π

∫
Ω

(
T (y)− T (x)

|T (y)− T (x)|2
− T (y)− T (x)∗

|T (y)− T (x)∗|2

)T

DT (y)u(t, y)ω(t, y)dy (3.9)

for each (t, x) ∈ [0,∞)× Ω, where T : Ω → D is any Riemann mapping.

Note that since this shows that now u = −∇⊥Ψ is continuous on [0,∞) × Ω, this

version of u still satisfies (3.5). Since u is uniquely determined by ω, from now on we will

refer to ω as a weak solution to (1.4) (with u := ∇⊥∆−1ω), instead of to (ω, u) as a weak

solution to (1.1)–(1.3).

3.2.2 Formulation on the Unit Disc via Riemann Mapping

Let next T : Ω → D be a Riemann mapping as in Lemma 3.2.1, extended continuously

to ∂Ω, and let S := T −1. We will now use T to rewrite u and ∂tΨ in terms of integrals over

D. We have

Ψ(t, x) = −
[
∆−1ω(t, ·)

]
(x) = − 1

2π

∫
Ω

ln
|T (x)− T (y)|

|T (x)− T (y)∗||T (y)|
ω(t, y)dy, (3.10)

and then

u(t, x) = −∇⊥Ψ(t, x) =
1

2π
DT (x)TR(t, T (x)) (3.11)

for any (t, x) ∈ [0,∞)× Ω, where

R(t, ξ) :=

∫
D

(
ξ − z

|ξ − z|2
− ξ − z∗

|ξ − z∗|2

)⊥

detDS(z)ω(t,S(z))dz (3.12)

for (t, ξ) ∈ [0,∞)×D. We note that the second equality in (3.11) holds because T = (T 1, T 2)
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is analytic, which means that

DT =

∂x1T 1 ∂x2T 1

∂x1T 2 ∂x2T 2

 =

 ∂x1T 1 ∂x2T 1

−∂x2T 1 ∂x1T 1

 (3.13)

and so for any v ∈ R2 we have


∂x1T 1 ∂x1T 2

∂x2T 1 ∂x2T 2

 v


⊥

=

 ∂x2T 2 −∂x2T 1

−∂x1T 2 ∂x1T 1

 v⊥,

Lemma 3.2.1 and u · ∇Ψ ≡ 0 now yield for any x ∈ Ω and t ∈ [0, tx),

d

dt
Ψ(t,Xx

t ) = − 1

2π

∫
Ω

(
T (y)− T (Xx

t )

|T (y)− T (Xx
t )|2

− T (y)− T (Xx
t )

∗

|T (y)− T (Xx
t )

∗|2

)T

DT (y)u(t, y)ω(t, y)dy

(the parenthesis is replaced by T (y)
|T (y)|2 when T (Xx

t ) = 0). If we substitute (3.11) here and use

DT (y)DT (y)T = detDT (y) I2 (3.14)

(note that detDT = (∂x1T 1)2 + (∂x2T 1)2 > 0),

after a change of variables we obtain

d

dt
Ψ(t,Xx

t ) = − 1

4π2

∫
D

(
z − T (Xx

t )

|z − T (Xx
t )|2

− z − T (Xx
t )

∗

|z − T (Xx
t )

∗|2

)
·R(t, z)ω(t,S(z))dz.

Finally, from this and the identity

∣∣∣∣ z|z|2 − w

|w|2

∣∣∣∣ = |z − w|
|z| |w|

(3.15)
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for all z, w ∈ C \ {0} we see that (with the fraction below replaced by 1
|z| when T (Xx

t ) = 0)

∣∣∣∣ ddtΨ(t,Xx
t )

∣∣∣∣ ≤ 1

4π2

∫
D

|T (Xx
t )− T (Xx

t )
∗|

|z − T (Xx
t )| |z − T (Xx

t )
∗|
|R(t, z)| |ω(t,S(z))|dz. (3.16)

It will also be convenient to re-parametrize the forward tangent vector τ̄ to Ω to 1.42,

which is

ν̄(θ) := lim
ϕ→θ+

S(eiϕ)− S(eiθ)
|S(eiϕ)− S(eiθ)|

,

with θ ∈ R. Then of course ν̄(θ) = τ̄(Γ(eiθ)) for all θ ∈ R, where Γ :=
(
σ|(0,L]

)−1 ◦ S. We

now let {θ̄j}j≥1 ⊆ (0, L] be the set of all points such that Ω has a corner at σ(θ̄j), and define

θj := π + arg
(
−Γ−1(θ̄j)

)
∈ (0, 2π] and αj :=

ᾱ(θ̄j)

π
∈ (−1, 0) ∪ (0, 1)

for j ≥ 1. That is, Ω has corners at {S(eiθj)}j≥1 with angles {π − παj}j≥1. Then we define

βc(θ) := β̄c(Γ(e
iθ)) and βd(θ) := π

∑
θj≤θ

αj

for θ ∈ (0, 2π] and extend these two functions to R so that for all θ ∈ R we have

βc(θ + 2π) = βc(θ) + 2πκ and βd(θ + 2π) = βd(θ) + 2π(1− κ),

where κ := β̄c(L)−β̄c(0)
2π

(which means that
∑

θ∈(0,L] ᾱ(θ) = 2π(1 − κ)). Then of course βc is

continuous, βd is piecewise constant, and β := βc + βd is the argument of τ in the sense that

eiβ(θ) = τ(θ) for all θ ∈ R (we also have β(θ + 2π) = β(θ) + 2π).

Lemma 1 in [31] shows that Γ and Γ−1 are both Hölder continuous, which means that

βc is Dini continuous because β̄c is. Indeed, if m̄ is a modulus of continuity for β̄c , then

βc has modulus of continuity m(r) := m̄(Crγ) for some C, γ > 0, and a simple change of

variables shows that
∫ 1

0
m̄(Crγ)

r
dr <∞ if and only if

∫ 1

0
m̄(r)
r
dr <∞.

We next state the following important formula for detDS.
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Lemma 3.2.2. We have

detDS(z) = detDS(0)Πj≥1|z − eiθj |−2αj exp

(
− 2

π

∫ 2π

0

Im
z

eiθ − z
(βc(θ)− κθ) dθ

)

for each z ∈ D (this holds even without βc being Dini continuous), as well as

sup
z∈D

∣∣∣∣∫ 2π

0

Im
z

eiθ − z
(βc(θ)− κθ) dθ

∣∣∣∣ <∞.

Proof. Since S is analytic, detDS(z) = |S ′(z)|2, where S ′ is the complex derivative when S

is considered as a function on C.

Since Ω is regulated, Theorem 3.15 in [25] shows that

S ′(z) = |S ′(0)| exp
(
i

2π

∫ 2π

0

eiθ + z

eiθ − z

(
β(θ)− θ − π

2

)
dθ

)

for all z ∈ D, and from
∫ 2π

0
eiθ+z
eiθ−z

dθ = 2π ∈ R and Im eiθ+z
eiθ−z

= 2Im z
eiθ−z

we get

detDS(z) = detDS(0) exp
(
− 2

π
Im

∫ 2π

0

z

eiθ − z
(β(θ)− θ) dθ

)
(3.17)

(note that β(θ)− θ is 2π-periodic). We split the integral into two parts, one of which is

∫ 2π

0

z

eiθ − z
(βd(θ)− (1− κ)θ) dθ = i

∫ 2π

0

ln(1− ze−iθ) d (βd(θ)− (1− κ)θ) ,

where we used integration by parts. Since
∫ 2π

0
ln(1− ze−iθ)dθ = ln 1 = 0, it follows that

exp

(
− 2

π
Im

∫ 2π

0

z

eiθ − z

(
βd(θ)− (1− κ)θ

)
dθ

)
= exp

(
− 2

π

∫ 2π

0

ln |eiθ − z| dβd(θ)
)

= Πj≥1|z − eiθj |−2αj .

This and (3.17) prove the first claim.

Let β̃(θ) = βc(θ)−κθ, which is also 2π-periodic. If βc has a Dini modulus of continuity
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m, then β̃ has Dini modulus m̃(r) := m(r) + |κ|r. So for any z ∈ D and θz := arg(z) we

obtain using Im z
ei(−θ+θz)−z

= −Im z
ei(θ+θz)−z

and
∣∣∣ z
ei(θ+θz)−z

∣∣∣ ≤ π
2|θ| for any θ ∈ R the estimate

∣∣∣∣∫ 2π

0

Im
z

eiθ − z
β̃(θ)dθ

∣∣∣∣ = ∣∣∣∣∫ π

−π

Im
z

ei(θ+θz) − z

(
β̃(θ + θz)− β̃(θz)

)
dθ

∣∣∣∣ ≤ ∣∣∣∣π2
∫ π

−π

m̃(|θ|)
|θ|

dθ

∣∣∣∣ .
Since this is finite, the second claim follows.

In view of (3.16), (3.12), and this lemma, of particular concern to us will be corners

corresponding to αj > 0 (i.e., those with angles less than π; note that the velocity u on Ω in

fact vanishes at these, while it may be infinite at the other corners).

We therefore let α+
j := max{αj, 0} and define β+

d (θ) := π
∑

θj≤θ α
+
j for all θ ∈ (0, 2π].

We then extend β+
d to R so that β+

d (θ+2π) = β+
d (θ)+π

∑
j≥1 α

+
j , and choose δ ∈ (0, 1

8
] such

that

β+
d (θ + 3δ)− β+

d (θ − 3δ)

π
≤ α∗ :=

1 + maxj≥1 α
+
j

2
(3.18)

for each θ ∈ R. Note that α∗ ∈ [1
2
, 1) because maxj≥1 α

+
j < 1 by

∑
j≥1 |αj| <∞.

3.2.3 Estimates on the Stream Function and Conclusion of the

Proof

We now state the following three crucial estimates, whose proofs we postpone to the

next section. In them, constants CΩ and C ′
Ω only depend on Ω.

Lemma 3.2.3. There is CΩ > 0 such that for each (t, ξ) ∈ [0,∞)× D we have

|Ψ(t,S(ξ))| ≤ CΩ∥ω(t, ·)∥L∞(1− |ξ|)2min{1−α∗,1/4}.
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Lemma 3.2.4. If ω ≥ 0, then for each (t, ξ) ∈ [0,∞)× D we have

Ψ(t,S(ξ)) ≥ 1− |ξ|
100π

∫
D

(1− |z|) detDS(z)
max{|z − ξ|, 1− |ξ|}2

ω(t,S(z))dz.

Lemma 3.2.5. There is C ′
Ω > 0 such that for each (t, ξ) ∈ [0,∞)× (D \B(0, 3

4
)) we have

∫
D

|R(t, z)|
|z − ξ||z − ξ∗|

dz ≤

C ′
Ω| ln(1− |ξ|)|

(∫
D

(1− |z|) detDS(z)
max{|z − ξ|, 1− |ξ|}2

|ω(t,S(z))|dz + ∥ω(t, ·)∥L∞

)
.

Remarks. 1. Lemmas 3.2.3 and 3.2.4 are sharper and more general versions of Lemmas

3.1 and 3.2 in [16]. Our use of Lemma 3.2.5 to estimate ∂tΨ is analogous to the use of

Proposition 2.4 and Lemma 3.5 in [16], but instead of bounding |R| above by essentially

∥ω∥L∞ and leaving ω as a function, we bound ω by ∥ω∥L∞ and leave |R| in (3.16). This

is because for the domains Ω considered here, R can blow up at ∂D (see (3.30) below). In

particular, this happens at corners with angles ≤ π
2
, which is why such corners had to be

excluded in [16].

2. Lemma 3.2.5 easily extends to ξ ∈ B(0, 3
4
) but we will not need this.

From now assume also that ω ≥ 0. Since (1 − |z|) detDS(z) is bounded below by a

positive constant on B(0, r) for any r < 1 due to Lemma 3.2.2, for any a > 0 there is ca > 0

such that the second integral in Lemma 3.2.5 is bounded below by ca∥ω(t, ·)∥L∞ whenever

∥ω(t, ·)∥L1 ≥ a∥ω(t, ·)∥L∞ .

From this, the above lemmas, and (3.16) it follows that when |T (Xx
t )| ≥ 3

4
(in which case

74



also |T (Xx
t )− T (Xx

t )
∗| ≤ 3(1− |T (Xx

t )|)), then we have

∣∣∣∣ ddtΨ(t,Xx
t )

∣∣∣∣ ≤ 75C ′
Ω

π

1 + ca
ca

∥ω(t, ·)∥L∞| ln(1− |T (Xx
t )|)|Ψ(t,Xx

t )

≤ Ca,Ω∥ω(t, ·)∥L∞Ψ(t,Xx
t )

∣∣∣∣ln Ψ(t,Xx
t )

CΩ∥ω(t, ·)∥L∞

∣∣∣∣ , (3.19)

where Ca,Ω > 0 is some constant that only depends on (a,Ω).

For each ε > 0 let Ωε := Ω \
⋃

x∈∂ΩB(x, ε). For each ε > 0 such that Ω2ε ̸= ∅, let

Tε := dist(Ω2ε,Ω \ Ωε)∥u∥−1
L∞((0,∞)×Ωε)

> 0.

Then Xx
t ∈ Ωε for all (t, x) ∈ [0, Tε]×Ω2ε, and therefore (3.8) yields ω(t,Xx

t ) = ω0(x) for all

(t, x) ∈ [0, Tε]× Ω2ε. Taking ε→ 0 we obtain

∥ω0∥L∞ ≤ lim inf
t→0

∥ω(t, ·)∥L∞ ≤ ∥ω∥L∞ ,

and then from ∇ · u ≡ 0 also

∥ω(t, ·)∥L1 ≥ ∥ω0∥L1(Ω2ε) ≥ ∥ω0∥L1 − |Ω \ Ω2ε| ∥ω0∥L∞ ≥ ∥ω0∥L1 − |Ω \ Ω2ε| ∥ω∥L∞ (3.20)

for each ε > 0 and all t ∈ [0, Tε].

If now ω0 ̸≡ 0, let a := 1
2
∥ω0∥L1∥ω∥−1

L∞ > 0 and let ε > 0 be such that |Ω \ Ω2ε| ≤ a.

From (3.20) we obtain

∥ω(t, ·)∥L1 ≥ a∥ω∥L∞ ≥ a∥ω(t, ·)∥L∞

for all t ∈ [0, Tε]. Thus (3.19) yields

∣∣∣∣ ddtΨ(t,Xx
t )

∣∣∣∣ ≤ Ca,Ω∥ω∥L∞Ψ(t,Xx
t )

∣∣∣∣ln Ψ(t,Xx
t )

CΩ∥ω∥L∞

∣∣∣∣ (3.21)

for all (t, x) ∈ [0, Tε]× Ω such that |T (Xx
t )| ≥ 3

4
. This and Gronwall’s inequality show that
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Xx
t ∈ Ω for all (t, x) ∈ [0, Tε]×Ω. Therefore ω(t,Xx

t ) = ω0(x) for all (t, x) ∈ [0, Tε]×Ω, and

in particular, ∥ω(Tε, ·)∥L1 = ∥ω0∥L1 . We can therefore repeat this argument with the same

a and ε on the time interval [Tε, 2Tε], then on [2Tε, 3Tε], etc.

It follows that ω is a Lagrangian solution to (1.4) on (0,∞) × Ω and ∥ω(t, ·)∥Lp =

∥ω0∥Lp for all (t, p) ∈ [0,∞) × [1,∞]. Integrating (3.21) shows that there is a constant

Cω (depending on ∥ω0∥L∞ , ∥ω0∥L1 ,Ω) such that for each ε > 0 and all large enough t > 0

we have Ψ(t,Xx
t ) ≥ exp(−eCωt) whenever Ψ(0, x) ≥ ε. Since Lemma 3.2.3 yields C ′′

ω > 0

such that Ψ(t,S(ξ)) ≤ C ′′
ω(1 − |ξ|)2min{1−α∗,1/4} for all (t, ξ) ∈ [0,∞) × D, and T is Hölder

continuous on Ω (see [31, Lemma 1]), this shows (3.4). Using also that (1.10) can clearly be

solved backwards in time with the same estimate on the boundary approach rate, we find

that {Xx
t |x ∈ Ω} = Ω, thus finishing the proof of Theorem 3.1.1(i) for ω0 ̸≡ 0.

If ω0 ≡ 0, then ω ≡ 0 is clearly a Lagrangian solution to (1.4) on (0,∞) × Ω with

Xx
t = x, which satisfies Theorem 3.1.1(i) except for (3.4).

If ω ≥ 0 is a different global weak solution, then the above arguments with time

0 replaced by any T ′ > 0 such that ω(T ′, ·) ̸≡ 0 show that for all t ∈ (T ′,∞) we have

∥ω(t, ·)∥L1 = ∥ω(T ′, ·)∥L1 . But then ∥ω(t, ·)∥L1 must be constant on the time interval

(T ′′,∞), where T ′′ ∈ [0,∞) is the infimum of times t with ω(t, ·) ̸≡ 0 (and that constant is

then positive). This contradicts continuity of ω as an L1(Ω)-valued function of time because

ω(0, ·) = ω0 ≡ 0.

Theorem 3.1.1(ii) follows immediately from Theorem 3.1.1(i) and Proposition 3.2 in

[19]. We note that the latter result shows that Lagrangian solutions are unique as long as

they remain constant near ∂Ω (more specifically, near the non-C2,γ portion of ∂Ω for some

γ > 0).

3.3 Proofs of Lemmas 3.2.3–3.2.5

Let us first state an auxiliary technical result.
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Lemma 3.3.1. Let β be a (positive) measure on R and let I := (θ∗ − 2δ, θ∗ + 2δ) for some

θ∗ ∈ R and δ ∈ (0, π
2
]. Let H ⊂ D be an open region such that if rei(θ

∗+ϕ) ∈ H for some

r ∈ (0, 1) and |ϕ| ≤ π, then rei(θ
∗+ϕ′) ∈ H whenever |ϕ′| ≤ |ϕ| (i.e., H is symmetric and

angularly convex with respect to the line connecting 0 and eiθ
∗
). If F : [0,∞) → [0,∞) is

non-decreasing and convex, then

∫
H

f(z)F

(
g(z) +

1

β(I)

∫
I

h(|z − eiθ|)dβ(θ)
)
dz ≤

∫
H

f(z)F
(
g(z) + h(|z − eiθ

∗|)
)
dz

holds for any non-increasing h : (0,∞) → [0,∞) and non-negative f, g ∈ L1(H) such that

f(rei(θ
∗+ϕ′)) ≥ f(rei(θ

∗+ϕ)) and g(rei(θ
∗+ϕ′)) ≥ g(rei(θ

∗+ϕ)) whenever r ∈ (0, 1) and |ϕ′| ≤ |ϕ|.

The proof of this result is identical to that of Lemma 2.4.1 in last chapter, which was

stated with F (s) = sα for some α ≥ 1, because the only properties of F used in it were

that it is non-decreasing and convex. We will be using it here with F (s) := es, g ≡ 0, and

h(s) := 2β(I) ln+
2
s
, so that for any β, I,H, f as above we have

∫
H

f(z) exp

(
−2

∫
I

ln |z − eiθ|dβ(θ)
)
dz ≤

∫
H

f(z)|z − eiθ
∗|−2β(I)dz. (3.22)

Since Lemmas 3.2.3–3.2.5 are all stated at a single time t, we will drop t from our

notation in the proofs below. Hence we will have ω(x),Ψ(x), and R(z). For z ∈ D we will

also denote

Λ(z) := detDS(z) |ω(S(z))| ≥ 0.

We note that ∫
D
Λ(z)dz ≤ ∥ω∥L∞

∫
D
detDS(z)dz = |Ω| ∥ω∥L∞ , (3.23)

and that constants C1, C2, . . . below will always be allowed to depend (only) on Ω.
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3.3.1 Proof of Lemma 3.2.4

We have

|ξ − z|2

|ξ − z∗|2|z|2
= 1− |ξz − z∗z|2 − |ξ − z|2

|ξ − z∗|2|z|2

= 1− (|ξ|2|z|2 − 2Re (ξz̄) + 1)− (|ξ|2 − 2Re (ξz̄) + |z|2)
|ξ − z∗|2|z|2

= 1− (1− |ξ|2)(1− |z|2)
|ξ − z∗|2|z|2

(3.24)

for ξ, z ∈ D with z ̸= 0, which also means that |ξ−z|2
|ξ−z∗|2|z|2 ∈ (0, 1) when z ̸= 0, ξ. Hence

− ln
|ξ − z|

|ξ − z∗||z|
= −1

2
ln

(
1− (1− |ξ|2)(1− |z|2)

|ξ − z∗|2|z|2

)
≥ 1

2

(1− |ξ|2)(1− |z|2)
|ξ − z∗|2|z|2

,

and so for each ξ ∈ D we have

Ψ(S(ξ)) ≥ 1

4π

∫
D

(1− |ξ|2)(1− |z|2)
|ξ − z∗|2|z|2

Λ(z)dz ≥ 1− |ξ|
4π

∫
D

(1− |z|)
|ξ − z∗|2|z|2

Λ(z)dz.

Given any z, ξ ∈ D, let M := max{|z− ξ|, 1− |ξ|}. Then 1− |z| ≤ 1− |ξ|+ |z− ξ| ≤ 2M , so

|ξ − z∗| |z| ≤ |ξ − z|+ |z − z∗| |z| = |z − ξ|+ 1− |z|2 ≤ |z − ξ|+ 2(1− |z|) ≤ 5M

when z ̸= 0, and the result follows.

3.3.2 Proof of Lemma 3.2.3

Identity (3.24) and − ln(1 − r) ≤ ( r
1−r

)
1
2 for r ∈ [0, 1) (equality holds for r = 0 and

the right-hand side has a larger derivative on (0, 1)) show that

− ln
|ξ − z|

|ξ − z∗||z|
≤ 1

2

 (1−|ξ|2)(1−|z|2)
|ξ−z∗|2|z|2

|ξ−z|2
|ξ−z∗|2|z|2

 1
2

≤ (1− |ξ|) 1
2 (1− |z|) 1

2

|ξ − z|
.
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Hence it suffices to show that there is C1 > 0 such that

∫
D

(1− |z|) 1
2

|z − ξ|
Λ(z)dz ≤ C1∥ω∥L∞(1− |ξ|)2α̂−

1
2 , (3.25)

where α̂ := min{1−α∗,
1
4
} (note that 2α̂− 1

2
≤ 0). From (3.23) we see that it in fact suffices

to replace D by A1 := B(ξ, δ) ∩ D in (3.25).

Let us decompose A1 into A2 := B(ξ, ε) ∩ A1 with ε := 1−|ξ|
2

, A3 := B(ξ̃, ε) ∩ A1

with ξ̃ := ξ
|ξ| , and A4 := A1\(A2 ∪ A3). Now Lemma 3.2.2 and (3.22) with H := A1,

I := (arg(ξ)−2δ, arg(ξ)+2δ), f(z) := (1−|z|)1/2
|z−ξ| , and β :=

∑
θj∈I α

+
j δθj , where δθj is the Dirac

mass at θj, yield

∫
A1

(1− |z|) 1
2

|z − ξ|
Λ(z)dz ≤ C2||ω||L∞

∫
A1

(1− |z|) 1
2

|z − ξ|
Πθj∈I |z − eiθj |−2α+

j dz

≤C2||ω||L∞

∫
A1

(1− |z|) 1
2

|z − ξ|
|z − ξ̃|−2α∗dz

≤C2||ω||L∞

(∫
A2

ε
1
2
−2α∗

|z − ξ|
dz +

∫
A3

|z − ξ̃| 12−2α∗

ε
dz +

∫
A4

33|z − ξ|−
1
2
−2α∗dz

)

≤C3||ω||L∞ε
3
2
−2α∗ ≤ 2C3||ω||L∞(1− |ξ|)2α̂−

1
2

because (3.18) shows that
∑

θj∈I α
+
j ≤ α∗ < 1. This therefore finishes the proof of (3.25).

3.3.3 Proof of Lemma 3.2.5

First integrate over A0 := D\B(ξ, δ). Then (3.15), (3.23), and

|z − z̃∗| ≥ |z̃∗| − 1 ≥ |z̃ − z̃∗|
2

≥ 1− |z̃| (3.26)
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for any z, z̃ ∈ D yield

∫
A0

|R(z)|
|z − ξ||z − ξ∗|

dz ≤ 1

δ2

∫
A0

∫
D

|z̃ − z̃∗|
|z − z̃||z − z̃∗|

Λ(z̃)dz̃dz

≤ 2

δ2

∫
D

∫
A0

dz

|z − z̃|
Λ(z̃)dz̃

≤ 4π

δ2

∫
D
Λ(z̃)dz̃

=
4π|Ω|
δ2

||ω||L∞ .

So it remains to integrate over A1 := B(ξ, δ)∩D. From (3.26), |ξ|− δ ≥ 5
8
, and (3.23)

we have

∫
A1

1

|z − ξ||z − ξ∗|

∫
B(0,1/2)

|z̃ − z̃∗|
|z − z̃||z − z̃∗|

Λ(z̃)dz̃dz ≤ C1| ln(1− |ξ|)| ||ω||L∞ , (3.27)

where we also used that with Bξ := B(ξ, |ξ−ξ′|
2

) ∩ D and Bξ′ := B(ξ′, |ξ−ξ′|
2

) ∩ D we have

∫
D

dz

|z − ξ||z − ξ′|
≤ 3

∫
D\(Bξ∪Bξ′ )

dz

|z − ξ|2
+

4

|ξ − ξ′|

∫
Bξ

dz

|z − ξ|
≤ 6π ln+

1

|ξ − ξ′|
+ 50 (3.28)

for any ξ, ξ′ ∈ C.

We now let ε := 1 − |ξ| and split A1 into A2 := B(ξ, ε
4
) and A3 := A1 \ A2. We

start with A2, and let E1 := B(ξ, ε
2
) and E2 := D\(B(0, 1

2
) ∪ B(ξ, ε

2
)). We also denote

M(ξ, z) := max{|z− ξ|, 1−|ξ|}. When (z, z̃) ∈ A2×E1, then (3.26), |z− ξ∗| ≥ ε, and (3.28)

show that

∫
A2

1

|z − ξ||z − ξ∗|

∫
E1

|z̃ − z̃∗|
|z − z̃||z − z̃∗|

Λ(z̃)dz̃dz ≤ 2

ε

∫
E1

Λ(z̃)

∫
A2

dz

|z − ξ||z − z̃|
dz̃

≤ C2

ε

∫
E1

Λ(z̃) | ln |z̃ − ξ|| dz̃.

From Lemma 3.2.2 and (3.18) we see that detDS(z̃) ≤ C3(1−|z̃|)−2 for some C3 and
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all z̃ ∈ D, hence

∫
B(ξ,ε2)

Λ(z̃) | ln |z̃ − ξ|| dz̃ ≤ 4C3ε
−2||ω||L∞

∫
B(ξ,ε2)

| ln |z̃ − ξ|| dz̃ ≤ C4||ω||L∞ε2| ln ε|.

From the last two estimates and M(ξ, z̃) = ε ≤ 2(1− |z̃|) for z̃ ∈ E1 it now follows that

∫
A2

1

|z − ξ||z − ξ∗|

∫
E1

|z̃ − z̃∗|
|z − z̃||z − z̃∗|

Λ(z̃)dz̃dz ≤ C2C4||ω||L∞ε| ln ε|+ C2| ln ε|
ε

∫
E1

Λ(z̃)dz̃

≤ C5| ln ε|
(∫

E1

1− |z̃|
M(ξ, z̃)2

Λ(z̃)dz̃ + ||ω||L∞

)
.

Moreover, for all (z, z̃) ∈ A2 × E2 we have |z − z̃∗| ≥ |z − z̃| ≥ |z̃−ξ|
2

≥ 1−|ξ|
4

and

|z̃ − z̃∗| ≤ 3(1− |z̃|), therefore

∫
A2

1

|z − ξ||z − ξ∗|

∫
E2

|z̃ − z̃∗|
|z − z̃||z − z̃∗|

Λ(z̃)dz̃dz ≤ 48

∫
E2

1− |z̃|
M(ξ, z̃)2

Λ(z̃)dz̃

∫
A2

dz

|z − ξ||z − ξ∗|

≤ C6| ln(1− |ξ|)|
∫
E2

1− |z̃|
M(ξ, z̃)2

Λ(z̃)dz̃,

where we also used (3.28). The last two estimates and (3.27) show that

∫
A2

|R(z)|
|z − ξ||z − ξ∗|

dz ≤ (C1 + C5 + C6)| ln(1− |ξ|)|
(∫

D

1− |z|
M(ξ, z)2

Λ(z)dz + ||ω||L∞

)
,

so it remains to integrate over A3.

Let F1 := B(ξ, ε
8
), F2 := D \ (B(0, 1

2
) ∪ B(ξ, 2δ)), and F3 := (B(ξ, 2δ) ∩ D) \ B(ξ, ε

8
).

Then for all (z, z̃) ∈ A3×F1 we have |z−z̃∗| ≥ |z−z̃| ≥ 1−|ξ|
8

≥ |z̃−ξ| and |z̃−z̃∗| ≤ 3(1−|z̃|),

which together with (3.28) yields

∫
A3

1

|z − ξ||z − ξ∗|

∫
F1

|z̃ − z̃∗|
|z − z̃||z − z̃∗|

Λ(z̃)dz̃dz ≤ 192

∫
F1

1− |z̃|
M(ξ, z̃)2

Λ(z̃)dz̃

∫
A3

dz

|z − ξ∗||z − ξ|

≤ C7| ln(1− |ξ|)|
∫
F1

1− |z̃|
M(ξ, z̃)2

Λ(z̃)dz̃.

And from (3.26), (3.23), and (3.28) we obtain
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∫
A3

1

|z − ξ||z − ξ∗|

∫
F2

|z̃ − z̃∗|
|z − z̃||z − z̃∗|

Λ(z̃)dz̃dz ≤ 2

δ

∫
F2

Λ(z̃)dz̃

∫
A3

dz

|z − ξ||z − ξ∗|

≤ C8| ln(1− |ξ|)| ||ω||L∞ .

For the integral involving (z, z̃) ∈ A3 × F3, let F4 := F3 ∩ B(0, 1 − ε
1

1−α∗ ) and for

z̃ ∈ F3 let Az̃ := B(z̃, |z̃−ξ|
2

) ∩ A3. From |ξ|, |z̃| ≥ 1
2
and (3.15) we get

|z̃ − ξ∗| ≤ |z̃ − z̃∗|+ 4|z̃ − ξ| ≤ |z̃ − z̃∗|+ 8|z̃ − z| ≤ 10|z − z̃∗|

when also z /∈ Az̃. This, (3.28), |z̃− z̃∗| ≤ 3(1−|z̃|), and |z̃− ξ∗| ≥ |z̃− ξ| ≥ 1−|ξ|
8

for z̃ ∈ F3,

and |z̃ − ξ∗| ≥ |z̃−ξ|
2

show that

∫
A3

1

|z − ξ||z − ξ∗|

∫
F4

|z̃ − z̃∗|
|z − z̃||z − z̃∗|

Λ(z̃)dz̃dz

≤4

∫
F4

∫
Az̃

1

|z̃ − ξ||z̃ − ξ∗|
|z̃ − z̃∗|

|z − z̃||z − z̃∗|
Λ(z̃)dzdz̃

+ 20

∫
F4

∫
A3\Az̃

1

|z − ξ||z − ξ∗|
|z̃ − z̃∗|

|z̃ − ξ||z̃ − ξ∗|
Λ(z̃)dzdz̃

≤C9

∫
F4

|z̃ − z̃∗|
|z̃ − ξ||z̃ − ξ∗|

Λ(z̃) (| ln(1− |z̃|)|+ | ln(1− |ξ|)|) dz̃

≤C10| ln(1− |ξ|)|
∫
F4

1− |z̃|
M(ξ, z̃)2

Λ(z̃)dz̃.

Finally, let F5 := F3 \F4. From (3.26), (3.28), Lemma 3.2.2, and (3.22) with H := F5,
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I := (arg(ξ)− 3δ, arg(ξ) + 3δ), f ≡ 1, and β :=
∑

θj∈I α
+
j δθj we obtain

∫
A3

1

|z − ξ||z − ξ∗|

∫
F5

|z̃ − z̃∗|
|z − z̃||z − z̃∗|

Λ(z̃)dz̃dz

≤ 2

∫
F5

Λ(z̃)

∫
A3

dz

|z − ξ||z − ξ∗||z − z̃|
dz̃

≤ 8

∫
F5

Λ(z̃)

(∫
Az̃

dz

|z̃ − ξ|2|z̃ − z|
+

∫
A3\Az̃

dz

|z − ξ||z − ξ∗||z̃ − ξ|

)
dz̃

≤ C11

∫
F5

Λ(z̃)

(
1

|z̃ − ξ|
+

| ln(1− |ξ|)|
|z̃ − ξ|

)
dz̃

≤ C12
| ln(1− |ξ|)|

ε
||ω||L∞

∫
F5

Πθj∈I |z̃ − eiθj |−2α+
j dz̃

≤ C13
| ln(1− |ξ|)|

ε
||ω||L∞

∫
F5

∣∣∣∣z̃ − ξ

|ξ|

∣∣∣∣−2α∗

dz̃

≤ C14| ln(1− |ξ|)| ||ω||L∞ ,

where in the last inequality we used that |F5| ≤ ε
1

1−α∗ , which is less than the area of a disc

with radius ε
1

2−2α∗ . Combining the above estimates and (3.27) yields

∫
A3

|R(z)|
|z − ξ||z − ξ∗|

dz ≤ (C1+C7+C8+C10+C14)| ln(1−|ξ|)|
(∫

D

1− |z|
M(ξ, z)2

Λ(z)dz + ||ω||L∞

)
,

and the result follows.

3.4 Proof of Lemma 3.2.1

We see from (3.11), a change of variables in the integral from (3.9), and (3.14) that

we need to show boundedness and continuity of R and

Q(t, ξ) :=

∫
D

(
z − ξ

|z − ξ|2
− z − ξ∗

|z − ξ∗|2

)
·R(t, z)ω(t,S(z))dz

on [0,∞)×K for any compact K ⊆ D, as well as that ∂tΨ(t, x) = − 1
2π
Q(t, T (x)) holds for

each (t, x) ∈ [0,∞)× Ω.
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So fix any such K and let d := dist(K, ∂D) > 0, then fix any (t, ξ) ∈ [0,∞)×K and

let B := B(ξ, d
2
) and B′ := B(ξ, d

4
). With Cd := sup|z|≤1−d/2 detDS(z), and using (3.15),

|w− z∗| ≥ |w− z| for all z, w ∈ D, (3.28), and (3.23), we obtain for any (t′, ξ′) ∈ [0,∞)×B′,

|R(t, ξ)−R(t, ξ′)| ≤||ω||L∞

(∫
B

+

∫
D\B

)(
|ξ − ξ′|

|ξ − z||ξ′ − z|
+

|ξ − ξ′|
|ξ − z∗||ξ′ − z∗|

)
detDS(z)dz

≤2||ω||L∞|ξ − ξ′|
(
6πCd ln+

1

|ξ − ξ′|
+ 50Cd +

8|Ω|
d2

)

and (using also |z − z∗| ≤ 2|ξ′ − z∗| and Hölder’s inequality)

|R(t, ξ′)−R(t′, ξ′)| ≤
∫
D

|z − z∗|
|ξ′ − z||ξ′ − z∗|

detDS(z)|ω(t,S(z))− ω(t′,S(z))|dz

≤2

(∫
D
|ξ′ − z|−

3
2 detDS(z)dz

) 2
3

||ω(t, ·)− ω(t′, ·)||L3(Ω). (3.29)

(Note also that the first of these estimates and (3.30) below prove (3.5).) Since the last

integral is bounded in ξ′ ∈ B′ by Lemma 3.2.2 and (3.23), and ω is continuous as an Lp(Ω)-

valued function of t ∈ [0,∞) for any p ∈ [1,∞) due to boundedness of ω, local boundedness

of u, and (3.8), these two estimates show that R is continuous at (t, ξ). Boundedness of R

on [0,∞)×K follows from the estimate

|R(t, ξ)| ≤ CΩ||ω||L∞(1− |ξ|)1−2α∗ (3.30)

for all (t, ξ) ∈ [0,∞)×D, with α∗ from (3.18) and some Ω-dependent constant CΩ. To obtain

it, first note that |z − z∗| ≤ 2|ξ − z∗| and (3.23) yield (with δ from (3.18))

∫
Ω\B(ξ,δ)

|z − z∗|
|ξ − z||ξ − z∗|

detDS(z)dz ≤ 2

δ

∫
Ω\B(ξ,δ)

detDS(z)dz ≤ 2|Ω|
δ
.

Then use Lemma 3.2.2, and (3.22) with H := B(ξ, δ), I := (arg(ξ) − 2δ, arg(ξ) + 2δ),
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f(z) := 1
|ξ−z| , and β :=

∑
θj∈I α

+
j δθj to get (with ε := 1−|ξ|

2
and ξ̃ = ξ

|ξ|)

∫
B(ξ,δ)

|z − z∗|
|ξ − z||ξ − z∗|

detDS(z)dz ≤ C ′
∫
B(ξ,δ)

|ξ̃ − z|−2α∗

|ξ − z|
dz

≤ C ′

(∫
B(ξ,ε)

ε−2α∗

|ξ − z|
dz +

∫
B(ξ̃,ε)

|ξ̃ − z|−2α∗

ϵ
dz + 9

∫
B(ξ,δ)\(B(ξ,ε)∪B(ξ̃,ε))

|ξ − z|−1−2α∗dz

)

≤ C ′′(1− |ξ|)1−2α∗

with some Ω-dependent constant C ′, C ′′ because
∑

θj∈I α
+
j ≤ α∗ < 1 by (3.18). The last two

estimates now imply (3.30).

Let us now turn to Q. Fix any K as above, then fix any (t, ξ) ∈ [0,∞) ×K and let

d,B,B′ be as above (without loss assume that d ≤ 1
4
). Then for any (t′, ξ′) ∈ [0,∞)×B′ we

have from (3.15),

|Q(t, ξ)−Q(t, ξ′)| ≤ ||ω||L∞

∫
D

(
|ξ − ξ′|

|ξ − z||ξ′ − z|
+

|ξ∗ − ξ′∗|
|ξ∗ − z||ξ′∗ − z|

)
|R(t, z)|dz,

where the second fraction is just 1
|ξ∗−z| when ξ′ = 0 and 1

|ξ′∗−z| when ξ = 0. Using (3.15),

splitting the integration to z ∈ B and z ∈ D\B, and applying (3.30) and (3.28) yields

|Q(t, ξ)−Q(t, ξ′)| ≤ C ′||ω||L∞|ξ′ − ξ|
(
d1−2α∗

(
1 + ln+

1

|ξ − ξ′|

)
+ d−2

)

for some Ω-dependent constant C ′. Next, we have

|Q(t, ξ′)−Q(t′, ξ′)| ≤||ω||L∞

∫
D

|ξ′ − ξ′∗|
|ξ′ − z| |ξ′∗ − z|

|R(t, z)−R(t′, z)|dz

+

∫
D

|ξ′ − ξ′∗|
|ξ′ − z| |ξ′∗ − z|

|R(t′, z)| |ω(t,S(z))− ω(t′,S(z))|dz.

Splitting the first integration into z ∈ B′ and z ∈ D\B′, and then using |ξ′− ξ′∗| ≤ 2|ξ′∗− z|,
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(3.29), and (3.30) shows that the first integral is bounded above by

Cd||ω(t, ·)− ω(t′, ·)||L3(Ω) +
4

d

∫
D
|R(t, z)−R(t′, z)| dz

for some (Ω, d)-dependent constant Cd. This converges to 0 as t′ → t by continuity of

ω : [0,∞) → L3(Ω), together with (3.29) and integrability of the right-hand side of (3.30).

Using |ξ′ − ξ′∗| ≤ 2|ξ′∗ − z|, (3.30), and Lemma 3.2.2, the second integral is bounded by

C ′

[∫
D

(
(1− |z|)1−2α∗

|ξ′ − z| detDS(z)
1
p

)q

dz

] 1
q (∫

D
detDS(z)|ω(t,S(z))− ω(t′,S(z))|pdz

) 1
p

≤ Cd||ω(t, ·)− ω(t′, ·)||Lp(Ω)

for some Ω-dependent C ′ and (d,Ω)-dependent Cd, provided p ∈ (2,∞) is large enough so

that with q := p
p−1

we have (1− 2α∗ − 1
p

∑
j α

+
j )q > −1. The above estimates thus together

show that Q is continuous at (t, ξ). We can also use (3.15), |ξ − ξ∗| ≤ 2|ξ∗ − z|, and (3.30)

to get

|Q(t, ξ)| ≤ 2CΩ||ω||2L∞

∫
D

(1− |z|)1−2α∗

|ξ − z|
dz (3.31)

for all (t, ξ) ∈ [0,∞)×D, showing boundedness of Q on [0,∞)×K for each compact K ⊆ D.

Hence it remains to show ∂tΨ(t, x) = − 1
2π
Q(t, T (x)) pointwise, which will follow from

− 1

2π

∫ t1

t0

Q(t, T (x0))dt = Ψ(t1, x0)−Ψ(t0, x0) (3.32)

for all 0 ≤ t0 < t1 and x0 ∈ Ω because Q is continuous. So fix any such (t0, t1, x0). Let

ϕ(x) := − 1

2π
ln

|T (x0)− T (x)|
|T (x0)− T (x)∗||T (x)|

= − 1

2π
ln

|T (x)− T (x0)|
|T (x)− T (x0)∗||T (x0)|

86



(so Ψ(tj, x0) =
∫
Ω
ϕ(x)ω(tj, x)dx for j = 0, 1) and

ψ(x) := ∇ϕ(x) = − 1

2π
DT (x)T

(
T (x)− T (x0)

|T (x)− T (x0)|2
− T (x)− T (x0)

∗

|T (x)− T (x0)∗|2

)

for each x ∈ Ω (recall (3.13)). Also, for each r ∈ (0, t1−t0
2

) let gr ∈ C∞
c ([0,∞)) be such that

χ[t0+r,t1−r] ≤ gr ≤ χ(t0,t1)

and gr is non-increasing on [0, t1] and non-decreasing on [t1,∞); and for each h ∈ (0, 1] let

fh ∈ C∞([0,∞)) be such that

1. fh(x) = 0 for x ∈ [0, h
3
],

2. fh(x) = x for x ∈ [h, 1
h
],

3. fh(x) =
1
h
+ h for x ∈ [ 1

h
+ h,∞),

4. 0 ≤ f ′
h(x) ≤ 2 for x ∈ [0,∞).

Now for any h, r ∈ (0,min{1, t1−t0
2

}) and (t, x) ∈ [0,∞)× Ω let

φr,h(t, x) := gr(t)fh(ϕ(x)).

Then clearly φr,h ∈ C∞
c ([0,∞)× Ω) and φr,h(0, ·) ≡ 0, so plugging it into (3.7) yields

∫ ∞

0

∫
Ω

ω(t, x)gr(t)f
′
h(ϕ(x))u(t, x) · ψ(x)dxdt+

∫ ∞

0

∫
Ω

ω(t, x)g′r(t)fh(ϕ(x))dxdt = 0.

Since ω(t, x)gr(t)f
′
h(ϕ(x))ψ(x) is a bounded function and u ∈ L∞((0,∞);L2(Ω)), we can use

the Dominated Convergence Theorem to pass to the limit r → 0 and obtain

∫ t1

t0

∫
Ω

ω(t, x)f ′
h(ϕ(x))u(t, x) ·ψ(x)dxdt+

∫
Ω

ω(t0, x)fh(ϕ(x))dx−
∫
Ω

ω(t1, x)fh(ϕ(x))dx = 0,
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where in the second integral above we used that ω is continuous as an L1(Ω)-valued function

of t ∈ [0,∞). If we can show that u · ψ ∈ L∞((0,∞);L1(Ω)), then taking h→ 0 will yield

∫ t1

t0

∫
Ω

ψ(x)Tu(t, x)ω(t, x)dxdt =

∫
Ω

ϕ(x)ω(t1, x)dx−
∫
Ω

ϕ(x)ω(t0, x)dx

via the Dominated Convergence Theorem. But this is precisely (3.32) due to (3.11) and

(3.14). If B := B(x0,
1
2
dist(x0, ∂Ω)), then u · ψ ∈ L∞((0,∞);L1(B)) because u is bounded

on [0,∞)×B by (3.30). From (3.13) we see that there is Cx0 such that

|ψ(x)| ≤ Cx0∥DT (x)∥ ≤ 2Cx0| detDT (x)|
1
2

for all x ∈ Ω \B, so ψ ∈ L2(Ω) by
∫
Ω
detDT (x)dx = |D|. So u · ψ ∈ L∞((0,∞);L1(Ω \B)),

which indeed yields u · ψ ∈ L∞((0,∞);L1(Ω)) and thus finishes the proof.
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