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EPIGRAPH

”When I use a word,” Humpty Dumpty said in a rather scornful tone,

”it means just what I choose it to mean–neither more nor less.”

—Lewis Carroll
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ABSTRACT OF THE DISSERTATION

Ionic and Electronic Transport in Nanoscale Systems

by

James Michael Wilson

Doctor of Philosophy in Physics with a Specialization in Computational Science

University of California, San Diego, 2013

Professor Massimiliano Di Ventra, Chair

In this dissertation, I examine ion transport in nanopores, which has been

met with increased interest in the last two decades due to its ability to detect

DNA. I start with an overview of the properties of DNA and ionic transport in

nanopores. I will explain some of the methods used for measuring ionic transport in

nanopores using molecular dynamics. I will also discuss microcanonical formalism

of electronic transport in nanoscale systems. This method of studying electronic

transport is increasing in popularity as the emphasis on nanoscale devices increases.

I will also discuss an open quantum systems approach to extending this formalism.

Next, I will discuss the effect that small pore size has on the ionic conduc-

tance of that pore. A previous study predicted that as the radius of a nanopore

increases, the conductance of a nanopore will exhibit discrete jumps when the

xii



radius of the pore is comparable to the radius of hydration layers around the

current-carrying ions. I extend this prediction to different ion species, and con-

clude that it will be easier to detect these features by using divalent ions. I also

look at what effect membrane dielectric choice and noise has on the current using

the proposed theory.

I will continue by proposing a new method of DNA sequencing, consisting

of measuring the ionic current in a nanochannel that is transverse to a second,

intersecting, nanochannel containing a single strand of DNA. The DNA will be

pulled through its channel and modulations in the ionic current will allow the

identities of the DNA bases to be deduced. A molecular dynamics model was used

to test the feasibility of this method of sequencing.

Finally, I will discuss a method for modeling electronic current in nanoscale

systems. I use an open quantum systems approach (stochastic Schrodinger equa-

tion) to model a specific bath that has properties similar to how one would expect

a battery to operate. This is used to increase the amount of time a system can

exist in a quasi-steady current carrying state within the microcanonical formalism.
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Chapter 1

Introduction

From nanolithography that supports new generations of microchips to nan-

otubes that are used in detectors for scanning-tunneling microscopy, advances in

the understanding of nanoscale systems are allowing some of the most impor-

tant advances in technology. Nanoscale devices showcase the differences that are

present when the scale of the system shrinks drastically. Instead of using the bulk

properties of the materials, the individual atoms become important for transport,

therefore new methods must be used to model these atomic scale systems.

It has been over 80 years since the discovery that our genetic information

is held in a linear string of deoxyribonucleic acid (DNA) [1]. Each strand pairs

with a complementary strand such that within each of our cells (with some minor

exceptions), we hold a complete blueprint for our physical makeup in a double-

helical configuration. Almost 40 years ago, we were first shown a reliable method

of recovering that data[2, 3], but the first full human genome was not sequenced

until a little over 10 years ago [4]. To date, we still have not devised a method of

sequencing a genome in a fast, cheap, and reliable way.

I will begin with an overview of DNA and the methods that use nanopores to

sequence DNA in Chapter 2. Nanopores confine the DNA to a small space, which

makes the process of detecting differences between the bases easier. Detectors can

be set up next to the pore and the DNA travels by the detector, thus simplifying

the process of detection. Making good use of the strengths of nanopores in this

regard requires knowing some of the properties of nanopores, therefore in Chapter

1
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2 I discuss the properties of ionic transport in nanopores.

Because much of the work in this dissertation involves the simulation of

nanoscale systems with molecular dynamics, I use Chapter 3 to explain some of

the theory behind classical molecular dynamics, and how a typical simulation is

prepared and run. I first explain the forces that are simulated in the molecular

dynamics code (NAMD). Each of these forces add another term to the equations

of motion of the system, and it is instructive to see what types of interactions

are taken into consideration. Even though classical molecular dynamics does not

employ quantum mechanics directly in its simulations, the effects of quantum me-

chanics on the forces between atoms and molecules appear within its force terms.

After this, I explain the process of creating a nanopore in silico. Finally, I de-

scribe the process of running the simulations and each of the equilibrations that

are required.

In Chapter 4 I give an overview of the Microcanonical Formalism used as a

method of calculating electronic current in nanoscale systems. The entire system

is treated quantum mechanically in this formalism, and electronic interactions can

be studied. I discuss the different phases of the simulation in this section, and

then explain generally how I extend this with the stochastic Schrodinger equation

in Chapter 7.

Chapter 6 outlines a novel method of sequencing DNA. It proposes exploit-

ing the transverse ionic current passing by a single strand of DNA to discriminate

between bases within the strand. The ionic current flowing in the same direction

as the DNA has been previously measured and researched, but difficulty has been

found in using this information for practical sequencing. One of the problems with

using longitudinal ionic conductance as a way to sequence is that the current nec-

essarily flows by many DNA bases within the nanopore. Each base affects the ions

as they flow by, but the resultant current is then a non-trivial convolution of all

of these effects. Transverse ionic current flows transverse to the DNA strand and

thus only ”sees” 1 or a small number of bases. I then calculate the transverse ionic

current for each base in such a system using a full, all atom molecular dynamics

simulation. I then compare the distributions of this current and conclude that
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the currents are different enough to make discrimination between the bases using

transverse ionic conductance possible.

Chapter 5 expands on a theory of ionic current for small diameter nanopores.

The ionic conductance through a nanopore for sufficiently large pores is propor-

tional to cross-sectional area. However, ions in aqueous solution do not move alone

through water, but also drag along hydration shells of water as they move. If the

nanopore is smaller than a certain effective diameter, the hydration layers attached

to each ion must break to allow the ion to pass through the pore. This causes the

current to drop off sharply as the pore size drops below the size of the hydration

layers. The theory was originally proposed in Ref [5]; this chapter expands on this

theory. First, by using divalent ions, which have sharper current features, The

possibility of experimental verification is increased. Second, I explore the effect

that different pore materials have on the conductance of the pore. Third, I discuss

different types of noise and their effect on the current.

In Chapter 7 I explore a method of simulating a battery within the mi-

crocanonical formalism of transport. One of the limitations of the microcanonical

formalism is the limited amount of time that the system stays in a quasi steady

state. I use an open quantum systems approach, namely the stochastic Schrodinger

equation, to simulate the effect that a battery has on a circuit. This allows the

system to remain in a quasi steady state indefinitely.



Chapter 2

DNA and Ionic Currents

2.1 DNA Form and Function

Methods of sequencing DNA is an exciting area of study. DNA is a large

molecule that is present in the nuclei of our cells. It governs the production of

the proteins that are the machinery of our bodies. Specifically, DNA consists of

four different nucleobases: adenine (A), cytosine (C), guanine (G), and thymine

(T), each attached to a deoxyribose sugar. Each of these bases (A,C,G,T) can

be attached to any other by connecting their two deoxyriboses with a phosphate

group. A long string of these forms single-stranded DNA, with the deoxyribose

and phosphate groups making up the backbone of the DNA. Furthermore, each

A pairs with T, and each C pairs with G through hydrogen bonding. This allows

a single stranded piece of DNA to pair with its complementary strand forming

double-stranded DNA.

This double-stranded DNA is held inside the nucleus of almost all cells

in the human body (red blood cells, and a few other specialized cells excepted).

Through a several-step process, a protein is made from the code in the DNA. First,

the DNA is unzipped. Next, an RNA polymerase makes a copy of the DNA out of

RNA. The strand of RNA then finds its way to a ribosome, which attaches another

amino acid to a chain of amino acids for every three bases the RNA contains. For

instance if the first three bases of the RNA are GCC, an alanine starts off the

chain, and if the next three are CGA, an arginine is attached to the first alanine.

4
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Each of the other 20 amino acids correspond to one or more 3-base codons. In

this way, a long string of DNA can ultimately be translated into a string of amino

acids, which then fold into proteins.

The interplay of the various proteins produced in the cells cause the differ-

ences in life we see around us. For instance, a person’s eye color is directly related

to the presence or absence of a few proteins expressed in the cells making up the

iris of the eye. These proteins, in turn, are present only when the particular string

of bases that make up those proteins are present in that person’s DNA. Similarly,

having a particular string of bases in their DNA can cause a person to have an

increased chance of getting breast cancer, while having another gene can cause a

person to have an increased chance of coronary artery disease. There exist tests

to check for some of these known genes, but they remain expensive, and specific.

It wouldn’t be reasonable to take one of the tests unless there were independent

evidence that the patient is at risk.

Conversely, if a person were to have their entire genome sequenced, the

genetic information would reveal the results of all known genetic tests. This is

not often done in a clinical setting because of the immense cost in sequencing an

entire genome. With recent advances in sequencing technology, companies such

as Illumina and Pacific Biosciences offer full genome sequencing in the $5,000 to

$10,000 dollar range, but even though the cost has been decreasing at a significant

rate in recent years, it still hasn’t reached a level where a health care provider can

expect this kind of genetic information from many patients. Once the cost has

decreased to where it is cost effective for every person to have their full genome

sequenced, healthcare would become customized to the individual. This would

enable what is called personalized medicine.

Personalized medicine would allow those people that have a statistical likeli-

hood of acquiring a disease late in life to learn about this likelihood early enough to

take mitigating measures. For instance, knowing that a person is likely to acquire

coronary artery disease would allow that person to take measures to lower his or

her cholesterol levels early in life to not allow the disease to progress. Knowing of

a predisposition for cancer would allow for more targeted testing throughout life,
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which would increase the chance of detecting the cancer early and thus increase

the chance of favorable outcomes.

2.2 Nanopores

Work has been done on novel methods to sequence DNA, with much re-

search in nanopore methods. A nanopore is a hole with a diameter on the order of

a few nanometers that crosses a membrane separating two water reservoirs. When

a piece of DNA is added to one of the reservoirs, and an electric field is applied

crossing the membrane, the DNA will find the pore and translocate to the other

side of the membrane. The first example of this process was performed in 1996 by

using an α-hemolysin pore embedded in a lipid membrane [6]. This was the first

work to demonstrate the ability to use a nanopore as a kind of Coulter-counter by

measuring the ionic current through the pore. When a DNA molecule was in the

process of passing through the pore, the ionic current would be diminished. This

allowed researchers to use data such as the time of depressed current to estimate

the length of the DNA strand passing through. It was initially thought that by

simply measuring the ionic current through the pore at the same time as the DNA

translocates through the pore, there might be enough information to sequence the

strand of DNA, but so far this has not panned out. Longitudinal ionic current

(current in the direction the DNA is traveling) has not been sufficient to sequence

DNA in part because of the finite size of the pore. In even very short pores, there

are on the order of tens of DNA bases in the pore at once, and the ionic current

”sees” all of these bases as it passes through the pore.

It has been shown that it is possible to sequence a single base of DNA using

longitudinal ionic current, but it has required a very careful set up [7, 8]. There

must be a very small restriction within the pore, and the base to be sequenced

must be immobilized very carefully so that it lies directly at the restriction. The

small restriction is achieved by using a modified Mycobacterium smegmatis porin A

(MspA, a biological pore produced by mycobacteria) pore, and the tight control is

accomplished by using specially engineered strands of DNA that contain a hairpin
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at one end. The DNA enters the pore and the hairpin stops the translocation

leaving a specific base at the restriction of the pore. Very fine continuous control

of the DNA molecule has been difficult to achieve thus far, but has been an active

area of research [9, 10].

Alternative methods of sequencing [11, 12, 13], using electrodes embedded

in the sides of the nanopore have shown some promise as of late [14]. Because

the electrodes are placed transverse to the DNA strand, the tunneling current

passes mostly through just one base at a time. This allows the experimenter to

discriminate individual bases from one another. This method requires a different

method of pore creation. Rather than borrowing a pore from nature, synthetic

pores can be made from SiO2 or Si3N4. This allows more control over the shapes

of pores that can be used, however it gives up some of the consistency that comes

from biological pores.

2.3 Synthetic Nanopores

Synthetic pores start out as a uniform membrane of Si3N4. Then a hole is

punched through the material using a focused ion beam (FIB). The hole that is

created is much too large to be used as a nanopore as it will have a diameter of

about 60nm. The next step is to slowly shrink the hole down. The group of Li and

Golovchenko [15] use a gas of Ar+ ions to drive diffusion processes that decrease

the diameter of the hole. As the hole decreases in size, the current of Ar+ ions

decrease in proportion to the area of the pore, so they stop the process when the

current of Ar+ ions decreases to a predetermined value.

Alternatively, a large pore in SiO2 can be shrunk by bombarding with an

electron beam as per [16]. The process uses a transmission electron microscope

(TEM) to supply an electron beam with a resolution of about 0.2nm, so the size of

the pore can be monitored visually until it reaches the chosen size. Furthermore,

the closing of the pore happens at around 0.3 nm/min, which gives plenty of time

to cut off the electron beam at the correct pore diameter.

One of the difficulties in using synthetic nanopores is that often nothing
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is known about the surface of the nanopore after its creation. Because individual

atoms are apparent at the nanometer length scales, the pore is unlikely to be

completely smooth, and there may be a large surface charge. A surface charge

in the pore will affect DNA translocation, possibly causing the DNA to ”stick”

to the walls. Furthermore, a charged pore would cause an increase in the ionic

current passing through the pore. This is thought to occur because it increases

the local ionic density in the pore, and once in the pore, ions are more likely to

cause current. In the works contained in this dissertation, the nanopores are cut

out of crystalline Si3N4, and they will not be necessarily cylindrically symmetric.

This may be true of pores in experiment, but as the pore formation is thought to

be a diffusive process, the crystal structure near the surface will not be as rigid

and will instead be disordered.

The Bohr radius a0 ≈ 0.53Å, to an order of magnitude, approximates the

radius of an average atom, so we see that a nanopore with a diameter of 2.0nm is

only 20 atoms across. Because individual atoms are a non-negligible size within

nanopores, ionic current dynamics differ from those in larger sized structures. Fur-

thermore, with typical ionic concentrations of 1M, the mean distance between ions

in water (assuming complete dissociation of monovalent ions) is 9.4Å. Therefore

for a small pore, it is likely to see only 1 ion within the pore at one time.

2.4 Ions in Water

When one models an ion in water, a dielectric medium, we see that the

electric field surrounding the ion dies off much faster than if the ion were in vacuum.

This is the normal effect that a dielectric medium has, and water has a dielectric

constant of about 80. However, when looking at very short distances around the

ion, the properties of individual water molecules start to play a role. Water is

a dielectric because of its dipole moment and its ability to rotate in an electric

field. Over length scales of tens of nanometers, the water molecules are very small

compared to the distances measured, and they are not constrained so that the

effects of individual water molecules average out to attenuating the electric field
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at every point by a factor of 1/80. Very close to an ion, however, one can think of

individual water molecules being discrete objects, and the local electric field will

be varying wildly.

An ion in a water solution will attract nearby water molecules with a charge-

dipole interaction. Only a certain number of water molecules can fit in the area

directly surrounding the ion. Because of this, if we time-average the positions of

the water molecules surrounding the ion, we find that the water molecules will form

a hydration layer [5] around the ion. Because of the attraction between the ion

and these water molecules in the hydration layer, it would take energy to pull one

of these water molecules out of the hydration layer. Water is neutrally charged, so

if we package the ion with this first hydration layer, we can think of this package

as a quasiparticle with the same charge as that of the ion, but with a larger radius.

This quasiparticle then attracts water molecules just as the bare ion did, thus

defining a second hydration layer. This process can be repeated, but after 2 to 3

hydration layers, the bonding energy of the hydration layer becomes close to the

thermal fluctuations, and the layer is not visible.

For large sized pores with diameter above 10nm, the ionic conductance of

the pore is directly proportional to the cross-sectional area of the pore. However,

for pores around 2nm diameter and smaller, the microscopic configuration of the

water molecules around the ion matters. When the ion enters the pore, the hy-

dration layers do not have enough space to stay around the ion and must be shed.

Because the shedding of the hydration layers costs energy, it is predicted that the

ionic conductance of the pore will drop faster than the cross-sectional area, in a

phenomenon called quantized ionic conductance.

Finally, in chapter 6 of this dissertation, I discuss the use of transverse ionic

conductance in nanopores to discriminate DNA bases in single-stranded DNA. This

requires a novel configuration of a nanopore as two intersecting nanopores must

be present in the membrane, and there must be four water reservoirs connected

to these nanopores. A recent attempt at producing such a device is described in

[17]. It was accomplished by first creating a microfluidic structure patterned into

the system by photolithography in SiO2. The nanochannels are then milled into
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the system using FIB. Once the nanochannels are cut into the membrane, a SiO2

coverslip is then fused over the top of channel structure, sealing it in.



Chapter 3

Molecular Dynamics

Classical molecular dynamics (MD) simulations are very well suited for

studying pores of nanoscale dimensions. Inter-atomic distances within a nanopore

system are on the order of ∼ 1 Å, meaning an all-atom simulation covering a small

nanopore must contain more than a thousand atoms. Full, many-body, quantum

mechanical simulations are not feasible for timescales involving water movement

and ionic currents, i.e. in the femtosecond to nanosecond range. One can make cer-

tain assumptions and use Time-Dependent Density Functional Theory (TDDFT),

but generally one can only simulate a few hundred atoms up to femtoseconds of

time at great computational expense. This would leave out much of the complex

interplay between the motion of water molecules and ions in the pore because these

effects happen at longer timescales.

Classical molecular dynamics simulations do not simulate the motion of

electrons. This is justified in the case that atoms have electrons in deep potential

wells that are separated from each other by a great distance, i.e. tight-binding.

This distance between atoms means that there is a very small probability of elec-

trons tunneling between the nuclei, and the motion of the electrons doesn’t have

much effect on the motion of nuclei. By ignoring the electron motion, we can make

a few assumptions that greatly simplify the simulations. Firstly, because ions are

on the order of a thousand times heavier than electrons, it follows that ions re-

act a thousand times slower to forces, and we can safely increase the timestep

size by a factor of a thousand. This is not to say that the effect of the electrons

11
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has disappeared from the simulation completely. The electrons are treated phe-

nomenologically by adding a Lennard-Jones type term to the force equation, and

also by adding partial charges to atoms within molecules with known intrinsic

dipole moments.

The equation of motion for classical MD is Newton’s second law:

mir̈i = − ∂

∂ri
Utotal (r1, r2, ...rN) , i = 1, 2, ..., N (3.1)

where mi, r̈i are the mass and position of the ith atom, N is the number of atoms

included in the simulation, and Utotal is the total potential energy from all of

the forces acting in the system. The potential function is where the interactions

between the atoms enter into the simulation, and it governs the evolution of the

system. All of the details that make up how the atoms and ions react to each other

(except for chemical reactions) are encapsulated in that equation. For instance,

the hydrogen atoms in a water molecule are held at a distance of 0.9572Å from

the oxygen atom in our simulations, which are based on the TIP3P [18] model of

water. This means that Utotal contains a bonding term that increases in energy if

the atoms vary from this distance.

3.1 Force Field

Let us take a look at the pieces of the force field that come into play

when performing an all-atom molecular dynamics simulation. In the absence of

any forces in the potential function (Utotal = 0), and with reflective boundary

conditions, the system will approximate a 3D non-interacting ideal gas. We then

must add forces to Utotal to more closely approximate the environment within

an actual nanopore. The potential can further be separated into two categories:

bonded contributions, and non-bonded contributions. The bonded contributions

are only included between 2 or more atoms when there exists a chemical bond

between those atoms. For example, if we were to study a system that consisted of

a single water molecule, there would be a bonded contribution between the oxygen

and hydrogen atoms. The non-bonded contributions would primarily affect atoms

that are not chemically bonded together. Thus, we would need to add at least two
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molecules to our simulation to have an effect from these terms. Next we will look

at the bonded contributions to Utotal in greater depth.

3.1.1 Bonded Contributions to Utotal

When atoms are covalently bonded together, the force of that bond will be

one of the strongest effects on the atom’s motion. The bonded atoms will tend

to equilibrate to a distance rAB, where atoms i and j are of element A and B

respectively. This bond distance will depend on the identity of the two atoms, and

the molecule that the atoms are a part of. NAMD then approximates the energy

of this bond by using a harmonic potential,

Ubond = kAB (rij − rAB)2

where kAB and rAB are tabulated for each element A andB that will be encountered

in the simulation.

Whenever three atoms combine to form a molecule, there is an angle defined

between them that is based on the underlying electronic structure of each of the

atoms. For instance, water forms an angle of about 105o between the H-O-H

bonds. Because NAMD does not calculate the electronic structure of the atoms,

this constraint must be supplied by hand. As before, we assume a quadratic

potential

Uangle = kΘ,ABC (Θijk −ΘABC0)2

where kΘ,ABC is the Hooke’s Law coefficient for the angular restoring force, and

the angle ΘABC is the equilibrium angle on the connected elements A, B and C.

Finally, when a molecule has at least four atoms in a chain, we will label

them as atom A, B, C and D. A molecule containing this chain sometimes prefers a

particular angle between the plane made by atoms A, B and C, and the plane made

by atoms B, C and D. The angle between these two planes we call the dihedral

angle, and within our simulations we add a term to the potential that ascribes a

minimum in energy when the preferred dihedral angle is achieved. This term takes

two forms depending on the periodicity of this energy minimum. If there is just one

stable angle for atoms A, B, C and D to take, then we have a quadratic dependence
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of the energy on the angle. However if there is more than one stable dihedral angle

(so that the molecule has a minimum of energy in that configuration), the dihedral

term takes on a cosine form.

Udihedral =

{
kABCD (1 + cos (nABCDψijkl + ψABCD0)) if n > 0

kABCD (ψijkl − ψABCD0)2 if n=0
(3.2)

3.1.2 Non-Bonded Contributions to Utotal

Now we move on to the terms in the potential energy function that affect

atoms that are not bonded to one another. For instance, this would refer to a

potassium ion in solution interacting with water molecules around it. The first

of these non-bonded forces is the Lennard-Jones potential, and a graph of the

interaction energy is shown in Figure 3.1. The Lennard-Jones potential is an

approximation to the interaction that neutral atoms and molecules feel. It is

built up of two parts: the very short range Pauli repulsion, and the longer range

attractive London dispersion force. The Lennard-Jones potential contribution to

Utotal then is

UAB = −EAB
[(

RAB

rij

)12

− 2

(
RAB

rij

)6
]

The energy−EAB is the minimum energy that the Lennard-Jones potential achieves,

and the distance RAB is the inter-atomic spacing that minimizes UAB. The attrac-

tive r−6 term is justified due to its modeling after the London dispersion force,

however the repulsive r−12 term is used because of its very steep slope, and its ease

of calculation as it is just squaring the r−6 term. Other approximations are used

for the repulsive term, such as an exponential term.

The last potential that we use is the longest range, and therefore the most

problematic from an efficiency standpoint. The Coulomb potential only drops off

as r−1 and is spherically symmetric. The potential is

UA = −ke
qiqj
rij

where ke is the electric constant in appropriate units with distance in angstroms

and charge in units of the elementary charge. The charges on atoms i and j are qi
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Figure 3.1: A graphical representation of the Lennard-Jones potential, with en-
ergy in units of EAB, and distance in units of RAB

and qj respectively, and the distance between them is rij. Whenever molecules

contain polarities, such as due to differences in electronegativities, the partial

charge due to the polarization can be placed on the charges qi and qj. This al-

lows the simulation to mimic effects due to dielectric constants. For instance, the

hydrogen atoms in the TIP3P model of water[18] each contain a partial charge of

δH = +0.417e, and the oxygen atom contains a partial charge of δO = −0.834e.

The r−1 potential is very long range and must get dealt with separately to escape

the N2 scaling that would be the case if every atom interacted with every other

atom every time step.
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3.2 Specifics of NAMD Simulations

The system of simulation generalized above is carried out in specifics by

the Nanoscale Molecular Dynamics code (NAMD) [19]. This code can efficiently

scale to hundreds of thousands of atoms, and run on hundreds of cores. In the

simulations that we run, we use from tens of thousands of atoms, up to the low

hundreds of thousands of atoms which allow us with a cluster of about 150 cores

to efficiently study dynamics in the nanosecond timescale.

To run a simulation, NAMD requires that the initial conditions and param-

eters be specified with input files. The first of these input files is the configuration

file. This file contains, or points to, all of the remaining data required to run the

simulation. It must contain the timestep dt, the geometry of the system, and the

names of files describing locations of atoms and the forces between them. Fur-

thermore, it contains all of the information about how the data will be output,

and may contain optional features that help describe a more realistic system. The

timestep dt of the system is dependent on the mass of the atoms being studied, and

the maximum forces expected on those atoms. Because all nanopore simulations

of interest to us contain water, and thus hydrogen, we must choose a timestep of

dt = 1fs or smaller. The geometry of the system is specified directly based on

the properties desired in the simulation. The simulations described in this work

all use periodic boundary conditions as those would more closely compare to an

extended nanopore system. Furthermore, because a nanopore is cylindrically sym-

metric, hexagonal tiling is more fitting, and thus was used whenever a nanopore

was present in the system.

Next, we come to the files that describe the atoms and their interactions in

the system. The first file needed is a .pdb or Protein DataBank file. This file lists

every atom in the system, its 3D coordinates, and a few more bookkeeping details

such as a unique ID number. In theory, this file could be constructed entirely by

hand, but in practice it is generally made with the use of a program. The most

convenient for use with NAMD is Visual Molecular Dynamics, or VMD [20]. VMD

can be scripted to form a nanopore, insert a piece of DNA, solvate the system and

insert ions to a specified concentration. Furthermore, many times a .pdb file will
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not contain hydrogen atoms in it because they are too small to see with x-ray

crystallography. The hydrogen atoms within a simulation are important to the

NAMD simulation, VMD will guess at the positions of the hydrogen atoms by

using a topology file, and place them in the system. Once the simulation begins,

there will be a more thorough energy minimization which will move the hydrogen

atoms into their more exact positions.

Once we have a file containing the atom positions, we must also include

information describing the interactions between the atoms. The first of these files

is called a protein structure file or .psf file. The .psf file contains the atom types,

bonds between atoms, atomic masses, and partial charges associated with each

atom. This information is generated from general rules included in a CHARMM

topology file [21, 22] as interpreted by VMD. The bonds, angles and dihedrals

consist only of an unordered listing of all of the atoms involved in each bond, angle

and dihedral existent in the simulation. For instance, a simulation of 1 water

molecule would contain 2 bonds, 1 angle, and no dihedrals. The parameters of the

bonds and angles, i.e. the atom-atom spacing and H-O-H angle would be included

in the parameter file.

The parameter file contains the bond distances and bond strengths. This

information is recorded from experimental values, or to satisfy a particular con-

straint on the system. The bonds described in the .psf file must correspond to the

bonds in the parameter file. For this reason, the parameter file must be associated

with the topology file used to make the .psf file. In the same way, the parameter file

contains the bond angles and bond angle stiffness, along with the dihedral angles

and their stiffnesses as well.

In conclusion, for a NAMD simulation to run, we must have a valid configu-

ration file, a .pdb file, a corresponding .psf file that was created with a CHARMM

topology file, and a parameter file.
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Figure 3.2: One unit of β-phase Si3N4. To create a membrane of Si3N4, this unit
is replicated in the three directions a, b, and c given in the text.

3.2.1 Nanopore Construction for a Molecular Dynamics

Simulation

To look at the dynamics inside of a nanopore using molecular dynamics,

we must first create a reasonable model of an inorganic nanopore in a computer.

We use silicon nitride in the β-phase as the membrane that the nanopore cuts

through. A very useful program to accomplish this is Visual Molecular Dynamics

(VMD) which is developed alongside NAMD. It uses an easy scripting language,

which helps to generate repeatable output, and can use the CHARMM topology

files to produce molecular structures that correspond to the information contained

in the CHARMM parameter files that NAMD reads.

The first step in creating a nanopore is to build a silicon nitride membrane

of the appropriate thickness. This is made by replicating a unit cell (Figure 3.2)
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Figure 3.3: This is the unit cell from Figure 3.2 that has been replicated 6 times
in both the nx and ny directions. The sheet thus created has a rhombus shape
that is inefficient for simulating a pore with cylindrical symmetry.

of silicon nitride [23] nx, ny and nz times along the unit cell vectors:

a = 7.595 [1, 0, 0]

b = 7.595
[
1/2,
√

3/2, 0
]

c = 2.902 [0, 0, 1]

This creates a crystal parallelepiped of β-phase silicon nitride 2.902 ·nz angstroms

thick in the z direction, and with side lengths of 7.59 · nx and 7.59 · ny angstroms

in the x and 0.5x +
√

3/2y directions respectively. This layer of Si3N4can then

be cut down to the correct dimensions. The membrane is then moved so that the

middle of the membrane is placed at the origin of our coordinate system.

Because nanopores in experiments are part of a larger Si3N4structure, it

more closely mimics experimental conditions to have periodic boundary condi-

tions. This causes the simulation to resemble a large sheet of Si3N4rather than
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Figure 3.4: The edges of the membrane have been cropped so as to create a
hexagonally symmetric shape. By removing the extra atoms at the edge, the
simulation box can more closely mimic the cylindrical symmetry of the pore.

the small, isolated pore and water produced by vacuum boundary conditions. The

other (image) nanopores that exist in this extended system would not exist in an

experimental system, but if the size of the unit cell is large enough, the distance

between the pore in the simulation box and the image pores will be quite large,

making the effect of one on the other small. Likewise, if the pore is small enough,

the pore in the simulation box will see a mostly unbroken sheet of Si3N4and the

image pores will have a small effect.

Furthermore, because of the cylindrical symmetry of the nanopore, it makes

sense to use hexagonal tiling in the plane of the membrane, as 6-fold rotational

symmetry is closer to cylindrical symmetry than 4-fold rotational symmetry. It is

for this reason that the parallelepiped is cut further so that the membrane will be

in the right shape for hexagonal tiling. This membrane now looks like Figure 3.4.
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Next a pore must be cut in the Si3N4. This is accomplished by simply

deleting atoms that are contained within the pore. A simple way to create a

cylindrical pore would be to use a script in VMD that loops through all of the

atoms in the pore. It would then test the inequality

x2 + y2 < r2

where r is the radius of the pore, and remove all atoms for which that inequality

is true. Without much further effort, the formula can be tweaked so that the

pore more closely resembles experimentally fabricated pores with a double-conical

profile[24, 25]. To apply a 10o slant to the pore making an hourglass shape, s is

defined such that

s = r + |z| · tan 10

where r is defined as the minimum pore diameter (existing in the middle of the

pore), and z is the z-coordinate of the atom. The script then, for each atom, tests

the following inequality

x2 + y2 < s2

and deletes all atoms for which the inequality holds.

Next, the bonds between the atoms in the pore need to be assigned. To do

this, a script enumerates through all of the atoms in the pore, and whenever two

of them are closer than 2Å, it assigns a bond to that pair. It similarly creates the

angles and then writes all of them to a properly formatted .psf file. Of particular

importance are the atoms on the edge of the membrane. Because of the periodic

boundary conditions in the x and y directions, the outer atoms in the Si3N4are

directly next to the image atoms in the next cell over. Because of this, the bonds

between these atoms are also included in the .psf file.

3.2.2 Adding DNA to the pore

Once the pore is completed, the subject of the study must be added to the

pore. For the study on quantized ionic conductance, all that is needed is to add

an ion to the center of the pore. This is easily accomplished by just adding the ion
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Figure 3.5: After the membrane has been cut into a hexagon as in Figure 3.4,
the pore is cut out of the middle. This pore has a radius of 7Å. All atoms with
centers closer than 7Å from the center of the membrane have been removed. This
leaves an irregular shape due to the crystal structure of the Si3N4.

to the .pdb file and .psf file. There must be a counter ion so that the simulation

box contains a net neutral charge, but that can be added within the simulation

box near the edge. It is more difficult to add a strand of DNA to the pore. First,

a strand of single-stranded DNA is cut from a longer strand of double-stranded

DNA. This single stranded piece is then equilibrated in a water bath using NAMD.

Single-stranded DNA has been known to stretch up to 1.7 times its contour length

in B-DNA form[26], and within a nanopore, there is a large force due to electric

field that will stretch single-stranded DNA held within it. Therefore, to make the

DNA in the pore more realistic, it is pre-stretched in an electric field. It is then

aligned with the pore using a script that rotates and translates the DNA so that

it is centered in the pore.
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3.2.3 Solvating, Adding Ions, and Dielectric Properties

The next step is to add water to the nanopore. This is accomplished by

using a script that calls the solvate plugin for VMD. In all cases encountered in this

dissertation, if a membrane is included, the membrane is periodic in the x and y

directions, but not periodic in the z direction. It is possible to make the membrane

periodic in the z direction, e.g. if trying to simulate a very long nanochannel, but

several problems arise when trying to simulate a rigid structure that is periodic in

all directions.

Care must be taken in selecting the amount of water to be added in the z

direction. Adding too little water might cause the simulation to become unstable

or be unable to hold temperature. With too little water on each side of the pore

there is also the unique problem that each side of the membrane is closer to the

image of the other side than the thickness of the membrane. This can cause strange

effects if looking at ionic current through the pore or capacitance. Adding too much

water merely causes the simulation to run slowly because of the increased number

of atoms to simulate. Thus it is generally safer to add too much water than too

little. In the studies represented in this dissertation, there was a water cushion of

6 to 10 nm.

After adding water, the ions can be added to the system. The autoionize

plugin is called from a script to add sodium and chloride ions to the solution. This

is a process where a water molecule is picked at random from a list, and if it is not

too near an ion, it is replaced by an ion. This is then repeated until the desired

Molarity is achieved. At this step, the net charge of the system is brought to zero

as well. For example if there is DNA in the simulation box with a net charge of

−10e, 10 more sodium ions than chloride ions are added. Once all of the sodium

and chloride ions are added, the sodium ions can be replaced by potassium ions to

more closely follow experimental technique.

3.2.4 Running the Simulation

The actual simulation is then started. The first step in the simulation is to

minimize the static energy of the system. This is required so that the integration
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does not destabilize at the initial frame of the simulation due to large forces. Once

each of the atoms is affected by a net force that is below a certain threshold the

minimization is complete.

After the energy minimization, the atoms have a velocity of zero assigned

to each of them. Thus their total energy (potential + kinetic) is very small, cor-

responding to a very low temperature. Experiments with nanopores are generally

done near room temperature, so the system must be brought up to 295K. This

is done by assigning a random velocity to each atom consistent with a specified

temperature. To avoid problems with suddenly assigning a large velocity to all of

the atoms in the simulation, the temperature is slowly ramped up from 0K all the

way up to 295K, reassigning random velocities from the proper distribution every

timestep.

The next step after bringing the temperature up is to set the pressure.

When the water was added to the system, the number of water molecules needed

to achieve a realistic result was guessed. Now the simulation box must be altered

to fine-tune the pressure given the fixed number of water molecules present. A

Nosé-Hoover Langevin piston is used to control the pressure, with a temperature

target of 295K. Also, the temperature of the system is held steady using Langevin

dynamics with the same temperature target, so that the simulation is running in

the NPT ensemble. Because the silicon-nitride is periodic in the x-y plane, the cell

cannot shift much in those directions, therefore the cell must elongate or shrink

in the z direction to arrive at the correct pressure. By looking at the volume of

the cell over time, the system can be seen settling to an equilibrium volume. Once

this is done, the production simulation can begin.

The production simulation can now be run without the pressure barostat.

The temperature is held constant with a Langevin dynamics damping term, and

the volume is constant as well, which means the system is running in the NVT

ensemble. If there is a silicon-nitride membrane present, the Langevin term is only

applied to the silicon and nitrogen atoms. This allows the water and ions to be

free from the direct forces that the Langevin dynamics adds, but still stabilizes the

temperature by allowing the water molecules to thermalize with the pore material.
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For some simulations, an electric field is explicitly added to the force field.

The field is applied globally using the equation

Fi = qiE

where Fi is the force on the ith atom, qi is the charge on the ith atom, and E is the

electric field applied to the simulation. This closely approximates the experimental

method of setting up a potential difference between electrodes on either side of the

pore. Water molecules are free to align with the field, so the electric field locally at

any point in the simulation box will feel the effect of some fraction of the electric

field applied. However, because the ions are free to move, they will counter the

electric field in the bulk by building up charge on either side of the pore effectively

creating a capacitor across the pore. This causes the potential to be approximately

constant in the bulk water, and the majority of the potential drop to be across the

pore.
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Figure 3.6: Side view of the membrane-pore-water-ion system. This pore is
approximately 30Å thick, with 50Å of water on each side. This is a larger amount
of water than needed to simply stabilize the system because the ionic current will
be measured directly from the ion motion. It is more important to add water to
act as ”reservoirs” in this situation.



Chapter 4

Microcanonical Formalism

The preceding sections have endeavored to highlight methods of calculat-

ing ionic currents in nanoscale devices. It is equally important to expand upon

methods of calculating electronic currents in nanoscale devices. For instance, it

was necessary to calculate the electronic tunneling current between two electrodes

in a pore to estimate the feasibility of discriminating DNA bases using transverse

electronic transport [11, 12]. In those works, a tight-binding model was used to

calculate the electronic structure, and then a Green’s function approach was used

to calculate the current through the system. This method is an example of using

the Landauer-Buttiker formalism, where electrons are assumed to travel through

a lead from a reservoir infinitely far away. The electrons are then scattered by

the structure under study (in this example, water and DNA). Then transmittance

data resulting from this calculation can be used to calculate the conductance of

the system.

This approach to calculating the current worked well for Refs. [11, 12]

because only relative currents were needed to be measured, the connections to

the leads were assumed to be in linear response, and no dynamic information was

needed from the system. If dynamical information is required from the calculation,

Landauer formalism is unable to provide any help, as it is a strictly steady-state

theory.

Another method for calculating current in nanoscale systems is the micro-

canonical formalism [27, 28, 29]. In this method of calculating current, the entire

27
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system is simulated with time-dependent quantum mechanics, and the simulation

is completely isolated. In essence, this method is just simulating a completely

closed quantum mechanical system and measuring the movement of the electrons

to get the current. There are no external leads or reservoirs to attach to the sys-

tem. As such, this formalism is especially well suited to cold atoms research and

cases with small isolated systems.

The formalism can be described as follows: first, the system is divided into

two parts; we will denote them as left and right. A potential difference is imposed

by hand between the two sides. One such method of providing that potential

difference is to add a potential to the right side and calculate the ground state of

the entire system. The Hamiltonian of the system would be constructed as follows:

H =

{
H0 if x ≤ 0

H0 + V if x > 0
(4.1)

where H0 is the unperturbed Hamiltonian, and V is a constant equal to the po-

tential difference in the system that is being simulated. This will leave a greater

density of electrons in the left half of the system.

After the ground state is calculated, the system is evolved forward in time

using H0 as the Hamiltonian. Because of the greater electron density in the left

half, the left half will be at a higher potential than the right half. The current is

then calculated by

I =
dQ

dt

where Q is the total charge contained in the right half of the system. We can use

this equation because the system is closed, and thus the current must only travel

within the system.

However, even when approximating systems that are not isolated, the mi-

crocanonical formalism can be a useful tool. Small clusters of metal atoms can

act as tiny capacitors to hold charge and allow a discharge across the system of

interest. Simulations of 1D chains of atoms using tight-binding and modestly sized

electrodes, of tens to hundreds of atoms on either side of a quantum point contact
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show adherence to the 1-channel conductance formula [28].

G0 =
2e2

h
≈ 77.48µS

Furthermore, 3D simulations employing Time-Dependent Density Functional The-

ory (TDDFT) have similarly recovered the quantum of conductance above.[28]

This leads to the promise of being able to calculate currents in nanopore-

sized systems using the microcanonical formalism, which would allow insight into

the current dynamics of the system. One drawback of this microcanonical formal-

ism is that it can only approximate a larger system for a very short amount of

(simulated) time. Once the time dependent simulation of the system begins, there

is a short time in which the system approaches a quasi steady-state [28]. During

this time, the electrons transition from a non-current carrying state to a current

carrying state. After this brief time, the system settles into a current carrying

quasi steady-state. It remains in this state until the breakdown time τBD at which

time the current drastically drops and becomes negative. This breakdown time is

the time that it takes the fastest moving electrons to move from the center of the

system (where the current is being measured) to the boundary and back again.

This means that τBD scales linearly with the system size.

4.1 Stochastic Schrodinger Equation

One of the difficulties of using the microcanonical formalism to calculate

current dynamics in nanoscale systems is the short amount of time in which the

system is in a quasi steady state. This time may be lengthened by increasing

the size of the electrodes in the simulation, but quantum mechanical simulation

methods grow at order N3 or greater, while the breakdown time only grows at

order N . Clearly, the system cannot be run to an arbitrary length of time with

these scaling rates even with very fast computers.

Chapter 7 of this dissertation outlines a method to extend the time in which

the system is in a quasi steady state. The method mimics the effect that a battery

would have on a system, and it does this by employing an open quantum systems
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approach to the problem. Much of quantum mechanics is practiced assuming a

closed system that does not receive energy or particles from outside. The simula-

tion is in effect performed in a vacuum. Open quantum systems, however, simulate

effects from interactions with the environment. The environment may add or take

away energy, or even particles from the system.

One method of simulating the environment’s effect on a system is using the

stochastic Schrodinger equation shown below (SSE)[30, 31].

dΨ =

[
−iĤΨ− 1

2
Ŝ†ŜΨ

]
dt+ ŜΨdW (4.2)

where Ĥ is the Hamiltonian of the system without interactions with the environ-

ment, S is a bath operator, and W is a Wiener process such that dW = 0, and

dW †dW = dt.

It can be helpful to think of the stochastic portion of the SSE as providing

”kicks” from the environment. It must be noted that these ”kicks” are not energy

conserving, and may add or take away energy from the system. Chapter 7 uses

this formalism to describe a method of simulating a battery where the SSE ”kicks”

the system into a current-carrying state, and in essence recharges it so that the

system can stay in a quasi steady state indefinitely. This in turn could be a useful

tool to model current dynamics in nanoscale devices.
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Figure 4.1: Current in a 1D system consisting of N = 32 sites simulated with
a tight binding model. The current is measured in the center of the system by
measuring dq/dt of the left half. The graph is divided into three sections, with the
first section (yellow) being the transient initial phase. The second section (green) is
the quasi steady state phase, and the third section (red) is the breakdown phase.
Phase I shows the transition from a non-current-carrying state into a current-
carrying state. Phase II approximates the current of a larger system containing
leads and a battery. Phase III starts when the highest energy electrons ”feel” the
edge of the system and return to the middle.



Chapter 5

Dehydration and ionic

conductance quantization in

nanopores

5.1 Introduction

The behavior of water and ions confined in nanoscale geometries is of

tremendous scientific interest. On the one hand, biological ion channels, which

form from membrane proteins, perform crucial functions in the cell [47, 48]. On

the other hand, there have been recent advances in aqueous nanotechnology such

as nanopores and nanochannels, which hold great promise as the basic building

blocks of molecular sensors, ultra-fast DNA sequencers, and probes of physical

processes at the nanoscale [46]. Indeed, nanopore-based proposals for DNA se-

quencing range from measuring transverse electronic currents driven across DNA

[12, 11, 49, 50, 51] to voltage fluctuations of a capacitor [52, 53, 54] to ionic currents

[6, 55, 56, 57, 36, 58, 59, 60].

Recent experiments show that we are tantalizingly close to realizing a device

capable of ultra-fast, single-molecule DNA sequencing with nanopores: identifica-

tion of individual nucleotides using transverse electronic transport [61, 62] has

been demonstrated. Discrimination of nucleotides using their ionic blockade cur-

32
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rent when driving them individually though a modified biological pore has also

been demonstrated [63, 64]. In these systems, the presence of water and ions will

affect the signals and noise measured and thus understanding their behavior is an

important issue in both science and technology.

Many computational studies have been dedicated to relating the three-

dimensional structure [65, 47, 66] of biological ion channels to their physiological

function, e.g., ion selectivity. For instance, recent studies have examined the role of

ligand coordination in potassium selective ion channels [67, 68, 69, 70]. Biological

channels, however, are complex pores with many potential factors contributing to

their operation. Thus, only in a limited number of cases have universal mecha-

nisms of ion transport been investigated, such as the recent work on the role of

“topological constraints” in ligand coordination [71, 72, 73].

---

εw

+

εp � εw

Figure 5.1: Schematic of ion transport in the presence of hydration layers. Only
the first hydration layer is shown for simplicity. Ions in bulk water form hydra-
tion layers that make the ion behave as a “quasi-particle” that includes the ion
and tightly bound water molecules. This quasi-particle is then solvated in the
high-dielectric water. As the ion goes from the bulk solution to the pore it has
to partially shed its hydration layers, i.e., the quasi-particle has to break apart.
This gives a nonlinearity in the energetic barrier to transport. A continuum pic-
ture neglects these features and considers only the dielectric barrier that ions have
to overcome by moving from bulk water with dielectric constant εw into the in-
homogeneous, low-dielectric pore environment with εp � εw. Specialized proteins
facilitate this process in biological ion channels via the presence of localized surface
charges/dipoles and other mechanisms.

Fundamental developments in the fabrication of synthetic nanopores [74,
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75, 16, 76, 77, 78, 79, 80], however, open new venues for investigating the behavior

of ion channels and dynamical phenomena of ions, (bio-)molecules, and water

at the nanoscale. For instance, what are the dominant mechanisms determining

ionic currents and selectivity? What role do binding sites play versus hydration

in constrained geometries? How accurate are “equilibrium” and/or continuum

theories of ion transport? Well-controlled synthetic pores can be used in this

context to examine how ion transport is affected, for instance, by changing only

the pore radius, in the absence of binding sites and significant surface charge within

the pore.

In this paper we examine the role of dehydration in ionic transport through

nanopores. In particular, we investigate the recent prediction of quantized ionic

conductance by two of the present authors (MZ and MD) [81], namely that drops

in the conductance, as a function of the effective pore radius, should occur when

successive hydration layers are prevented from entering the pore. This effect is

a classical counterpart of the electronic quantized conductance one observes in

quantum point contacts as a function of their cross section (see, e.g., Ref. [82]).

We examine different ions, both positive and negative, and of different valency

(namely, Cl−, Na+, K+, Ca2+, and Mg2+). We find that the ion type plays only

a minor role in the radii of the hydration layers, and thus does not affect much

the pore radii at which a sudden drop in the current is expected. Divalent ions,

however, are the most ideal experimental candidates for observing quantized ionic

conductance because of their more strongly bound hydration layers. Further, the

fluctuating hydration layer structure and changing contents of the pore should give

a peak (versus the effective pore radius) in the relative current noise - giving an

additional method to observe the effect of the hydration layers. Thus, we elucidate

how quantized ionic conductance provides a novel tool to deconstruct the energetic

contributions to ion transport.

The paper is organized as follows: In Sec. 5.2, we give a macroscopic (i.e., a

continuum electrostatic) viewpoint on the energetics of ion transport. In Sec. 5.3,

we examine how ions induce local structures in the surrounding water known as

hydration layers - an effect that is not taken into account when using continuum
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electrostatics to estimate energetic barriers to transport. Further, we calculate

the energies stored in these layers and develop a model for the energetic barrier

for ions entering a pore. In Sec. 5.4, we use a Nernst-Planck approach to relate

this barrier to the ionic current. In Sec. 5.5, we discuss how the presence of the

hydration layers gives rise to a peak in the relative noise in the ionic current at

values of the effective pore radius congruent with a layer radius. In Sec. 5.6, we

then present our conclusions.

5.2 Ionic Transport

The experimental set-up we are interested in is that of ions driven through

a pore/channel of nanoscale dimensions under the action of a static electric field

1. Such a situation is depicted in Fig. 5.1. A simple approach to ionic transport

is to envision the ions moving through an energetic barrier due to going from

the high-dielectric aqueous environment into the inhomogeneous, low-dielectric

environment of the pore, treating the surroundings as continuum media. The

resulting approach is inherently static: by analyzing the energetic barrier to (near-

equilibrium) transport one obtains information about how different factors - the

pore material (through its dielectric constant), the pore dimensions, the presence

of surface charges, and the presence of the high-dielectric water along the pore axis

- would affect transport.

Indeed, one of the first calculations of the dielectric barrier (using a “Born

solvation” model) was done by considering the ion solvated in water and moved

into a low-dielectric, pore-less membrane [83, 84]. This provides an estimate of the

energies involved by calculating the energy change of solvating the ion in continuum

water, with dielectric constant εw ≈ 80, to “solvating” it in a continuum material

with εp ≈ 2 (representative of lipid membranes 2). For instance, the energy change

of a Cl− ion, with effective radius R ≈ 2 Å 3, moved from continuum water to the

1Although similar conclusions should apply in other scenarios such as the generation of a
concentration gradient.

2In pores - especially biological pores - the membrane dielectric constant, εm, and the dielectric
constant of the pore material, εp, can be different.

3The effective radius can be estimated from, e.g., molecular dynamics simulations that give
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continuum material is

∆U =
e2

8πRε0

(
1

εp
− 1

εw

)
(5.1)

≈ 1.8 eV. (5.2)

This is quite a substantial energy change - about half the solvation free energy

of Cl− [47, 87]. The finite thickness of the membrane does not change this value

significantly. For thick membranes, it is lowered by [83, 84]

e2

4πε0εpl
ln

(
2εw

εw + εp

)
,

for εw � εp, where l is the membrane thickness (and pore length). For εp ≈ 2 and

εw ≈ 80, this gives ∼ 5/l eV Å ≈ 0.1 eV for a membrane of thickness l = 50 Å.

That is, the Born estimate in Eq. (5.1) is lowered to ∼ 1.7 eV. Obviously, the

membrane width [88] and composition can play a significant role in this estimate.

For the common synthetic pores made of silicon dioxide (εp ≈ 4) or silicon nitride

(εp ≈ 7.5) the estimate in Eq. (5.1) is reduced from ∼ 1.8 eV to ∼ 0.9 eV and

∼ 0.4 eV, respectively. These barriers are more than an order of magnitude larger

than kBT at room temperature, where kB is the Boltzmann constant.

Due to this magnitude, it is clear that the energy scale of solvation is one

of the controlling factors in ion transport. However, in addition to the above

there is water present in the pore. One expects, therefore, that the energy of

solvation would be decreased from simple estimates like that of Eq. (5.1). Several

groups have calculated this contribution [83, 84, 88, 89, 90]. For instance, Ref.

[91] shows that the energy barrier of bringing an ion from continuum water into a

low-dielectric, continuum membrane is reduced from ∼ 40 kcal/mol ≈ 1.7 eV to ∼
20 kcal/mol ≈ 0.9 eV by the presence of water in the pore. This demonstrates that

a pore filled with a high dielectric medium (e.g., continuum water) can significantly

lower the barrier to transport. Even still, the barrier remains substantial.

In biological systems, however, the pores provide a channel with a much

lower barrier as indicated by the conductance of many biological ion channels.

a surface where the screening charge due to the hydrogen or oxygen atoms of water fluctuates.
For instance, Figs. 5.2 and 5.3 show this surface (see also Refs. [85, 86]).
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These pores are formed from specialized proteins whose role is precisely to facilitate

passage of ions (and further to selectively allow passage of certain ions). Clearly,

pores with internal charges and/or dipoles can significantly reduce the energetic

barriers for transport. Indeed, the effect of surface charges has been calculated in

clean pores [92, 93, 94] and when present in sufficient amounts would negate the

effect we predict as the reduction of the energetic barrier would be comparable

to, or larger than, the hydration layer energies. Therefore, our interest is in clean

pores with little to no surface charge where clear-cut experiments can be performed

to understand the effect of hydration on transport. This rules out the direct use

of some biological ion channels, particularly those with very small pores where

single-file transport occurs [95, 65, 96], because of the presence of localized charges

and dipoles.

To conclude this section, we note that the continuum description suffers

from a number of issues at the nanoscale: it is only valid beyond the correlation

length of the material [97], which for the strong fields around an ion is ∼ 8 Å for

water (see below), similar to the ∼ 5 − 8 Å in water only [98]; linear continuum

electrostatics is only valid when the polarization field is co-linear with the electric

field (not the case in the hydration layers we discuss below); in a related issue,

it is only valid for weak fields (in the context of ion channels, see, for example,

Sec. 3.4 in Ref. [91]); there is also an issue of where the “surface” separating

the charge and the dielectric membrane/continuum water is located, especially

for fluctuating atomic ensembles as is the case for protein pores and molecular

(rather than continuum) water. Thus, while a continuum picture can highlight

some general features of the energetic barrier to ion transport - in some cases giving

compact analytical expressions - it breaks down when trying to understand the

effect of structure at the nanoscale. In fact, macroscopic, continuum electrostatics

is not designed to study specific features or short-range interactions at these length

scales. This is precisely what we seek to address in the following sections.
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5.3 Hydration of Ions

We begin our study of quantized conductance by first illustrating how ions

are hydrated in solution and then discuss the energies involved in this process.

The formation of hydration layers around ions has been known for some time

(see, e.g., Ref. [47]), and is due to the strong local electric field around the ion

and to repulsive short-range interactions among molecular/atomic species. We

use molecular dynamics (NAMD2 [19]) simulations to understand the structure of

hydration layers when different ions are inside and outside of nanopores 4.

Figures 5.2 and 5.3 show the water density oscillations for several common

ionic species 5. There is a strong peak in water density about 3 Å away from the

ions, with two further oscillations after that spaced about 2 Å apart. These oscil-

lations signify that there are strongly bound water molecules forming around the

ions. Table 5.1 lists the hydration layer radii from both this study and experiment.

We find very good agreement with the experimental data for all cases. The water

density approaches the bulk value (∼ 0.033 Molecules/Å
3
) at about 10 Å, which is

also consistent with the experimental value.

The oscillations in water density also give rise to oscillations in the local

electric field. Figures 5.2 and 5.3 show this for monovalent and divalent ions where

the time-averaged electric field was calculated from the bare ion value plus a sum

over all partial charges given by the hydrogen and oxygen atoms of water 6. In the

4For an ion in bulk water, we simulated a hexagonal box of 150 Å height and 43 Å radius
with periodic boundary conditions in all directions. We then fixed an ion in the center of the
box and counterion(s) near the edge of the box, far away from the ion of interest. For an ion
in a pore, a cylindrical pore of radius R was cut into a hexagonal silicon nitride film 97 Å thick
and of 29Å radius. This was accomplished by removing all silicon and nitrogen atoms within a
distance R from the z-axis. An ion was fixed in the middle of the pore and counterion(s) were
fixed outside of the pore. The system was then solvated in water resulting in a box of linear
dimension 167 Å in the z-direction. An energy minimization procedure was then run, the system
was heated up to 295 K, and finally the production run started. The first 600 ps were discarded
to remove artifacts from the initial conditions and the information from the subsequent 2 ns
collected. Other simulation details are as in Ref. [51].

5We calculated the density of water surrounding each ion by placing 1 Å
3

shells concentric
with the ion. The inner shells have a larger width to give the same volume. We then counted
the number of atoms (either hydrogen or oxygen) within each of the shells throughout the 2
ns simulation at time intervals of 200 fs. Due to the smaller bin sizes, the plots have minor
differences from Ref. [81] at small distances from the ion.

6The electric field was calculated by summing the contributions from the ion and all partial
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Figure 5.2: Top panels: Water density oscillations versus distance for Cl−, Na+,
and K+ in bulk water. Black, solid lines indicate the density calculated from
the oxygen atom positions for Cl− and hydrogen atom positions for the cations.
The arrows indicate the minimum in the density oscillations. The blue, dashed
lines indicate the density calculated from the hydrogen atom positions for Cl− and
oxygen atom positions for the cations. Bottom panels: The electric field due to
both the bare ion (red, dashed line) and due to the ion plus partial charges on
the water molecules (black, solid). The arrows again indicate the minimum in the
density oscillations.

figures, the first hydration layer gives pronounced field oscillations for all species

examined. The other oscillations in the field are more well-defined for K+, Ca2+,

Mg2+, and to some extent Na+, compared to Cl−. Anions, such as Cl−, have a

different structure of the water around them compared to cations: in the first layer,

they pull one of the hydrogen atoms of each of the water molecules closer while

the other interferes with the formation of the second layer, possibly hindering the

charges (on the hydrogen and oxygen of the water) within 15 Å from every field point. The angular
component to the field was several orders of magnitude smaller because the time-averaged field
has essentially spherical symmetry. In Ref. [81] all water molecules were modeled as dipoles.
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Figure 5.3: Top panels: Water density oscillations versus distance for Ca2+ and
Mg2+ in bulk water. Black, solid lines indicate the density calculated from the
hydrogen atom positions. The arrows indicate the minimum in the density oscilla-
tions. The blue, dashed lines indicate the density calculated from the oxygen atom
positions. Bottom panels: The electric field due to both the bare ion (red, dashed
line) and due to the ion plus partial charges on the water molecules (black, solid).
The arrows again indicate the minimum in the density oscillations.

ability of the second layer to form a “perfect” screening surface. The fact that the

electric field is not simply suppressed by 1/εw shows the difficulty of a macroscopic

(continuum) dielectric picture to predict behavior at the nanoscale (similar to well-

known features in other systems such as Friedel oscillations and apparent from the

derivation of continuum electrostatics, where averaging is required over length

scales much larger than the correlation length of the material [97]).

We now estimate the energies contained in these layers, which we list in

Table 5.1. The electric fields seen in Figs. 5.2 and 5.3 show an oscillating behavior

that is reminiscent of a set of Gauss surfaces, i.e., layers of alternating charge that

screen the field of the ion. Thus, in order to estimate the energies contained in the
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Table 5.1: Table of physical quantities from simulation and experiment. The
theoretical hydration layer radii, Ri, for all three layers are defined using the ion-
oxygen distance for Cl− and ion-hydrogen distance for the cations. The first oxygen
density maximum, RXO, is for all ions X using the present theory and experiment
(average values taken from Ref. [99]). The second maximum is also shown for the
divalent ions from both theory and experiment. The inner/outer radii that enter
Eq. (5.3) are shown, the first of which is calculated such that Eq. (5.3) equals ∆G
(exp) when RO

iν → ∞ (see also text). The next three inner/outer radii are taken
from the minima of the oxygen density for Cl− and the minima of the hydrogen
density for the cations. Further, we report the layer energies Ui (using εp = 1),
and the Gibb’s free energy from experiment [87], and the experimental mobilities
[47] used in this work.

Ion Ri (Å) (th) RXO (Å) (th) RXO (Å) (exp) RI , RO (Å) −Ui (eV) (th) −∆G (eV) (exp) µ (m2V/s) (exp)

Cl− 3.1, 4.9, 7.1 3.1 3.19 2.0, 3.9, 6.2, 8.5 1.73, 0.68, 0.31 3.54 7.92× 10−8

Na+ 2.9, 5.1, 7.5 2.3 2.44 1.9, 3.8, 6.2, 8.4 1.51, 0.72, 0.30 3.80 5.19× 10−8

K+ 3.3, 5.6, 7.8 2.7 2.81 2.4, 4.2, 6.6, 8.8 1.15, 0.61, 0.27 3.07 7.62× 10−8

Ca2+ 3.0, 5.1, 7.5 2.2, 4.6 2.42, 4.55 1.8, 3.6, 6.1, 8.5 7.89, 3.23, 1.32 15.65 6.17× 10−8

Mg2+ 2.7, 4.8, 7.1 1.9, 4.2 2.09, 4.20 1.5, 3.3, 5.7, 8.1 10.33, 3.62, 1.48 19.03 5.5× 10−8

layers, we replace the microscopic structure giving rise to the complex field by a

set of surfaces as shown in Fig. 5.4 that perfectly screen (with dielectric constant

εw), rather than over-screen, the ion charge.

Within this picture, the energy of the ith hydration layer of ionic species ν

is [81]

U o
iν =

q2
ν

8πε0

(
1

εp
− 1

εw

)(
1

RO
iν

− 1

RI
iν

)
, (5.3)

where qν is the ionic charge and R
I (O)
iν are the inner (outer) radii demarcating

the hydration layer as obtained from the water density oscillations. In order

to obtain the innermost radius we compute the total solvation energy, UT =

−q2
ν (εw − εp) /

(
8πε0εpεwR

I
1ν

)
, and compare with the experimental free energies

[87], which are dominated by the electrostatic energy. These free energies, to-

gether with the layer energies (for εp = 1), are tabulated in Table 5.1. Except

for the third hydration layer for monovalent ions, the layer energies are greater

than other free energy contributions such as the entropy change due to the water

structure or van der Waals interactions [100, 101]. In Eq. (5.3) we have also added

a possible screening contribution, εp, from the pore material and/or charges on the

surface of the pore. In Ref. [81] this was assumed to be one: the low-dielectric

pores reduce the energy barrier only by a small amount and in a different func-
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Figure 5.4: The magnitude of the approximate electric field (given by a set of
Gauss surfaces, see inset) used to represent the fields in Figs. 5.2 and 5.3, and also
used to calculate the energy contained in each layer (Eq. (5.3)).

tional form. In Sec. 5.5 we will discuss the effect of this screening on the detection

of quantization steps.

Previously, we proposed a model for how the energy is depleted in a hydra-

tion layer as the effective radius of the pore, Rp, is reduced [81]. In this model, the

energy change is proportional to the remaining surface area of a hydration layer

within a pore. It takes into account both that the water-ion interaction energy

of small water clusters is approximately linear in the number of waters [101, 102]

and that molecular dynamics simulations show a time-averaged water density with

partial spherical shells when an ion is inside a pore of small enough radius (see Fig.

1 in Ref. [81]). Contributions from, e.g., van der Waals interactions with the pore

and changes in the water-water interaction, are small [100, 101]. Thus, the energy

of the remaining fraction fiν of the ith layer in the pore is taken as Uiν = fiνU
o
iν .

The fraction of the layer intact is fiν = Siν/4πR
2
iν where Siν is the surface area (of

the spherical layer) remaining where the water dipoles can fluctuate. The latter is

given by

Siν = 2Θ (Riν −Rp)

∫ 2π

0

dφ

∫ θcν

0

dθR2
iν sin θ, (5.4)

where Θ (x) is the step function and θcν = sin−1(Rp/Riν). When Rp < Riν , the
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fraction of the surface left is

fiν (Rp) = 1−
√

1−
(
Rp

Riν

)2

. (5.5)

The total internal energy change will then result from summing this fractional

contribution over the layers to get

∆Uν(Rp) =
∑
i

(fiν(Rp)− 1)U o
iν . (5.6)

We stress first that the effective radius Rp is not necessarily the nominal

radius defined by the pore atoms. Rather, it is the one that forces the hydration

layer to be partially broken because it can not fit within the pore, and it could

be smaller than the nominal pore radius by the presence of, e.g., a layer of tightly

bound water molecules on the interior surface of the pore. Second, our model

misses internal features of the hydration layers themselves. For instance, Ref.

[103] examines the first hydration layer structure in carbon nanotubes of different

radii. These authors find a large increase in the energy barrier when the pore

radius nears the inner hydration layer. They also seem to observe sub-steps in the

water coordination number within the inner shell as the pore radius is reduced.

Thus, although our model contains only a single “smoother” step, experiments

could very well observe these internal sub-steps corresponding to the sudden loss

of a single or few water molecules out of a given hydration layer.

Another basic assumption in our model is that the interaction energy of the

water molecules in each layer is the same regardless of whether the ion is inside or

outside of the pore. Figure 5.5 shows the distribution of the dipole orientation of

water molecules both in bulk and inside pores of different radius 7. The average

dipole orientation of the waters changes very little inside the pore, as do their

fluctuations, thus supporting this assumption.

7For each time step, all water molecules within a cylindrical annulus coaxial with the +z-axis
were taken, where the annulus has a 1.5 Å width, 1.5 Å height, and a central ring 5 Å from the ion.
Then the unit vector connecting the oxygen atom of those molecules to the midpoint between
the hydrogen atoms (the unit dipole p̂(t)) was generated together with the unit position vector
of the water molecules at the centroid of the molecule r̂(t). We then took the scalar product p̂ · r̂
per molecule, and averaged over the molecules. This set of data was then made into a histogram
of 501 bins evenly spaced from -1 to 1.
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Figure 5.5: Distributions of the dipole orientations of water molecules within
a cylindrical annulus 5 Å away from a Ca2+ ion in bulk (black line) and inside
pores of radius 8 Å (red dashed line), 12 Å (green dash-dotted line) and 15 Å (blue
dotted line). The mean value is around 0.38 (corresponding to the water dipole
pointing 68 degrees away from the ion-water vector), except for the 8 Å pore, which
increases to 0.42 (corresponding to the water dipole pointing 65 degrees away from
the ion-water vector). This signifies a moderate tightening of the water dipole
around the field of the ion as the pore size is reduced.

In order to make a connection with the ionic current (in Sec. 5.4 below),

we calculate the free energy 8 change for species ν as

∆Fν = ∆Uν − T∆Sν , (5.7)

which includes an entropic contribution from removing a single ion from solu-

tion and localizing it in the pore region. This entropic contribution is ∆Sν =

kB ln (Vpn0), where we have assumed an ideal ionic solution and Vp is the volume

of the pore and n0 is the bulk salt concentration for all species ν. The free energy

change is plotted in Figs. 5.6 and 5.7 versus the effective pore radius and it is

substantial when the latter becomes smaller than the outer hydration layer.

8Here we deal with constant volume and temperature and thus use the Helmholtz free energy.
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Figure 5.6: Free energy changes, ∆Fν , and currents versus the effective pore
radius for the monovalent ions and a field of 1 mV/Å. The black, dashed line
indicates the free energy change. The remaining lines indicate the current with
different standard deviations of the noise (see text for details). The currents are
for σ = p∆F , with p = 0.3, 0.2, 0.1, 0 from top to bottom.

5.4 Ionic Currents

We now want to relate these energy barriers to the ionic current through

the pore 9. We do this by solving the Nernst-Planck equation in one dimension.

Since this model consistently solves for both drift and diffusion contributions to

ionic transport, and yields a compact analytical expression, we use it below with

the energetic barriers found from the above model of dehydration. Even though

this analytical model does not include some effects such as ion-ion interaction, we

expect that it is qualitatively accurate as discussed along with its derivation.

The steady-state Nernst-Planck equation (see, e.g., [104, 105, 47]) for species

ν in one dimension (assuming variability on the pore cross-section is not important)

is

Jν = −qνDν

[
dnν (z)

dz
+

qν
kBT

nν (z)
dΦν (z)

dz

]
, (5.8)

9The most detailed information regarding ion channels and physical processes in nanopores is
provided by Molecular Dynamics (MD) - but MD simulations are not able to reach the necessary
time scales required to extract the full information on the current. Indeed, there is a hierar-
chy of approaches going down from macroscopic to microscopic models: continuum models -
Poisson-Boltzmann, Poisson-Nernst-Planck; Brownian dynamics; classical then quantum Molec-
ular Dynamics. In practice, some combination of the different approaches is often used, such as
calculating structural/energetic properties from MD and using them to construct simpler model
systems that can then be tested experimentally. This is the approach we have followed in this
work.
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Figure 5.7: Free energy changes, ∆Fν , and currents versus the effective pore
radius for the divalent ions and a field of 1 mV/Å. The black, dashed line indicates
the free energy change. The remaining lines indicate the current with different
standard deviations of the noise (see text for details). The currents are for σ =
p∆F , with p = 0.3, 0.2, 0.1, 0 from top to bottom.

where Jν is the charge flux for species ν, z ∈ (0, l) is the axial coordinate along

the pore axis of length l, nν (z) is the ion density, Dν is the diffusion coefficient

(assumed to be position independent), and Φν (z) is the position-dependent po-

tential (including both electrostatic and other interactions that change the energy

within the pore). A full solution would require solving the density and potential

within the reservoirs and pore simultaneously (see, e.g., Ref. [106]). However, we

deal with high-resistance pores. Thus, we approximate the left (L) and right (R)

reservoirs with constant concentrations nL and nR, and the boundary conditions

at the edge of the pore are nν (0) = nL and nν (l) = nR. This is equivalent to

assuming that as soon as an ion leaves or enters the pore, the ions in the immedi-

ate surroundings of the pore equilibrate rapidly to their prior distributions. Thus,

multiplying by exp (qνΦν (z) /kBT ) to get

Jνe
qνΦν(z)/kBT = −qνDν

d

dz

[
nν (z) eqνΦν(z)/kBT

]
and integrating yields the flux for species ν as

Jν = −qνDν
nRe

qνΦν(l)/kBT − nLeqνΦν(0)/kBT∫ l
0
dzeqνΦν(z)/kBT

.

We make the further simplifying assumption that the electrostatic potential drops

linearly over the pore - recognizing that in the presence of a significant potential
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barrier, e.g., due to the stripping of the water molecules from the hydration layers

and in the absence of surface/fixed charges in the pore, the ionic density in the

pore is small and thus the field is due to ionic charge layers on both sides of the

pore. Results from many works that include ion-ion interactions indeed find a

linear drop of the potential across the pore (see, e.g., Ref. [107]). In this case, ions

form a capacitor across the pore and every so often one ion translocates through

the pore. The “healing” time for the loss of this ion is very short [107] and,

thus, the field (potential drop) is not strongly affected 10. Also, we assume that

the potential barrier due to changes in these other interactions is constant over

the pore - this ignores a region near the pore entrance, but will not qualitatively

change the solution. Therefore, the potential for species ν can be written as

Φν (z) = z
V

l
+

∆Fν
qν

when z ∈ (0, l). The boundaries are given by Φz (0) = 0 and Φz (l) = V .

Performing the remaining integral and for equal reservoir densities (our case),

nL = nR = n0, we get

Jν = −q
2
νn0DνV

lkBT
e−∆Fν/kBT .

Relating the diffusion coefficient to the mobility via the Einstein relation, µν =

qνDν/kBT , and putting in the constant electric field E = V/l, one obtains

Jν = −qνn0µνEe
−∆Fν/kBT . (5.9)

That is, the flux of an ionic species is proportional to the electric field and density,

where the latter is suppressed by a Boltzmann factor [81].

Now that we have an expression relating the energy barrier to the transport

properties, we can calculate the current as a function of effective pore radius by

10One may worry that these charge layers - which mainly are due to excess ionic density -
invalidate the assumption of constant ionic density outside the pore. A quick estimate of the
excess density comes from the surface charge (for two parallel plates) necessary to give a typical

potential drop of 100 mV over 100 Å. This is σ = ε0V/l ≈ 5.5× 10−6 e/ Å
2
. This surface charge

is likely contained in a layer ∼ 10 Å thick, giving a density 5.5× 10−7 e/ Å
3
. For comparison, at

1 M concentration the density is 6 × 10−4 e/ Å
3

- that is, orders of magnitude larger than the
variation in density necessary to give the electric field over the pore. However, increasing the
bias or decreasing the bulk concentration or pore length may invalidate this assumption.
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multiplying Eq. (5.9) by the area of the pore to get

Iν = 2πR2
pJν

≡ Iν0e
−∆Fν/kBT , (5.10)

where we have defined a standard current Iν0 = −qνn02πR2
pµνE that would flow

in the absence of an energy barrier. The current (5.10), with the mobilities and

energies in Table 5.1, along with Eqs. (5.3)-(5.7), is plotted in Figs. 5.6 and 5.7

as a function of effective pore radius and for a field of 1 mV/Å 11. The energetic

barriers create sudden drops when the pore radii are congruent with a hydration

layer radius. These correspond to the quantized steps in the conductance.

5.5 Effect of noise

In a real experiment, there will also be fluctuations in the energetic barrier

due to the fact that the hydration layers are not defined by their time-averaged

value (i.e., they are not perfect spherical shells) and also due to fluctuations of

the water structure and contents of the pore (both within a single experiment and

also structural variations between experiments). Thus, we also examine the effect

of these fluctuations and the current noise they induce. Thus, we calculate an

averaged current for species ν as

〈Iν〉 = 〈Iν0e
−∆Fν/kBT 〉. (5.11)

We consider two specific models: Gaussian fluctuations of the free energy with a

standard deviation proportional to the free energy barrier at a fixed pore radius and

Gaussian fluctuations in the effective pore radius. The latter was also considered

previously [81] where it was found that this type of noise smooths out the visibility

of the drops in conductance (i.e., the peaks in the derivative d〈Iν〉/dRp become

smoother with increasing noise). However, it was also shown that this fluctuation

11We note that for all layers to be present, the applied field can not be stronger than the
ion’s field of ∼ 0.3 V/Å - the magnitude of a monovalent ion’s field within the third layer (∼ 7Å
from the ion) - and approximately double that for divalent ions. In this way, the hydration layer
structure will not be significantly perturbed.
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induces a peak in the relative current noise that is much less sensitive to the

strength of the fluctuations - thus giving an alternative method to detect the effect

of the hydration layers. We develop a model for this relative noise here but do not

perform the calculation of Eq. (5.11) for all the different species.

Fluctuating energy barrier - The first model we consider is an energy barrier

that fluctuates according to a Gaussian distribution. We neglect fluctuations that

make the barrier negative, so that the average current is

〈Iν〉 =
Iν0

Nσ

∫ ∞
0

d (∆F ) e−∆F/kBT e−(∆F−∆Fν)2/2σ2

, (5.12)

where σ is the standard deviation of the fluctuations and

Nσ =

∫ ∞
0

d (∆F ) e−(∆F−∆Fν)2/2σ2

is the normalization. The average current is thus

〈Iν〉 = Iν0Ae
−(∆Fν−σ2/2kBT)/kBT ,

where the factor A is

A =
erfc

[
(−∆Fν + σ2/kBT ) /

√
2σ2
]

erfc
[
−∆Fν/

√
2σ2
] .

The value of A for small σ is very close to 1. Thus, the effect of a fluctuat-

ing energy barrier with small fluctuations is simply to lower the energy barrier by

an amount σ2/2kBT . For stronger fluctuations, the factor containing the comple-

mentary error function, erfc, gives different limiting dependencies of the average

current as the fluctuation strength σ is increased. However, large fluctuations are

well outside the realm of validity of the present model.

The relative noise in the current provides even more information. The

relative noise is

∆Irel =

√
〈I2〉 − 〈I〉2
〈I〉 .

The expectation value of the square of the current is given by

〈I2
ν 〉 =

Iν0

Nσ

∫ ∞
0

d (∆F ) e−∆F/kBT e−(∆F−∆Fν)2/2σ2

= BI2
ν0e
−(2∆Fν−2σ2/kBT)/kBT . (5.13)
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Where the normalization is as before and the factor B is given by

B =
erfc

[
(−∆Fν + 2σ2/kBT ) /

√
2σ2
]

erfc
[
−∆Fν/

√
2σ2
] .

Thus, the relative current noise induced by an energy barrier with fluctuations is

∆Irel =

√
eσ2/(kBT )2

B

A2
− 1. (5.14)

For small fluctuations, A and B depend very weakly on σ and are both very close

to 1, giving a relative current noise

∆Irel ≈ σ/kBT.

As expected, the relative noise increases with the strength of the fluctuations. For

fluctuations proportional to the energy barrier, as shown in the Figs. 5.6 and 5.7,

the fluctuations give rise to a monotonic increase in the relative noise. Overall,

the effect of fluctuations in the energy barrier is to decrease the effective energy

barrier and increase the current. This reduces the magnitude of the drops in the

conductance but does not destroy their visibility. This would therefore help in

observing quantized ionic conductance. It is worth noting, however, that this type

of noise makes the step of the third hydration layer the most pronounced. This

seems an unlikely situation in actual experiments and other types of noise need to

be considered.

Fluctuating effective pore radius - In addition to the above noise, one ex-

pects that there would be fluctuations in the radii of the hydration layer/nanopore

system. Previously, we demonstrated that this type of noise can smear the effect of

the steps in the current [81]. As was seen, however, this noise also gives a peak in

the relative noise in the current that is much less sensitive to the fluctuations than

the average current. Here we develop a model of this behavior by calculating the

relative noise assuming fluctuations across a single, perfect step in the free energy

(see the inset of Fig. 5.8).

The average current due to species ν when averaged over fluctuations in the

effective pore radius is

〈Iν〉 =
1

Nξ

∫ ∞
0

dR Iν0(R)e−∆F (R)/kBT e−(R−Rp)2/2ξ2 , (5.15)
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where ξ is the standard deviation of the radial fluctuations, Nξ is the normalization,

and the explicit R dependence has been included in both the barrier ∆F and the

prefactor Iν0. The dominant factor is the exponential of the free energy barrier

and the quadratic dependence of Iν0 on R can be ignored. For small fluctuations,

the lower limit of the integral can be extended to −∞ and Nξ →
√

2πξ2 to give

〈Iν〉 =
Iν0(Rp)√

2πξ2

∫ ∞
−∞

dR e−∆F (R)/kBT e−(R−Rp)2/2ξ2 . (5.16)

Previously, we performed the averaging according to Eq. (5.15) [81], but here we in-

stead use Eq. (5.16) with the approximate energy barrier ∆F (R) = ∆FhΘ (Rh −R)

of a single hydration layer of radius Rh and take Īν0 to be the current in the absence

of the barrier. The average current then becomes

〈Iν〉 = Īν0

[
e−∆Fh/kBT (1− C) + C

]
,

where

C =
1

2
erfc

(
Rh −Rp√

2ξ

)
.

Similarly, for the square of the current one finds

〈I2
ν 〉 = Ī2

ν0

[
e−2∆Fh/kBT (1− C) + C

]
.

Although 〈Iν〉 and 〈I2
ν 〉 are dependent on the strength of the fluctuations, ξ, the rel-

ative current noise has a universal behavior in the parameter R̃ = (Rh −Rp) /
√

2ξ.

That is, all features in the relative noise would be present regardless of the strength

of the noise. However, the peak in the noise (see below) shifts to smaller values of

Rp as the noise strength is increased, which is qualitatively in agreement with the

full averaging (Eq. (5.15)) performed in Ref. [81].

The relative noise is

∆Irel =

√
(1− e−∆Fh/kBT )

2
C (1− C)

e−∆Fh/kBT (1− C) + C
.

For large or small Rp, the relative noise goes to zero, which can be seen from the

properties of erfc that make C → 1 and C → 0 for large and small Rp, respectively.

In between these limits, there would be nonzero relative noise, therefore indicating
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that the relative noise would have a maximum. The peak in the relative noise

occurs for Rp < Rh. For a large energy barrier ∆Fh, this peak occurs when C is

small. Thus, we can approximate the relative noise as

∆Irel ≈
√
C

e−∆Fh/kBT + C
.

This gives a peak in the noise when C = e−∆Fh/kBT with a value

∆I?rel ≈
1

2
e∆Fh/2kBT . (5.17)

The peak is exponentially large in the energy barrier. However, the model with

the electrostatic energy given by Eq. (5.6) does not have an ideal step in the free

energy (see, e.g., Figs. 5.6 and 5.7). From previous work [81], we can identify the

peaks, R?
p, and use ∆Fh ≈ ∆Fν

(
R?
p

)
. This is done in Fig. 5.8 for Cl−. The model

agrees quantitatively with the full averaging performed in Ref. [81]. The only

feature missing is the additional background noise away from the step due to the

non-uniform energy barrier on both sides of the step.

Thus, from this “two-channel” model of noise we have found two generic

features: (i) a peak develops in the relative current noise that is exponentially

high with the hydration energy barrier, and (ii) it is present regardless of the

noise strength, although its location moves to smaller values of the pore radius

with increasing noise (likewise, the peak becomes wider). These features are in

agreement with what is found from performing the full averaging from Eq. (5.15)

using the surface area model of the energy barrier [81]. In the full model the

fluctuations will eventually smooth out the peak in the relative current noise. The

latter, however, is still much less sensitive than the average current drops, making

the peak in the relative current noise versus Rp a robust indicator of dehydration.

Barrier reduction - In addition to the above fluctuations, there are factors

that reduce the energetic barrier, such as the presence of some surface charge

and/or dielectric screening in the pore. In Eq. (5.3) we included a dielectric

constant εp to represent a reduction in the hydration layer energy barrier from these

sources. We expect, however, that the introduction of this constant overestimates

the barrier reduction. It amounts to replacing the water molecules screening the
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ξ

Rp

∆Fh

Figure 5.8: Relative current noise induced by structural fluctuations in the effec-
tive pore radius and/or hydration layer radius. The inset shows the approximate
change in free energy ∆Fh as a function of effective pore radius in proximity to
a hydration layer structure. The noise in the pore radius induces fluctuations be-
tween the high and low energy states. Here the third hydration layer radius of Cl−

is taken, Rh = 7.1 Å. See the text for details on ∆Fh. The fluctuation strength
from right to left is ξ = 0.05, 0.15, 0.25, 0.35, 0.45 Å.

ion with a material of lower dielectric constant but in the exact geometry of the

water molecules. This is very unlikely since the pore screening comes from the

fixed surface of the pore and thus in a different functional form. Nevertheless,

it is instructive to see how the drops in the current are reduced by this effective

lowering of the energy barrier. Figures 5.9 and 5.10 show the energy barrier and

current for several values of this effective dielectric constant. We find that even

for fairly large εp (∼ 7), the barriers are large enough to give a noticeable drop in

the current.

Bulk concentration - We also mention the effect of changing the concentra-

tion of ions in bulk. We have assumed that the hydration layers are well formed

away from the pore. Large ionic concentration in bulk, however, would affect the

formation of the hydration layers. For a completely disassociated 1:1 salt, the

ion-ion distance goes as ∼ 9.4/n
1/3
0 Å where the bulk concentration, n0, is given

in mols/L. Thus, the inter-ion distance is ∼ 9.4 Å for a 1 M solution, which is

almost large enough to house both the first and second hydration layers. However,
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Figure 5.9: Free energy changes, ∆F , and currents versus the effective pore radius
for the monovalent ions and several values of εp and for a field of 1 mV/Å. The
dashed lines indicate the free energy change. The solid lines indicate the current
(see text for details). The currents are for εp = 7, 5, 3, 1, from top to bottom.

concentrations lower than 1 M are preferable.

Some remarks - We have discussed many of the factors that will affect the

detection of quantized ionic conductance. The most ideal experiment would be one

with pores of well-controlled diameter and with smooth surfaces. Likewise, a small

(or no) amount of surface charge and a low dielectric constant of the pore will

make the effect more pronounced (and the ability to gate a pore, e.g., made of a

nanotube, would help even more in understanding the energetics of transport). Not

having these factors under control greatly affects the transport properties of the

ions [108]. Therefore, pores made of, for instance, semiconducting nanotubes may

be ideal. Indeed, pores made of these materials have been recently demonstrated

[109]. However, rough surfaces that are present in pores made of, e.g., silicon

nitride, should still allow for quantized conductance to be observed, so long as

the variation of the effective radius of the pore is not too strong. The noise in

the effective radius of the pore was investigated previously in Ref. [81], where we

found that only beyond variation in the radius of 0.2 − 0.3 Å will the effect be

washed out. However, even beyond this variation magnitude, the relative current

noise signifies the presence of steps in the energy barrier, thus giving a more robust

indicator of the hydration layers’ effect on transport.
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Figure 5.10: Free energy changes, ∆F , and currents versus the effective pore
radius for the divalent ions and several values of εp and for a field of 1 mV/Å.The
dashed lines indicate the free energy change. The solid lines indicate the current
(see text for details). The currents are for εp = 7, 5, 3, 1, from top to bottom.

5.6 Conclusions

Ionic transport in nanopores is a fascinating subject with a long history

and impact in many areas of science and technology. Recent work on developing

aqueous-based nanotechnology and understanding biological ion channels requires

a firm understanding of how water and ions behave in confined geometries and

under non-equilibrium conditions due to applied fields. For example, the quest

for ultra-fast, single-molecule DNA sequencing has yielded a number of proposals

based on nanopores [46]. Among them, transverse electronic transport [12, 11]

(whose theoretical basis includes the investigation of atomistic fluctuations [12,

11, 49, 50] and electronic noise in liquid environments [51]) and ionic blockade

[6, 55, 56, 57, 36, 58, 59, 60] have yielded promising recent experiments (Refs.

[61, 62] and [63, 64], respectively). In all these cases, both water and ions are

present and will have a significant impact on the signals and noise observed.

In this work, we have analyzed in detail the recent prediction of quantized

ionic conductance [81] and examined how different aspects of the ion-nanopore

system influence the detection of this phenomenon. Namely, we have shown that

the ion type affects very little the radii at which the conduction should drop. High

valency ions, however, should give even more pronounced drops in the current and

thus may help in detecting this effect. Further, the presence of the hydration layers
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gives a peak in the relative noise at pore radii congruent with a layer radius. This

relative noise is much less sensitive to fluctuations than the average current, and

provides a promising approach to detect the effect of hydration.

Overall, quantized ionic conductance yields experimental predictions that

will shed light on the contribution of dehydration to ion transport and we hope

this work will motivate experiments in this direction.
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Chapter 6

Single-Base DNA Discrimination

via Transverse Ionic Transport

6.1 Introduction

Measuring transverse electronic currents within a nanochannel to differ-

entiate between DNA/RNA bases [11, 12, 13] is a promising new approach for

sequencing DNA fast and at low cost. It consists of feeding a single-stranded DNA

molecule through a channel equipped with nanometer-scale electrodes able to dif-

ferentiate (via transverse electrical current) the electronic structure of the various

bases as they pass by [11, 12, 13]. This approach has been recently realized in

various experiments [14, 32, 33, 34, 35].

On the other hand, ionic current through a nanopore has been known for

over a decade to be useful in detecting when a DNA translocation event has oc-

curred [6, 36, 37, 38, 39, 40], and has even been able to give some information about

the sequence [7, 8]. However, within a nanochannel, the ionic current blockaded

by an arbitrary strand of DNA is a non-trivial convolution of a large number of

blockade events from different bases [41], and as such it is difficult to sequence at

the single base level with this physical mechanism, unless the bases are fed one at

a time through the opening.

Recent advances in the fabrication of ionic nanochannels [17] have shown

57
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that it is possible to use a pair of intersecting nanochannels to detect the transport

of DNA. In that particular experiment a double stranded DNA has been translo-

cated through one channel, while the ionic current flowing through the second,

transverse, channel is modulated based on the presence or absence of DNA at the

intersection. So far, fabrication techniques have only realized nanochannel widths

of about 20 to 30 nanometers, still too large to be able to achieve single-base res-

olution, if at all possible. In fact, the linear dimension of an individual base is

on the order of 1nm, so in order to distinguish a single base, channels of widths

comparable to or less than 2nm are required. Even if those were possible to make,

it is not at all obvious whether single-base discrimination would be achievable with

transverse ionic transport.

Inspired by these experimental advances, and the possibility to realize de-

vices with intersecting channels as those mentioned above, in this work we seek

to determine whether changes in transverse ionic conductance are sufficient to

discriminate the different DNA bases, were intersecting nanochannels of width

comparable to or less than 2nm fabricated. To be more specific, the set up we

have in mind is illustrated in Fig. 6.1. We place a strand of poly(dX)7 where X is

one of the bases A, C, G, T in the pore. To optimize the simulation time required,

the single-stranded DNA (ss-DNA) is already placed inside of a Si3N4 nanopore of

diameter of 1.8nm that runs along the y-axis. The simulation box has a regular

hexagonal shape with an in-radius of 3.3nm in the x-y plane to correspond with

hexagonal periodic boundary conditions. Intersecting this, a transverse pore of

diameter 1.4nm extends in the z-axis direction. The membrane is 2.8nm thick

in the z direction and the simulation box, which contains water stacked in the z

direction, has rectangular periodicity in the z direction. In addition, an atom in

the backbone of each of the outer two bases in the ss-DNA is fixed in space during

the simulation. This allows the bases that are near the intersection of the pores to

move without any constraint, but does not allow the DNA to move out of the pore

or to fold up. Moreover, after each simulation run we vary the position of the two

outermost bases along the y axis by 0.1Å, while also keeping the distance between

the above two points fixed. This way the ionic currents we detect correspond to
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Figure 6.1: Schematic of two intersecting nanochannels. A strand of DNA lies
along the longitudinal (vertical) pore. The ionic current flows in the transverse
(horizontal) direction symbolized by the arrow.

different configurations of the single bases, facing the transverse channel. In fact,

bases were found to shift several angstroms during the simulation while the end

points remained fixed.

6.2 Simulation

An electric field is then imposed in the z-direction causing ions to flow

through the transverse channel in the Si3N4. As has been discussed in [11] the

electric field in the longitudinal and transverse directions can be independently

manipulated to allow the DNA to translocate through the pore slowly, yet still

have sufficient time to make measurements. Many measurements of current for

each base can then be made, allowing a current distribution to be built for each
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base as it passes the channel intersection.

The system is simulated using the molecular dynamics (MD) package NAMD

[19]. It is solvated with 5nm of water on each side of the channel in the z-axis and

K and Cl ions are added such that the molarity of the system is 2M 1. We use

periodic boundary conditions all around. The static energy is minimized and then

the system is brought up to room temperature. Next, a Langevin piston is used

to equilibrate at room temperature and 1 atmosphere of pressure in the NPT en-

semble. Finally the system is run in the NVT ensemble with a Langevin damping

term to keep the temperature steady. An electric field is applied transverse to the

DNA such that the voltage drop across the cell in the z direction is 0.5V. The first

2ns are used as a further equilibration with the same conditions as the production

run. During this first 2ns the system approaches a steady-state current (see also

below).

In the previous work covering transverse electronic transport [11, 13], the

current was calculated using a single-particle scattering approach [42]. The molec-

ular dynamics simulated the structural fluctuations inherent in the water-pore

system, and these fluctuations caused the variations in the current. That study

was possible because the timescales in which the electronic transport occurred (due

to tunneling) are much shorter than the timescales of the structural fluctuations.

Unfortunately, the ionic transport timescales are much longer, so we must simulate

many nanoseconds to correctly capture the fluctuations of the ionic current. For

each base, 31 simulations were run. In all, we have simulated 1736ns of MD, with

each simulation run of 14ns. The computational resources required to characterize

the current distributions were significantly greater than in the electronic transport

study. To accomplish this, we made use of a cluster of 30 dual-core nodes and

10 eight-core nodes. We also used computing time from the Open Science Grid

project [43], scavenging time whenever resources were available.
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Figure 6.2: Typical plot of ionic current integrated over time, namely
∫
S
dq where

S is the surface area of the transverse channel. The slope of this curve is the
instantaneous current at each time in units of nA. We have used an interval of
time ∆t = 1 ps. After about 2 ns a steady-state current sets in. Its value is
obtained from the slope of the red line obtained from the last 12 ns of simulation.
This particular plot is for poly(dA)7.

6.3 Results

We calculate the current directly by looking at the motion of the ions in

the system

I =
∑
i

qi∆zi
lz∆t

, (6.1)

where lz is the cell length of the system, and the sum is over all ions in the system.

∆zi is the distance the ith ion has traveled in an interval of time ∆t. Other

methods of calculating the current were tested and they yielded similar results to

equation (6.1). For instance, the slope of the curve Q(t) =
∫
S
dq at steady state,

1The choice of a larger molarity than the typical 1M is again to reduce the already demanding
computational requirements.
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where S is the surface of the transverse channel (at steady state the choice of this

surface is irrelevant [42]) yields similar currents.

In about 1 to 2 ns, the ions move into a steady-state current-carrying state,

so we do not begin to calculate the current until after this time period. The next

12 ns are then used to calculate the current for that run. This short transient is

clear from Fig. 6.2 where we plot Q(t) for a typical run. Other, shorter, lengths

of time were checked, but the best, most stable results were obtained with the

present timescale. A rough estimate of the standard deviation of the current

measurement is that it would scale as the inverse square root of the measurement

window [44]. Experimental measurements for a reasonable sampling frequency

would average over a longer timescale than we have simulated, so we expect the

current distributions to be even less noisy than we have calculated. Our rate

of 12 ns per sample would correspond to a sampling frequency of approximately

80MHz. Ionic current measurements have been recently conducted at 1MHz [45],

which would be a factor of 80 slower than our simulations.

The current distributions from the all-atom MD simulations are shown in

Fig 6.3. First we note, as was also done in the case of transverse electrical cur-

rents [11], that one measurement of ionic current is not sufficient to sequence a

DNA strand to high precision. However, the distributions we have obtained are

sufficiently disjoint to not require a large number of measurements per base. We

calculate below the number of measurements required based on our data, but it

goes without saying that each device (in terms of channel widths, shape, etc.)

would likely produce its own set of probability distributions.

Second, the average current we obtain suggests the order ĪG < ĪA < ĪC <

ĪT . Apart from C and T this order is in reasonable agreement with the order of

volumes of the different nucleotides VG > VA > VT > VC [46], suggesting that the

currents are somewhat correlated with the exclusion volume of each base [46, 41].

However, as also indicated by the reverse order of C and T , the exclusion volume

alone cannot fully explain the order of the average currents we have obtained,

and other microscopic effects must also intervene such as the strength of the base

dipoles, roughness of the surfaces at the channel intersection, and possibly other
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Figure 6.3: Transverse ionic current distributions for the different nucleotides in
the pair of intersecting channels of Fig. 6.1. The inset shows the probability of
identifying a base incorrectly after measuring the current for that base ”counts”
times.

ones. Again, this confirms that the actual distributions will likely depend on the

structural properties of each device.

6.4 Analysis

In order to sequence with this particular approach, we then parallel the

protocol suggested in Ref. [11] by one of us (MD). First, run a strand of DNA with

known composition through the longitudinal channel, e.g., a homogeneous strand

of the four different bases. Then, while the DNA is translocating through the

channel, measure the current as many times as possible and build up a distribution

of currents for each DNA base. Once this distribution for each base is obtained,

the DNA strand that is to be read is sent through. The current is read N times
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for each base X as it passes through the intersection, and each of those N readings

is analyzed for the probability that it could be an A, C, T , or G. The probability

of X being correctly identified after one measurement is given by [11]

〈PX(I)〉 =
nX(I)

nA(I) + nC(I) + nT (I) + nG(I)
(6.2)

Where nX(I) is the height of the normalized distribution for current I, and X is

one of the bases A,C,G, T .

After N measurements, the probability that the base at the intersection of

the two channels is correctly identified is [11]

〈PN
X 〉 =

N∏
i

nX(Ii)∑
J=A,C,G,T

(
N∏
i

nJ(Ii)

) (6.3)

A Monte Carlo method was employed with the distribution data obtained from

our simulations to calculate the probability of correctly identifying a base after

N measurements. For each base, I1 through IN were randomly generated from

the current distribution for that base. The probability PX is then calculated from

equation (6.3). Assuming an equal proportion of each of the bases within the

strand being sequenced, the probability of correctly identifying a base at random

after N independent measurements is just the average

PN =
1

4

(
PN
A + PN

C + PN
G + PN

T

)
. (6.4)

We then average over realizations to arrive at the probability, P = 〈PN〉, that we

correctly identify a random base after N measurements.

In the inset of figure 6.3, we plot a graph of uncertainty, E = 1 − P , in

identifying bases versus number of independent measurements. When at least 20

measurements are taken, the probability of error is less than 0.1%. This seems to

suggest that, with these particular distributions, we need fewer measurements with

this method than with transverse electronic transport for the same error rate [11].

However, as already noted ionic transport measurements are typically slower than

electronic ones. Nevertheless, if we measure the ionic current at a reasonable
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rate of 100kHz, then DNA could be identified at 5, 000 bases per second using

this scheme. Therefore, an entire genome could be sequenced in less than 7 days

without parallelization. Clearly, this estimate may be somewhat off according

to the actual distributions obtained experimentally. Furthermore, the error rate

assumes that the pore is made small enough that neighboring bases do not affect

the current, and that it is easy to tell when a base passes over the intersection. If

that is not the case, it may take several more measurements per base simply to

know that a change in base at the intersection has occurred. These effects would

all increase the number of measurements required.

6.5 Conclusions

We conclude that the approach we have described in this paper can indeed

discriminate between the four DNA bases and has thus potential as an alternative

sequencing method. Furthermore, this method would easily lend itself to paral-

lelism. For example, a device dedicated to each chromosome would decrease the

time required to sequence an entire genome by a factor of ten. Finally, this same

idea could be implemented as a protocol for protein sequencing. We are now in

the process of assessing the feasibility of this last possibility.
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Chapter 7

Simulating a Battery by Using

the Microcanonical Formalism

Microcanonical formalism [27, 28, 29] provides another method of probing

nano-scale transport. All methods of extracting current characteristics from sys-

tems must make simplifying assumptions because of the intractability of the many-

body quantum mechanical problem. This formalism explores transport character-

istics of nanoscale objects by calculating accurately, the time-dependent quantum

mechanics of the local system. However, it simplifies the battery-lead system to

relatively small capacitive leads. Because a battery-lead system is generally very

large, and a local nanoscale system can be just a few atoms, the computational

complexity can be reduced greatly, so that it can be solved numerically by any of

the normal quantum mechanical methods.

This approach differs from Landauer Formalism [110, 111, 112], which ab-

stracts the concept of the battery and leads as merely supplying electrons with a

given momentum and energy to the system. The electrons scatter off of the junc-

tion, and the transmission percentage determines the current through the device.

This is a time-independent process, and a steady-state is forced on the system by

assumption.

The microcanonical formalism defines a method of probing current in which

the system is completely time-dependent, and a quasi-steady state appears in the

system naturally. It easily includes interactions, and this depends only on the

66
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method used to simulate a closed quantum mechanical system. Thus, because of

the different assumptions made, the microcanonical picture is more suited to cer-

tain types of problems [113] where we are interested in various interactions, time

correlations, and where the geometry of the system can be more easily approxi-

mated by a finite reservoir.

One of the difficulties of the microcanonical formalism, is the limited time

within which the simulation approximates a larger, macroscopic system. The sys-

tem requires a time τSS to set up a steady state that is relatively short. Then the

quasi steady-state breaks down in another time scale τBD which is related to the

amount of time for electrons to bounce off of the edges of the system and inter-

fere with themselves. Thus, this time scale τBD is proportional to the length of

the system, and inversely proportional to the fermi velocity of the electrons. The

time between τSS and τBD is the time after a quasi steady-state has been set up,

and serves as an approximation to a global steady-state observed in an extended

system. To extend this useful time, it is then necessary to increase τBD because

τSS is relatively short and does not change easily.

The Stochastic Schrodinger Equation (SSE)[114] is a method that can be

used to simulate an open quantum system [31]. It can be integrated directly, but

it can also be combined with TDDFT [115, 116] to decrease the computational

complexity. Each realization of the SSE provides an individual trajectory, however

the average trajectory is what is physical. Thus, with many realizations of the

system, we have the ability to inspect the noise which the bath produces. However,

one must perform many of these realizations to recover the average, long term

dynamics of the system. Other methods such as solving the Lindblad equation

only provide the average dynamics (or most probable realization) but are generally

cheaper computationally to solve.

This work seeks to simulate a battery within the microcanonical formalism

to reach longer timescales than would normally be allowed by the system size.

We do this by applying a specially designed bath that mimics the function of a

battery in a circuit to a model system (1D chain). We choose to use a 1D chain

as the model system for simplicity and ease of computation, and we likewise use a
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tight-binding method for ease of computation.

This model system starts with an excess charge on one end, and then over

the time τBD discharges through the atoms of interest. A battery’s function in this

case would be to take electrons from the side that has low potential energy, and

place them back onto the high potential energy side. We approximate this effect by

applying a bath that continually projects each electron back into an earlier, charged

state. This bath is simply the projection operator, and only has one parameter,

which is the characteristic time. Some consideration is given for optimizing this

parameter below.

Thus the scheme is to take the stochastic Schrodinger equation:

dΨ =

[
−iĤΨ− 1

2
Ŝ†ŜΨ

]
dt+ ŜΨdW (7.1)

With a Ŝ operator that projects into an earlier state Ψ0, such that

Ŝ =
1√
γ
|Ψ0〉〈Ψ0| (7.2)

Because we are measuring the current by dq/dt, care must be taken to not include

the movement of the charge by the Ŝ operator. Referencing Figure 7.1, the terms

of the SSE that contain the Ŝ operator move the electrons from the right side

of the system to the left side by way of an external battery. This movement of

electrons should not be thought of as an electron current going through the system,

instead, it is a movement of electrons from the right side into a fictional reservoir.

Electrons are then injected from a reservoir into the left side of the system. We

are measuring the current through the center of the system, and must not include

the movement of the electrons due to the last two terms of the SSE, as they do

not cross the center. The deterministic portion of the SSE (the first term on the

RHS) is then moving electrons from left to right across the measurement point.

This subtle point can be satisfied if we evolve the system in a two step process:

first evolve the system according to the first term on the RHS, measure the current

due to this process, then add in the effect of the last two terms. The evolution

of the system is identical to the normal Euler-Maruyama method, but the current

measurement only takes into account the first term on the RHS.
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The microcanonical formalism allows many methods of solving the Schrodinger

equation, including solving a discretized system, using a tight-binding model, or

even using DFT. We use the tight-binding model in this work to take advantage

of the reduced computational complexity. In this simulation, we model N sites

representing a 1D chain of N gold atoms. We useti = t as the transmission coeffi-

cient between nearest neighbors in the chain, and set the transmission coefficient

to zero for any non-adjacent pair of sites. Thus the Hamiltonian is expressed as

the following:

Ĥ = −t
N∑
i=1

(
c†i−1ci + c†ici+1

)
+

N∑
i=1

Vic
†
ici (7.3)

Where Vi is the externally applied potential measured at the ith site.

We initialize the system following the methods of [28]. We start by using

an initial Hamiltonian Ĥ0 by setting Vi to be some constant −V/2 where i < N/2,

and where i ≥ N/2 to be +V/2. By diagonalizing this hamiltonian, we have N

ground state wavefunctions of electrons in the system. For half-filling, we take the

N/2 lowest energy wavefunctions, and these wavefunctions are then propagated

using a Hamiltonian such that Vi = 0.

We used a 0.2V potential difference for the initial conditions for most runs,

as this was a good compromise to decrease numerical errors in the simulation.

Some deterministic runs were done to determine how the system scales with N

and t. The simulation achieved a steady-state in a time of approximately 2.5a.u.

regardless of the size of the system. The time to set up the steady-state depends

primarily on the value of the transmission constant t. However, the time that the

system took to break down, scaled linearly with the number of sites in the system

N . With N = 32, the time τBD is approximately 15a.u. while τBD = 30 for

N = 64.

In a break junction, the difference in potential is localized at the break,

which corresponds to the center of our system. We are then interested in the

current passing that break, so we calculate the current in the center of the system.

To calculate the current at the N/2th site, we calculate the total charge in the right

half of the system at each time step. The derivative of this charge, dN/dt, gives

the instantaneous current in the center of the system. This is dependent on the
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closed nature of the system, i.e. there is no leakage of charge out from the edges of

the system. Furthermore, because the Hamiltonian only includes nearest neighbor

interactions, during one timestep, electron density can only travel a maximum of

1 site away. Thus we can look at just one site instead of the whole right half of the

system. In essence, we just need to look at the flux at each timestep between site

N/2 and site N/2 + 1. This serves to decrease the number of calculations required

to calculate the current, and also decreases the numerical error in calculating the

current when the current is a small number.

The conductance of this system is measured to be G0 = 2e2/h which is

in accordance with the 1 channel conductance for a Landauer calculation. This

conductance is stable under a wide range of potential differences, and numbers of

sites. Having recovered the correct value of G0 for the conductance in the system,

we can proceed knowing the simulation is working correctly.

The system is then opened up to the bath by adding a stochastic term to the

simulation. Because we are using a projection operator as the Ŝ operator, we must

choose the state(s) that we are projecting into, and we must choose the strength

of the operator by setting the timescale γ. First, we look at the state to project

the system into. The goal is to provide a recharging of the system, so the first

choice could be projecting into the initial state of the system. This state, however

is not immediately a current carrying state. A small amount of time ( 2a.u.) lapses

before it reconfigures into a current carrying steady-state. The goal is to be in a

current carrying steady-state indefinitely as when a battery is connected to the

circuit. Therefore, rather than projecting into the initial state, we project into a

state that has just reached the steady-state.

Our scheme then takes two phases. We first evolve the system forward

in time using the deterministic Schrodinger equation until the system reaches a

quasi steady-state. The state at this point we will call state A. Next, we evolve

the system using the stochastic Schrodinger equation with the Ŝ operator. The Ŝ

takes the form of a projection operator pointing back to state A. We now only

have one parameter to choose, and that is the strength of the stochastic term.

The task is to make γ small enough that the system does not move beyond the
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steady-state behavior, but large enough that the system is not frozen into the

initial state. In the limit as γ → 0, the stochastic term dominates and the system

is essentially always in the initial state. To determine the optimal value for γ, we

ran simulations for varying values of γ and Figure 7.2 compares the results.

We then must choose this time to be short enough that electrons are not

reaching the edge of the system, but we must choose it to not be so short that

the dynamics are frozen. We must also not choose it to be too long. When this

parameter goes to infinity, that corresponds to the limiting case where the bath

does not act on the system, and it is identical to the deterministic Schrodinger

equation. When this time goes to zero, the stochastic term in the equation domi-

nates, and the state variable stays in its initial configuration and phase, with only

a fluctuating magnitude (which on average is equal to unity). This latter limit

is much more difficult to numerically converge because the stochastic term scales

as the square root of dt when using the Euler-Maruyama integrator. When the

stochastic term is small, the deterministic portion of the equation dominates, and

scales as dt.

The parameter γ has units of time, and represents a timescale over which

the initial wavefunction is diluted out of the simulation. For instance, if we prepare

the system with a wave packet on the left side of the system, with a sufficiently

small γ, the wave packet will never reach the right side of the system. One can

then tune the system via γ such that the packet can reach an arbitrary distance

within the system. After testing various γ values, we see that the system ”sees”

approximately 4γ ahead in time such that if it would normally take the wave packet

Xa.u. to reach the other side, if we set γ ≤ X/4, the packet will never reach the

other side.

In our model system with N = 32 sites, we have from t = 2.5 to t = 15 that

the system is in a quasi-steady state. We then create a bath that mimics a battery

by using the stochastic Schrodinger equation. Because the stochastic term disturbs

the dynamics, we want to find the weakest stochasticity that will still extend the

quasi-steady state indefinitely. Thus, we choose to implement the bath starting

at the beginning of the quasi-steady state, leaving the maximum time before the
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system breaks down. The quasi steady state breaks down 12.5a.u. after this time

in the deterministic system, so we will choose γ ≤ 12.5/4. Figure 7.2 shows the

effect of γ on the system. With large γ there is only a slight forcing back to A,

and the graph follows that of the deterministic system closely. As γ decreases, the

system deviates less from the steady state, until γ = 2.8, and γ = 1.6 approximate

a system that is being fully recharged continuously by a battery.

Each realization represents one trajectory out of an ensemble, and a single

realization is not physically meaningful, the average of the ensemble is what is

meaningful. By performing a large number of realizations, we can find the statistics

of that ensemble, which we can use to estimate how many realizations must be

performed to converge the variables of interest. In our case, we look specifically at

the current. Specifically, we look at the ensemble of currents at a specified time

t1. The standard deviation σ(t1) converges quite quickly (within a few hundred

realizations). However, because it may be quite large, µ(t1) = I(t1) requires on

the order of a thousand realizations to converge, and it converges as the square

root of the number of realizations.

For relatively large γ, the standard deviation of the current varies inversely

with γ. Therefore for γ = 1.6 more realizations are needed than for γ = 25. For the

simulations in this work, between 1000 and 3000 realizations were run. In exchange

for that computational cost, however, the simulation can run indefinitely, and the

simulations are embarrassingly parallel. This work was done on an 80 core Xeon

cluster, but with little work could be used with highly parallel systems such as

GPU clusters.

Using an open quantum system approach, we submit a method of extending

the microcanonical formalism to allow for longer simulations with small system

sizes. With a sufficiently strong and carefully constructed bath, we show that a

1D model system can reach arbitrarily long timescales without the quasi-steady

state breaking down. This can be another tool in seeking to understand nano-scale

transport.
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Figure 7.1: (Color online)Schematic of the system under study. An externally
applied potential gradient causes a greater density of electrons on the left. Then
when the potential gradient is removed, the electrons are pushed to the right. The
current is measured in the center of the system (denoted by a vertical dashed
line). Once electrons have been displaced to the right, the stochastic terms, which
include the Ŝ operator, move electrons from right to left in the system. However,
the stochastic terms do not move electrons past the vertical dashed line, but rather
around through a fictional reservoir RES.
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Figure 7.2: (Color online)Current in a 1D system with a tight-binding model con-
sisting of N = 32 sites and using the stochastic Schrodinger equation. Each curve
represents a different strength of the stochastic term, with smaller numbers corre-
sponding to faster action and thus stronger stochastic component. The strengths
are, from top to bottom, 1.6, 2.8, 6.25, and 25 a.u. All stochastic curves initiate
at T = 6.5a.u. The bottom curve corresponds to zero stochastic component.
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Figure 7.3: (color online) Current in a 1D system with a tight-binding model
consisting of N = 32 sites and using the stochastic Schrodinger equation. Both
stochastic curves have the same amount of noise strength γ = 25a.u. The top
curve initiates at T = 2.5a.u. The middle curve initiates at T = 6.5a.u. and the
bottom curve is not stochastic.
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computational models of biological ion channels. Q. Rev. Biophys., 37(1):15,
2004.

[92] S. Teber. Translocation energy of ions in nano-channels of cell membranes.
J. Stat. Mech., ,:P07001, 2005.

[93] J. Zhang, A. Kamenev, and B. I. Shklovskii. Conductance of ion channels
and nanopores with charged walls: A toy model. Phys. Rev. Lett., 95:148101,
2005.

[94] A. Kamenev, J. Zhang, A.I. Larkin, and B.I. Shklovskii. Transport in one-
dimensional coulomb gases: From ion channels to nanopores. Physica A,
359:129, 2006.



84

[95] Alan Finkelstein and Olaf Sparre Andersen. The gramicidin a channel: a
review of its permeability characteristics with special reference to the single-
file aspect of transport. The Journal of membrane biology, 59(3):155–171,
1981.

[96] Joao H. Morais-Cabral, Yufeng Zhou, and Roderick MacKinnon. Energetic
optimization of ion conduction rate by the k+ selectivity filter. Nature,
414(6859):37, 2001.

[97] J. D. Jackson. Classical Electrodynamics. Wiley, 3rd edition, 1998.

[98] A. H. Narten. Liquid water: Atom pair correlation functions from neutron
and x-ray diffraction. J. Chem. Phys., 56(11):5681, 1972.

[99] Hitoshi Ohtaki and Tamás Radnai. Structure and dynamics of hydrated ions.
Chem. Rev., 93:1157, 1993.

[100] Lu Yang and Shekhar Garde. Modeling the selective partitioning of cations
into negatively charged nanopores in water. J. Chem. Phys., 126:084706,
2007.

[101] Anna Ignaczak, J. A. N. F. Gomes, and M. N. D. S. Cordeiro. Quantum and
simulation studies of X−(H2O)n systems. Electrochim. Acta, 45:659, 1999.

[102] H. Kistenmacher, H. Popkie, and E. Clementi. Study of the structure of
molecular complexes. viii. small clusters of water molecules surrounding li+,
na+, k+, f, and cl ions. J. Chem. Phys., 61(3):799, 1974.

[103] Chen Song and Ben Corry. Intrinsic ion selectivity of narrow hydrophobic
pores. J. Phys. Chem. B, 113(21):7642, 2009.
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