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Palmitoylethanolamide is a bioactive lipid that strongly alleviates
pain and inflammation in animal models and in humans. Its
signaling activity is terminated through degradation by N-
acylethanolamine acid amidase (NAAA), a cysteine hydrolase
expressed at high levels in immune cells. Pharmacological inhibi-
tors of NAAA activity exert profound analgesic and antiinflam-
matory effects in rodent models, pointing to this protein as a
potential target for therapeutic drug discovery. To facilitate these
efforts and to better understand the molecular mechanism of ac-
tion of NAAA, we determined crystal structures of this enzyme in
various activation states and in complex with several ligands, in-
cluding both a covalent and a reversible inhibitor. Self-proteolysis
exposes the otherwise buried active site of NAAA to allow catal-
ysis. Formation of a stable substrate- or inhibitor-binding site ap-
pears to be conformationally coupled to the interaction of a pair of
hydrophobic helices in the enzyme with lipid membranes, result-
ing in the creation of a linear hydrophobic cavity near the active
site that accommodates the ligand’s acyl chain.

endocannabinoid | palmitoylethanolamide | N-terminal nucleophile
hydrolase | N-acylethanolamine acid amidase | interfacial activation

Cells employ a variety of signaling lipids to communicate with
their surroundings or to propagate signals intracellularly.

One class of bioactive lipids, the N-acylethanolamines (NAEs, or
fatty acid ethanolamides), acts through several receptors to exert
a diversity of biological effects in the nervous and immune sys-
tems. The best-characterized NAE is arachidonoylethanolamide
(anandamide), which together with the related compound 2-
arachidonoylglycerol (2-AG), form the classical endocannabi-
noids that bind to CB1 and CB2 cannabinoid receptors (1). NAEs
bearing a shorter and more saturated acyl chain, such as palmi-
toylethanolamide (PEA), do not activate cannabinoid receptors
(2), but act mainly through the peroxisome proliferator-activated
receptor-α (PPAR-α) (3), a ligand-operated transcription factor.
PEA is a well-recognized analgesic, antiinflammatory, and neu-
roprotective mediator (4) whose production occurs constitutively
but is diminished following various proinflammatory stimuli (5–7).
This decrease contributes to the inflammatory response via
downstream gene targets of PPAR-α (6).
NAEs are primarily inactivated by hydrolysis to ethanolamine

and fatty acid (8, 9) carried out by two enzymes: fatty acid amide
hydrolase (FAAH) (10) and N-acylethanolamine acid amidase
(NAAA) (9). FAAH is widely distributed (11) although it is most
abundant in the brain and liver (12), whereas NAAA is almost
exclusively expressed in immune cells (13, 14) such as monocytes
and tissue macrophages (15, 16) but is also found in prostate
epithelium (13, 17). In light of the analgesic and antiinflamma-
tory actions of PEA, multiple NAAA inhibitors have been de-
veloped over the last decade (18, 19) and shown to exhibit
beneficial effects in a range of rodent models of human disease,
including inflammation (20–25), allergic contact dermatitis (26),
spinal cord trauma (27), neuropathic pain (28, 29), chronic pain
(30), inflammatory bowel disease (31), lung inflammation (25,
32), arthritis (14), and multiple sclerosis (33).

No NAAA-targeting compound has yet reached clinical trials.
On the other hand, FAAH inhibitors are currently being tested
in humans for the treatment of anxiety and depression (18).
These properties are mediated by the activity of the FAAH
substrate anandamide on cannabinoid receptors (18). Whereas
FAAH hydrolyzes long-chain polyunsaturated NAEs, including
anandamide, more efficiently than short unsaturated ones such
as PEA (34), NAAA demonstrates an opposite substrate preference
in vivo (27, 28, 31, 33) and in vitro (35, 36), with PEA being
its optimal substrate (15, 37). Another major difference be-
tween the two enzymes, besides tissue distribution, is their in-
tracellular localization: FAAH is found in the cytosol tethered to
the outer face of mitochondria and the endoplasmic reticulum
(38), whereas NAAA is localized to acidic organelles such as the
lysosome (16, 37, 39). The two proteins are structurally un-
related: FAAH belongs to the amidase signature superfamily
(40), while NAAA is part of the N-terminal nucleophile (NTN)
hydrolases that undergo proteolytic self-activation (41, 42). NTN
hydrolases cleave amide bonds in their mostly soluble sub-
strates, and as NAAA acts on the amide bonds in the lipid PEA,
it is both an amidase and a lipase. The crystal structure of FAAH
has been determined, revealing a dimeric protein that
stably embeds into membranes via a hydrophobic helix-turn-
helix segment, enabling substrate access to its active site (40).
On the other hand, NAAA is a soluble enzyme (35) with no
sequence homology to FAAH and its lipid association and
substrate-binding modes are uncharacterized. Its in vitro activity
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is increased by certain detergents and nonsubstrate lipids (15, 36)
through an unknown mechanism. Although NAAA was discov-
ered (35), cloned (39), and purified (15) almost 20 years ago,
questions regarding its mechanism of action remain unanswered
due to a lack of structural information. Homology models have
been built (27, 43) and employed for inhibitor development (20,
44, 45). Such models are, however, of little heuristic value be-
cause they rely on a bacterial homolog sharing only 13% se-
quence identity with NAAA. Structural information about the
only mammalian homolog of NAAA, acid ceramidase (ASAH1),
was recently obtained (46), but there are significant functional
differences between these two enzymes. Here, crystal structures
of NAAA in distinct activation states are presented, revealing
how proteolytic self-activation uncovers the enzyme’s active
site, and how exposure to a hydrophobic environment induces a
conformational rearrangement that generates the substrate-
binding cavity. This putative interfacial activation mechanism
is reminiscent of those seen with certain lipid hydrolases such
as monoacylglycerol lipase (47), but has not been previously reported
for any other member of the NTN superfamily. Complexes of
the protein with a covalent and a noncovalent inhibitor are also
described. These results further our understanding of the func-
tion of NAAA and will facilitate its targeting for therapeutic
purposes.

Results
NAAA Adopts an αββα-Fold with a Helical α-Subunit. NAAA is part
of the NTN hydrolase superfamily, a diverse group of amidases
that carry out catalysis via their N-terminal cysteine, serine, or
threonine residue (41, 42). These proteins are produced as
precursors and undergo activation by removal of the initiator
methionine or by self-cleavage of an internal peptide bond. This
results either in the separation of a short propeptide or, in the
case of other family members including NAAA (15, 37, 48, 49),
formation of the mature enzyme composed of an α- and a
β-subunit that remain associated. We determined the crystal
structure of human NAAA (hNAAA) precursor produced
recombinantly in insect cells, bearing the Cys126Ala mutation
that prevents self-cleavage (48), as well as of the cleaved and
active form of the murine enzyme (mNAAA) (SI Appendix,

Table S1). NAAA comprises an N-terminal signal peptide that
is removed cotranslationally, a small α-subunit spanning resi-
dues 29–125 (49), and a large catalytic β-subunit (126–359)
(Fig. 1A).
NTN hydrolases share a αββα-sandwich fold with a core of two

antiparallel β-sheets surrounded by α-helices (41, 42). In the
NAAA β-subunit, these sheets consist of five and eight β-strands,
flanked by two α-helices on either side (Fig. 1B). The α-subunit
begins with a strand associated with the central β-sheets and
forms a bundle of five helices positioned at the corner of the
“top” face of the β-subunit (Fig. 1B), with a buried interface area
of about 2,200 Å2. NAAA is part of a subfamily of NTN hy-
drolases whose best-characterized members are bacterial en-
zymes involved in antibiotic biosynthesis (SI Appendix, Fig. S1B).
In mammals, this group is composed of phospholipase B-like
proteins 1 and 2 (PLBD1 and -2)—two lysosomal amidases of
known structure but unknown function (SI Appendix, Fig. S1C)
(50, 51)—and the acid ceramidase (ASAH1), which degrades
lysosomal ceramide into sphingosine and fatty acid, whose crystal
structure was recently determined (SI Appendix, Fig. S1A) (46).
NAAA shares 33% sequence identity with ASAH1, whereas its
identity to all other NTN hydrolases is below 20%. In this sub-
family, the α-subunit exhibits the highest structural variability,
being completely absent in some members (SI Appendix, Fig. S1B).
NAAA bears two N-linked glycans on each subunit (Fig. 1B)

(48, 49). A fifth potential site (Asn315) is also surface exposed
but not glycosylated. hNAAA contains one disulfide bond be-
tween helices α4 and α5 within the α-subunit (Fig. 1B). This
feature is conserved in about 70% of mammals but not in the
other rodent structures described here and is also absent from
nonmammalian vertebrates. Unlike NAAA (37, 49), a disulfide
bridge links both subunits of ASAH1 (46).

Self-Proteolysis Exposes the NAAA Active Site. Most NTN hydro-
lases, including NAAA (48), are converted from a precursor to
an active form by self-proteolysis, a reaction mediated by the
same catalytic residue that subsequently carries out substrate
hydrolysis (41, 42). NAAA undergoes self-cleavage at acidic
pH but not in neutral conditions (37, 48, 52). To capture the
precursor form, the catalytic Cys126 residue was mutated to
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Fig. 1. Structure of the NAAA precursor. (A) Domain organization of human NAAA. The enzyme is composed of a cleavable signal peptide (SP), a small
α-subunit, and a large β-subunit generated from a single polypeptide chain by proteolytic self-activation. The active site residue Cys126 is marked by an
orange triangle. (B) Self-cleavage is disabled in the Cys126Ala mutant whose crystal structure is displayed. The active site residue 126 is modeled here as
cysteine (sulfur atom as orange sphere). A disulfide bond within the α-subunit is represented by thick yellow sticks, and N-linked glycans (white sticks) are
simplified for clarity. The N terminus and C terminus are labeled, as are several key helices and strands described later. (C) Reaction catalyzed by NAAA.
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alanine. Cys126 (Ala126) is located at the start of strand β2 of
the β-subunit and is connected to the last helix α5 of the
α-subunit by a short linker in hNAAA (Fig. 1B). Two water
molecules are found in the precursor active site within hydrogen-
bonding distance of the Cys126 side chain (modeled as cysteine
in Fig. 2A), which also interacts with Arg142. The self-proteolytic
mechanism of NTN hydrolases begins with deprotonation of the
catalytic cysteine, serine, or threonine side chain that then carries
out a nucleophilic attack on the carbonyl carbon of the preceding
peptide bond (Phe125). This is facilitated by the backbone ni-
trogen of Asp145 serving as the oxyanion hole for the carbonyl
oxygen (Fig. 2A). Several different means of initiating this re-
action were proposed in these enzymes, including deprotonation
of the nucleophile by a nearby water molecule (SI Appendix, Fig.
S2A) (53–55) or side chain (56). It has also been suggested that
the intrinsic nucleophilicity of cysteine is sufficient to initiate the
attack (57, 58). Distortion and strain of the scissile peptide bond
(50) or a peptide flip (59) were observed in other NTN hydrolase
precursors, but not in the NAAA Cys126Ala structure. Regard-
less of the precise mechanism, the attack is followed by disso-
ciation of the Cys126 backbone amine from Phe125 (N-S acyl
shift). The resulting thioester intermediate is subsequently hy-

drolyzed to yield Cys126 at the N terminus of the β-subunit. In
the structure of wild-type activated mNAAA, the end of helix
α5 and the linker leading to the β-subunit, which is now the C
terminus of the α-subunit, shifts relative to the hNAAA pre-
cursor (Fig. 2B); its last two residues (Val124 and Phe125) also
become disordered and not discernible in the electron density.
This rearrangement results in exposure of the active site to the
environment, which was previously buried under the linker (Fig.
2C). A similar conformational change and disordering occurs in
ASAH1 (Fig. 2D) (46).
In the active site of mature mNAAA, Cys126 hydrogen-

bonds to Arg300 via its backbone oxygen and to Asn287 and
Asp145 via its N-terminal amine (Fig. 2E). Most of these
stabilizing interactions are conserved in this NTN hydrolase
subfamily (SI Appendix, Fig. S2B). Their mechanism of sub-
strate amide bond hydrolysis is well characterized (42) and
begins with deprotonation of the catalytic residue’s side chain
by its own N-terminal amine. In ASAH1 (46) and NAAA, this
moiety may form an acid-base pair with Asp145, facilitating
catalysis at acidic pH which is optimal for NAAA (15, 35, 37,
52). The pKa of the sulfhydryl group is probably lowered by
the nearby cationic Arg142 (50). Although a water molecule
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Fig. 2. Active site and proteolytic self-activation of NAAA. (A) Active site of the human NAAA precursor (Cys126Ala mutant) with the catalytic residue
modeled here as cysteine. The nucleophilic attack by the Cys126 sulfur atom (orange sphere) on the carbonyl carbon of the preceding amino acid (white
sphere) is marked by a red arrow. Residues forming part of the active site are labeled, including two water molecules (O1 and O2, red spheres), as are secondary
structure elements. Hydrogen bonds are represented by dashed lines, with interatomic distances (in angstroms). (B) Comparison of the human precursor (gray)
and murine active enzyme (yellow) illustrating the rearrangement of helix α5, with slightly different orientations in both protein copies in the crystal. The last
visible residue in the electron density of the active structure is Ser123 (sphere); the subsequent two C-terminal amino acids of the α-subunit are disordered. (C)
Proteolytic self-activation results in the exposure of the catalytic residue (black) on the protein’s surface. (D) Similarly, self-cleavage of acid ceramidase (ASAH1,
PDB ID codes 5U7Z and 5U81) leads to a larger rearrangement and partial disordering of the C-terminal end of the α-subunit. (E) Active site of murine NAAA
(human numbering). Nitrogen atoms forming the oxyanion hole are displayed as blue spheres, and a water molecule, as a red sphere. Although Cys126 was
partially oxidized in the murine structure, the active site arrangement remained unchanged relative to the other structures described later.

E10034 | www.pnas.org/cgi/doi/10.1073/pnas.1811759115 Gorelik et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1811759115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1811759115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1811759115/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1811759115


bridges the Cys126 side chain and N-terminal amine (Fig. 2E),
direct proton transfer between the two was proposed (60). The
side chain then carries out a nucleophilic attack on the sub-
strate’s carbonyl carbon, enabled by stabilization of the car-
bonyl oxygen at the oxyanion hole composed of the Glu195
backbone nitrogen and Asn287 side chain amine. Dissociation
of the substrate’s amine moiety (ethanolamine), protonated by
the Cys126 backbone amine, results in an acyl-enzyme in-
termediate that is subsequently hydrolyzed. All of the residues
involved are conserved in ASAH1, with the exception of
Asp194 (Asn), which is peripheral to the active site (Fig. 2E
and SI Appendix, Fig. S2B).

Detergent-Induced Rearrangement Generates the NAAA Substrate-
Binding Site. NAAA hydrolyzes its optimal substrate PEA (15,
35–37) into ethanolamine and palmitate, a 16-carbon saturated
fatty acid (Fig. 1C). To identify the substrate-binding site, we

crystallized the protein with fatty acids; the detergent Triton X-
100 (TX) was included to solubilize these ligands. The structure
of activated rabbit NAAA (rNAAA) in complex with myristate
(14 carbons, saturated) was obtained. Electron density revealed
the presence of detergent molecules at a crystallographic in-
terface formed by helices α3 and α6 from three protein copies
(Figs. 1B and 3A and SI Appendix, Fig. S3E), including one
distinct TX molecule bound deeply between the two helices (Fig.
3B). To accommodate it, helix α3 from the α-subunit is displaced
relative to its position in apo mNAAA, and helix α6 from the
β-subunit is shifted and rotated by one residue. The latter rear-
rangement results in the surface exposure of two tryptophan side
chains from a “WWW” segment (residues 200–202) that were
buried in apo-activated mNAAA, but now contact interfacial
detergent molecules. The space previously occupied by these Trp
residues is now filled by the end of helix α5 and the C-terminal
portion of the α-subunit: the helix becomes bent and the C terminus
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Fig. 3. Substrate binding by NAAA. (A) Crystal arrangement of rNAAA, with crystallographic symmetry copies in gray and TX molecules as colored sticks. (B)
Comparison of mNAAA apo form (transparent gray) with rNAAA (yellow and green) bound to myristate and TX (black sticks). Secondary structure elements
are labeled. Rearrangements that occur in presence of detergent are illustrated by red arrows. The last residue visible in the mNAAA α-subunit electron
density is marked by a sphere in both structures. (C) As in B, these conformational changes produce a cavity where the fatty acid is inserted (Top), whereas this
ligand would not fit into the apo protein (Bottom). (D) Residues lining the cavity are displayed as sticks, with interatomic distances (in angstroms). (E) PEA was
manually placed into the rNAAA substrate-binding site and is shown as full-scale spheres (Top). Potential hydrogen bonds between PEA and active site
residues (Bottom, human numbering) are represented by dashed lines, including to the oxyanion hole atoms (blue spheres). The location of ethanolamine or
bulky artificial head groups is labeled. (F) Proteolytic self-activation upon incubation at acidic pH of two hNAAA point mutants designed to partially block
substrate binding; these residues are displayed as pink sticks in E. Calculated molecular weights of the glycosylated precursor and of the active enzyme’s
β-subunit are provided. (G) Relative in vitro hydrolysis rates of p-nitrophenyl acetate (pNPAc), PEA in TX micelles, and PEA in liposomes. Full activity corre-
sponds to: 0.05 μM pNPAc/nM NAAA per hour (means and SDs of a representative of two experiments performed in quadruplicates); 2.2 μM PEA in TX/nM
NAAA per hour (means and SDs of three experiments performed in quadruplicates); 0.7 μM PEA in liposomes/nM NAAA per hour (means and SDs of a
representative of three experiments performed with n = 8). In the substrate chemical structures, the scissile bond is in red.
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becomes fully ordered (Fig. 3B). Importantly, this last conforma-
tional change generates a pocket between both subunits, in which a
myristate molecule is bound (Fig. 3 B and C and SI Appendix, Fig.
S3E). This pocket is fragmented in apo-activated mNAAA, pre-
venting accommodation of the fatty acid (Fig. 3C).
Hydrophobic residues surround the myristate lipid tail,

whereas its carboxyl group hydrogen-bonds to the Cys126 side
chain (Fig. 3D). This does not reflect the productive substrate-
binding mode in which the carbonyl carbon should be positioned
closer to the sulfur atom. However, the location of the lipid tail
facilitated manual modeling of a PEA molecule into the NAAA
structure (Fig. 3E), further guided by the expected position of
the carbonyl carbon, and of the carbonyl oxygen at the oxyanion
hole. In this manner, the PEA amide nitrogen hydrogen-bonds
with the backbone of Asp145. Although the orientation of the
ethanolamine head group is less certain, its hydroxyl moiety can
hydrogen-bond with any of four surrounding residues. To vali-
date this pocket as the substrate-binding site, two side chains
lining the cavity were individually mutated to bulkier phenylal-
anine residues which should partially impede substrate entry
(Fig. 3E). The purified mutants underwent (almost) full self-
activation (Fig. 3F) but were somewhat less stable than the
wild-type protein, based on their yield and lower enzymatic ac-
tivity on the small nonlipid substrate p-nitrophenyl acetate (50–
70% of wild type) (Fig. 3G). However, hydrolysis of PEA in TX
micelles and also in liposomes decreased to 20% or lower. These
results, together with the structural data, suggest that this
pocket is not a detergent-induced artifact, but represents the
N-acylethanolamine–binding site of NAAA.
The shape and size of the cavity offer an explanation for the

substrate specificity of this enzyme. The endocannabinoid hy-
drolases FAAH and monoacylglycerol lipase (MGL) act most
readily on anandamide and 2-AG, respectively (18); these com-
pounds contain a 20-carbon acyl chain with four cis double
bonds. On the other hand, NAAA displays low to no activity on
these molecules, preferring shorter saturated lipids (15, 35–37).
The substrate-binding site proposed here is narrow and relatively
straight, better suited for accommodating saturated acyl chains.
In addition, although the cavity extends beyond the end of the
manually modeled PEA (16 carbons) (Fig. 3E), it becomes too
narrow to allow longer ligands without further expansion. This
cannot be excluded, as this region of the enzyme demonstrates
significant flexibility, and additional rearrangements may occur
upon contact with a lipid bilayer. The modeled ethanolamine
portion is solvent exposed, explaining the enzyme’s ability to
hydrolyze a substrate bearing a bulky fluorescent head group
(49) or react with probes containing a large head group sub-
stituent (61). These moieties would take the place of ethanol-
amine, projecting outside of the cavity into the solvent (Fig. 3E).

NAAA Inhibitors Block the Substrate-Binding Site. The functions of
endocannabinoids and other N-acylethanolamines in the nervous
and immune systems established their degrading enzymes—
FAAH, MGL, and NAAA—as therapeutic targets in a variety of
disorders (18). NAAA has been the focus of intense inhibitor
discovery in the last decade. Most compounds against this hy-
drolase consist of a polar group linked to a hydrophobic moiety.
Polar groups include amines (62), esters, retroesters, amides, and
retroamides (44, 63–66), and oxazoline (22). Whereas these
likely associate noncovalently and reversibly with the enzyme,
other classes of molecules contain reactive groups that bind co-
valently to the active site cysteine: oxazolidones (29, 30, 67),
β-lactones (20, 27, 45, 68–70), β-lactams (23, 32, 71, 72), iso-
thiocyanates (43), and a tetrazole-carboxamide (43). To facilitate
structure-guided design of NAAA inhibitors, we crystallized the
enzyme in complex with ARN726 (IC50 27 nM) (32), a β-lactam
that irreversibly reacts with Cys126, and with ARN19702 (IC50
230 nM) (33), a noncovalent benzothiazole-piperazine derivative

dissimilar to the other compounds listed above. The detergent-
dependent conformations of the protein are discussed later; the
inhibitor-binding modes are first described.
The structures of hNAAA and rNAAA with ARN19702 were

determined and are essentially identical in terms of enzyme–
ligand arrangement (Fig. 4C and SI Appendix, Fig. S3 A and B).
The compound occupies the same cavity as myristate (Fig. 4 A
and C), but its closest contact to Cys126 is 3.9 Å away. It forms
only two hydrogen bonds with NAAA: one between its carbonyl
oxygen and the side chain of Trp181, and the second between its
terminal fluorine atom and the backbone nitrogen of Met64. The
inhibitor also establishes a T-shaped π-stacking interaction with
Tyr146 and van der Waals contacts with several surrounding
hydrophobic residues.
The structures of rNAAA and of the guinea pig enzyme

(gpNAAA) covalently bound to ARN726 were also determined
(SI Appendix, Fig. S3 C and D). This complex is the product of
a nucleophilic attack on the carbonyl carbon of the strained
β-lactam moiety by the Cys126 side chain (Fig. 4B) and was
stable for at least 4 weeks at acidic pH during crystallization. The
two homologs exhibit a slightly different inhibitor orientation,
possibly due to the moderate resolution of the structures (2.7 Å
and 3.0 Å) (Fig. 4C). Again, the compound is found in the same
pocket as myristate, and its relatively short hydrocarbon tail
forms van der Waals interactions with the protein (Fig. 4B). The
carbonyl oxygen of its carbamate group is positioned at the
oxyanion hole, establishing two hydrogen bonds, whereas its
carbonyl oxygen derived from the β-lactam ring contacts the N-
terminal amine of Cys126 and the backbone nitrogen of Asp145.
Another hydrogen bond is present between the β-lactam–derived
primary amine and the backbone of Asp145. These results will
facilitate the design of more potent compounds targeting the
enzyme.

Proposed Membrane Interactions via Hydrophobic Helices α3 and α6.
Due to their lipid characteristics, N-acylethanolamines are not
likely to occur as freely soluble molecules in the cell, but are
transported via carrier proteins, membrane vesicles, or lipid
droplets (73). Consequently, their degrading enzymes must be
able to access them within these hydrophobic settings. Crystal
structures of FAAH and MGL revealed the ways these hydro-
lases interact with lipids (40, 74, 75). FAAH contains a trans-
membrane helix but binds stably to bilayers even without this
segment, as it possesses a hydrophobic helix-turn-helix motif for
monotopic (nonbilayer-spanning) membrane insertion (40).
MGL is both cytosolic and membrane associated; it contains a
hydrophobic helix as part of its cap domain that is the proposed
site of membrane anchoring (74). Conversely, NAAA is a soluble
protein (35) and its lipid access mode has not been character-
ized. Lysosomal lipid degradation occurs on intraluminal anionic
vesicles (76), and liposome-binding assays confirmed that NAAA
only associates stably with vesicles via electrostatic interactions
(Fig. 5F). However, the enzyme must still disrupt the membrane
to reach its embedded substrate, and helices α3 and α6 are likely
candidates for this function. They bear almost exclusively hy-
drophobic and cationic side chains, resulting in an overall
positive charge for this face of the hydrolase (Fig. 5C); such a
lipophilic and cationic plateau is a common feature of monotopic
membrane proteins (77, 78). When crystallized in the absence of
detergent, NAAA from three different species displayed di-
merization with varying orientations but always mediated by the
α3 and α6 helices (Fig. 5D), and partial dimerization was also
observed on size exclusion chromatography. These observations
suggest this is not a specific, functional dimerization interface,
but occurs to prevent the unfavorable solvent exposure of this
hydrophobic patch. In presence of TX, the crystal forms of the
rat and human enzyme contained detergent molecules covering
this face (Fig. 3A), with a recurring TX ligand present between
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the two helices (Fig. 5A), further supporting this region as the
membrane-associating element.
As noted above, binding of TX was accommodated by dis-

placement of both helices and a rotation of helix α6 with the
exposure of tryptophan side chains from a WWW segment to the
protein’s surface (Fig. 3B). This was accompanied by a bending
motion and ordering of helix α5, generating the substrate- and
inhibitor-binding sites (Fig. 3C). To clarify whether the detergent
induces these conformational changes allowing substrate bind-
ing, or vice versa, ligand-free rNAAA was crystallized in the
presence of TX in the same crystal form, which relies on this
rearrangement, but it diffracted X rays poorly (as was also the
case for the majority of tested ligand-bound crystals). On the
other hand, the gpNAAA–ARN726 complex was produced
without detergent (Fig. 4B). The covalently bound inhibitor
prevents the substrate-binding site from collapsing and reverting
to the conformation observed for apo mNAAA (Fig. 3B).
However, helix α6 is shifted toward the cavity otherwise occupied
by TX (Fig. 5A) and becomes strikingly disordered (Fig. 5B),
with poor electron density for the WWW segment (SI Ap-
pendix, Fig. S3C) whose side chains are flexible in this forced
unstable configuration. These observations suggest that a hy-

drophobic environment is required for maintaining the substrate-
binding site.

Discussion
The structural and biochemical results presented here allow us to
propose a model of NAAA activation (Fig. 5H). The enzyme
undergoes self-proteolysis in the lysosome, resulting in a dis-
ordering of the α-subunit C terminus and exposure of the cata-
lytic cysteine in the β-subunit. Concomitantly, NAAA associates
electrostatically with intraluminal vesicles or possibly lipid
droplets. Its hydrophobic helices α3 and α6 possibly embed into
the lipid membrane to some extent, causing a conformational
change that generates a cavity between the two subunits, which
accommodates the substrate’s acyl chain. This model, which re-
mains to be validated by further biochemical and biophysical
studies, explains the activating effect of certain detergents and
lipids on PEA hydrolysis by NAAA in vitro (15, 36). An analo-
gous mechanism occurs in a family of lipases that includes the
endocannabinoid-deactivating enzyme, MGL: upon contact with
a lipid layer, a helical lid from their cap domain undergoes a
rearrangement, switching the enzyme to its open form with its
active site exposed (47). Such a process, termed “interfacial ac-
tivation” (47), has not yet been reported in NTN hydrolases,
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which act mostly on soluble substrates, and all share below 20%
sequence identity with NAAA. The only NTN hydrolase similar
to NAAA is ASAH1, with 33% identity. However, the proposed
activation mode is unlikely to apply to ASAH1 for several rea-
sons. The WWW segment is absent from that protein, which
features instead a larger hydrophobic surface spanning addi-
tional portions of the β-subunit (Fig. 5E). ASAH1 does contain a
cavity adjacent to the active site, partially blocked by a phenyl-
alanine residue (Fig. 4D) (46). Modeling suggests that rotation of
that side chain would allow entry of a short, 12-carbon fatty acyl
moiety (Fig. 4E) linked to a substrate ceramide molecule, al-
though ceramide contains two lipid chains that cannot be both
accommodated inside at once. Considering that ASAH1 exhibits
only low hydrolysis of short single-chain N-acylethanolamines
such as PEA (37) as well as a different sensitivity to pharmaco-
logical inhibition compared with NAAA (33), other determi-
nants of substrate and inhibitor specificity are likely to be found
in this protein. Furthermore, ASAH1 activity is enhanced by the
lipid-binding and membrane-disrupting cofactor protein saposin
D (79), whereas no such stimulation has been reported for
NAAA. The membrane-association mode of acid ceramidase
remains to be experimentally determined. Ceramide recognition
by ASAH1 has previously been explored by molecular docking
(46); as the resulting acyl chain orientation is different from the
NAAA–myristate complex (SI Appendix, Fig. S4), substrate
binding by acid ceramidase merits further investigation.
Electrostatic attachment of NAAA to lipid vesicles is charac-

teristic of certain lysosomal lipases (76). Many therapeutic drugs
with cationic amphiphilic properties concentrate in lysosomes
and result in dissociation of these lipases, which are then de-

graded by luminal proteases, leading to substrate accumulation
(80). Interestingly, one such compound disrupted the binding of
NAAA to liposomes (Fig. 5G), raising the possibility that these
agents could have side effects by interfering with NAAA activity.
Irrespective of this speculation, the structural and mechanistic
insights provided by the present study will facilitate the discovery
of NAAA inhibitors with potential therapeutic application in
chronic pain, inflammation, and other pathologies.

Materials and Methods
Protein Expression and Purification. Recombinant NAAA was expressed as a
secreted protein in Sf9 insect cells infected with baculovirus. The endoge-
nous signal peptide comprising the first 28–33 residues was replaced by the
melittin signal peptide MKFLVNVALVFMVVYISYIYA followed by a hex-
ahistidine tag DRHHHHHHKL. Constructs encompassed residues 29–359 of
NAAA from human (UniProt: Q02083), 34–362 from mouse (UniProt:
Q9D7V9 with variants Ala47Val, His142Arg, and Asn163Asp), 31–359 from
rabbit (RefSeq: XP_008265950) and 29–355 from guinea pig (RefSeq:
XP_012996906 with variants Ala75Arg, Xaa76Asp, Lys95Glu, and an alanine
insertion at 194–195). Proteins were isolated from expression culture media
by immobilized metal affinity chromatography (IMAC), purified by size ex-
clusion chromatography (SEC) in buffer (15 mM Tris·HCl pH 7.5, 100 mM
NaCl) and concentrated to 10 mg/mL. rNAAA was further applied to an
anion exchange Q column in buffer (10 mM Tris·HCl pH 7.5, 50 mM NaCl);
under these conditions, the protein did not bind to the resin.

Crystallization and Data Collection. The hNAAA precursor (Cys113Ala,
Cys126Ala) crystallized in 1 M LiCl, 0.1 M Mes pH 6 and 10% PEG 6000, and in
multiple other conditions. The Cys113Ala mutation was introduced because
this residue was initially suspected of forming spurious disulfide bonds.
mNAAA (Asn112Ser, Asn338Ser) crystallized in 0.2 M NaCl, 0.1 M BIS-Tris
pH 5 and 20% PEG 3350. The mutations abolished two N-linked glycosylation
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sites to generate new crystal forms. For the inhibitor complexes, the enzymes
were preincubated with 10 mM DTT, 2 mM TX (but no detergent for
gpNAAA), and either 0.67 mMARN19702, 1 mMARN726, or 1 mMmyristate.
hNAAA crystallized in 0.2 M NaSCN and 20% PEG 3350, whereas gpNAAA
crystallized at 3 mg/mL in 0.2 M KH2PO4 and 20% PEG 3350. rNAAA crys-
tallized in diverse conditions, including 0.2 M tripotassium citrate with 20%
PEG 3350 (ARN19702); 0.8 M NaH2PO4, 0.8 M KH2PO4 with 0.1 M Hepes
pH 7.5 (ARN726); and 1.1 M (NH4)2SO4 with 0.1 M sodium acetate pH 4.5
(myristate). Crystals were grown by sitting or hanging drop vapor diffusion
at 22 °C and flash frozen after brief soaking in crystallization solution sup-
plemented with 20% glycerol. X-ray diffraction data were collected at 100 K
on beamlines 08B1-1 with a Rayonix MX300HE CCD detector (hNAAA with
ARN19702), or 08ID-1 with a Rayonix MX300 CCD detector (hNAAA pre-
cursor) or a Pilatus3 S 6M detector (all others) at the Canadian Macromo-
lecular Crystallography Facility, Canadian Light Source.

Structure Determination. Data were processed by HKL2000 (81) with auto-
corrections enabled. This option applies several corrective procedures
including ellipsoidal truncation which reduces high-resolution data
completeness depending on anisotropy. This is made apparent in the num-
ber of reflections and completeness values in “data collection” versus “re-
finement” in SI Appendix, Table S1. The structure was solved by molecular
replacement using the acid ceramidase structure (PDB ID code 5U7Z) as
search model with Phaser (82) in Phenix (83), and manually rebuilt in Coot
(84). Refinement was carried out by phenix.refine (85) with the following
settings: noncrystallographic symmetry restraints for all hNAAA and
gpNAAA structures, and translation–libration–screw parameters for the
hNAAA precursor and mNAAA. A covalent bond was specified between
ARN726 and Cys126. Inhibitor restraints were generated by eLBOW (86).
Electron density maps indicated partial oxidation of the mNAAA active site
cysteine; this residue was modeled as cysteine sulfonate (SI Appendix, Fig.
S3F). However, the active site arrangement was unaffected relative to the
other structures. Crystallographic data collection and structure refinement
statistics are presented in SI Appendix, Table S1. Structural images were
prepared with PyMOL (The PyMOL Molecular Graphics System, version 1.3;
Schrödinger, LLC). Electrostatic surface potentials were generated with PDB
ID code 2PQR (87) and APBS (88) as part of PyMOL APBS Tools (89). Interface
surface areas were calculated with PISA (90).

Liposome-Binding Assays. Liposomes were prepared by extrusion through
100-nm polycarbonate filters. Anionic liposomes were composed of 50 mol%
dimyristoyl phosphatidylcholine, 20% cholesterol, 20% bis(mono-
oleoylglycero)phosphate, and 10% C12 ceramide. Neutral liposomes con-
sisted of 70% dimyristoyl phosphatidylcholine, 20% cholesterol, and 10%

PEA. Untagged hNAAA was produced from a construct that contained the
tobacco etch virus (TEV) protease cleavage sequence ENLYFQ-SG after the
hexahistidine tag, cleaved by TEV protease, and repurified by IMAC and SEC.
The tag was removed to prevent its contribution to electrostatic interactions
with the charged vesicles. Liposomes at 15 mM total lipid concentration were
incubated with untagged hNAAA at 0.25 mg/mL in binding buffer (50 mM
sodium acetate pH 4 or sodium acetate pH 5 or Tris·HCl pH 7.5, and 50 mM
NaCl) for 1 h at 22 °C, washed once in 10 volumes of binding buffer, pelleted,
and analyzed by SDS/PAGE. Optionally, desipramine-HCl at 5 or 20 mM was
included in the binding buffer.

Enzymatic Activity Assays. Wild-type and mutant hNAAA were preincubated
in assay buffer (50 mM sodium acetate pH 4.5, 100 mM NaCl) with 5 mM DTT
for 1 h at 37 °C to allow for full proteolytic self-activation and reduction of
the active site cysteine. For small molecule hydrolysis, the enzyme at 10 μM
was incubated with 2 mM p-nitrophenyl acetate in assay buffer with 1 mM
DTT for 30 min at 37 °C. The p-nitrophenol product was quantified by ab-
sorbance measurement at 347 nm. The ester substrate was used instead of
its amide counterpart p-nitroacetanilide because no hydrolysis of that
compound by NAAA was detected. In the detergent-based PEA hydrolysis
assay, the protein at 100–200 nM was incubated with 0.5 mM PEA and 5 mM
TX in assay buffer with 1 mM DTT for 1 h at 37 °C. The reaction was stopped
at 95 °C for 5 min and the palmitate product was quantified by the free fatty
acid fluorometric assay kit (Cayman Chemical). For liposomal PEA hydrolysis,
the enzyme at 300 nM was incubated with neutral liposomes at 5 mM total
lipid concentration containing 0.5 mM PEA in assay buffer with 1 mM DTT
for 1 h at 37 °C. The reaction was stopped at 95 °C for 5 min and TX was
added to 20 mM to solubilize lipids before quantification by the free fatty
acid fluorometric assay kit. Background fluorescence from control samples
containing substrate but no enzyme was subtracted from the experimental
samples, for both PEA hydrolysis assays.

Data Availability. Atomic coordinates and structure factors were deposited
into the Protein Data Bank under ID codes 6DXW–6DXZ and 6DY0–6DY3.
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