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Orthogonal arrays are widely used in industrial experiments for factor screening. Suppose only

a few of the factors are important. An orthogonal array can be used not only for screening

factors but also for detecting interactions among a subset of active factors. In this article, a

set of optimality criteria is proposed to assess the performance of designs for factor screening,

projection, and interaction detection, and a three-step approach is proposed to search for opti-

mal designs. Combinatorial and algorithmic construction methods are proposed for generating

new designs. Level permutation methods are used for improving the eligibility and estimation

efficiency of the projected designs. The techniques are then applied to search for best three-level

designs with 18 and 27 runs. Many new, efficient and practically useful nonregular designs are

found and their properties discussed.

KEY WORDS: Contamination; Factor sparsity; Generalized minimum aberration; Orthogonal

array; Projection aberration; Projection-efficiency criteria.
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1 Introduction

For run size economy, orthogonal arrays (OA) are widely used in industrial experiments to screen

important factors from a large number of potential factors. Traditionally, design and analysis of

screening experiments has been restricted to main effects only by assuming that the interactions

are negligible. Hamada and Wu (1992) went beyond the traditional approach and proposed an

analysis strategy to demonstrate that some interactions could be identified beyond a few significant

main effects.

For illustration, consider an experiment reported by King and Allen (1987) that studied axial

lead 4.7 microhenry radio frequency chokes. A radio frequency choke is a circuit element designed

to present a high impedance to radio frequency energy while offering minimal resistance to direct

current. The objective of the experiment was to identify important factors and best settings in the

choke winding operation. In the experiment, an 18-run OA was used to study one two-level factor

(A) and seven three-level factors (B–H), and each run had two replicates. The response was a

10-piece sampling of the self resonating frequency in Mhz. The design matrix and the responses

are given in Table 1.

Motivated by the procedure of Hamada and Wu (1992), we perform a two-stage analysis on

this experiment. At the first stage, we fit an analysis of variance (ANOVA) model for main effects

and find that four factors B, E, G, and H are significant. At the second stage, we consider models

that consist of the main effects of the four significant factors and some of two-factor interactions

among them. Since there are six two-factor interactions, each having four degrees of freedom, the

18-run experiment does not have enough degrees of freedom to estimate all two-factor interactions

among them. One possible strategy is to use an iterative stepwise regression procedure to identify

significant effects as in Hamada and Wu (1992). Since all factors are quantitative, we take an

alternative approach and fit a second-order model among the four active factors, which has 15

unknown parameters. We find that all linear effects xB, xE , xG, and xH , and five quadratic effects

x2
E , xBxE , xExG, xExH , and xGxH are significant (at the 5% level). The R2 of this model is 0.96,

indicating that the model fits the data well. Notice that the identification of the four significant

interactions is achieved through the projection of the design matrix onto active factors, which serves

as a link between screening a larger number of factors and the more intensive study of the response

surface over a smaller number of important factors.

The previous two-stage analysis was first suggested by Cheng and Wu (2001, henceforth abbre-
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Table 1: Design Matrix and Responses, Radio Frequency Chokes Experiment

Run A B C D E F G H Responses

1 0 0 0 0 0 0 0 0 106.20 107.70
2 0 0 1 1 1 1 1 1 104.20 102.35
3 0 0 2 2 2 2 2 2 85.90 85.90
4 0 1 0 0 1 1 2 2 101.15 104.96
5 0 1 1 1 2 2 0 0 109.92 110.47
6 0 1 2 2 0 0 1 1 108.91 108.91
7 0 2 0 1 0 2 1 2 109.76 112.66
8 0 2 1 2 1 0 2 0 97.20 94.51
9 0 2 2 0 2 1 0 1 112.77 113.03
10 1 0 0 2 2 1 1 0 93.15 92.83
11 1 0 1 0 0 2 2 1 97.25 100.6
12 1 0 2 1 1 0 0 2 109.51 113.28
13 1 1 0 1 2 0 2 1 85.63 86.91
14 1 1 1 2 0 1 0 2 113.17 113.45
15 1 1 2 0 1 2 1 0 104.85 98.87
16 1 2 0 2 1 2 0 1 113.14 113.78
17 1 2 1 0 2 0 1 2 103.19 106.46
18 1 2 2 1 0 1 2 0 95.70 97.93
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viated CW). Formally, the two-stage analysis is as follows:

Stage 1. Perform ANOVA for factor screening and identify important factors.

Stage 2. Fit a second-order model to the factors identified in Stage 1.

This analysis strategy assumes that only a few factors are active in a factorial experiment, called

factor sparsity by Box and Meyer (1986), and that significant interactions appear only among

these active factors, called strong effect heredity by Chipman (1996) and functional marginality by

McCullagh and Nelder (1989, chap. 3). These are empirical principles whose validity has been

confirmed in many real experiments. The assumption of strong effect heredity can be restrictive

in some cases. If a factor’s significance is manifested through its interactions with other factors,

but not through its main effects, it may be missed in the first stage analysis. To circumvent this

problem, one can use a more elaborate procedure like Bayesian methods for factor screening in the

first stage. See Box and Meyer (1993), Chipman, Hamada, and Wu (1997), and Wu and Hamada

(2000, chap. 8) for further discussions and examples.

Standard response surface methodology has three stages: an initial factor screening stage, a stage

of sequential experimentation to determine the region of an optimum, and a final stage involving the

fitting of a second order model in this region to understand the nature of the optimum. Typically

separate experiments and designs are used for different stages. However, it is sometimes difficult

or impossible to perform the experiments sequentially (see Steinberg and Bursztyn (2001) for an

example). It is thus desirable to have a methodology that allows factor screening and response

surface exploration to be conducted on the same experiment using one design. CW argued that

the two-stage analysis is a useful alternative to the standard response surface methodology if the

design region is appropriate for studying second-order curvatures. Here we should point out that

the region does not need to contain the optimum. As long as it contains a curved part of the

surface, we can study a second-order surface. That is, a second-order experiment can be performed

before reaching the optimum. Details on response surface methodology can be found in texts like

Box and Draper (1987), Myers and Montgomery (1995), and Khuri and Cornell (1996).

This paper considers the design problem associated with the previous two-stage analysis. As-

sume that only a few of the factors are identified as significant by performing ANOVA for main

effects. We can use an OA for factor screening (estimating main effects, including curvature effects)

and by projections we can also study interactions (in our formulation, the linear-by-linear inter-

actions) for a subset of active factors. Since experimenters do not know in advance which factors

4



are important and what the final model will be, it is important to choose a screening design that

can entertain as many models as possible. Note that the standard optimum design approach does

not apply here since the number of runs is not enough to fit a second-order model at the screening

stage. Tsai, Gilmour, and Mead (2000) considered a similar problem and studied the projective

properties of three-level designs with 18 runs. The approach we take here is quite different from

theirs.

In Section 2, we review the generalized minimum aberration criterion (Xu and Wu 2001) for

factor screening and the projection-efficiency criteria (Cheng and Wu 2001) for interaction detection.

Then we propose a new criterion to combine these two objectives and a three-step approach for

design search. Section 3 considers the construction methods of OAs. In order to construct new and

efficient designs, we propose a combinatorial method as an extension of Wang and Wu (1991), an

algorithmic search due to Xu (2002), and two versions of a search algorithm for level permutations.

The techniques are then applied to search for best three-level designs with 18 and 27 runs. Many

new, efficient and practically useful nonregular designs are found and their properties discussed in

Section 4. Discussion and further remarks are given in Section 5.

2 Optimality Criteria

2.1 The ANOVA Model and Generalized Minimum Aberration Criterion

For factor screening, we adopt the generalized minimum aberration (GMA) criterion (Xu and Wu

2001), which is an extension of the minimum aberration criterion (Fries and Hunter 1980).

For a factorial design with N runs and n factors, the (full) ANOVA model is

Y = X0α0 + X1α1 + · · ·+ Xnαn + ε, (1)

where Y is the vector of N observations, α0 the general mean, α1 the vector of main effects, αj

the vector of j-factor interactions, X0 the vector of 1’s, Xj the matrix of contrast coefficients for

αj , and ε the vector of independent random errors. Here we consider only the cases where the

contrast coefficient of an interaction effect is the product of its corresponding contrast coefficients

of main effects. For a two-level factor, the contrast vector of a main effect is (−1, 1); for a three-

level factor, the contrast vectors of the linear and quadratic main effects are (−
√

3/2, 0,
√

3/2) and

(1/
√

2,−
√

2, 1/
√

2), respectively. For j = 0, 1, . . . , n, Xu and Wu (2001) defined Aj , a function of

Xj , to measure the overall aliasing (or correlation) between all j-factor interactions and the general
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mean. Specifically, if Xj = [x(j)
ik ], let

Aj = N−2
∑

k

∣∣∣∣∣
N∑

i=1

x
(j)
ik

∣∣∣∣∣
2

. (2)

The vector (A1, . . . , An) is called the generalized wordlength pattern (since Aj is the number of

words of length j for a two-level regular design). Xu and Wu (2001) showed that for an OA (of

strength 2), A1 = A2 = 0. The GMA criterion is to sequentially minimize A1, A2, A3, . . ..

Two designs are called combinatorially isomorphic if the design matrix of one design can be

obtained from that of the other by permutations of rows, columns and levels in the columns.

Because combinatorially isomorphic designs have the same generalized wordlength pattern, they

are indistinguishable under the GMA criterion.

Note that the computation of Aj according to (2) is cumbersome because it involves all possible

projections onto j factors. Alternative efficient computations can be found in Xu and Wu (2001)

and Xu (2003).

Example 1. Consider choosing six columns from the commonly used OA(18, 37) given in Table

10(i). There are seven possible choices. For illustration, consider three choices. Let d1, d2 and

d3 be the resulting design from omitting the first, second and third column, respectively. The

generalized wordlength patterns for the three designs are (0, 0, 10, 22.5, 0, 7), (0, 0, 13, 13.5, 9, 4),

and (0, 0, 13, 13.5, 9, 4), respectively. Hence, d1 is the best according to the GMA criterion. Note

that d2 and d3 have the same generalized wordlength pattern and therefore the GMA criterion

cannot distinguish between them.

To explain why GMA is suitable for screening out poor designs, consider the estimation of main

effects in the presence of two-factor interactions. Specifically, assume that three and higher-order

interactions are negligible. Then the ANOVA model (1) becomes

Y = X0α0 + X1α1 + X2α2 + ε, (3)

which contains the constant effect, main effects, and two-factor interactions. At the screening stage,

it is common that the degrees of freedom are not enough to fit model (3); therefore, a main effects

model, i.e., with α2 = 0 in (3), is fitted instead. For a balanced design (i.e., all levels occur equally

often for each factor), an unbiased estimate of the main effects α1 is α̂1 = (X
′
1X1)−1X

′
1Y . However,

under the true model (3),

E(α̂1) = α1 + Cα2,
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where C = (X
′
1X1)−1X

′
1X2 is the alias matrix (see Box and Draper 1987, Section 3.10; Wu and

Hamada 2000, Section 8.1 for details). In other words, the estimation of the main effects are

contaminated by non-negligible two-factor interactions (Box and Draper 1987, p. 67). A good

design should have a small contamination. This leads to the minimum contamination criterion,

that is, the minimization of ‖C‖2 =
∑
|cij |2 if C = (cij) (Tang and Deng 1999; Xu and Wu 2001;

Steinberg and Bursztyn 2001). Xu and Wu (2001) showed that the contamination ‖C‖2 is related

to the A3 value for an OA:

‖C‖2 = 3A3. (4)

Recall that A3 measures the overall aliasing between all three-factor interactions and the general

mean. Equation (4) holds because a three-factor interaction is the product of a main effect and a

two-factor interaction. For an OA with smaller A3, its main effects suffer less contamination when

a main effects model is fitted, and therefore, factor screening is more effective. For this reason, we

use the minimization of A3 as the criterion for factor screening.

2.2 The Second-Order Model and Projection-Efficiency Criteria

For interaction detection, we consider a second-order model and adopt the projection-efficiency

criteria (Cheng and Wu 2001).

Assume all factors are quantitative and denoted by x1, x2, . . ., xn. Then the second-order model

for these factors is given by

y = β0 +
n∑

i=1

βixi +
n∑

i=1

βiix
2
i +

n∑
1=i<j

βijxixj + ε, (5)

where ε is the error term.

Note that the second-order model (5) is different from the ANOVA model (3). For a three-

level design, a two-factor interaction has four orthogonal components: linear-by-linear, linear-by-

quadratic, quadratic-by-linear, and quadratic-by-quadratic, each having one degree of freedom. The

second-order model includes only the linear-by-linear component of a two-factor interaction while

the ANONA model includes all four components. For n factors with three levels, the second-order

model (5) has (n + 1)(n + 2)/2 parameters while the ANOVA model (3) has 2n2 + 1 parameters.

The main reason for considering the second-order model for interaction detection is that in many

cases the degrees of freedom are not enough to entertain model (3) but may be enough to entertain

the second-order model (5). For example, for three factors (with three levels), an 18-run design

7



can entertain model (5) but not model (3); for four factors, a 27-run design can entertain model

(5) but not model (3).

Since we do not know in advance which of the components are significant, considering all

components in the screening stage seems prudent. A design that does not perform well for model

(3) is unlikely to do well for model (5). Therefore, the GMA criterion can efficiently screen out

designs that are not suitable for the dual purposes of factor screening and interaction detection.

Some definitions are now in order. A design for n factors is called a second-order design if all

the parameters in model (5) are estimable. A projected design is said to be eligible if it is a second-

order design; otherwise, it is said to be ineligible. A design is called regular if it can be constructed

through the defining contrast subgroup among its factors; otherwise, it is called nonregular. The

2n−k and 3n−k series of designs are regular designs and many mixed-level OAs are nonregular.

Details on these concepts and results can be found in Wu and Hamada (2000).

The projection-efficiency criteria proposed by CW are as follows:

(i) The number of eligible projected designs should be large, and lower-dimensional projections

are more important than higher-dimensional projections;

(ii) Among the eligible projected designs the estimation efficiency as measured by some optimality

criterion should be high.

They studied three-level designs with 18, 27 and 36 runs using these criteria. A major finding is

that nonregular designs are more efficient than regular designs. Apart from studying the three

classes of designs, they did not examine the important issue of choosing optimal designs for the

dual purposes of factor screening and interaction detection.

For a design of size N , let X be the model matrix of (5) and M = X
′
X/N be the moment matrix.

A D-optimal design maximizes |M |, the determinant of M . Kiefer (1961) and Farrell, Kiefer, and

Walbran (1967) showed that the D-optimal continuous design for model (5) is supported on a

subset of points of the 3n factorial. Let d∗ be the D-optimal continuous design, i.e., |M(d∗)| =

maxd |M(d)|. Then the D-efficiency of a design d is defined to be

Deff = (|M(d)|/|M(d∗)|)1/p, (6)

where p = (n + 1)(n + 2)/2 is the number of parameters in model (5).

Here we quantify the definition of the projection-efficiency criteria in order to rank designs. Let

Ei denote the number of eligible i-factor projections and D̄i the average D-efficiency of all eligible
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Table 2: Eligible Projections, Estimation Efficiency, Overall A3 Values, and Projection Frequencies

Overall Proj. A3 Freq.
Design E3 E4 E5 D̄3 D̄4 D̄5 A3

1
2

2
3 1 2

d1 20 15 0 0.89 0.74 0 10 20 0 0 0
d2 19 12 0 0.88 0.7 0 13 16 0 3 1
d3 20 15 0 0.87 0.69 0 13 14 0 6 0

i-factor projections, where the D-efficiency is calculated as in (6). Then the projection-efficiency

criteria can be restated as:

(i) To sequentially maximize the eligibility E3, E4, E5, . . .;

(ii) Among those designs with the same eligibility, to sequentially maximize the average D-

efficiency of eligible projections D̄3, D̄4, D̄5, . . ..

Example 2. (Continued from Example 1) For each design, there are 20 three-factor projections, 15

four-factor projections and six five-factor projections. Table 2 lists the number of eligible projections

Ei, estimation efficiency D̄i, and some other properties to be explained later. Since the second-order

model has 21 parameters for five factors, any five-factor projection of an 18-run design is ineligible

and hence E5 = 0. For d1 and d3, all 20 three-factor projections and 15 four-factor projections

are eligible (i.e., E3 = 20 and E4 = 15). (Whenever this happens, boldface is used for the eligible

numbers in the tables.) For d2, one three-factor projection and three four-factor projections are

ineligible (i.e., E3 = 19 and E4 = 12). Furthermore, d1 is better than d3 in terms of D̄3 and D̄4.

In summary, d1 is the best and d2 is the worst under the projection-efficiency criteria.

The projection-efficiency criteria have one major shortcoming: They are computationally in-

tensive because the computation of D-efficiency for all possible projections is required.

2.3 Projection Aberration Criterion

Here we propose a new criterion to combine factor screening and interaction detection.

When a design with n factors is projected onto any three factors, it produces
(
n
3

)
three-factor

projected designs. Each of these designs has an A3 value, which is referred to as the projected

A3 value. We use overall A3 to denote the A3 value calculated from the whole n-factor design.
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The frequency of the projected A3 values is called projection frequency. Since large projected A3

values are deemed undesirable, we propose the projection aberration criterion which sequentially

minimizes the projection frequency starting from the largest projected A3 value.

A lemma that explains the relationship among overall A3, projected A3, and projection fre-

quency follows:

Lemma 1. The overall A3 value of a design equals the sum of all its projected A3 values, i.e., the

sum of distinctive projected A3 values multiplied by their corresponding frequencies.

The proof is straightforward and omitted. The lemma suggests that the projected A3 values and

projection frequency present more detailed information than the overall A3. It is reasonable to

expect that a design with a small overall A3 value will have low projection aberration. For two-

level designs, Deng and Tang (2002) showed that the contamination criterion and the projection

aberration criterion are generally consistent in ranking designs. The situation is more complicated

for three-level designs. As will be seen in Section 4, the two criteria are consistent for ranking

18-run designs but not for 27-run designs.

Example 3. (Continued from Example 1) For each design, there are 20 three-factor projections,

each having a projected A3 value. The frequencies of projected A3 values are listed in Table 2.

Among the three designs, d2 is the worst under the projection aberration criterion since one of its

3-factor projections has projected A3 = 2; d1 is again the best because all its 3-factor projections

have projected A3 = 0.5. The projection aberration criterion and the projection-efficiency criteria

produce the same ranking for the three designs while the GMA criterion cannot distinguish between

d2 and d3.

There is a close connection between projected A3 values and eligibility. A key finding in CW

is that the presence of projections with three-letter words causes low projection-efficiency. This is

referred to as curse of three-letter words. The main reason behind the curse is insufficient degrees of

freedom for fitting a second-order model, which has 10 parameters for three factors. Three columns

form a three-letter word if the level combinations of any two columns completely determine the

level of the third column. For example, columns 1, 3 and 4 of Table 10(i) form a three-letter

word. It is clear that a three-factor projection (with three levels) has only nine distinct runs if

the three factors form a three-letter word. The following lemma shows the relationship between

projected A3 values and curse of three-letter word, and gives a necessary and sufficient condition

for a three-factor projection to be free of three-letter words.
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Lemma 2. For an s-level OA, the projected A3 value of any three-factor projection is less than or

equal to s− 1, and the equality holds if and only if the three factors form a three-letter word.

Its proof is given in the Appendix. From Lemma 2, a three-factor projection of a three-level design

is free of three-letter word if and only if its projected A3 value is strictly less than two. Since the

projection aberration criterion first minimizes the frequency of projected A3 value of 2, optimal

designs based on it would have a maximum number of eligible three-factor projections.

CW showed that for regular designs, any three-factor or four-factor projection is eligible if it is

free of any three-letter word. Our study for 18- and 27-run designs suggests that the following may

be true for general designs: “any three-factor projection is eligible if it is free of any three-letter

word”. We have counter examples (see Section 4.1) to show that a four-factor projection can be

ineligible even if it is free of any three-letter word.

There is also a close relationship between projected A3 values and estimation efficiency. The

projected A3 value captures an important property of three-factor projection, i.e., the number of

distinct runs.

Example 4. Consider 3-factor projections from 18-run OAs. A complete search shows that there

are four combinatorially-nonisomorphic 3-factor projections, which can be obtained by choosing

three columns of the OA in Table 10(ii). Their A3 values, numbers of distinct runs and average D3

values are as follows:

A3
1
2

2
3 1 2

Distinct Runs 18 17 15 9
Average D3 0.882 0.864 0.82 0

where the average D3 is the average D-efficiency of all possible 27 combinatorially-isomorphic

designs resulted from level permutations (see Section 3.1 for discussion on level permutations).

Evidently the A3 value completely characterizes the estimation efficiency in this example.

Example 5. Consider 3-factor projections from 27-run OAs. A complete search shows that there

are nine combinatorially-nonisomorphic 3-factor projections. Their A3 values, numbers of distinct

runs and average D3 values are as follows:

A3 0 8
27

4
9

14
27

2
3

2
3

20
27

10
9 2

Distinct Runs 27 23 21 20 19 18 18 15 9
Average D3 0.932 0.904 0.889 0.881 0.864 0.864 0.855 0.805 0
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A 33 full factorial design has 27 distinct runs and A3 = 0 while a regular 33−1 design has 9 distinct

runs and A3 = 2. A nonregular OA(27, 33) has an A3 value between 0 and 2. Again, it is evident

that the smaller the A3 value, the larger the number of distinct runs, and hence the higher the

estimation efficiency.

2.4 A Three-Step Approach for Design Search

CW noted that combinatorial isomorphism cannot fully discriminate between designs. Through

level permutation, a design can be changed to combinatorially isomorphic designs with different

geometric structures and thus different eligibility and estimation efficiency. They referred to these

designs as model nonisomorphic designs. Because combinatorially isomorphic designs have the same

generalized wordlength pattern, neither GMA nor projection aberration criterion can discriminate

between them. After optimal designs are chosen based on these criteria, the levels of factors of the

design should be permuted to further improve eligibility and estimation efficiency. Summarizing

the discussions in this section, we propose the following three-step approach to search for optimal

projective designs for factor screening and interaction detection among OAs.

Step 1. Use the overall A3 value to screen out poor OAs for factor screening.

Step 2. Apply the projection aberration criterion to select a best design among the designs chosen

in Step 1.

Step 3. Determine the best level permutations of the design chosen in Step 2 for further improve-

ment on eligibility and estimation efficiency.

In the three-step approach, various design properties are sequentially examined. For each step,

only those designs that are qualified in the previous step are kept for later comparison. As mentioned

earlier, the overall A3 value and the projection aberration criterion may not be consistent in ranking

designs. Designs with large overall A3 values but low projection aberration may be screened out

in Step 1 and therefore have no chance to be compared in Step 2. When the computational load

is not too heavy or the number of designs for comparison not too large, it is recommended that

both criteria should be applied to all designs. When the two criteria lead to different rankings,

some trade-off is required. When the number of factors is large, factor screening is probably more

important than interaction detection; hence, a design with minimum overall A3 value is preferred.
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On the other hand, for a small to moderate number of factors, interaction detection is probably

more important, which favors designs with less projection aberration.

3 Construction Methods for Nonregular Orthogonal Arrays

Traditionally, only a few OAs are used for a given run size and many commonly used OAs are

regular designs. As CW observed, regular designs are not efficient for the dual purposes. Here we

consider methods for constructing nonregular OAs. Section 3.1 presents a combinatorial method

and level permutations that can produce a large number of nonisomorphic OAs. For a systematic

study, Section 3.2 proposes computational algorithms to handle the huge collection of designs.

3.1 A Combinatorial Method and Level Permutations

Here we present a general construction method, which is an extension of the difference matrix

method in Wang and Wu (1991). Let G be an additive group of s elements denoted by {0, 1, . . . , s−

1}, s being a prime number. An n × k matrix with elements from G, denoted by Dn,k;s, is called

a difference matrix if, among the differences, modulus s, of the corresponding elements of any two

columns, each element of G occurs exactly n/s times. For two matrices U of order n1 × m1 and

V = (vij) of order n2 × m2, define their Kronecker sum to be U ⊕ V = (Uvij ), a matrix of order

(n1n2)× (m1m2), where each partition Uvij = (U + vij) (mod s) is a matrix of order n1 ×m1. It

is known (e.g., Wang and Wu 1991) that the Kronecker sum U ⊕ V is an OA(NM, slk) if U is an

OA(N, sl) and V is a difference matrix DM,k;s. Here we generalize the Kronecker sum as follows.

For two n×m partitioned matrices U = [Uij ] and V = [Vij ], define the generalized Kronecker sum

to be U ⊗ V = [Uij ⊕ Vij ]. Let

Ui = (Ui1, . . . , Uim) and Vj =


V1j

...
Vnj

 .

Suppose Uij is an OA(N, s
lj
j ), Ui is an OA(N, sl1

1 · · · slm
m ) and Vj is a difference matrix DM,kj ;sj

for

i = 1, . . . , n and j = 1, . . . ,m. It can be shown, by following the proof in Wang and Wu (1991), that

U ⊗ V is an OA(NM, sl1k1
1 · · · slmkm

m ). It is important to note that both row and column partitions

are allowed for the matrix U while in Wang and Wu’s original construction, only column partitions

are allowed for the matrix U . Therefore, their method is a special case with n = 1. Following

Wang and Wu (1991), we can enlarge the OAs by adding 0N ⊕ LM to U ⊗ V , where 0N is the
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N × 1 vector of zeros and LM is an OA of M runs. Many combinatorially-nonisomorphic OAs can

be constructed by choosing various difference matrices for each column of the OAs or by choosing

different OAs for each row of the difference matrix.

This generalization allows the construction of nonregular OAs such as OA(27, 313) in Table

11(i). The key step is to choose a different OA for each row of the difference matrix. This is

illustrated in the following example.

Example 6. Let a = (0, 0, 0, 1, 1, 1, 2, 2, 2)′, b = (0, 1, 2, 0, 1, 2, 0, 1, 2)′, c = a + b, d = a − b, U1 =

(a, b, c, d), U2 = (a, b, 2c+2, d+1), V1 = (0, 0, 0), V2 = (0, 1, 2), and V3 = (0, 2, 1), modulus 3. Then
 U1

U1

U1

⊗

 V1

V2

V3

 , 09 ⊕ L3

 =

 U1 ⊕ V1 09

U1 ⊕ V2 19

U1 ⊕ V3 29


and 

 U1

U2

U1

⊗

 V1

V2

V3

 , 09 ⊕ L3

 =

 U1 ⊕ V1 09

U2 ⊕ V2 19

U1 ⊕ V3 29


are two nonisomorphic OA(27, 313)’s, where L3 = (0, 1, 2)′ and i9 is the 9 × 1 vector of i’s. It is

more convenient to rewrite these two designs in the following form: a b c d a b c d a b c d 09

a b c d a + 1 b + 1 c + 1 d + 1 a + 2 b + 2 c + 2 d + 2 19

a b c d a + 2 b + 2 c + 2 d + 2 a + 1 b + 1 c + 1 d + 1 29

 (mod 3),

and a b c d a b c d a b c d 09

a b 2c + 2 d + 1 a + 1 b + 1 2c d + 2 a + 2 b + 2 2c + 1 d 19

a b c d a + 2 b + 2 c + 2 d + 2 a + 1 b + 1 c + 1 d + 1 29

 (mod 3).

It is easy to see that the first design is isomorphic to a regular design while the second design, given

in Table 11(i), is not.

When level permutations are also considered, more model-nonisomorphic OAs can be con-

structed. For simplicity, only three-level designs are considered here. The extension to general

levels is obvious. Table 3 shows six different level permutations for a three-level factor, which can

also be expressed through modulo operation: p0(x) = x, p1(x) = x + 1, p2(x) = x + 2, p3(x) = 2x,

p4(x) = 2x + 1, and p5(x) = 2x + 2 (mod 3) for x = 0, 1, 2. It is easy to see from Table 3 that

p5, p4, and p3 are reflections of p0, p1, and p2, respectively. That is, p5 (resp. p4 and p3) becomes
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Table 3: Six Level Permutations for a Three-Level Factor

Permutations
Level p0 p1 p2 p3 p4 p5

0 0 1 2 0 1 2
1 1 2 0 2 0 1
2 2 0 1 1 2 0

p0 (resp. p1 and p2) if levels 0 and 2 are exchanged. Because reflection of a factor (around level

1) does not change the geometric structure of a design, the projection properties, such as Ei’s and

D̄i’s, are unchanged under reflection. Therefore, only p0, p1, and p2 shall be considered among the

six permutations.

Example 7. In the set-up for Example 6, consider an OA(27, 38):

d4 :

 a b c d a c b d

a b 2c + 2 d + 1 a + 1 2c b + 2 d

a b c d a + 2 c + 2 b + 1 d + 1

 (mod 3),

which is a subdesign (columns 1-5,7,10,12) of Table 11(i). Applying p3 on the 6th and 8th columns,

we obtain

d5 :

 a b c d a 2c b 2d

a b 2c + 2 d + 1 a + 1 c b + 2 2d

a b c d a + 2 2c + 1 b + 1 2d + 2

 (mod 3),

which is the nonregular design constructed by CW via a different (but related) method. Applying

p1 on the 6th and 8th columns and p2 on the 7th column of d4, we obtain

d6 :

 a b c d a c + 1 b + 2 d + 1
a b 2c + 2 d + 1 a + 1 2c + 1 b + 1 d + 1
a b c d a + 2 c b d + 2

 (mod 3).

These three designs are combinatorially isomorphic; therefore, they are equivalent under the GMA

or projection aberration criterion. However, they are not model-isomorphic and have different

eligibilities. All three-factor and four-factor projections are eligible for the three designs, but the

numbers of ineligible five-factor projections for d4, d5, and d6 are 3, 1, and 0, respectively. This

example shows that a large number of model-nonisomorphic designs can be constructed through

level permutations for some columns. The question of finding best level settings will be discussed

in Section 3.2.
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3.2 Computational Algorithms

While the previous combinatorial method has the advantage that the properties and structures of its

constructed designs can be studied theoretically, there are other and sometimes better nonregular

designs that cannot be obtained from using this method. Our second construction method is via

computational algorithms.

To generate more OAs efficiently, we adopt an efficient algorithm due to Xu (2002), download-

able at http://www.stat.ucla.edu/~hqxu. This algorithm enables us to construct many 18- and

27-run OAs with different projection properties efficiently. For example, we found an OA(27, 313)

(given in Table 11(ii)) that has 100% eligible three-, four- and five-factor projections. To our

knowledge, none of the combinatorial methods described in Dey and Mukerjee (1999) and Hedayat,

Sloane, and Stufken (1999) can produce such a design. Indeed, any 27-run design constructed by

the combinatorial method described in the previous section must have some three-letter words if

it has more than eight factors; therefore, some of the three-, four-, five-factor projections would be

ineligible.

We also propose algorithms to determine the best level permutations. As mentioned earlier, we

need to consider three permutations for a three-level factor. For n factors, there are 3n possible

level permutations. When n is not large, a complete search can be performed to determine the best

level permutation. Otherwise, the following two column-wise greedy methods can be used.

Method I. (Sequential greedy) Start with the first column and permute three levels in that

column with other columns fixed. Find and fix the best level setting for that column. Go to the

next column or the first column if it is the last column. Repeat this procedure until no improvement

is seen for n consecutive times.

Method II. (Random greedy) Randomly select one column and permute three levels in that

column with other columns fixed. Find and fix the best level setting for that column. Repeat this

procedure until no improvement is seen for some consecutive times, say k = 10.

Example 8. Consider the level permutation of d4 in Example 7. The results are shown in Table 4.

The original design d4 has three (out of 56) ineligible five-factor projections (see E5 = 53 in the row

“no permutation”). Three methods find three different combinations of level permutations, which

are listed under the column “level permutation”. In a combination, each permutation is applied to

a column in d4. For example, in Table 4, the best combination of level permutations in the complete

search is (p0, p0, p0, p0, p0, p1, p2, p1). It means that no level permutation is required for columns
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Table 4: A Comparison of Algorithms for Level Permutations

Method E3 E4 E5 D̄3 D̄4 D̄5 Seconds Level Permutation

No Permutation 56 70 53 0.891 0.767 0.595 0 p0 p0 p0 p0 p0 p0 p0 p0

Sequential Greedy 56 70 56 0.892 0.772 0.609 58 p2 p2 p2 p0 p0 p0 p0 p0

Random Greedy 56 70 56 0.892 0.769 0.601 74 p0 p2 p0 p1 p0 p1 p0 p0

Complete Search 56 70 56 0.892 0.772 0.609 12801 p0 p0 p0 p0 p0 p1 p2 p1

1–5, the 6th and 8th columns should be permuted by p1, and the 7th column by p2. The design

found by the complete search is the same as d6 constructed in Example 7. All methods succeed in

finding level permutations such that all 56 five-factor projections are eligible (i.e., E5 = 56). After

level permutations, the estimation efficiencies also increase (e.g., D̄3 increases from 0.891 to 0.892).

The complete search takes more than 200 minutes on a Sun Sparc workstation with 400M CPU

while the sequential or random greedy search takes only about one minute.

4 Optimal Designs

In this section, we use the combinatorial and algorithmic methods to construct many new OAs

with 18 and 27 runs, and then apply the three-step procedure to compare and rank them.

4.1 18-Run Designs

An 18-run OA can screen up to seven three-level factors. CW studied the commonly used OA given

in Table 10(i) under the projection-efficiency criteria. A question is whether the design is optimal

within a broader class of OAs.

First, by using Xu’s (2002) algorithm, we generate 1,000 OA(18, 37)’s randomly. All these OAs

have the same generalized wordlength pattern (0, 0, 22, 34.5, 27, 31, 6); therefore, the GMA criterion

cannot distinguish between them. Then we apply the projection aberration criterion and find that

they fall into three classes. For illustration, we list three OAs in Table 10, each representing one

class. The design in Table 10(i) is from standard textbooks (e.g., Wu and Hamada 2000, p. 335),

and the other two constructed via the algorithm are chosen arbitrarily.

Table 5 shows the overall A3’s, projection frequencies, Ei’s, and D̄i’s for the three arrays given

in Table 10. All three arrays have one three-factor projection that has nine distinct runs (i.e.,
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Table 5: Comparison of OA(18, 37)

Overall Proj. A3 Freq.
Array A3

1
2

2
3 1 2 E3 E4 E5 D̄3 D̄4 D̄5

(i) 22 28 0 6 1 34 31 0 0.876 0.704 0
(ii) 22 20 12 2 1 34 28 0 0.871 0.684 0
(iii) 22 16 18 0 1 34 31 0 0.876 0.689 0

A3 = 2). The projection aberration criterion would choose array (iii) because it has no projection

with A3 = 1 and the other two arrays have at least two projections with A3 = 1 (which has 15

distinct runs). However, the difference is not substantial. Because all arrays have one three-letter

word (i.e., A3 = 2), they have the same number of eligible three-factor projections (i.e., E3 = 34).

Both arrays (i) and (iii) have 31 (out of 35) eligible four-factor projections while array (ii) has

28. As explained in CW, for 18-run designs, the degrees of freedom are not enough to entertain

any second-order model with five factors; therefore, any five-factor projection is ineligible. Level

permutations can increase the eligibility and estimation efficiency of the projections. A complete

search is performed for each array. The best level permutations are (p0, p0, p0, p0, p0, p0, p0), (p2,

p0, p2, p1, p0, p0, p0), and (p2, p0, p2, p2, p1, p0, p2) for arrays (i), (ii), and (iii), respectively (see

Table 6, n = 7). After level permutations, they have the same eligibility (E3 = 34, E4 = 31, E5 = 0)

and similar estimation efficiency. For array (i), there is no improvement (because no permutation

is done); for array (ii), D̄3 increases from 0.871 to 0.881 and D̄4 increases from 0.684 to 0.694; for

array (iii), D̄4 increases from 0.689 to 0.692. Therefore, after level permutations, these three arrays

are competitive under the projection-efficiency criteria. It is interesting to point out that the three

4-factor projections (2, 4, 5, 6), (2, 4, 5, 7), and (3, 5, 6, 7) from array (ii) are ineligible even if they

are free of 3-letter words. They become eligible after level permutation (i.e., E4 increases from 28

to 31).

Next, we consider subdesigns from these arrays. For each array, we search for the best n-factor

subdesigns by applying the three-step procedure for all n with 3 ≤ n ≤ 7. In the construction,

Step 1 keeps all subdesigns with smallest overall A3 values, Step 2 selects one best design under

projection aberration criterion, and Step 3 uses a complete search. Table 6 shows the chosen

designs, the projection properties, and level permutations for each n. For example, if a four-factor

design is required from array (iii), we should choose columns 1, 3, 5, and 6 according to Table 6(iii).
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Table 6: 18-Run Optimal Designs from Table 10

Overall Proj. A3 Freq.
Array n A3

1
2

2
3 1 2 E3 E4 E5 D̄3 D̄4 D̄5 Columns Level Permutation

(i) 3 0.5 1 0 0 0 1 0 0 0.89 0 0 2 3 4 p0 p0 p0

(i) 4 2 4 0 0 0 4 1 0 0.89 0.74 0 2 3 4 5 p0 p0 p0 p0

(i) 5 5 10 0 0 0 10 5 0 0.89 0.74 0 2 3 4 5 6 p0 p0 p0 p0 p0

(i) 6 10 20 0 0 0 20 15 0 0.89 0.74 0 2 3 4 5 6 7 p0 p0 p0 p0 p0 p0

(i) 7 22 28 0 6 1 34 31 0 0.88 0.70 0 1 2 3 4 5 6 7 p0 p0 p0 p0 p0 p0 p0

(ii) 3 0.5 1 0 0 0 1 0 0 0.89 0 0 1 2 5 p0 p0 p1

(ii) 4 2 4 0 0 0 4 1 0 0.89 0.74 0 2 3 4 6 p0 p0 p0 p1

(ii) 5 5.67 6 4 0 0 10 5 0 0.89 0.71 0 2 3 4 5 6 p0 p0 p1 p0 p2

(ii) 6 11.33 12 8 0 0 20 15 0 0.89 0.71 0 2 3 4 5 6 7 p0 p1 p0 p0 p2 p2

(ii) 7 22 20 12 2 1 34 31 0 0.88 0.69 0 1 2 3 4 5 6 7 p2 p0 p2 p1 p0 p0 p0

(iii) 3 0.5 1 0 0 0 1 0 0 0.89 0 0 1 2 4 p0 p0 p0

(iii) 4 2 4 0 0 0 4 1 0 0.89 0.74 0 1 3 5 6 p0 p1 p0 p2

(iii) 5 6 4 6 0 0 10 5 0 0.88 0.71 0 1 2 3 4 5 p1 p1 p0 p2 p2

(iii) 6 12 8 12 0 0 20 15 0 0.88 0.71 0 1 2 3 4 5 6 p1 p0 p0 p1 p1 p2

(iii) 7 22 16 18 0 1 34 31 0 0.88 0.69 0 1 2 3 4 5 6 7 p2 p0 p2 p2 p1 p0 p2
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These four columns form an OA(18, 34) which has minimum overall A3 value of 2 and minimum

projection aberration. Its levels should be permuted as (p0, p1, p0, p2). After the level permutations,

its eligibility and efficiency are E3 = 4, E4 = 1 and D̄3 = 0.89, D̄4 = 0.74.

From Table 6, we observe that the best subdesigns (for 3 ≤ n ≤ 6) can always be found from

array (i) for all the criteria. Indeed, this is supported by a theoretical result. Applying Theorem 2

and Corollary 4 in Xu (2003), it can be shown that any subdesign not containing the first column of

Table 10(i) has GMA and minimum projection aberration among all possible designs. In addition,

all three- and four-factor projections not containing the first column are eligible and have the same

estimation efficiencies.

In summary, the commonly used OA given in Table 10(i) and its subdesigns not containing the

first column are recommended because any subdesign not containing the first column is optimal

under the GMA and projection aberration criteria.

4.2 27-Run Designs

A 27-run OA can screen up to 13 three-level factors. CW studied the commonly used 27-run regular

designs under the projection-efficiency criteria. They showed that minimum aberration designs are

optimal among regular designs. They also gave an example to illustrate that nonregular designs

may have higher projection-efficiency and are thus better than regular designs. Here we apply the

construction methods in Section 3 and the three-step procedure in Section 2 to search for optimal

designs in a much broader class of OAs.

First, we arbitrarily generate 100 OA(27, 313)’s by applying the construction methods in Sec-

tion 3. According to Xu and Wu (2001), all these (saturated) OAs have the same generalized

wordlength pattern (0, 0, 104, 468, . . .); therefore, they are indistinguishable under the GMA crite-

rion. Next we consider the projection aberration and projection-efficiency criteria. For illustration,

we compare three designs: the regular 313−10 design, the nonregular OA(27, 313) constructed in

Example 6, and a nonregular OA(27, 313) constructed via Xu’s algorithm. The two nonregular

designs are given in Table 11 and referred to as nonregular design (i) and (ii), respectively. Table 7

shows the projection properties for the three arrays. The regular design has a simple projection

pattern: A three-factor projection is either a 33 full factorial (i.e., projected A3 = 0) or a 33−1

design (i.e., projected A3 = 2). Among the 286 three-factor projections, the regular design has 52

projections with three-letter words (i.e., projected A3 = 2) and therefore has 52 ineligible three-
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Table 7: Comparison of OA(27, 313)

Overall Projected A3 Frequency
Array A3 0 8

27
4
9

14
27

2
3

20
27

10
9 2 E3 E4 E5 D̄3 D̄4 D̄5

Regular 104 234 0 0 0 0 0 0 52 234 234 0 0.93 0.86 0
Nonregular (i) 104 162 0 54 0 27 0 27 16 270 567 693 0.90 0.79 0.61
Nonregular (ii) 104 78 0 156 0 52 0 0 0 286 715 1287 0.90 0.78 0.62

factor projections (and E3 = 234); the nonregular design (i) has 16 projections with three-letter

words and therefore has 16 ineligible three-factor projections (and E3 = 270); the nonregular design

(ii) has no projection with three-letter word and therefore has no ineligible three-factor projection

(and E3 = 286). The number of eligible three-, four-, and five-factor projections are 234(82%),

234(33%), and 0(0%) for the regular design; 270(94%), 567(79%), and 693(54%) for the nonregular

design (i); and 286(100%), 715(100%), and 1287(100%) for the nonregular design (ii), respectively.

Therefore, under both the projection aberration and projection-efficiency criteria, the regular design

is the worst and the nonregular design (ii) is the best. The nonregular design (ii) has the property

that all its three-, four-, and five-factor projections are eligible and the estimation efficiencies are

D̄3 = 0.90, D̄4 = 0.78, and D̄5 = 0.62. Now consider level permutations. For the regular design,

the eligibility cannot be improved because of its three-letter words; for the nonregular design (i),

the eligibility of five-factor projection is improved from E5 = 693 to E5 = 714 after the level per-

mutations given in Table 8(i) under n = 13; for the nonregular design (ii), the eligibility cannot be

improved (because it is already maximized) while the estimation efficiency D̄5 is slightly improved

from 0.62 to 0.63 after the level permutations given in Table 8(ii) under n = 13.

Next, we consider subdesigns from the two nonregular OAs. For each array, we search for

the best n-factor subdesigns by applying the three-step procedure for all n with 4 ≤ n ≤ 13. In

the construction, Step 1 keeps all subdesigns with smallest overall A3 values, Step 2 selects one

best design under projection aberration, and Step 3 uses a complete search if n < 9 and either

a sequential or a random greedy search (with k = 10 tries) if n ≥ 9. Table 8 shows the chosen

designs, the projection properties, and level permutations for each n. For example, if an eight-

factor design is required from Table 11(ii), we shall choose columns 1-4, 6-7, 11, and 13 according

to Table 8(ii). The eight columns form an OA(27, 38) which has the smallest overall A3 value of

19.11 and minimum projection aberration (among all eight-factor subdesigns from Table 11(ii)).
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Among its 56 three-factor projections, 17 projections are full factorials (i.e. A3 = 0), 31 projections

have an A3 value of 4/9, and eight projections have an A3 value of 2/3. From Table 8(ii), the level

permutations are (p0, p1, p0, p1, p2, p0, p0, p1). The projection-efficiency of the resulting design

is E3 = 56, E4 = 70, E5 = 56, D̄3 = 0.90, D̄4 = 0.79, and D̄5 = 0.64. Note that this design has

less projection aberration and higher projection-efficiency than all OA(27, 38)’s considered earlier

in Examples 7 and 8.

It is interesting to compare the chosen designs in Table 8(i) and (ii). For n = 4, the two designs

are equivalent (to a regular 34−1 design). For n = 11, 12, 13, the designs from both tables have

the same overall A3 values, and the designs from Table 8(ii) have less projection aberration and

better projection-efficiency than those from Table 8(i). Therefore, designs from Table 8(ii) are

recommended. For 5 ≤ n ≤ 10, the situation is more complicated. The designs from Table 8(ii)

have larger overall A3 values, less projection aberration and better projection-efficiency than those

from Table 8(i). The choice of these designs depends on the objective. If factor screening is the

primary task, we shall choose designs from Table 8(i) because they have smaller overall A3 values.

If interaction detection is the primary task, we shall choose designs from Table 8(ii) because all

their three-, four-, and five-factor projections are eligible and have high efficiency.

In the preparation of the manuscript, we learned that there are exactly 68 combinatorially-

nonisomorphic OA(27, 313)’s (Lam and Tonchev 1996). Therefore, we further searched for optimal

designs from all these 68 arrays. We found that the nonregular design (ii) given in Table 11(ii)

has minimum projection aberration and that the designs given in Table 8(i) have GMA among all

possible subdesigns from these 68 saturated OAs.

Because many 27-run OAs are not part of any saturated OA, we used algorithms to search for

optimal designs. For each n, 4 ≤ n ≤ 12, we constructed 1,000 OA(27, 3n)’s by using Xu’s algorithm

and ranked them according to their overall A3 values and projected A3 values. We observed that

their overall A3 values are always larger than or equal to those given in Table 8(i). In other words,

the designs given in Table 8(i) have minimum contamination. We also found many new OAs that

are not part of any saturated OA and have less projection aberration than those given in Table 8 for

5 ≤ n ≤ 10. Table 12 lists the best OA(27, 3n) under the projection aberration criterion for each n

and Table 9 shows their projection properties. Level permutation algorithms have been applied to

improve the projection-efficiency. Compared to the designs given in Table 8(ii), these new designs

have slightly larger (i.e., worse) overall A3 values, less (i.e., better) projection aberration, the same
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eligibility, and similar efficiency.

In summary, Table 11(ii) and its subdesigns given in Table 8(ii) are recommended because all

their three-, four-, and five-factor projections are eligible and have high efficiencies.

5 Summary and Further Remarks

For factor screening and interaction detection, we propose computationally efficient criteria for

ranking three-level designs. We show that the generalized wordlength pattern is closely related

to various design properties: contamination, eligibility and estimation efficiency. In the three-step

approach, these criteria are combined to sequentially search for optimal designs. Although we focus

on three-level designs, this approach can be applied to designs with any number of levels because

the generalized wordlength pattern is not restricted to three levels. In order to obtain more OAs

for comparison, both combinatorial and algorithmic construction methods are proposed, and two

versions of a search algorithm are presented for level permutations. Some 18- and 27-run optimal

designs are found.

In the paper, only A3 values (overall and projected) are used in ranking designs. For designs

with small run size, use of the A3 values suffices for discriminating and ranking designs. Because

lower-dimensional projections are more important than higher-dimensional projections, there is no

need to use A4 values when A3 can do the job. However, for large run size (e.g., 81), there are

many designs with zero overall and projected A3 values. These designs are equally good under the

current contamination and projection aberration criteria. In this case, the projection aberration

criterion should be modified and extended to A4 values. The extension of projection frequency to

A4 values is straightforward. Because the overall A4 value is not related to the aliasing between

main effects and two-factor interactions, there is no need to extend the contamination criterion to

A4. Therefore, Step 1 in the three-step approach should be dropped.

For the construction of OAs, the algorithmic approach in Section 3.2 is very flexible and effective

for small run size, such as 18 and 27, and outperforms the combinatorial method. However, it

is computationally prohibitive (or even infeasible) for larger run size like 81. In this situation,

combinatorial construction should be used until the algorithm can be further improved.
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Appendix: Proof of Lemma 2

Proof. Let d be a three-factor projection of an OA with N runs and s levels, denoted by 0, 1, . . . , s−

1. For i, j, k = 0, 1, . . . , s−1, let f(i, j, k) be the number of times that the level combination (i, j, k)

appears in d. It is clear that
∑s−1

k=0 f(i, j, k) = Ns−2 for i, j = 0, . . . , s− 1 since d is an OA. Then

s−1∑
i=0

s−1∑
j=0

s−1∑
k=0

f(i, j, k)2 ≤
s−1∑
i=0

s−1∑
j=0

[
s−1∑
k=0

f(i, j, k)

]2

=
s−1∑
i=0

s−1∑
j=0

[
Ns−2

]2 = N2s−2,

where the equality holds if and only if for each pair of i, j, there is a unique k such that f(i, j, k) =

Ns−2. In other words, the equality holds if and only if the factor levels of the first two columns

completely determine the factor level of the third column, i.e., the three factors form a three-

letter word. On the other hand, let B0 = N−1
∑s−1

i=0

∑s−1
j=0

∑s−1
k=0 f(i, j, k)2. By applying some

fundamental results from coding theory, Xu and Wu (2001) showed that B0 is a linear combination

of the generalized wordlength pattern. Specifically, for a design of N runs and three s-level factors,

B0 = Ns−3(1 + A1 + A2 + A3). From Xu and Wu (2001), A1 = A2 = 0 for an OA. Therefore,

A3 = N−1s3B0 − 1 ≤ s − 1, where the equality holds if and only if the three factors form a

three-letter word.
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Table 9: 27-Run Optimal Designs from Table 12

Overall Projected A3 Frequency
n A3 0 8

27
4
9

14
27

2
3

20
27

10
9 2 E3 E4 E5 D̄3 D̄4 D̄5 Array

5 3.11 0 9 1 0 0 0 0 0 10 5 1 0.92 0.82 0.69 oa27.5
6 7.56 0 9 11 0 0 0 0 0 20 15 6 0.91 0.81 0.68 oa27.6
7 12.3 1 21 9 4 0 0 0 0 35 35 21 0.90 0.80 0.65 oa27.7
8 20.37 5 24 10 17 0 0 0 0 56 70 56 0.90 0.79 0.64 oa27.8
9 30.3 10 32 23 14 5 0 0 0 84 126 126 0.90 0.79 0.64 oa27.9
10 43.93 19 31 39 22 9 0 0 0 120 210 252 0.90 0.79 0.63 oa27.10

Table 10: OA(18, 37)

(i) (ii) (iii)

Run 1 2 3 4 5 6 7

1 0 0 0 0 0 0 0
2 0 1 1 1 1 1 1
3 0 2 2 2 2 2 2
4 1 0 0 1 1 2 2
5 1 1 1 2 2 0 0
6 1 2 2 0 0 1 1
7 2 0 1 0 2 1 2
8 2 1 2 1 0 2 0
9 2 2 0 2 1 0 1

10 0 0 2 2 1 1 0
11 0 1 0 0 2 2 1
12 0 2 1 1 0 0 2
13 1 0 1 2 0 2 1
14 1 1 2 0 1 0 2
15 1 2 0 1 2 1 0
16 2 0 2 1 2 0 1
17 2 1 0 2 0 1 2
18 2 2 1 0 1 2 0

Run 1 2 3 4 5 6 7

1 0 2 0 0 1 2 2
2 1 1 0 1 0 2 1
3 2 2 0 1 2 0 0
4 0 0 2 0 0 0 0
5 1 0 1 1 1 1 0
6 2 0 1 2 0 2 2
7 0 2 1 2 2 1 1
8 1 1 2 2 2 0 2
9 2 1 2 0 1 1 1

10 0 1 0 2 0 1 0
11 1 2 1 0 0 0 1
12 2 1 1 0 2 2 0
13 0 1 1 1 1 0 2
14 1 2 2 2 1 2 0
15 2 2 2 1 0 1 2
16 0 0 2 1 2 2 1
17 1 0 0 0 2 1 2
18 2 0 0 2 1 0 1

Run 1 2 3 4 5 6 7

1 0 1 0 2 1 0 2
2 1 0 1 2 0 0 1
3 2 2 2 0 1 0 1
4 0 0 2 1 1 1 0
5 1 1 2 0 0 2 0
6 2 0 1 0 2 1 2
7 0 2 1 1 0 2 2
8 1 1 0 1 2 1 1
9 2 2 0 2 2 2 0

10 0 0 2 2 2 2 1
11 1 0 0 0 1 2 2
12 2 1 1 1 1 2 1
13 0 1 1 0 2 0 0
14 1 2 2 1 2 0 2
15 2 1 2 2 0 1 2
16 0 2 0 0 0 1 1
17 1 2 1 2 1 1 0
18 2 0 0 1 0 0 0
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Table 11: OA(27, 313)

(i) (ii)

Run 1 2 3 4 5 6 7 8 9 10 11 12 13

1 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 1 2 0 1 1 2 0 1 1 2 0
3 0 2 2 1 0 2 2 1 0 2 2 1 0
4 1 0 1 1 1 0 1 1 1 0 1 1 0
5 1 1 2 0 1 1 2 0 1 1 2 0 0
6 1 2 0 2 1 2 0 2 1 2 0 2 0
7 2 0 2 2 2 0 2 2 2 0 2 2 0
8 2 1 0 1 2 1 0 1 2 1 0 1 0
9 2 2 1 0 2 2 1 0 2 2 1 0 0

10 0 0 2 1 1 1 0 2 2 2 1 0 1
11 0 1 1 0 1 2 2 1 2 0 0 2 1
12 0 2 0 2 1 0 1 0 2 1 2 1 1
13 1 0 1 2 2 1 2 0 0 2 0 1 1
14 1 1 0 1 2 2 1 2 0 0 2 0 1
15 1 2 2 0 2 0 0 1 0 1 1 2 1
16 2 0 0 0 0 1 1 1 1 2 2 2 1
17 2 1 2 2 0 2 0 0 1 0 1 1 1
18 2 2 1 1 0 0 2 2 1 1 0 0 1
19 0 0 0 0 2 2 2 2 1 1 1 1 2
20 0 1 1 2 2 0 0 1 1 2 2 0 2
21 0 2 2 1 2 1 1 0 1 0 0 2 2
22 1 0 1 1 0 2 0 0 2 1 2 2 2
23 1 1 2 0 0 0 1 2 2 2 0 1 2
24 1 2 0 2 0 1 2 1 2 0 1 0 2
25 2 0 2 2 1 2 1 1 0 1 0 0 2
26 2 1 0 1 1 0 2 0 0 2 1 2 2
27 2 2 1 0 1 1 0 2 0 0 2 1 2

NOTE: Constructed via
combinatorial method in Section 3.1.

Run 1 2 3 4 5 6 7 8 9 10 11 12 13

1 0 0 0 0 0 1 2 0 0 0 0 0 0
2 0 1 1 2 2 2 2 2 2 2 1 0 0
3 0 2 2 2 1 2 1 0 0 0 1 2 1
4 0 0 1 1 2 1 0 1 1 0 1 1 1
5 0 1 2 2 0 1 1 1 1 1 2 0 2
6 0 2 0 0 2 2 0 2 1 1 0 2 2
7 0 0 0 1 0 0 1 2 2 2 2 2 1
8 0 1 2 1 1 0 0 0 2 1 0 1 0
9 0 2 1 0 1 0 2 1 0 2 2 1 2

10 1 0 1 2 1 1 0 2 0 1 2 2 0
11 1 1 0 0 1 2 0 1 2 0 2 0 1
12 1 2 1 2 0 0 0 0 1 2 0 0 1
13 1 0 2 2 2 0 2 1 2 0 0 2 2
14 1 1 0 1 1 1 2 0 1 2 1 2 2
15 1 2 0 1 2 0 1 1 0 1 1 0 0
16 1 0 1 0 0 2 1 0 2 1 1 1 2
17 1 1 2 0 2 1 1 2 0 2 0 1 1
18 1 2 2 1 0 2 2 2 1 0 2 1 0
19 2 0 0 2 1 2 1 1 1 2 0 1 0
20 2 1 1 0 2 0 1 0 1 0 2 2 0
21 2 2 2 0 0 1 0 1 2 2 1 2 0
22 2 0 2 1 2 2 0 0 0 2 2 0 2
23 2 1 1 1 0 2 2 1 0 1 0 2 1
24 2 2 0 2 2 1 2 0 2 1 2 1 1
25 2 0 2 0 1 0 2 2 1 1 1 0 1
26 2 1 0 2 0 0 0 2 0 0 1 1 2
27 2 2 1 1 1 1 1 2 2 0 0 0 2

NOTE: Constructed via
algorithmic method in Section 3.2.
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