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Type 2 Diabetes Modifies the Association of CAD Genomic Risk 
Variants with Subclinical Atherosclerosis

A full list of authors and affiliations appears at the end of the article.

Abstract

Background: Individuals with type 2 diabetes (T2D) have an increased risk of coronary artery 

disease (CAD), but questions remain regarding the underlying pathology. Identifying which CAD 

loci are modified by T2D in the development of subclinical atherosclerosis (coronary artery 

calcification (CAC), carotid intima media thickness (CIMT), or carotid plaque), may improve our 

understanding of the mechanisms leading to the increased CAD in T2D.

Methods: We compared the common and rare variant associations of known CAD loci from the 

literature on CAC, CIMT and carotid plaque in up to 29,670 participants, including up to 24,157 

normoglycemic controls and 5,513 T2D cases leveraging whole genome sequencing data from the 

TOPMed program. We included first-order T2D interaction terms in each model to determine if 

CAD loci were modified by T2D. The genetic main and interaction effects were assessed using a 

joint test to determine if a CAD variant, or gene-based rare variant set, was associated with the 

respective subclinical atherosclerosis measures, then further determined whether these loci had a 

significant interaction test.

Results: Using a Bonferroni corrected significance threshold of P<1.6 × 10−4, we identified 3 

genes (ATP1B1, ARVCF, and LIPG) associated with CAC, and two genes (ABCG8, EIF2B2) 
associated with CIMT and carotid plaque, respectively, through gene-based rare variant set 

analysis. Both ATP1B1 and ARVCF also had significantly different associations for CAC in 

T2D cases vs controls. No significant interaction tests were identified through the candidate single 

variant analysis.

Conclusions: These results highlight T2D as an important modifier of rare variant associations 

in CAD loci with CAC.
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Introduction

Coronary artery disease (CAD) remains the leading cause of death among individuals 

with type 2 diabetes (T2D). Both T2D and CAD are complex disease traits, with both 

inherited and environmental causes, making the presentation of T2D a unique risk factor 

for CAD. Several studies have examined the shared genetic pathways between T2D and 

CAD with limited insights.1–5 Additional measures of atherosclerosis exist and precede a 

clinical CAD event. These measures of subclinical atherosclerosis including coronary artery 

calcification (CAC), carotid intima media thickness (CIMT) and carotid plaque, predict 

future coronary events independent of known risk factors.6, 7 Furthermore, measures of 

subclinical atherosclerosis relate more closely to the underlying casual mechanisms leading 

to a CAD event.8, 9 This is especially true for CAC, which is highly correlated with 

incident CAD, and is included in CAD risk assessment guidelines, especially for individuals 

with T2D.10 Individuals with T2D have an increased risk of atherosclerosis, but additional 

investigation is warranted as to the biological interdependence of these traits.11–16

While genome-wide association studies (GWAS) have identified hundreds of genetic loci 

associated with CAD, fewer GWAS-based discoveries have been observed for subclinical 

atherosclerosis measures despite their notable heritability and high genetic correlation 

with CAD.17–25 Continuous subclinical atherosclerosis measures, such as CAC and CIMT, 

are particularly valuable in GWAS for measuring early progression of atherosclerosis 

with greater statistical power than incident CAD. Furthermore, many studies have not 

considered the role of T2D in their analyses, which may differentially influence the way 

loci impact the development of atherosclerosis. A study by Lu et al. conducted a GWAS 

of subclinical atherosclerosis limited to individuals with T2D, and subsequently evaluated 

whether 161 known CAD loci were significantly associated with the development of 

subclinical atherosclerosis in individuals with T2D.26 While they successfully identified 

three CAD loci that significantly associated with CAC and CIMT in those with T2D, the 

study did not formally evaluate the differential associations of CAD loci in T2D compared 

to normoglycemic controls. Accounting for such differences by evaluating T2D-by-single 

nucleotide variant (SNV) interaction terms may improve the power to detect CAD loci that 

have not previously been associated with subclinical atherosclerosis in the context of T2D.27

Moreover, rare variants play a unique role in the development of complex disease, often 

having larger effects on disease than individual common variants.28, 29 At least nine 

genes have been associated with CAD risk through aggregation of rare genetic variants, 

specifically in genes involved in regulating cholesterol levels.23, 30 Previous studies have not 

yet evaluated whether T2D may also modify the association of rare genetic variants in the 

development of atherosclerosis.

Thus, the goal of this study was to test whether common and rare variants at known CAD 

loci depend on T2D to exert their atherogenic effects by testing associations with CAC, 

CIMT and carotid plaque. We used a gene-by-environment interaction test framework, 

utilizing T2D as the effect modifier to identify CAD loci that are associated with subclinical 

atherosclerosis.
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Methods

The study population included 29,670 participants from 12 different studies that are apart 

of Trans-Omics for Precision Medicine (TOPMed) program sponsored by the National 

Heart, Lung and Blood Institute (NHLBI) (Supplemental Table I, Supplemental Figure 

I). Each study obtained informed consent from participants and approval from the 

appropriate institutional review boards. Additional details for these studies are available 

in the Supplement Materials. Individual whole-genome sequence (WGS) data for TOPMed 

and harmonized subclinical atherosclerosis measurements at individual sample level are 

available through restricted access via the TOPMed dbGaP Exchange area. Accession codes 

for genotype and phenotype files by cohort may be found in Supplemental Table I. This 

study did not rely on custom code or mathematical algorithms. The full methods for this 

study are available in the Supplemental Materials.

Results

Study Population

The study population consisted of 24,157 normoglycemic controls and 5,513 T2D cases. Of 

the 29,670 participants, 15,993 had data on CAC, 13,711 had data on CIMT and 11,922 

data on plaque (Supplemental Figure I, Supplemental Table II). In the 15,993 individuals 

with CAC measured, the median CAC score was 0 [interquartile interval (IQI): 0–91] in 

normoglycemic controls and 32.7 (IQI 0–289.8) in T2D cases. The prevalence of CAC 

score>0 was 26.2% and 35.0% in T2D controls vs cases, respectively. The average mean 

thickness between the carotid intima and media was 0.70 mm (SD 0.22 mm) in controls and 

0.78 mm (SD 0.22 mm) in T2D cases. For individuals with carotid plaque measured, the 

presence of a carotid plaque was noted in 19% of controls and 22.7% of T2D cases.

Candidate Variant Interaction Tests for CAC

A summary of study design and overview is available in Supplemental Materials 

(Supplemental Figure II). Five candidate SNVs (rs2891168 near CDKN2B, rs7412 in 

APOE, rs9349379 near PHACTR1, rs9515203 near COL4A1, and rs55730499 in LPA, 

Table 1) were significant according to the joint test (Pjoint<1.7×10−4), but none had a 

significant interaction test. Instead, the joint associations of these variants were largely 

driven by their main genetic association with CAC, regardless of T2D status. All CAD 

variants, except rs55730499 near LPA, have also previously been identified as associated 

with CAC in published CAC GWAS.22, 25, 26

No SNVs met the Bonferroni corrected threshold for significance in the interaction test, 

but seventeen candidate variants were nominally significant (Pint and Pjoint<0.05). Fifteen 

SNVs were in loci that have not previously been identified with CAC (Table 1). More than 

half (59%) of the observed effect estimates in T2D cases occurred in the same direction as 

CAD SNVs in the literature. The SNV with the strongest evidence for interaction with T2D 

was rs7623687 near RHOA (Pint=0.0004). T2D cases with alternate allele in rs7623687 had 

higher odds of a CAC score greater than 0 [odds ratio: 1.29 (95% CI:1.08–1.53) in T2D vs 

0.98 (95% CI:0.91–1.07) in controls, Supplemental Table III]. The power to detect candidate 
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SNV for associations across various minor allele frequency thresholds for CAC is presented 

in Supplemental Table IV.

Rare Variant Candidate Gene-based Interaction Results for CAC

Three genes, ARVCF, ATP1B1 and LIPG, were significantly associated with CAC 

according to the gene-based joint test (Pjoint<1.6×10−4, Table 2). Furthermore, the 

interaction tests for ARVCF and ATP1B1 were also significant (Pint=9.9×10−5, 

Pint=4.0×10−5, respectively). Both ARVCF and ATP1B1 gene-based tests included variants 

in protein coding regions. The significant ARVCF test included missense variants, while the 

significant ATP1B1 associations were driven by synonymous variants.

Variants within each aggregation unit were evaluated for their individual variant 

contributions to their associated joint and interaction tests (Supplemental Table V & VI). 

For ATP1B1, notable changes in the joint P-value (>100% percent change) were observed 

after the removal of 3 variants (>100% percent change). After excluding variant rs61742560, 

a nominally significant (P<0.05) main effect was no longer observed, but strong contribution 

from the interaction test remained. After excluding either rs144621395 or rs61803314 

from the analysis, the main effect P-value remained the same with notable changes in Pint 

(Supplemental Table VII). We further evaluated the distribution of CAC scores in individuals 

who were carriers of the minor allele for the variants with the largest contribution to the 

significant gene-based test for ATP1B1. Overall, individuals with T2D who carried at least 

one of the alternate alleles of these variants had the lowest CAC scores (Figure 1). This is 

primarily driven by two variants, rs61742560 and rs61803314 (Supplemental Figure III). For 

individuals with T2D and rs144621395, the opposite association was observed, with the had 

the highest CAC scores observed in this group.

In ARVCF, 3 of the 59 variants within the ARVCF unit appeared to contribute the most to 

the significant association tests. Excluding either rs113625788, rs116782322 or rs76496156 

notably changed the observed joint P-values (>100% percent change), while exclusion of the 

other variants did not (Supplemental Table VIII). We further evaluated three variants driving 

the significant interaction test for ARVCF. Individuals with T2D who carried at least one 

of the minor alleles of the three identified variants had the highest CAC scores (Figure 1, 

Supplemental Figure V).

Candidate Variant Interaction Tests with CIMT and Carotid Plaque

One variant (rs7412 in APOE gene) was significantly associated with CIMT using the joint 

test (Pjoint=2.6 × 10−6) but did not have a significant interaction test. No CAD variants were 

significantly associated with carotid plaque. No significant interaction tests were observed 

for either CIMT or carotid plaque. Across both traits, twenty-four variants met nominal 

significance (14 for CIMT, 10 for carotid plaque, Table 3). The variant with the smallest 

interaction P-value for CIMT was at the SORT1 locus (Pint= 0.0004, Pjoint= 0.002) and for 

carotid plaque at the ZC3HC1 (Pint= 0.006, Pjoint= 0.02) locus. Two nominally significant 

variants overlapped with the nominally significant findings from the CAC analysis (PCSK9 
in CIMT and SCARB1 in carotid plaque).
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Rare Variant Gene-based Interaction Tests for CIMT and Plaque

Two gene-based aggregation units (ABCG8 with CIMT and EIF2B2 with carotid plaque) 

were met the Bonferroni significance threshold (P<1.6×10−4) according to the joint test, 

but not according to the interaction test. (Supplemental Table IX). While the main effect 

(interaction free) P-value for ABCG8 met the significance threshold, the association of 

EIF2B2 with carotid plaque was not significant according to the main effect (interaction 

free) P-value alone. Instead, the significant association of EIF2B2 required both the main 

and interaction effects to cross the Bonferroni significance threshold. Both gene-based 

aggregation units that were significant for the joint test included only protein coding regions 

of the genome. The ABCG8 unit consisted of putative loss of function variants while the 

EIF2B2 unit consisted of missense mutations.

We also evaluated the effect of CAC-associated genes on CIMT and carotid plaque. One 

variant category in ATP1B1 and one variant category in LIPG met nominal significance 

(P<0.05) for both the joint and interaction test in CIMT (Supplemental Table X). None 

of the significantly associated genes-based rare variant aggregation units with CAC had a 

nominally significant associations with carotid plaque (Supplemental Table XI).

Discussion

Our study highlights the importance of considering T2D case-control status in the 

development of subclinical atherosclerosis and subsequent coronary artery disease. Rare 

variant gene-based interaction tests identified two CAD-associated genes, ARVCF and 

ATP1B1, whose association with CAC was modified by T2D status. Furthermore, three 

additional genes (LIPG with CAC, ABCG8 with CIMT, and EIF2B2 with carotid plaque) 

were significantly associated with subclinical atherosclerosis according to their respective 

joint tests, with nominally significant interaction tests. While the single variant SNV-by-

T2D interaction tests did not yield Bonferroni significant results for any of the subclinical 

atherosclerotic traits, many of the nominally significant associations were identified in CAD 

SNVs previously associated with lipid traits, supporting the importance of cholesterol to the 

underlying relationship between subclinical atherosclerosis and T2D.

Rare variants in two genes, ARVCF and ATP1B1, were significantly associated with CAC 

with significantly different associations observed in T2D cases compared to normoglycemic 

controls. Neither gene had previously been reported associated with CAC.22, 25, 31 

Furthermore, despite common variants associations near these genes with CAD, the 

suspected role of ARVCF and ATP1B1 in the development of atherosclerosis has not been 

well studied. ARVCF is a member of the catenin family, which plays an important role in 

cell adhesion and communication.32 In addition to CAD, previous studies have associated 

the gene with pulse pressure and platelet count.33 Gene expression studies have shown 

high levels of ARVCF expression in arterial tissues.34 According to our data, individuals 

with T2D carrying at least one minor allele in ARVCF had higher levels of CAC than 

non-carriers. Interestingly, normoglycemic controls carrying at least one of the variants had 

the lowest observed CAC scores. These observations suggest that, for individuals with T2D, 

carriers of these mutations in ARVCF, have an excess risk of elevated CAC and potential 

clinical CAD compared to non-carriers. Furthermore, the effects of the mutations in ARVCF 
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may only accelerate the burden of CAC in the presence of disrupted glucose metabolism 

such as those created by T2D. Additional studies are needed to further understand the 

mechanisms through which ARVCF increases CAC burden development in individuals with 

T2D.

Similarly, ATP1B1, belongs to a subfamily of Na+/K+ -ATPases responsible for establishing 

and maintaining the electrochemical gradients of sodium and potassium ions across the 

plasma membranes.35 In addition to CAD, previous studies have shown that this gene 

is associated with QT interval length and venous thrombosis.36, 37 Lab studies in mouse 

models associated expression levels of ATP1B1 with cardiac contractility and calcium 

homeostasis.38, 39 Our data suggest that two rare variants contributed the most to the 

observed differences in this gene in between T2D status and CAC burden development. 

These two variants act in opposing directions. Interestingly, individuals with T2D and 

carrying the alternate allele in rs61803314 had the lowest observed CAC scores. This 

protective effect against excessive CAC for T2D cases is of particular interest as it may 

provide therapeutic insights into slowing the progression or preventing CAC build-up and 

subsequent CAD for such a high-risk group.

Three additional CAD genes (LIPG with CAC, ABCG8 with CIMT, and EIF2B2 with 

carotid plaque) were also significantly associated with subclinical atherosclerosis according 

to the joint test. In addition to CAD,19, 20 GWAS studies of lipid traits have identified 

common variant associations in LIPG, ABCG8, and EIF2B2 with total, HDL and LDL 

cholesterol levels.40 While the interaction with T2D at each of these genes is only 

nominally significant, both LIPG and EIF2B2 would not have reached Bonferroni corrected 

significance threshold by evaluating the main effects alone. Thus, the observed significance 

of the association test required the inclusion of the T2D interaction term to be discovered. 

This is consistent with the shared evidence related to the importance of lipid metabolism in 

T2D and atherosclerosis. Improving our understanding of how T2D may exacerbate the roles 

of LIPG and EIF2B2 in their respective subclinical traits may highlight distinct pathways 

through which individuals with T2D experience excess risk for a CAD event.

While common candidate SNV tests were less successful at detecting novel significant 

associations for their respective subclinical traits, a couple of interesting observations were 

made. First, two SNVs (near SCARB1 and PCSK9) were nominally significant for more 

than one subclinical atherosclerosis trait. Both variants are near genes with well-known roles 

in lipid metabolism, echoing findings from our rare variant gene-based analysis, highlighting 

the strong pathogenic link between lipid metabolism, glucose metabolism, and subclinical 

atherosclerosis. Second, for most of the variants, the direction of association with subclinical 

atherosclerosis in T2D cases mirrored the direction of association identified with CAD. This 

echoes the results from the Lu et al. study of subclinical atherosclerosis GWAS in T2D only, 

where they identified 3 significant associations (rs2891168 near CDKN2B-AS1 at 9p21 and 

rs11170820 near FLJ12825 for CAC; rs7412 near APOE for CIMT) concluding that some 

CAD loci act through subclinical atherosclerosis in individuals with T2D. Lastly, while these 

associations were only nominally significant, the contributions from the interaction tests 

were the primary drivers of the nominally significant associations, suggesting the overall fit 

of the model was improved by inclusion of the T2D interaction term. This highlights the 
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importance of considering T2D, and perhaps other important risk factors, in understanding 

the genetics of subclinical atherosclerosis and CAD.

A few limitations for this study must be acknowledged. First, while representing the largest 

WGS study of subclinical atherosclerosis in T2D to date, our analysis had a limited sample 

size. Despite this limitation, our analysis conserved power using a candidate SNV and 

gene approach, to identify CAD loci that rely on T2D status to associate with subclinical 

atherosclerosis. Similarly, we were able to utilize two continuous atherosclerotic traits in 

CAC and cIMT, which also conserved power and allowed for shorter time between T2D 

onset and each outcome measurement. Second, we were limited to CAD SNVs primarily 

discovered in European and East Asian ancestry. Recent studies suggest that including 

population for different ancestry populations improves fine-mapping and increases the 

probability of identifying potentially causal loci.41 It is possible that the reason for the 

lack of associations observed in our candidate single variant analysis is because the selected 

variants were not representative of the true casual associations. Future studies may expand 

the SNV set to accommodate large CAD GWAS on individuals with African and Hispanic 

backgrounds. Third, while we removed individuals with prediabetes from our analysis to 

lower the likelihood of misclassification of T2D status in our controls, it is possible that 

individuals with a high risk of T2D still exist in the controls, lowering our ability to detect 

significant interactions, particularly in the SNV analysis. Lastly, our rare variant analysis 

was restricted to CAD loci defined by proximity to the nearest SNV. While previous studies 

have also supported this approach, some of the loci included in our study may not have been 

the true associated CAD gene based on more advanced gene prioritization methods.

This study also has several strengths. We carefully and clearly defined our case control 

groups, specifically restricting our study to include only normoglycemic controls to further 

improve the interpretability of our findings. We also leveraged data from multiple race-

ethnicity groups to further expand the generalizability of our study. Similarly, this study did 

not need to rely on imputed genotypes given the availability of WGS data. This allowed 

us to utilize both single variant and gene-based methods to characterize both common and 

rare variation. Most importantly, being able to include the T2D interaction terms provided 

the opportunity to identify differential associations with CAC in those with T2D and those 

without.

In conclusion, we evaluated the role of common and rare genetic variation in CAD loci 

in the development of subclinical atherosclerosis accounting for interaction with T2D, and 

identified genes associated with subclinical atherosclerosis of which two genes, ARVCF 
and ATP1B1, had significant gene-T2D interaction effects. While no significant CAD SNV-

T2D interaction effects were detected, nominally significant associations across traits still 

highlighted the importance of lipid traits in the development of subclinical atherosclerosis, 

especially for individuals with T2D. Our results suggest using T2D interaction terms 

improved our ability to detect CAD loci associated with subclinical atherosclerosis 

and highlights the importance of considering T2D, and other important risk factors, in 

understanding the genetics of subclinical atherosclerosis and CAD.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Distribution of CAC score by carrier and T2D status. Data are boxplots for the distribution 

of CAC score for individuals according to their carrier and T2D status. Carriers were 

defined as carrying at least one minor allele from the largest contributing variants from the 

respective aggregation tests. Panel A included variants from the ATP1B1 aggregation unit 

and Panel B includes variants from ARVCF aggregation unit.

CAC; coronary artery calcification; T2D, type 2 diabetes
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Table 2.

Genes Significantly Associated with CAC score according to the Joint Test

Gene N variants
Main Effect
P-value1

Interaction
P-value*

Joint
P-value* Variant Grouping Strategy Genome region

ARVCF 59 0.050 9.9×10−5 6.1×10−5 missense Coding

ATP1B1 6 0.018 4.0×10−5 9.9×10−6 synonymous Coding

LIPG 371 0.001 0.004 6.2×10−5 Enhancer overlaid with DHS sites Non-coding

*
P-values computed using linear mixed models accounting for age, sex, ancestry informative principal components (PC) 1–11, PC1–11-by-sex 

interaction terms, PC1–2-by-T2D interaction terms and T2D-by-gene-based aggregation units. Main effect P-value refers to the association of the 
gene-based aggregation unit. Interaction P-value refers to the association of the T2D-by-gene-based aggregation unit interaction term. Joint P-value 
refers to the association of the combined test of both the T2D-by-gene-based interaction term and main effect association test.

CAC, coronary artery calcification; DHS, DNAse I hypersensitive sites

Circ Genom Precis Med. Author manuscript; available in PMC 2024 December 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hasbani et al. Page 18

Ta
b

le
 3

.

N
om

in
al

ly
 s

ig
ni

fi
ca

nt
 (

P<
0.

05
 in

 b
ot

h 
jo

in
t a

nd
 in

te
ra

ct
io

n 
te

st
s)

 a
ss

oc
ia

tio
ns

 o
f 

C
A

D
 S

N
V

s 
w

ith
 C

IM
T

 a
nd

 C
ar

ot
id

 P
la

qu
e

rs
ID

C
hr

:P
os

it
io

n:
R

ef
:A

lt
*

N
ea

re
st

 G
en

e
E

st
im

at
ed

 S
N

V
 e

ff
ec

t 
in

 
C

on
tr

ol
s

E
st

im
at

ed
 S

N
V

 e
ff

ec
t 

in
 T

2D
 

C
as

es
†

In
te

ra
ct

io
n

P
-v

al
ue

†
Jo

in
t

P
-v

al
ue

†

D
ir

ec
ti

on
 o

f 
SN

V
 

as
so

ci
at

io
n 

in
 

C
A

D
‡

C
IM

T

rs
60

26
33

1:
10

92
78

88
9:

T
:G

PS
R

C
1

−
0.

00
3 

±
 0

.0
03

0.
02

6 
±

 0
.0

07
3.

62
×

10
−

4
0.

00
2

−

rs
66

89
48

2:
21

06
86

57
:G

:A
A

PO
B

0.
01

 ±
 0

.0
03

−
0.

01
6 

±
 0

.0
08

0.
02

9
0.

00
7

+

rs
65

10
07

9:
13

32
78

43
1:

T
:C

A
B

O
−

0.
00

1±
0.

00
3

0.
02

3 
±

 0
.0

08
0.

00
3

0.
00

7
+

rs
12

97
64

11
19

:3
23

91
11

4:
A

:T
Z

N
F5

07
/L

O
C

40
06

84
0.

00
3 

±
 0

.0
06

0.
03

5 
±

 0
.0

14
0.

01
0.

01
+

rs
11

29
49

82
2

5:
10

87
49

48
9:

G
:A

FE
R

−
0.

01
3 

±
 0

.0
05

0.
02

5 
±

 0
.0

12
0.

04
0.

02
−

rs
79

91
31

4
13

:3
25

51
93

7:
T

:C
N

4B
P2

L
2

0.
00

16
 ±

 0
.0

03
0.

01
4 

±
 0

.0
07

0.
03

0
0.

02
+

rs
88

48
11

10
:9

81
64

00
6:

C
:G

R
3H

C
C

1L
0.

00
1 

±
 0

.0
03

−
0.

01
6 

±
 0

.0
07

0.
02

0.
02

+

rs
94

41
72

9:
10

77
55

51
3:

C
:T

K
L

F4
0.

00
4 

±
 0

.0
03

−
0.

01
9 

±
 0

.0
07

0.
00

7
0.

02
+

rs
56

40
83

42
8:

22
19

09
77

:G
:A

B
M

P1
−

0.
00

2 
±

 0
.0

05
−

0.
02

7 
±

 0
.0

12
0.

03
0.

03
+

rs
76

84
53

10
5

19
:4

12
84

18
1:

G
T

TA
T

G
G

TA
:G

H
N

R
N

PU
L

1
0.

00
8 

±
 0

.0
04

−
0.

02
5 

±
 0

.0
1

0.
02

0.
03

+

rs
69

19
21

1
6:

13
36

78
73

0:
C

:G
TA

R
ID

−
0.

00
7 

±
 0

.0
04

0.
02

 ±
 0

.0
08

0.
01

0.
03

−

rs
76

17
77

3
3:

48
15

20
25

:C
:T

C
D

C
25

A
0.

00
2 

±
 0

.0
03

0.
01

4 
±

 0
.0

07
0.

04
0.

03
+

rs
11

20
65

10
1:

55
03

03
66

:T
:C

PC
SK

9
−

0.
00

8 
±

 0
.0

04
0.

01
7 

±
 0

.0
08

0.
04

0.
04

+

C
ar

ot
id

 p
la

qu
e

rs
35

87
98

03
4:

14
58

61
68

5:
C

:A
Z

N
F8

27
0.

90
 (

0.
84

−
0.

97
)

1.
11

 (
0.

95
–1

.3
0)

0.
01

0.
00

7
+

rs
11

05
78

30
12

:1
24

82
25

07
:G

:A
SC

A
R

B
1

1.
03

 (
0.

94
–1

.1
2)

1.
31

 (
1.

08
–1

.6
0)

0.
01

0.
00

97
+

rs
17

08
33

33
4:

53
70

58
99

:G
:T

FI
P1

L
1/

L
N

X
1

1.
04

 (
0.

97
–1

.1
1)

1.
25

 (
1.

07
–1

.4
5)

0.
01

0.
01

−

rs
69

97
33

0
8:

19
94

30
18

:G
:C

L
PL

1.
04

 (
0.

90
–1

.2
0)

0.
70

 (
0.

55
−

0.
90

)
0.

01
0.

02
+

rs
79

91
31

4
13

:3
25

51
93

7:
T

:C
N

4B
P2

L
2

1.
03

 (
0.

96
–1

.1
0)

1.
22

 (
1.

05
–1

.4
2)

0.
04

0.
02

+

rs
11

55
69

24
7:

13
00

23
65

6:
C

:T
Z

C
3H

C
1

0.
94

 (
0.

87
–1

.0
2)

1.
23

 (
1.

02
–1

.4
8)

0.
00

6
0.

02
−

rs
31

84
50

4
12

:1
11

44
68

04
:T

:C
A

T
X

N
2/

H
N

F1
A

8.
03

 (
1.

81
–3

5.
55

)
0.

39
 (

0.
01

–1
2.

94
)

0.
02

0.
02

+

rs
10

95
19

83
7:

64
06

39
6:

A
:G

R
A

C
1/

D
A

G
L

B
1.

04
 (

0.
95

–1
.1

4)
1.

35
 (

1.
09

–1
.6

7)
0.

03
0.

03
+

rs
11

66
34

11
18

:5
92

93
27

8:
T

:C
C

PL
X

4
1.

00
 (

0.
93

–1
.0

8)
1.

23
 (

1.
04

–1
.4

5)
0.

02
0.

04
−

rs
61

79
70

68
1:

11
53

59
89

3:
G

:C
N

G
F

1.
05

 (
0.

95
–1

.1
5)

0.
78

 (
0.

61
−

0.
98

)
0.

01
0.

04
6

−

Circ Genom Precis Med. Author manuscript; available in PMC 2024 December 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Hasbani et al. Page 19
* C

hr
om

os
om

e 
an

d 
Po

si
tio

n 
ar

e 
in

 b
ui

ld
 h

g3
8.

† P-
va

lu
es

 w
er

e 
co

m
pu

te
d 

us
in

g 
lin

ea
r 

or
 lo

gi
st

ic
 m

od
el

s 
m

ix
ed

 m
od

el
s 

ac
co

un
tin

g 
fo

r 
ag

e,
 s

ex
, a

nc
es

tr
y 

in
fo

rm
at

iv
e 

pr
in

ci
pa

l c
om

po
ne

nt
s 

(P
C

) 
1–

11
, P

C
1–

11
-b

y 
se

x 
in

te
ra

ct
io

n 
te

rm
s,

 P
C

1–
2 

by
 T

2D
, a

nd
 

a 
T

2D
-b

y-
SN

V
 in

te
ra

ct
io

n 
te

rm
 f

or
 C

IM
T

 a
nd

 c
ar

ot
id

 p
la

qu
e,

 r
es

pe
ct

iv
el

y.

‡ D
ir

ec
tio

n 
of

 th
e 

SN
V

 a
ss

oc
ia

tio
n 

w
ith

 C
A

D
 is

 b
as

ed
 o

n 
th

e 
od

ds
 r

at
io

s 
fr

om
 th

e 
lit

er
at

ur
e,

 w
he

re
 >

1.
0 

is
 “

+
” 

an
d 

<
1.

0 
is

 “
-”

.

C
IM

T,
 c

ar
ot

id
 in

tim
at

e 
m

ed
ia

 th
ic

kn
es

s;
 C

A
D

 , 
co

ro
na

ry
 a

rt
er

y 
di

se
as

e;
 S

N
V

, s
in

gl
e 

nu
cl

eo
tid

e 
va

ri
an

t;T
2D

, t
yp

e 
2 

di
ab

et
es

Circ Genom Precis Med. Author manuscript; available in PMC 2024 December 01.


	Abstract
	Introduction
	Methods
	Results
	Study Population
	Candidate Variant Interaction Tests for CAC
	Rare Variant Candidate Gene-based Interaction Results for CAC
	Candidate Variant Interaction Tests with CIMT and Carotid Plaque
	Rare Variant Gene-based Interaction Tests for CIMT and Plaque

	Discussion
	References
	Figure 1.
	Table 1.
	Table 2.
	Table 3.



