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Abstract

Sorghum bicolor is a C4 grass widely cultivated for grain, forage, sugar, and biomass.

The sorghum Dry Stalk (D) locus controls a qualitative difference between juicy

green (dd) and dry white (D-) stalks and midribs, and co‐localizes with a quantitative

trait locus for sugar yield. Here, we apply fine‐mapping and genome‐wide associa-

tion study (GWAS) to identify a candidate gene underlying D, and use nearly iso-

genic lines (NILs) to characterize the transcriptional, compositional, and agronomic

effects of variation at the D locus. The D locus was fine‐mapped to a 36 kb interval

containing four genes. One of these genes is a NAC transcription factor that con-

tains a stop codon in the NAC domain in the recessive (dd) parent. Allelic variation

at D affects grain yield, sugar yield, and biomass composition in NILs. Green midrib

(dd) NILs show reductions in lignin in stalk tissue and produce higher sugar and

grain yields under well‐watered field conditions. Increased yield potential in dd NILs

is associated with increased stalk mass and moisture, higher biomass digestibility,

and an extended period of grain filling. Transcriptome profiling of midrib tissue at

the 4–6 leaf stages, when NILs first become phenotypically distinct, reveals that dd

NILs have increased expression of a miniature zinc finger (MIF) gene. MIF genes

dimerize with and suppress zinc finger homeodomain (ZF‐HD) transcription factors,

and a ZF‐HD gene is associated with midrib color variation in a GWAS analysis

across 1,694 diverse sorghum inbreds. A premature stop codon in a NAC gene is

the most likely candidate polymorphism underlying the sorghum D locus. More

detailed understanding of the sorghum D locus could help improve agronomic

potential in cereals.

K E YWORD S

biomass composition, biomass moisture, grain-filling, secondary cell wall

1 | INTRODUCTION

Sorghum bicolor, a versatile and resilient C4 grass, is an important sta-

ple cereal in semiarid areas of Africa and Asia (Paterson et al., 2009).

In addition to its use as a cereal, sorghum is widely grown for pro-

duction of forage, ethanol, heat, and electricity (Rooney, Blumenthal,

Bean, & Mullet, 2007). Reflecting this diversity of end uses, sorghum

varieties vary greatly in plant height, flowering time, grain yield and

harvest index, and sorghum vegetative biomass varies greatly in

sugar content, composition, digestibility, and mechanical strength

(Mullet et al., 2014; Stefaniak et al., 2012). Despite the identification

of several major loci affecting sorghum plant height (Multani et al.,
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2003; Yamaguchi et al., 2016) and flowering time (Murphy et al.,

2011; Murphy et al., 2014; Yang, n.d), no major loci affecting vegeta-

tive biomass properties in sorghum have previously been identified.

Vegetative biomass properties are largely determined by the

architecture of the vascular system, xylem, and phloem, which pro-

vide mechanical support, allow water and nutrient acquisition, and

mediate transport of photoassimilates and signaling molecules from

source to sink tissues (Bihmidine, Hunter, Johns, Koch, & Braun,

2013). Grass leaves and inflorescences are major source and sink

organs, and the genetic control of their architecture has been inten-

sely studied (Kellogg, 2007; Pautler, Tanaka, Hirano, & Jackson,

2013; Tanaka, Pautler, Jackson, & Hirano, 2013). However, the archi-

tecture of the vascular system also plays a crucial role in determining

cereal grain yields. During grain filling, continued acquisition of

water, sugars, and nitrogen is accompanied by re‐mobilization of

transient storage reserves, and stalk strength must be maintained

throughout senescence to protect the drying grain from lodging

(Peiffer et al., 2013). The genetic control of vascular system architec-

ture has been studied primarily in model systems (Handakumbura &

Hazen, 2012), where genetic effects on agronomic performance may

not be easily detected.

The large family of NAC transcription factors (TFs), named after

founding members NAM, ATAF, and CUC (Fang, You, Xie, Xie, &

Xiong, 2008), plays a critical role in plant vascular development (Ko,

Jeon, Kim, Kim, & Han, 2014; Nakano, Yamaguchi, Endo, Rejab, &

Ohtani, 2015). A subset known as the secondary wall NACs (SWNs)

act as master regulators of secondary cell wall development in vascu-

lar tissues (Handakumbura & Hazen, 2012; Zhong, Demura, & Ye,

2006). Conservation of SWN function in moss hydroids and stereids,

which, respectively, conduct water and lend mechanical support to

the moss gametophyte, provides evidence that these structures are

homologous to sporophytic vascular systems in higher plants (Xu et

al., 2014). SWNs activate a subset of MYB transcription factors that

contain secondary wall NAC binding elements (SNBEs) in their pro-

moters, inducing secondary cell wall thickening and deposition of cel-

lulose, hemicellulose and lignin (Zhong, Lee, & Ye, 2010). NAC TFs

also act downstream of MYB TFs. During sieve element maturation,

for example, the Altered Phloem Development (APL) gene both drives

the expression of NAC045 and NAC086 and is itself regulated by

NAC020 (Bonke, Thitamadee, Mahonen, Hauser, & Helariutta, 2003;

Furuta et al., 2014). The extreme complexity of the secondary cell

wall gene regulatory network in Arabidopsis is driven by functional

redundancy, feed‐back and feed‐forward loops, and combinatorial

control enabling functional fine‐tuning (Taylor‐Teeples et al., 2014).
The Dry Stalk (D) locus in sorghum conditions a difference

between dry, pithy white stems and midribs (D−), and juicy green

stems and midribs (dd) (Smith & Frederiksen, 2000). A previous gen-

ome‐wide association study (GWAS) in sweet sorghum mapped

large‐effect QTL for sugar yield, juice volume, and stalk moisture to

the D locus (Burks, Kaiser, Hawkins, & Brown, 2015). In this study,

we fine‐map the D locus to a 36 kb region, identify a premature stop

codon in a NAC transcription factor as a candidate polymorphism,

and show that nearly isogenic lines (NILs) segregating for the

premature stop codon differ significantly in sugar yield, grain yield,

and biomass composition.

2 | METHODS

2.1 | Plant material and controlled growth
conditions

A dominant white midrib allele (D) was introduced into a genetic

male sterile (ms3/ms3) version of Tx623, which carries a recessive

green midrib allele (d), through four generations of backcrossing.

Homozygous D/D-Ms3/Ms3 and d/d-Ms3/Ms3 seed stocks were

derived from a single BC4 plant by selfing. Three replications of

greenhouse plantings were performed on 1/7/16, 2/16/16, and 3/16/

16, planted 2 seeds per cell in 6 by 8 flats and thinning to 1 plant

per cell at 7 days after planting. Midrib color changes were recorded

using a MiScope (Zarbeco, USA) at V4, V6, and V8, and midrib tissue

for RNAseq was sampled at V4 and V6 into liquid N.

2.2 | Field experiments

For sugar yield measurements, paired rows of NILs were planted in

six replicates at a single location in Urbana, IL in summer 2014, and

phenotyped as previously described (Burks et al., 2015). For grain

and stalk dry matter and moisture measurements, paired 2‐row plots

of NILs were planted in four replicates at each of two locations

(Urbana and Savoy, IL), and samples were pooled from 2‐6 individual

representative plants per row for each time point. Immature grain

weight was estimated by clipping individual panicle branches from

the rachis, stalk weight was measured after stripping off leaf blades,

and moisture was estimated by weighing samples before and after

oven‐drying at 45°C for 5 days. Midrib color in the GWAS panel

was phenotyped as a binary trait (green vs white, Supporting infor-

mation Table S7) in the youngest leaf at ~45 days after planting. All

field experiments were machine planted in rows 10′ long with 30″
row spacing. Seeds were treated with Apron fungicide (Syngenta,

USA) and Concep II seed safener (Syngenta, USA) before planting,

and weeds were controlled through use of a pre‐emergent herbicide

(Bicep). All raw agronomic data (Supporting information Tables S5

and S8) and raw compositional data (Supporting information

Table S9) were analyzed by ANOVA in R using a linear model with

location, block nested within location, and NIL genotype as fixed

effects. We present p‐values for genotype effects, and boxplots

show residuals from a model including location and block effects.

2.3 | Fine‐mapping and GWAS

Two MITE‐based indel markers (Supporting information Table S10)

were used to screen 1,132 BC3 and BC2F2 individuals. Subsequent

genotyping‐by‐sequencing was performed in both putative recombi-

nants and a GWAS panel of 1,624 diverse sorghum accessions using

the two‐enzyme GBS protocol with PstI‐HF and HinP1I enzymes

(Poland, Brown, Sorrells, & Jannink, 2012), followed by alignment to
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v3 of the reference genome (www.phytozome.org) using bowtie2

(Langmead & Salzberg, 2012) and SNP calling using the TASSEL5

GBSv2 pipeline (Glaubitz et al., 2014). Imputation of biparental

recombinants was performed using FSFHap (Swarts et al., 2014) in

TASSEL, and imputation of the GWAS panel was performed using

Beagle4 (Browning & Browning, 2007). Midrib color GWAS was per-

formed using the mixed linear model implemented in GAPIT, using

model selection to choose the optimal number of principal compo-

nents, which was zero. A minor allele frequency cutoff of 5%

resulted in 50,899 SNPs for testing, and only associations significant

at a false discovery rate of less than 5% (q < 0.05) are reported.

GBS data for this project have been deposited at the Illinois Data

Bank (https://databank.illinois.edu/).

2.4 | Lignocellulosic compositional analysis

Lyophilized tissue samples were ground to a fine powder using three

5 mm metal balls in 2 ml plastic tubes (Retsch Ball mill, 2 times at

25 Hz for 2.5 min) and washed sequentially with 70% ethanol, 1:1 (v:

v) methanol:chloroform, and acetone. The alcohol‐insoluble cell wall

material was further destarched with alpha amylase (Sigma) and Pullu-

lanase M2 (Megazyme) in 0.1 M Citrate buffer pH 5.0. The

destarched material was aliquoted for different compositional assays.

1 mg of destarched cell wall was hydrolyzed in 2 M Tri‐fluoroacetic
acid (TFA) heated to 121°C for 90 min followed by a stream of dried

air using nitrogen. Dried samples were re‐suspended in water, cen-

trifuged, and the supernatant was collected for monosaccharides anal-

ysis and the pellet was dried for crystalline cellulose measurements.

TFA‐soluble samples were analyzed using High Performance Anion

Exchange liquid Chromatography with Pulse Amperometric Detection

(HPAEC‐PAD) according to de Souza, Hull, Gille and Pauly (2014).

Neutral sugars were separated via a CarboPac PA20 column, while a

CarboPac PA200 was used to separate uronic acids. Three distinct

programs were used to resolve the sugars of interest. Samples were

run at a flow rate of 0.4 ml/min and gradients consisted of (a) 2 mM

NaOH for 20 min followed by a 5 min 100 mM flush and subsequent

5 min at 2 mM (neutral sugar separation 1; excludes xylose and man-

nose); (b) 18 mM NaOH for 15 min followed by a 5 min 100 mM

flush and subsequent 7 min at 18 mM (neutral sugar separation 2;

excludes rhamnose and arabinose); (c) 0.1 M NaOH with a gradient of

50–200 mM sodium acetate from 0 to 10 min followed by a 2 min

200 mM sodium acetate flush returning to 50 mM for 2.9 min (uronic

acid separation). Crystalline cellulose was measured using the Upde-

graf method and the released glucose was measured using the

anthrone assay (Updegraff, 1969; Laurentin & Edwards, 2003). Lignin

content and lignin composition were measured using the ultra‐violet
acetyl bromide lignin method and a thioacidolysis procedure, respec-

tively, according to Foster, Martin and Pauly (2010). Saccharification

yield of cell wall materials was determined after enzymatic treatment.

In brief, 1 mg of destached cell wall was incubated with 0.5 μl Accel-

lerase 1,500 enzyme mix (Gencor) in 1 ml of 50 mM citrate buffer

(pH 4.5), shaking at 250 rpm at 50°C for 20 hr. Solubilized glucose

and xylose were detected on a Bio‐Rad HPX‐87H, 300 × 7.8 mm

column in an Shimadzu UFLC chromatography system. The elution

profile encompassed 0.01 N sulfuric acid in 15 min at 0.6 ml/min and

column temperature is 50°C.

2.5 | Phylogenetic tree construction and sequence
alignment

SbNAC074a homologs from Arabidopsis thaliana, Oryza sativa subsp.

Japonica, Sorghum bicolor, Zea mays, Setaria italica, and Glycine max

were extracted from UNIPROT (http://www.uniprot.org). The full

length sequence of SbNAC074a from the DD NIL, which doesn't

have the null mutation, was BLASTED in UNIPROT (http://www.uni

prot.org) and homologs from Arabidopsis thaliana (sequence version 1),

Oryza sativa subsp. Japonica (sequence version 2 for Os04 g43560,

others were sequence version 1), Sorghum bicolor (sequence version 1),

Zea mays (sequence version 1), Setaria italica (sequence version 1), and

Glycine max (sequence version 1) were identified from the BLAST

result. Alignment was performed using MUSCLE in MEGA7 with

default settings, and CLUSTALW2_Phylogeny was used with dis-

tance correction off, gaps excluded, and the UPGMA clustering

method to create the tree. Visualization was performed using EVOL-

VIEW (http://www.evolgenius.info/evolview/#login).

2.6 | Gene expression analysis

Total RNA was extracted from greenhouse‐grown midrib tissue of the

youngest fully expanded leaf of DD and dd NILs at the four‐leaf and
six‐leaf stages using Spectrum™ Plant Total RNA Kit (Sigma‐Aldrich,
USA), following the manufacturer's protocol. All RNA samples were

digested with DNase I (New England Biolabs, USA), and rtPCR was

performed using M‐MuLV reverse transcriptase (New England Biolabs,

USA). RNAseq libraries were prepared and sequenced at Roy J. Carver

Biotechnology Center at the University of Illinois using single‐end,
100 bp reads on a HiSeq2500 instrument. Reads were processed

using HISAT2 and StringTie, and the stattest function in the R package

“Ballgown” was used to test for differential gene expression between

DD and dd NILs using 3 biological replicates at each developmental

stage, controlling the false discovery rate at 0.05. The R package

“WGCNA” was used to construct co‐expression modules using the

arguments power = 8, minModuleSize = 20, and mergeCutHeight =

0.05. RNAseq reads for this project have been deposited at the Illinois

Data Bank (https://databank.illinois.edu/).

3 | RESULTS

3.1 | Creation and characterization of nearly
isogenic lines for the D locus

A white midrib allele (D) was introduced into the green midrib Tx623

background (dd) through four generations of backcrossing, and

homozygous DD and dd seed stocks were derived from a single BC4

plant by selfing. NILs appear identical until the sixth‐leaf stage, when

a narrow band of pithy white tissue first appears in DD midribs,
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becoming wider and more distinct in successive leaves (Figure 1a).

At anthesis, DD stalks are visibly drier and pithier than dd stalks (Fig-

ure 1b). All sampling times and tissues presented in this study are

summarized in Supporting information Table S1.

3.2 | GWAS and fine‐mapping

Midrib color was scored as a binary trait (green/white) in the flag

leaf at anthesis in a large panel (n = 1624) of sorghum inbreds,

revealing a single very strong association at ~ 51 Mb on chromo-

some 6 (Figure 2a; Supporting information Table S2). Polymorphic

markers flanking this region were used to screen 1132 BC3 and

BC2F2 individuals. Putative recombinant individuals were subjected

to genotyping‐by‐sequencing (GBS), confirming 17 recombinants and

defining a ~36 kb interval that co‐segregates perfectly with the phe-

notype (Figure 2b, Supporting information Table S3). This interval

contains four predicted genes, of which two are expressed in midrib

tissue at either the fourth‐ or sixth‐leaf stage (Supporting informa-

tion Table S4): a NAC transcription factor (Sobic.006G147400) and

a threonine aldolase (Sobic.006G147600). The two most significant

hits in the GWAS analysis are the two closest flanking SNPs to the

NAC gene. Moreover, the NAC gene is the only gene in the interval

with a different annotated exon‐intron structure compared to its

closest homologs in other cereals, which is relevant because the sor-

ghum reference genome is derived from Tx623, a recessive dd

mutant. Reverse‐transcriptase PCR and cDNA sequencing confirms

that the annotated first intron in Sobic.006G147400 does not exist,

and that a T/C SNP in this region produces a stop codon in the d

allele from Tx623 but not the contrasting D allele (Figure 2c). The

premature stop codon in Tx623 eliminates most of the NAC

domain.

3.3 | Phylogeny and identification of homologs

The full‐length NAC protein, derived from an allele of

Sobic.006G147400 lacking the premature stop codon, was used to

search for homologous proteins in four grasses (Oryza sativa subsp.

japonica, Sorghum bicolor, Zea mays, Setaria italica) and two dicots

(Arabidopsis thaliana and Glycine max), which were aligned using

MUSCLE in MEGA7 and used to construct a neighbor‐joining tree

using UPGMA clustering (Figure 3). Syntenic regions on Oryza chro-

mosome 4 and Setaria chromosome 7 each contain single ortholo-

gous copies of our sorghum NAC candidate, and co‐syntenic regions

on Zea chromosomes 2 and 10 each contain intact homeologues

derived from segmental duplication. These proteins are part of the

NAC1 sub‐clade (Peng et al., 2015), and contain five conserved

motifs in the N‐terminal NAC domains whereas the C‐termini are

highly variable (Supporting information Figure S1). The closest Ara-

bidopsis homolog is NAC074 (At4G28530), and we hereafter refer to

the three co‐orthologous grass clades as NAC074a, NAC074b, and

NAC074c, and to Sobic.006G147400 as SbNAC074a.

3.4 | dd NILs show increases in stalk dry matter,
soluble sugar yield, and grain yield

To confirm the previously‐reported association between the D locus

and sugar yield, we grew NILs in six replications of paired rows,

extracted total sugar from 1 meter (m) of row 30 days after anthesis

(a)

(b)

F IGURE 1 Phenotypic differences
between DD and dd nearly‐isogenic lines
(NILs). (a) Midribs of the youngest fully
expanded leaf in dd and DD NILs at V4,
V6, and V8 stages at 2, 3, and 4 weeks
after planting, respectively. (b) Cross‐
sections through the second stalk
internode above ground level at anthesis
(10 weeks after planting (WAP)), with
0.5 cm scale bar
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(see Methods), and found that dd NILs yield nearly twice the sugar

of DD NILs (Figure 4a, p < 0.001) despite being identical in plant

height and flowering time (Supporting information Table S5). Sugar

yield per meter of row (g/m; Figure 4a) is a function of juice volume

(ml/m; Figure 4b) and the concentration of simple sugars in the juice

(degrees Brix; Figure 4c), and we observe that increased yield in dd

NILs is driven by increased juice volume, which in turn is associated

with higher vegetative weight (kg/m; Figure 4d). Given the dramatic

effect of the D locus on sugar yield, we next conducted a time series

experiment to quantify its effects on the rate and extent of grain fill-

ing. Paired, two‐row plots of NILs were grown in four replicates at

each of two locations, and dry matter and moisture of stalk and

grain were monitored at 2‐week intervals beginning at anthesis.

Overall, this grain filling period is characterized by movement of dry

matter from the stalk to the grain, and by decreases in grain mois-

ture relative to stalk moisture (Figure 5). Stalk dry matter is signifi-

cantly higher in dd NILs at all stages, most notably at 4 weeks after

anthesis when it is >58% higher (p = 0.004; Figure 5a). dd NILs also

have higher grain moisture at 4 weeks after anthesis (p = 0.042; Fig-

ure 5d), and higher grain yield at 6 weeks after anthesis (p = 0.025;

Figure 5b).

3.5 | Compositional differences drive increased
biomass digestibility of dd NILs

Nearly‐isogenic lines stalk tissue was subjected to detailed ligno-

cellulosic compositional analysis at two growth stages: developing

internodes from a 1 cm plug of tissue immediately below the

(a)

(b)

(c)

F IGURE 2 Genome‐wide association
study (GWAS) and fine‐mapping of the
sorghum D locus. (a) Midrib color GWAS in
1,624 sorghum inbreds, with a major peak
at ~51 Mb on chr6. (b) Screening 1,132
individuals with flanking markers yielded
17 recombinants, which were GBSed to
define a 36 kb interval. (c) Two of four
genes in the 36 kb interval are expressed,
one of which is a NAC transcription factor
(Sobic.006G147400) with a stop codon in
the first exon disrupting the NAC domain.
This gene was annotated incorrectly in the
sorghum reference genome (Tx623), which
has the stop codon and a recessive d allele
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shoot apical meristem at 6 weeks after planting (WAP), and the

third internode below the inflorescence at 9 WAP, which coin-

cided with the boot stage shortly before flowering. While tissues

show relatively few compositional differences between NILs at 6

WAP, by 9 WAP dd NILs show reduced lignin (p = 0.007; Fig-

ure 6a) and increased glucose release following enzymatic

saccharification (p = 0.049; Figure 6b), while their decrease in crys-

talline cellulose is not significant at p < 0.05 (p = 0.055; Figure 6c).

dd NILs also show a lower ratio of syringyl to guaiacyl lignin

monomers at 9 WAP (p = 0.029), and differences in acid‐hydro-
lyzed lignocellulosic monosaccharides at both stages (Supporting

information Figure S2).

F IGURE 3 UPGMA tree of NAC074
genes in grasses. SbNAC074a is highlighted

(a)

(c)

(b)

(d)

F IGURE 4 Sugar accumulation in DD
and dd nearly‐isogenic lines (NILs). Total
stalk tissue from 1 m of row was sampled
at the hard dough stage, 4 weeks after
anthesis. (a) Sugar yield (g/m); (b) Juice
volume (ml/m); (c) Brix (g/ml); (d) Vegetative
Wet Weight (kg/m). Sugar yield is
calculated by multiplying juice volume and
brix
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3.6 | A miniature zinc finger (MIF) gene is
upregulated in dd NILs

Transcriptome profiling was performed on mRNA from NIL midrib

tissue at the four‐leaf and six–leaf stages, just before and during the

first appearance of phenotypic differences between the NILs (Fig-

ure 1a). Three independent biological replicates were obtained from

pooled tissue from three separate greenhouse plantings, for a total

of 12 samples across the two NILs and two stages. Co‐expression
analysis using WGCNA's step by step network construction and

module detection (Langfelder & Horvath, 2008) shows that

SbNAC074a shares a regulatory module with 263 other annotated

genes, including a group of five NAC transcription factors (Figure 7;

Supporting information Table S6) that includes SbNAC074c but not

SbNAC074b as well as two NACs associated with xylem develop-

ment in Arabidopsis, Xylem NAC Domain 1 (XND1) and NAC075

(Endo et al., 2015; Zhao, Avci, Grant, Haigler, & Beers, 2007). How-

ever, using the HiSAT‐Stringtie‐Ballgown pipeline (Pertea, Kim, Per-

tea, Leek, & Salzberg, 2016), only a single gene (Sobic.008G020700)

is differentially expressed between DD and dd NILs (q < 0.01),

showing no expression in DD NILs and mean expression of 21 and

35 FPKM in dd NIL midribs at the four‐leaf and six‐leaf stages,

respectively. Sobic.008G020700 is annotated as a MIF gene, which

are seed plant‐specific, truncated versions of ZF‐HD transcription

factors (Hu & Ma, 2006) that dimerize with ZF‐HDs and suppress

their transcriptional activation activity (Hong, Kim, Kim, Yang, &

Park, 2011). Intriguingly, the only significant GWAS hit for midrib

color other than our candidate NAC gene falls near a ZF‐HD tran-

scription factor on chromosome 1 (Supporting information Table S2).

However, this ZF‐HD transcription factor (Sobic.001G112500)

shows no expression in any of the DD or dd samples.

4 | DISCUSSION

In this study, we fine‐map the sorghum D locus to a four‐gene inter-

val that includes two genes expressed in midrib tissue: a NAC tran-

scription factor with a premature stop codon in the dd sorghum

reference genome (Sobic.006G147400), and a threonine aldolase

(Sobic.006G147600). Threonine aldolase controls the catabolism of

threonine to glycine and acetaldehyde, and Arabidopsis homologs

THA1 and THA2 are both expressed in vascular tissue. tha1-2

mutants show dramatic increases in seed threonine content, whereas

tha2-1 mutants have a lethal albino seedling phenotype(Joshi,

Laubengayer, Schauer, Fernie, & Jander, 2006). While we have not

formally excluded the threonine aldolase as a candidate gene

(a) (b)

(c) (d)

F IGURE 5 Grain filling of DD nearly‐
isogenic lines (NILs) (dashed lines) and dd
NILs (solid lines) under field conditions.
Changes in dry matter (a, b) and moisture
(c, d) were monitored at 2‐week intervals
in stalk (a, c) and grain (b, d) from 0–
6 weeks after anthesis
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underlying the D locus in sorghum, our data from dd and DD NILs is

more consistent with perturbation of NAC gene function. First, we

note that the two most significant SNPs in our GWAS analysis are

the two closest flanking markers to this NAC gene. Second, the most

obvious mutant phenotype in dd NILs is the persistence of a green

midrib throughout development. In Arabidopsis, a suite of NAC genes

including ORE1, ANAC046, ANAC087, and ANAC100 positively reg-

ulate leaf de‐greening and senescence by binding directly to the

promoters of chlorophyll catabolic genes (Oda‐Yamamizo et al.,

2016, p. 46; Qiu et al., 2015). Therefore, we propose that loss of

NAC gene function in dd NILs represses chlorophyll catabolism,

causing the persistence of a green midrib. We have named this NAC

gene SbNAC074a, after its closest homolog in Arabidopsis.

Previous study of genes orthologous to and co‐expressed with

SbNAC074a suggest a role in xylem development. Arabidopsis

NAC074 (At4G28530) is upregulated in xylem relative to phloem‐

(a) (b) (c)

F IGURE 6 Compositional analysis of developing internodes in DD and dd nearly‐isogenic lines (NILs). (a) Lignin; (b) Saccharification glucose
yield; (c) Crystalline cellulose. Tissues sampled included developing internodes at 6 weeks after planting (6 weeks after planting (WAP)) and the
third internode below the inflorescence at 9 WAP

F IGURE 7 A Co‐expression of
SbNAC074a, the differentially‐expressed
miniature zinc finger (MIF) gene, and 5
other NAC transcription factors in V4 and
V6 midribs of DD and dd nearly‐isogenic
lines (NILs). Light and dark colors indicate
low and high gene expression, respectively.
Dendrograms reflect Euclidean distance
and determine row and column order

8 | XIA ET AL.



cambium and non‐vascular tissues (Zhao, 2005), and is one of many

NAC genes upregulated during leaf senescence (Podzimska‐Sroka,
O'Shea, Gregersen, & Skriver, 2015). The rice ortholog of

SbNAC074a (Os04 g43560) is upregulated in panicle and root under

drought stress in drought‐tolerant, but not drought‐susceptible, NIL

backgrounds (Nuruzzaman et al., 2012). Here, we show that

SbNAC074a is co‐expressed with other NAC transcription factors

involved in xylem development, including homologs of Arabidopsis

XND1 and NAC075. xnd1 mutants display a mild dwarfing phenotype

associated with a reduction in tracheary element length, whereas

overexpression of XND1 results in reduced formation of xylem ves-

sels, expansion of the phloem, and increased starch storage in amy-

loplasts (Zhao et al., 2007).The authors suggest that XND1 may

promote vessel elongation by repressing their terminal differentia-

tion. Overexpression of NAC075 results in ectopic formation of

xylem vessel elements (Endo et al., 2015) and rescues the pendent

stem phenotype of nst1-nst3 double mutants, which results from

complete loss of secondary cell wall deposition in xylem fibers.

Lignocellulosic compositional data are consistent with a role for

SbNAC074a as a positive regulator of xylem development. dd NILs

internodes have significantly reduced lignin. Lignin content has been

positively correlated with xylem development and inversely corre-

lated with lignocellulosic saccharification yields (Chen & Dixon,

2007), consistent with the observed increase in glucose yield follow-

ing enzymatic saccharification in dd NILs. The increased digestibility

of dd NILs comes with no obvious agronomic penalty in the dwarf

grain sorghum background of Tx623, though we observe that green

midrib accessions have higher stalk lodging than white midrib acces-

sions in a biomass sorghum panel (Supporting information Figure S3).

Strikingly, yields of soluble sugar, grain, and vegetative biomass are

all significantly increased in dd NILs under well‐watered field condi-

tions. These results are not easily explained and should be validated.

A premature stop codon in the NAC domain of SbNAC074a

likely underlies allelic variation at the sorghum Dry Stalk (D) locus.

NILs at the D locus show agronomic, compositional, and transcrip-

tional differences. While dd NILs showed superior agronomic perfor-

mance at our Illinois field sites with ample rainfall, the relative

performance of DD and dd genotypes under terminal drought stress

might differ. Better understanding of developmental perturbations

mediated by the sorghum D locus could lead to enhancement of

yield potential and climatic adaptation in cereals.
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