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Mixed-valence state in the dilute-impurity
regime of La-substituted SmB6

M. Zonno 1,2,3,10 , M. Michiardi 1,2,4, F. Boschini 2,5, G. Levy 1,2,
K. Volckaert6, D.Curcio6,M. Bianchi 6, P. F. S. Rosa 7, Z. Fisk8, Ph.Hofmann 6,
I. S. Elfimov1,2, R. J. Green2,9, G. A. Sawatzky 1,2 & A. Damascelli 1,2

Homogeneous mixed-valence (MV) behaviour is one of the most intriguing
phenomena of f-electron systems. Despite extensive efforts, a fundamental
aspect which remains unsettled is the experimental determination of the
limiting cases for which MV emerges. Here we address this question for SmB6,
a prototypical MV system characterized by two nearly-degenerate Sm2+ and
Sm3+ configurations. By combining angle-resolved photoemission spectro-
scopy (ARPES) and x-ray absorption spectroscopy (XAS), we track the evolu-
tion of the mean Sm valence, vSm, in the SmxLa1−xB6 series. Upon substitution
of Sm ions with trivalent La, we observe a linear decrease of valence fluctua-
tions to an almost complete suppression at x = 0.2,with vSm ~ 2; surprisingly, by
further reducing x, a re-entrant increase of vSm develops, approaching the
value of vimp ~ 2.35 in the dilute-impurity limit. Such behaviour departs from a
monotonic evolution of vSm across the whole series, as well as from the
expectation of its convergence to an integer value for x → 0. Our ARPES and
XAS results, complemented by a phenomenological model, demonstrate an
unconventional evolution of theMV character in the SmxLa1−xB6 series, paving
theway to further theoretical and experimental considerations on the concept
of MV itself, and its influence on the macroscopic properties of rare-earth
compounds in the dilute-to-intermediate impurity regime.

Strong many-body interactions play a critical role in shaping the
electronic, magnetic, and even mechanical properties of quantum
materials. In compounds containing rare-earth or actinide elements,
electron correlations originate from the localized and partially
filled f-electron shells. The resulting entanglement of the relevant
degrees of freedom—orbital, spin, charge, and lattice—gives rise
to a plethora of novel phenomena in such materials, includ-
ing spin and charge order1, superconductivity2,3, quantum criticality4,

heavy fermion behavior5,6, Kondo physics7, and mixed-valence
behavior8,9.

In particular, mixed valence (MV) is a fascinating phenomenon
observed in a wide range of rare-earth compounds8,10–13, yet a full
microscopic understandingof its nature and limits remains elusive.MV
is defined by the presence of a given rare-earth element in the system
exhibitingmore than one electronic occupation for the f shell14. Within
the whole class of MV compounds, an important distinction arises

Received: 17 October 2023

Accepted: 7 August 2024

Check for updates

1Department of Physics & Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada. 2Quantum Matter Institute, University of British
Columbia, Vancouver, BCV6T 1Z1, Canada. 3Canadian Light Source Inc., Saskatoon, SKS7N2V3,Canada. 4Max Planck Institute forChemical Physics of Solids,
Dresden 01187, Germany. 5Centre Énergie Matériaux Télécommunications Institut National de la Recherche Scientifique, Varennes QC J3X 1S2, Canada.
6Department of Physics andAstronomy, InterdisciplinaryNanoscienceCenter, Aarhus University, 8000AarhusC, Denmark. 7Los AlamosNational Laboratory,
Los Alamos, NM 87545, USA. 8Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA. 9Department of Physics & Engineering
Physics, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada. 10Present address: Synchrotron SOLEIL, Saint-Aubin 91192, France.

e-mail: marta.zonno@synchrotron-soleil.fr; damascelli@physics.ubc.ca

Nature Communications |         (2024) 15:7621 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0003-0668-5146
http://orcid.org/0000-0003-0668-5146
http://orcid.org/0000-0003-0668-5146
http://orcid.org/0000-0003-0668-5146
http://orcid.org/0000-0003-0668-5146
http://orcid.org/0000-0001-9640-5093
http://orcid.org/0000-0001-9640-5093
http://orcid.org/0000-0001-9640-5093
http://orcid.org/0000-0001-9640-5093
http://orcid.org/0000-0001-9640-5093
http://orcid.org/0000-0003-3503-9389
http://orcid.org/0000-0003-3503-9389
http://orcid.org/0000-0003-3503-9389
http://orcid.org/0000-0003-3503-9389
http://orcid.org/0000-0003-3503-9389
http://orcid.org/0000-0003-2980-0805
http://orcid.org/0000-0003-2980-0805
http://orcid.org/0000-0003-2980-0805
http://orcid.org/0000-0003-2980-0805
http://orcid.org/0000-0003-2980-0805
http://orcid.org/0000-0002-0122-9443
http://orcid.org/0000-0002-0122-9443
http://orcid.org/0000-0002-0122-9443
http://orcid.org/0000-0002-0122-9443
http://orcid.org/0000-0002-0122-9443
http://orcid.org/0000-0002-3437-548X
http://orcid.org/0000-0002-3437-548X
http://orcid.org/0000-0002-3437-548X
http://orcid.org/0000-0002-3437-548X
http://orcid.org/0000-0002-3437-548X
http://orcid.org/0000-0002-7367-5821
http://orcid.org/0000-0002-7367-5821
http://orcid.org/0000-0002-7367-5821
http://orcid.org/0000-0002-7367-5821
http://orcid.org/0000-0002-7367-5821
http://orcid.org/0000-0003-1265-2770
http://orcid.org/0000-0003-1265-2770
http://orcid.org/0000-0003-1265-2770
http://orcid.org/0000-0003-1265-2770
http://orcid.org/0000-0003-1265-2770
http://orcid.org/0000-0001-9895-2226
http://orcid.org/0000-0001-9895-2226
http://orcid.org/0000-0001-9895-2226
http://orcid.org/0000-0001-9895-2226
http://orcid.org/0000-0001-9895-2226
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-51569-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-51569-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-51569-2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-51569-2&domain=pdf
mailto:marta.zonno@synchrotron-soleil.fr
mailto:damascelli@physics.ubc.ca
www.nature.com/naturecommunications


between inhomogeneous and homogeneous MV scenarios. While in
the former case ions with differing f occupation values reside on
inequivalent crystallographic sites, in the latter all rare-earth ions
retain the same non-integer f valence at each site15,16. Here, we focus on
the case of homogeneousMV—also referred to as intermediate valence
in the literature15—to explore experimentally the parameter space in
which such MV behavior emerges. Various theoretical works have
discussed the phenomenon of MV in the dilute- to single-impurity
limit17,18, from mean-field theories19,20 to exact solutions by Wilson’s
renormalization group method or bosonization21,22. However, an
experimental study tracking the crossover of the MV character going
from a periodic f-electron lattice to a dilute f-impurity system is still
lacking.

In this work, we address this question by focusing on the
prototypical homogeneous mixed-valence system SmB6, wherein
the interplay between two nearly degenerate f-shell valence
configurations of the Sm ions profoundly shapes its electronic
structure and macroscopic properties. While it has been shown
that temperature and pressure may be exploited as external pertur-
bations to tune the intermediate valence of the Sm ions23–29, we base
our experimental strategy on elemental substitution on the rare-earth
site. This approach provides a powerful chemical control parameter
acting directly on the occupation of the f-states, allowing the precise
tracking of the mean Sm valence across different concentration
regimes.

To this end, we employ trivalent La ions as substituents in the
SmxLa1−xB6 hexaboride series. Although all the compounds of the
series share the same CsCl-type crystal structure, the two end mem-
bers exhibit very different physics. LaB6 (x =0) is metallic owing to the
partially occupied La-5d band and the lack of 4f electrons (see Sup-
plementary Information I and Fig. S1). In contrast, the precise nature of
the ground state of SmB6 (x = 1) still remains an open question. Exhi-
biting a resistivity plateau at low temperature30, it has been theoreti-
cally proposed as realization of a topological Kondo insulator31,32, and
various experimental studies have later discussed the possible pre-
sence andnatureof in-gap electronic states33–42, aswell as controversial
reports of quantumoscillations43–45. Even though a clear answer has yet
to emerge, a fundamental aspect characterizing the physics of SmB6 is
undoubtedly the nearly-complete admixture of the two possible Sm
ions valence configurations 4f 6 5d0 and 4f 5 5d1, which in terms of the f-
level occupation are generally referred to as Sm2+ and Sm3+, respec-
tively. This leads to amean Smvalence for the f shell of +2.505 in SmB6

at low temperature23,24,46, while the single d band is characterized by a
strongly mixed B-Sm character.

A recent de Haas-van Alphen (dHvA) investigation of dilute Sm-
doped LaB6 (x =0.05 and x = 0.1) reportedonly a small reduction of the
FS volume upon Sm substitution47. Interestingly, such reduction rate
would not be compatible with having Sm ions either purely divalent or
trivalent in this concentration regime. Here, we track the electronic
structure of the SmxLa1−xB6 series over the entire doping range, by
means of angle-resolved photoemission (ARPES) and x-ray absorption
spectroscopy (XAS), and observe a non-monotonic evolution of the
mean Sm valence. While the strong Sm2+/Sm3+ admixture is quenched
in the intermediate substitution regime, it resurges for low Sm con-
centrations, with a persisting MV behavior all the way into the dilute-
impurity limit. These results provide experimental evidence of the
emergence of the MV phenomenon even in this dilute limit, and
establish the key role of unconventional behavior of f-electrons in
defining the properties of rare-earth compounds also in such extreme
regimes.

Results
We begin by showcasing the evolution of the electronic structure of
SmxLa1−xB6, upon La-Sm chemical substitution, as measured by ARPES.
Figure 1a summarizes the ARPES spectra acquired along the XM direc-
tion (black dashed line in Fig. 1b, left) for x = [0, 0.2, 0.55, 0.7, 0.8, 1].
Common to all compounds, bulk electron-like pockets are centered
at the X high-symmetry points of the Brillouin zone (BZ), forming
elliptic iso-energy contours (see Fig. 1b). Being primarily associatedwith
B-2p and rare-earth 5d electrons, their size is directly related to the
valence of the rare-earth element in the material: for a full 3+ config-
uration the d-pocket is half filled and at its largest, while in a 2+ state the
valence electrons only fall in the f-states and the d-pocket lays in the
unoccupied part of the spectrum. This observation makes the
study of the evolution of the bulk 5dpockets centered at X instrumental
to track the possible valence fluctuations of the Sm ions in the
SmxLa1−xB6 series.

Note that as Sm is introduced into the system, three non-
dispersing 4f-states emerge in the ARPES spectrawithin the first 1 eV of
the Fermi level. Starting very weak and broad for small x values, these
states become gradually sharper and shift to slightly lower binding
energies as x increases, finally settling at 15meV, 150meV, and 1 eV
for pristine SmB6, consistent with the values reported in the
literature36,38,48. Concurrently, the size of the X-pockets progressively
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Fig. 1 | ARPES spectra of SmxLa1−xB6. a ARPES spectra along the XM high-
symmetry direction of the Brillouin zone (black dashed line in b, left) for x = [0, 0.2,
0.55, 0.7, 0.8, 1]. b ARPES iso-energy contours close to EF for the same samples

shown in a; the integration window in energy is 15meV about EF. All data were
acquired at 10 K with hν = 21.2 eV.
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decreases upon increasing x. While the interplay between localized 4f-
electrons and itinerant 5d electrons is undoubtedly an important
defining aspect of the electronic structure of these materials, in this
work, we focus our analysis on the evolution of the bulk X-pockets’
dispersion as a function of x, which canbe directly linked to changes in
the concentration of trivalent ions in the system.

While a decrease in the size of the X-pockets is expected
throughout the series due to the removal of trivalent La ions con-
tributing to the occupation of the 5d-band, by visual inspection of
Fig. 1, we note that the observed behavior departs from a constant-rate
reduction. In fact, the change in the ARPES dispersion is more pro-
nounced for x ≤0.55 than for higher Sm concentrations. This pro-
gression is showcased by the evolution of the 5d-band dispersion
extracted as a function of x along the ΓX and XM high-symmetry
directions shown in Fig. 2a. In order to quantitatively assess this var-
iation and thus establish a direct relation between the ARPES disper-
sion and the fractional percentage of Sm2+ and Sm3+ present in the
system,wemust convert the size of theX-pocket contours as extracted
from the ARPES data into the pocket’s occupation n5d. This is done via
application of the Luttinger’s theorem, which directly relates the
volume enclosed by a material’s Fermi surface to the electron
density49,50. Here we emphasize that the bare X-pocket dispersion in
the SmxLa1−xB6 series can be described to a first approximation by the
same effective mass as observed for LaB6, with the only Fermi
momentum k5d

F changing to accommodate for the varying electronic
occupation. This assumption is supported by the ARPES dispersions
shown in Fig. 2a, and facilitates a direct comparison among different
compounds in the series.

Figure 2b displays the values of n5d(x) as extracted via Luttinger’s
theorem from the ARPES spectra acquired with 21.2 eV and 67 eV
probe energy (the latter associated with the bulk Γ high-symmetry
point; see Supplementary Information I, in particular Figs. S2, S3). The
values were obtained by calculating the total enclosed volume of the
X-pockets based on the collected ARPES while relying on the cubic
crystal sysmmetry, and by taking into account the reported variation
of the lattice parameter in the SmxLa1−xB6 series51,52. For LaB6 (x = 0),
the pockets enclose ~50% of the bulk cubic BZ, corresponding to
having 1 electron n5d = 1. At the other end of the series, in SmB6 (x = 1)
only a quarter of the cubic BZ is filled by the X-pockets, yielding
n5d =0.5. These results are fully consistent with the metallic ground

state observed in LaB6 and the reported valenceof +2.505 of Sm ions in
SmB6, thus validating our analysis. By applying the same approach to
the intermediate compounds of the series, we find that n5d(x) clearly
deviates fromthe linear reduction expected in the caseof a constant 1:1
ratio of Sm2+:Sm3+, represented in Fig. 2b by the black dashed line. To
better quantify the evolution, we compute the fractional percentage of
Sm2+ and Sm3+ from n5d(x), as follows (normalized over the total
amount of Sm in the system, x):

Fraction Sm2+ ð%Þ= 1� n5dðxÞ
x

Fraction Sm3+ ð%Þ= 1 + n5dðxÞ � 1
x

:

ð1Þ

The resulting values are presented in Fig. 2c. As x decreases from 1, the
amount of Sm2+ gradually increases upon reaching amaximumof ~85%
at x =0.2, followed by a re-entrant reduction at even lower Sm
concentrations. Despite the uncertainties associated with probing
minimal modifications of the X-pocket ARPES dispersion for concen-
trations smaller than 0.1 (as reflected in the large error bars in Fig. 2c),
our ARPES results suggest a clear distinction between the low (x ≤0.2)
and high (x ≥0.55) Sm concentration regimes, along with a substantial
variation of the Sm2+:Sm3+ ratio across the SmxLa1−xB6 series.

In an effort to verify this scenario and gain more insights on the
low concentration regime also in connection to the previous dHvA
work on dilute Sm-doped LaB6

47, we complemented the ARPES data
with a XAS study of the same SmxLa1−xB6 series. In particular, to
achieve a higher bulk sensitivity and thus establish our results as an
intrinsic bulk property, we exploited partial and inverse partial fluor-
escence yield (PFY and IPFY). Both of these techniques are character-
ized by a probing depth of tens of nm (thus excluding significant
surface-related contributions to the XAS signal; see Supplementary
Information II for details, in particular, Fig. S5), allowing one to cir-
cumvent some of the challenges characteristic of ARPES on
SmxLa1−xB6, such as cleaving and surface degradation. Furthermore,
XAS has already been shown to be a powerful technique to explore the
physics of MV systems, such as SmB6: the absorption spectrum can be
described as the first approximation by the sum of two independent
components, corresponding to Sm2+ and Sm3+ ions. By tuning the
incident energy across the Sm M4 and M5 edges (i.e., exciting 3d core
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Fig. 2 | Extracting the Sm valence from the ARPES dispersion. a Evolution of the
X-pocket dispersion along ΓX and XM directions for x = [0, 0.2, 0.55, 0.7, 0.8, 1], as
extracted from the ARPES spectra in Fig. 1. b Electronic occupation number of the
X-pocket, n5d(x), for different SmxLa1−xB6 compounds. Data points were obtained
from ARPES spectra acquired with 21.2 eV and 67 eV. The dashed black line illus-
trates the case of a constant 1:1 ratio of Sm2+:Sm3+ across the series; this is computed
from the general expression n5d(x) = [1−x*a/(a + b)], where a and b are the fractional

percentage of Sm2+ and Sm3+, which reduces to n5d
1:1 = 1−x/2 in the case of a = b.

c Calculated fractional percentage of Sm2+ (top) and Sm3+ (bottom) by using Eq. (1)
for the different compoundsmeasured by ARPES. Error bars in b, c are determined
as follow: on the x axis are based on energy dispersive x-ray (EDX) measurements;
on n5d(x) are derived from the fitting of the ARPES data; on the fractions of Sm2+/
Sm3+ are calculated by combining the uncertainties on x and n5d(x) via error pro-
pagation rules.
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electrons into 4f orbitals), each XAS spectrum can be mapped into a
specific Sm2+:Sm3+ ratio, providing us with a tool to directly determine
the mean Sm valence in the SmxLa1−xB6 series.

In Fig. 3a, we present the evolution of the XAS intensity at the Sm
M5 edge for x = [0.07, 0.13, 0.2, 0.3, 0.7, 0.9, 0.975, 1], along with a
weighted sum fit of the Sm2+ and Sm3+ components (red and orange,
respectively). While for high x the Sm3+ component dominates, its
contribution dramatically reduces at x =0.2. However, upon further
decrease of x, a clear inversion in the progression of the XAS spectra is
observed, as the Sm3+ component strengthens again for x ≤0.2.

Such behavior is highlighted by the intensity variation of the two
components displayed in Fig. 3b (normalized to the x = 1 values) and is
fully consistentwith the evolutionof the fractional percentages of Sm2+

and Sm3+ obtained from ARPES, thus confirming the two-regime sce-
nario already suggested in Fig. 2. In particular, the Sm2+ contribution
peaks nearly doubling at x =0.2, corresponding to an increment of
Sm2+ ions in the system as large as ~90%with respect to the pure SmB6

case. We remark that such significant increase of Sm2+ sets apart from
what reported on pure SmB6 by employing high-temperature and high
pressure, with both perturbations causing an increase of the mean Sm
valence towards +323–29. Also note that the deviation from an almost 1:1
ratio of the Sm2+:Sm3+ peaks expected at x = 1may reflect a difference in
the relative cross-sections of the two Sm components at the energies
the XAS measurements were performed: while not affecting the qua-
litative evolution of the intensities shown in Fig. 3b, it is taken into
account for computing the mean Sm valence (see Supplementary
Information II and Fig. S4 for details on the XAS analysis and
normalization).

In Figs. 2 and 3, we showed that both ARPES and XAS measure-
ments of the SmxLa1−xB6 series display a progression from an evenly
Sm2+/Sm3+ regime into a predominant presence of Sm2+ as x decreases.
This result is consistentwith theobservation of the average Smvalence
tending towards +2 upon trivalent ion substitution (such as La3+ or Y3+)
reported in early works51,52. Furthermore, recent transport studies on
La-substituted SmB6 have reported the complete closure of the d-f
hybridization gap, and the consequent emergence of a metallic-like
behavior, for La concentrations higher than 25% (here x ≤0.75)53,54,
corroborating the substantial increase of Sm2+ in the system observed
in this work. However, according to these arguments one may expect
the valencefluctuations to be quenched at zerodoping, i.e., vSm→+2 for
x→0, in stark contrast with the clear suppression detected at x = 0.2,
followed by the sudden overturn for even lower x. Nevertheless, a
scenario in which the Sm ions are neither purely divalent nor
trivalent even in the dilute-impurity regime is in agreement with the
evolution of the FS volume reported by dHvA, which exhibits a

reduction rate smaller than the amount of Sm introduced in the
system47.

Here we present a basic phenomenological model for vSm in the
SmxLa1−xB6 series based on the two distinct regimes observed experi-
mentally. On one hand, for high x wemimic the convergence towards
+2 upon La-substitution (i.e., upon reducing x) by fitting the experi-
mental data for 0.2 ≤ x ≤ 1 with a linear fit, V0(x) [orange line in Fig. 4a].
On the other hand, to provide a phenomenological description of the
increase of vSm detected at low x (i.e., x <0.2), in connection to the
literature discussing the MV behavior in the extreme dilute limit of a
single magnetic impurity in a non-magnetic band metal, we consider
here the possibility of additional contributions to vSm stemming from
Sm ions acting as single impurities with a specific fixed fractional
valence, vimp. In this regard, we compute the probability as a function
of x for a Sm ion to have no other Sm in the next-nearest-neighbor
sites, P0(x) [light blue line in Fig. 4a]. This function is used to define in
first approximation the fraction of Sm ions that exhibit a dilute-
impurity valence vimp = +2.35, as extrapolated from the experimental
results in Figs. 2c, 3b, at any given concentration x. We can then
express the evolution of the Sm valence in the SmxLa1−xB6 series as:

vmodel = P
0ðxÞ � vimp + ½1� P0ðxÞ� � V0ðxÞ : ð2Þ

Figure 4b compares the model of Eq. (2) with the experimental values
of the mean Sm valence obtained from ARPES (light and dark blue
circles) and XAS (red diamonds), showing an overall good agreement.
In particular, the inclusion of the emerging Sm dilute-impurity regime
with fixed fractional valence is proven pivotal to capture the steep
increase of vSm experimentally observed for low x; however, its
contribution becomes negligible at high x, owing to the rapid decay of
P0(x) below 0.1 for x ≥0.3.

As a final note, we emphasize that the model of Eq. (2) does not
fully describe the nearly complete suppression of Sm2+/Sm3+ admixture
detected at x =0.2. When performing density functional theory cal-
culations of the doping dependence on the Fermi energy using virtual
crystal approximation, no anomalous behavior was foundwhich could
explain this observation; indeed, additional investigations are needed
to specifically address the sharp crossover observed around x =0.2
with the development of more refined theories. Nevertheless, our
combinedARPESandXAS studyprovides evidenceof the realizationof
a dilute-impurity MV state in the SmxLa1−xB6 series. Our results may
stimulate further theoretical and experimental considerations on the
concept of MV and its influence on the macroscopic electronic and
transport properties of rare-earth compounds in the dilute-to-
intermediate impurity regime.
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Fig. 3 | XAS study of the SmxLa1−xB6 series. a Evolution of the XAS intensity at the
Sm M5 edge for x = [0.07, 0.13, 0.2, 0.3, 0.7, 0.9, 0.975, 1]. The absorption profiles
(gray dots) have been extracted at 640 eV (La fluorescence line) of IPFY spectra for
x ≤0.3, andat850eV (Smfluorescence line) of PFY spectra for x >0.3. The totalXAS
spectral weight is fit (black lines) by the sum of two independent components

associated to Sm2+ (red lines and shaded regions) and Sm3+ ions (orange lines and
shaded regions). b Intensity evolution of the Sm2+ (top) and Sm3+ (bottom) com-
ponents normalized to the x = 1 case. All data were taken at a base temperature of
20K. Error bars in b are determined as follow: on the x axis are based on EDX
measurements; on ΔISm2+ =Sm3+ are derived from the fitting of the XAS data.
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Methods
High-quality single crystals of SmxLa1−xB6weregrownby the aluminum
fluxmethod in a continuous Ar-purged vertical high-temperature tube
furnace33. Post-growth characterization by scanning electron micro-
scope and energy dispersive x-ray measurements for the actual Sm
concentration was performed at the Center for Integrated Nano-
technologies, an Office of Science User Facility operated by the U.S.
Department of Energy Office of Science. ARPES experiments were
performed at the Stewart Blusson Quantum Matter Institute at UBC
employing a photon energy of hν = 21.2 eV, at a base pressure
< 3 × 10−11 Torr and base temperature of 10 K. The electrons were col-
lected using a SPECS Phoibos 150 hemisperical analyzer, with energy
and momentum resolution of 25meV and 0.02Å, respectively.

Additional ARPES measurements were carried out at the SGM3 end-
station at the ASTRID2 synchrotron radiation facility55, using a photon
energy ofhν = 67 eV,with base temperature 35 K and energy resolution
35meV. All samples were cleaved in situ andmeasured along the (001)
surface. XASmeasurements were performed using the four-circle UHV
diffractometer at the REIXS 10ID-2 beamline at the Canadian Light
Source in Saskatoon56, with base pressure and temperature of 5 × 10−10

Torr and 22 K, respectively.

Data availability
The authors declare that the main data supporting the findings of this
study are available within the paper and its Supplementary Informa-
tion files. Source ARPES and XAS waves used in this study have been
deposited in the Zenodo database under the digital object identifier
https://doi.org/10.5281/zenodo.12759092. Additional data are avail-
able from the corresponding authors upon request.
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