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Spin models inferred from patient-derived viral sequence data faithfully
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Mutational escape from vaccine-induced immune responses has thwarted the development of a successful
vaccine against AIDS, whose causative agent is HIV, a highly mutable virus. Knowing the virus’ fitness as a
function of its proteomic sequence can enable rational design of potent vaccines, as this information can focus
vaccine-induced immune responses to target mutational vulnerabilities of the virus. Spin models have been
proposed as a means to infer intrinsic fitness landscapes of HIV proteins from patient-derived viral protein
sequences. These sequences are the product of nonequilibrium viral evolution driven by patient-specific immune
responses and are subject to phylogenetic constraints. How can such sequence data allow inference of intrinsic
fitness landscapes? We combined computer simulations and variational theory á la Feynman to show that, in
most circumstances, spin models inferred from patient-derived viral sequences reflect the correct rank order of
the fitness of mutant viral strains. Our findings are relevant for diverse viruses.

DOI: 10.1103/PhysRevE.88.062705 PACS number(s): 87.10.−e, 87.19.xd, 87.18.Vf, 87.23.Cc

I. INTRODUCTION

The staggering sequence diversity of HIV [1] and its ability
to evade most natural or vaccine-induced immune responses
by mutational escape [2] have precluded the development of
a successful vaccine against this global epidemic [3]. It has
been proposed that a vaccine-induced immune response should
target regions in the viral proteome, where escape mutations
are most likely to damage replicative fitness. Single residues
that appear highly conserved in proteins derived from virus
samples extracted from diverse patients have been suggested as
vaccine targets [4], but the fitness cost [5] of making mutations
at such sites can be restored by additional compensatory muta-
tions [6]. Groups of sites in HIV proteins that are collectively
constrained such that multiple simultaneous mutations within
such groups impose a high fitness penalty have been identified
and shown to be targeted by patients whose immune systems
naturally control HIV [7]. But these models cannot identify
which specific sites in these collectively coevolving groups
should be targeted to maximally compromise viral fitness
and how mutational escape pathways that exist even within
these regions may be blocked by additional immune responses.
Answering these questions requires knowledge of the complex,
multidimensional structure of HIV’s fitness landscape [8,9]—a
measure of the virus’ replicative capacity as a function of the
amino acid sequence of its constituent proteins. Knowledge of
the fitness landscape can guide systematic identification of the

*kardar@mit.edu
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mutational vulnerabilities of viruses (not just HIV), and the
rational design of vaccines that can target these weaknesses.

Using inference principles rooted in entropy maximization
[10,11], Ferguson et al. [9] recently employed publicly
available multiple sequence alignments (MSA) [12] of four
HIV proteins to obtain the prevalence of HIV strains bearing
multiple mutations in these proteins. In this approach, a viral
protein of N sites is described by a coarse-grained binary
code �s = {0,1}N , wherein the “wild-type” (most frequent)
amino acid at site i is denoted by si = 0 and any mutant
is denoted by si = 1 (irrespective of its identity). Given
the protein MSA, the maximum entropy framework seeks
a minimally biased probability distribution P [�s] over the
space of all possible mutant strains {�s } that reproduces the
marginal one-site and two-site mutational probabilities 〈si〉MSA

and 〈sisj 〉MSA measured from sequence data. The resulting
inference leads to a model where the probability of a particular
strain �s, the prevalence landscape, is described by a Boltzmann
distribution, P [�s] ∝ e−H0[�s], where the Hamiltonian takes the
form of an infinite-range Ising spin glass [13],

H0[�s] =
N∑

i<j=1

Jij sisj +
N∑

i=1

hisi . (1)

This can be generalized to account for the identities of mutant
amino acids using Potts models rather than an Ising model [9].

Only under certain restricted circumstances [14] can it
be shown that this prevalence landscape is the replicative
fitness landscape, with the “energy” H0[�s] of a strain �s
being inversely correlated with its replicative capacity. Exact
solutions to the mathematical model of evolution originally
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proposed by M. Eigen [15] have been found under certain
conditions, in particular for the class of fitness landscapes
where fitness is a function of the mutational distance from
the wild-type strain [16]. But, these conditions are likely
inapplicable for a complex problem like HIV evolution in
a population of human patients, and the connection between
fitness and prevalence is not obvious. Ferguson et al. [9] report
a statistically significant negative correlation between values
of H0[�s] predicted by the inferred model and in vitro fitness
measurements of several engineered strains (including both
published and de novo experiments). Their predictions also
tested positively against clinical data. These results provide
evidence that the prevalence landscape of the virus described
by H0[�s] is a good proxy for the intrinsic fitness landscape.

This pleasing result is surprising. However, the quantities
used to parametrize the prevalence landscape (〈si〉MSA and
〈sisj 〉MSA) were obtained from “consensus” (most common)
protein strains in genetically diverse patients. The sequence
evolution of HIV within a particular host is a nonequilibrium
process driven by a genetically determined pattern of immune
pressure acting on the viral proteome [17], which determines
the effectively fittest viral strains in each patient. Thus, the
HIV sequences used to infer the prevalence landscape were
not sampled from an equilibrium ensemble of sequences
distributed according to their “intrinsic” fitness. In contrast,
the in vitro measurements are not subject to human immune
responses and therefore assay the intrinsic fitness of the virus.
The robust correlation between model predictions and in vitro
fitness measurements observed by Ferguson et al. [9], and
their ability to describe clinical data in humans with diverse
genotypes when the immune responses were known, therefore

pose an important question: How does a prevalence landscape
inferred from the statistics of mutations in a nonequilibrium
ensemble of sequences evolving under diverse adaptive im-
mune responses faithfully reflect the intrinsic fitness of mutant
viral strains?

Here we combine computer simulations and analytical
theory to address this question. We find that the presence
of genetically diverse immune responses imposed by patients
across the population is necessary for comprehensive sampling
of the sequence space of viral proteins. We then show that
the prevalence landscape inferred from mutational correlations
observed in the sequence databases correctly reflects the rank
order of the intrinsic replicative fitness of mutant viral strains
in most circumstances. We provide mechanistic insights into
why this is so and circumstances wherein this may not be true.

II. SIMULATIONS

For the computer simulations, as an example, we study
the 132-residue HIV matrix protein p17 [18]. We consider a
growing population of infected hosts and model the network of
viral transmission between hosts as illustrated in Fig. 1. In all
simulations, infection in the first host is seeded with Nv copies
of the wild-type (WT) strain ( �s0 = �0 ). New hosts added to
this network are infected with Nv identical copies of a strain
randomly selected from the quasispecies within a host chosen
randomly from the existing pool of hosts. For simplicity, the
number of viral strains in a host is chosen to be a constant
Nv , making our intrahost evolutionary model similar in spirit
to the Wright-Fisher model [19]. Nv serves as an “effective
population size” as in conventional population genetics, and

FIG. 1. (Color online) Graphical description of simulation model. We consider an expanding network of infected hosts. The first host in the
network is infected with Nv copies of �s0 = �0, corresponding to the wild-type (WT) strain. Each new host added to the network is infected with Nv

copies of a single viral strain derived from the quasispecies within an existing host chosen at random (based on evidence that most infections are
initiated by a single virus strain). �bκ is a “field” that acts on the proteomic sites within host κ and represents the genetically determined immune
response within that host. The “consensus” viral strain is extracted from every productively infected host, i ∈ 1, 2, . . . , M , and added to the in
silico population ensemble, mimicking the way these sequences were sampled from a real population. For example, in this figure, infection in
host κ is seeded with Nv copies of strain �m3, which is randomly chosen from the quasispecies within host 3. At a randomly chosen generation
of viral quasispecies evolution within host κ , the consensus strain �sκ is derived from the quasispecies and added to the population ensemble.
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not the actual number of strains in a host, which is usually
much larger than the range of Nv (2 × 103 − 5 × 105) we have
considered [20].

We assume that the fitness of a particular strain �s of the N -
site protein in a given host is described by an effective Hamilto-
nian H [�s] = Hint[�s] + I [�s]. Here, Hint[�s] = ∑N

i<j=1 Jij sisj +∑N
i=1 hisi constitutes intrinsic fitness that is independent of

host, while I [�s] = −∑N
i=1 bisi is a “host-specific” immune

pressure that applies only to some sites: the sites si for which
bi are nonzero are distinct for different hosts. Within each host,
the fields {bi} are chosen in a manner consistent with known
clinical information (see Appendix A and Supplemental
Material [21]). Post infection, the viral quasispecies in a host
evolve through a nonequilibrium mutation-selection process in
discrete generations described in Appendix B. In our model,
the evolutionary timescale is coarse-grained such that each
generation corresponds to multiple replication cycles of the
viral quasispecies. We evolve the quasispecies in a host for a
random number of generations τS , chosen uniformly between
25 and 500. Empirically, we find that our results do not change
qualitatively as long 〈τS〉 > 150 (cf. Supplementary Note 5),
which might tentatively correspond to a time scale in which the
quasispecies is able to sense the immune pressure and respond
through adaptive mutations. The consensus strain within each
host is extracted at a randomly chosen generation, and an
ensemble of such strains is recorded, which we refer to as the
population ensemble. This mimics how actual sequences in
public databases were collected from patients.

For {Jij , hi}, the parameters of Hint[�s], we have used
numerical values of the maximum entropy model H0[�s] of
Ferguson et al. [9] inferred from available p17 sequences [12].
In other words, we assume that the intrinsic fitness landscape
is correctly given by these parameters and carry out our

numerical simulations of the nonequilibrium dynamics with
the effects of immune pressure included. Recall that H0[�s]
(and therefore Hint[�s]) reproduces the one- and two-point
mutational probabilities within the real p17 sequences (see
Supplementary Fig. S4). From the simulations we obtain a
“virus sample” from each in silico “patient,” and from this
ensemble, we compute the one- and two-point mutational
probabilities. We then ask whether the mutational probabilities
in this in silico population ensemble are the same as those
obtained from real p17 sequences, which are reproduced
by Hint[�s]. If they are the same, then our assumption that
the intrinsic fitness landscape is accurately described by
the maximum entropy Hamiltonian inferred from patient
sequences is exactly correct. If they differ, we can evaluate
what the differences are and determine how the inferred
prevalence landscape relates to an intrinsic fitness landscape.

III. RESULTS

To aid visualization, we computed a 2D embedding of
the intrinsic fitness landscape associated with Hint[�s], which
charts the peaks and valleys of fitness in sequence space (see
Appendix C). We first simulated our model in the absence of
immune pressure ({bi} = 0) for values of μ in the range 10−5–
10−2/site/generation. In these simulations, the quasispecies
within every host stays localized around the WT strain �s = �0
[Fig. 2(a) and Supplemental Fig. S8]. The population ensemble
in this case is entirely composed of WT strains and mutations
are never selected at the population level. The frequencies
of single and double mutations in the population ensemble,
〈si〉dyn and 〈sisj 〉dyn are zero (unlike in the real MSA) and
reveal no information about the correlation structure of the
fitness landscape.
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FIG. 2. (Color) Immune pressure facilitates exploration of the virus in sequence space. Viral exploration of sequence space in our
simulations is depicted using a lower dimensional representation of the intrinsic fitness landscape of the protein p17, computed by applying
principal component analysis (PCA) to sequences resulting from an equilibrium sampling of Hint[�s] (cf. Supplemental Notes 1 and 2). We
only focus on the primary basin relevant to our simulations (cf. Supplemental Fig. S2). Different colors represent contours of the free energy
computed as A(x,y) = − log P (x,y), where P (x,y) is the normalized density of sequences at point (x,y) on the [PC1, PC2] plane. Low values
correspond to regions of high fitness. (a) In the absence of immune pressure ({bκ

i } = 0), the population ensemble extracted from our simulations
consists of only WT sequences, which are represented by a single bullet (•), located at (0,0). (b) In the presence of immune pressure, the
population ensemble consists of sequences that explore different parts of the landscape. Each bullet (•) represents the most frequent strain in a
particular host.
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This is because in the absence of any immune pressure, for
reasonably large values of Nv typical of the chronic phase of
infection during which virus samples are collected, selective
forces dominate genetic drift and suppress the fixation of
mutations that are deleterious to intrinsic fitness. This behavior
persists until values of μ beyond which selective adaptation is
ineffective and the quasispecies collapse [15] because of the
rapid accumulation of deleterious mutations (cf. Supplemental
Note 5).

The presence of an immune response changes the “effec-
tive” fitness landscape by favoring mutations that enable the
virus to escape immune pressure despite lowering intrinsic
fitness. This causes the quasispecies to shift away from the
WT strain, and the viral quasispecies sample different parts of

sequence space in different hosts because of the great diversity
of human genes associated with T cell immune responses
(see Fig. 2(b) and Supplemental Fig. S9). Primary mutations
that enable escape also influence the emergence of secondary
mutations at sites which are not directly targeted by the
immune pressure but are coupled to the primary mutations to
compensate the incurred fitness cost [7,9,22]. At the population
level, Fig. 2(b) shows that due to immune pressure, the
consensus sequences from different hosts explore diverse
regions of the fitness landscape. Thus, the immune pressure
imposed by different hosts acts like a “higher temperature”
that facilitates sampling of sequence space.

The exploration of sequence space is sensitive to the value
of the mutation rate μ (cf. Fig. 3). There is an intermediate

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

si int

s
i

d
y
n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

si int

s
i

d
y
n

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

sisj int

s
is

j
d
y
n

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

sisj int

s
is

j
d
y
n

(a) (b)

(c) (d)

FIG. 3. (Color online) Comparison of one- and two-body mutational probabilities at low and intermediate mutation rates.(a), (c) μ =
5 × 10−5/site/generation, Nv = 15 000. The one- and two-body mutational probabilities (average per sequence) computed from the population
ensemble resulting from our simulations, 〈si〉dyn and 〈sisj 〉dyn, are compared with their counterparts, 〈si〉int and 〈sisj 〉int, both computed from an
equilibrium sampling of the intrinsic fitness Hamiltonian Hint[�s], which agree with values computed from sequences used to infer the maximum
entropy model. At small mutation rates, escape mutations are rarely sampled. The viral quasispecies within each host stays frozen near the
ground state [cf. Fig. 2(a)] and mutations are not selected at the population level, resulting in 〈si〉dyn, 〈sisj 〉dyn ≈ 0. (b), (d) For intermediate
mutation rates μ ∈ (10−4, 10−2) (here, μ = 5 × 10−3/site/generation and Nv = 15 000), we find that immune selection leads to the accumulation
of mutations across the viral proteome, and at the population level the one- and two-body mutational probabilities 〈si〉dyn and 〈sisj 〉dyn correlate
monotonically with their counterparts 〈si〉int and 〈sisj 〉int. At higher mutation rates (μ > 10−2/site/generation), the quasispecies within most
hosts become unable to survive selection as deleterious mutations are rapidly accumulated.
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range μ ∈ (10−4, 10−2) where immune selection is stable and
favors viral adaptation. This range is higher than the mutation
rate of HIV (∼10−4) when measured in units of per amino
acid site per replication cycle. But, this is reasonable as each
generation in our simulations corresponds to a number of
replication cycles for reasons described in Appendix B.

In this intermediate range of μ, the marginal single-, two-,
and three-site probabilities 〈si〉dyn, 〈sisj 〉dyn, and 〈sisj sk〉dyn

are monotonically correlated with their intrinsic fitness coun-
terparts 〈si〉int, 〈sisj 〉int, and 〈sisj sk〉int [Figs. 3(b), 3(d), and
Supplemental Fig. S10). Taken together, our results suggest
that immune pressure plays a necessary role in facilitating
exploration of sequence space so that the viral quasispecies
sample the fitness landscape, and furthermore, the correlation
structure of the prevailing consensus strains in the population
ensemble is monotonically related to the correlations that
characterize mutant strains selected according to intrinsic
replicative fitness.

IV. VARIATIONAL THEORY

Our ultimate interest, however, is not just in correlation
structure but in characterizing the relationship between the
intrinsic fitness landscape of the virus and the prevalence
landscape inferred from patient-derived sequences. Toward
this goal we exploit a mapping by Leuthäusser [23] to describe
nonequilibrium quasispecies evolution according to Eigen’s
equation [15]: Each evolutionary path in sequence space is
denoted by � = { �s0, �s1, �s2, . . . �sn}, where �sα denotes a strain
in generation α, and can be regarded as a configuration of an
inhomogenous Ising model. Different generations �sα realized
in a particular evolutionary path correspond to sequentially
arranged rows of this Ising system. The probability of a
particular evolutionary path, �, is p(�) ∝ e−H(�), with the
Hamiltonian

H(�) = −J

n−1∑
α=0

(�1 − 2 �sα)(�1 − 2 �sα+1) +
n∑

α=0

Hα[ �sα]. (2)

The first term in Eq. (2) describes a coupling between the
same site in successive generations, with J = 1

2 log( 1−μ

μ
)

(since μ is small, J is positive, preferring sites in successive
generations to be the same [23]). This longitudinal coupling
describes the phylogenetic relationship between strains in a
population. Note that �s0 is coupled only to its progeny and �sn

is coupled only to its parent, while an intermediate strain �sα is
phylogenetically coupled to both its parent and progeny. The
second term in H(�) describes the aggregate effective fitness
of the strains in the trajectory, where each term in the sum is
decomposed as

Hα[ �sα] = Hint[ �sα] + Iα[ �sα]

=
N∑

i<j=1

Jij s
α
i sα

j +
N∑

i=1

his
α
i −

∑
i

bα
i sα

i . (3)

Hint (parameterized by {Jij , hi}) is α independent, while
the immune pressure in generation α is described by the
fields {bα

i }.
The nonequilibrium dynamics captured by Eqs. (2) and (3),

while not identical to our simulations, contain the important

elements of phylogeny and immune pressure in different
hosts. Instead of numerically sampling configurations with
normalized probability p(�) = e−H(�)/Z (which we expect
will lead to results consistent with our simulations), we devel-
oped analytical approximations. The prevalence landscape in
Eq. (1), inferred from sequences extracted from patients at a
multitude of different times, makes no reference to phylogeny
or immune pressure. Thus, we asked how well a “phylogeny
and immune pressure independent” probability of the form
pT (�) = (

∏
α e−Hα

T )/ZT can approximate p(�).
In particular, we chose a trial Hamiltonian of the same form

as the inferred Hamiltonian in Eq. (1), Hα
T ({Kα

ij ,a
α
i }, �sα) =∑N

i<j=1 Kα
ij s

α
i sα

j + ∑
i a

α
i sα

i , and approximateH(�) in Eq. (2)
as HT = ∑

α Hα
T ({Kα

ij ,a
α
i }, �sα). We then variationally esti-

mated the α-dependent parameters {Kα
ij ,a

α
i }, which best ap-

proximate Eq. (2). These parameters can be estimated through
the Gibbs-Feynman-Bogoliobov variational bound [24]

ln Z � ln ZT − 〈H − HT 〉T . (4)

Extremizing the bound through variations of the parameters
{Kα

ij } and {aα
i } leads to the self-consistent mean-field relations

for the parameters of the variational Hamiltonian (cf. Ap-
pendix D). The optimal field and coupling constants governing
the Hamiltonian for a strain in the “bulk” (0 < α < n) are

aα
i = hi + 4J

(
1 − 〈

sα−1
i

〉
T

− 〈
sα+1
i

〉
T

) − bα
i , (5)

Kα
ij = Jij . (6)

Within this mapping, however, the bulk layers are not “ob-
servable” quantities, and the structure of the quasispecies after
n generations are given by the statistics of the surface layer at
α = n [25]. The parameters of the variational Hamiltonian for
this layer are as follows (cf. Appendix D):

an
i = hi + 2J

(
1 − 2

〈
sn
i

〉
T

) − bn
i , (7)

Kn
ij = Jij , (8)

where we have additionally assumed that 〈sn−1
i 〉T is well-

approximated by 〈sn
i 〉T the mutational probability at the surface

layer. This is reasonable if the number of generations is large
and the replicative fidelity is high (see Appendix D). Note that
for both the bulk and the surface, the effects of phylogeny and
immune pressure appear only through the onsite fields.

Within the variational approximation then, the prevalence
of a strain �s after n generations of quasispecies evolution
is completely determined by the parameters of the surface
layer Hamiltonian Hn

T [�s]. The prevalence of �s as encoded by
the Hamiltonian H0[�s] in Eq. (1), however, reflects surface
samples obtained from evolutionary trajectories of varying
number of generations. These viral sequences have been
sampled from genetically diverse hosts in whom the virus
has evolved for different times. To mimic this, we average the
Hamiltonian Hn

T (�s) over a large number (M) of realizations,
leading to

HT [�s] =
N∑

i<j=1

Jij sisj +
N∑

i=1

[hi + 2J (1 − 2〈si〉T ) − b̄i]si,

(9)
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where b̄i = 1
M

∑
α bα

i is the average immune pressure, and
〈si〉T = 〈sn

i 〉T , the mutational probability at the surface layer
of the Ising system, averaged over evolutionary trajectories
containing different number of generations.

Comparing the parameters in HT [�s] to that in Hint[�s], we
see that while the coupling constant between sites remains
unmodified, the effective field at a particular site is changed
from hi by two competing contributions. The first term is self-
consistently related to 〈si〉T , the average single-site mutation
probability at site i under Hamiltonian HT [�s]. For 〈si〉T < 1/2,
which is true for J > 0, the first term represents an increase
in the field at site i that disfavors mutation. This is because
replicative fidelity disfavors sampling of sequence space since
one mutant strain must be the progeny of another one.

In the absence of immune pressure, this “phylogenetic
coupling” term favors freezing into the ground state (�s = �0),
accounting for the localization of quasispecies in the vicinity
of the intrinsically fittest sequence. The immune response
counters this effect, bringing the effective field ai closer to the
intrinsic field hi and drives the statistics of mutations closer to
those governed by intrinsic fitness.

Armed with this variational approximation, we can now
ask if HT [�s] preserves the fitness ranks of different viral
strains as encoded in Hint[�s]. The values of {b̄i} are easily

0 20 40 60 80 100 120 140
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Hint[ ]

H
T
[

]

HT = 1.46Hint+ 20.07

ρsp = 0.918
p < 10− 100

FIG. 4. (Color) Variational analysis using the Feynman bound
predicts that the prevalence landscape is correlated with the fitness
landscape. A numerical comparison between the variational estimate
of the prevalence Hamiltonian HT [�s] [Eq. (9)] to the intrinsic
Hamiltonian Hint[�s] for the case for 2500 subtype B p17 sequences.
Both HT [�s] and Hint[�s] have units of dimensionless energy. HT [�s] is
a variational estimate that is related to the logarithm of the prevalence
of the strain �s, whose relation to Hint[�s] is corrupted by phylogeny
and immune pressure. The parameters μ = 5 × 10−3/site/generation,
nmax = 6, Nv = 15 000 were used in the simulations. Each point
on the plot corresponds to one p17 sequence. The sequences were
downloaded from the Los Alamos sequence database [12] and
converted to the binary code. ρsp is the standard rank correlation
computed from Spearman’s test [31] and p is the corresponding
significance value. The line is computed from fitting an ordinary least
squares regression model.

obtained from the simulations; and 〈si〉T are approximated by
〈si〉dyn from our simulations (calculating 〈si〉T self-consistently
is not practical given the complexity of HT ). This assumes
that the variational Hamiltonian HT is a reasonable approx-
imation of true quasispecies evolution according to Eigen’s
equation and that the latter (where the number of strains
is unbounded) is a reasonable facsimile of our simulations
(where the quasispecies population is bounded). It must
be recognized that fluctuations play an important role in
finite populations [26,27]. In our simulations, however, the
product of the population size and mutation rate is large
(Nvμ > 1), and in this regime theoretical and computational
studies of finite populations (relevant for RNA viruses) have
shown consistency with the predictions of quasispecies theory
(reviewed in Ref. [28]). Also, Dixit et al. [29] recently proved
formally for a class of finite population evolution models
(similar to the one we have considered in this work) that as
the population size increases, the stationary distribution of
genotypes converges to the distribution predicted by Eigen’s
quasispecies model [30].

In Fig. 4, we plot HT [�s] versus Hint[�s] for 2474 subtype
B HIV-1 strains extracted from a public database [12], after
converting them to the binary code. A Spearman rank test [31]
shows that the order of ranking is preserved with very high
statistical accuracy for most strains (ρ = 0.918, p < 10−100).
Thus, at least within a mean-field approximation, prevalence
landscapes inferred from patient-derived virus protein se-
quences preserve the rank order of intrinsic replicative fitnesses
of mutant virus strains.

V. DISCUSSION

The underlying reason for this result may be simple.
Because of the great diversity of genes that determine the
immune response, individual sites in viral proteins are targeted
by a small fraction of infected patients (see Supplemental Note
4). Furthermore, clinical data show that when the immune
pressure in a particular host results in escape mutations, and
the mutated virus is transmitted to another host who does
not target the mutated sites, the virus rapidly reverts to WT
in these regions [32]. Within a given host, the magnitude
of immune pressure at particular sites (bα

i ) is large enough
to drive exploration of sequence space. But this effect is
present at any site only in a small fraction of hosts and acts
as a perturbation (b̄i) when averaged over many consensus
sequences. Therefore, although the immune pressure imposed
by genetically diverse patients enables exploration of sequence
space by modifying the fitness landscape [Fig. 2(b)], using
a sufficient number of sequences ensures that the inferred
prevalence model preserves the rank order of the intrinsic
fitnesses of mutant viral strains.

This should, however, only be true if we compare sequences
that are not phylogenetically distant. The effects of phylogeny,
immune pressure, and intrinsic fitness are concatenated in the
parameters that define our inferred fitness landscape [Eq. (9)].
For reasons discussed above, the immune pressure is a critical
but perturbative field. The effect of phylogeny can, however, be
quite strong when comparing phylogenetically distal strains.
Because the infection in a population is initiated by a “founder
strain,” the relatively high fidelity of replication (μ 	 0.5)
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in each cycle limits the rate at which the sequence space of
the virus is explored in the following generations, favoring
appearance of mutants that are proximal in sequence space
to the parent strain. Therefore, although a strain with a large
number of mutations might have a high intrinsic fitness, it
is less likely to appear because of the mutational distance
that separates it from the parent strain. For such strains the
“phylogenetic term” in Eq. (9) increases the disparity between
their prevalence in a population and their intrinsic fitness. In
other words, because of replicative fidelity, a phylogenetically
distant strain is less likely to be prevalent than one that is
phylogenetically closer, even if they are of comparable fitness.
The excellent agreement between experimental measurements
of replicative fitness and the inferred prevalence landscape
described by Ferguson et al. [9] may reflect the fact that
different strains were phylogenetically proximal. This is also
likely the case for strains used to construct Fig. 4. From
a practical standpoint of using the fitness landscape for
immunogen design, this issue presents little difficulty as a
vaccine-induced immune response is unlikely to generate
mutants that are phylogenetically distal. But, care needs to
be taken in using the inferred prevalence landscape when
comparing in vitro fitness measurements of phylogenetically
distant strains. This is because our estimate of the correction
due to replicative fidelity and phylogeny in Eq. (9) is not
expected to be quantitatively correct.

Spin-glass models have been employed previously to
explore the consequences of original antigenic sin [33] and
measures of antigenic distance on influenza vaccination [34].
In our context, the possibility of using sequence data to infer
such fitness landscapes of diverse viruses can accelerate the
rational design of immunogens from sequence data, which may
be able to induce potent and protective immune responses in
humans against infectious diseases. Taken together, our results,
and those in Ferguson et al. [9] show that maximum entropy
models inferred from viral protein sequences sampled from
patients can faithfully represent the intrinsic fitness landscape
for phylogenetically related strains. Further work needs to be
done to develop general methods for deconvoluting the effects
of phylogeny and intrinsic fitness in inferred landscapes in
order to reliably predict the fitness of strains regardless of
phylogenetic distance. With the rapid expansion of available
genomic data a promising and efficient route to rational
immunogen design is thus suggested.
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APPENDIX A: MODELING IMMUNE PRESSURE

The immune response in a particular host is chosen to
randomly target k sites in the protein where k is a random
integer ranging from 0 to nmax 	 N , based on clinical evidence
within Caucasian Americans that the p17 protein is targeted
predominantly by T-cells, and that a given protein site is
expected to be targeted by a very small fraction of individuals

in a population (Supplemental Note 4 and Supplemental
Fig. S5). For the simulations reported in the main text,
we employ nmax = 6. The targeted sites α1, α2, . . . , αk are
chosen randomly from protein sites 1, 2, . . . , N in each
host without bias, thereby mimicking the highly polymorphic
nature of genes encoding the cell machinery that presents viral
protein fragments, which are recognized by T cells. Thus,
each individual is likely to target different sites compared to
other persons. We assume that the parameters {bαi

}ki=1 are
independent random variables, drawn from the same Gaussian
distribution of mean h̄ and variance σ 2

h as determined by the
intrinsic fitness parameters {hi}. Changing the parameters of
this distribution to increase the magnitude of the immune
fields does not change the main conclusions of our work (see
Supplemental Note 5.2) as long as the immune pressure in any
given host targets only a small fraction of sites (<10%) and
that the typical magnitude of {bi} do not greatly exceed h̄.

Incorporating host-specific effects as a linear term
−∑N

i=1 bisi constitutes the simplest model of T-cell-mediated
immune pressure, in contrast to models where T-cell dynamics
are treated explicitly [35,36], which, however, do not consider
viral strains at proteomic resolution. T cells impose immune
pressure on short viral peptides (∼10 amino acids long). In our
simulations, individual amino acids in the protein, correspond-
ing to residues in these peptides, are under immune pressure.
The scenario is analogous to an Ising system in an external
magnetic field. Including higher-order terms would imply the
presence of correlations within the immune-mediated targeting
of different residues. Indeed, T-cell-mediated immune pressure
can be abrogated by mutation in a single residue within
the peptide or in the flanking residues, thus “releasing” the
immune pressure from all residues. As a consequence, short-
range correlations over the length of the targeted peptide are
present, but two well-separated peptides are targeted largely
independently of each other because of the large diversity
in the genes that determine which peptides are targeted in
a host. While it would be straightforward to make peptides
rather than individual residues the loci of immune pressure
in our simulations, we do not expect our qualitative results
to change. So long as the T-cell response in different hosts
targets diverse regions within viral proteins (a consequence of
the highly polymorphic nature of the underlying genes), the
resulting selective pressure will drive exploration of the virus
to different regions of sequence space.

APPENDIX B: QUASISPECIES SIMULATIONS

Within each host (parameterized by immune pressure {bi})
the viral quasispecies evolve for τS generations following
infection with Nv copies of a “founder” strain. Each generation
is composed of the following steps,

(1) Mutation: For each viral strain �s within the quasispecies,
every site i is mutated with probability μ. In the binary
representation, this amounts to the operation si → 1 − si .

(2) Prescreening: Eliminate sequences that escape the
region in the reduced free energy landscape defined by subtype
B sequences (see Supplemental Fig. S2). (This step is rarely
necessary unless the mutation rate μ exceeds 10−2).

062705-7



KARTHIK SHEKHAR et al. PHYSICAL REVIEW E 88, 062705 (2013)

(3) Selection: Strain �s is selected to survive with proba-
bility ps(�s ) = e−H [�s]

1+e−H [�s] . Here, H [�s] = Hint[�s] − ∑N
i=1 bisi and

parameters {bi} are host-specific.
(4) Replenishment: The numbers of surviving strains is

randomly resampled with replacement to replenish the viral
population to size Nv .

The survival probability in step 3 above has a functional
form consistent to the “death probability” employed in
Amitrano et al. [37]. Assuming f�s ∼ e−H [�s] is the fitness of
strain �s, the survival probability has a simple interpretation.
In each generation a strain �s is compared with a WT strain
and is elected to survive with probability f�s

fWT+f�s
, where

fWT ∼ e−HWT = 1. Alternatively, one can envision a selection
rule where a strain �s is compared with the average strain in the
current quasispecies and is elected to survive with probability

f�s
f̄�s+f�s

, where f̄�s ∼ 〈e−H [�s]〉 is the average fitness of the
quasispecies. The latter selection rule produces results that are
in qualitative agreement with the former selection rule within
the range of parameters we have explored (data not shown).

1. A note on time scales and the mutation rate

In these idealized simulations that mirror the Wright-Fisher
process [19], each “generation” combines the processes of
mutation of extant viruses and selection of viruses according
to their effective fitness values in the presence of immune
pressure. Biologically, however, these two processes are
disparate and act on different entities and time scales—while
mutation occurs on the genome of an infecting virus during
reverse transcription within the cytoplasm of the infected cell,
selection occurs at the level of infected cells (not considered
explicitly in our simulations), which are recognized and killed
by cytotoxic T cells.

Mathematical models fitted to viral kinetic data have
suggested that the mean lifetime of individual virions is much
smaller (∼0.3 days) than those of infected cells (∼2.2 days)
[38]. Therefore, if infection is to be sustained, then at least one
of the virions produced from an infected cell during the latter’s
lifetime must lead to a new infection in a healthy cell. Infection
of a healthy cell results in the commencement of a replication
cycle, wherein the genome of the virus is reverse-transcribed,
resulting in mutations. Since a large fraction of mutations
are deleterious even for a virus like HIV, every “attempted”
infection does not necessarily lead to “productive” infection.
Combining this with the fact that viral lifetimes are smaller
than those of infected cells, it follows that multiple progeny
virions from an infected cell must make “infection attempts”
within the latter’s lifetime to ensure successful propagation
of the infection. At steady state, the rate at which new
productively infected cells are produced must equal the rate at
which they are cleared by the immune system.

In summary, if we assume that each generation in the
Wright-Fisher introduced in Appendix B process corresponds
to a timescale governed by selection, which is set by the
lifetime of infected cells, we must correct for the fact that
multiple infection and viral replication events occur in this
period. We account for this in the simplest possible manner by
increasing the mutation rate in the Mutation step above, since
this effectively enables viruses in our simulations to explore
larger combinations of mutations in a single “generation.”

APPENDIX C: LANDSCAPE VISUALIZATION

Mutational states of the protein were sampled according
to Hint[�s] by the Metropolis Monte-Carlo (MC) algorithm
[39] to generate an “equilibrium” ensemble of approximately
106 sequences. We applied principal component analysis
(PCA) [40] to the covariance matrix corresponding to double
mutations in this ensemble of sequences (see Supplemental
Note 1). We computed the projection of each sequence in
the equilibrium ensemble onto this space along the top two
principal components (PCs). Using an appropriately sized
square mesh, the density of sequences at different locations in
this 2D embedding was converted to the analog of free-energy
contours in statistical mechanics using the relation

A(x,y) = − log P (x,y),

where (x,y) is the center of a cell in the [PC1, PC2] plane
and P (x, y) is the sample probability of a sequence in the
equilibrium ensemble occupying this point.

In the projection along PC1-PC2, the landscape exhibits
three high fitness (or low “free-energy”) peaks (see Supple-
mental Fig. S2). But two of these peaks are unexplored by the
subtype B sequences in the MSA that were used to parametrize
Hint[�s] (Supplemental Fig. S3) and represent extrapolations
of the fitted nonlinear model. To focus on the question of
how the inferred prevalence of subtype B HIV strains in
the population relates to the intrinsic fitness landscape, we
restricted quasispecies sequences in our computer simulations
to lie in the region corresponding to observed sequences
by placing reflecting boundaries on the PC1-PC2 space as
described in Supplemental Fig. S2.

APPENDIX D: VARIATIONAL CALCULATIONS

In variational mean-field theory, the parameters of the
approximate Hamiltonian are obtained by maximizing the
right-hand side of the Gibbs-Feynman-Bogoliobov bound
[24] (see Eq. (4)) with respect to the variational parameters
{Kα

ij , a
α
i }. The stationarity conditions are

∂ ln ZT

∂Kα
ij

− ∂

∂Kα
ij

〈H − HT 〉T = 0,

(D1)
∂ ln ZT

∂aα
i

− ∂

∂aα
i

〈H − HT 〉T = 0.

Here, H is the original Hamiltonian while
HT = ∑n

α=0 Hα
T ({Kα

ij ,a
α
i }, �sα) is the trial Hamiltonian with

the form, Hα
T ({Kα

ij ,a
α
i }, �sα) = ∑N

i<j=1 Kα
ij s

α
i sα

j + ∑
i a

α
i sα

i .
The trial partition function is defined as ZT =∑

{ �sα}
∏n

α=0 exp(−Hα
T [{Kα

ij ,a
α
i }, �sα]). As different generations

are uncoupled from each other the sum and the product can
be interchanged. Taking its logarithm,

ln ZT =
∑

α

ln

⎛
⎝∑

�sα

exp
(−HT

[{
Kα

ij ,a
α
i

}
, �sα

])⎞⎠
=

∑
α

ln Zα
T , (D2)

where Zα
T is the partition function for a single generation in

the evolutionary trajectory. Thus, Eq. (D1) can be further
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simplified as

∂ ln Zα
T

∂Kα
ij

− ∂

∂Kα
ij

〈H − HT 〉T = 0,
∂ ln Zα

T

∂aα
i

− ∂

∂aα
i

〈H − HT 〉T = 0. (D3)

As is well-known in equlibrium statistical mechanics, ln Zα
T is the equivalent of a scaled free energy and its derivatives with

regards to the coupling constants and fields yield thermal averages of different quantities of interest. Thus, it can be shown that
∂ ln Zα

T

∂Kα
ij

= −〈sα
i sα

j 〉T and ∂ ln Zα
T

∂aα
i

= −〈sα
i 〉T . Substituting in Eq. (D3),

−〈
sα
i sα

j

〉
T

− ∂〈H〉T
∂Kα

ij

+ ∂〈HT 〉T
∂Kα

ij

= 0, −〈
sα
i

〉
T

− ∂〈H〉T
∂aα

i

+ ∂〈HT 〉T
∂aα

i

= 0. (D4)

Substituting expressions for 〈H〉T (cf. main text) and 〈HT 〉T ,

−�����〈
sα
i sα

j

〉
T

−
∑
k < m

β = 0, . . . , n

Jkm

∂
〈
s
β

k s
β
m

〉
T

∂Kα
ij

−
∑

k

β = 0, . . . , n

(
hk − b

β

k

)∂
〈
s
β

k

〉
T

Kα
ij

− 2J
∑

k

β = 0, . . . , n − 1

{
∂

∂Kα
ij

(〈
s
β

k

〉
T

+ 〈
s
β+1
k

〉
T

)

− 2
∂
〈
s
β

k s
β+1
k

〉
T

∂Kα
ij

}
+�����〈

sα
i sα

j

〉
T

+
∑
k < m

β = 0, . . . , n

K
β

km

∂
〈
s
β

k s
β
m

〉
T

∂Kα
ij

+
∑

k

β = 0, . . . , n

a
β

k

∂
〈
s
β

k

〉
T

∂Kα
ij

= 0.

(D5)

−�
���

〈
sα
i

〉
T

−
∑
k < m

β = 0, . . . , n

Jkm

∂
〈
s
β

k s
β
m

〉
T

∂aα
i

−
∑

k

β = 0, . . . , n

(
hk − b

β

k

)∂
〈
s
β

k

〉
T

∂aα
i

− 2J
∑

k

β = 0, . . . , n − 1

{
∂

∂aα
i

(〈
s
β

k

〉
T

+ 〈
s
β+1
k

〉
T

)

− 2
∂
〈
s
β

k s
β+1
k

〉
T

∂aα
i

}
+ �

���
〈
sα
i

〉
T

+
∑

k

β = 0, . . . , n

K
β

km

∂
〈
s
β

k s
β
m

〉
T

∂aα
i

+
∑

k

β = 0, . . . , n

a
β

k

∂
〈
s
β

k

〉
T

aα
i

= 0.

The derivatives encoding the phylogenetic (intergenerational) coupling can be simplified as follows:

∑
k

β = 0, . . . , n − 1

∂
〈
s
β

k s
β+1
k

〉
T

Kα
ij

=
∑

k

β = 0, . . . , n

(〈
s
β

k

〉
T

∂
〈
s
β+1
k

〉
T

∂Kα
ij

+ 〈
s
β+1
k

〉
T

∂
〈
s
β

k

〉
T

∂Kα
ij

)

=
∑

k

β = 1, . . . , n

〈
s
β−1
k

〉
T

∂
〈
s
β

k

〉
T

∂Kα
ij

+
∑

k

β = 0, . . . , n − 1

〈
s
β+1
k

〉
T

∂
〈
s
β

k

〉
T

∂Kα
ij

=
∑

k

〈
s1
k

〉
T

∂
〈
s0
k

〉
T

∂Kα
ij

+
∑

k

β = 1, . . . , n − 1

(〈
s
β−1
k

〉
T

+ 〈
s
β+1
k

〉
T

)∂
〈
s
β

k

〉
T

∂Kα
ij

+
∑

k

〈
sn−1
k

〉
T

∂
〈
sn
k

〉
T

∂Kα
ij

, (D6)

and similarly for the derivatives with respect to aα
i ’s. Note that we have written separately the terms that correspond to the bulk

(0 < α < n) and the two surfaces (α = 0, n). Equations (D6) and the corresponding equation for aα
i can be substituted into

equation (D5), while carefully separating the bulk and surface terms,

∑
k<m

{
K0

km − Jkm

}∂
〈
s0
k s

0
m

〉
T

∂Kα
ij

+
∑

k

{
a0

k − hk + b0
k − 4J

(
1

2
− 〈

s1
k

〉
T

)}
∂
〈
s0
k

〉
T

∂Kα
ij

+
∑
k < m

β = 1, . . . , n − 1

{
K

β

km − Jkm

}∂
〈
s
β

k s
β
m

〉
T

∂Kα
ij

+
∑

k

β = 1, . . . , n − 1

{
a

β

k − hk + b
β

k − 4J
(
1 − 〈

s
β−1
k

〉
T

− 〈
s
β+1
k

〉
T

)}∂
〈
s
β

k

〉
T

∂Kα
ij

+
∑
k<m

{
Kn

km − Jkm

}∂
〈
sn
k sn

m

〉
T

∂Kα
ij

+
∑

k

{
an

k − hk + bn
k − 4J

(
1

2
− 〈

sn−1
k

〉
T

)}
∂
〈
sn
k

〉
T

∂Kα
ij

= 0. (D7)
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∑
k<m

{
K0

km − Jkm

}∂
〈
s0
k s

0
m

〉
T

∂aα
i

+
∑

k

{
a0

k − hk + b0
k − 4J

(
1

2
− 〈

s1
k

〉
T

)}
∂
〈
s0
k

〉
T

∂aα
i

+
∑
k < m

β = 1, . . . , n − 1

{
K

β

km − Jkm

}∂
〈
s
β

k s
β
m

〉
T

∂aα
i

+
∑

k

β = 1, . . . , n − 1

{
a

β

k − hk + b
β

k − 4J
(
1 − 〈

s
β−1
k

〉
T

− 〈
s
β+1
k

〉
T

)}∂
〈
s
β

k

〉
T

∂aα
i

+
∑
k<m

{
Kn

km − Jkm

} ∂
〈
sn
k sn

m

〉
T

∂aα
i

+
∑

k

{
an

k − hk + bn
k − 4J

(
1

2
− 〈

sn−1
k

〉
T

)}
∂
〈
sn
k

〉
T

∂aα
i

= 0. (D8)

Equations (D7) and (D8) are satisfied if the coefficients of the derivatives are set identically to zero and we obtain Eqs. (5)–(8).
We expect the profile of the expectation values 〈sβ

i 〉T to vary gradually from a surface value to the bulk value over a surface
correlation length ξ . Due to the strength of the phylogenetic coupling we expect a variation over the span of several generations,
such that 〈sn−1

i 〉T ≈ 〈sn
i 〉T (see, e.g., Ref. [41] for mean-field calculations relevant to a uniform spin model close to a surface).
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