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ABSTRACT

We present nbodykit, an open-source, massively parallel Python toolkit for analyzing large-scale structure (LSS)

data. Using Python bindings of the Message Passing Interface (MPI), we provide parallel implementations of many

commonly used algorithms in LSS. nbodykit is both an interactive and scalable piece of scientific software, performing

well in a supercomputing environment while still taking advantage of the interactive tools provided by the Python

ecosystem. Existing functionality includes estimators of the power spectrum, 2 and 3-point correlation functions, a

Friends-of-Friends grouping algorithm, mock catalog creation via the halo occupation distribution technique, and ap-

proximate N -body simulations via the FastPM scheme. The package also provides a set of distributed data containers,

insulated from the algorithms themselves, that enable nbodykit to provide a unified treatment of both simulation and

observational data sets. nbodykit can be easily deployed in a high performance computing environment, overcoming

some of the traditional difficulties of using Python on supercomputers. We provide performance benchmarks illustrating

the scalability of the software. The modular, component-based approach of nbodykit allows researchers to easily build

complex applications using its tools. The package is extensively documented at http://nbodykit.readthedocs.io,

which also includes an interactive set of example recipes for new users to explore. As open-source software, we hope

nbodykit provides a common framework for the community to use and develop in confronting the analysis challenges

of future LSS surveys.
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1. INTRODUCTION

The analysis of LSS data sets has played a pivotal

role in establishing the current concordance paradigm in

modern cosmology, the ΛCDM model. From the earliest

galaxy surveys (Davis et al. 1985; Maddox et al. 1990),

comparisons between the theoretical predictions for the

distribution of matter in the Universe and observations

have proven to be a valuable tool. Indeed, LSS obser-

vations, in combination with cosmic microwave back-

ground (CMB) measurements, provided some of the ear-

liest evidence for the ΛCDM model, e.g., Efstathiou

et al. (1990); Krauss & Turner (1995); Ostriker & Stein-

hardt (1995). Interest in LSS surveys increased im-

mensely following the first direct evidence for cosmic

acceleration (Riess et al. 1998; Perlmutter et al. 1999),

as it was realized that the baryon acoustic oscillation

(BAO) feature imprinted on large-scale clustering pro-

vided a “standard ruler” to map the expansion history

(Eisenstein et al. 1998; Blake & Glazebrook 2003; Seo

& Eisenstein 2003). From its first measurements (Cole

et al. 2005; Eisenstein et al. 2005) to more recent stud-

ies (Font-Ribera et al. 2014; Delubac et al. 2015; Alam

et al. 2017; Slepian et al. 2017), the BAO has proved

to be a valuable probe of cosmic acceleration, enabling

the most precise measurements of the expansion history

of the Universe over a wide redshift range. Analyses of

these data sets have also pushed us closer to answering

other important questions in contemporary cosmology,

including deviations from General Relativity (Mueller

et al. 2016), the neutrino mass scale (Lesgourgues & Pas-

tor 2006; Beutler et al. 2014), and the existence of pri-

mordial non-Gaussianity (Slosar et al. 2008; Desjacques

& Seljak 2010).

The foundations of the numerical methods used in LSS

data analysis today go back several decades. Hockney &

Eastwood (1981) discussed several important computer

simulation methods, including but not limited to mass

assignment interpolation windows and the interlacing

technique for reducing aliasing. The Friends-of-Friends

(FOF) algorithm for identifying halos from a numerical

simulation was first utilized in Davis et al. (1985). The

most commonly used clustering estimators for the two-

point correlation function (2PCF) and power spectrum

were first developed in Landy & Szalay (1993) and Feld-

man et al. (1994), respectively, and techniques to mea-

sure anisotropic clustering via a multipole basis were

first used around the same time, e.g., Cole et al. (1995).

Other modern, well-established numerical techniques in-

clude N -body simulation methods, e.g., Springel et al.

(2001); Springel (2005), and the use of KD-trees in cor-

relation function estimators (Moore et al. 2001).

Recent years have brought important updates to these

analysis techniques. Advances in LSS observations, with

increased sample sizes and statistical precision, have

driven the development of new statistical estimators,

while also increasing modeling complexities and creat-

ing a need to reduce wall-clock times. Recently, we have

seen faster power spectrum and 2PCF multipole estima-

tors (Yamamoto et al. 2006; Scoccimarro 2015; Bianchi

et al. 2015; Slepian & Eisenstein 2015a, 2016; Hand

et al. 2017a) and improved FOF algorithms (Springel

2005; Behroozi et al. 2013; Feng & Modi 2017). Highly

optimized software, e.g., Corrfunc (Sinha & Garrison

2017), is also becoming increasingly common. New sta-

tistical estimators, e.g., Slepian & Eisenstein (2015b,

2017); Castorina & White (2017), are being developed

to extract as much information as possible from LSS

surveys. The rise of particle mesh simulation methods

(Merz et al. 2005; Tassev et al. 2013; White et al. 2014;

Feng et al. 2016) has offered a computationally cheaper

alternative to running full N -body simulations. Finally,

tools have emerged to help deal with the growing com-

plexities of modeling the connection between halos and

galaxies (Hearin et al. 2017). These examples represent

just a sampling of the recent updates to LSS data anal-

ysis and modeling techniques.

The well-established foundation of LSS numerical

methods suggests the community could benefit from a

standard software package providing implementations

of these methods. Such a package would also serve as a

common framework for users as they incorporate future

extensions and advancements. Given the already rising

wall-clock times of current analyses and the expected

volume of data from next-generation LSS surveys, scal-

ing performance should also be a key priority.

Several computing trends in the past few years have

emerged to help make such a software package pos-

sible. First, the Python programming language1 has

emerged as the most popular language in the field of

astronomy (Momcheva & Tollerud 2015; NSF 2017),

and the astropy2 package (Astropy Collaboration et al.

2013) has led the development of an astronomy-focused

Python ecosystem. Python’s elegant syntax and dy-

namic nature make the language easy to learn and work

with. Combined with its object-oriented focus and the

larger ecosystem containing SciPy3 (Jones et al. 2001–

2017), NumPy4 (van der Walt et al. 2011), IPython5

1 http://python.org
2 http://www.astropy.org
3 https://www.scipy.org
4 http://www.numpy.org
5 https://ipython.org

http://python.org
http://www.astropy.org
https://www.scipy.org
http://www.numpy.org
https://ipython.org
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(Perez & Granger 2007), and Jupyter6 (Thomas et al.

2016), Python is well-suited for both rapid application

development and use in scientific research. Second, the

availability and performance of large-scale computing

resources continues to grow, and initiatives, e.g., The

Exascale Computing Project,7 have been established to

ensure the sustainability of this trend. At the same time,

solutions to the traditional barriers to using Python on

massively parallel, high-performance computing (HPC)

machines have been developed. The mpi4py package

(Dalćın et al. 2008; Dalcin et al. 2011) has facilitated

the development of parallel Python applications by pro-

viding bindings of the Message Passing Interface (MPI)

standard. Furthermore, tools have been developed, e.g.,

Feng & Hand (2016), to alleviate the start-up bottle-

neck encountered when launching Python applications

on HPC systems.

Motivated by these recent developments, we present

the first public release of nbodykit (v0.3.0), an open-

source, parallel toolkit written in Python for use in the

analysis of LSS data. Designed for use on HPC ma-

chines, nbodykit includes fully parallel implementations

of a canonical set of LSS algorithms. It also includes a

set of distributed and extensible data containers, which

can support a wide variety of data formats and large

volumes of data. These data containers are insulated

from the algorithms themselves, allowing nbodykit to

be used for either simulation or observational data sets.

We have balanced the scalable nature of nbodykit with

an object-oriented, component-based design that also fa-

cilitates interactive use. This allows researchers to take

advantage of interactive Python tools, e.g., the Jupyter

notebook, as well as integrate nbodykit components

with their own software to build larger applications that

solve specific problems in LSS.

nbodykit has been developed, tested, and deployed

on the Edison and Cori Cray supercomputers at the

National Energy Research Scientific Computing Center

(NERSC) and has been utilized in several published re-

search studies (Hand et al. 2017a,b; Ding et al. 2017;

Pinol et al. 2017; Schmittfull et al. 2017; Modi et al.

2016; Feng et al. 2016; Waters et al. 2016). Since its

start, it has been developed on GitHub as open-source

software at https://github.com/bccp/nbodykit.

The objective of this paper is to provide an overview

of the nbodykit software and familiarize the commu-

nity with some of its capabilities. We hope that re-

searchers find nbodykit to be a useful tool in their sci-

6 http://jupyter.org
7 https://www.exascaleproject.org

entific work and in the spirit of open science, that it

continues to grow via community contributions. Exten-

sive documentation and tutorials are available at http:

//nbodykit.readthedocs.io, and we do not aim to

provide such detailed documentation in this work. The

documentation also includes instructions for launching

an interactive environment containing a set of exam-

ple recipes. This allows new users to explore nbodykit

without setting up their own nbodykit installation.

The paper is organized as follows. We provide a broad

overview of nbodykit in Section 2 and discuss a more

detailed list of its capabilities in Section 3. We describe

our development process and deployment strategy for

nbodykit in Section 4. Section 5 presents an illustrative

example use case, and Section 6 outlines performance

benchmarks for various algorithms. Finally, we conclude

and summarize in Section 7.

2. OVERVIEW

2.1. Initializing nbodykit

A core design goal of nbodykit is maintaining an in-

teractive user experience, allowing the user to quickly

experiment and to prototype new analysis pipelines

while still leveraging the power of parallel processing

when necessary. We adopt a “lab” framework for

nbodykit, where all of the necessary data containers

and algorithms can be imported from the nbodykit.lab

module. Furthermore, we utilize Python’s logging

module to print messages at runtime, which allows users

to track the progress of the application in real time.

Typically, applications using nbodykit begin with the

following statements:

from nbodykit.lab import *

from nbodykit import setup_logging

setup_logging()

2.2. The nbodykit Ecosystem

nbodykit is explicitly maintained as a pure Python

package. However, it depends on several compiled exten-

sion packages that each focus on more specialized tasks.

This approach enables nbodykit to describe higher-level

abstractions in Python and retains the readability, syn-

tax, and user interface benefits of the Python language.

For computationally expensive sections of the code base,

we use the compiled extension packages for speed. With

the emergence of Python package managers such as Ana-

conda,8 the availability of binary versions of these com-

8 https://anaconda.com

https://github.com/bccp/nbodykit
http://jupyter.org
https://www.exascaleproject.org
http://nbodykit.readthedocs.io
http://nbodykit.readthedocs.io
https://anaconda.com
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piled packages for different operating systems has suffi-

ciently eased most installation issues in our experience

(see Section 4.3).

Below, we describe some of the more important depen-

dencies of nbodykit, each of which is focused on solving

a particular problem:

• pfft-python: a Python binding of the PFFT soft-

ware (Pippig 2013), which computes parallel fast

Fourier transforms (FFTs) (Feng 2017a).

• pmesh: particle mesh calculations, including den-

sity field interpolation and discrete parallel FFTs

via pfft-python (Feng 2017b).

• bigfile: a reproducible, massively parallel in-

put/output (IO) library for large, hierarchical data

sets (Feng 2017c).

• kdcount: spatial indexing operations via KD-trees

(Feng 2017d).

• classylss: a Python binding of the CLASS Boltz-

mann solver (Hand & Feng 2017).

• fastpm-python: a Python implementation of the

FastPM scheme for quasi N -body simulations

(Feng 2017e; Feng et al. 2016).

• Corrfunc: a set of high-performance routines for

computing pair counting statistics (Sinha & Gar-

rison 2017).

• Halotools: a package to build and test models of

the galaxy-halo connection (Hearin et al. 2017).

2.3. A Component-Based Approach

The design of nbodykit focuses on a modular,

component-based approach. The components are ex-

posed to the user as a set of Python classes and func-

tions, and users can combine these components to build

their specific applications. This design differs from the

more commonly used alternative in cosmology software,

which is a monolithic application controlled by a single

configuration file, e.g., as in CAMB (Lewis et al. 2000),

CLASS (Blas et al. 2011), and Gadget (Springel et al.

2001). We note that modular, object-oriented designs

using Python are becoming more popular recently, e.g.,

astropy, the yt project (Turk et al. 2011), Halotools

(Hearin et al. 2017), and Colossus (Diemer 2017). Dur-

ing the development process, we have found that a

component-based approach offers greater freedom and

flexibility to build complex applications with nbodykit.

We present some of the main classes and interfaces

and how data flows through them in Figure 1. In the

subsections to follow, we provide an overview of some of

the components outlined in this figure.

2.3.1. Catalog

A Catalog is a Python object derived from a

CatalogSource class that holds information about dis-

crete objects9 in a columnar format. Catalogs imple-

ment a random-read interface, which allows users to

access arbitrary slices of the data while also taking ad-

vantage of the high throughput of a parallel file system.

Often, users will initialize Catalog objects by reading

data from a file on disk, using a NumPy array already

stored in memory, or by generating simulated particles

at runtime using one of nbodykit’s built-in classes.

2.3.2. Mesh

A Mesh is a Python object that computes a discrete

representation of a continuous quantity on a uniform

mesh. It is derived from a MeshSource class and pro-

vides a paintable interface, which refers to the process

of “painting” the density field values onto the discrete

mesh cells. When the user calls the paint() function,

the mesh data is returned as a three-dimensional array.

Mesh objects can be created directly from a Catalog via

the to mesh() function or by generating simulated fields

directly on the mesh.

2.3.3. Algorithms

Algorithms are implemented as Python classes and

interact with data by consuming Catalog and Mesh ob-

jects as input. The algorithm is executed when the user

initializes the class, and the returned instance stores the

results as attributes.

2.3.4. Serialization and Reproducibility

Most objects in nbodykit are serializable10 via a

save() function. Algorithm classes not only save the re-

sult of the algorithm but also save input parameters and

meta-data. They typically implement both a save()

and load() function, such that the algorithm result can

be de-serialized into an object of the same type. The two

main data containers, catalogs and meshes, can be seri-

alized using nbodykit’s intrinsic format which relies on

the massively parallel IO library bigfile (Feng 2017c).

nbodykit includes support for reading these serialized

results from disk back into Catalog or Mesh objects.

2.4. Parallelism

2.4.1. Data-based

9 Here, “object” can represent galaxies, simulation particles,
mass elements, etc.

10 Serialization (and its reverse, de-serialization) refers to the
process of storing a Python object on disk in a format such that
it can be reconstructed at a later time.
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Mesh
Density field on a uniform mesh

Catalog
Object positions and attributes

Paint Interface
Produces distributed parallel n-d array

Algorithm
Computing statistics from a Catalog or Mesh;

the result can be consistent or distributed
across MPI communicator

Serializable Interface
Storing and loading the object from files

Random-Read Interface
Random access of on-line

and off-line data 

to_mesh()

Implements an interface Consumes objects of Abstract Interfaces Python ObjectsProduces objects of

Figure 1. The components and interfaces of nbodykit. The main Python classes are Catalog, Mesh, and Algorithm objects,
which are described in more detail in §2.3. Algorithm results can be consistent, where all processes hold the same data, or
distributed, where data is spread out evenly across parallel processes.

nbodykit is fully parallelized using the Python bind-

ings of the MPI standard available through mpi4py. The

MPI standard allows processes running in parallel, each

with their own memory, to exchange messages. This

mechanism enables independent results to be computed

by individual processes and then combined into a single

result.

Both the Catalog and Mesh objects are distributed

data containers, meaning that the data is spread out

evenly across the available processes within an MPI com-

municator.11 Nearly all algorithm calculations are per-

formed on this distributed data, with final results com-

puted via a reduce operation across all processes in the

communicator. Rarely throughout the code base, data

is instead gathered to a single root process, and opera-

tions are performed on this data before re-distributing

the results to all processes. This only occurs when wall-
clock time will not be a concern for most use cases and

the additional complexity of a massively parallel imple-

mentation is not merited.

The distributed nature of the Catalog object is im-

plemented by using the random-read interface to access

different slices of the tabular data for different processes.

The values of a Mesh object are stored internally on

a three-dimensional NumPy array, which is distributed

evenly across all processes. The domain of the 3D mesh

is decomposed across parallel processes using the par-

ticle mesh library pmesh, which also provides an inter-

face for computing parallel FFTs of the mesh data using

pfft-python. The pfft-python software exhibits ex-

11 The MPI communicator is responsible for managing the com-
munication between a set of parallel processes.

cellent scaling with the number of available processes,

enabling high-resolution (large number of cells) mesh

calculations.

2.4.2. Task-based

The analysis of LSS data often involves hundreds to

thousands of repetitions of a single, less computation-

ally expensive task. Examples include estimating the

covariance matrix of a clustering statistic from a set

of simulations and best-fit parameter estimation for a

model. nbodykit implements a TaskManager utility to

allow users to easily iterate over multiple tasks while ex-

ecuting in parallel. Users can specify the desired number

of processes assigned to each task, and the TaskManager

will iterate through the tasks, ensuring that all processes

are being utilized.

3. CAPABILITIES

In this section, we provide a more detailed overview

of some of the main components of nbodykit. In par-

ticular, we describe how cosmology calculations are per-

formed (§3.1), outline the available Catalog (§3.2) and

Mesh (§3.3) classes, and provide details and references

for the various algorithms currently implemented (§3.4).

3.1. Cosmology

The nbodykit.cosmology module includes function-

ality for representing cosmological parameter sets and

computing various common theoretical quantities in LSS

that depend on the background cosmological model.

The underlying engine for these calculations is the CLASS

Boltzmann solver (Blas et al. 2011; Lesgourgues 2011).

We use the Python bindings of the CLASS C library pro-

vided by the classylss package. Comparing to the
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binding provided by the CLASS source code, classylss

is a direct mapping of the CLASS object model to Python

and integrates with the NumPy array protocol natively.

The main object in the module is the Cosmology class,

which users can initialize by specifying a unique set of

cosmological parameters (using the syntax of CLASS).

This class represents the background cosmological model

and contains methods to compute quantities that de-

pend on the model. Most of the CLASS functionality

is available through methods of the Cosmology object.

Examples include distance as a function of redshift z,

the Hubble parameter H(z), the linear power spectrum,

the nonlinear power spectrum, and the density and ve-

locity transfer functions. Several Cosmology objects are

provided for well-known parameter sets, including the

WMAP 5, 7, and 9-year results (Komatsu et al. 2009,

2011; Hinshaw et al. 2013) and the Planck 2013 and

2015 results (Planck Collaboration et al. 2014, 2016).

The nbodykit.cosmology module also includes

classes to represent theoretical power spectra and cor-

relation functions. The LinearPower class can compute

the linear power spectrum as a function of redshift

and wavenumber, using either the transfer function as

computed by CLASS or the analytic approximations of

Eisenstein & Hu (1999). The latter includes the so-

called “no-wiggle” transfer function, which includes no

BAO but the correct broadband features and is use-

ful for quantifying the significance of potential BAO

features. Similarly, we provide the NonlinearPower

object to compute nonlinear power spectra, using the

Halofit implementation in CLASS (Smith et al. 2003),

which includes corrections from Takahashi et al. (2012).

The ZeldovichPower class uses the linear power spec-

trum object to compute the power spectrum in the

Zel’dovich approximation (tree-level Lagrangian pertur-

bation theory). The implementation closely follows the

appendices of Vlah et al. (2015) and relies on a Python

implementation and generalization of the FFTLog algo-

rithm12 (Hamilton 2000). Finally, we also provide a

CorrelationFunction object to compute theoretical

correlation functions from any of the available power

classes (using FFTLog to compute the Fourier trans-

form).

We choose to use the CLASS software for the cosmo-

logical engine in nbodykit rather than the most likely

alternative, the astropy.cosmology module. This al-

lows nbodykit to leverage the full power of a Boltz-

mann solver for LSS calculations. We provide syntax

compatibility between the Cosmology class and astropy

12 https://github.com/eelregit/mcfit

when appropriate and provide functions to transform be-

tween the cosmology classes used by the two packages.

However, we note that there are important differences

between the two implementations. In particular, the

treatment of massive neutrinos differs, with astropy us-

ing the approximations of Komatsu et al. (2011) rather

than the direct calculations, as in CLASS.

3.2. Catalogs

In this section, we describe the two main ways that

catalogs are created in nbodykit, as well as tools for

cleaning and manipulating data stored in Catalog ob-

jects.

3.2.1. Reading Data from Disk

We provide support for loading data from disk into

Catalog objects for several of the most common data

storage formats in LSS data analysis. These formats in-

clude plaintext comma-separated value (CSV) data (via

pandas, McKinney 2010), binary data stored in a colum-

nar format, HDF5 data (via h5py, Collette & contribu-

tors 2017), FITS data (via fitsio, Sheldon 2017), and

the bigfile data format. We also provide more spe-

cialized readers for particle data from the Tree-PM sim-

ulations of White (2002) and the legacy binary format

of the GADGET simulations (Springel 2005). These

Catalog objects use the nbodykit.io module, which in-

cludes several “file-like” classes for reading data from

disk. These file-like objects implement a read() func-

tion that provides the random-read interface which re-

turns a slice of the data for the requested columns. Users

can easily support custom file formats by implementing

their own subclass and read() interface.

Formats storing data on disk in a columnar format

yield the best performance results, as the entirety of the

data does not need to be parsed to yield the desired

slice of the data on a given process. This is not true

for the CSV storage format. We mitigate performance

issues by implementing an enhanced version of the CSV

parser in pandas that supports faster parallel random

access. Our preferred IO format, bigfile, is massively

parallel and stores data via a columnar format.

Finally, the Catalog object supports loading data from

multiple files at once, providing a continuous view of the

entirety of the data. This becomes particularly power-

ful when combined with the random-read interface, as

arbitrary slices of the combined data can be accessed.

For example, a single Catalog object can provide access

to arbitrary slices of the output binary snapshots from

an N -body simulation (stored over multiple files), often

totaling 10-100 GB in size.

3.2.2. Generating Catalogs at Runtime

https://github.com/eelregit/mcfit
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nbodykit includes several Catalog classes that gener-

ate simulated data at runtime. The simplest of these

allows generating random columns of data in paral-

lel using the numpy.random module. We also provide

a UniformCatalog class that generates uniformly dis-

tributed particles in a box. These classes are useful for

testing purposes, as well as for use as unclustered, syn-

thetic data in clustering estimators.

nbodykit also includes functionality for generating

more realistic approximations of large-scale structure.

LogNormalCatalog generates a set of objects by Pois-

son sampling a log-normal density field and applies the

Zeldovich approximation to model nonlinear evolution

(Coles & Jones 1991; Agrawal et al. 2017). The user

can specify the input linear power spectrum and the de-

sired output redshift of the catalog.

Catalog objects can also be created using the

mock generation techniques of the Halotools software

(Hearin et al. 2017) for populating halos with objects.

Halotools includes functionality for populating halos

via a wide range of techniques, including the halo oc-

cupation distribution (HOD), conditional luminosity

function, and abundance matching methods. We refer

the reader to Hearin et al. (2017) for further details.

nbodykit supports using a generic Halotools model

to populate a halo catalog. We also include built-in,

specialized support for the HOD models of Zheng et al.

(2007), Leauthaud et al. (2011), and Hearin et al. (2016).

Finally, the fastpm-python package implements an

nbodykit Catalog object that generates particles via the

FastPM approximate N -body simulation scheme (Feng

et al. 2016). The FastPM library is massively parallel

and exhibits excellent strong scaling with the number of

available processes (see §6).

3.2.3. On-demand Data Cleaning

nbodykit uses the dask library (Dask Development

Team 2016) to represent the data columns of a Cata-

log object as dask array objects instead of using the

more familiar NumPy array. The dask array has two key

features that help users work interactively with data,

and, in particular, large data sets. The first feature is

delayed evaluation. When manipulating a dask array,

operations are not evaluated immediately but instead

stored in a task graph. Users can explicitly evaluate

the dask array (returning a NumPy array) via a call to a

compute() function. Second, dask arrays are chunked.

The array object is internally divided into many smaller

arrays, and calculations are performed on these smaller

“chunks.”

The delayed evaluation of dask arrays is particularly

useful during the process of data cleaning, when users

manipulate input data before feeding it into the anal-

ysis pipeline. Common examples of data cleaning in-

clude changing the coordinate system from galactic to

Euclidean, converting between unit conventions, and ap-

plying masks. When using large data sets, the time to

load the full data set into memory can be significant.

This delay hinders data exploration and limits the in-

teractive benefits of the Python language. dask arrays

allow users to design data-cleaning pipelines on the fly.

If the data format on disk supports random-read access,

users can easily select and peek at a small subset of data

without reading the full data set. This becomes espe-

cially useful when prototyping scientific models in an

interactive environment, such as a Jupyter notebook.

The chunked nature of the dask array allows array

computations to be performed on large data sets that

do not fit into memory because the chunk size defines

the amount of data loaded into memory at any given

time. It effectively extends the maximum size of useable

data sets from the size of memory to the size of the

disk storage. This feature also simplifies the process of

dealing with large data sets in interactive environments.

3.3. Meshes

3.3.1. Painting a Mesh

The Mesh object implements a paint() function,

which is responsible for generating the field values on

the mesh and returning an array-like object to the user.

Meshes provide an equal treatment of configuration and

Fourier space, and users can specify whether the painted

array is defined in configuration or Fourier space. In the

former case, a RealField is returned and in the latter,

a ComplexField. These objects are implemented by the

pmesh package and are subclasses of the NumPy ndarray

class. They are related via a real-to-complex parallel

FFT operation, implemented using pfft-python via the

r2c() and c2r() functions.

The paint() function paints mass-weighted (or equiv-

alently, number-weighted) quantities to the mesh. The

field that is painted is

F (x) = [1 + δ′(x)]V (x), (1)

where V (x) represents the field value painted to the

mesh and δ′(x) = n′(x)/n̄′ − 1 is the weighted overden-

sity field. It is related to the unweighted number density

as n′(x) = W (x)n(x), where W (x) are the weights.

In nbodykit, users can control the behavior of both

V (x) and W (x). In the default case, both quantities

are unity, and the field painted to the mesh is 1 + δ.

As an illustration, V (x) can be specified as a velocity

component to paint the momentum field (mass-weighted

velocity). We also provide a mechanism by which users
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can further transform the painted field on the mesh. The

apply() function can be used to apply a function to the

mesh, either in configuration or Fourier space. Multiple

functions can be applied to the mesh, and the operations

are performed when paint() is called.

3.3.2. From Catalog to Mesh

All Catalog objects include a to mesh() function

which creates a Mesh object using the specified num-

ber of cells per mesh side. This function allows users to

configure exactly how the catalog is interpolated onto

the mesh. Users can choose from several different mass

assignment windows, including the Cloud-In-Cell (CIC),

Triangular Shaped Cloud (TSC), and Piecewise Cubic

Spline (PCS) schemes (Hockney & Eastwood 1981). The

Daubechies wavelet (Daubechies 1992) and its symmet-

ric counterpart (“Symlets”, see, e.g., PyWavelets13) are

also available. By default, the CIC window is used. The

interlacing technique (Hockney & Eastwood 1981; Se-

fusatti et al. 2016) can reduce the effects of aliasing in

Fourier space. In this scheme, the Catalog object is in-

terpolated onto two separate meshes separated by half

of a cell size. When the fields are combined in Fourier

space, the leading-order contribution to aliasing is elim-

inated.

Users can also configure whether or not the window is

compensated, which divides the density field in Fourier

space by (Hockney & Eastwood 1981)

W (k) = Πi [sinc (πki/2kN)]
p
, (2)

where i ∈ {x, y, z}, p = 2, 3, 4 for CIC, TSC, and PCS,

respectively, and sinc(x) ≡ sin(x)/x. The Nyquist fre-

quency of the mesh is given by kN = πN/L, where L is

the box size, and N is the number of cells per box side.

We provide comparisons of the various interpolation

windows and correction methods in this section. First,

Figure 2 illustrates the effects of interlacing when us-

ing the CIC, TSC, and PCS schemes. This comparison

is similar to the detailed analysis presented in Sefusatti

et al. (2016). Second, we show the effectiveness of the

wavelet windows at reducing aliasing in Figure 3. For

both figures, we paint a LogNormalCatalog of 5 × 107

objects to a mesh of 5123 cells in a box of side length

2500 h−1Mpc. We compare the measured power spec-

trum to a “reference” power spectrum, computed using

a mesh of 10243 cells and the PCS window. When using

the CIC, TSC, and PCS windows, we de-convolve the

interpolation window using equation 2, while we apply

no such corrections when using wavelet-based windows.

13 https://pywavelets.readthedocs.io
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Figure 2. A comparison of the effects of interlacing when
using the CIC, TSC, and PCS windows. We show the ratio
of the power spectrum computed for a log-normal density
field using a mesh with 5123 cells to a reference power spec-
trum P ref , computed using a mesh with 10243 cells. The
ratio is shown as a function of wavenumber in units of the
Nyquist frequency of the lower-resolution mesh. In all cases,
the appropriate window compensation is performed using
equation 2.

Figure 2 confirms the results of Sefusatti et al.

(2016)—the interlacing technique performs very well at

reducing the effects of aliasing on the measured power

spectrum. We achieve sub-percent accuracy up to the

Nyquist frequency when combining interlacing with the

CIC, TSC, and PCS windows. In general, higher-order

windows perform better, with the PCS scheme achiev-

ing a precision of at least ∼10−5 up to the Nyquist

frequency.

Figure 3 compares the performance of the Daubechies

and Symlet wavelets to the CIC, TSC, and PCS win-

dows. As in Figure 2, we plot the ratio of the power

spectrum computed using meshes of size 5123 and 10243

cells. We apply equation 2 for the CIC, TSC, and PCS

windows but do not apply any corrections when using

the wavelet windows. For this comparison, we do not

use interlacing. We are able to confirm the results of

Cui et al. (2008) and Yang et al. (2009), which claim 2%

accuracy on the power spectrum up to k ≈ 0.7kN when

using the DB6 window without any additional correc-

tions. However, the wavelet windows fail to match the

precision achieved when using interlacing, even when

using the largest wavelet size tested here (a = 20).

Furthermore, the Daubechies windows introduce scale-

https://pywavelets.readthedocs.io
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Figure 3. The performance of the Daubechies and Symlet
wavelets in comparison to the CIC, TSC, and PCS windows.
Wavelet windows of sizes a = 6, 12, and 20 are shown. Top:
the ratio of the measured power to the reference power spec-
trum, as in Figure 2. Here, we apply no corrections when
using the wavelet windows and apply equation 2 for the CIC,
TSC, and PCS windows. No interlacing is used for this test.
Bottom: the speed of each interpolation window, relative to
the CIC window. Speeds were recorded when computing the
power spectra in the top panel.

dependence on large scales due to symmetry breaking

(see the inset of Figure 3). The symmetric Symlet

wavelets do not suffer from this issue but also cannot

match the accuracy achieved when using interlacing.

Figure 3 also displays the relative speeds of each of

the windows discussed in this section (bottom panel).

These timing tests were performed using 64 processes

on the NERSC Cori Phase I system. The wavelet win-

dows are all significantly slower than the CIC, TSC, and

PCS windows. The TSC and PCS methods are only

marginally slower than the default CIC scheme, with

slowdowns of ∼10% and ∼40%, respectively. The CIC,

TSC, and PCS windows rely on optimized implementa-

tions in pmesh, while the wavelet windows use a slower

lookup table implementation. Due to the precision of

the interlacing technique and the relative speed of the

TSC and PCS windows, we recommend using these op-

tions in most instances. However, it is generally best to

determine the optimal set of parameters for a particular

application by running convergence tests with different

parameter configurations.

3.3.3. An Illustrative Example

from nbodykit.lab import *

import matplotlib.pyplot as plt

# Initialize linear power spectrum with Planck 2015 cosmology

cosmo = cosmology.Planck15

Plin = cosmology.LinearPower(cosmo, redshift=0)

# Create a Catalog by sampling a log-normal density field

cat = LogNormalCatalog(Plin, nbar=3e-3, BoxSize=1380, Nmesh=256)

# Convert to a Mesh and use TSC painting

mesh = cat.to_mesh(Nmesh=256, window="tsc")

# Save the configuration-space Mesh

mesh.save("lognormal-mesh.bigfile", mode="real", dataset="Field")

# Preview a low-resolution projection of the density field

density = mesh.preview(Nmesh=64, axes=(0,1))

plt.imshow(density)

...

# Reload the Mesh from disk

mesh = BigFileMesh("lognormal-mesh.bigfile", dataset="Field")
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Figure 4. Top: an analysis pipeline illustrating the creation
of a Mesh object from a Catalog, as well as how to serial-
ize the painted mesh to disk and preview a low-resolution
projection of the density field for inspection. Bottom: the
two-dimensional, low-resolution preview of the painted den-
sity field N/〈N〉 = 1 + δ.

We demonstrate the use of Mesh objects by example

in Figure 4, which gives a short code snippet that creates

a Mesh object from an existing Catalog, saves the con-

figuration space density field to disk, and then reloads

the data into memory. The snippet also demonstrates

the preview() function, which can create a lower res-

olution projection of the full mesh field. This can be

useful to quickly inspect mesh fields interactively, which

would otherwise be difficult due to memory limitations.

We show the preview of the density field from a log-

normal catalog in the bottom panel of Figure 4, where

the large-scale structure is clearly evident, even in the

low-resolution projection.
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3.4. Algorithms

The nbodykit.algorithms module includes parallel

implementations of some of the most commonly used

large-scale structure analysis algorithms. We take care

to provide support for data sets from both observational

surveys and N -body simulations. In this section, we

provide an overview of the available functionality. The

set of algorithms currently implemented is not meant to

be exhaustive, but instead a solid foundation for LSS

data analysis.

3.4.1. Power Spectra

For simulation boxes with periodic boundary condi-

tions, the FFTPower algorithm measures the power di-

rectly from the square of the Fourier modes of the over-

density field. The 1D or 2D power spectrum, P (k) or

P (k, µ), can be computed, as well as the power spectrum

multipoles P`(k). Here, µ represents the angle cosine

between the pair separation vector and the line-of-sight.

For observational data, in the form of right ascension

(RA), declination (Dec), and redshift, the power spec-

trum multipoles of the density field can be computed

using the ConvolvedFFTPower algorithm. The imple-

mentation uses the FFT-based estimator described in

Hand et al. (2017a), which requires 2`+1 FFTs to com-

pute a given multipole of order `. This estimator im-

proves the FFT-based estimator presented by Bianchi

et al. (2015) and Scoccimarro (2015), building on the

ideas of previous power spectrum estimators (Feldman

et al. 1994; Yamamoto et al. 2006), and in particular,

the treatment of the anisotropic 2PCF using spherical

harmonics of Slepian & Eisenstein (2015b). We also pro-

vide the ProjectedFFTPower for computing the power

spectrum of a field in a simulation box, projected along

the specified axes. Such an observable is useful for e.g.,

Lyman-α or weak lensing data analysis. The correct-

ness of these algorithms has been verified using inde-

pendent implementations from within the Baryon Oscil-

lation Spectroscopic Survey (BOSS) collaboration.

3.4.2. 2-Point Correlation Functions

nbodykit includes functionality for counting pairs of

objects and computing their correlation function in con-

figuration space. We leverage the blazing speed of

the publicly available Corrfunc chaining mesh code for

these calculations (Sinha & Garrison 2017). We adapt

its highly optimized pair counting routines to perform

calculations using MPI. We perform a domain decom-

position on the input data such that the objects on a

particular MPI rank are spatially confined to include

all pairs within the maximum separation. For non-

uniform density fields, the domain decomposition re-

sults in a particle load that is balanced across MPI

ranks.14 The relevant pair counting algorithms are

SimulationBoxPairCount and SurveyDataPairCount.

These classes can count pairs of objects as a function of

the 3D separation r, the separation r and angle to the

line-of-sight µ, the angular separation θ, and the pro-

jected distances perpendicular rp and parallel π to the

line-of-sight.

Users can compute the correlation function of a Cata-

log using the SimulationBox2PCF and SurveyData2PCF

classes, which internally rely on the previously described

pair counting classes. For data with periodic boundary

conditions, we use analytic randoms to estimate the cor-

relation function using the so-called “natural” estima-

tor: DD/RR − 1. A Catalog object holding synthetic

randoms can be supplied, in which case the Landy-

Szalay estimator (Landy & Szalay 1993) is employed:

(DD − 2DR + RR)/RR. The variations of the correla-

tion function that can be computed by these two classes

are as follows:

• as a function of three-dimensional separation, ξ(r)

• accounting for the angle to the line-of-sight, ξ(r, µ)

and ξ(rp, π)

• as a function of angular separation, w(θ)

• projected over the line-of-sight separations, wp(rp)

The correctness of the pair counting and correlation

function algorithms described here was independently

verified using the kdcount and Halotools software.

3.4.3. 3-Point Correlation Function

The SimulationBox3PCF and SurveyData3PCF classes

compute the multipoles of the isotropic 3-point correla-

tion function (3PCF) in configuration space. The algo-

rithm follows the implementation described in Slepian &

Eisenstein (2015b), which scales as O(N2), where N is

the number of objects. Their improved estimator relies

on a spherical harmonic decomposition to achieve a sim-

ilar scaling with N as two-point clustering estimators.

We note that the FFT-based implementation of this

algorithm (presented in Slepian & Eisenstein 2016) and

the anisotropic version described in Slepian & Eisenstein

(2017) have not yet been implemented, although there

are plans to do so in the future. We have verified the

accuracy of the isotropic 3PCF classes against the im-

plementation used in Slepian & Eisenstein (2015b). An

implementation of this algorithm including anisotropy

written in C++ and optimized for HPC machines was

recently presented in Friesen et al. (2017).

14 We thank Biwei Dai for the implementation of the load bal-
ancer.
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3.4.4. Grouping Methods

The FOF class implements the well-known Friends-

of-Friends algorithm, which identifies clusters of points

that are spatially less distant than a threshold linking

length. It uses a parallel implementation of the algo-

rithm described in Feng & Modi (2017), which utilizes

KD-trees and the kdcount software. FOF groups can be

identified as a function of three-dimensional or angular

separation. We also provide functions for transforming

the output of the FOF algorithm to a Catalog of halo

objects (a HaloCatalog) in a manner compatible with

the Halotools software.

nbodykit can also identify clusters of objects using

a cylindrical rather than spherical geometry. We im-

plement a parallel version of the algorithm described

in Okumura et al. (2017) in the CylindricalGroups

class. Our implementation relies on the neighbor query-

ing capability of kdcount and the group-by methods of

pandas.

Finally, the FiberCollisions class simulates the pro-

cess of assigning spectroscopic fibers to objects in a fiber-

fed redshift survey such as BOSS or eBOSS (Dawson

et al. 2013, 2016). This procedure results in so-called

“fiber collisions” when two objects are separated by an

angular width on the sky that is smaller than the fiber

size. We follow the procedure outlined in Guo et al.

(2012) to assign fibers to an input catalog of objects.

We identify angular FOF groups using a linking length

equal to the fiber collision scale and assign fibers to the

objects in such a manner as to minimize the number of

objects that do not receive a fiber.

3.4.5. Miscellaneous

nbodykit also includes algorithms that generally serve

a supporting role in other algorithms. The KDDensity

class estimates a proxy density quantity for an input

set of objects using the inverse cube of the distance to

an object’s nearest neighbor. The RedshiftHistogram

class computes the mean number density as a function

of redshift, n(z), from an input catalog of objects. We

plan to generalize this algorithm to be a more universal

histogram calculator that could, for example, compute

mass or luminosity functions.

4. DEVELOPMENT WORKFLOW

4.1. Version Control

nbodykit is developed using the version control fea-

tures of git,15 and the code is hosted in a public repos-

15 http://git-scm.com

itory on GitHub.16 Major changes to the code base are

performed using a pull request workflow, which provides

a mechanism for developers to review changes before

they are merged into the main source code. Users can

contribute to nbodykit by first forking the main repos-

itory, making changes in this fork and submitting the

changes to the main repository via a pull request. This

workflow helps assure the overall quality of the code base

and ensures that new changes are properly documented

and tested. Bugs and new feature requests can be sub-

mitted as GitHub issues. Alternatively, users can send

an email to nbodykit-issues@fire.fundersclub.com,

which will automatically open an issue on GitHub. As

nbodykit is intended as a community-based resource,

we encourage user contributions and ideas for new func-

tionality. We adopt a “mentoring” approach for new

features and will gladly offer advice and guidance to

new users who wish to contribute to nbodykit for the

first time.

4.2. Automated Testing with MPI Support

nbodykit is extensively tested via hundreds of unit

tests using the runtests17 package (Feng & Hand

2017). As mpi4py does not provide a reusable frame-

work for testing parallel applications, we have developed

runtests to fill this gap in the development process.

It extends the py.test18 testing framework, adding

several features. First, the test driver incrementally re-

builds and installs the Python package before running

the test suite. Second, it adds MPI support by allowing

users to specify the number of processes with which

each test function should be executed. It also supports

computing the testing coverage for parallel applications,

where test coverage is defined as the percentage of the

software covered by the test suite.

We execute the nbodykit test suite via the continuous

integration (CI) service Travis,19 using runtests to test

both serial and parallel execution of the code. The test

suite is currently executed on both Linux and Mac OS X

operating systems and for Python versions 2.7, 3.5, and

3.6. Whenever a pull request is opened, the test suite is

executed and the new changes will not be merged if the

test suite fails. We also compute the testing coverage of

the code base. Currently, nbodykit maintains a value

of 95%. We use the Coveralls20 service to ensure that

16 http://github.com/bccp/nbodykit
17 https://github.com/rainwoodman/runtests
18 http://pytest.org
19 https://travis-ci.org
20 https://coveralls.io

http://git-scm.com
nbodykit-issues@fire.fundersclub.com
http://github.com/bccp/nbodykit
https://github.com/rainwoodman/runtests
http://pytest.org
https://travis-ci.org
https://coveralls.io
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new changes cannot be merged into the main repository

if the testing coverage decreases.

4.3. Use on Personal and HPC Machines

nbodykit is compatible with both Python versions 2.7

and 3.x. For personal computing systems (Mac OS X

and Linux), we provide binaries of nbodykit and its

dependencies on the Berkeley Center for Cosmological

Physics (BCCP) Anaconda channel.21 nbodykit (and

all of its dependencies) can be installed into an Ana-

conda environment using a simple command: conda

install -c bccp nbodykit. We ensure all packages

on the BCCP channel are up-to-date using a nightly

cron job hosted on the Travis CI service.

Supercomputing systems often require recompiling the

dependencies of nbodykit using the machine-specific

compilers and MPI configuration. For example, we use

the “conda build” functionality of the Anaconda pack-

age to compile and update nbodykit and its dependen-

cies nightly on the NERSC Cray supercomputers. The

infrastructure for building nbodykit and its dependen-

cies is publicly available on GitHub,22 which users can

re-use to setup nbodykit on HPC machines other than

NERSC. However, we recommend that users first test if

the default binaries on the BCCP channel are compati-

ble with their supercomputing environment.

The remaining barrier to using nbodykit on HPC sys-

tems is the incompatibility of the Python launch system

and the shared file systems of HPC machines. When

launching an MPI application using Python, the file sys-

tem will stall when all of the Python instances (can be

thousands or more) query the file system for modules on

the search path. This issue effectively prevents the use

of Python applications on HPC machines.

nbodykit utilizes an open-source solution, denoted

“python-mpi-bcast”, to facilitate deploying Python ap-

plications on HPC machines (Feng & Hand 2016). This

tool bundles and delivers runtime dependencies to the

HPC computing nodes via an MPI broadcast opera-

tion, bypassing the file system bottleneck and allow-

ing Python applications to launch at near-native speed.

Users can modify their job scripts in a non-invasive man-

ner to deploy our tool. Additional details and setup in-

structions can be found in Feng & Hand (2016). The

tool is publicly available on GitHub.23

4.4. Documentation

21 https://anaconda.org/bccp
22 https://github.com/bccp/conda-channel-bccp
23 https://github.com/rainwoodman/python-mpi-bcast

Documentation for nbodykit is available on Read

the Docs.24 The documentation is generated using

Sphinx25 and includes comprehensive documentation

of the nbodykit API. It also includes detailed walk-

throughs of each of the main components of nbodykit.

We provide a set of recipes detailing a broad selection

of the functionality available in nbodykit in the “Cook-

book” section of the documentation. Ranging from sim-

ple tasks to more complex work flows, we hope that

these recipes help users become acclimated to nbodykit

as well as illustrate the power of nbodykit for LSS data

analysis. The recipes are in the form of Jupyter note-

books. An interactive environment containing the recipe

notebooks is available to users via the Binder service.26

This allows new users to explore nbodykit without in-

stalling nbodykit on their own machine.

5. IN ACTION

In this section, we describe a realistic LSS application

using nbodykit: a galaxy clustering emulator. The goal

of the emulator is to produce the galaxy power spectrum

from first principles, given a background cosmological

model. The application combines several components of

nbodykit to achieve this goal. The steps include:

• Initial conditions: the LinearMesh class creates a

Gaussian realization of a density field in Fourier

space from an input power spectrum.

• N -body simulation: the initial conditions are

evolved forward to z = 0 using the FastPM quasi-

N -body particle mesh scheme of Feng et al. (2016).

• Halo Identification: halos are identified from the

matter field using the FOF grouping algorithm.

• Halo Population: halos are populated with galax-

ies using the HOD from Zheng et al. (2007) and

the Halotools package.

• Clustering Estimation: P (k) is computed for each

of the above steps using the FFTPower algorithm.

We diagram the flow of data and parameters for these

steps in the top right panel of Figure 5. We also show the

source code for the application using nbodykit, which

can be implemented using only ∼30 lines of code. We

emphasize that with the component-based approach of

nbodykit, the user is free to output and serialize any

intermediate data products during the execution of the

24 http://nbodykit.readthedocs.io
25 http://www.sphinx-doc.org
26 https://mybinder.org

https://anaconda.org/bccp
https://github.com/bccp/conda-channel-bccp
https://github.com/rainwoodman/python-mpi-bcast
http://nbodykit.readthedocs.io
http://www.sphinx-doc.org
https://mybinder.org
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from nbodykit.lab import *

from nbodykit import setup_logging

from fastpm.nbkit import FastPMCatalogSource

setup_logging()

# Setup initial conditions

cosmo = cosmology.Planck15

power = cosmology.LinearPower(cosmo, 0)

linear = LinearMesh(power, BoxSize=512, Nmesh=512)

# P(k) of initial field

r = FFTPower(linear, mode="1d")

r.save("linear-power.json")

# Run the FastPM particle mesh simulation

matter = FastPMCatalogSource(linear, Nsteps=10)

# Compute and save matter P(k,z=0)

r = FFTPower(matter, mode="1d", Nmesh=512)

r.save("matter-power.json")

# Run FOF to identify halo groups

fof = FOF(matter, linking_length=0.2, nmin=20)

halos = fof.to_halos(1e12, cosmo, 0.)

# Compute and save halo power P(k,z=0)

r = FFTPower(halos, mode="1d", Nmesh=512)

r.save("halo-power.json")

# Populate halos with galaxies

hod = halos.populate(Zheng07Model)

# Compute and save galaxy P(k,z=0)

r = FFTPower(hod, mode="1d", Nmesh=512)

r.save("galaxy-power.json")
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Figure 5. A galaxy clustering emulator, implemented with nbodykit. Left : the source code for the application, which evolves
an initial Gaussian field to z = 0 using the FastPM simulation scheme, identifies FOF halos, populates those halos with galaxies,
and records the power spectrum of each step. Right, top: the flow of data through the various components. Right, bottom: the
resulting P (k) measured for each step in the emulator. Performance benchmarks for this application are given in Figure 7.

larger application, as we have done in this example for

the power spectra of the initial, matter, and halo density

fields. Finally, note that the source code in Figure 5 can

be executed with an arbitrary number of MPI ranks. We

discuss performance benchmarks for this application as

a function of the number of MPI processes in the next

section.

6. PERFORMANCE BENCHMARKS

In this section, we present performance benchmarks

for several nbodykit algorithms, as well as the emula-

tor application discussed in Section 5. Tests are run

on the NERSC Cori Phase I Haswell nodes, with 32

MPI cores per node. In Figure 6, we show the strong

scaling results for the FFTPower, ConvolvedFFTPower,

SimulationBoxPairCount, and SimulationBox3PCF al-

gorithms. The benchmarks are performed for two dif-

ferent data configurations, meant to simulate the data

sets of current and future surveys, denoted as “small”

and “large”, respectively. The “small” sample is mod-

eled after the completed BOSS galaxy sample (Reid

et al. 2016) and includes 106 galaxies in a cubic box of

side length L = 2500 h−1Mpc. The “large” sample in-

cludes a factor of 10 more objects in a box of side length

L = 5000 h−1Mpc and is meant to represent data from

future surveys such as DESI (DESI Collaboration et al.

2016). We run four sets of benchmarking tests:

• FFTPower: compute P (k, µ) for 10 µ bins, using a

mesh size of Nmesh = 1024. This requires a single

FFT operation.

• ConvolvedFFTPower: compute multipoles P`(k)

for ` = 0, 2, and 4 for survey data (RA, Dec, z),

using a mesh size of Nmesh = 1024. The algorithm

requires 2`+ 1 FFT operations per multipole, and

15 in total for this test.
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Figure 6. Performance benchmarks for four nbodykit algo-
rithms for our “small” data set (106 objects) and our “large”
data set (107 objects). The algorithms in the top row use
FFT-based estimators to compute power spectra, while those
in the bottom row of panels count pairs of objects in configu-
ration space. The FFT-based algorithms take near-identical
time for the large and small data sets due to the use of a
10243 mesh in both cases. The benchmarks were performed
on the NERSC Cori Phase I Haswell nodes using 32 MPI
ranks per node. See the text of Section 6 for further details
on the test configurations.

• SimulationBoxPairCount: count the number of

pairs as a function of separation for 10 separa-

tion bins ranging from r = 10 h−1Mpc to r =

150 h−1Mpc and 100 µ bins.

• SimulationBox3PCF: compute the isotropic 3PCF

multipoles for ` = 0, 1, ..., 10 and 10 separa-

tion bins ranging from r = 10 h−1Mpc to

r = 150 h−1Mpc.

In general, these four algorithms show excellent strong

scaling with the number of MPI ranks. For the power

spectrum algorithms (top row of Figure 6), the domi-

nant calculation is the FFT operation, which has good

scaling behavior. Because the FFT is the dominant

time cost, we find nearly identical performances for

the “small” and “large” samples. The wall-clock time

for the ConvolvedFFTPower algorithm is roughly fif-

teen times that of the FFTPower algorithm, which is

driven by the total number of FFTs that each algo-

rithm computes. The pair-counting-based algorithms

both take O(N2) time to compute their results. How-

ever, the SimulationBoxPairCount algorithm relies on
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Figure 7. The wall-clock time as a function of the num-
ber of MPI ranks used for each step in the galaxy cluster-
ing emulator detailed in Figure 5. Overall, the application
shows excellent scaling behavior, with deviations from the
ideal scaling caused by the halo population step. This step
does not currently have a massively parallel implementation
and takes a roughly constant amount of time as more cores
are used. The benchmarks were performed on the NERSC
Cori Phase I Haswell nodes using 32 MPI ranks per node.

the highly optimized Corrfunc software, which is sig-

nificantly faster than SimulationBox3PCF, which relies

on kdcount. When using SimulationBoxPairCount on

the “small” data set, we find that MPI communication

costs are non-negligible due to the relatively small sam-

ple size, which hinders the scaling performance of the

code.

We also present performance benchmarks for the emu-

lator application described in Section 5. For this test, we

run a FastPM particle mesh simulation with 5123 total

particles. The halo finder identifies roughly 225,000 dark

matter halos that are then used to build a mock galaxy

catalog. The wall-clock times for each step in the emu-

lator are shown in Figure 7. We see that the dominant

fraction of the wall-clock time is spent in the FastPM

step, which shows excellent strong scaling behavior up

to the number of cores we have tested. The implementa-

tion of the halo population step using Halotools is not

massively parallel, and therefore, the time to solution

for this step remains relatively constant as the number

of cores increases. The wall-clock time for this step only

becomes significant as the number of cores approaches

∼1024, and it would be worth investigating improving

this step’s scaling if users wish to run often at this scale.

However, in our experience, we have not found that the

time cost of this step justifies further efforts converting

it to a massively parallel implementation.
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We emphasize that for all benchmarks presented in

this section, the number of MPI ranks can always be

increased such that the time to solution is on the order

of seconds. This becomes important for realistic data

analyses in LSS, which often require repeating an al-

gorithm’s calculation hundreds to thousands of times,

e.g., while sampling a parameter space using Markov

Chain Monte Carlo or optimization techniques. Due to

the availability of large-scale computing resources and

the scaling behavior of nbodykit demonstrated here,

we believe that nbodykit will be able to meet the com-

putational demands of future LSS data analyses.

7. CONCLUSIONS

We have presented the first public release of nbodykit

(v0.3.0), a massively parallel Python toolkit for the anal-

ysis of large-scale structure data. Relying on the mpi4py

binding of MPI, the package includes parallel imple-

mentations of a set of canonical algorithms in the field

of large-scale structure, including two and three-point

clustering estimators, halo identification and popula-

tion tools, and quasi-N -body simulation schemes. The

toolkit also includes a set of distributed data contain-

ers that support a variety of data formats common in

astronomy, including CSV, FITS, HDF5, binary, and

bigfile data. With these tools, we hope nbodykit can

serve as a foundation for the community to build upon

as we strive to meet the demands of future LSS data

sets.

In designing nbodykit, we have attempted to balance

the requirements of both a scalable and interactive piece

of software. Our ultimate goal was to produce a piece

of software that is as usable in a Jupyter notebook en-

vironment as on an HPC machine. We have adopted

a modular, component-based approach that should en-

able researchers to integrate nbodykit with their own

software to build complicated applications. As an illus-

tration of its power, we have discussed an implemen-

tation of a galaxy clustering emulator using nbodykit,

which provides a complete forward model for the galaxy

power spectrum, starting from an initial, Gaussian den-

sity field. We have also demonstrated that the toolkit

shows excellent scaling behavior, presenting a set of per-

formance benchmarks for the emulator as well as some

of the more commonly used algorithms in nbodykit.

We have outlined our development workflow for pro-

ducing a piece of reusable scientific software. nbodykit

is open-source—we strongly believe in the idea of open

science and have placed an emphasis on reproducibility

when designing nbodykit. Designed for the LSS com-

munity, we hope that new users will find nbodykit useful

in their own research and that the software can continue

to grow and mature in new ways from community feed-

back and contributions. We are also strong believers in

the necessity of unit testing and adequate documenta-

tion for open-source tools. We have attempted to meet

these goals using the Travis automated testing service

and the Read the Docs documentation hosting tools.

Finally, we have aimed to make nbodykit widely avail-

able and easily installable. The package supports both

Python versions 2 and 3, and binary distributions of

nbodykit and its dependencies can be installed onto

Mac OS X and Linux machines using the Anaconda

package manager.

In the future, we hope to incorporate the expertise of

new developers, from both the LSS and Python HPC

communities. We expect the knowledge of both com-

munities to be necessary in the data analysis of future

surveys. The set of features currently implemented in

nbodykit is not meant to be all-inclusive but rather a

sampling of the more commonly used tools in the field.

Most importantly, we hope that nbodykit provides a

solid basis for the community to build upon. We warmly

welcome feedback and contributions of all forms from

the community. As open-source software, nbodykit was

designed as a tool to help the LSS community, and we

hope that community contributions can help maximize

its benefits for its users.
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Dalćın, L., Paz, R., Storti, M., & DEĺıa, J. 2008, Journal of
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