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Abstract 

Developmental research has focused on the challenges that 
fractions pose to students in comparison to whole numbers. 
Usually the issues are blamed on children’s failure to properly 
understand the magnitude of the fractional number because of 
its bipartite notation.  However, recent research has shown 
that college-educated adults can capitalize on the structure of 
the fraction notation, performing more successfully with 
fractions than decimals in relational tasks, notably analogical 
reasoning. The present study examined whether this fraction 
advantage also holds in a more standard mathematical task, 
judging the veracity of multiplication problems.  College 
students were asked to judge whether or not a multiplication 
problem involving either a fraction or decimal was correct.  
Some problems served as reciprocal primes for the problem 
that immediately followed it. Participants solved the fraction 
problems with higher accuracy than the decimals problems, 
and also showed significant relational priming with fractions.  
These findings indicate that adults can more easily identify 
relations between factors when rational numbers are 
expressed as fractions rather than decimals. 

Keywords: Relational reasoning; number concepts; fractions; 
decimals; priming; mathematics education 

Introduction 

Mathematical and Relational Reasoning 
The core of a deep conceptual understanding of 
mathematics is the realization that mathematics is a system 
of relations between quantities (Richland, Stigler & 
Holyoak, 2012). For example, understanding addition 
requires grasping the commutative property, a + b = b + a.  
This property essentially expresses an interchangeable 
relation between the two addends and their sum.  Not only is 
this understanding important for the concept of addition, but 
more broadly it provides an important stepping stone for 
more complex relations, such as the commutative property 
in multiplication and various algebraic expressions. 

Although it might seem obvious that developing a strong 
conceptual understanding of any topic within mathematics is 
important, the American education system often focuses on 
memorization of rote procedures (Stigler & Hiebert, 1999; 
Rittle-Johnson & Star, 2007).  This emphasis on procedures 
rather than conceptual understanding may have detrimental 
consequences for many areas within mathematics.   
 

Fractions as Relations 
One area of particular difficulty for students involves the 
procedural and conceptual understanding of rational 
numbers, and more specifically fractions. Fractions are 
closely linked to relational reasoning in that fractions are 
themselves relational expressions.  Much of the research 
directed at how children and adults understand fractions has 
focused on how people mentally represent magnitudes of 
fractions, and associated misconceptions about how their 
parts (numerators and denominators) affect their sizes (see 
Siegler, Fazio, Bailey & Zhou, 2013, for a review).  For 
example, Staflyidou and Vosniadou (2004) found that 
middle-school students typically have a misunderstanding 
that the value of a fraction increases when the numerator 
and denominator increase; or conversely, that the value of 
the fraction increases as the numerator and denominator 
decrease. Even among highly-educated college 
undergraduates, there is evidence that people do not 
represent fraction magnitudes with the same automaticity as 
the magnitudes of either whole numbers or decimals 
(DeWolf, Grounds, Bassok & Holyoak, 2013).  The 
multiple difficulties associated with fractions raise the 
question, what are fractions good for?  

A potential answer to this question may be found in the 
very aspect of fractions with which students seem to 
struggle the most: their bipartite (a/b) format.  This format 
allows fractions to represent relational expressions. 
Decimals, by contrast, typically represent a one-dimensional 
magnitude.  DeWolf, Bassok and Holyoak (2013, under 
review) found that the relational format of fractions is 
actually especially helpful for reasoning about relations 
between numbers and the sets or quantities that they are 
meant to represent.  Adults were better able to identify 
particular relationships (part-to-part ratio or part-to-whole 
ratio) between rational numbers and a set of visually-
displayed items when the rational number was shown as a 
fraction rather than as a decimal.  The fraction format allows 
for direct mapping between numbers within the fraction 
(numerator and denominator) and the sets or quantities they 
are meant to represent. 

It thus seems that fractions are useful for understanding 
relations between values and quantities. They may also be 
useful in understanding relations between numbers 
themselves, especially when used in complex expressions.  
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For example, specific multiplicative and division 
relationships exist between whole numbers.  Children learn 
about these relationships before they learn about fractions, 
when they are memorizing their multiplication and division 
tables.  For example, children learn early on that any even 
number is divisible by 2; and conversely, that multiplying 
any number by 2 results in an even number.   

Fractions often utilize and highlight these relationships.  
For example, we know that 6/8 can be reduced because both 
the numerator and denominator are divisible by 2, and 
therefore we can express the same relationship with an 
equivalent fraction (3/4).  Conversely, we know that 6/7 is 
not reducible because the numerator and denominator do not 
share any common factors. 

Because fractions inherently express a division 
relationship, using them when computing a multiplication or 
division problem involves understanding not only the 
relations within the multiplication and division problem 
itself, but also how these relate to the relations within the 
fraction.  Over the course of learning, students and teachers 
often seem to have trouble with multiplication and division 
with fractions.  Students may get confused because of the 
differing procedures between fraction multiplication and 
fraction addition—in the latter case one needs to find a 
common denominator, but in the former case this is not 
necessary (Siegler et al., 2011, 2013).  Even community-
college students seem to have difficulty determining 
whether to obtain common denominators or multiply each 
number individually (Stigler et al., 2010).  Similarly, a well-
known procedure for fraction division is the “invert and 
multiply” technique, in which one keeps the first factor, 
changes the division sign to a multiplication sign, and 
inverts the second factor.  Even prospective teachers show 
little understanding of this strategy and have difficulty 
explaining why this technique works (Tirosh, 2000).   

At the essence of all of these errors is a lack of true 
conceptual understanding of multiplication. Such 
understanding goes beyond simply conceptualizing 
multiplication as repeated addition (which does not fit well 
with the differences in procedures across arithmetic and 
multiplication with fractions).  Thompson and Saldanha 
(2003) proposed that understanding multiplication 
conceptually requires grasping multiple reciprocal 
relationships between the two factors, n and m, and their 
product nm (e.g., nm is n times as large as m; or conversely, 
n is 1/m times as large as nm).  Thus, multiplication with 
fractions involves a relationally rich context.   

Multiplication with decimals, the magnitude equivalents 
of fractions, is usually taught as a more natural extension of 
multiplication with whole numbers.  The procedures for 
decimal multiplication are essentially identical to whole-
number multiplication, with the extra aspect that place value 
in the final product is based on the number of decimal digits 
in the two factors (Hiebert & Wearne, 1985).  Over the 
course of learning, students at times struggle with assessing 
this place value, but in general seem to do better in adapting 
the procedures for decimal multiplication as compared to 
fraction multiplication (Behr & Post, 1992).   

The main goal of the present study was to assess whether 
college-educated adults demonstrate conceptually rich 
understanding of multiplication with rational numbers. 
Given its closer linkage to multiplication with whole 
numbers, it would be expected that multiplication with 
decimals should be easier (or at least no more difficult) than 
multiplication with fractions.  However, if highly-educated 
adults show a deeper conceptual understanding of the 
important relations between the division and multiplication 
relationships involved in fraction multiplication, then 
fraction multiplication might actually have an advantage 
over decimal multiplication. 

 
Relational Priming 
To provide a sensitive measure of possible differences in 
performance between fraction and decimal multiplication 
for highly-educated adults, we adapted a relational priming 
paradigm previously employed with verbal relations 
(Spellman, Holyoak & Morrison, 2001) to create an implicit 
measure of whether adults use the relationships within 
multiplication equations to their advantage.  In a product-
verification task, we primed certain multiplication equations 
by first showing their reciprocal equation.  For example, the 
equation 8 X 12/8 = 12 was preceded by the equation 12 X 
8/12 = 8.  The two fractions used are reciprocals, and the 
equations themselves are reciprocally related. If participants 
were able to isolate the important relationships in the first 
equation, then relations might be primed for use in 
determining whether the second equation is correct.  For 
comparison, we also used decimals in place of the fractions 
in the multiplication problems.  We thus tested whether 
fraction notation better highlights reciprocal relationships 
compared to a different type of notation, decimal numbers.  
In Experiment 1, we tested the difference in priming when 
problems with presented with fractions compared to 
decimals.  In Experiment 2, we examined whether this 
difference in priming would also hold when the equivalent 
fractions do not have identical whole number parts to those 
numbers in the rest of the expression (e.g., 8 X 3/2 = 12, 
rather than 8 X 12/8 = 12).   

Experiment 1 

Method 
Participants Participants were 60 undergraduates from the 
University of California, Los Angeles (UCLA) (mean age = 
20; 47 females) who received course credit.  Thirty 
participants were randomly assigned to two between-
subjects conditions. 
 
Design and Materials The study was a 2 (number type: 
fractions vs. decimals) X 2 (trial type: first trial vs. primed 
trial) X 2 (problem type: true vs. false) design, with number 
type as a between-subjects factor and trial type and problem 
type as within-subjects factors.   

2140



The stimuli were all multiplication problems with the 
form A X B/D = C, where B/D was either shown as a 
fraction or as its equivalent decimal rounded to two decimal  
places (e.g., 12 X 1/6 = 2 or 12 X .17 = 2).  There were a 
total of 240 problems, half of which were correct.   

Half of the trials consisted of prime pairs (a prime 
followed by its primed reciprocal).  Correct primed pairs 
were of the form A X B/A = B and B X A/B = A, where B/A 
and A/B share a reciprocal relationship.  For such pairs, if 
the participant correctly identifies the first trial in the pair as 
being true, and implicitly or explicitly recognizes the 
reciprocal relationship between the two pairs, then the 
second problem can be solved without needing to do any 
calculation to verify the product.  Incorrect primed pairs 
followed the same superficial relationship, but the product 
was incorrect for both trials (e.g., A X B/A = C and C X A/B 
= A).  The same reciprocal relationship holds between B/A 
and A/B, but the internal multiplicative relationship within 
each problem does not hold.  The order of appearance of the 
trials within each primed pair was random, so that some 
participants were primed with the A/B version of the 
equation and some were primed with the B/A version. 

The unprimed trials included a variety of foils and fillers.  
The true fillers followed the same form as the true prime 
trials, but some used other equivalent fractions as the second 
multiplier for variety (e.g., 8 X 3/2 = 12). In addition, false 
trials included perceptual foils related to the true trials (e.g., 
A X A/B = B instead of A X B/A = B). As with the prime 
trials, half of the unprimed trials were correct.  Problem 
order was varied so that participants saw true trials followed 
by true trials, false trials followed by false trials, and true 
trials followed by false trials and vice versa.  Accordingly, 
any priming effect could not be attributed to a general bias 
to hit the same key twice in succession, but rather could be 
attributed to the relational similarity between the primed 
trial and its preceding trial.   
 
Procedure Stimuli were displayed with Macintosh 
computers using Superlab 4.5, and response times and 
accuracy were recorded.  Participants were instructed that  
they would need to decide whether a series of multiplication 
problems were correct or incorrect.  If the problem was 

correct, they were instructed to hit the a key; if it was 
incorrect they were to hit the l key.  Participants were told 
that the answers were shown rounded to the nearest whole 
number.  As we were particularly interested in potentially 
subtle response time differences, participants were 
instructed to respond as quickly as possible while 
maintaining high accuracy. There was no time limit for 
responding.  They were first given four practice trials that 
used only whole numbers.  After the practice trials, they 
were given a chance to ask remaining questions before 
starting the test trials. 

Results 
Accuracy Across all problem types, participants were more 
accurate for fraction problems than decimal problems (90% 
vs. 78%; t(58) = 5.30,  p < .001).  Accuracy for each 
participant was averaged for each trial of each of the true 
and false primed pairs. Mean accuracy values for prime 
pairs (i.e., the prime problem on trial 1 and the primed 
problem on trial 2) are shown in Figure 1.  A 2 (number 
type) X 2 (trial type) X 2 (problem type) mixed factors 
ANOVA yielded a strong effect of number type favoring 
fractions over decimals (94% vs. 78%; F(1, 58) = 41.19, p < 
.001). There was no effect of trial type (F(1, 58) = .117, p = 
.733), indicating there was no general priming effect on 
accuracy. Also, there was no significant interaction between 
number type and trial type (F(1, 58) = .094, p = .761), and 
thus no differential priming effect for fractions over 
decimals in accuracy; nor was there a reliable 3-way 
interaction (F(1, 58) = .093, p = .762).  
 
Response Times Across all problem types, response times 
for fraction problems were faster than response times for 
decimal problems (2.76 s vs. 4.03 s; t(58) = 3.93, p = .001).  
Response times for each participant were averaged over 
each trial for each of the true and false primed pairs.  
Response times for incorrect answers were excluded from 
the analyses.  Mean response times are shown in Figure 2. A 
2 (number type) X 2 (trial type) X 2 (problem type) mixed 
factors ANOVA yielded a significant 3-way interaction 
(F(1, 58) = 8.27, p  = .006).  There was also a significant 2-
way interaction for the true primed pairs (F(1, 58) = 10.72, 

Figure 1. Percent correct for pairs of prime trials for true 
and false expressions, separated by number type 
(fraction or decimal) for Experiment 1. 

Figure 2. Response times for pairs of prime trials for 
true and false expressions, separated by number type 
(fraction or decimal) for Experiment 1. 
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p = .002), indicating a differential priming effect for 
fractions compared to decimals.  Planned comparisons 
revealed that for fraction problems, the second (primed) trial 
was significantly faster than the first (prime) trial (2.21 s vs. 
2.58 s; t(1, 29) = 3.08, p = .004).  By contrast, the decimal 
problems showed no significant difference for the primed 
trial relative to the priming trial (3.84 s vs. 3.58 s t(29) = 
1.72, p = .10).  Thus, response times show a significant 
speed-up consistent with a priming effect for fractions, but 
revealed no reliable priming effect for decimals.   

For the false prime trials, there was no effect of trial type 
(F(1, 58) = 3.158, p = .081) or number type (F(1, 58) = .08, 
p = .778), nor a significant 2-way interaction (F(1, 58) = 
.537; p = .467).  Thus, the priming effect on response times 
for fractions was only observed when the problems were 
correct.   

Experiment 2 

Method 
Participants Participants were 87 UCLA undergraduates 
(mean age = 20; 70 females) who received course credit.  
Twenty-nine participants were randomly assigned to three 
between-subjects conditions. 
 
Design, Materials and Procedure The design and 
materials were the same as used in Experiment 1, with the 
exception that an additional between-subjects condition was 
added.  This additional fraction condition contained true 
prime problems that were identical to the original fractions 
problems except that the fraction did not match one-to-one 
with the other whole numbers in the problem.  We term this 
condition “non-matching” fractions.  The original fraction 
condition from Experiment 1 will be referred to as the 
“matching” fractions condition.  For example, a problem in 
the matching fractions condition would be 12 X 8/12 = 8; 
for non-matching fractions, the corresponding problem 
would be 12 X 4/6 = 8; for decimals, 12 X .67 = 8.  The 
fractions in the non-matching condition were created by 
either multiplying the original fractions by 2/2 or 3/3 or by 
reducing the fractions by the same factors.  Because of these 
additional constraints, the set of problems used in 
Experiment 2 was slightly different from that used than 
Experiment 1, in order to increase the number of fraction 
problems in which equivalent fractions were possible to use.  
The non-matching and matching fractions conditions were 
identical for the foil problems and the false prime problems.  
The foil problems and false prime problems were identical 
to those used in Experiment 1. The procedure was also 
identical. 

Results 
Accuracy Across all problem types, participants were more 
accurate for the two types of fraction problems than for 

decimal problems (F(2, 84) = 8.17, p = .001). Planned 
comparisons showed that matching fraction accuracy was 
greater than decimal accuracy (91% vs. 83%; t(56) = 3.20, p 
= .002), and non-matching fraction accuracy was also 
greater than decimal accuracy (90% vs. 83%; t(56) = 3.10, p 
= .003).  There was no difference between matching fraction 
and non-matching fraction accuracy (91% vs. 90%; t(56) = 
.42, p = .68). 

As in Experiment 1, accuracy for each participant was 
averaged for each trial of each of the true and false primed 
pairs.  Mean accuracy values for prime pairs are shown in 
Figure 3.  A 3 (number type) X 2 (trial type) X 2 (problem 
type) mixed factors ANOVA yielded a significant 3-way 
interaction (F(1, 84) = 3.685, p = .029).  There was also a 
significant 2-way interaction for true prime pairs (F(1, 84) = 
3.90, p = .024), indicating a differential priming effect. The 
non-matching fractions showed a significant increase in 
accuracy from the first trial to the second primed trial (85% 
vs. 90%; F(1, 84) = 9.17, p = .003). There was no difference 
in accuracy between primes and primed trials for matching 
fraction problems (94% vs. 94%; F(1, 84) = .264, p = .61) 
or decimal problems (85% vs. 83%; F(1, 84) = .756, p = 
.39).  

For false prime trials, there was no interaction between 
trial type and number type (F(1, 84) = .832, p = .44), 
indicating no differential priming effect between fractions 
and decimals.  There was no main effect of trial type (F(1, 
84) = .018, p= .89), implying no increase in accuracy from 
the first trial to the primed trial across number types.  There 
was, however, a significant effect of number type (F(1, 84) 
= 13.57, p < .001), which followed the same pattern as for 
overall accuracy: there was no difference in accuracy for 
matching fractions and non-matching fractions (93% vs. 
94%; t(56) = .74, p = .47), but both matching fractions and 
non-matching fractions had higher accuracy than decimals 
(93% vs. 82%; t(56) = 3.601, p = .001; 94% vs. 82%; t(56) 
= 4.335, p < .001). 
 
Response Time Across all problem types, response times 
for matching and non-matching fraction problems were 
faster than those for decimal problems (F(2, 84) = 5.140, p 
= .008).  Decimals were slower than matching fractions 
(4.42 s vs. 3.22 s; t(56) = 2.72, p = .009) and non-matching 
fractions (4.42 s vs. 3.42 s; t(56) = 2.37, p = .021).  There 
was no difference in response time for matching and non-
matching fractions (3.22 s vs. 3.42 s; t(56) = .596, p = .55).  
Figure 4 shows the response times for true prime and false 
prime trials by number type. A 3 (number type) X 2 (trial 
type) X 2 (problem type) mixed factors ANOVA did not 
yield a significant 3-way interaction (F(1, 84) = .227, p = 
.797).  There was, however, a significant differential 
priming effect, as indicated by a 2-way interaction between 
trial type and number type (F(1, 84) = 3.76, p = .027).  
Decimals did not show a significant decrease in response  
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time from the first trial to the second primed trial (4.55 s vs. 
4.55 s; F(1, 84) = 0, ns.).  However, both matching fractions 
(3.45 s vs. 3.01 s; F(1, 84) = 14.73, p < .001) and non-
matching fractions (3.91 s vs. 3.64 s; F(1, 84) = 5.58, p = 
.02) showed a significant decrease in response time.   

Relative to Experiment 1, fractions showed a slightly 
stronger priming effect in Experiment 2.   In Experiment 1, 
the true primed trials for the decimal condition showed a 
trend towards increased response time (negative priming); 
however, no such trend was observed in Experiment 2. Most 
importantly, priming of reciprocal relations was observed 
for non-matching as well as matching fractions, but not for 
decimals.  

Discussion 
Our results demonstrate an advantage for fractions over 
decimals in verifying whether a multiplication problem is 
correct, and in implicitly identifying reciprocal relations 
between problems.  College students were considerably 
faster and more accurate when judging whether 
multiplication problems with fractions were correct, 
compared to otherwise identical problems with decimals.  
This result highlights the importance of the relational 
structure of a fraction.  Because division and multiplication 
are inverse operations, highly-educated people are able to 
view a fraction as if it were simply a type of division 
operation.  This ability then enables them to detect whether 
there are any reducible relationships between the first factor 
and the divisor to simplify the expression.  For example, in 
the problem 12 X 5/6 = 10, one can either multiply 12 X 5 
and then divide that product by 6; or conversely, divide 12 
by 6 and multiply that quotient by 5.  In the latter case, the 
problem simplifies to 2 X 5.  Thus, there are several 
different ways to compute the equation. With a flexible and 
deep understanding of the relations within the problem, very 
simple strategies for verification can be used.  In the case of 
decimal multiplication, there is no corresponding way to 
simplify the problem.  In the corresponding example, 12 X 
.83 = 10, one must either estimate the answer, perform the 

full double-digit multiplication, or break down the equation 
into something a little simpler, such as 10 X .83 + 2 X .83.  
Any of these strategies will most likely be less precise or 
take somewhat longer than the optimal fraction strategy. 

The finding that there was a significant speed-up in 
solving primed fraction problems, but no parallel speed-up 
in solving primed decimal problems, also provides evidence 
that adults possess a deep understanding of the reciprocal 
relationship between fractions. Whereas reciprocals are 
superficially obvious with fractions (4/7 vs. 7/4), decimal 
reciprocals are much less apparent (.57 vs. 1.75).  This 
superficial similarity may have contributed in part to the 
priming in Experiment 1.  But even in Experiment 2, where 
the non-matching fractions were less transparently related to 
the whole numbers in the problems, participants still 
recognized and exploited the reciprocal relation between 
problems. Beyond this, participants showed a deeper 
understanding of what the reciprocal relation means when 
represented with fractions. They apparently recognized that 
corresponding expressions were mathematically equivalent 
and therefore did not require additional verification.  For 
fraction problems, encountering the two reciprocal 
equations in succession provided an easily recognizable hint 
for participants, whereas the same juxtaposition of decimal 
problems did not provide any help. 

In summary, the present findings support the hypothesis 
that fractions have an important relational component, 
which college students have learned and use to increase 
efficiency in evaluating multiplication problem.  Thompson 
and Saldanha (2003) have argued that a high-level fraction 
schema, which includes understanding of reciprocal and 
division relationships, requires integration with a strong 
multiplication schema.  That is, because a fraction is 
inherently a relational expression, important operational 
relations such as multiplication and division must be 
understood.  This relational knowledge allows recognition 
of numbers that are known to share common factors, or that 
can be simplified or reduced to make a computation easier. 

Recent research on the acquisition of fractions has 
generally aimed to understand why children and even adults 

Figure 3. Percent correct for pairs of prime trials for true 
and false expressions, separated by number type 
(matching fraction, non-matching fraction, or decimal) 
for Experiment 2. 

Figure 4. Response times for pairs of prime trials for 
true and false expressions, separated by number type 
(matching fraction, non-matching fraction, or decimal) 
for Experiment 2. 
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have trouble integrating their knowledge about fractions 
with their knowledge about whole numbers. Focus on this 
issue has perhaps contributed to a failure to appreciate that 
fractions are inherently different from other types of 
numbers (even other rational numbers, such as decimals).  
Fractions have many different meanings (e.g., part/whole, 
ratio, proportion, subset/set, or quotient).  It may be useful 
to evaluate whether children understand the relational 
importance of fractions in other contexts beyond magnitudes 
(Stafylidou & Vosniadou, 2004).  

In addition, when fractions are conceptualized as 
relational expressions, they become a stepping-stone to 
algebra.  There is already some evidence suggesting an 
important link between algebra and fraction understanding.  
A survey of Algebra I teachers found that poor fraction 
knowledge is one of two major difficulties facing math 
students as they begin learning algebra (NORC, 2008).  In 
addition, the National Mathematics Advisory Panel (2008) 
found that learning of fractions is essential for mastering 
algebra and more complex mathematics.  Fractions have a 
dual status that poses particular challenges for students: a 
fraction is at once a relationship between two quantities and 
also the magnitude corresponding to the division of the 
numerator by the denominator.  Similar dualities arise in 
algebra, as when students must understand that an algebraic 
expression such as 4a at once represents the operation 4 X a 
and the product of that operation (Sfard & Linchevski, 
1994; Empson, Levi, & Carpenter, 2011).  Thus, fractions 
provide the first opportunity for students to master this 
concept of a dual expression. 

In summary, the current study provides evidence that 
highly-educated adults demonstrate a flexible understanding 
of fractions as relational expressions.  They are able to 
capitalize on this understanding in order to solve 
multiplication verification problems, exhibiting priming 
based on the reciprocal relationship.  Fractions, then, can be 
usefully distinguished from other rational numbers, in that 
they provide a unique opportunity for students to learn 
important multiplicative and reciprocal relationships.  
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