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Abstract

Purpose of review—This review highlights recent advances in the emerging role that gut 

microbiota play in modulating metabolic phenotypes, with a particular focus on lipid metabolism.

Recent findings—Accumulating data from both human and animal studies demonstrate that 

intestinal microbes can affect host lipid metabolism through multiple direct and indirect biological 

mechanisms. These include a variety of signaling molecules produced by gut bacteria that have 

potent effects on hepatic lipid and bile metabolism and on reverse cholesterol transport, energy 

expenditure, and insulin sensitivity in peripheral tissues. Additionally, host genetic factors can 

modulate the abundance of bacterial taxa, which can subsequently affect various metabolic 

phenotypes. Proof of causality for identified microbial associations with host lipid-related 

phenotypes has been demonstrated in several animal studies but remains a challenge in humans. 

Ultimately, selective manipulation of the gut microbial ecosystem for intervention will first require 

a better understanding of which specific bacteria, or alternatively, which bacterial metabolites, are 

appropriate targets.

Summary—Recent discoveries have broad implications for elucidating bacterially-mediated 

pathophysiological mechanisms that alter lipid metabolism and other related metabolic traits. 

From a clinical perspective, this newly recognized endocrine organ system can be targeted for 

therapeutic benefit of dyslipidemia and cardiometabolic diseases.
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Introduction

It has become widely appreciated that our gut symbionts play integral roles in human health 

since perturbations of this bacterial community or the products they can produce have been 

associated with increased susceptibility to a variety of diseases (see Figure). The first 

indications of these associations were for colitis and inflammatory bowel disease, but altered 

gut microbial composition or function has now been established in the development of 

cardiometabolic phenotypes, including obesity and related abnormalities [1–6], and 

atherosclerosis [7]. There is also evidence that the microbiota can even be a potential 

contributor to risk of neurobehavioral conditions, such as autism [8]. In this review, we focus 

on recent studies that indicate an emerging role for gut microbiota in modulating lipid 

metabolism.

Characterization of Gut Microbial Diversity

The human intestinal tract is home to at least 1000 distinct species of bacteria, which 

collectively number over 100 trillion organisms. This diverse ecosystem is shaped by early 

life events but can evolve over time through interactions between its constituents as well as 

with exogenous factors or those that are endogenous to the host. Until recently, 

characterization of the gut microbiome relied mostly on conventional culture-based 

microbiological techniques, which was a major hindrance since the vast majority of bacteria 

in the gut are not readily amenable to cell culture. However, advances in next generation 

genomic technologies now allow us to identify and classify gut bacterial composition in an 

unprecedented manner. One widely used approach has typically involved in-depth 

sequencing of the variable regions of bacterial 16S rRNA genes to determine the diversity 

and proportion of bacterial taxa within the microbial community [9]. Based on the sequence 

data obtained, microbial richness and diversity are then organized into operational 

taxonomic units (OTUs). Although more challenging, recent studies have also begun to 

characterize microbial communities through unbiased metagenomics analyses, which 

involves untargeted shotgun sequencing of all genetic material recovered from the intestine 

or feces [10].

Both 16S and metagenomic analyses have revealed that the human gut is mostly comprised 

of a common core of bacteria from two major phyla, Firmicutes and Bacteriodetes, with the 

remainder of the gut microbiota being remarkably diverse. This diversity often includes less 

abundant representation from the phyla Proteobacteria, Verrumicrobia, Actinobacteria, 

Fusobacteria, and Cyanobacteria, as well as the domain Archaea [11]. It is also important to 

note that the human gut microbiome can also be dynamic and altered dramatically, for 

example, by antibiotic use, but less so by age, host genetics, chronic dietary patterns, and 

other environmental exposures [12–17].

Association of Gut Microbiota with Lipid Metabolism

Early studies comparing germ free versus conventionally raised mice first supported a role 

for gut microbes in both affecting host energy metabolism and modulating lipid levels [18]; 

however, the design of these early studies did not permit identification of candidate microbes 
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involved in promoting the observed phenotypic changes in conventionalized (microbe 

colonized) mice. Given the known clinical correlation between obesity, related metabolic 

disorders, and dyslipidemia, it is possible that the observed associations between gut 

bacterial taxa and lipid levels are mediated through effects on BMI or other metabolic 

disturbances. This notion is supported by a recent analysis in a population-based cohort that 

not only confirmed previously known associations between obesity and certain bacterial 

taxa, such as Akkermansia, Christensenellaceae, and Tenericutes [19, 20], but also 

demonstrated that some of the associations with microbial composition were shared between 

BMI and levels of triglycerides and high-density lipoproteins [••21]. Importantly, however, 

these analyses revealed microbial taxa whose proportions were associated with lipids 

independent of BMI as well, including novel associations with Eggerthella, Pasteurellaceae, 

and Butyricimonas. Surprisingly, only weak relationships were noted between microbial 

variation and total cholesterol or low-density lipoprotein cholesterol levels, suggesting that 

gut bacteria affect specific aspects of lipid metabolism and/or distinct classes of lipoproteins. 

Taken together, these observations provide new avenues for validation and follow up studies.

Biological Mechanisms through which Gut Microbes May Affect Lipid 

Metabolism

As with any gut microbiota study that is associative in nature, such as those in humans, a 

major challenge is elucidating the underlying biological mechanisms and proving whether 

the associations are due to a causal relationship. In this regard, evidence from animal studies 

supports the notion that the gut microbiome can mechanistically impact host lipid levels. For 

example, certain facultative and anaerobic bacteria in the large bowel produce secondary bile 

acids from the pool of bile salts secreted into the intestine (Figure). A small fraction of these 

bacterially derived bile acids is absorbed into the bloodstream and can modulate hepatic 

and/or systemic lipid and glucose metabolism through nuclear or G protein-coupled 

receptors (GPCRs), such as FXR or TGR5, respectively [22–24].

Another potential mechanism through which gut microbes could affect lipid metabolism 

may involve fermentation of nondigestable carbohydrates. Humans are not capable of 

breaking down many common forms of complex carbohydrates, whereas a subset of 

anaerobic bacteria found in the cecum and proximal colon can ferment several compounds, 

such as pectins, gums, hemicelluloses, and galactose-oligosaccharides [25]. One class of 

metabolites produced by these bacteria are short chain fatty acids (SCFAs), which can 

subsequently be metabolized by the host or alternatively act as hormones (Figure). SCFAs, 

such as acetate, propionate, and butyrate, are known to regulate intestinal immune 

homeostasis and serve as an energy source for colonic epithelial cells. However, SCFAs have 

been shown to have metabolic benefits as well, which are mediated, in part, through 

induction of intestinal gluconeogenesis [26]. SCFAs are also absorbed from the gut and can 

have potent effects on energy expenditure and insulin sensitivity in peripheral metabolic 

tissues through different GPCRs, such as GPR41 and GPR43 [27, 28].

It is also possible that gut bacteria generate intermediate precursors that are further 

metabolized by the host to products that exert direct effects on lipid levels. For example, 

Ghazalpour et al. Page 3

Curr Opin Lipidol. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



recent studies have linked high levels of trimethylamine N-oxide (TMAO) to atherosclerosis 

in both mice and humans [7]. TMAO is derived secondarily through hepatic oxidation of 

trimethylamine (TMA), which is first produced through gut microbe-mediated metabolism 

of dietary choline and L-carnitine [29, 30] (Figure). Possible mechanisms for the pro-

atherogenic effect of TMAO have been suggested to involve perturbations of reverse 

cholesterol transport, cholesterol and sterol metabolism, and/or the quantity and composition 

of bile acids [7, 29, •31, •32]. Interestingly, host DNA variation appears to only play a 

marginal role in the regulation of TMAO levels, particularly in humans, suggesting that 

dietary factors and/or gut bacterial composition are more important determinants [33].

The Role of Host Genetic Factors

Another potentially important aspect to how gut microbiota can impact lipid metabolism 

may be related to genetic factors of the host. This concept is supported by evidence in 

humans demonstrating that gut bacterial composition has a significant heritable component 

and can vary across taxa or members of different phyla [34, ••35]. In the TwinsUK cohort, 

the abundance of the obesity-associated taxa Christensenellaceae was more highly correlated 

within monozygotic twins than dizygotic twins, and its heritability was shown to be 

independent of BMI [••35]. It is reasonable to assume that bacterial taxa that influence lipid 

metabolism could similarly have heritable components as well.

Given the observed heritability of intestinal microbiota, attempts have been made to identify 

the genetic variants that are associated with gut bacterial composition. A targeted candidate 

approach with ~250 previously validated variants for lipid levels and BMI did not find any 

evidence for association of microbiome composition with these SNPs, either alone or as a 

risk score [••21]. This may be explained, in part, by the fact that the selection of variants to 

test was only based on their main effects on lipids and BMI. One might speculate that host 

genetic variants that are involved in regulating bacterial abundance within the host would be 

more likely to be associated with proportions of gut microbial taxa. However, given the 

enormous genetic diversity of intestinal bacteria and variability in dietary intake, it is likely 

that sample sizes in most human microbiome studies are still insufficient to permit 

identification of robust genetic associations. Moreover, linking these taxa proportions to 

changes in host lipid levels will pose additional challenges as well.

By comparison, investigating the genetic determinants of bacterial composition has been 

more successful among inbred mouse strains, where environment (i.e. diet) and other 

confounding variables (i.e. age and sex) are tightly controlled. Notably, a recent genetic 

analysis with ~110 strains in the Hybrid Mouse Diversity Panel, all of which were 

maintained on equivalent dietary and housing conditions, identified seven host loci that were 

associated with common bacterial genera [••36]. Among the candidate genes at these loci 

were those implicated in processes related to innate immunity, glucose/insulin regulation, 

and the rapid acute-phase response to lipopolysaccharide. Additional noteworthy 

observations from this study were that one of the two host genetic loci that were associated 

with the proportion of Akkermansia muciniphila was also associated with gonadal fat mass 

and triglyceride levels [••36]. It is likely that similar genetic associations exist in humans as 
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well, but their identification will require larger sample sizes, broader interrogation of genes, 

and/or new discovery approaches.

The Challenges of Gut Microbiota Studies and Proving Causality

For the most part, metagenomic analyses on the human gut microbiota have used fecal 

samples but it is clear from animal studies that certain anaerobic organisms, such as 

Akkermansia muciniphila, reside primarily in the mucosal layers of the gut and are not 

readily detected in analyses of only feces. Indeed, the microbial composition throughout the 

gut varies considerably, both with respect to the anatomic location along the intestinal tract 

and within a given site, according to the micro-environment. For example, at a given site of 

intestinal mucosa/lumen, distinct microbes can uniquely reside deep within the crypts, 

versus on the surface of the mucosal villi, versus within the fecal material. Thus, without 

invasive procedures to get samples from distinct anatomical regions through the intestines, 

obtaining a more complete picture of the full spectrum of gut microbiota, at least in humans, 

poses significant challenges.

Next generation sequencing technology has been a major step forward by permitting more 

robust, time-efficient, and cost-effective characterization of intestinal microbiota. However, 

the evolutionary resolution provided by 16S sequencing is still limited with current 

platforms since bacterial composition with this approach is typically identified only down to 

the genus level. Untargeted metagenomics studies are beginning to overcome these 

challenges but these types analyses require much more sophisticated types of algorithms and 

are more expensive to carry out. Nonetheless, these efforts will improve our ability to 

identify and quantitate distinct species of bacteria and may have implications for 

understanding the pathological mechanisms through which specific bacteria affect both 

human health and disease processes.

Fecal microbial composition studies are associative, and thus hypothesis generating. 

Ultimately, proof of causality for identified microbial associations with host phenotypes 

requires additional experimentation, such as manipulating gut bacterial composition and 

observing changes in physiological parameters that were identified in the initial associations. 

In this regard, intestinal microbial transplantation studies in both animal models and humans 

have provided evidence for a causal role of gut bacteria in treating various intestinal 

diseases, most notably Clostridium difficile infection. Bacterial transplantation experiments 

have also been shown to modulate metabolic and cardiovascular phenotypes. For example, 

studies in mice have elegantly demonstrated that transfer of gut microbes from either obese 

mice or humans can transmit obesity phenotypes to the recipients [34, •37]. By contrast, 

administration of Akkermansia muciniphila to an obesity-prone mouse strain significantly 

improved several metabolic parameters, including substantial decreases in total cholesterol, 

triglycerides, and, most strikingly, insulin resistance [••36]. A similar strategy has provided 

evidence that atherosclerosis susceptibility in mice could also be transmitted to a host by gut 

microbial transplantation [•38]. Although such approaches have yet to be implemented in 

humans for treating dyslipidemia or other cardiometabolic traits, fecal transplantation 

studies have shown that transfer of gut microbes from lean donors through a duodenal 

infusion into patients with metabolic syndrome can improve insulin sensitivity [39]. These 
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observations underscore the therapeutic potential of interventions that alter gut microbial 

composition or function.

Targeting the Gut Microbiota for Therapeutic Applications

An important clinical implication from studies on gut microbiota is how to leverage findings 

for therapeutic purposes. Selective manipulation of the gut microbial ecosystem might 

provide new avenues to treat and/or prevent dyslipidemia and cardiometabolic diseases, but 

this will first require a better understanding of which specific bacteria, or alternatively, 

which bacterial metabolites, are the appropriate targets for intervention and manipulation. 

The simplest point of intervention may be to limit consumption of dietary constituents that 

either foster the growth of undesirable bacteria or serve as substrates for microbe-dependent 

generation of products that disrupt lipid homeostasis or other metabolic processes.

Alternative viable therapeutic strategies may be the use of prebiotics or probiotics to produce 

a desired change in microbial composition and/or function that favorably impacts host lipid 

metabolism. Prebiotic therapy consists of ingestion of select nutrients or dietary constituents 

(nonmicrobial compositions) that provide a growth advantage of beneficial bacteria, whereas 

probiotic therapy involves the ingestion of one or more live bacterial strains, attempting to 

take advantage of the mutualism of microbes. Therapeutic intervention could also rely on the 

use of broad or class-specific antibiotics to eliminate bacterial species or their products 

associated with dyslipidemia and other metabolic disturbances. However, this approach is 

not a sustainable long-term option. Many gut microbial products are beneficial to the host 

and even infrequent antibiotic treatment, particularly in very young children whose gut 

microbiota has yet to be fully established, can adversely impact host global metabolism via 

changes in the gut microbial community [40] and facilitate the emergence of antibiotic-

resistant bacterial strains.

Another promising therapeutic approach may involve pharmaceutical targeting of gut 

microbe-specific biological processes. This concept was recently demonstrated in a series of 

elegant experiments with respect to the association of TMAO with atherosclerosis [••41]. 

Several important insights were revealed by this study. For example, Wang et al. designed a 

small molecule choline analog, 3,3-dimethyl-1-butanol (DMB), that competitively inhibited 

diverse and phylogenetically distant classes of microbial TMA lyases, which were 

previously identified as enzymes that catalyze the conversion of choline to TMA [42, 43]. 

Notably, these effects were observed in physiological polymicrobial cultures derived from 

both cecal contents of mice and fecal samples of healthy humans. Most importantly, chronic 

feeding of DMB to mice in the context of a high-choline diet led to shifts in the proportions 

of some bacterial taxa and substantial reductions in plasma TMAO levels, macrophage 

cholesterol accumulation, foam cell formation, and atherosclerotic lesions, without any 

evidence of toxicity or adverse cardiometabolic effects in the animals [••41]. Taken together, 

these results suggest that targeting gut microbial production of TMA through specific and 

non-lethal means may serve as a potential therapeutic approach for the treatment of 

cardiometabolic diseases and that microbial inhibitors in general may represent a novel 

therapeutic strategy for other disorders that involve intestinal dysbiosis.
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Conclusions

For many years, the community of bacteria living in our gut was largely ignored. However, 

emerging evidence clearly demonstrates that our microbial symbionts play multiple 

fundamentally important roles in maintaining normal metabolic homeostasis. These 

discoveries have broad implications for elucidating bacterially-mediated pathophysiological 

mechanisms that alter lipid metabolism and other related metabolic traits. From a clinical 

perspective, this newly recognized endocrine organ system can be targeted for therapeutic 

benefit or prevention of cardiometabolic diseases and risk factors. The ability to manipulate 

the gut microbiome for improved health and prevention of diseases is still in the early phases 

of development, but recent rapid advances in gut microbiome studies highlight both the 

potential and promise of targeting intestinal microbes for therapeutic gain.
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Key Points

• The gut bacterial community is increasingly being recognized as an endocrine 

system that can modulate a variety of cardiometabolic processes, including 

host lipid metabolism.

• A variety of signaling molecules produced by gut bacteria have potent effects 

on hepatic lipid and bile metabolism and on reverse cholesterol transport, 

energy expenditure, and insulin sensitivity in peripheral tissues.

• Host genetic factors can modulate the abundance of bacterial taxa, which can 

subsequently affect metabolic phenotypes.

• Proof of causality for identified microbial associations with host lipid-related 

phenotypes has been demonstrated in animal studies but remains a challenge 

in humans.

• Manipulation of gut microbiota may serve as a novel therapeutic strategy for 

treatment and/or prevention of dyslipidemia and cardiometabolic diseases, but 

this will first require a better understanding of which specific bacteria are the 

appropriate targets for intervention.
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Figure. Schematic illustration of organ systems and tissues that can be affected by the gut 
microbiota
Multiple lines of evidence support a role for altered gut microbial composition or function as 

a contributor to the development of obesity and related metabolic abnormalities (i.e. type 2 

diabetes), peripheral and coronary artery disease, and even neurobehavioral conditions such 

as autism. Recent observations of significant associations between proportions of specific 

intestinal bacteria taxa with lipid levels suggest a role for gut microbes in modifying host 

lipid metabolism. Gut microbe effects may be mediated through multiple mechanisms, 

including elaboration of lipopolysaccharide (LPS) or other bioactive metabolites that act 

fundamentally as hormones since they can circulate within the host and act at distant sites. 

Gut microbial production of short chain fatty acids (SCFAs) and secondary bile acids are 

two such examples that have been shown to affect lipid levels and other metabolic 

phenotypes. Evidence shows that gut bacteria can also generate intermediate precursors (e.g. 

trimethylamine) from certain dietary nutrients, that can then be further metabolized by the 

host to generate biologically active products (e.g. trimethylamine N-oxide), which then can 
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exert direct effects on lipid metabolism and contribute to disease development or 

progression. Biological mechanisms impacted by gut microbial metabolites can involve 

reverse cholesterol transport, hepatic cholesterol and sterol metabolism, intestinal lipid 

transport, bile acid composition and pool size, glucose and insulin metabolism, energy 

harvest/expenditure, as well as others.
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