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ABSTRACT OF THE DISSERTATION

Big Bayesian Phylogenetic Comparative Methods

by

Gabriel Hassler

Doctor of Philosophy in Biomathematics
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Professor Marc Adam Suchard, Chair

Phylogenetic comparative methods seek to untangle the complex web of selective pressures

driving biological evolution. These methods seek to identify associations between different

biological traits over evolutionary history. Statistical models of phenotypic evolution need

to account for the shared evolutionary history between different species, and accounting for

this non-independence poses computational challenges. These challenges are compounded

by missing observations, high-dimensional traits and highly-structured data. Here, I develop

computational and modeling approaches that dramatically improve the computational effi-

ciency and scalability of these models to enable Bayesian phylogenetic comparative analysis of

unprecedentedly large data sets. First, I develop an algorithm that analytically marginalizes

missing observations in a (relatively) simple model of phenotypic evolution. This algorithm

is broadly applicable beyond this simple model and allows scalable inference under a variety

of model extensions. These extensions include models that accommodate residual variance,

allowing measurement of phylogenetic heritability, and linear dimension reduction, allowing

phylogenetic comparative analyses for high-dimensional traits. I combine this work into a

generalizable modeling framework that allows researchers to build flexible, highly structured

ii



models that remain scalable for both large number of taxa and many observations per taxon.

This work achieves increases in computation speed by more than two orders of magnitude

across several contexts, bringing computation time down from weeks or months to minutes

or hours in multiple real-world applications.
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4.1 Timing comparison between inference regimes. We run three MCMC chain

simulations for each combination of N (the number of taxa), P (the number of

traits), K (the number of factors) and sampler and present the average minimum

ESS per second for each. The “conditional Gibbs” sampler refers to the methods

used by Tolkoff et al. (2018). The “joint Gibbs”, “HMC” and “orthogonal”

samplers refer to the methods presented in Sections 4.3.1.1, 4.3.1.2 and 4.3.2

respectively. Our joint Gibbs and HMC samplers are an order of magnitude

faster than the conditional Gibbs sampler with relatively few taxa (N = 50) but

more than two orders of magnitude faster with many taxa (N = 1000). The

orthogonal sampler is slower than the joint Gibbs and HMC samplers (and even

the conditional Gibbs in the case of small-N , big-P ) but scales well to large trees.

Values are available in Table 4.2. . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2 Trace plots of relevant parameters from analysis in Section 4.6.2. Estimates under
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this problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.3 Aquilegia results. A) Factor values colored by pollinator(s) for each species of

Aquilegia. Large, solid points represent posterior means for each species. Small,

transparent points represent a random sample from the posterior distribution of

the factors. B) Posterior summary of the loadings matrix. Dots represent pos-

terior means while bars cover the 95% highest posterior density (HPD) interval.

Colors represent the posterior probability that the parameter is greater than 0.

While the second factor clearly separates the bumblebee-pollinated plants from

the others, the first factor captures a more gradual transition from hummingbird

pollination to hawk moth pollination. . . . . . . . . . . . . . . . . . . . . . . . 98
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4.4 Results associated with first factor in yeast analysis. A) Posterior summary of

first row of the loadings of 5-factor PFA on yeast data set. This first factor pri-

marily captures differences associated with tolerance to environment and nutrient

stress as well as reproductive ability. See Figure 4.3B for description of plot ele-

ments. B) The first factor plotted on yeast phylogeny with strain origin. Stars

at the tips indicate mosaic strains as identified by Gallone et al. (2016). (caption

continues on next page) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.4 Low factor values in the Beer 1 clade indicate poor tolerance of environmental

and nutrient stress generally and a lower capacity to reproduce sexually, all of

which are signs of domestication. The Beer 1 clade includes strains from Belgium,

Germany, Britain and the United States, and Gallone et al. (2016) estimate its

origin ca. 1590 AD that coincides with the transition from home-brewing to large-

scale beer production across Europe. . . . . . . . . . . . . . . . . . . . . . . . . 102

4.5 Mammalian life history results. (caption on next page) . . . . . . . . . . . . . . 103
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4.5 A) Posterior summary of the loadings. Loadings of body size onto factors 2-5 is

set to 0 a priori. See Figure 4.3B for detailed description of figure elements. The

first factor captures allometric relationships (by design) and explains only 16%

of the heritable variance, while the remaining factors capture size-independent

relationships. The second factor, accounting for the plurality (46%) of the heri-

table variance, captures a fast-slow life history axis. Remaining factors capture

more specific strategies (e.g. factors three and four appear to support the energy

trade-off between litter size and litter frequency). This suggests that body size is

not the main driver of life history evolution and that natural selection primarily

acts on life history directly. B) Evolution of factors along the mammalian phy-

logeny. Most factors are strongly phylogenetically conserved throughout the tree,

with large clades sharing similar factor values. There is relatively little correla-

tion between the the first and second factors, with clades of small, slow species

(e.g. bats) and large, fast species (e.g. lagomorphs). . . . . . . . . . . . . . . . 104

4.6 A) Influence of each factor on New World monkey brain shape. B) Brain shape

factors plotted along New World monkey phylogeny. The coefficients of the first

three principal components (PCs) from Aristide et al. (2016) are highly correlated

with the corresponding rows of the loadings matrix. While we do not explore

such an analysis here, Aristide et al. (2016) provide evidence of association of

PC1 (strongly correlated with our first factor) with relative brain size and PC2

(strongly correlated with our second factor) with diet. . . . . . . . . . . . . . . 106
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4.7 Example of label switching. The top trace plots are samples from a known distri-

bution. Note that in practice, we to not know the true underlying distribution.

The bottom plot demonstrates how ordering the scale parameters can induce la-

bel switching between rows of the loadings. Here, there is label switching between

the first two factors, but not the third. The switching in the estimated parame-

ters occurs at the MCMC states where the “true” σ1 < σ2 (normally the reverse

is true). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.8 Posterior summary of loadings of 5-factor PFA on yeast data set. (caption on

next page) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.8 The first factor primarily captures differences associated with tolerance to en-

vironment and nutrient stress as well as reproductive ability. Dots represent

posterior means while bars cover the 95% highest posterior density (HPD) inter-

val. Colors represent the posterior probability that the parameter is greater than

0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.9 All five factors plotted on yeast phylogeny with strain origin. Stars at the tips

indicate mosaic strains as identified by Gallone et al. (2016). The first factor
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5.1 Comparison of sampling and post-processing methods for inducing identifiability

in the loadings matrix. Data consists of 3-dimensional coordinates for 399 en-

docranial landmarks (P = 1197) in 48 species of New World monkeys (Aristide

et al., 2016). We fit a 3-factor model using an unrestricted Gibbs sampler to

sample from the full conditional posterior of the loadings (with the exception of

the “geodesic HMC” run where we use geodesic HMC (Holbrook et al., 2016) to

sample directly from the space of orthogonal matrices). For the unrestricted run,

we post-process the output using 1) SVD post-processing as described in Hassler
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muting the rows of the loadings to minimize posterior variance and 3) Procrustes

post-processing described in Algorithm 5.1. We show the marginal posterior
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processing regime results in a largely non-identifiable posterior, characterized by

high posterior variance on the elements of the loadings matrix. Procrustes post-

processing and geodesic HMC avoid this problem. SVD post-processing with per-

mutations does decrease posterior variance, but not to the extent of Procrustes

post-processing or geodesic HMC. . . . . . . . . . . . . . . . . . . . . . . . . . 141

5.2 HIV mutation profile and correlation with clinically relevant phenotypes. A)

Loadings matrix mapping latent factors on the phylogenetic tree to HIV im-

mune escape mutations. The samples have been rotated to maximize the sum of

the correlations between the first factor and replicative capacity, viral load, and

(negative) CD4 T-cell count (see Section 5.3.2.2). B) Summary of posterior dis-

tribution of the correlation between the mutation factors and clinically relevant

phenotypes. Color and middle lines represent the posterior means while lower

and upper lines span the 95% HPD interval. Correlations between factors are

fixed at zero by construction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

xviii



5.3 Relationship between floral phenotypes and pollinator type in Aquilegia. A)

Loadings matrix mapping latent factors to floral phenotypes. The posterior of

the loadings matrix has been rotated to maximize posterior correlation of the

first factor with bumblebee pollination. B) Correlation between the latent fac-

tors and pollinators. See Figure 5.2 for figure details. The first factor is strongly

associated with bumblebee pollination, while the second factor captures a hum-

mingbird/hawk moth axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.4 Relationship between yeast growth rates under stress conditions, production of

aromatic compounds, ethanol production and reproductive ability. A) Load-

ings matrix for growth under stress conditions. The posterior has been rotated

to maximize correlation of the first factor with sporulation efficiency and spore

viability. This first factor characterizes tolerance to environmental stress gener-

ally, with the only negative values associated with either growth under normal

temperatures or in environments similar to beer wort. B) Loadings matrix for

production of aromatic compounds. 4-VG in particular causes off flavors in many

beers. (caption continues on next page) . . . . . . . . . . . . . . . . . . . . . . 165

5.4 C) Correlation between both sets of latent factors and remaining phenotypes.

The posterior distributions of the first stress factor and first aroma factor have

both been rotated to have maximum correlation with sporulation efficiency and

spore viability. See Figure 5.2 for a description of plot elements. . . . . . . . . 166

5.5 Latent factors and other yeast phenotypes plotted on a phylogenetic tree. The

tree was inferred by Hassler et al. (2022, Section 4.6.2). The large clade consisting

of predominantly beer yeast on the right show strong signs of domestication, with

low values of the stress factor 1 (associated with tolerance to stress) and aroma

factor 1 (associated with aromatic compounds known to produce off flavors).

These factors co-evolved on the tree with lower ethanol production, sporulation

efficiency, and spore viability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

xix



5.6 Posterior means of latent factors associated with binding between SARS-CoV-

2 spike protein and human ACE2 receptors and polyclonal antibodies on a phy-

logenetic tree. The tree includes a small number of sequences belonging to the

Omicron variant. Factors values associated with the Omicron sequences are out-

liers, which is consistent with existing research that the Omicron variant is anti-

genically highly distinct from other variants. . . . . . . . . . . . . . . . . . . . 168

xx



LIST OF TABLES

3.1 Algorithmic improvement. We report MCMC sampling efficiency through effec-

tive sample size (ESS) that shows both a decrease in autocorrelation (as shows by

ESS / Sample) and in the overall work required per sample (as shown by Samples

/ Hour). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Missing data summary for all three examples. . . . . . . . . . . . . . . . . . . . 57

3.3 Likelihood calculation speed comparison between BEAST and PCMBaseCpp.

Each data set was run 10 times for 1,000 likelihood evaluations each. We report

the median likelihood evaluations per second and speed-up over the 10 runs. . . 71

3.4 Likelihood calculation speed comparison between BEAST and PCMBaseCpp on

simulated data. For each N, P combination, data was simulated 10 times under

random conditions and run for 1,000 likelihood evaluations each. We report the

median likelihood evaluations per second and speed-up over the 10 runs. . . . . 72

4.1 Example of how the ordering of three hypothetical traits (A, B and C) influences

results in a simple two-factor model under the assumptions made by Tolkoff et al.

(2018). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 Comparison of computational efficiency. Effective sample size computed using

the Julia package MCMCDiagnostics.jl. . . . . . . . . . . . . . . . . . . . . . . . 123

5.1 Three possible Gaussian model extensions for the phylogenetic structural equa-

tion model. *Restrictions may be necessary in practice for identifiability during

inference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

xxi



ACKNOWLEDGMENTS

First, I would like to acknowledge my advisor, Marc Suchard, without whom this work

would not be possible. Marc has been a source of academic inspiration throughout my time

at UCLA, and his statistical intuition has (when followed) led to my most fruitful research

and (when ignored) taught me valuable lessons. He created a space where we could disagree

and I could fail, with only a very polite “I told you so” when the two coincided. Marc

takes is roles as a mentor as seriously as his research, and it has been clear to me that he

sees his trainees not as extensions of himself to multiply his research output, but as future

researchers and scientists who can act independently.

I thank the members of my committee Damla Şentürk, Eric Sobel and Janet Sinsheimer.
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CHAPTER 1

Introduction

The biological diversity we see around us is the product of numerous evolutionary forces

acting simultaneously over the last ∼4 billion years (Dodd et al., 2017). Natural selection,

however, rarely acts on a single biological phenotype or trait but rather causes multiple

traits to evolve simultaneously. Physical or energetic constraints can also causes traits that

are not the target of selective pressure to co-evolve with other traits that are. Particular

traits (or groups of traits) may be the targets of multiple selective forces, often acting in

opposing directions. Phylogenetic comparative methods (Felsenstein, 1985b), the subject of

this dissertation, seek to untangle this complex web of evolutionary pressures.

Phylogenies are tree structures that capture the evolutionary history of a group of organ-

isms. Nodes on the tree represent individual taxa or species, with those at the tips of the

tree representing existing or observable taxa and internal nodes representing ancestral taxa.

These trees are often time-resolved, with distances between nodes corresponding to calendar

time, and rooted, with there being a single node ancestral to all taxa on the tree.

Phylogenetic comparative methods assume some statistical data-generative process on the

tree from which each species’ traits arise. For continuous traits, these generative processes

typically involve some form of diffusion and result in Gaussian likelihoods on the observed

data. The parameter of primary scientific interest in these models is typically the between-

trait covariance matrix that captures the relationship between different biological traits as

they evolve on the tree. Learning about this between-trait covariance structure is complicated

by the complex evolutionary relationships between the different species.
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As advances in sequencing technology, computation and statistical methods have enabled

inference of increasingly large phylogenetic trees, the computational challenges in perform-

ing inference in these large trait-based models have compounded. The work discussed below

seeks to ease the computational burden of a sub-set of these phylogenetic comparative meth-

ods as well as expand the flexibility of these models in a way that maintains scalability.

Chapters 2, 3, 4 and 5 were written as stand-alone manuscripts and can be read as such.

Chapter 2 is a review of recent advances in Bayesian phylogenetics generally, with special

emphasis on data integration. As much of the review focuses on topics outside the scope of

the rest of this dissertation, I point readers to Sections 2.1.1, 2.3.1 and 2.3.3 as particularly

relevant to the remaining chapters.

Chapter 3 addresses the challenge of inference in a common phylogenetic comparative

model when some observations are missing. With complete data, likelihood calculations

scale linearly in the number of taxa N . However, existing procedures to calculate the like-

lihood with complete data cannot accommodate missing data, and inference with missing

data requires data augmentation or imputation. Bayesian inference in this context then

scales as O(N2), which can be computationally intractable for large data sets. I develop an

algorithm that analytically integrates out the missing observations in the likelihood and can

calculate the likelihood of the observed data only in O(N). This procedure also permits a

broad range of previously intractable model extensions. For example, I implement a model

that accommodates measurement error or within-species variation. Inference in this model

previously scaled as O(N2) regardless of whether any data were missing, while my approach

allows likelihood calculations and inference in O(N) time. The flexibility of this likelihood

calculation algorithm is the basis for the remainder of the dissertation.

Chapter 4 leverages the likelihood calculation algorithm of the previous chapter to im-

prove the computational efficiency of phylogenetic factor analysis (PFA; Tolkoff et al., 2018).

Most comparative methods seeking to understand the evolutionary correlations between

groups of traits scale at best quadratically and often cubically in the number of traits P . As

2



such, inference in these models quickly becomes intractable as the number of traits grows.

PFA addresses this challenge by mapping high-dimensional traits to low-dimensional latent

factors, where the low-dimensional latent factors evolve along the phylogenetic tree. While

PFA scales linearly in the number of traits P , is scales scales quadratically in the number of

taxa as originally implemented, leaving researchers with no available Bayesian methods that

scale to big-N , big-P data sets. My work in Chapter 4 applies the likelihood calculation al-

gorithm from Chapter 3 to decrease inference times from O(N2) to O(N), enabling Bayesian

phylogenetic comparative inference in the big-N , big-P context. I further address challenges

with latent factor models generally, including developing procedures for post-processing data

that do not rely on an implicit ordering of the traits as well as a data-driven approach for

selecting an appropriate number of latent factors.

Chapter 5 generalizes the work of the previous two chapters and introduces a flexible

framework for developing structured and scalable phylogenetic comparative models. This

approach, dubbed phylogenetic structural equation modeling (SEM) allows researchers to

partition their data across multiple sub-models, each of which can map the observed data to

the phylogenetic tree in a different way. Assuming these sub-models meet certain criteria,

all inference machinery from the previous two chapters holds, and these structured models

scale linearly both in the number of taxa N and traits P . The main challenge to Bayesian

inference in these models is sampling from an unusually constrained correlation matrix with

structural zeros. I develop a new method for sampling from such constrained correlation

matrices to enable this work. There are additional identifiability challenges in this model

and latent factor models generally that I also address in this work.

Finally, in Chapter 6, I summarize the methodological advancements and scientific in-

sights achieved through this dissertation. I also briefly discuss future directions for this

research.
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CHAPTER 2

Literature review

2.1 Introduction

All living things on the planet share a common evolutionary history. Phylogenetic trees

capture the evolutionary relationships between groups of organisms (Baldauf, 2003). At the

extremes, these phylogenies can describe the evolution of all life on earth spanning ∼ 4

billion years or that of a viral lineage over weeks. Statistical phylogenetics gives researchers

the tools to study these evolutionary processes and can be used to answer both fundamental

biological questions, such as “which species of ape is most closely related to humans and

when did our evolutionary histories diverge?” (Bradley, 2008) and more practical ones such

as “how effective are various interventions at controlling the spread of a viral epidemic?”

(Dellicour et al., 2018). Researchers typically rely on molecular sequences (e.g. DNA, RNA,

amino acids) to infer the phylogeny itself and commonly incorporate additional sources of

data to answer specific questions. For example, toward the end of this review in Section

2.4 we examine a case study where researchers investigate the early spread of SARS-CoV-

2, the virus that causes COVID-19, across the world (Lemey et al., 2020). This analysis

incorporates viral genetic sequences, sample collection dates and locations, individual-level

travel history, global air traffic patterns, local SARS-CoV-2 case counts and within-host

infection dynamics into a coherent statistical model that allows researchers to reconstruct

the early pathways along which SARS-CoV-2 spread early in the pandemic.

From a statistical perspective, phylogenetics offers a rich array of complex hierarchical
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models for both inferring the phylogeny itself as well as parameters associated with the

underlying evolutionary processes of interest (Nascimento et al., 2017). The complexity

of these models, however, can result in theoretical and computational challenges to infer-

ence that limit their scalability. These challenges have led to the development of statistical

methods with broad utility beyond the field of phylogenetics itself. In this review, we first

introduce the fundamental statistical approaches to phylogenetics in Section 2.1.1 and the

advantages of the Bayesian approach in Section 2.1.2 below. We then discuss modern meth-

ods for inferring phylogenetic trees in Section 2.2 and data integration in Section 2.3. As

mentioned previously, we examine in Section 2.4 a case study that relies on many of the

methods discussed in earlier sections.

2.1.1 Molecular evolution on a phylogenetic tree

Let the phylogenetic tree F be a bifurcating directed acyclic graph with N degree-one termi-

nal/tip nodes ν1, . . . , νN , N − 2 degree-three internal nodes νN+1, . . . , ν2N−2 and one degree-

two root node ν2N−1. With the exception of the root node, there is an edge connecting each

node νi to its parent νpa(i) with length ti. See Figure 2.1 for a simple example. Depending

on the statistical model, these edge lengths are typically proportional to either the amount

of time or expected number of genetic changes separating nodes νi and νpa(i). While some

parameterizations permit multifurcations/polytomies (i.e. nodes with more than two chil-

dren), we focus on the bifurcating case without loss of generality as multifurcations can be

represented via bifurcations with edge lengths equal to zero. Note that some parameteri-

zations assume unrooted trees where the degree-two root node is omitted. In the unrooted

case, the phylogeny is no longer directed and there are no fixed parent/child relationships

between nodes.

Likelihood-based phylogenetic inference typically relies on molecular sequences S to in-

form the phylogenetic tree. The tree F parameter space is divided into a discrete topology

space (i.e. the bifurcating tree structure without the edge lengths) and a continuous edge
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ν1 ν2 ν3

ν4

ν5

t1 t2

t4

t3

Figure 2.1: Simple phylogeny with N = 3 degree-one tip nodes ν1, . . . , ν3, N − 2 = 1 degree-
three internal node ν4 and degree-two root node ν5. The edge connecting each node νi to its
parent νpa(i) has length ti. The phylogeny is a directed acyclic graph. It is directed in that
there is a parent/child relationship between all nodes connected by an edge, and it is acyclic
in that there are no cycles or loops in the graph. Each node has exactly one parent (except
for the root which has none).

length space. The edge lengths inhabit a (non-negative) continuous (2N − 2)−dimensional

space, (t1, . . . , t2N−2) ∈ R2N−2
≥0 = {(x1, . . . , x2N−2) : xi ≥ 0}. The space of tree topologies is

unordered, discrete, and grows combinatorially in the number of tips, with (2N − 3)!! =∏N−1
i=1 2i− 1 possible tree topologies for N tips.

There are many ways to specify the likelihood p(S | F ) that are beyond the scope of this

review (see Felsenstein (2004); Sullivan and Joyce (2005); Lemey et al. (2009) for overviews).

However, it is useful to sketch a common form of these likelihoods. Let us assume that we

have DNA characters, comprising the nucleotides A, C, G and T (the building blocks of

DNA). We make the standard assumption that the molecular sequences S are aligned into an

N×M matrix, whereM is the number of nucleotides in a sequence alignment. Each column,

called a site, in this alignment represents a homology assumption, in that all characters in

a column share a single common ancestor somewhere back in time. We also commonly

assume that each site evolves independently and identically (with the other sites) along the

tree according to a four-state continuous-time Markov process with the instantaneous rate

matrix Q. Let smi be the nucleotide at site m for node νi. The transition probability of

observing smi given the parent nucleotide state smpa(i) and edge length ti is psmi sm
pa(i)

, such that

P = {pℓm} = exp(tiQ) forms the transition probability matrix.
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The clear challenge to computing likelihoods under this model is that we have not ob-

served any sequence data associated with the internal nodes νN+1, . . . , ν2N−2 or the root node

ν2N−1 and so must marginalize over their values. Assuming independence between sites and

a prior p
(
sm2N−1

)
on the root, the likelihood can then be expressed as

p(S | F ) =
M∏

m=1

∑
smN+1∈{A,C,G,T}

. . .
∑

sm2N−1∈{A,C,G,T}

p(sm2N−1)
2N−2∏
i=1

p
(
smi
∣∣ smpa(i), ti ). (2.1)

Naive computation of the above equation requires summing over 4N−1 unobserved states and

is computationally intractable. Felsenstein’s pruning algorithm (Felsenstein, 1973a, 1981),

however, uses a post-order traversal of the tree to compute this likelihood in O(N) time, and

all modern implementations of this likelihood calculation rely on that basic approach. The

fundamental approach of this pruning algorithm is based on dynamic programming and has

found repeated rediscovery in the message-passing algorithm (Pearl, 1982) and sum-product

algorithm (Kschischang et al., 2001).

Let sm be the nucleotides at site m associated with all tip nodes. The pruning algorithm

relies on recursively computing the probability mass function p
(
sm⌊i⌋

∣∣∣ smi ,F⌊i⌋

)
, where F⌊i⌋ is

the sub-tree with root node νi, and sm⌊i⌋ is the sub-vector of sm restricted to the tips in F⌊i⌋.

At the root node ν2N−1, F⌊i⌋ = F and sm⌊2N−1⌋ = sm, and the pruning algorithm computes

p
(
sm
∣∣ sm2N−1,F

)
= p
(
sm⌊2N−1⌋

∣∣∣ sm2N−1,,F⌊2N−1⌋

)
via the following recursive relationship:

p
(
sm⌊i⌋
∣∣ smi ,F⌊i⌋

)
= p
(
sm⌊j⌋

∣∣ smi ,F⌊i⌋
)
p
(
sm⌊k⌋

∣∣ smi ,F⌊i⌋
)

=
∑

smj ∈{A,C,G,T}

p
(
sm⌊j⌋

∣∣ smj ,F⌊j⌋
)
p
(
smj
∣∣ smi , tj )

×
∑

smk ∈{A,C,G,T}

p
(
sm⌊k⌋

∣∣ smk ,F⌊k⌋
)
p(smk | smi , tk ),

(2.2)

where nodes νj and νk are the children of node νi. When the recursion reaches tip nodes

i = 1, . . . , N , p
(
sm⌊i⌋

∣∣∣ smi ,F⌊i⌋

)
= 1{

sm⌊i⌋=smi

}, and the actual computations of computing
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sm1 sm2 sm3 sm4

sm5 sm6

sm7
p(sm | sm5 , sm6 , sm7 ) = p(sm1 | sm5 )p(sm2 | sm5 )

× p(sm3 | sm6 )p(sm4 | sm6 )

sm1 sm2 sm3 sm4

sm5 sm6

sm7
p(sm | sm7 ) = p

(
sm⌊5⌋

∣∣ sm7 )p(sm⌊6⌋ ∣∣ sm7 )
=
∑

sm5 ∈{A,C,G,T}

p(sm1 | sm5 )p(sm2 | sm5 )p(sm5 | sm7 )

×
∑

sm6 ∈{A,C,G,T}

p(sm3 | sm6 )p(sm4 | sm6 )p(sm6 | sm7 )

sm1 sm2 sm3 sm4

sm5 sm6

sm7
p(sm) =

∑
sm7 ∈{A,C,G,T}

p(sm | sm7 )p(sm7 )

Figure 2.2: Example of how Felsenstein’s pruning algorithm marginalizes over the ances-
tral sequences. Tip nodes in blue represent observed sequence data, while green internal
nodes represent latent ancestral sequences. Pale nodes have been marginalized. We do not
explicitly condition on the tree F for notational simplicity.

the likelihood are performed via a post-order traversal of the tree (i.e. tips to root). The

algorithm marginalizing over the root sequences

p(sm | F ) =
∑

sm2N−1∈{A,C,G,T}

p
(
sm
∣∣ sm2N−1,F

)
p
(
sm2N−1

)
(2.3)

and calculating p(S | F ) =
∏M

m=1 p(s
m | F ) is shown in Figure 2.2 on a simple example.
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2.1.2 Why Bayesian?

In Bayesian phylogenetic inference, a common goal is to compute the posterior distribution

of the phylogenetic tree given our sequence data,

p(F |S) ∝ p(S | F )p(F). (2.4)

The tree prior p(F) typically falls into one of two biologically-motivated families. Coales-

cent models (Kingman, 1982; Strimmer and Pybus, 2001; Minin et al., 2008; Müller et al.,

2017; Faulkner et al., 2020) are based on population genetic abstractions of sampling a (rel-

atively) small number of sequences from a large population. Birth-death models (Thompson

et al., 1975; Nee et al., 1994; Stadler, 2010; Höhna et al., 2019; Barido-Sottani et al., 2020;

MacPherson et al., 2022) provide a forward-in-time model for the origination and termination

of entire lineages. Bayesian approaches offer several advantages which we discuss below.

2.1.2.1 Quantifying uncertainty

Bayesian phylogenetics grew largely from the need to quantify and accommodate uncertainty

in the phylogenetic tree (Sinsheimer et al., 1996; Rannala and Yang, 1996). Measuring un-

certainty in the phylogenetic tree is a fundamentally challenging problem as the primary

parameter of interest is often the tree topology: a high-dimensional, unordered, tip-labeled

discrete parameter. Typical uncertainty estimates focus on estimating the statistical support

for a specific monophyletic clade (i.e. a group of taxa comprising all the descendants of a given

ancestor). Prior to the advent of Bayesian phylogenetic inference, phylogenetic uncertainty

had been addressed with non-parametric bootstrapping (Felsenstein, 1985a) with much con-

fusion as to interpretation of the bootstrap p-value (see Hillis and Bull, 1993; Felsenstein and

Kishino, 1993; Efron et al., 1996; Berry and Gascuel, 1996). Bayesian posterior probabilities

provided both an intuitive and statistically coherent method of addressing this uncertainty

(Alfaro et al., 2003).
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2.1.2.2 Time-resolved trees

Early phylogenetic models focused on the case where branch lengths are measured in genetic

distances and thus unconstrained by time. However, Bayesian approaches can naturally ac-

commodate the time-constrained case in a hierarchical model. As the bulk of the review

assumes such models, we briefly consider the structure of a time-calibrated phylogenetic

model. First, a tree arises from the tree prior p(F). The branch lengths t1, . . . , t2N−2 of F

are in calendar time. For each branch is a branch rate θi, such that the probability of changes

along the branch is given by exp(tiθiQ). The prior on all branch rates p(θ1, . . . , θ2N−2) is

known as the (molecular) clock model (Zuckerkandl and Pauling, 1962). Clock models typi-

cally either assume all branch rates are independent and identically distributed (Drummond

et al., 2006) or that rates themselves evolve along the tree according to a correlated process

(Thorne et al., 1998; Drummond and Suchard, 2010).

2.1.2.3 Tree as nuisance parameter

Phylogenetic methods offer opportunities to do more than just reconstruct the evolutionary

history of a group of organisms. The branching patterns in trees themselves can be informa-

tive about patterns and processes governing biodiversity, such as mass extinctions (Stadler,

2011; May et al., 2016), or the rate of spread of infectious diseases (Stadler et al., 2012, 2013).

When combined with other information, such as the locality of samples or evolutionary traits,

phylogenetic models provide a powerful framework for studying the spatiotemporal spread

of both species and diseases, as well as the evolution of important traits (see Section 2.3).

In many such cases, the tree itself is a nuisance parameter. Bayesian inference via Markov

chain Monte Carlo (MCMC) provides a natural approach to numerically marginalize over

the phylogenetic tree and study processes that condition on the tree independent of any

single fixed tree’s influence (Huelsenbeck et al., 2000, 2001; Suchard et al., 2001).
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2.2 Modern phylogenetics: big trees and complex models

Early practitioners of Bayesian phylogenetics naturally used MCMC to sample from the pos-

terior distribution of phylogenetic trees. Since it is relatively straightforward to marginalize

over continuous nuisance parameters (e.g. the molecular substitution rate matrix Q), at-

tention quickly turned to improving the efficiency with which the Markov chain explores

tree space (Yang and Rannala, 1997; Larget and Simon, 1999; Mau et al., 1999; Li et al.,

2000; Huelsenbeck and Ronquist, 2001). This in turn gave rise to the observation that nav-

igating tree space is hard (Lakner et al., 2008; Höhna and Drummond, 2012; Whidden and

Matsen IV, 2015; Harrington et al., 2021).

We explore several solutions to this problem below. In Section 2.2.1, we discuss ap-

proaches to improving the efficiency of MCMC-based methods. We then discuss in Section

2.2.2 alternatives to MCMC inspired by phylogenetic problems. As these approaches permit

researchers to more efficiently explore the space of phylogenetic trees, we revisit in Section

2.2.3 the problem of assessing uncertainty in the phylogeny estimates.

2.2.1 MCMC-based approaches

MCMC is the workhorse of Bayesian phylogenetic inference. The efficiency of MCMC de-

pends on two factors: the auto-correlation between parameter proposals and the speed at

which proposals are made and evaluated. Researchers have relied on and contributed to

numerous innovative computational and statistical methods in search of MCMC approaches

that efficiently explore the high-dimensional tree space.

2.2.1.1 Faster likelihood calculations

In the absence of known conjugate priors, efficient likelihood calculations are critical for

efficient MCMC. As common models of sequence evolution assume conditional indepen-

dence between different sites in the genome, parallelization is a natural approach toward
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fast computation. The BEAGLE (Suchard and Rambaut, 2009; Ayres et al., 2012, 2019)

and PLL (Izquierdo-Carrasco et al., 2013; Flouri et al., 2015) libraries leverage the com-

putational power of multi-core processors, including graphics processing units (GPUs) in

the former case, to massively parallelize likelihood calculations and accelerate computation.

These libraries also cache calculations on sub-trees such that unnecessary calculations are

not repeated when, for example, a branch length on one part of the tree is updated that

does not influence the partial likelihood of other parts of the tree.

2.2.1.2 Sampling from high-dimensional posterior distributions

The dimensionality of many continuous parameters (e.g. the branch lengths) scales with the

size of the phylogenetic tree. Phylogenetic analyses commonly partition genetic sequences

into different genes (or some other genetic unit) that evolve independently conditional on

a tree. Modern Bayesian phylogenetic analyses include trees with thousands of tips (e.g.

Lemey et al., 2021) and, as such, require inference of the joint posterior of thousands of

highly-correlated parameters.

Baele et al. (2017) develop an adaptive Metropolis (AM) algorithm (Haario et al., 2001)

that leverages the parallel computing to take advantage of the conditional independence

of the genetic partitions. The AM algorithm is a modification of MCMC where proposal

distributions are informed by the empirical posterior distribution up to that point in the

chain. While AM is non-Markovian, it remains ergodic under weak assumptions (Roberts

and Rosenthal, 2009). Baele et al. (2017) update the chain via partition-specific multivari-

ate Gaussian proposals with covariance influenced by the empirical posterior covariance of

relevant parameters. The conditionally independent parameter blocks allow parallel likeli-

hood computations, and the multivariate Gaussian proposals informed by the posterior have

higher acceptance probability than naive multivariate proposals.

Hamiltonian Monte Carlo (HMC) is now a standard tool across Bayesian statistics for

sampling from high-dimensional posterior distributions. At its core, HMC also uses infor-
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mation about the posterior to generate high-dimensional parameter proposals with high

acceptance probability. As the aforementioned information originates from the gradient of

the log-posterior with respect to the parameters of interest, efficient gradient calculations

are essential for efficient HMC. Ji et al. (2020) develop an O(N) algorithm for computing

the gradient of the log-posterior with respect to all branch lengths simultaneously. These

gradient calculations are also parallelizable using existing libraries (see Section 2.2.1.1) and

result in an order of magnitude increase in computational efficiency.

2.2.1.3 Navigating tree space

The discrete tree topology with (2N − 3)!! possible states is often the most difficult model

parameter to efficiently sample. As many other parameters, including the branch lengths and

latent data associated with internal nodes, are only identifiable in the context of a particular

tree, MCMC proposals that make large changes to the tree topology frequently have very

low acceptance probability.

HMC is a standard tool for sampling from high-dimensional, highly correlated, contin-

uous parameter spaces, but the discrete, combinatorial nature of the tree topology does

not permit traditional HMC approaches. Dinh et al. (2017) develop probabilistic path HMC

(PPHMC) to sample from spaces that form an orthant complex. Essentially, they sample the

branch lengths via HMC in a way that branch lengths may approach 0. When HMC causes a

branch length to cross 0, PPHMC randomly selects from one of the three equivalent topolo-

gies resulting from the zero branch length. To reduce error from the leapfrog approximation

crossing non-differentiable orthant boundaries, they introduce a smoothing function at these

boundaries, which dramatically increases the accuracy of the approximation of the Hamil-

tonian trajectory and Metropolis-Hastings acceptance probability. Similar work outside of

the phylogenetic context includes that of Pakman and Paninski (2013); Mohasel Afshar and

Domke (2015) and Nishimura et al. (2020).

More recently, Meyer (2021) has developed a series of AM procedures for efficiently
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navigating the space of unrooted tree topologies. Like other AM algorithms, these approaches

rely on statistics of the posterior sample up to a point in a chain to inform future parameter

proposals. In the context of tree topologies, the relevant statistics rely on the fact that

each branch splits the taxa into two groups. The Meyer (2021) approach relies on the

posterior frequency of these splits for each possible group of taxa, with topology proposals

more likely to disrupt low-frequency splits than high-frequency splits. Similarly, Zhang et al.

(2020) use parsimony (i.e. the minimum number of genetic changes necessary to account for

the observed genetic diversity) to inform tree proposals, with highly parsimonious (i.e. few

changes) proposals more likely than less parsimonious ones.

2.2.2 Beyond MCMC

2.2.2.1 Sequential Monte Carlo

Teh et al. (2007) propose sequential Monte Carlo (SMC) for inferring tree-structured models.

Due to the hierarchical structure of the model, the intermediate distributions are defined

over forests (i.e. groups of sub-trees) over the observed sequences, and hence the dimension

of the target distributions increases over each iteration. Based on this idea, Bouchard-

Côté et al. (2012) propose an efficient framework, based on partially ordered set structures,

which imposes restrictions on proposal distributions so that the final iteration results in valid

phylogenetic trees. Since this phylogenetic SMC is restricted to jointly estimate tree topology

and branch length distributions, Wang et al. (2015) propose particle MCMC which combines

a combinatorial SMC within an MCMC in order to jointly approximate other continuous

parameters such as the parameters of the substitution rate matrix Q. Borrowing ideas from

annealed importance sampling, Wang et al. (2020) put forward an annealed SMC algorithm

to approximate the full phylogenetic model and, as other SMC-based methods, enable the

computation of the marginal likelihood.

SMC has also been investigated in an online setting in which a posterior sample of
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trees is already available from a previous analysis (e.g. MCMC or SMC) and one wishes to

directly update the posterior approximation with additional sequences. Dinh et al. (2017)

show consistency of online SMCs in terms of weak convergence while Fourment et al. (2018)

develop sophisticated proposals that better match the proposal density to the posterior.

2.2.2.2 Variational inference

Until recently, variational inference (VI) has received limited attention in the field of phy-

logenetics, perhaps due to 1) the absence of conjugate prior distributions in the nearly all

phylogenetic models and 2) the difficulty of analytically calculating the gradient of complex

joint distributions. Dang and Kishino (2019) develop a computationally efficient VI-based

method to approximate a model which allows different equilibrium frequencies across se-

quence sites. Since the likelihood of this model is in the exponential family, most of the

expectations required for optimization are obtained in closed form. This method is restricted

to unrooted trees and the authors used closed-form coordinate ascent and stochastic VI algo-

rithms for solving the optimization problem. Fourment et al. (2020) use VI to approximate

the marginal likelihood of fixed unrooted topologies using stochastic gradient ascent with

analytical derivatives. Using the Stan language (Carpenter et al., 2017) and its automatic

differentiation library, Fourment and Darling (2019) propose a framework for approximat-

ing complex models, including time-calibrated phylogenies with tree priors (e.g. coalescent

models), molecular clock, and discrete phylogeography models.

The methods described so far only approximate continuous parameters of a fixed topology

and therefore evade the combinatorial problem of the discrete topology space. The first

approach developed to tackle this problem was introduced by Zhang and Matsen IV (2018a)

using a general Bayesian network formulation for tree probability estimation. Given a set

of topologies, this structure provides an accurate and rich distribution over the topology

space. Subsequently, the same authors (Zhang and Matsen IV, 2018b) build on the Bayesian

network idea and propose jointly approximating the tree structure and the branch length
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distributions. This method also necessitates a set of topologies to define the structure of

the Bayesian network, however dynamic construction of the network is an active area of

research. Moretti et al. (2021) propose a hybrid method using VI and combinatorial SMC to

approximate posteriors defined on the space of phylogenetic trees. The main advantage of

this method is that it does not require precomputing a set of topologies. With the exception

of the Stan-based method which allows approximating a posterior using a multivariate normal

distribution, every method described so far uses meanfield approximation thereby ignoring

correlation between parameters. Since parameters in phylogenetic models tend to be highly

correlated, Zhang (2020) proposes to use normalizing flows to improve the expressiveness of

the approximate distribution.

Recently, Ki and Terhorst (2022) synthesized this VI-based work with phylodynamic

methods to fit a complex epidemiological model with thousands of sequences. The authors

showed that their method was order of magnitude faster than an MCMC-based approaches

and was able recover acceptable parameter estimates.

2.2.3 Uncertainty in tree space revisited

As discussed in Section 2.1.2.1, Bayesian phylogenetic methods conveniently quantify un-

certainty in the tree. Many evolutionary questions can be phrased as “is there a subtree in

the phylogeny which contains all of (some set of) sequences and no other sequences?” With

MCMC samples in hand, we can easily obtain this probability by counting MCMC samples

with the subtree. The fact that this estimate can carry substantial Monte Carlo error is

often ignored. For continuous random variables, Monte Carlo error is typically addressed

using the effective sample size (ESS, i.e. the number of independent samples which would

yield the same standard error of the mean). Trees, however, are more complex objects.

Gaya et al. (2011) introduce one approach that focuses on taxa splits (i.e. bi-partitions

of the tips by cutting the tree at a given edge). The tree is reduced to a series of indicator

variables denoting whether a given split is present or absent in each tree. Uncertainty in the
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probability of specific splits can then be expressed via the ESS of these indicators. Fabreti

and Höhna (2021) observe, however, that this approach has difficulty with splits whose

probabilities approach 0 or 1. They also note that the Gaya et al. (2011) ESS incorrectly

assumes that splits are independent. Regardless, Fabreti and Höhna (2021) find evidence

via simulation that the Gaya et al. (2011) approach may remain robust.

Lanfear et al. (2016) propose an ESS for the phylogeny itself. They suggest two ap-

proaches based on distances between trees. One such approach is the pseudo-ESS, where for

each posterior tree sample the distance is computed to all other tree samples. The overall

tree ESS is taken to be the median of the ESSs of these distance metrics. Lanfear et al.

(2016), however, do not establish any link between this pseudo-ESS and Monte Carlo error.

Magee et al. (2021) develop several additional approaches for computing the ESS of a

phylogeny. One such approach employs Fréchet generalizations of covariance such that the

generalized auto-correlation ρt between trees can be computed and the following standard

identity can be applied: ESS = n/(
∑∞

t=−∞ ρt). Additionally, Magee et al. (2021) propose

a simulation-based approach to test whether a putative tree ESS is useful for quantifying

Monte Carlo error in the tree. They find that most tested tree ESS measures can capture

Monte Carlo error in the probabilities of splits, as well as other important summaries of the

posterior distribution. The tree ESS approaches additionally do not appear to suffer from

the difficulties Fabreti and Höhna (2021) identified with low and high probability splits.

2.3 Data integration

In many cases the phylogenetic tree is actually a nuisance parameter and not of scientific

interest itself (see Section 2.1.2.3). Rather, there is some other process (e.g. rate of viral

transmission between two locations, strength of natural selection) that is separate from

yet dependent on the evolutionary history that researchers would like to explore. In these

cases, researchers frequently seek to integrate varying sources of data into a single, coherent
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statistical model of evolution. These additional sources of data frequently include time (see

Section 2.1.2.2) and geographic location (Lemey et al., 2009, 2010).

Before discussing specific statistical models for integrating varying types of data, we

first introduce a general framework in which to orient these models in Section 2.3.1. We

then examine models and inference methods associated with integrating both discrete and

continuous data into phylogenetic models in Sections 2.3.2 and 2.3.3, respectively. While we

briefly discuss applications in the sections below, Baele et al. (2017) offer a more thorough

overview of the different kinds of data integrated into these phylogenetic models.

2.3.1 A unified modeling framework

There are myriad statistical models for integrating additional data into these phylogenetic

models. While each model is naturally tailored to a specific application, most share a com-

mon, general framework (see Section 2.3.4.3 for a notable exception). Let xi = (xi1, . . . , xiK)
t

be a vector of latent traits associated with node νi for i = 1, . . . , 2N − 1. Similarly, let

yi = (yi1, . . . , yiP ) be the data associated with tip nodes ν1, . . . , νN . For tips i = 1, . . . , N ,

we posit a possibly stochastic link function yi = f(xi).

These models describe a data generative process where the distribution of each xi con-

ditional on the trait values of its parent xpa(i) are distributed with density or mass func-

tion p
(
xi

∣∣xpa(i)

)
= g
(
xi;xpa(i),θi,Θ

)
, where θi represents branch-specific parameters, and

Θ represent universal model parameters. Typically, θi includes at the very minimum the

branch length ti. By placing a prior on the root p(x2N−1 |θ2N−1 ), we can define a likelihood

over the data Y = (y1, . . . ,yN)
t:

p(Y | f, g,F ,θ1, . . . ,θ2N−1,Θ). (2.5)

See Figure 2.3 for a model schematic.

While this framework seems (and indeed is) incredibly generalizable, all models resulting
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from it share a critical property: once lineages diverge they evolve independently. To formal-

ize this notion, assume two nodes νi and νj that share a common parent νpa(i) = νpa(j) = νk.

Let Y⌊i⌋ and Y⌊j⌋ be the data associated with all tip nodes descended from node νi and

νj, respectively. By construction, Y⌊i⌋
∣∣xk and Y⌊j⌋

∣∣xk are independent. This conditional

independence is a defining feature of these phylogenetic models that statisticians routinely

exploit to increase computational efficiency of statistical inference.

x1 x2 x3

x4

x5

p
(
xi

∣∣xpa(i)

)
= g
(
xi;xpa(i),θi,Θ

)

y1 y2 y3

yi = f(xi)

Figure 2.3: Schematic of a generalized phylogenetic model. The data y1, . . . ,yN (red nodes)
are assumed to have arisen from the latent traits x1, . . . ,xN (blue nodes) at the respec-
tive tips via the possibly stochastic link function f(.). The latent tip traits x1, . . . ,xN and
latent internal traits xN+1, . . . ,x2N−2 arise from some evolutionary process on the phyloge-
netic tree where the traits of each child node xi are drawn from a distribution with density
p
(
xi

∣∣xpa(i)

)
= g
(
xi;xpa(i),θi,Θ

)
.

Readers may note that the model of molecular sequence evolution described in Section

2.1.1 fits neatly within this more general framework. Specifically, the dataY are comprised of

discrete nucleotides (e.g. yij ∈ {A,C,G, T}), the link function f(xi) = xi, and the probability

mass function g
(
xi;xpa(i), ti,Q

)
=
∏M

m=1 exp(tiQ)xpa(i)mxim
.

As noted above, Bayesian methods (specifically MCMC) offer a to-date unmatched ability

to study evolutionary processes without conditioning on an particular evolutionary history.

This follows simply from the fact that researchers can easily sample from the marginal

density of a parameter of interest from a realized MCMC simulation. Let Φ represent all

parameters associated with nucleotide evolution (e.g. the substitution rate matrix Q) and let
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Ψ = {θ1, . . . ,θ2N−1,Θ} be the parameters associated with some separate trait-evolutionary

process. One can then sample from the posterior

p(F ,Φ,Ψ |S,Y ) ∝ p(S | F ,Φ)p(Y | F ,Ψ)p(F)p(Φ)p(Ψ) (2.6)

via a Metropolis-within-Gibbs approach (Gelfand, 2000) where one iteratively samples from

p(Φ | F ,S), p(Ψ | F ,Y ), and p(F |S,Y,Φ,Ψ). This compartmentalization of the inference

procedure means that methods for sampling from the nucleotide substitution parameters Φ

are not influenced by the trait-evolutionary model and vice versa. The sections below focus

on the conditional posterior p(Ψ | F ,Y ).

2.3.2 Discrete character integration

Many processes of interest can be modeled as the evolution of discrete traits on the tree

(Ronquist, 2004). Perhaps the most common discrete outcome of interest is location in

phylogeographic models (Sanmart́ın et al., 2008; Comas et al., 2013; Lemey et al., 2020).

However, other discrete characters of interest include pathogen host species (Ward et al.,

2014; Dearlove et al., 2016; Latinne et al., 2020) and ecological habitat (Bryja et al., 2014;

Terra-Araujo et al., 2015; Sánchez-Baracaldo et al., 2017). See Baele et al. (2017), Table 1

for a more thorough list of discrete-trait analyses.

The most common model of discrete-character evolution is essentially the same as the

continuous-time Markov model of nucleotide evolution introduced in Section 2.1.1. The

states can be arbitrarily defined to be whatever discrete character is evolving along the tree.

2.3.2.1 Developments in Markov jump processes

Problems of both genetic sequence and discrete trait evolution have motivated much work

on Bayesian networks, hidden Markov models, endpoint-conditioned Markov jump processes

and Markov reward processes to infer the number of times specific trait changes occur or the
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length of time a trait is realized along an evolution history. Siepel et al. (2006), for example,

analytically derive the probability mass function of the total number of Markov jumps in

an endpoint-conditioned continuous-time Markov chain along a graph with arbitrary rate

matrix. Similarly, Minin and Suchard (2008a,b) analytically calculate the moments of the

number of jumps between each pair of states. Sometimes, expectations are insufficient and

simulation is required to answer the question of interest. Hobolth and Stone (2009) pro-

vide several approaches for simulating endpoint-conditioned continuous-time Markov chains.

Minin and Suchard (2008a) and Hobolth and Jensen (2011) develop computationally ef-

ficient, simulation-free methods for calculating the moments of Markov reward processes

(e.g. the average amount of time spent in a particular state of a continuous-time Markov

chain).

Phylogenetics has also motivated the development of statistical theory related to Lie

Markov models (Sumner et al., 2012; Fernández-Sánchez et al., 2015). These models com-

prise inhomogeneous continuous-time Markov processes whose endpoint can be expressed

as the result of a time-homogeneous process (essentially the time-resolved average of the

inhomogeneous process). These processes permit the instantaneous rate matrix to vary over

time (and along different branches in a phylogeny) and are useful for identifying the root

position of a phylogeny without specifying a molecular clock (Hannaford et al., 2020).

2.3.2.2 Evolutionary covariates and the curse of dimensionality

Phylogenetic models are certainly not immune from the curse of dimensionality. This phe-

nomenon is particularly acute in phylogeographic models where the number of discrete loca-

tions can be quite large. Assuming a continuous-time Markov process along the phylogeny

with L discrete states and infinitesimal rate matrixQ = {qℓm}, the number of free parameters

in Q scales O(L2). While there is no theoretical prohibition on inferring more parameters

than there are observations, it becomes increasingly difficult to extract meaningful informa-

tion in these settings.
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This challenge is also an opportunity, as one can reduce the size of the parameter space

by assuming the O(L2) transition rates are functions of some low-dimensional process pa-

rameterized by scientifically relevant covariates. Lemey et al. (2014) and Zhao et al. (2016)

develop a generalized linear model (GLM) that assumes the log-transition rates are a linear

function of relevant covariates (e.g. pairwise air traffic between two locations, local temper-

ature) with the number of parameters scaling linearly with the number of covariates. To

further penalize over-parameterization within the GLM, Lemey et al. (2014) also assume a

priori that some unspecified number of covariates have no influence on the transition rates

as follows. Let Z = {zℓm,i} be the covariate observations associated with all ordered pairs

ℓ,m ∈ {1, . . . , L}2, ℓ ̸= m and covariates i = 1, . . . , R. Let β = (β1, . . . , βR)
t be a vector

of regression coefficients and δ = (δ1, . . . , δR)
t be a vector of indicator variables such that

logqℓm =
∑R

i=1 δiβizℓm,i. Inference of the indicators i can be achieved via Bayesian stochastic

search variable selection (Kuo and Mallick, 1998; Chipman et al., 2001). To sample effi-

ciently from a posterior with high correlation between regression coefficients β, Lemey et al.

(2014) rely on a Markov chain transition kernel that draws the proposal β∗ ∼ N(β, αZtZ),

where α is a tunable scaling factor. This kernel accounts for the prior expectation that

coefficients associated with correlated covariates will also be correlated. Zhao et al. (2016),

as an alternative, develop an HMC sampler for the regression coefficients. These GLM ap-

proaches are applicable beyond phylogenetics and facilitate inference of the rate matrix of

any discrete-state continuous-time Markov process.

2.3.2.3 Piece-wise deterministic, non-reversible Markov processes

Bouchard-Côté et al. (2018) introduce the bouncy particle sampler (BPS) as a non-reversible,

rejection-free alternative to reversible Metropolis-Hastings and HMC samplers. While they

evaluate the BPS as a way to efficiently sample from the phylogenetic rate matrix Q, it has

broad utility beyond statistical phylogenetics. Inspired by the physics literature (Peters and

de With, 2012), the BPS relies on piece-wise linear trajectories of a particle (the parameters)
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through a potential field (the negative log-posterior). Bouchard-Côté et al. (2018) generalize

this sampler and develop methods to exactly simulate the parameter trajectories. The BPS

relies on finding the parameter value along a line that maximizes the posterior density.

Bouchard-Côté et al. (2018) use gradient calculations from the HMC sampler of Zhao et al.

(2016) to identify these maxima and sample efficiently from a high-dimensional evolutionary

rate matrix. See Section 2.3.3.2 for additional applications of piece-wise deterministic, non-

reversible Markov processes.

2.3.3 Gaussian processes on a tree

While discrete-trait models discussed above are typically based on the same model of molecu-

lar sequences introduced in Section 2.1.1, continuous data integration requires new statistical

models. Due to their computational tractability, Gaussian processes form the backbone of

most continuous trait analyses. The simplest such model is one where correlated traits evolve

according to a P -dimensional multivariate Brownian diffusion (MBD) process (Edwards and

Cavalli-Sforza, 1964; Felsenstein, 1985b). Using the notation of Section 2.3.1, we have

xi

∣∣xpa(i) ∼ N
(
xpa(i), tiΣ

)
and yi = f(xi) = xi. (2.7)

Marginalizing the latent traits (except the root traits x2N−1) results in the likelihood

vec(Y) | F ,x2N−1,Σ ∼ N
(
vec
(
1Nx

t
2N−1

)
,Σ⊗Ψ

)
, (2.8)

where ⊗ is the Kronecker product and Ψ is a deterministic function of the phylogenetic tree

F capturing the phylogenetically-induced covariance between taxa.

Likelihood-based inference frequently requires repeated evaluation of the likelihood func-

tion p(Y | F ,x2N−1,Σ), which naively scales O(N3P 3). Exploiting the Kronecker product

to invert the variance reduces this complexity to O(N3 + P 3). As both N and P can be

23



large, even this greatly simplified calculation can be intractable. Freckleton (2012) (based

on Felsenstein (1973b)), Pybus et al. (2012) and Ho and Ané (2014) develop strategies for

computing this likelihood in O(NP 2 + P 3) using approaches conceptually similar to Felsen-

tein’s pruning algorithm for computing the sequence-based likelihood (Felsenstein, 1973a).

The Ho and Ané (2014) approach uses the tree structure to efficiently compute

(
Y − 1Nx

t
2N−1

)t
Ψ−1

(
Y − 1Nx

t
2N−1

)
(2.9)

in O(NP 2) for any matrix Ψ that satisfies what they dub the 3-point structure. Specifically,

any matrix Ψ has a 3-point structure if for all i, j, k the two smallest covariances of ψij, ψik,

ψjk are equal to each other. Ho and Ané (2014) generalize this to allow negative covariances

in Ψ under certain conditions. More recently, Bastide et al. (2021) develop an HMC-based

approach that can calculate gradients for nearly all relevant parameters in these hierarchical

Gaussian models in linear time.

2.3.3.1 Gaussian processes and Matrix-Normal likelihoods with missing data

Unfortunately, the previous methods for computing the likelihood fail with partially missing

data. Cybis et al. (2015) address missing data within a tip in these hierarchical Gaussian

process models via data augmentation. Let ymis
i and yobs

i be the missing and observed data,

respectively, associated with tip node νi. Cybis et al. (2015) develop a procedure that can

sample from ymis
i

∣∣Yobs,F ,Σ for i = 1, . . . , N . Each sample requires O(NP 2) computations

for O(N2P 2) complexity to sample from all N tips.

Bastide et al. (2018); Mitov et al. (2020) and Hassler et al. (2020, Chapter 3) develop

an alternative approach that analytically integrates out missing observations rather than
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relying on data augmentation. This approach assumes that

yi |xi ∼ N

xi,R
t
i

∞I 0

0 0

Ri

 (2.10)

where Ri is a permutation matrix that arranges the∞ values to correspond to the indices of

ymis
i and the 0 values to correspond to the indices of yobs

i . This specification of missingness

gives rise to a series of non-standard operations involving square matrices with 0 or ∞

diagonal elements. For example, the special inverse of some arbitrary matrix

Rt
i


∞I 0 0

0 V 0

0 0 0

Ri


−

= Rt
i


0 0 0

0 V−1 0

0 0 ∞I

Ri. (2.11)

Propagating missing information up the tree via singular precision matrices allows marginal

likelihood calculations of the observed data only in O(NP 3).

This algorithm applies to a much broader range of statistical models than MBD on a tree

and helps solve the longstanding statistical challenge of efficiently calculating multivariate

normal likelihoods with missing data. Specifically, it applies to any multivariate normal

likelihood with a 3-point structured covariance matrix discussed above (Ho and Ané, 2014).

This structure is common in hierarchical Gaussian models. While Allen and Tibshirani

(2010) and Glanz and Carvalho (2018) use the expectation-maximization algorithm to per-

form maximum likelihood imputation, the Bastide et al. (2018)/Mitov et al. (2020)/Hassler

et al. (2020, Chapter 3) approach permits inference relying on only the observed-data likeli-

hood. For situations where imputation is desired, this approach allows one to sample from

the full conditional distribution of all missing observations simultaneously in O(NP 3) time

as well.
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2.3.3.2 Multivariate probit models and sampling from high-dimensional trun-

cated Gaussian distributions

Bayesian phylogenetics has also served as the motivation for many novel methods in multi-

variate probit models. Cybis et al. (2015) develop a phylogenetically informed multivariate

probit model with correlations between both traits and taxa. Under this model, the data

are a mix of continuous and discrete traits. Underlying all traits is an MBD process on the

tree. Here, the mapping f(xi) = (f1(xi1), . . . , fP(xiP ))
t between the continuous latent traits

xi and mixed continuous/discrete observed data yi is not the simple identity function. For

a binary trait j, we have yij = fj(xij) = 1{xij>0} (see Cybis et al. (2015) for mappings to

ordinal or categorical traits). For continuous traits k, the link function remains fk(xij) = xij.

Let xobs
i be the components of xi associated with the continuous phenotypes and let

xlat
i be the latent components informing the discrete traits. Efficient inference under this

model requires data augmentation of xlat
i for i = 1, . . . , N . As mentioned in Section 2.3.3.1,

this procedure relies on sampling from xlat
i

∣∣yi,X\i,F ,Σ for i = 1, . . . , N , where X\i =

{xj; j ̸= i}. This full conditional posterior is a (potentially high-dimensional) truncated

Gaussian distribution due to the constraints in the stochastic link function. While Cybis

et al. (2015) rely on a multiple-try rejection sampler, this sampler can be prohibitively

slow for high-dimensional truncated Gaussian distributions. Zhang et al. (2021), however,

employ a novel approach, the BPS (Bouchard-Côté et al., 2018, see Section 2.3.2.3), to more

efficiently sample from this challenging distribution. As noted previously, the BPS requires

calculating the gradient of the log-posterior density with respect to the latent parameters

xlat
i for i = 1, . . . , N , which Zhang et al. (2021) achieve in linear time with a post-order tree

traversal similar to that employed by Pybus et al. (2012). This Zhang et al. (2021) sampler

essentially bounces off the truncations of the full conditional posterior. As the truncations

are defined on a univariate basis, evaluating when these boundary events occur is trivial,

and Zhang et al. (2021) observe increases in computational efficiency over rejection sampling

approaching two orders of magnitude.
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Seeking improvement on the BPS, Zhang et al. (2022) develop a zigzag Hamiltonian

Monte Carlo sampler (Nishimura et al., 2020, zigzag-HMC) to further address the challenge

of sampling from a high-dimensional truncated Gaussian distribution in the phylogenetic

context. Zigzag-HMC differs from traditional HMC as it posits a Laplace momentum which

imparts the unusual property that the Hamiltonian trajectory may only have slopes in {±1}d

where d is the dimensionality of the parameter space (i.e. the element-wise slopes may be 1

or −1 only). As the velocity restricted to {±1}d only depends on the sign of the momentum,

the particle moves with a constant velocity until one momentum component changes its sign,

at which point the particle updates its velocity and moves along a new linear trajectory. See

Figure 2.4 for a simple example. For Gaussian distributions, one can analytically simulate

the zigzag Hamiltonian dynamics by calculating when these sign changes occur, eliminating

the need for an accept/reject step. Zigzag-HMC handles truncations in the same way as the

BPS and it also takes advantage of the linear time log-posterior gradient evaluations. Besides

being more efficient than BPS on a truncated Gaussian, zigzag-HMC also enables a joint

update of latent parameters and the across-trait correlation, further improving the sampling

efficiency. Importantly, this Zhang et al. (2022) method is able to learn the conditional

dependence between any two traits in large problems where BPS fails.

2.3.3.3 Highly structured, high dimensional data and latent factor models

Up to this point, we have primarily discussed the computational challenges associated with

big-N problems. Big-P data sets are increasingly common in phylogenetic problems, and

the methods discussed previously scale at best quadratically in P . Bayesian latent factor

models (Press and Shigemasu, 1989; Lopes and West, 2004) are a common approach to reduce

both computational and model complexity. These models assume that the P -dimensional

observed data yi arise from K < P dimensional latent processes xi. Specifically, yi =

f(xi) = Ltxi+ϵi, where L is a K×P estimable matrix and ϵi ∼ N(0, diag[σ]). The standard

(non-phylogenetic) model assumes the prior distribution xi
iid∼ N(0, I), but this specification
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Figure 2.4: Sampling from a 2-dimensional truncated Gaussian distribution using both the
BPS (left) and zigzag-HMC (right) samplers. Orange lines represent the truncations. Grey
lines represent the particle trajectories, while grey dots represent samples from the posterior.

precludes the requisite correlation between the latent factors that the phylogeny induces. As

such, Tolkoff et al. (2018) introduce phylogenetic factor analysis, where the xi evolve along

the phylogenetic tree via MBD. Standard procedures for sampling from the full conditional

posterior of the loadings matrix L require conditioning on the latent traitsX = (x1, . . . ,xN)
t,

and Tolkoff et al. (2018) rely on the procedure outlined in Cybis et al. (2015) to sample from

xi

∣∣yi,X\i,F ,σ for i = 1, . . . , N with overall complexity O(N2PK2). Hassler et al. (2022,

Chapter 4) apply the likelihood calculation and data augmentation algorithms of Hassler

et al. (2020, Section 3.2.2.1) to sample from X |Y,F ,L,σ in O(NPK3). As K is by design

small, the cubic scaling in K is preferable to the quadratic scaling in N .

Hassler et al. (2022, Section 4.3.1.2) also develop a novel HMC approach to efficiently

sample directly from L |Y,F ,σ without conditioning on the latent factors X that applies

to latent factor models generally. Hassler et al. (2022) show that one can calculate the

gradient ∇L logp(L |Y,F ,σ ) required for HMC as a function of the full conditional mean
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and variance of each xi, but not the values of xi explicitly. In the phylogenetic context,

Hassler et al. (2022) use methods previously developed by Bastide et al. (2018) and Fisher

et al. (2021) to calculate these gradients in O(NPK3). This approach is easily transferable

to non-phylogenetic latent factor models.

2.3.3.4 Beyond MBD

While the continuous trait models discussed above rely on MBD, we emphasize work on other

models of continuous evolution. The closely related Ornstein–Uhlenbeck process (Uhlenbeck

and Ornstein, 1930) is a Gaussian process where traits tend to revert to some mean value

(i.e. some evolutionary optimum). Recent work has focused on inferring the points along

the phylogeny at which these optima change, known as adaptive shifts (Uyeda and Harmon,

2014). Bastide et al. (2018) develop efficient likelihood calculations under a special case of

this model. Other models include diffusion on a sphere (Bouckaert, 2016) and within a latent

space arising from a multidimensional scaling (Holbrook et al., 2021) when only pair-wise

distances between traits are observed.

2.3.4 Preferential sampling and bias

Phylogenetic analyses typically study biological populations evolving in the real world and

are inherently observational. As such, data ascertainment is an important factor in any

phylogenetic study, with preferential sampling possibly biasing results (Karcher et al., 2016).

Phylogeographic models that capture spatiotemporal evolution are particularly susceptible to

non-uniform sampling across both space and time (Guindon and De Maio, 2021; Kalkauskas

et al., 2021). In infectious disease phylogeography, data ascertainment typically requires

sequencing the viral genome associated with an individual infection. Unsurprisingly, there

are numerous disparities that lead to preferential sampling across both time and space. Both

testing and sequencing can be expensive, and resource-rich regions tend to sequence a higher
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proportion of actual infections (Brito et al., 2021). In the extreme case there may be no

sequences available from a location with high levels of known transmission. In addition

to sub-sampling to create more representative data sets, researchers have developed several

strategies to address bias induced by preferential sampling.

2.3.4.1 Directly modeling ascertainment

The coalescent tree priors mentioned in Section 2.1.2 enable inference of (possibly time-

varying) effective population size (EPS). Unsurprisingly, estimates of time-varying EPS are

particularly sensitive to preferential sampling in time. While standard models (often inap-

propriately) assume that sequence ascertainment does not depend on EPS, Karcher et al.

(2016) explicitly model ascertainment as an inhomogeneous Poisson process with intensity

a function of EPS. They demonstrate via simulation that this approach reduces bias in

EPS estimates when sequence ascertainment is proportional to EPS, a common scenario in

epidemiological studies.

2.3.4.2 Sequence-free observations

When the spatiotemporal distribution of an epidemic can be estimated a priori, one can

partially correct for preferential sampling by introducing sequence-free samples into the

phylogenetic trait reconstruction. Up to this point we have taken for granted that all tip

nodes in the phylogeny correspond to an associated molecular sequence as the sequences are

the primary source of information for inferring the phylogeny itself. As there are situations

where one has access to information about the spatiotemporal distribution of an epidemic

(e.g. regional case counts) but relatively few sequences from certain locations, Lemey et al.

(2020) and Kalkauskas et al. (2021) propose introducing sequence-free nodes to the phyloge-

netic tree and demonstrate that this approach can reduce bias induced by extremely biased

sampling. Of course, this approach requires prior knowledge of the true spatiotemporal
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distribution of the process of interest.

2.3.4.3 Structured coalescent

An alternative model of discrete phylogeographic migration is the structured coalescent (No-

tohara, 1990), which posits a backward-in-time process where lineages converge and migrate

between sub-populations. Where the previously-discussed discrete-trait model assumes the

tree is a priori independent of the location data, the structured coalescent explicitly mod-

els dependence of the tree on the locations, which can reduce bias in both ancestral state

reconstructions and rates of migration between locations. As the population demographics

are explicit model parameters, they can in turn be informed by other sources of data, fur-

ther avoiding some biases introduced by preferential sampling of individuals in some states

(De Maio et al., 2015). The primary challenge to inference under these structured coalescent

models is that there is no analog to Felsenstein’s pruning algorithm (Felsenstein, 1973a, 1981,

see Section 2.1.1) that analytically integrates out the migration events. As such, inference

under these models requires numerically marginalizing the migration history, typically via

MCMC (Vaughan et al., 2014).

De Maio et al. (2015) develop an approximation to the standard structured coalescent

model that does allow analytic integration of the migration histories, avoiding laborious nu-

merical integration. Volz (2012) and Müller et al. (2017) also develop efficient numerical

approximations of the structured coalescent likelihood. Existing implementations of struc-

tured coalescent models, however, still compare poorly computationally with the simpler

discrete trait models and are intractable for large-scale problems. Improving computational

efficiency in these models is an active area of research.
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2.4 Case study

Phylogenetics has increasingly played a role in studying viral epidemic dynamics, sometimes

in real time (Dellicour et al., 2021; Hodcroft et al., 2021). Researchers can integrate infor-

mation about the spatiotemporal spread of a virus into phylogenetic models to identify an

epidemic’s origin (Plantier et al., 2009; Liu et al., 2013; Worobey et al., 2016) and transmis-

sion dynamics (Ehichioya et al., 2011; Dudas et al., 2017; Du Plessis et al., 2021). In these

phylodynamic analyses, the sampling time and location of a genetic sequence are critical

data that allow researchers to reconstruct how a virus spreads through populations.

Here, we consider a case study arising out of the paper by Lemey et al. (2020) on early

SARS-CoV-2 international transmission. In addition to viral genetic sequences, sample dates

and sample locations, Lemey et al. (2020) incorporate information on individual travel his-

tory, global air traffic patterns, local outbreak intensity and within-host infection dynamics.

The authors seek to identify the paths along which SARS-CoV-2 traveled as it escaped Hubei

province, China, and spread globally. As discussed in Section 2.3.4, phylogeographic anal-

yses are susceptible to ascertainment bias, which is often unavoidable as viral transmission

does not respect administrative boundaries with consistent sequencing and reporting. To

address this challenge, Lemey et al. (2020) integrate both individual-level travel history and

location-specific estimated case counts into their phylogeographic analysis.

Lemey et al. (2020) collect 282 early SARS-CoV-2 sequences from around the world.

Roughly 20% of these sequences were associated with recorded international travel. As they

consider 44 discrete locations, they parameterize the transition rate matrix via a GLM with

pairwise air traffic connectivity and geographic distance as covariates (see Section 2.3.2.2). To

incorporate travel history, they introduce additional degree-2 internal nodes (i.e. nodes with a

single parent and single child) into the phylogeny and assign the travel origins to those nodes.

The dates of these nodes are fixed to the travel dates (when known) or inferred assuming a

prior informed by the SARS-CoV-2 incubation time. The travel destinations remain assigned
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to tip nodes. Finally, Lemey et al. (2020) incorporate sequence-free observations from under-

sampled locations such as Italy and Iran.

Ultimately, incorporating these various sources of information into the discrete trait phy-

logeographic model resulted in more plausible transmission patterns and a statistical model

with greater out-of-sample predictive performance (see Figure 2.5). The Bayesian approach

allows seamless incorporation of prior knowledge in 1) SARS-CoV-2 case counts informing

the locations and dates of sequence-free tip nodes and 2) SARS-CoV-2 within-host dynam-

ics informing the prior on the time between the origin and destination nodes associated

with specific travelers. These approaches also permitted accommodation of uncertainty in

the phylogenetic tree itself, as the phylogenetic tree was inferred simultaneously with all

transmission dynamics via MCMC simulation.
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Figure 2.5: A toy example of the influence of travel history on discrete trait analyses. Hor-
izontal lines represent persistent lineages within a location, while vertical lines represent
transitions between locations in the Markov chain. We inferred a tree with 9 sequences (3
each from Wuhan, Australia, and Europe) where some of the infected individuals sampled in
Australia had traveled from Iran or Southeast (SE) Asia. The analysis incorporating travel
history captures more information in that the virus is present in all locations and there is less
variance in the dates of transition events. This figure was modeled on the tutorial presented
in the BEAST documentation. Please note that this is a toy analysis and should not be
interpreted as providing insight into the early spread of SARS-CoV-2.
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2.5 Discussion

Phylogenetics has motivated numerous theoretical, methodological, and computational ad-

vances in the statistics of Bayesian networks, continuous-time Markov processes and Gaussian

processes. The challenges of dealing with complex, hierarchical statistical models with com-

bined continuous/discrete parameter spaces continue to spur creative statistical innovations.

Many of the topics discussed are active areas of research.

The Bayesian approach is particularly useful in phylogenetics as the phylogeny itself is fre-

quently a nuisance parameter. Analyses that condition on a single phylogeny do not properly

account for the often high degree of uncertainty in the phylogenetic estimates. Numerically

marginalizing over the phylogeny via MCMC or other approaches discussed in Section 2.2

conveniently addresses this uncertainty. Similarly, the Bayesian approach offers a intuitive

way to account for uncertainty in the phylogeny. Beyond properly measuring uncertainty,

there are cases where we do indeed have prior information about relevant parameter values

such as the root date (e.g. the temporal origin of a pandemic) or branch lengths (e.g. rapidly

growing populations tend to have shorter branch lengths near the root).

Despite the many advances, there are persistent challenges in both inferring the tree

itself and data integration. The SARS-CoV-2 pandemic greatly accelerated previous gains

in epidemic genomic surveillance. Bayesian methods are typically limited to several thousand

taxa and currently require down-sampling when analyzing some pandemic-scale data sets.

Recent work has focused on computationally efficient implementations of simpler models

(https://beast.community/thorney beast) or approximate likelihoods (De Maio et al., 2022).

Additionally, as discussed in Section 2.3.4, common phylogeographic models exhibit a trade-

off between computational efficiency and robustness to sampling bias.

Finally, while we focus here on the statistical implications related to data integration in

Bayesian phylogenetics, we direct the reader to Baele et al. (2017) for a thorough discussion

of data integration from a more biological perspective with more specific examples.
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CHAPTER 3

Inferring phenotypic trait evolution on large trees with

many incomplete measurements

3.1 Introduction

Phylogenetic comparative methods explore the relationships between different biological phe-

notypes across sets of organisms. To properly understand these phenotypic trait relation-

ships, methods must adjust for the shared evolutionary history of the taxa (Felsenstein,

1985b). Molecular sequences from emerging sequencing technology and high-throughput bi-

ological experimentation enable such phylogenetic adjustment for rapidly growing numbers

of taxa and increasing numbers of trait measurements. Comparative studies incorporating

dense taxonomic sampling create the potential for new research into general patterns in

phenotypic evolution, key differences between subgroups and the relationship between phe-

notypic and genetic evolutionary dynamics. Unfortunately, many phylogenetic comparative

methods remain poorly equipped to handle these research questions at scale.

Popular methods often assume an underlying Brownian diffusion process acts along each

branch of a phylogenetic tree, such that the traits are multivariate normally distributed.

Revell (2012) and Adams (2014b), for example, parameterize this distribution in terms of

a highly-structured variance-covariance matrix that characterizes the tree and trait covaria-

tion. Computational work to invert this matrix to evaluate the multivariate normal likelihood

scales cubically with the number of taxa. This work stands even more troublesome when

the phylogenetic tree remains unknown and requires joint inference with the trait process,
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necessitating repeated inversion. Freckleton (2012), Pybus et al. (2012), and Ho and Ané

(2014) all independently develop algorithms that take advantage of the matrix-normal struc-

ture of the data under the MBD model to evaluate the likelihood. Using the tree structure,

these algorithms then scale linearly with the number of taxa with complete data, but this

ideal run-time currently stumbles when trait measurements are missing.

As the number of taxa grows large, measuring a complete suite of traits for all taxa

becomes increasingly challenging. While stripping any rows of data with missing values

may create a “complete” data set, this procedure both reduces statistical power and can

introduce bias (Nakagawa and Freckleton, 2008). Recent solutions to this problem that

take advantage of all available data include those by Goolsby (2017), Tolkoff et al. (2018),

Bastide et al. (2018), and Mitov et al. (2020). Tolkoff et al. (2018), for example, treat

the missing data points as unknown model parameters and integrate them out via Markov

Chain Monte Carlo (MCMC). This method, however, requires iterative manipulation of the

likelihood function on a per-taxon basis and remains computationally prohibitive for large

trees. Alternatively, Goolsby (2017), Bastide et al. (2018), and Mitov et al. (2020) take a

different approach and develop algorithms that can compute the likelihood of the observed

data only in linear time with respect to the number of taxa. However, the inference strategy

of all three groups (implemented in Rphylopars (Goolsby et al., 2017), PCMFit (Mitov et al.,

2019), and PhylogeneticEM (Bastide et al., 2018) respectively) rely on maximum likelihood

estimation (MLE) regimes that assume the phylogenetic tree is known a priori. While this

assumption may be appropriate when the phylogenetic tree is known with a high degree of

certainty, this is not the case for many practical problems. If there is any uncertainty in the

tree, these methods will likely be both biased and over-confident in their estimates.

In this paper, we reformulate evaluation of the data likelihood function under a Brownian

diffusion process on a tree such that we achieve the marginalized likelihood of the observed

trait measurements only. This innovation arises from thinking about observed tip traits

as multivariate normally distributed with infinite precision in their sampling, while miss-
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ing traits have zero precision, and appropriately propagating these precisions up the tree

through dynamic programming involving an unusual matrix pseudo-inverse definition. This

pseudo-inverse finds similar use, but independent discovery, in Bastide et al. (2018). Un-

like previous approaches, the integration avoids EM iteration making simultaneous inference

with the phylogeny practical and enables researchers to analyze all available measurements

when inferring the trait relationships. Surprisingly, we can still evaluate the observed-data

likelihood in linear time with respect to the number of taxa. The price to be paid is that

computation now scales cubically, rather than quadratically, in the number of traits. This

remains a small price since the number of taxa is often orders-of-magnitude larger than the

number of traits. It is also notable that this method has applications beyond phylogenetic

comparative methods and can be used more generally in a special class of matrix-normal and

multivariate normal distributions with missing data. This has been a long standing problem

in statistics since at least the 1930’s (Wilks, 1932), with more recent work by Dominici et al.

(2000); Cantet et al. (2004); Allen and Tibshirani (2010); and Glanz and Carvalho (2018).

One important limitation to our approach is that it assumes data are missing at random

(Little and Rubin, 1987) which is inappropriate for many data sets.

We also demonstrate how this framework can be easily extended to incorporate residual

variance in the MBD model, which is only one of many possible model extensions. Our

strategy of analytically marginalizing the observed data likelihood extends seamlessly to

this and other model extensions and allows for efficient inference on these models while

maintaining likelihood computations that scale linearly with the number of taxa. These

extensions open up lines of inquiry not available in the simple MBD model. In particular,

including residual variance in the model enables inference of phylogenetic heritability.

We demonstrate the broad utility of our algorithm to compute the marginalized likelihood

through three examples. First, we examine covariation in mammalian life history traits using

data on 3649 taxa from the PanTHERIA ecological database (Jones et al., 2009). Second, we

use our new efficient algorithm to simultaneously evaluate several theories regarding prokary-
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otic evolutionary theory. We use data from NCBI Genome and a recent study by Goberna

and Verdú (2016), along with matching 16S sequences from the ARB Silva Database (Ludwig

et al., 2004), to jointly infer both the phylogenetic tree and evolutionary correlation between

several prokaryotic genotypic and phenotypic traits. Finally, we apply our multivariate resid-

ual variance model extension to data presented by Blanquart et al. (2017) concerning HIV

virulence to evaluate the heritability of HIV viral load and CD4 T-cell decline. We compare

the computation speed of our analytical integration method against current best-practice

methods and observed increases in speed that top two orders-of-magnitude.

3.2 Phenotypic diffusion on trees

Consider a data-complete collection Y = (y1, . . . ,yN)
t where yi = (yi1, . . . , yiP )

t of P real-

valued phenotypic traits measured across N biological taxa. Relating the taxa stands a

known and fixed or unknown and random phylogeny F that is a bifurcating, directed acyclic

graph whose 2N − 1 vertices originate with a degree-2 root node ν2N−1 and terminate with

degree-1 tip nodes (ν1, . . . , νN) that correspond to the N taxa. Linking vertices are edge

weights or branch lengths (t1, . . . , t2N−2). Let xk = (xk1, . . . , xkP ) be latent values of the

traits at node νk on the tree for k = 1, . . . , 2N − 1. For tip nodes i = 1, . . . , N , we posit

a stochastic link p (yi |xi ) where yi is drawn from some distribution parameterized by xi

and other hyperparameters (see Figure 3.1). Comparative methods standardly assume that

the density p (yi |xi ) is degenerate at xi (i.e. yi = xi with probability 1), but we relax this

assumption in future sections.

The most common phenotypic model of evolution (Felsenstein, 1985b) assumes a multi-

variate Brownian diffusion process acts conditionally independently along each branch gen-

erating a multivariate normal (MVN) increment,

xk ∼ MVN
(
xpa(k), tkΣ

)
for k = 1, . . . , 2N − 2, (3.1)
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Figure 3.1: Schematic of diffusion model with stochastic link function. The data Y =
(y1,y2,y3)

t arise from latent values xi at the tips of the tree via the stochastic link function
p (yi |xi ) for i = 1, . . . , N .

centered around the realized value xpa(k) at its parent node and variance proportional to

an estimable P × P positive-definite matrix Σ. Since the trait values at the root are also

unknown, Pybus et al. (2012) suggest further assuming x2N−1 ∼ MVN
(
µ0, κ

−1
0 Σ

)
with fixed

prior mean µ0 and sample-size κ0.

3.2.1 Computation of observed data likelihood

When there are no missing data and under our standard assumption that p (yi |xi ) is degen-

erate, integrating out unobserved internal and root node traits leads to a seemingly simple

expression for the data likelihood p(Y |Σ,F ,µ0, κ0) (Freckleton, 2012; Vrancken et al.,

2015). Namely, Y is matrix-normal (MN) distributed around mean 1Nµ
t
0, with across-row

variance Υ + κ−1
0 JN and across-column variance Σ, where 1N is a vector of length N pop-

ulated by ones, JN = 1N1
t
N , and Υ is a deterministic function of F . Specifically, element

Υii′ measures shared evolutionary history and equals the sum of the branch lengths from the

root to the most recent common ancestral node of taxa i and i′ when i ̸= i′ or the sum of the

branch lengths from the root to taxon i otherwise. For example, in Figure 3.1, Υ12 = t4 and

Υ11 = t1 + t4. One can evaluate this highly structured matrix-normal likelihood function
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with computational complexity O(NP 2) given the acyclic nature of F . When some data

points are missing, however, the observed-data likelihood is no longer matrix-normal and

new approaches are needed. This becomes increasingly urgent as the prevalence of missing

observations grows with the size of trait data sets. In this context we wish to compute

p(Yobs |Σ,F ,µ0, κ0) =

∫
p(Yobs, |Σ,F ,µ0, κ0)dY

mis, (3.2)

where Yobs and Ymis contain the observed and missing trait values, respectively.

The two simplest strategies for calculating the observed-data likelihood are, unfortu-

nately, computationally prohibitive for most large problems. One such solution forfeits the

MN structure of the data in favor a simple expression of the observed-data likelihood. This

strategy uses the fact that the matrix-normal distribution of Y can also be expressed as

vec [Y |Σ,F ,µ0, κ0 ] ∼ MVN
(
vec
[
1Nµ

t
0

]
,Σ⊗

(
Υ+ κ−1

0 JN

))
, (3.3)

using the Kronecker product ⊗. Assuming data are missing at random (Little and Rubin,

1987), one can simply remove the rows and columns of vec [1Nµ
t
0] and Σ ⊗

(
Υ+ κ−1

0 JN

)
corresponding to the missing data and compute the likelihood for this NP −M ′ dimensional

MVN distribution, where M ′ is the number of missing measurements. This likelihood cal-

culation carries the onerous computational complexity O
(
(NP −M ′)3

)
. Alternatively, from

a Bayesian perspective, one could numerically integrate out the missing data by treating

each missing data point as an unknown model parameter and employing MCMC to sample

each value. This strategy restores the matrix-normal structure, but requires the likelihood

be evaluated each time one samples a missing data point. This results in computation com-

plexity of at least O(NP 2M), where M is the number of taxa with missing measurements.

Because M often scales with N , this method remains prohibitively slow for many data sets

with large N . Our goal is to integrate out these missing values analytically using a dy-

namic programming algorithm in order to bring run time down to a much more manageable
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O(NP 3).

3.2.1.1 Missing data definitions and operations

To develop our algorithm, we first introduce some useful abstractions and notation. At each

tip in F , information about each of the P traits comes in one of three forms: a trait value

may be directly observed, latent, or completely missing. When directly observed, we posit

without loss of generality that the value arises from a normal distribution centered at the

observed value with infinite precision. We assume that trait data that arise from latent

values are jointly multivariate normally distributed about the unknown latent values with

known or estimable precision. Finally, a completely missing value arises also without loss of

generality from a normal distribution centered at 0 with zero precision. To formalize this,

for tip i = 1, . . . , N , we construct a permutation matrix Ci that groups traits in directly

observed, latent, and completely missing order and populate a pseudo-precision matrix

Pi = Ci diag [∞I,Ri, 0I]C
t
i, (3.4)

where diag [·] is a function that arranges its constituent elements into block-diagonal form

and Ri is the latent block precision. Note that any block may be 0-dimensional. This

construction arbitrarily forces off-diagonal elements of Pi involving directly observed and

completely missing traits to equal 0 and plays an important role in simplifying computations.

We additionally define a series of operations that we will find useful for defining this

algorithm. We define the pseudo-inverse

P−
i = Ci diag

[
0I,R−1

i ,∞I
]
Ct

i. (3.5)

We define the pseudo-determinant d̂et() as the product of the non-zero singular values. We

also define the matrix δi = diag [δi1, . . . , δiP ] for i = 1, . . . , N , where δij is an indicator
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variable which takes a value of 1 if trait Yij is observed or latent and 0 if it is missing.

Lastly, we define the possibly degenerate multivariate normal density function

log ϕ̂(z;µ,P) =
1

2
log d̂et(P)− rank(P)

2
log 2π − 1

2
(z− µ)t P (z− µ),

for some argument z, mean µ and precision P of appropriate dimensions.

3.2.1.2 Post-order observed data likelihood algorithm

Our goal is to efficiently compute the likelihood p(Yobs |Σ,F ,µ0, κ0). Following from Pybus

et al. (2012), we perform a post-order traversal where we calculate the observed-data partial

likelihood p(Yobs
⌊k⌋ |xk,Σ,F ) at each node νk where Yobs

⌊k⌋ is the observed data restricted to

all descendants of node k on the tree. For example, in Figure 3.1, Yobs
⌊4⌋ = {yobs

1 ,yobs
2 }.

We posit that, given an appropriate stochastic link function p (yi |xi ), we can express the

observed-data partial likelihood as

p(Yobs
⌊k⌋ |xk,Σ,F ) = rkϕ̂(xk;mk,Pk) , (3.6)

for all nodes k = 1, . . . , 2N − 1 and some remainder rk, mean mk, and precision Pk. Given

a parent node ℓ with children j and k, let us assume we can express the observed-data

likelihood of Yobs
⌊j⌋ and Yobs

⌊k⌋ as in Equation 3.6. Conditioning on xℓ, we can compute

p(Yobs
⌊ℓ⌋ |xℓ,Σ,F ) = p(Yobs

⌊j⌋ |xℓ,Σ,F )p(Yobs
⌊k⌋ |xℓ,Σ,F ) (3.7)

as Yobs
⌊j⌋ and Yobs

⌊k⌋ are conditionally independent given xℓ. Using Equations 3.1 and 3.6, we

form

p(Yobs
⌊j⌋ |xℓ,Σ,F ) =

∫
p(Yobs

⌊j⌋ |xj,Σ,F )p(xj |xℓ,Σ,F )dxj = rjϕ̂
(
xℓ;mj,P

⋆
j

)
, (3.8)

43



where the branch-deflated pseudo-precision P⋆
j =

(
P−

j + tjδjΣδj

)−
. See Section 3.9.1 for

details on computing this pseudo-inverse. We use the results of Equation 3.8 in Equation

3.7 to compute the partial log-likelihood

log p(Yobs
⌊ℓ⌋ |xℓ,Σ,F ) = log rj + log rk + log ϕ̂

(
xℓ;mj,P

⋆
j

)
+ log ϕ̂(xℓ;mk,P

⋆
k)

= log rℓ + log ϕ̂(xℓ;mℓ,Pℓ) ,
(3.9)

where Pℓ = P⋆
j +P⋆

k, mℓ is a solution to Pℓmℓ = P⋆
jmj +P⋆

kmk, and

log rℓ = log rj + log rk +
1

2
log d̂et

(
P⋆

j

)
+

1

2
log d̂et(P⋆

k)−
∆jkℓ

2
log 2π

−1

2
log d̂et(Pℓ)−

1

2

(
mt

jP
⋆
jmj +mt

kP
⋆
kmk −mt

ℓPℓmℓ

)
.

(3.10)

Note that the change of informative dimensions ∆jkℓ = rank
(
P⋆

j

)
+ rank(P⋆

k) − rank(Pℓ).

We update δℓ = δj ∨ δk, where ∨ is the element-wise “logical or” operation.

Our algorithm initializes ri, mi, and Pi such that p(yobs
i |xi) = riϕ̂(xi;mi,Pi) at the tips

of the tree. For the standard assumption that yi = xi, we have ri = 1, mi = Ci

[
yobs
i ,0

]
, and

Pi = Ci diag [∞I, 0I]Ct
i. We perform a post-order traversal of the tree computing mℓ,Pℓ,

and rℓ for internal nodes ℓ = N+1, . . . , 2N−2 using the already-computed node remainders,

means, and precisions for their respective child nodes. At the root, Yobs
⌊2N−1⌋ = Yobs and we

return the observed-data log-likelihood

p(Yobs |Σ,F ,µ0, κ0) =

∫
p(Yobs |x2N−1,Σ,F )p(x2N−1 |Σ,µ0, κ0)dx2N−1

=

∫
r2N−1ϕ̂(x2N−1;m2N−1,P2N−1) ϕ̂

(
x2N−1;µ0, κ0Σ

−) dx2N−1

= rfull

∫
ϕ̂(x2N−1;mfull,Pfull) dx2N−1,

(3.11)

where Pfull = P2N−1 + κ0Σ
−1 and mfull = P−1

full

(
P2N−1m2N−1 + κ0Σ

−1µ0

)
. The integral
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evaluates to one, leaving the observed-data log-likelihood

log p(Yobs |Σ,F ,µ0, κ0) = log rfull

= log r2N−1 −
rank(P2N−1)

2
log 2π

+
1

2
log d̂et(P2N−1) +

1

2
log d̂et

(
κ0Σ

−1
)
− 1

2
log d̂et(Pfull)

− 1

2

(
mt

2N−1P2N−1m2N−1 + κ0µ
t
0Σ

−1µ0 −mt
fullPfullmfull

)
.

(3.12)

This tree traversal visits each node in F exactly once and inverts a P ×P matrix each time,

resulting in an overall computational complexity of O(NP 3) for each likelihood evaluation.

3.2.2 Inference

The primary parameter of scientific interest is the diffusion variance Σ. We are also often

interested in additional hyper-parameters θ related to the stochastic link function p (yi |xi ).

In cases where the tree structure is unknown, we use sequence data S to simultaneously infer

F . As such, from a Bayesian perspective, we are interested in approximating

p(Σ,F ,θ |Yobs,S) ∝ p(Yobs |Σ,F ,θ ) p(F ,S)p(Σ)p(θ), (3.13)

for inference. We place a WishartP (Λ0, ν) prior on Σ−1, where Λ0 is a P × P rate matrix.

The prior on θ depends the problem of interest, and there are many ways to specify p(F ,S)

(see Suchard et al., 2018). To approximate the posterior distributions via MCMC simulation,

we apply a random scan Metropolis-within-Gibbs (Liu et al., 1995) approach by which we

sample parameter blocks one at a time at random from their full conditional distribution.

Let X = (x1, · · · ,xN)
t be the latent trait values at the tips of the phylogeny. The
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conjugate WishartP (Λ0, ν) prior on Σ−1 implies that

Σ−1 | X,F ,µ0, κ0, ν,Λ0 ∼

WishartP

[
Λ0 +

(
X− 1Nµ

t
0

)t(
Υ+

1

κ0
JN

)−1 (
X− 1Nµ

t
0

)
, ν +N

]
. (3.14)

We apply the post-order computation method proposed by Ho and Ané (2014) to com-

pute (X− 1Nµ
t
0)

t
(
Υ+ 1

κ0
J
)−1

(X− 1Nµ
t
0), which has computational complexity O(NP 2).

When X are known (i.e. when there are no missing values and p (yi |xi ) is degenerate at xi),

we can sample from the distribution in Equation 3.14 immediately without any additional

steps. However, if either assumption is violated, we must first draw from the full conditional

distribution of X via the data augmentation algorithm described below. This algorithm is

similar to the ‘E’ step of the EM algorithm developed by Bastide et al. (2018) to compute the

moments of each xi. In our case, we sample from the joint posterior of all xi simultaneously

rather than computing the conditional moments of each xi individually.

3.2.2.1 Pre-order missing data augmentation algorithm

To sample jointly from the full conditional of X = (x1, . . . ,xN)
t, we draw on the calcula-

tions made in Section 3.2.1.2 and perform a pre-order traversal of the tree. Note that we

omit explicit dependence on the parameters Σ,F , and θ in all calculations below for clar-

ity. Starting at the root, x2N−1, we draw from x2N−1 |Yobs,µ0, κ0 . Using Bayes’ rule and

Equation 3.11, we see that

p(x2N−1 |Yobs,µ0, κ0) ∝ p(Yobs |x2N−1)p(x2N−1 |µ0, κ0)

∝ ϕ̂(x2N−1;mfull,Pfull) , which implies that

x2N−1 |Yobs,µ0, κ0 ∼ MVN(mfull,Pfull) .

(3.15)
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After sampling the root traits from their full conditional, we continue the traversal of the

tree where we sample each node xj conditional on its (previously sampled) parent node xpa(j)

and the observed data below node j Yobs
⌊j⌋ for j = 1, . . . , 2N − 2. For the internal nodes, we

compute p(xj |Yobs
⌊j⌋ ,xpa(j)) as follows:

p(xj |Yobs
⌊j⌋ ,xpa(j)) ∝ p(Yobs

⌊j⌋ |xj)p(xj |xpa(j))

∝ ϕ̂(xj;mj,Pj) ϕ̂
(
xj;xpa(j), (tjΣ)−1)

∝ ϕ̂(xj;nj,Qj)

(3.16)

whereQj = Pj+(tjΣ)−1 and nj = Q−1
j

(
Pjmj + (tjΣ)−1 xpa(j)

)
. This implies xj

∣∣∣Yobs
⌊j⌋ ,xpa(j) ∼

MVN(nj,Qj), and we sample xj from this distribution.

At the tips, we employ one of two techniques depending on the specific model. Under

our standard assumption (i.e. xi = yi with probability 1), we partition the precision Σ−1

and trait values xi and xpa(i) such that

Σ−1 = Ci

Sobs
i Som

i

Smo
i Smis

i

Ct
i, xi = Ci

xobs
i

xmis
i

 , and xpa(i) = Ci

xobs
pa(i)

xmis
pa(i)

 (3.17)

and draw from xmis
i

∣∣yobs
i ,xpa(i) ∼ MVN

(
xmis
pa(i) + Smis

i
−1Smo

i

(
xobs
pa(i) − xobs

i

)
, 1
ti
Smis
i

)
for i =

1, . . . , N . For cases where p (yi |xi ) is non-degenerate, we simply use Equation 3.16 to

sample from xi

∣∣yobs
i ,xpa(i) . Once we have sampled X |Yobs,Σ,F ,θ , we can draw from the

full conditional distribution of Σ−1 via Equation 3.14. This pre-order data augmentation

procedure requires a single P × P matrix inversion at each of the 2N − 1 nodes in the tree,

resulting in overall computational complexity O(NP 3).
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3.3 Model extension: residual variance

We extend the MBD model of phenotypic evolution to include multivariate normal residual

variance at each of the tips. Under this model, we assume

p(yi |xi ) = ϕ̂(yi;xi,Γ) for i = 1, . . . , N, (3.18)

where Γ is a P × P precision matrix. Under this model, the vectorization of Y is MVN-

distributed with NP ×NP variance-covariance matrix Σ⊗
(
Υ+ κ−1

0 JN

)
+Γ−1⊗ IN where

IN is the N × N identity matrix. Unlike the case where yi = xi, Y cannot be expressed

as matrix-normal even in the data-complete case because the variance cannot be expressed

as the Kronecker product of two matrices. As such, our post-order likelihood computation

algorithm is useful for this extended model, even when there are no missing data points.

3.3.1 Inference of residual variance

Similar to our inference of Σ in the diffusion process, we place a conjugate WishartP (Λs, νs)

prior on Γ using the rate parameterization. This yields the full conditional distribution

Γ |Y,X ∼WishartP
(
Λs + (Y −X)t (Y −X) , νs +N

)
. (3.19)

Because X is latent in this model, each time we update Γ we first draw from the full

conditional posterior of X using the algorithm described in Section 3.2.2.1. For cases where

Y is not completely observed, we must perform an additional data augmentation step where

we draw from Ymis |Yobs,X,Γ . To do this, we decompose the sampling precision matrix into

blocks such that

Γ = Ci

Γobs

i Γmo

i
t

Γmo

i Γmis

i

Ct
i for i = 1, . . . , N. (3.20)
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From Equation 3.18, we see that

p
(
ymis
i

∣∣yobs
i ,xi,Γ

)
= ϕ̂

(
ymis
i ;xmis

i + Γmis

i
−1Γmo

i

(
xobs
i − yobs

i

)
,Γmis

i

)
. (3.21)

As such, we can directly sample ymis
i from its full conditional above and update yi =

Ci

[
yobs
i ,ymis

i

]t
for i = 1, . . . , N . This process also has computational complexity O(NP 3).

Note that we can draw from the joint full conditional of Σ and Γ by performing a single

pre-order data augmentation where we draw from p(X,Ymis |Σ,Γ) and subsequently draw

from p(Σ,Γ |X,Y) = p(Σ |X)p(Γ |X,Y). These distributions are conditionally indepen-

dent due to the fact that X and X −Y are independent by construction. This procedure

effectively halves the computation time as we only need to perform a single post-order like-

lihood computation/pre-order data augmentation step to sample both Σ and Γ, rather than

each time we sample one.

3.3.2 Heritability statistic

The residual variance extension enables us to estimate phenotypic heritability over evolu-

tionary time. We use a definition analogous to the broad-sense heritability in statistical

genetics (see Visscher et al., 2008). Namely, we seek to quantify the proportion of variance

in a trait attributable to the Brownian diffusion process on the phylogeny (as opposed to the

residual variance). Note that we are primarily interested in heritability in the HIV example

below, for which we use data from a recent paper by Blanquart et al. (2017). As such, we

use a multivariate generalization of the heritability statistic from that paper. Specifically, we

estimate phylogenetic heritability by taking the expectation of the empirical sample variance

under our extended model. We define the P × P empirical covariance matrix as

S2(Y) =
1

N

N∑
i=1

(yi − ȳ) (yi − ȳ)t =
1

N

(
Y − Ȳ

)t (
Y − Ȳ

)
, (3.22)
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where ȳ = 1
N

∑N
i=1 yi =

1
N
Yt1N and Ȳ = 1N ȳ

t = 1
N
JNY. The expectation of this quantity

reduces to the following expression (see Section 3.9.2 for details):

E
[
S2(Y)

]
=
N − 1

N
Γ−1 +

(
1

N
tr [Υ]− 1

N2
1t
NΥ1N

)
Σ. (3.23)

Because E[S2(Y)] is a linear combination of Σ and Γ−1, we propose the P×P heritability

matrix H = {hkl} with entries

hkl =
cσΣkl√(

cσΣkk + cγΓ
−1
kk

) (
cσΣll + cγΓ

−1
ll

) , (3.24)

where cσ = 1
N
tr [Υ] − 1

N21
t
NΥ1N and cγ = N−1

N
. Each diagonal entry hkk = h2k represents

the marginal phylogenetic heritability of that trait, and each off-diagonal entry represents

the pair-wise co-heritability (Falconer, 1960, chap. 19) between traits.

Note that naive computation of cσ = 1
N
tr [Υ]+ 1

N21
t
NΥ1N in Equation 3.23 would require

constructing the N×N matrix Υ and summing over all its elements, which has computation

complexity of at least O(N2). For cases where F is random and changes throughout the

MCMC simulation, this quantity must be re-computed each time we compute the statistic.

To avoid this issue, we implement an algorithm that avoids constructing Υ in its entirety

and simply calculates both tr [Υ] and 1t
NΥ1N in O(N) time. The algorithm performs a

post-order traversal of the tree where at each internal node νℓ we compute N⌊ℓ⌋ (the number

of tips below νℓ), s⌊ℓ⌋ (the sum of all elements in Υ⌊ℓ⌋), and d⌊ℓ⌋ (the sum of the diagonal

elements in Υ⌊ℓ⌋). We define Υ⌊ℓ⌋ as the tree variance-covariance matrix constructed from

the sub-tree F⌊ℓ⌋ that is simply the tree that contains only the nodes below νℓ with node νℓ
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as its root. For internal nodes νℓ with child nodes νj and νk, we accumulate

N⌊ℓ⌋ = N⌊j⌋ +N⌊k⌋ + 1,

s⌊ℓ⌋ = s⌊j⌋ + s⌊k⌋ + tjN
2
⌊j⌋ + tkN

2
⌊k⌋, and

d⌊ℓ⌋ = d⌊j⌋ + d⌊k⌋ + tjN⌊j⌋ + tkN⌊k⌋.

(3.25)

At the tips, we initialize with s⌊i⌋ = d⌊i⌋ = 0 and N⌊i⌋ = 1. At the root, s⌊2N−1⌋ = 1t
NΥ1N

and d⌊2N−1⌋ = tr [Υ]. This algorithm visits each node in F exactly once and has run time

O(N).

While the breadth of research in heritability is extensive across both statistical genetics

and phylogenetics (see in particular the recent paper by Mitov and Stadler, 2018), we choose

the same heritability statistic as used by Blanquart et al. (2017) for direct comparison with

their analysis. That being said, our methods could be readily adapted to approximate the

posterior distribution of several of the alternative heritability statistics presented in Mitov

and Stadler (2018). Additionally, our pre-order data augmentation procedure allows us to

generate samples directly from the posterior of the latent trip traits X, from which we can

directly compute the genetic covariance S2(X) rather than relying on expectations.

3.4 Research materials

We have implemented these methods in the development version of BEAST (Suchard et al.,

2018). The data files, scripts, and instructions necessary for running the following analyses

are available at https://github.com/suchard-group/incomplete_measurements.

3.5 Computational efficiency

Our method dramatically increases computational efficiency over the current best-practice

method. This latter procedure, developed by Cybis et al. (2015), treats the missing and
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latent values of X as unknown parameters and numerically integrates them out by placing a

Gibbs sampler on each tip xi that draws from its full conditional distribution p
(
xi

∣∣yi,X⌈i⌉
)

for i = 1, . . . , N where X⌈i⌉ = X\xi. Because the full conditional distribution of xi relies on

the other missing and latent values in X, we sample each tip individually. The advantage

of this is that the likelihood calculation, the Gibbs sampler of the diffusion variance Σ, and

the data augmentation procedure for each tip all have complexity O(NP 2) rather than our

O(NP 3). As such, this numerical integration procedure has overall complexity O(MNP 2)

where M is the number of tips with missing or latent values. For any extended model where

p (yi |xi ) is not degenerate at xi, all values of X are latent and M = N .

We formalize our comparison by computing the median and minimum effective sam-

ple size (ESS) per hour for all parameters of interest under both our analytical integration

method and the sampling method discussed above. Typically researchers run MCMC chains

until the ESS for all parameters reach some minimum value, so the minimum ESS per hour

is most reflective of actual computation time. We also compute the ESS per sample and

samples per hour to understand how our improved method influences both the autocorrela-

tion between MCMC samples and the amount of computational work required to generate a

single draw from the posterior. Higher ESS per sample indicates lower autocorrelation, while

higher samples per hour indicates less computational work per sample. We define the number

of samples as the number of states in which the MCMC simulation updates the parameters of

interest (as opposed to missing trait values). Note that for the numerical sampling strategy,

we tested a range of sampling ratios between the parameters of interest and the missing trait

values and chose the ratios with the best performance for each dataset/model combination.

Table 3.1 presents the results of our efficiency comparisons. We compare computation

time under both models (only Brownian diffusion or Brownian diffusion with residual vari-

ance) for both the mammalian and HIV data set. We omit the prokaryote data set from this

analysis as simultaneous inference of the tree made the “sampling” technique prohibitively

slow. For each of the four scenarios, we performed 10 MCMC runs and compute the average
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Table 3.1: Algorithmic improvement. We report MCMC sampling efficiency through effective
sample size (ESS) that shows both a decrease in autocorrelation (as shows by ESS / Sample)
and in the overall work required per sample (as shown by Samples / Hour).

Data
set

Model
Integration
method

ESS/hour ESS/sample Samples
/hourminimum median minimum median

M
am

m
al
s Diffusion

only

Analytic 1,200 3,600 0.043 0.13 27,000
Sampling 3.0 9.8 0.0043 0.014 700
Speed-up 400× 370× 10× 9.5× 39×

Diffusion
with residual

Analytic 140 320 0.0062 0.015 22,000
Sampling 0.38 3.0 2.5e-5 0.00019 16,000
Speed-up 350× 110× 250× 76× 1.4×

H
IV

Diffusion
only

Analytic 100,000 220,000 0.31 0.66 320,000
Sampling 1,500 8,500 0.01 0.057 150,000
Speed-up 65× 25× 30× 12× 2.2×

Diffusion
with residual

Analytic 1,600 2,500 0.0061 0.0096 260,000
Sampling 5.1 8.7 5.1e-5 8.7e-5 100,000
Speed-up 320× 290× 120× 110× 2.6×

ESS for each parameter, using the minimum and median of the averaged parameter ESSs

in the table. We also report the speedup (analytic divided by sampling) for all values of

interest in each analysis. Note that we only report up to two significant figures for clarity.

3.6 Simulation study

To understand the behavior of our inference techniques, we conduct a simulation study based

on the empirical examples we discuss in Section 3.7. While these simulation studies cannot

confirm that these models are appropriate for these real-world data sets, they do demonstrate

the theoretical properties of our inference on these specific data sets assuming the model is

appropriate. We use the mammals (N = 3649, P = 8), prokaryote (N = 705, P = 7), and

HIV (N = 1536, P = 3) data sets. For each empirical example, we select the posterior mean
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diffusion variance Σ and residual variance Γ−1 to simulate traits. We also sub-sample the

phylogenies from each example to vary the number of taxa. Note that for the prokaryotes

example, we simulate conditional on the maximum clade credibility tree inferred from our

analysis in Section 3.7.2. We keep the number of traits fixed within each empirical data

set. Additionally, we randomly remove 0%, 25%, 50%, and (if possible) 75% of the data

from each set of simulated values. We require that at least one observation from each taxon

remain observed, so it is not possible to remove 75% of the data from the HIV example

where P = 3.

For each unique combination of example, number of taxa, and percent of missing values,

we simulate ten replicate data sets. Note that for each repetition we sub-sample a different set

of taxa from the original phylogeny. We approximate the posterior of the diffusion correlation

and residual correlation (i.e. the correlation derived from Σ and Γ−1 respectively) as well as

the diagonals of the heritability matrix H. These are the statistics that are of most scientific

interest in our empirical analyses, and these model parameters remain invariant if the data

are re-scaled while covariances do not. Across repetitions, we estimate the posterior bias

and log mean squared error (logMSE) from the “true” values used for simulation. Figure 3.2

presents the posterior logMSE of all three parameters of interest for all example analyses.

As expected the logMSE decreases with increasing taxa and decreasing missing values for

all parameters of interest. Also, note that the HIV logMSE in the diffusion correlation is

relatively higher when compared to the mammals and prokaryote examples for equivalent

numbers of taxa and amounts of missing data. This is likely due to the fact that we infer

relatively low heritability for the HIV traits (see Section 3.7.3) and use these values for

simulation. Low heritability indicates less phylogenetic signal, that suggests more data

would be needed to understand the evolutionary relationships between the different traits.

For the same reason, we see the opposite pattern with the residual correlation, with lower

error observed for the HIV example. See Section 3.9.4 for further simulation study results.
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Figure 3.2: Posterior log mean squared-error of the diffusion correlation, residual correlation,
and heritability over ten simulated replicates based on three empirical examples. The boxes

extend from the 25
th

to the 75
th

posterior percentiles with the middle bar representing

the median. The lines extend from the 2.5
th

through the 97.5
th

percentiles, with outliers
depicted as dots. The sparsity depicted by different colors represents different percentages
of randomly removed data.
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3.7 Applications

3.7.1 Mammalian life history

A major task for life history theory is to understand the ecological and evolutionary signif-

icance of correlation between life history traits such as age at sexual maturity, the number

of offspring per reproductive event, and reproductive lifespan (Roff, 2002). Establishing

patterns of such correlation grants insight into whether life history variation between indi-

viduals, populations or species is consistent with pace-of-life theory (Reynolds, 2003; Réale

et al., 2010). This theory predicts that ‘fast’ traits such as early maturity, large broods, small

offspring, frequent reproduction and a short lifespan are positively associated with each other

as a consequence of organisms pursuing strategies that prioritize either current or future re-

production. Existing approaches using comparative life history data to investigate fast-slow

trait covariation patterns (e.g. mammals: Bielby et al., 2007; hymenoptera: Blackburn,

1991; lizards: Clobert et al., 1998; birds: Sæther and Bakke, 2000; plants: Salguro-Gómez,

2017; fish: Wiedmann et al., 2014) generally support the fast-slow hypothesis; however, re-

sults are rarely consistent across taxa. This may reflect important taxonomic differences

in life history evolution, but there is concern that differences are an artifact of different

methodologies (Jeschke and Kokko, 2009).

One key limitation is that previous methods have required complete data for each species.

As complete measurements across a rich suite of varied life history traits are not yet available

for most species, this means that researchers must choose to either reduce the number of

traits or reduce the number of species included in analyses. By integrating out missing traits,

we resolve this issue and analyze the life history dataset used in Capellini et al. (2015),

which is based largely on the final PanTHERIA dataset (Jones et al., 2009), supplemented

with measurements from Ernest (2003) and additional sources. Our analysis includes all

the variables analyzed by Bielby et al. (2007) (gestation length, weaning age, neonatal body

mass, litter size, litter frequency, and age at first birth) plus reproductive lifespan (maximum
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lifespan minus age at first birth). We include female body mass as a trait rather than

analyze size-corrected residuals and log-transform and standardize all traits prior to analysis.

The analysis assumes the phylogeny of Fritz et al. (2009) that remains the most complete

phylogeny for mammals. In total, 3649 species in the phylogeny have measurement of at

least one trait and are included. Table 3.2 reports the number of species with measurements

for each trait. Only 136 species have complete data on all 8 traits; thus the ability to include

species with partially missing traits enables inclusion of 932% more measurements.

Table 3.2: Missing data summary for all three examples.

Data set Trait
Number
observed

Percent
missing

M
am

m
al
s

N
=

36
49

Body mass 3467 5.0%
Litter size 2477 32.1%
Gestation length 1359 62.8%
Weaning age 1161 68.2%
Litter frequency 888 75.7%
Neonatal body mass 1083 70.3%
Age at first birth 444 87.8%
Reproductive lifespan 348 90.5%

Total 11227 61.5%

P
ro
ka
ry
ot
es

N
=

70
5

Cell diameter 690 2.1%
Cell length 657 6.8%
Genome length 563 20.1%
GC content 563 20.1%
Coding sequence length 558 20.9%
Optimal temperature 548 22.3%
Optimal pH 487 30.9%

Total 4066 17.6%

H
IV

N
=

15
36

GSVL 1536 0.0%
SPVL 1536 0.0%
CD4 slope 1102 28.3%

Total 4174 9.4%

To estimate the correlation between these traits throughout mammalian evolution, we
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jointly model them with an MBD process on the tree with residual variance. In this analysis,

we are primarily interested in the correlation between traits during the MBD process on the

tree and estimate trait correlations from the marginal posterior of Σ. Figure 3.3 summarizes

these findings. Our results are clearly consistent with the fast-slow trait covariation patterns
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Figure 3.3: Correlation among mammalian life-history traits. The circles below the diagonal
summarize the posterior mean correlation between each pair of traits. Purple represents a
positive correlation while orange represents a negative correlation. Circle size and color in-
tensity both represent the absolute value of the correlation. The numbers above the diagonal
report the posterior probability that the correlation is of the same sign as its mean.

that pace-of-life theory predicts. The ‘slow’ life history traits (longer gestation, later weaning,

larger neonatal body mass, later age at first birth, and longer reproductive lifespan) are

all positively correlated with each other and negatively correlated with the two ‘fast’ life

history traits (greater litter size and more frequent litters). All correlations are significant

(determined by < 5% posterior tail probability) with the notable exception of that between

litter size and litter frequency. This apparent lack of correlation may be due to the opposing

effects of their joint positive correlation with body mass combined with a trade-off between
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these two traits that life history theory predicts (Stearns, 1989). Nevertheless, our results

demonstrate that larger animals tend to have slower life history traits, confirming known

patterns and reflecting the central role of body size in life history evolution.

We compare the computational efficiency of our method against that of the sampling

method using the MBD model both with and without residual variance. Table 3.1 shows an

increase in overall computational efficiency of two orders-of-magnitude as indicated by the

change in ESS per hour. Additionally, we see that our method succeeds at reducing both the

amount of computational work per MCMC sample (as indicated by the increase in samples

per hour) and autocorrelation (as indicated by the increase in ESS per sample).

3.7.2 Prokaryote evolution

Comparative genomics has greatly assisted in the formulation of prokaryote evolutionary

theories. Several such theories have been inspired by and tested through measuring correla-

tion among different phenotypic and genomic traits. For example, the thermal adaptation

hypothesis posits that higher GC content is involved in adaptation to high temperatures

because it may offer thermostability to genetic material (Bernardi and Bernardi, 1986). The

genome streamlining hypothesis attempts to explain the compactness of prokaryotic genomes

through natural selection favoring small genomes (Doolittle and Sapienza, 1980; Orgel and

Crick, 1980; Giovannoni et al., 2014). Sabath et al. (2013) argue that lower cell volume is

an adaptive response to high temperature. The field is well-aware of the need to account

for phylogenetic relationships when measuring correlation, but statistical analyses generally

rely on fixed, poorly resolved trees and simple models of trait evolution.

Here, we estimate correlation among a set of genotypic and phenotypic traits while si-

multaneously accounting for phylogenetic uncertainty and accommodating complexity in the

trait evolutionary process. We construct our data set from a study by Goberna and Verdú

(2016), who collated cell diameter, cell length, optimum temperature and pH measurements

for a large set of prokaryotes. Prior experience in resolving large, unknown trees suggests
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that we limit our analysis to less than ∼750 taxa. As such, we include all taxa with three

or more measurements and a selection of the taxa with only two measurements in our anal-

ysis. For our selection of 705 taxa, we obtain data on genome length, the number of coding

sequences, and GC content from the prokaryotes table in NCBI Genome. Table 3.2 presents

the number of measurements for each trait. We log-transform and standardize all traits

(except for GC content which we logit-transform and standardize). To infer the phylogeny,

we obtain matching 16S sequences via the ARB software package (Ludwig et al., 2004) that

we then align using the SINA Alignment Service (Pruesse et al., 2012) and manually edit.

Through MCMC simulation, we simultaneously infer the sequence and trait evolutionary

process. We model the sequence evolutionary process using a general time-reversible model

(Tavaré, 1986) with gamma-distributed rate variation among sites (Yang, 1994). We use an

uncorrelated lognormal relaxed clock to model rate variation among branches (Drummond

et al., 2006) and specify a Yule birth prior process on the unknown tree (Gernhard, 2008).

For the trait evolutionary process, we assume an MBD model with residual variance.

Figure 3.4 displays our estimated maximum clade credibility phylogeny with associated

trait measurements, and Figure 3.5 presents the phylogenetic correlation between those

traits. One notable result is the positive correlation between optimal temperature and GC

content (0.22 posterior mean, [0.08, 0.37] 95% highest posterior density interval) that the

thermal adaptation hypothesis predicts (Bernardi and Bernardi, 1986). Researchers have

discussed this hypothesis for years with mixed support (Hurst and Merchant, 2001; Musto

et al., 2004; Wang et al., 2006; Wu et al., 2012; Sabath et al., 2013; Aptekmann and Nadra,

2018). Our analysis, however, includes 435 taxa with measurements for both GC content and

optimal growth temperature, making it the largest study we are aware of that accounts for

phylogenetic relationships. Interestingly, while cell diameter and cell length are not signifi-

cantly correlated, they are both positively correlated with genome length. Smaller cells have

been associated with smaller genomes in both prokaryotes and unicellular eukaryotes (Shuter

et al., 1983; Lynch, 2007), but the reasons for this are not fully understood (Dill et al., 2011).
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Figure 3.4: Prokaryote phylogeny and traits. The phylogeny depicts the inferred maximum
clade credibility tree. The archaea clade (N = 54) and the associated trait measurements
are depicted in grey.

We also estimate a relatively strong negative correlation between genome length and optimal

temperature (−0.52 [−0.67,−0.37]), supporting the genomic streamlining hypothesis during

thermal adaptation. Note that we do not compare computation times here, as simultaneous

inference of the phylogenetic tree makes the sampling method prohibitively slow.

61



0.
99

0.
99

0.
98

0.
87

0.
56

0.
72

0.
98

0.
57

0.
67

0.
91

0.
91

indicates > 0.99

optimal pH

cell length

cell diameter

GC percent

optimal temperature

CDS length

genome length

ge
no

m
e 

len
gt

h

CDS le
ng

th

op
tim

al 
te

m
pe

ra
tu

re

GC p
er

ce
nt

ce
ll d

iam
et

er

ce
ll l

en
gt

h

op
tim

al 
pH

0.0

0.5

1.0
Correlation

Figure 3.5: Correlation among prokaryotic growth properties. See Figure 3.3 caption.

3.7.3 HIV-1 virulence

Recent years have witnessed a strong interest in using phylogenetic comparative methods

to study the heritability of HIV-1 virulence. Initially, Alizon et al. (2010) employed Pagel’s

λ (Pagel, 1999) to measure the extent to which HIV-1 set-point viral load reflects viral

shared evolutionary history in the Swiss HIV Cohort Study (Swiss HIV Cohort Study et al.,

2009) patients. A relatively high heritability estimate of set-point viral load, a predictive

measure of clinical outcome, motivated others to examine to what extent the viral genotype

can control for this trait (e.g. Hodcroft et al., 2014; Vrancken et al., 2015). These efforts

have resulted in widely varying estimates, from 6% to 59%, prompting a discussion on the

methods used to estimate the heritability of virulence (see Mitov and Stadler, 2018; Bertels

et al., 2018). Here, we revisit the most comprehensive data set recently analyzed (Blanquart

et al., 2017) to determine the extent to which variability in HIV-1 virulence is attributable

to viral genetic variation. We focus on the dataset of subtype B viruses from Blanquart et al.
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(2017) that encompasses 1581 taxa with associated measures of set-point viral load and CD4

cell count decline. We rely on the maximum likelihood phylogeny inferred for this data

set, but convert it to a time-measured tree with dated tips using a heuristic procedure (To

et al., 2016). A prior examination of the correlation between sampling time and root-to-tip

divergence using TempEst (Rambaut et al., 2016) indicated the presence of outliers, most of

which can be attributed to a basal lineage in the phylogeny. As the subtyping of the taxa in

this basal lineage also was ambiguous (Blanquart, personal communication), we remove this

lineage (36 taxa) together with 9 other outlier taxa. We note that this resulted in a time to

the most recent common ancestor (TMRCA) estimate of about 1960 that is much more in

line with a recent subtype B TMRCA estimate (1967, 95% Bayesian credibility interval of

1963–1970; Worobey et al., 2016) than the estimate including the basal lineage (∼1930).

Two measures of set-point viral load are available for all remaining taxa: (i) one based on

a standardized choice of assay on a single sample taken between 6 and 24 months after infec-

tion and before the initiation of antiretroviral therapy (“gold standard viral load”, GSVL)

and (ii) a more classical measure of set-point viral load (SPVL) based on the mean of all

log viral loads measured between 6 and 24 months after infection. Figure 3.6 presents the

phylogeny and associated trait values. To estimate heritability of both set-point viral load

measures and CD4 slope, we model all three measurements as a multivariate trait in our

MBD model with residual variance and approximate the posterior distribution of the her-

itability statistic H via MCMC. Our estimated heritabilities are 0.21 [0.11, 0.3] for GSVL,

0.18 [0.1, 0.26] for SPVL, and 0.16 [0.07, 0.25] for CD4 cell decline. These estimates are

consistent with similar estimates reported by Blanquart et al. (2017).

We further asses model fit by assessing predictive performance of GSVL on SPVL. We

omit CD4 slope from our analysis as it is measured concurrently with SPVL. We randomly

remove 5% of the SPVL measurements from the data set and consider four different models.

We consider both a bivariate case where we assume a multivariate process and a univariate

case where we analyze SPVL alone. For both the bivariate and univariate cases, we use the
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Figure 3.6: HIV-1 phylogeny with associated CD4 slope, SPVL, and GSVL values for each
viral host.

MBD model both with and without the residual variance extension. For each removed SPVL

measurement, we compute the mean squared error (MSE) between the predicted and true

values. We repeat each analysis 50 times and report the cumulative results in Figure 3.7,

from which two results emerge. First, the MSE of prediction in the bivariate cases are lower

than those in the univariate cases. This is unsurprising given the strong correlation between

SPVL and GSVL. Second, addition of residual variance to the model results in modestly

better prediction of SPVL in both the bivariate and univariate cases. This emphasizes the

importance of including model extensions like residual variance in these analyses.

We again demonstrate improvements in computational efficiency (see Table 3.1). While

less dramatic than the mammals example, we still see an order-of-magnitude increase in
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plot depicts the posterior mean-squared-error of prediction under a different model. The
boxes represent the interquartile range, while the lines extend to include the 2.5th through
97.5th percentiles. Outliers are omitted.

effective sample size per hour in the MBD model without residual variance. This attenuation

is to be expected, as there are far fewer missing measurements in the HIV data set than the

mammal data set. Nevertheless, our method still outperforms the sampling method in the

simple MBD model even when only 9.4% of data points are missing. For the model with

residual variance, our method outperforms the sampling method by two orders-of-magnitude.

3.8 Discussion

Oftentimes comparative biologists are interested in phylogenetically adjusted methods for

assessing relationships between traits of organisms. However, frequently when the number

of taxa grows large the level of missing data increases, making inference challenging. Here,

we have developed a method for evaluating the likelihood of observed traits given a tree

while integrating out missing values analytically that dramatically outperforms current best-
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practice methods. In the mammalian data set, with N = 3649 and 61.5% missing data, we

achieve a minimum effective sample size per hour 400× greater than previous methods. This

increase in speed brings computation times down from more than a week to less than an

hour. Even in the more tractable HIV data set, with N = 1536 and 9.4% missing data,

we increase the minimum ESS per hour by a factor of 65. Both increases in speed are due

to an overall decrease in both autocorrelation between MCMC samples and the amount

of computational work required per sample. Importantly, this increase in computational

efficiency allows for previously intractable analyses on large trees. Specifically, we incorporate

residual variance into the model and (in the prokaryotes example) simultaneously infer Σ, Γ,

and an unknown phylogeny F . Further, the residual variance extension is only one of several

potential extensions. Other possible extensions could incorporate data sets with repeated

measurements at the tips of the tree and factor analyses (Tolkoff et al., 2018).

Additionally, our strategy could be used in a more diverse array of phylogenetic models

than the fixed-rate MBD process. Recently, Fisher et al. (2021) have used our method in a

scale-mixture of multivariate normals diffusion model where there is a different evolutionary

rate on each of the tree branches. This model assumes that the rate of evolution changes

over time and across taxa. Moreover, these methods also easily translate to multi-optima

Ornstein–Uhlenbeck (OU) diffusions, where there is some (potentially changing) optimum

trait value that traits tend to evolve toward. Following from Bastide et al. (2018), a modified

version of our method has already been implemented for the OU process in BEAST.

We also note that our pre-order missing data augmentation algorithm presented in Section

3.2.2.1 has far broader utility than computing the conjugate Wishart statistics. Notably, it

allows for joint sampling of all missing values in linear-time. As such, this data augmentation

procedure serves as a bridge between any data set with missing data and statistical methods

that require complete data. Such cases occur, for example, in computing the residual sum

of squares in phylogenetic mixed models (Lynch, 1991) as well as the gradient of the log

likelihood with respect to the model parameters.
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An important limitation of our and previous methods is that they assume an ignorable

missing data mechanism (i.e. that the data are missing at random and that the prior on

any model parameters is independent of the missing data mechanism). Note that this is

assumption is not as restrictive as it seems as we only require that the data are missing

and random and not necessarily missing completely at random (Little and Rubin, 1987).

While these conditions may hold in some comparative biology examples, possible violations

abound. Any solution to this problem would necessarily depend on the specific missing data

mechanism. One commonly used missing data mechanism is the thresholding model where

data above or below some limit are omitted from the analysis. This could occur, for example,

when there is some minimum detection limit below which a value cannot be measured. To

explicitly account for these omissions, we could modify our model to assume the observed

data at the tips are drawn from a truncated multivariate-normal distribution rather than a

full multivariate normal distribution. Under this model, the observed data likelihood would

remain the same up to a normalizing constant and indicator function. As the distribution of

the internal nodes would remain un-truncated and the Gaussian kernel on all nodes would

remain unchanged, our likelihood calculation algorithm would remain largely unchanged. For

the likelihood computation, the normalizing constants and indicator functions would simply

be propagated up the tree in the same way as the integration remainders ri. One challenge of

this approach would be to compute the normalizing constants for all taxa with missing data.

This may be particularly challenging as, depending on the specific missing data mechanism,

these constants may depend on the latent trait values immediately internal to the tip nodes.

An additional challenge to this approach would be to formalize the distribution of the missing

data so that we could appropriately apply our pre-order data augmentation algorithm. We

may simply be able to draw each missing value from their un-truncated full conditional

distribution, but more work would be necessary to determine whether this augmentation

regime is appropriate. We leave these challenges as future work.

Finally, and perhaps most importantly, we propose our method as a special case solution
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Figure 3.8: An acyclic graph with nodes {νo, νa, νb, νc} and edge weights {ϵa, ϵb, ϵc}. The
covariance matrix Λ = {Λij} is additive on an acyclic graph if each Λij is equal to the sum
of the shared non-negative edge-weights in the paths from νi and νj to some origin node.
For example, the matrix M1 is additive for nodes (νa, νb, νc)

t with νo at the origin, while the
matrix M2 is additive for nodes (νo, νb, νc)

t with νa at the origin.

to the long-standing statistical problem involving multivariate normal distributions with

missing data. Specifically, our method applies to any MVN distribution with a three-point

structured covariance matrix (see Ho and Ané, 2014). Intuitively, this condition arises in

covariance matrices generated from processes that are additive on an acyclic graph (see

Figure 3.8). This restriction, however, is not overly limiting and applies to a broad range of

normal models including multilevel hierarchical models and matrix-normal distributions such

as the one we use here. Additionally, our pre-order data augmentation procedure enables

O(N) imputation in these highly structured models. While Allen and Tibshirani (2010)

and Glanz and Carvalho (2018) have utilized the EM algorithm (Dempster et al., 1977) to

efficiently perform maximum likelihood imputation in similar problems, our method could

serve as an alternative for approaches that base inference on the observed-data likelihood.

3.9 Appendix

3.9.1 Matrix inversion computations

To evaluate the observed data likelihood, we must compute branch-deflated precisions P⋆
i =(

P−
i + tiδiΣδi

)−
for i = 1, . . . , 2N − 2. We demonstrate below that this matrix exists and

is well-defined under the definition of our pseudo-inverse. Using the permutation matrix Ci
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from Section 3.2.1.1, we decompose the diffusion variance Σ and node precision Pi such that

Σ = Ci


Σobs

i Σol

i Σom

i

− Σlat

i Σlm

i

− − Σmis

i

Ct
i and

Pi = Cidiag
[
∞I, P̃i, 0I

]
Ct

i,

for i = 1, . . . , 2N − 2. We use this decomposition to identify that:

P⋆
i =

(
P−

i + tiδiΣδi

)−
= Ci

(diag [∞I, P̃i, 0I
])−

+ diag

ti
 Σobs

i Σol

i

− Σlat

i

 , 0I

−

Ct
i

= Ci

diag
[
0I, P̃i

−1
,∞I

]
+ diag

ti
 Σobs

i Σol

i

− Σlat

i

 , 0I

−

Ct
i

= Ci (diag [T,∞I])− Ct
i

= Ci diag
[
T−1, 0I

]
Ct

i,

(3.26)

where

T = diag
[
0I, P̃i

−1
]
+ ti

 Σobs

i Σol

i

− Σlat

i

 =

 tiΣ
obs

i tiΣ
ol

i

− P̃i
−1

+ tiΣ
lat

i

 . (3.27)

The matrix T is the sum of a positive-definite matrix and positive-semidefinite matrix and

is therefore invertible.
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3.9.2 Heritability statistic

We compute the expectation of the empirical variance E[S2(Y)] under the MBD model with

residual variance as follows:

E
[
S2(Y)

]
= E

[
1

N

(
Y − Ȳ

)t (
Y − Ȳ

)]
=

1

N
E
[
YtY − 2

N
YtJNY +

1

N2
YtJNJNY

]
=

1

N
E
[
YtY − 2

N
YtJNY +

1

N
YtJNY

]
=

1

N
E
[
YtY − 1

N
YtJNY

]
=

1

N

N∑
i=1

E
[
yiy

t
i

]
− 1

N2

N∑
i=1

N∑
j=1

E
[
yiy

t
j

]
.

(3.28)

The multivariate normal distribution of vec [Y] implies Cov (Yik, Yjl) = ΣklΥij + Γ−1
kl 1{i}j

where 1{i}j is an indicator function. Using this information in Equation 3.28,

E
[
S2(Y)

]
=

1

N

N∑
i=1

(
ΥiiΣ+ Γ−1 + E[yi]E[yi]

t)
− 1

N2

N∑
i=1

N∑
j=1

(
ΥijΣ+ Γ−11{i}j + E[yi]E

[
yj

]t)
=

1

N
tr [Υ]Σ+ Γ−1 −

(
1

N2
1t
NΥ1N

)
Σ− 1

N
Γ−1

+
1

N

N∑
i=1

E[yi]E[yi]
t − 1

N2

N∑
i=1

N∑
j=1

E[yi]E
[
yj

]t
.

(3.29)

Note that E[yi] = y2N−1 for i = 1 . . . N , which implies

1

N

N∑
i=1

E[yi]E[yi]
t − 1

N2

N∑
i=1

N∑
j=1

E[yi]E
[
yj

]t
= 0. (3.30)
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Table 3.3: Likelihood calculation speed comparison between BEAST and PCMBaseCpp.
Each data set was run 10 times for 1,000 likelihood evaluations each. We report the median
likelihood evaluations per second and speed-up over the 10 runs.

Data set N P
Likelihood evaluations/sec

Speed-up
BEAST PCMBaseCpp

Prokaryotes 705 7 240 40 6.0×
HIV 1536 3 490 67 7.2×
Mammals 3649 8 60 12 5.1×

As such, our expression for the expected empirical variance reduces to the following:

E
[
S2(Y)

]
=
N − 1

N
Γ−1 +

(
1

N
tr [Υ]− 1

N2
1t
NΥ1N

)
Σ. (3.31)

3.9.3 Comparison with PCMBaseCpp

As our algorithm for efficiently computing the likelihood with incomplete trait measurements

relies on a similar strategy as that presented by Mitov et al. (2020), we compare the likelihood

computation speed of our BEAST (Suchard et al., 2018) implementation against and the

PCMBaseCpp implementation. We record the time it takes to evaluate the likelihood 1,000

times using the data and trees from all three examples we discuss in the text, and repeat

this ten times for each example. We report the median likelihoods per second in Table 3.3.

We also perform the same comparisons with simulated trees and data sets, and report these

results in Table 3.4.

Note that while we do show consistently faster likelihood evaluations than PCMBase,

we do not believe that our implementation is necessarily “better” than that of Mitov et al.

(2020). The primary difficulty in comparing the speed of the two software packages is that

we implement our software in different languages (BEAST in Java and PCMBase in R and

C++), and the specific Java and C++ compilers used could influence their speed. It is
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Table 3.4: Likelihood calculation speed comparison between BEAST and PCMBaseCpp on
simulated data. For each N, P combination, data was simulated 10 times under random
conditions and run for 1,000 likelihood evaluations each. We report the median likelihood
evaluations per second and speed-up over the 10 runs.

N P
Likelihood evaluations/sec

Speed-up
BEAST PCMBaseCpp

100 2 3300 1300 2.6×
100 10 690 180 3.8×
100 20 220 26 8.3×

1,000 2 780 170 4.5×
1,000 10 100 13 7.9×
1,000 20 25 2.8 8.8×

10,000 2 82 16 5.1×
10,000 10 11 1.7 6.4×
10,000 20 2.5 0.29 8.7×

difficult to determine the exact sources of the differences in speed without testing both

implementations on a wide range of computer architectures and compilers.

Nevertheless, the PCMBase / PCMFit packages and BEAST are fundamentally different

in that PCMFit relies on maximum likelihood estimation (MLE) while BEAST performs

Bayesian inference. The MLE framework is certainly appropriate when the phylogenetic

tree is known with a high degree of certainty, but poses problems when the phylogenetic tree

is unknown and must be jointly inferred with the trait evolutionary process. Specifically,

MLE will likely produce biased results and has difficulty constructing confidence intervals

that take into account the uncertainty of the tree. From the Bayesian perspective, however,

we can simply integrate out the tree via Markov Chain Monte Carlo, that results in posterior

estimates of the trait evolution parameters that accurately reflect the uncertainty of the tree.
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3.9.4 Simulation study

The setup of our simulation study is described in Section 3.6. Figures 3.9, 3.10, and 3.11

present the results of our simulation study. In general, results indicate that our inference

machinery is sufficiently well-powered to accurately and precisely recapture the parameters

used to simulate the data. All parameters of interest achieve low posterior mean squared

error (MSE) when all available taxa are included. Additionally, there is no apparent bias

in our parameter estimation with the notable exception of the diagonal heritabilities. Note

that despite the fact that there is some bias in the heritability estimates, they also achieve

low logMSE and are indeed close to their “true” values. We believed the induced prior

on the diagonal heritabilities may be responsible for this bias, but have not fully explored

this phenomenon. Regardless, these results suggest that (conditioning on the model being

appropriate) our results accurately reflect biological reality.
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Figure 3.9: Mammals simulation study. Posterior log mean squared-error and bias of the

parameters of interest over ten simulated replicates. The boxes extend from the 25
th

to the

75
th

posterior percentiles with the middle bar representing the median. The lines extend

from the 2.5
th

through the 97.5
th

percentiles, with outliers depicted as dots. The sparsity
depicted by different colors represents different percentages of randomly removed data.
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Figure 3.10: Prokaryote simulation study results. See Figure 3.9 for description.
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Figure 3.11: HIV-1 simulation study results. See Figure 3.9 for description.
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CHAPTER 4

Principled, practical, flexible, fast: a new approach to

phylogenetic factor analysis

4.1 Introduction

Biological phenotypes are the result of numerous evolutionary forces acting in complex and

often conflicting ways throughout an organism’s evolutionary history. Phylogenetic compar-

ative methods seek to untangle this web of selective pressures and elucidate the forces that

have shaped organisms over time. As implied by their name, these methods compare pheno-

types across numerous biological taxa connected by a phylogenetic tree that captures their

shared evolutionary history. Accounting for shared evolutionary history via the phylogeny

is necessary to avoid biased inference, as this shared history implies phenotypes are non-

independent across taxa. Statistical models that inappropriately ignore this dependence can

identify spurious associations between phenotypes (Felsenstein, 1985b). However, accounting

for these relationships between taxa poses challenges to statistical inference.

Starting with Felsenstein (1985b), there has been much work developing computationally

efficient phylogenetic comparative methods (see Rohlf, 2001; Revell and Harmon, 2008; Pybus

et al., 2012; Ho and Ané, 2014). While methods development has typically focused on scaling

inference to large trees, these methods struggle to accommodate data with a large number

of traits or high-dimensional phenotypes. Most approaches scale quadratically or cubically

with the number of traits, making inference intractable as the number of traits increases.

Additionally, methods that estimate the evolutionary correlation structure between traits
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are difficult to interpret for data sets with high-dimensional phenotypes, as the number of

pairwise correlations requiring interpretation scales quadratically with the number of traits.

4.1.1 Why phylogenetic factor analysis?

Phylogenetic factor analysis (PFA, Tolkoff et al., 2018) provides an all-in-one approach to

high-dimensional comparative analyses that simultaneously simplifies complex data via di-

mension reduction, similar to phylogenetic principal component analysis (pPCA, Revell,

2009), and statistically evaluates evolutionary correlations between groups of phenotypes,

as with phylogenetic independent contrasts (Felsenstein, 1985b). In Section 4.6.1, for exam-

ple, we use PFA to understand the relationship between 11 floral phenotypes and pollinator

species in columbines. We identify two axes along which floral phenotypes evolve: a first

differentiating hummingbird pollination from hawk moth pollination and a second capturing

phenotypes differentiating bumblebee pollination from the latter two pollination strategies.

Similarly, in Section 4.6.2, we explore evolutionary relationships between 82 phenotypes of in-

dustrial yeast: growth rates under 62 different stress conditions, production of 16 metabolites

and 4 metrics related to reproduction. In this example, we identify a group of phenotypes

characterizing the early domestication of beer yeast. Additionally, PFA allows for flexible

model specifications. For example, in Section 4.6.3 we study the evolution of life history

strategies in mammals. We structure the PFA model to isolate the influence of a particular

trait (body size) so that we can infer size-independent patterns of life history evolution.

Finally, as with pPCA, researchers can employ PFA as a descriptive technique useful for

identifying and visualizing low-dimensional structure in high-dimensional data (see Section

4.6.4 for an example of this with New World monkey brain shape). Unlike pPCA, however,

Bayesian PFA incorporates uncertainty into the loadings (the analogs of the pPCA weights)

and factors (the analogs of the pPCA scores).
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4.1.2 Statistical developments in high-dimensional trait analyses

As the primary motivation of PFA is analyzing high-dimensional trait data, we briefly dis-

cuss existing methods that deal with the computational and interpretive burden of high-

dimensional phenotypes. As mentioned above, pPCA (Revell, 2009) is one such solution

that constructs a low-dimensional, phylogenetically-informed summary of the relationships

between traits. More recently, several distance-based methods have been developed by

Adams (2014a,b,c) to study phylogenetic signal, high-dimensional phylogenetic regression

and evolutionary rates, respectively.While these methods are statistically efficient for high-

dimensional phenotypes, they rely on operations that scale cubically with the number of

taxa and may struggle computationally with very large trees or in cases where they must

be applied over many large trees. Additionally, existing implementations of pPCA and the

Adams (2014a,b,c) distance-based methods do not readily accommodate missing data, a

common scourge in many relevant data sets. PFA (Tolkoff et al., 2018) adapts the Bayesian

latent factor model of Aguilar and West (2000) to the phylogenetic context.Like pPCA, PFA

is a linear dimension reduction approach that assumes the P -dimensional data arise from

K latent factors that evolve independently along a phylogenetic tree. Unlike pPCA, PFA

readily accommodates missing data without data imputation or augmentation. Additionally,

PFA fits seamlessly into Bayesian phylogenetic inference and estimates the uncertainty of the

influence of a particular factor on a particular trait. However, the inference regime proposed

by Tolkoff et al. (2018) scales quadratically with the number of taxa and is intractable for

large trees.

Finally, Clavel et al. (2019) propose a penalized likelihood framework for studying high-

dimensional phenotypes. While this procedure involves an operation that scales quadratically

in number of taxa, the rate-limiting calculations scale linearly in the number of taxa but

cubically in the number of traits. Nevertheless, Clavel et al. (2019) demonstrate success

handling data sets with more than a thousand traits. While PFA reduces the size of the pa-

rameter space by assuming the between-trait covariance is low-rank, the penalized likelihood
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Table 4.1: Example of how the ordering of three hypothetical traits (A, B and C) influences
results in a simple two-factor model under the assumptions made by Tolkoff et al. (2018).

trait order 1: A, B, C trait order 2: B, A, C

first factor captures relationships of trait A
with traits B and C

captures relationships of trait B
with traits A and C

second factor captures relationships between
traits B and C independent of A

captures relationships between
traits A and C independent of B

approach of Clavel et al. (2019) achieves a similar goal by assuming a priori that relatively

few of the between-trait covariances are non-zero. The specific implementations also differ

in that Clavel et al. (2019) rely on maximum likelihood inference while our work here and

Tolkoff et al. (2018) approach PFA from a Bayesian perspective.

4.1.3 A new approach to PFA

We propose two new PFA inference regimes that each scale linearly with both the number of

traits P and the number of taxa N . While Tolkoff et al. (2018) rely on data augmentation,

our new methods rely on a novel likelihood-calculation algorithm that analytically integrates

out the latent factors. We also address two other shortcomings of PFA and latent factor

models generally. First, Tolkoff et al. (2018) constrain the factor loadings matrix to be upper

triangular, which induces an implicit ordering to the phenotypes. Specifically, the first trait is

influenced only by the first factor, the second trait is influenced only by the first two factors,

etc. until the Kth trait and beyond which are influenced by all K factors (see Table 4.1 for

an example). As justifying a specific ordering of the phenotypes a priori can be difficult,

we extend an alternative constraint proposed by Holbrook et al. (2016) that eliminates such

ordering. Second, a common challenge in exploratory factor analysis generally is determining

an appropriate number of factors. As such, we implement a cross-validation model selection

procedure that identifies the number of factors that confers the best predictive performance.

To facilitate use among researchers seeking to employ these methods, we develop an anal-
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ysis plan with practical guidance on the most significant modeling and inference decisions.

We codify this plan in the Julia package PhylogeneticFactorAnalysis.jl, which uses relatively

simple instructions to automatically perform model selection and run more complex analyses

in the Bayesian phylogenetic inference software BEAST (Suchard et al., 2018).

For clarity, we emphasize which methods below are completely new statistical innovations

and which are novel applications of previously developed statistical practices. The calcula-

tions in Sections 4.3.1.2 and 4.3.2.1 that allow inference of the loadings without conditioning

on the latent factors are novel, and we are unaware of any similar work in the statistics

literature. The fast likelihood calculations in Section 4.2.1.1 are based on earlier work by

Hassler et al. (2020, Section 3.2.1.2) but require non-trivial adjustment for application to this

context (see Section 4.8.1). Finally, the modeling decisions described in Section 4.2.2 and

inference techniques described in Sections 4.3.1.1, 4.3.1.3 and 4.3.2 are previously developed

statistical procedures that find novel application to phylogenetic comparative methods here.

4.1.4 Brief overview

PFA allows researchers to identify high-dimensional patterns of trait variation using a model

that reduces the computational and interpretive burden of high-dimensional analyses. We

begin by specifying the technical details of the PFA model in Section 4.2. Intuitively, PFA

assumes that the evolution of high-dimensional trait data can be approximated by the evo-

lution of some small number of latent (unobserved) factors, with each of these latent factors

influencing the observed traits in some estimable way. In Section 4.3 we present the tech-

nical details of several approaches to statistical inference under this model, and in Section

4.4 we compare the computational efficiency of these various approaches. As we recognize

that researchers seeking to use these methods face an array of technical modeling and infer-

ence decisions, we devote Section 4.5 to practical guidance on how to make these decisions.

Finally, in Section 4.6 we demonstrate the utility of PFA on 4 real-world examples.
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4.2 Phylogenetic latent factor model

We approach inference from a Bayesian perspective and propose two statistical models which

share a likelihood but have distinct priors. As we discuss below, each model has advantages

under different circumstances, and allowing researchers to choose a model (with our guidance)

offers maximum flexibility while keeping modeling decisions to a minimum.

4.2.1 Likelihood

Both statistical models share the same latent factor likelihood introduced by Tolkoff et al.

(2018). This likelihood assumes the N × P trait data Y = (y1, . . . ,yN)
t arise from N ×K

latent factors F = (f1, . . . , fN)
t via the linear transformation Y = FL + ϵ, where L is a

K × P loadings matrix that must be inferred and ϵ ∼ MN
(
0, IN ,Λ

−1
)
is matrix-normally

distributed with mean 0, between row variance IN and diagonal between column precision

Λ = diag[λ1, . . . , λP ]. The latent factors F arise from K independent Brownian diffusion

processes on the phylogenetic tree F .The tree F is rooted and bifurcating with degree-two

root node ν2N−1, degree-three internal nodes {νN+1, . . . , ν2N−2} and degree-one leaf nodes

{ν1, . . . , νN}. Under the Brownian diffusion model, all internal and tip factors are normally

distributed as fj ∼ N
(
fpa(j), tjIK

)
, where fpa(j) are the factors of the parent of node νj and

tj is the distance (time) between nodes νpa(j) and νj. Following from Pybus et al. (2012),

we assume the ancestral root traits f2N−1 ∼ N
(
µ0,

1
κ0
IK

)
, where κ0 is some (typically

small) predetermined prior sample size. This construction implies the tip factors are jointly

matrix-normally distributed as F ∼ MN
(
1Nµ

t
0,Ψ+ 1

κ0
JN , IK

)
, where 1N is an N -vector

of ones, JN = 1N1
t
N and Ψ is the standard variance-covariance (VCV) representation of

the phylogeny F . Specifically, the diagonal elements Ψii are the sum of the edge lengths

connecting νi to the root ν2N−1. The off-diagonal elements Ψij are the total amount of shared

evolutionary history or time from the most recent common ancestor of νi and νj to the root

node ν2N−1.
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Given this model, the vectorized data vec(Y) are multivariate normally distributed as

vec(Y) |L,Λ,F ∼ N
(
vec
(
1Nµ

t
0

)
,LtL⊗

[
Ψ+

1

κ0
JN

]
+Λ−1 ⊗ IN

)
, (4.1)

where ⊗ is the Kronecker product operator. Computing the likelihood in this form, however,

requires inverting the NP × NP dimensional variance matrix, which has computational

complexityO(N3P 3). Tolkoff et al. (2018) avoid this by treating the latent factors F as model

parameters that they integrate out via Markov chain Monte Carlo (MCMC) simulation.This

augmented likelihood p(Y,F |L,Λ,F ) = p(Y |L,Λ,F)p(F | F ) is far easier to compute,

but sampling from the full conditional distribution of F (i.e. the posterior distribution of F

conditional on the data and all other model parameters) as proposed by Tolkoff et al. (2018)

scales quadratically with the size of the phylogenetic tree and is intractable for big-N .

4.2.1.1 Fast likelihood calculation

To avoid costly data augmentation, we adapt the likelihood-computation algorithm inde-

pendently developed by Bastide et al. (2018), Mitov et al. (2020) and Hassler et al. (2020,

Section 3.2.1.2). This algorithm analytically integrates out latent traits (in our case factors)

and missing data to compute the likelihood p
(
Yobs

∣∣L,Λ,F ) of the observed data Yobs in

O(NPK2 +NK3) via a post-order traversal of the tree (i.e. computations start at the tips

and are carried up the tree to the root).This procedure naturally accommodates missing data

assuming an ignorable missing data mechanism (Rubin, 1976). We also utilize a more nu-

merically stable modification of this post-order algorithm proposed by Bastide et al. (2021).

We detail these calculations in Section 4.8.1.

4.2.1.2 Loadings identifiability

A major challenge in latent factor models generally is the non-identifiability of the loadings

matrix L (see Shapiro, 1985). In statistical models, non-identifiability occurs when there
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are multiple parameter values that result in the same probability density over the data. In

these cases, inference procedures cannot distinguish between the equally valid parameter

values.This lack of identifiability in PFA stems from the fact that the likelihood as defined in

Equation 4.1 depends only on LtL rather than L itself. As such, for any K×K orthonormal

matrix Q (i.e. QtQ = IK), p(Y |L, . . .) = p(Y |QL, . . .) because (QL)t (QL) = LtL. This

identifiability problem inspires our choice of priors below.

4.2.2 Priors

We assume the diagonal precisions λj ∼ Gamma(aΛ, bΛ) for j = 1, . . . , P (shape/rate pa-

rameterization). For the loadings L = {ℓkj}, we propose two different priors. Each prior

on L admits a different inference regime for sampling from L which in turn have their own

strengths and weaknesses that we discuss in Section 4.3.

4.2.2.1 Independent Gaussian priors on the loadings L

The standard assumption in Bayesian latent factor models is that each element of the load-

ings ℓkj
i.i.d.∼ N (0, σ2), where typically σ2 = 1. As this prior is also invariant with respect

to orthogonal rotations, additional constraints are required for posterior identifiability.One

solution is to assume certain elements of the loadings matrix L (typically those below the

diagonal) are fixed at zero (Geweke and Zhou, 1996; Aguilar and West, 2000). This approach

solves the identifiability problem, but it induces an implicit ordering to the data (see Table

4.1). While this ordering may be well-informed in some cases, there is typically no principled

way to choose such an ordering a priori.

An alternative to the sparsity constraint is to assume that the loadings matrix has rows

that 1) are orthogonal and 2) have decreasing norms (Holbrook et al., 2016). This constraint

does not require any a priori ordering of the traits. However, it does require sampling from

the space of orthogonal matrices, which is a notoriously challenging problem (see Hoff, 2009;
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Byrne and Girolami, 2013; Jauch et al., 2021; Pourzanjani et al., 2021). We address this

challenge via post-processing in Section 4.3.1.3.

4.2.2.2 Orthogonal shrinkage prior

While post-processing to orthogonality is often sufficient, we find in practice that the loadings

may be only loosely identifiable with this procedure in small-N problems. As such, we

seek an alternative prior that enforces the orthogonality constraint directly. Following from

Holbrook et al. (2017), we decompose the loadings L = ΣV where Σ = diag[σ] is a K ×K

diagonal matrix whose diagonals σ have descending absolute values and V is a K × P

orthonormal matrix (i.e. VVt = IK). We assume Vt is uniformly distributed over the Stiefel

manifold VK
(
RP
)
(i.e. the space of P ×K orthonormal matrices). For the scale component

Σ = diag[σ1, . . . , σK ] we assume a multiplicative gamma prior inspired by Bhattacharya and

Dunson (2011):

σk ∼ N
(
0, τ−1

k

)
for k = 1, . . . , K, where

τk =
k∏
1

νℓ and

νℓ ∼ Gamma(aℓ, bℓ) for ℓ = 1, . . . , K.

(4.2)

For ℓ > 1, we constrain the prior shape aℓ and rate bℓ such that aℓ > bℓ (i.e. E[νℓ] > 1).This

constraint implies that the τk are (stochastically) increasing with k, which results in scale

parameters σk with (stochastically) decreasing magnitudes.

This prior induces posterior identifiability, as it is not invariant under rotations of the

loadings. However, in some cases we find that this prior does not induce sufficient identi-

fiability in practice, particularly when K is relatively large (i.e. > 5). For these cases, we

multiply the joint prior on Σ by an indicator function 1{|σk| < α |σk−1| for k = 2, . . . , K}.

Setting α < 1 forces spacing between the diagonals of Σ, which results in more identifiable

posteriors.
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4.3 Inference

Our Bayesian inference regime seeks to approximate the posterior distribution of the param-

eters of scientific interest via MCMC simulation. We typically use molecular sequence data S

to simultaneously infer the factor model parameters and phylogenetic tree by approximating

p
(
L,Λ,F

∣∣Yobs,S
)
∝ p
(
Yobs

∣∣L,Λ,F )p(F ,S)p(L)p(Λ), (4.3)

][”]SeqModelwhere the model of sequence evolution p(F ,S) is developed elsewhere (see

Suchard et al., 2018). For cases where we lack sequence data or F is too large to infer

efficiently, we simply fix the tree F .

4.3.1 Loadings under the i.i.d. Gaussian prior

We propose two different samplers to draw from the full conditional distribution of the

loadings L under the i.i.d. Gaussian prior from Section 4.2.2.1. The first relies on the Gibbs

sampler used by Tolkoff et al. (2018), where we sample from L
∣∣Yobs,F,Λ . The second

avoids data augmentation and can sample directly from the full conditional distribution

L
∣∣Yobs,Λ,F without conditioning on the latent factors F.

4.3.1.1 Gibbs sampler with data augmentation

Tolkoff et al. (2018) use the conjugate Gibbs sampler of Lopes and West (2004) to sample

from L
∣∣Yobs,F,Λ . As this sampler conditions on the latent factors F, Tolkoff et al. (2018)

simultaneously infer the factors by sequentially drawing from fi
∣∣F/i,Y

obs,L,Λ,F for i =

1, . . . , N , where F/i represents all factors except fi. As sampling fi for all N taxa requires

O(N2K2) work, this procedure quickly becomes intractable with increasing taxa.

Rather than relying on this per-taxon sampling scheme, we employ the pre-order data

augmentation algorithm of Hassler et al. (2020, 3.2.2.1) that uses statistics from the post-
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order likelihood computation to draw jointly from F
∣∣Yobs,L,Λ,F in O(NK3) via a sin-

gle pre-order traversal of the tree (see Section 4.8.2.1 for details). After sampling from

F
∣∣Yobs,L,Λ,F , we can draw directly from L

∣∣Yobs,F,Λ using the procedure developed

by Lopes and West (2004) with computational complexity O(NPK2) (see Section 4.8.2.2 for

details).

4.3.1.2 Hamiltonian Monte Carlo sampler

We also propose an alternative Hamiltonian Monte Carlo (HMC; Neal, 2010) sampler for

the loadings that does not require data augmentation. Intuitively, HMC (a form of MCMC)

treats parameter values as the position of a particle in a landscape informed by the posterior

distribution. Parameter proposals are the end-point of a trajectory initiated by “kicking” the

particle and allowing it to traverse this landscape according to Hamiltonian dynamics for a

pre-determined amount of time. As the parameter trajectories are informed by the geometry

of the posterior, HMC tends to propose parameter updates that are both relatively far away

from the current position and have high acceptance probabilities.

While we cannot compute these continuous trajectories analytically, we can approxi-

mate them numerically.Each trajectory approximation, however, requires numerous gradi-

ent calculations, and we must efficiently compute the gradient ∇L logp
(
L
∣∣Yobs,Λ,F

)
=

∇L logp
(
Yobs

∣∣L,Λ,F ) + ∇L logp(L) to effectively employ HMC to update the loadings

L. As we assume each element of the loadings are a priori i.i.d. N(0, 1), the gradient of

the log-prior ∇L logp(L) can be computed simply as ∂
∂ℓkj

logp(L) = −ℓkj for j = 1, . . . , P ,

k = 1, . . . , K.

As computing ∇L logp
(
Yobs

∣∣L,Λ,F ) directly via Equation 4.1 scales O(N3P 3) and is

intractable for most problems, we use the highly structured nature of the phylogeny to

compute this gradient in O(NPK2 +NK3). We calculate the gradient of the likelihood

with respect to each column of the loadings ℓj individually to accommodate variation in the
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missing data structure across traits.

∇ℓj log p
(
Yobs

∣∣L,Λ,F ) = λjE
[
Ft
∣∣Yobs,L,Λ,F

]
δ′
jy

obs
j

′ − λjE
[
Ftδ′

jF
∣∣Yobs,L,Λ,F

]
ℓj,

(4.4)

where yobs
j

′
is the jth column of Yobs and δ′

j = diag[δ1j, . . . , δNj] is a diagonal matrix of

observed-data indicators (i.e. δij = 1 if yij is observed and 0 otherwise). Note that these

calculations rely only on the conditional mean and variance of the factors, not the factors

themselves. We compute the expectations using statistics from the post-order likelihood

calculation (see Section 4.8.1) in a pre-order tree traversal (Bastide et al., 2018; Fisher et al.,

2021) that takes O(NK3) additional time. See Section 4.8.3 for detailed calculations.

4.3.1.3 Orthogonality constraint and post-processing

While both the Gibbs and HMC samplers above can enforce the structured sparsity con-

straint, neither can enforce the orthogonality constraint directly. However, as both the

likelihood and i.i.d. prior are invariant with respect to orthonormal rotations of L, applying

such a rotation to all posterior samples via post-processing results in a valid posterior. We

can easily rotate the loadings to have orthogonal rows with descending norms via singular

value decomposition (see Section 4.8.4 for details).

4.3.2 Loadings under the orthogonal shrinkage prior

Both samplers above are incompatible with the orthogonal shrinkage prior from Section

4.2.2.2 as 1) they cannot enforce the orthogonality constraint directly and 2) post-processing

is invalid because the prior is not rotationally invariant. Therefore, we sample directly from

the full conditional distributions of both Σ and V rather than their product L.
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4.3.2.1 Geodesic HMC sampler on the orthonormal component V

Requiring Vt to be orthonormal allows us to employ existing techniques for sampling from

the Stiefel manifold (i.e. the space of orthonormal matrices). Geodesic HMC (Byrne and

Girolami, 2013) uses the same fundamental principles of standard HMC, but progresses

parameters along geodesics on manifolds (e.g. an arc on a sphere) rather than through

Euclidean space.This procedure also relies on the gradient of the log-posterior with respect

to the parameter of interest. As such, to efficiently employ geodesic HMC to update the

orthonormal matrix V, we must efficiently compute the gradient

∇V logp
(
V
∣∣Yobs,Σ,Λ,F

)
= ∇V logp

(
Yobs

∣∣V,Σ,Λ,F )+∇V logp(V). (4.5)

As noted in Section 4.2.2.2, we place a uniform prior onV and can therefore ignore∇V logp(V).

Using our calculations for ∇L logp
(
Yobs

∣∣L,Λ,F ) from Section 4.3.1.2, the chain rule pro-

vides a simple formula for the gradient of the likelihood with respect to V as L = ΣV:

∇V logp
(
Yobs

∣∣V,Σ,Λ,F ) = Σ∇L logp
(
Yobs

∣∣L,Λ,F ). (4.6)

We then use this gradient in the geodesic HMC algorithm of Holbrook et al. (2016) to sample

from the full conditional distribution of V.

4.3.2.2 Gibbs sampler on the diagonal scale component Σ

While we can employ HMC to sample from Σ
∣∣Yobs,V,Λ,F , our implementation did not

mix well in practice. We develop a Gibbs sampler to draw from Σ
∣∣Yobs,V,Λ,F as an

efficient alternative that relies on the data augmentation of F in Section 4.8.2.1. See Sec-

tion 4.8.5 for details.
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4.3.2.3 Gibbs sampler on the precision multipliers

We must also sample from the shrinkage multipliers ν1, . . . , νK when using the shrinkage prior

on the loadings. Bhattacharya and Dunson (2011, Section 3.1, Step 5) develop a conjugate

Gibbs sampler for these multipliers that we apply directly to this model.

4.3.3 Sign constraint on the loadings

Regardless of which prior (i.i.d. vs. orthogonal shrinkage) or constraint (sparsity vs. orthog-

onality) we choose, we must enforce a sign constraint on a single element in each row of L

for full identifiability (see Section 4.8.6 for details).

4.3.4 Gibbs sampler on the error precisions Λ

We sample from Λ
∣∣F,Yobs,L using the same procedure as Tolkoff et al. (2018) in conjunc-

tion with the data augmentation algorithm in Section 4.8.2.1 (see Section 4.8.7 for details).

4.4 Computational efficiency

We compare the computational efficiency of the inference regimes discussed in Sections

4.3.1.1, 4.3.1.2 and 4.3.2 with that of Tolkoff et al. (2018). To understand performance

across a wide range of situations, we simulate three unique data sets for all 36 combinations

of N ∈ {50, 100, 500, 1000}, P ∈ {10, 100, 1000} and K ∈ {1, 2, 4} (see Section 4.8.8.1 for

simulation details). To understand the relative performance of each inference regime, we

compare the effective sample size (ESS) per second of the loadings across all four samplers

(see Section 4.8.8.2 for details) and report our results in Figure 4.1.

Compared against the conditional Gibbs sampler of Tolkoff et al. (2018), both our joint

Gibbs and HMC samplers under the i.i.d. prior consistently yield efficiency gains of an order

of magnitude in small-N data sets and two orders of magnitude in big-N data sets. While
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Figure 4.1: Timing comparison between inference regimes. We run three MCMC chain
simulations for each combination of N (the number of taxa), P (the number of traits), K
(the number of factors) and sampler and present the average minimum ESS per second for
each. The “conditional Gibbs” sampler refers to the methods used by Tolkoff et al. (2018).
The “joint Gibbs”, “HMC” and “orthogonal” samplers refer to the methods presented in
Sections 4.3.1.1, 4.3.1.2 and 4.3.2 respectively. Our joint Gibbs and HMC samplers are
an order of magnitude faster than the conditional Gibbs sampler with relatively few taxa
(N = 50) but more than two orders of magnitude faster with many taxa (N = 1000).
The orthogonal sampler is slower than the joint Gibbs and HMC samplers (and even the
conditional Gibbs in the case of small-N , big-P ) but scales well to large trees. Values are
available in Table 4.2.

the sampling regime under the orthogonal shrinkage prior is slower than either the joint

Gibbs or HMC sampler (and even the conditional Gibbs sampler for small-N , big-P ), it has

clear advantages over the others that we discuss in Section 4.5.2.

4.5 Principled analysis plan

The modeling decisions required for Bayesian factor analysis can be daunting. In addition to

the priors, identifiability constraints and sampling procedures discussed above, researchers

must also choose an appropriate number of factors K. Making such choices in a principled

manner is challenging, and experimenting with different combinations to determine which
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“work best” is time consuming and opens the door to modeling decisions based on publication

concerns. We propose a generalizable analysis plan to guide researchers through this process.

To aid researchers seeking to employ phylogenetic factor analysis specifically, we also develop

software tools that codify this plan and automate core procedures.

4.5.1 Choosing the loadings constraint

The decision to apply the sparsity constraint versus the orthogonality constraint depends

on the biological question of interest. While the sparsity constraint induces ordering onto

the traits, this ordering can be desirable under certain circumstances. For example, if one is

trying to isolate the effects of a particular set of traits, placing those traits first in conjunction

with the upper triangular constraint ensures that they will load only onto the first few factors

and all subsequent factors will be independent of their influence. If one does not want to apply

such an ordering, the orthogonality constraint may be a better alternative. We emphasize,

however, that the orthogonality constraint is no less restrictive than the sparsity constraint;

rather, it replaces a series of potentially arbitrary modeling decisions (i.e. the ordering of the

first K traits) with a single, perhaps equally arbitrary, constraint.

Researchers can also apply a hybrid approach where one or more traits load only onto a

certain factor(s) while the remaining traits are free to load onto all factors. If the specific

sparsity structure is not sufficient to induce identifiability, then any unconstrained sub-

matrices of the loadings would require rotation to orthogonality. We present a simple example

of this in Section 4.6.3, where the the first trait (body mass) loads only onto the first factor

and the remaining traits load onto all K factors. In this case, the first row of the loadings

is identifiable and captures mass-dependent relationships, while the sub-matrix composed of

rows 2, . . . , K and columns 2, . . . , P is rotated to orthogonality via post-processing.
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4.5.2 Choosing the loadings prior

Those choosing the sparsity (or hybrid) constraint must use the i.i.d. prior on the loadings,

as orthogonality is implicit in our definition of the shrinkage prior. For those opting for the

orthogonality constraint, we recommend choosing a prior based on the characteristics of the

specific application. For big-N data sets (N > 1000) the geodesic HMC sampler on V under

the shrinkage prior may be prohibitively slow (particularly when combined with big-P ), and

we suggest using the i.i.d. prior with post-processing.

One serious limitation of the post-processing regime, however, is the potential for label

switching (Celeux, 1998). This phenomenon occurs when the posterior distributions of cer-

tain scale parameters σ overlap enough that a given factor switches its ordering. When this

occurs, the resulting estimated factor (e.g. factor 1) may actually be a mixture of factors that

shuffle in order during MCMC and post-processing. Figure 4.2 provides an example of this

phenomenon and shows how the orthogonal shrinkage prior can address it. Examining the

MCMC trace plots (i.e. plots of parameter values over each sample from the MCMC chain)

in software such as the CODA R package (Plummer et al., 2006) or Tracer (Rambaut et al.,

2018) is the best way to check for label switching. If the trace plot of the scale parameters σ

appear to be touching (as in the top, left panel of Figure 4.2), then label switching is likely

occurring. See Section 4.8.9 for a more thorough discussion of identifying label switching in

the context of PFA.

Conveniently, label switching does not typically occur in big-N analyses, so we recom-

mend the more computationally efficient i.i.d. prior with post-processing in these situations.

For small- or moderate-N analyses, we still suggest attempting the i.i.d. sampler with post-

processing, but we caution users to look for evidence of label switching. If such evidence

exists, we recommend using the shrinkage prior with forced ordering and separation.
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Figure 4.2: Trace plots of relevant parameters from analysis in Section 4.6.2. Estimates
under the i.i.d. Gaussian prior are characteristic of poorly-identifiable conditions (the scales
σ are overlapping resulting in label switching / row-wise convolution of the loadings). The
shrinkage prior with forced spacing (α = 0.8) largely eliminates this problem.

4.5.3 Constraining the number of factors

We propose cross-validation for identifying the number of factors with optimal predictive

performance. In the case of the i.i.d. prior, this procedure compares models with different

number of factors directly, while in the case of the orthogonal shrinkage prior it tunes the

strength of the shrinkage on the loadings scales. See Section 4.8.10 for details.

We fully recognize that complex evolutionary processes do not, in reality, conform exactly

to the phylogenetic latent factor model (or any tractable statistical model) and caution
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against seeking to identify the “true” number of underlying evolutionary processes driving

the phenotypes of interest, as such ground truth likely does not exist. Rather, we encourage

researchers to use this model selection procedure to identify the limitations of the information

available in a particular data set and the model’s ability to extract it. For example, if model

selection determines that a four factor model provides optimal predictive performance, one

should be wary of interpreting results from a model with greater than four factors as it is

likely some of the perceived signal is an artifact of noise in the data.

Prior to model selection, one must choose some maximum number of factors Kmax that

balances model interpretability, flexibility, identifiability and tractability. Models with more

factors are inherently more flexible and can potentially capture more information about

underlying biological phenomena. However, interpretation becomes challenging as the num-

ber of factors increases. While the model with optimal predictive performance may have

K < Kmax, one should be open to interpreting a model where K = Kmax. Limiting Kmax

provides additional benefits, as 1) the identifiability challenges discussed in Section 4.5.2

intensify with increasing K and 2) inference scales cubically with K and some big-K models

may be intractable. In practice, we settle on Kmax = 5 for most examples below, as we find

that the computation time and identifiability issues are typically manageable at K = 5 and

feel most researchers would rarely need to interpret more than five factors.

4.5.4 Software implementation

We implement all inference procedures in Section 4.3 in the Bayesian phylogenetic inference

software BEAST (Suchard et al., 2018). While BEAST is an extraordinarily flexible tool,

this flexibility can result in a user experience that is overwhelming for the uninitiated.

We develop the Julia package PhylogeneticFactorAnalysis.jl to both simplify the BEAST

user experience (in the context of PFA) and automate model selection, post-processing,

diagnostics and plotting. Users must input the trait data, a phylogenetic tree, the identifi-

ability constraint on the loadings and the prior on the loadings. Users may also optionally
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specify other modeling decisions such as whether to standardize the trait data (which we

recommend) and the model selection meta-parameters as well as a BEAST input file with

instructions for inferring the phylogenetic tree from sequence data.

After receiving appropriate input, PhylogeneticFactorAnalysis.jl automatically performs

model selection and outputs a series of files including the sub-sampled MCMC realizations

and plots of both the loadings (see Figures 4.3B, 4.4A and 4.5A) and factors on the tree

(see Figures 4.4B, 4.5B and 4.6B) using the ggplot2 (Wickham, 2016) and ggtree (Yu et al.,

2017) plotting libraries.PhylogeneticFactorAnalysis.jl is registered under the Julia General

registry. Source code and documentation can be accessed at:

https://github.com/gabehassler/PhylogeneticFactorAnalysis.jl

4.6 Example analyses

We demonstrate the utility of these methods in the four examples below. Unless otherwise

noted, all data are standardized on a per-trait basis (i.e. subtracting the trait mean and

dividing the by the trait standard deviation) prior to analysis.

4.6.1 Pollinator-flower co-evolution in Aquilegia

The intimate relationship between plants and their pollinators has played a defining role in

the evolution of angiosperms (see Kay and Sargent, 2009; Van der Niet and Johnson, 2012).

Here we re-evaluate the relationship between floral phenotypes and pollinators in the genus

Aquilegia (columbines). Whittall and Hodges (2007) identify three primary Aquilegia “polli-

nation syndromes” associated with bumblebees, hummingbirds and hawk moths respectively.

Tolkoff et al. (2018) apply phylogenetic factor analysis to study the relationship between 11

floral phenotypes and these pollination syndromes in Aquilegia and identify two factors, only

one of which is associated with pollinator type.
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We re-evaluate this previous work for two reasons. First, Tolkoff et al. (2018) assume the

upper-triangular constraint on the loadings which requires that the vertical angle of the flower

loads only onto the first factor. Our orthogonality constraint eliminates arbitrarily singling

out this phenotype. Additionally, we compare our cross-validation model selection procedure

with the marginal likelihood-based approach of Tolkoff et al. (2018), which identifies a two-

factor model as having greatest posterior support.

As four of the traits (anthocyanin production and the three pollination syndromes) are

binary, we follow Tolkoff et al. (2018) in adapting the latent-liability model of Cybis et al.

(2015) to the latent factor model (see Section 4.8.11). We use the i.i.d. prior with orthogonal-

ity constraint, and our model selection procedure, indeed, identifies two factors. We present

our results in Figure 4.3. The first factor captures patterns differentiating hummingbird-

pollinated plants from hawk moth-pollinated plants, while the second factor appears to

separate the bumblebee pollinated flowers from the other two pollination syndromes. Note

that in Figure 4.3A, the first factor falls along a relatively uniform continuum, while the

second factor has a clear out-group consisting of the bumblebee-pollinated plants. While

only two taxa are coded as being pollinated by both hummingbirds and hawk moths, this

suggests that non-bumblebee Aquilegia pollination strategies may lie on a continuum rather

than strict a hawk moth/hummingbird dichotomy, and it is possible that many of the plants

listed as having a single pollinator in reality attract both hummingbirds and hawk moths.

4.6.2 Yeast domestication

The brewer’s yeast Saccharomyces cerevisiae is essential to a variety of industrial applications

due to its ability to convert sugars into ethanol, carbon dioxide and aroma compounds. In

addition to its well-known role in the production of fermented food and beverages, it also

plays a key role in the production of of bio-fuels and serves as model organism for basic

biological research. Industrial strains within this species adapted to thrive within specialized

environments and can withstand stress conditions often suited to the specific industrial niche
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Figure 4.3: Aquilegia results. A) Factor values colored by pollinator(s) for each species of
Aquilegia. Large, solid points represent posterior means for each species. Small, transparent
points represent a random sample from the posterior distribution of the factors. B) Posterior
summary of the loadings matrix. Dots represent posterior means while bars cover the 95%
highest posterior density (HPD) interval. Colors represent the posterior probability that
the parameter is greater than 0. While the second factor clearly separates the bumblebee-
pollinated plants from the others, the first factor captures a more gradual transition from
hummingbird pollination to hawk moth pollination.

they evolved in, such as ethanol, osmotic, acidic and temperature stresses.

Recent work by Gallone et al. (2016) and Gallone et al. (2019) uses phylogenetic methods

to study the domestication of S. cerevisiae within industrial environments. To elucidate the

effects of domestication on yeast phenotypes, Gallone et al. (2016) sequence and phenotype

154 strains of industrial and wild S. cerevisiae. The 82 phenotypes include numerous mea-

surements of growth rates under varying environmental and nutrient stresses, the levels of

production of various metabolites and the ability to reproduce sexually.

Domestication in plants and animals is typically characterized by limited reproduction
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outside of domestic contexts, increased yield and decreased tolerance to rare or novel envi-

ronmental stressors (Doebley et al., 2006; Larson and Fuller, 2014). Gallone et al. (2016)

observe these same patterns in the yeast strains they study, with additional niche-specific

patterns of covariation. While their analysis examines the specific hypotheses above, they

do not employ a data-generative model of phenotypic evolution capable of studying broad

changes across all measured phenotypes.

The phylogenetic latent factor model, however, is ideally suited for such a task. We

first infer a phylogenetic tree for the 154 phenotyped strains using the 2.8 megabase DNA

sequence alignment of Gallone et al. (2016) (see Section 4.8.12.1). We fix this tree during

model selection due to the computational costs of inferring the phylogeny. Based on the

principles discussed in Section 4.5, we opt for the orthogonality constraint, the orthogonal

shrinkage prior with forced spacing (α = 0.8) and Kmax = 5. Our model selection procedure

yields a final model with five significant factors. For the final analysis we infer the tree

jointly with factor model parameters using the same tree model in Section 4.8.12.1. As the

number of significant factors K is equal to the maximum Kmax, we are confident any signal

is biologically relevant but recognize we have not completely captured the full phenotypic

covariance structure. That being said, the final factor captures only 7% (5%-9% HPD inter-

val) of the heritable variance and 3% (2%-4%) of the total variance, suggesting that adding

additional factors will yield diminishing returns at the expense of exacerbating identifiability

challenges.

We plot the loadings associated with the first factor and the first factor on the tree in

Figure 4.4 (see Figures 4.8 and 4.9 for the full results). For the first factor that accounts

for 44% (33%-52%) of the heritable variance, we observe a clear separation between strains

in the Beer 1 clade and strains isolated from other fermentation processes and from the

wild. Notably, the domestication of beer strains in this clade led to an impaired sexual

cycle as observed in the reduced sporulation efficiency and spore viability. This loss of a

functional sexual cycle is paired with the additional loss of tolerance to environment and
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nutrient stresses generally. These stresses are not encountered during continuous growth in

the nutrient-rich wort medium. The higher tolerance to high temperature outside of Beer

1 might reflect other more cryptic specializations of non-Beer clade 1 strains selected for

different industrial processes (e.g. bioethanol or cocoa fermentation). Beyond these general

patterns, we also note specific traits selected for in the Beer 1 clade. For example: strains

within this clade do not produce 4-vinyl guaiacol (4-VG), a renown off-flavor in beer that is

less relevant to other industrial niches. Additionally, the first factor in this clade is associated

with efficient utilization of maltotriose, an important carbon source in beer wort but rarely

found in high concentrations in natural environments. These results overall recapitulate one

of the main findings of Gallone et al. (2016): the transition from complex and variable natural

niches to the stable, nutrient-rich, beer medium favored certain adaptations (e.g. efficient

utilization of maltotriose) and accentuation of certain traits (lost of beer off-flavours) at the

cost of becoming sub-optimal for survival in the wild.

We emphasize that in this dataset there are different domestication trajectories targeted

to very diverse industrial processes, and the life histories of the different clades took separate

paths that the additional factors likely capture.

4.6.3 Mammalian life history

Life history strategies vary greatly across the tree of life. Generally speaking, organisms exist

along a spectrum between fast-reproducing species that produce many offspring with little

investment into any single child and slow-reproducing species that invest relatively great

time and energy into each of their (comparatively fewer) offspring (Pianka, 1970). While

allometric (size-dependent) constraints clearly influence these life history strategies (Boukal

et al., 2014), pace-of-life theory predicts size-independent life-history variation as a major

driver of phenotypic covariation (Reynolds, 2003; Réale et al., 2010). Much work has been

done evaluating these hypotheses across numerous taxonomic groups (see Blackburn, 1991;

Bielby et al., 2007; Salguro-Gómez, 2017), but most studies are limited by methodologies
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Figure 4.4: Results associated with first factor in yeast analysis. A) Posterior summary
of first row of the loadings of 5-factor PFA on yeast data set. This first factor primarily
captures differences associated with tolerance to environment and nutrient stress as well as
reproductive ability. See Figure 4.3B for description of plot elements. B) The first factor
plotted on yeast phylogeny with strain origin. Stars at the tips indicate mosaic strains as
identified by Gallone et al. (2016). (caption continues on next page)
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4.4 (previous page): Low factor values in the Beer 1 clade indicate poor tolerance of envi-
ronmental and nutrient stress generally and a lower capacity to reproduce sexually, all of
which are signs of domestication. The Beer 1 clade includes strains from Belgium, Germany,
Britain and the United States, and Gallone et al. (2016) estimate its origin ca. 1590 AD
that coincides with the transition from home-brewing to large-scale beer production across
Europe.

that require complete data and scale poorly to very large trees and many traits.

We explore the evolution of mammalian life history using the PanTHERIA ecological

database (Jones et al., 2009). We select a sub-set of this data including body mass and

10 life history traits for the 3,691 species with at least one non-missing observation. While

Hassler et al. (2020, Section 3.7.1) explore a similar subset of the PanTHERIA data us-

ing a multivariate Brownian diffusion (MBD) model, the MBD model cannot partition the

covariance structure into size-dependent and size-independent components.

PFA, however, is ideally suited to this task as we can structure the loadings matrix a

priori to reveal these relationships. Specifically, we apply the hybrid constraint introduced

in Section 4.5.1 where elements ℓ21, . . . , ℓK1 are fixed to zero, forcing body mass to load

only onto the first factor. To avoid ordering the other life-history traits, we assume that

the sub-matrix consisting of rows 2, . . . , K and columns 2, . . . , P is orthogonal (which we

enforce via post-processing). We use the fixed tree of Fritz et al. (2009), which we prune

to include only the 3,691 taxa for which we have trait data. We perform model selection

assuming Kmax = 5, with the optimal model having K = 5. However, the first three factors

explain 85% of the heritable variance (with the last factor explaining only 4%), suggesting

that K = 5 is sufficient to capture the major patterns of variation in mammalian life-history

evolution. We plot our results in Figure 4.5.

Consistent with the Hassler et al. (2020, Section 3.7.1) analysis, body size is clearly

associated with the “slow” life history strategy (i.e. smaller and less frequent litters, longer

lives). Notably, this allometric factor is not the dominant factor and explains only 16%
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Figure 4.5: Mammalian life history results. (caption on next page)
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4.5 (previous page): A) Posterior summary of the loadings. Loadings of body size onto
factors 2-5 is set to 0 a priori. See Figure 4.3B for detailed description of figure elements.
The first factor captures allometric relationships (by design) and explains only 16% of the
heritable variance, while the remaining factors capture size-independent relationships. The
second factor, accounting for the plurality (46%) of the heritable variance, captures a fast-
slow life history axis. Remaining factors capture more specific strategies (e.g. factors three
and four appear to support the energy trade-off between litter size and litter frequency).
This suggests that body size is not the main driver of life history evolution and that natural
selection primarily acts on life history directly. B) Evolution of factors along the mammalian
phylogeny. Most factors are strongly phylogenetically conserved throughout the tree, with
large clades sharing similar factor values. There is relatively little correlation between the
the first and second factors, with clades of small, slow species (e.g. bats) and large, fast
species (e.g. lagomorphs).

(14%-18%) of the heritable variance. The second factor, however, explains 46% (42%-51%)

of this variance and clearly captures a size-independent fast-slow life history axis, suggesting

that size-independent life-history strategies play a major role in mammalian evolution. As

evident in Figure 4.5, this primary life-history axis (factor 2) varies independently of the

allometric one (factor 1) with examples of large/slow (cetaceans), large/fast (lagomorphs),

small/slow (bats) and small/fast (rodents) taxonomic groups. This primary life-history

factor is well-conserved across the phylogenetic tree, with large taxonomic groups sharing

life-history strategies.

Factors 3, 4 and 5 explain comparatively less of the heritable variance (23%, 11% and

4% respectively). Factors 3 and 4 appear to capture trade-offs between litter size and litter

frequency, while the 5th factor primarily captures a negative relationship between weaning age

and gestation length and is strongly expressed in monotremes and marsupials that employ

different reproductive strategies than placental mammals.

4.6.4 New World monkey cranial morphology

While much effort has been devoted to studying the evolution of primate brain size, relatively

few studies have focused on understanding diversity in brain morphology or shape. Notable
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exceptions to this trend include Aristide et al. (2016) and Sansalone et al. (2020). Here we

re-analyze the data presented in Aristide et al. (2016), that consist of 399 endocranial land-

marks in 3-dimensional Euclidean space (standardized by generalized Procrustes analysis)

for 48 species of New World monkey (NWM). While Aristide et al. (2016) perform principal

component analysis on the Procrustes coordinates and use the principal component scores

as traits in a larger evolutionary analysis, this procedure lacks a complete data-generative

statistical model that explicitly accounts for uncertainty or noise in the shape data.

We simultaneously infer the phylogeny with the PFA parameters using DNA sequence

alignments from Aristide et al. (2015) (see Section 4.8.12.2 for details). Preliminary results

suggest 1) optimal predictive performance requires a very large number of factors (> 20),

which is unsurprising given the complexity of this data set, and 2) identifiability poses an

unusually great challenge due to the “small-N big-P” nature of the data. As such, we

settle on a 3-factor model with orthogonal shrinkage prior and strong shrinkage to maximize

identifiability. To maintain differences in scale between traits, we do not re-scale on a per-

trait basis but rather divide all traits by the maximum per-trait standard deviation.

We plot the influence of each factor on brain shape and the evolution of these factors on

the tree in Figure 4.6. These three factors capture similar patterns of variation as the first

three principal components in Aristide et al. (2016), who identify several ecological processes

associated with the evolution of these principal components. As the latent factor model can

capture uncertainty that PCA cannot, we are eager to re-evaluate these relationships via a

more structured latent factor model that directly models the relationship between the brain

shape factors and ecological phenotypes such as social structure or diet. While preliminary

results suggest that the first factor is correlated with relative brain volume (i.e. brain volume

divided by body mass) and social group size and that the second factor is correlated with

body mass and absolute brain volume, we leave this more structured analysis as future work.
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Figure 4.6: A) Influence of each factor on New World monkey brain shape. B) Brain
shape factors plotted along New World monkey phylogeny. The coefficients of the first
three principal components (PCs) from Aristide et al. (2016) are highly correlated with the
corresponding rows of the loadings matrix. While we do not explore such an analysis here,
Aristide et al. (2016) provide evidence of association of PC1 (strongly correlated with our
first factor) with relative brain size and PC2 (strongly correlated with our second factor)
with diet.

4.7 Discussion

We develop a practical and scalable analysis plan requiring minimal user decisions enabled

by computationally innovative inference procedures. Previously, researchers performing phy-

logenetic factor analysis were limited by computational constraints and had to determine a

priori the ordering of the traits and optimal number of factors. These computational and

modeling advances are not independent but rather complement each other. Our default

model selection procedure requires 26 individual MCMC chain simulations (5-fold cross val-
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idation with 5 sets of meta-parameters plus the final run). Such an analysis would be

intractable for all but the smallest data sets using existing inference techniques. However,

our new inference procedures take only a few hours to run all 26 simulations for even the

largest data sets we analyze. Additionally, we have made these tools both flexible and

accessible with the Julia package PhylogeneticFactorAnalysis.jl, which assembles and runs

all BEAST input files, automatically performs model selection, plots the results and per-

forms basic quality control. Our implementation allows researchers to focus on big-picture

modeling decisions and leave low-level implementation details to the software.

Limitations of this work that we plan to address in the future include the following. First,

while we can accommodate discrete phenotypes through the latent probit model of Cybis

et al. (2015) (see Section 4.8.11), we notice both in our analysis and Tolkoff et al. (2018) that

the discrete parameters tend to have a far higher influence than their continuous counterparts

(i.e. the loadings entries associated with the discrete traits have greater magnitude than those

associated with continuous traits). This is likely due to the fact that we control the variance

of the latent liabilities indirectly by fixing the discrete trait precisions Λ to a constant as do

Tolkoff et al. (2018). It is possible that the (potentially) inflated significance of these discrete

traits can influence the loadings structure in unexpected ways, and we seek an alternative

solution that places the continuous and discrete traits on more equal footing.

Second, there may be cases where label switching persists despite our efforts to induce

identifiability. Additional post-processing procedures developed for Bayesian mixture models

(Rodŕıguez and Walker, 2014) or multidimensional scaling (Okada and Mayekawa, 2018) may

serve as solutions to these unusually convolved posteriors. While preliminary work suggests

that these methods can efficiently identify and deconvolve individual modes of multi-modal

posteriors, we are concerned about their potential to identify non-existent signal in the data

and believe a careful analysis of their properties is warranted.

Additionally, as proposed in Section 4.6.4, this work can be readily extended to incorpo-

rate parallel evolutionary models for different suites of traits. In this framework, we could
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simultaneously perform factor analysis on a high-dimensional trait (e.g. brain shape) and

infer the evolutionary correlation between the latent factors and other phenotypes of in-

terest (e.g. brain size, diet, group size) using an MBD model. Note that we could study

relationships between multiple, distinct high-dimensional phenotypes as well from structural

equation modeling paradigm (Lee and Song, 2012). While likelihood calculations under such

models are straightforward given this and previous work, inferring the joint evolutionary

covariance matrix requires additional inference machinery that we leave as future work.

Finally, while we focus on the multivariate Brownian diffusion model of phenotypic evo-

lution for simplicity, all inference machinery can be readily adapted to other Gaussian pro-

cesses, such as the multivariate Ornstein–Uhlenbeck (OU) process (Hansen, 1997). Indeed,

the OU model and inference procedure of Bastide et al. (2018) have already been imple-

mented in BEAST and are easily integrated with the methods presented in this paper.

4.8 Appendix

4.8.1 Post-order traversal likelihood calculations

We seek to compute p(Y |L,Λ,F ) in O(NPK2 +NK3) by adapting the methods devel-

oped by Bastide et al. (2018), Mitov et al. (2020) and Hassler et al. (2020). Let Yobs =(
yobs
1 , . . . ,yobs

N

)t
be the N × P matrix of observed data, where all missing measurements in

Y have been replaced with 0’s. This post-order algorithm requires that one can compute

the partial mean mi, precision Pi and remainder ri such that

p
(
yobs
i

∣∣ fi,L,Λ) = riθ̂(fi;mi,Pi) , where

θ̂(x;µ,P) = (2π)−rank(P)/2 d̂et(P)1/2 exp

(
−1

2
(x− µ)t P (x− µ)

)
,

(4.7)

rank(P) is the number of non-zero singular values of P and d̂et(P) is the product of the

non-zero singular values of P. We also define the indicator matrices δi = diag[δi1, . . . , δiP ]
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where δij = 1 if yij is observed and δij = 0 if it is missing. Finally, we define P obs
i =

∑P
j=1 δij

as the number of observed traits for taxon i.

In the context of PFA, we calculate

log p
(
yobs
i

∣∣ fi,L,Λ) = −rank(δiΛδi)

2
log 2π +

1

2
log d̂et(δiΛδi)

− 1

2

(
yobs
i − Ltfi

)t
δiΛδi

(
yobs
i − Ltfi

)
= log ri + log θ̂(fi;mi,Pi) , where

(4.8)

the precision Pi = LδiΛδiL
t, the mean mi is a solution to Pimi = LtδiΛδiy

obs
i and

log ri = −
P obs
i − rank(Pi)

2
log 2π +

1

2

(
P∑

j=1

δij log λj − log d̂et(Pi)

)

− 1

2

[
yobs
i

t
δiΛδiy

obs
i −mt

iPimi

]
.

(4.9)

See Section 4.8.1.1 for detailed calculations. As Λ is diagonal, computing all Pi has com-

plexity O(NPK2), which dominates the computation time for these operations.

After computingmi, Pi and ri, the Hassler et al. (2020, Section 3.2.1.2) algorithm requires

minor modification to compute the likelihood p
(
Yobs

∣∣L,Λ,F ) in O(NK3) additional time.

Specifically, Pi may not be invertible via the special inverse defined in Hassler et al. (2020,

Section 3.2.1.1). Section 4.8.1.2 offers an alternative approach that avoids this inversion

via the continuously rediscovered identity (A+B)−1 = A−1 −A−1 (I +BA−1)
−1

BA−1 for

conformable square matrices A and B (Henderson et al., 1959; Henderson and Searle, 1981).

We also utilize a more numerically stable modification of this post-order algorithm proposed

by Bastide et al. (2021).
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4.8.1.1 Partial likelihood calculations under the latent factor model

We present the detailed calculations from Equation 4.8.

log p
(
yobs
i

∣∣ fi,L,Λ) = −rank(δiΛδi)

2
log 2π +

1

2
log d̂et(δiΛδi)

− 1

2

(
yobs
i − Ltfi

)t
δiΛδi

(
yobs
i − Ltfi

)
= −P

obs
i

2
log 2π +

1

2

P∑
j=1

δij log λj

− 1

2

[
ftiL

tδiΛδiL
tfi − 2ftiL

tδiΛδiy
obs
i + yobs

i

t
δiΛδiy

obs
i

]
= −P

obs
i

2
log 2π +

1

2

P∑
j=1

δij log λj

− 1

2

[
(fi −mi)

t Pi (fi −mi)
]
− 1

2

[
yobs
i

t
δiΛδiy

obs
i −mt

iPimi

]
= log ri −

rank(Pi)

2
log 2π +

1

2
log d̂et(Pi)

− 1

2

[
(fi −mi)

t Pi (fi −mi)
]

= log ri + log θ̂(fi;mi,Pi) , where

(4.10)

the partial precision Pi = LδiΛδiL
t, the partial mean mi is a (not necessarily unique)

solution to Pimi = LtδiΛδiy
obs
i and the remainder

log ri = −
P obs
i − rank(Pi)

2
log 2π +

1

2

(
P∑

j=1

δij log λj − log d̂et(Pi)

)

− 1

2

[
yobs
i

t
δiΛδiy

obs
i −mt

iPimi

]
.

(4.11)

4.8.1.2 Special inverse calculations

One challenge that the PFA model poses to this approach is that the partial precisions at the

tips Pi for i = 1, . . . , N may not be invertible via the pseudoinverse used by Hassler et al.

(2020, Section 3.2.1.1). The post-order traversal algorithm requires that for each internal
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node νi for i = N + 1, . . . , 2N − 1 in F , we must compute P∗
i such that p

(
Y⌊i⌋

∣∣ fpa(i) ) =

riθ̂
(
fpa(i);mi,P

∗
i

)
, where Y⌊i⌋ represents the trait values of all terminal descendants of node

νi. In the PFA model, this results in P∗
i =

(
P−1

i + tiIK
)−1

. However, it is possible that

the initial partial precisions Pi at the tip nodes ν1, . . . , νN may be rank-deficient. This

situation arises, for example, when the number of non-missing traits P obs
i at taxon i is less

than the number of factors K. To avoid this inversion, we use an algebraic slight-of-hand

to compute P∗
i in terms of Pi directly (rather than its non-existing inverse). Specifically we

use an identity for the inverse of the sum of two square matrices that has been discovered

and forgotten several times (see, for example, Henderson et al., 1959; Henderson and Searle,

1981)

(A+B)−1 = A−1 −A−1
(
I +BA−1

)−1
BA−1. (4.12)

Applying this to our equation for P∗
i , we get

P∗
i = Pi − tiPi (Ik + tiPi)

−1Pi. (4.13)

Note that the matrix IK + tiPi is the sum of the positive semi-definite matrix tiPi with

the positive definite matrix IK and is therefore invertible. As such, computing P∗
i is indeed

possible and the Hassler et al. (2020, Section 3.2.1.2) algorithm can proceed to compute the

likelihood.

4.8.2 Sampling from the loadings L via data augmentation

To employ the Gibbs sampler of Tolkoff et al. (2018) to sample from the loading L, we follow

the procedure below:

1. Sample from F
∣∣Yobs,L,Λ,F via the pre-order algorithm of Hassler et al. (2020, Sec-

tion 3.2.2.1)

2. Sample from L
∣∣Yobs,F,Λ via the methods discussed in Lopes and West (2004)
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4.8.2.1 Pre-order data augmentation algorithm

We seek to sample from F
∣∣Yobs,L,Λ,F via the pre-order algorithm of Hassler et al. (2020,

Section 3.2.2.1). This procedure relies on first computing the statistics mi and Pi such that

p
(
Yobs

⌊i⌋
∣∣ fi,L,Λ,F ) ∝ θ̂(fi;mi,Pi) (4.14)

for i = 1, . . . , 2N−1 (i.e. all nodes in the tree), where Yobs
⌊i⌋ is the subset of Yobs restricted to

the descendants of node νi. We compute these statistics at the tips as described in Section

4.2.1.1 and at internal nodes as described in Section 3.2.1.2.

Once we have computed these statistics, we draw the factors at the root from their

full conditional distribution f2N−1

∣∣Yobs,L,Λ,F ,µ0, κ0 as described by Equation 3.15 in

Hassler et al. (2020). After sampling the factors f2N−1 at the root node ν2N−1 from their

full conditional distribution, we perform a pre-order traversal of the tree sampling from

fi

∣∣∣ fpa(i),Yobs
⌊i⌋ ,L,Λ,F for j = 1, . . . , 2N − 2 as described in Section 3.2.2.1. After we have

completed this pre-order traversal, we have sampled from the full conditional distribution of

F = (f1, . . . , fN)
t.

4.8.2.2 Conjugate Gibbs sampler on the loadings L

Here we describe our procedure for sampling from L
∣∣Yobs,F,Λ via the conjugate Gibbs

sampler developed by Lopes and West (2004) and Tolkoff et al. (2018). Let us first introduce

notation related to both structured sparsity in the loadings and missing data. Let the K-

dimensional vector ℓj and N -dimensional vector y′
j be the j

th column of L andY respectively

for j = 1, . . . , P . Let xj ⊆ {1, . . . , K} be the indices corresponding to the unconstrained

elements of ℓj (i.e. those that are not fixed at 0), and let zj ⊆ {1, . . . , N} be the indices

of the observed (non-missing) elements of y′
j. Finally let the sub-vectors ℓj,xj

and fi,xj
be

the elements of ℓj and fi, respectively, restricted to the indices in xj, and let y′
j,zj

be the

elements of y′
j restricted to the elements in zj for i = 1, . . . , N and j = 1, . . . , P . Note that
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conditional on the latent factors, the full conditional distributions of each column of the

loadings are independent. Additionally, the full conditional of ℓj depends only on y′
j, and

does not depend on the other columns of the data matrix Y (Lopes and West, 2004). As

such, we draw from ℓj,xj

∣∣∣F,y′
j,zj
,Λ as follows:

p
(
ℓj,xj

∣∣∣y′
j,zj
,F, λj

)
∝ p
(
y′
j,zj

∣∣∣ ℓj,xj
,L, λj

)
p
(
ℓj,xj

)
=
∏
i∈zj

p
(
yij
∣∣ fi, ℓj,xj

, λj
)
p
(
ℓj,xj

)
=
∏
i∈zj

θ
(
yij; ℓ

t
j,xj

fi,xj
, λj

)
θ
(
ℓj,xj

;0,Λj

)
= θ
(
ℓj,xj

;ηj,Γj

)
(4.15)

where

Λj =
1

σ2
I|xj |,

Γj = Λj + λj
∑
i∈zj

fi,xj
fti,xj

,

ηj = Γ−1
j

Λj0+ λj
∑
i∈zj

yijfi,xj


(4.16)

and θ(x;µ,P) is the multivariate normal density function with argument x, mean µ and

precision P.

Computing Γj has computational complexity O(NK2), so computing all P precisions

has overall complexity O(NPK2). Once the precisions have been computed, computing

the means has complexity O(NPK + PK3), which contributes relatively little to overall

computation time as N >> K for most problems. Note that if the data are completely

observed and there is no structured sparsity in the loadings, then Γj = Λj + λjF
tF. In that

case, we only need to compute FtF once (not P times), which brings the overall complexity

down to O(NPK) (as we still need to compute the means for al P columns of L). Drawing

all ℓj for j = 1, . . . , P results in a complete sample from the full conditional distribution of

L.
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4.8.3 Loadings gradient calculation

We calculate the gradient of the likelihood with respect to each column of the loadings ℓj

individually to accommodate variation in the missing data structure across traits. Note that

in the calculations below, we omit explicit dependence on the residual precision Λ and tree

F in the interest of notational simplicity.

∇ℓj log p
(
Yobs

∣∣L) = 1

p(Yobs |L)
∇ℓjp

(
Yobs

∣∣L)
=

1

p(Yobs |L)
∇ℓj

[∫
p
(
Yobs

∣∣F,L)p(F)dF]
=

1

p(Yobs |L)

∫
p(F)∇ℓjp

(
Yobs

∣∣F,L)dF.
(4.17)

Based on the fact that the elements of Yobs are independent conditional on the loadings and

factors, we have:

p
(
Yobs

∣∣F,L) = N∏
i=1

P∏
k=1

p(yij | fi,L)δik

=
N∏
i=1

P∏
k=1

(2πλk)
−δik/2 exp

(
−1

2
λkδik

(
yik − ftiℓk

)2)

= c exp

(
−1

2

N∑
i=1

P∑
k=1

λkδik
(
yik − ftiℓk

)2)
,

(4.18)
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where δij is an indicator that equals 1 if yij is observed and 0 if it is missing, and c is a

normalization constant that does not depend on the loadings L. Therefore,

∇ℓjp
(
Yobs

∣∣F,L) = ∇ℓj

[
c exp

(
−1

2

N∑
i=1

P∑
k=1

λkδik
(
yik − ftiℓk

)2)]

= c exp

(
−1

2

N∑
i=1

P∑
k=1

λkδik
(
yik − ftiℓk

)2)

×∇ℓj

[
−1

2

N∑
i=1

P∑
k=1

λkδik
(
yik − ftiℓk

)2]

= p
(
Yobs

∣∣F,L)×∇ℓj

[
−1

2

N∑
i=1

P∑
k=1

λkδik
(
yik − ftiℓk

)2]

= p
(
Yobs

∣∣F,L)×−1

2
λj

N∑
i=1

δij∇ℓj

[(
yij − ftiℓj

)2]
= p
(
Yobs

∣∣F,L)λj N∑
i=1

δijfi
(
yij − ftiℓj

)
= p
(
Yobs

∣∣F,L)λj (Ftδ′
jy

obs
j

′ − Ftδ′
jFℓj

)

(4.19)

where yobs
j

′
is the jth column of Yobs and δ′

j = diag[δ1j, . . . , δNj] is a diagonal matrix of

observed-data indicators. Using this result in Equation 4.17, we calculate

∇ℓj log p
(
Yobs

∣∣L) = ∫ p(F)p
(
Yobs

∣∣F,L)
p(Yobs |L)

λj

(
Ftδ′

jy
obs
j

′ − Ftδ′
jFℓj

)
dF

=

∫
p
(
F
∣∣Yobs,L

)
λj

(
Ftδ′

jy
obs
j

′ − Ftδ′
jFℓj

)
dF

= E
[
λj

(
Ftδ′

jy
obs
j

′ − Ftδ′
jFℓj

) ∣∣∣Yobs,L
]

= λjE
[
Ft
∣∣Yobs,L

]
δ′
jy

obs
j

′ − λjE
[
Ftδ′

jF
∣∣Yobs,L

]
ℓj.

(4.20)
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Note that

E
[
Ftδ′

jF
∣∣Yobs,L

]
=

N∑
i=1

δijE
[
fif

t
i

∣∣Yobs,L
]

=
N∑
i=1

δijV
[
fi
∣∣Yobs,L

]
+ δijE

[
fi
∣∣Yobs,L

]
E
[
fi
∣∣Yobs,L

]t
.

(4.21)

We compute E
[
fi
∣∣Yobs,L

]
and V

[
fi
∣∣Yobs,L

]
for i = 1, . . . , N in O(NPK2 +NK3) via

a post-order likelihood calculation algorithm (see Section 4.8.1) followed by the pre-order

algorithms independently developed by Bastide et al. (2018) and Fisher et al. (2021).

For the case where there is no missing data, we can simplify Equation 4.19 to be

∇Lp(Y |F,L) = p(Y |F,L)
[
FtYΛ− FtFLΛ

]
. (4.22)

4.8.4 Post-processing procedure

We employ singular value decomposition (SVD) to enforce the orthogonality constraint on

the loadings via post-processing. In practice, we sample from the orthogonally-constrained

loadings as follows. Let L(d) be a sample from the posterior distribution L |Y at the dth

state in the MCMC chain. For each L(d), we compute the SVD L(d) = U(d)Σ(d)V(d) where

U(d) is a K×K orthonormal matrix and Σ(d) and V(d) retain their constraints from Section

4.2.2.2 (i.e. Σ(d) is diagonal with descending positive entries and V(d)V(d)t = IK). While the

parameter U is not identifiable, Σ and V are (Holbrook et al., 2016). As such, we then treat

L⊥(d)
= Σ(d)V(d) as (now identifiable) samples from the posterior of the loadings. If we also

sample the factors F, we rotate the factors to sample from F⊥(d)
= F(d)U(d) to ensure that

F⊥(d)
L⊥(d)

= F(d)U(d)Σ(d)V(d) = F(d)L(d).
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4.8.5 Sampling from Σ

We define the K-vector σ such that Σ = diag[σ] and sample σ as follows (see Section 4.8.5.1

for derivation):

σ
∣∣Yobs,F,V,Λ ∼ MVN

(
µσ ,P

−1
σ

)
, where

Pσ = diag[τ ] +
P∑

j=1

λj diag[vj]F
tδ′

jF diag[vj],

µσ = P−1
σ

(
P∑

j=1

λj diag[vj]F
tδ′

jy
obs
j

′
)
,

(4.23)

τ = (τ1, . . . , τK) and vj is the j
th column of V.

While the prior encourages the elements of σ to have descending absolute value, it does

not enforce this constraint strictly. As discussed in Section 4.2.2.2, for some problems a strict

ordering with forced spacing may be necessary in practice for full identifiability. In these

cases we employ a rejection sampler where we draw from the full conditional distribution

of σ using the unrestricted multivariate normal distribution and reject any samples that do

not conform to the particular constraint. As the unconstrained prior already induces a soft

ordering, we find that this rejection sampler typically has high acceptance probability.
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4.8.5.1 Loadings scale full conditional distribution

We detail our derivation of Equation 4.23 below. Recall that we define the K-vector σ such

that Σ = diag[σ], and note that all proportional symbols imply log-proportional:

logp
(
σ
∣∣Yobs,F,V,Λ

)
∝ logp

(
Yobs

∣∣σ,F,V,Λ)+ logp(σ)

=
P∑

j=1

logp
(
yobs
j

′
∣∣∣σ,F,vj, λj

)
+ logp(σ)

∝ −1

2

P∑
j=1

λj

(
FΣvj − yobs

j

′
)t

δ′
j

(
FΣvj − yobs

j

′
)
+ logp(σ)

∝ −1

2

P∑
j=1

λj

(
vt
jΣFtδ′

jFΣvj − 2vt
jΣFtδ′

jy
obs
j

′
)
+ logp(σ)

∝ −1

2

P∑
j=1

λj

(
σt diag[vj]F

tδ′
jF diag[vj]σ − 2σt diag[vj]F

tδ′
jy

obs
j

′
)
+ logp(σ)

∝ −1

2
σt

(
P∑

j=1

λj diag[vj]F
tδ′

jF diag[vj]

)
σ

− σt

(
P∑

j=1

λj diag[vj]F
tδ′

jy
obs
j

′
)

+ logp(σ)

∝ −1

2
σt

(
diag[τ ] +

P∑
j=1

λj diag[vj]F
tδ′

jF diag[vj]

)
σ

− σt

(
P∑

j=1

λj diag[vj]F
tδ′

jy
obs
j

′
)

∝ −1

2

(
σ − µσ

)t
Pσ

(
σ − µσ

)
,

(4.24)
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where

Pσ = diag[τ ] +
P∑

j=1

λj diag[vj]F
tδ′

jF diag[vj] and

µσ = P−1
σ

(
P∑

j=1

λj diag[vj]F
tδ′

jy
obs
j

′
) (4.25)

This implies

logp
(
σ
∣∣Yobs,F,V,Λ

)
= θ
(
σ;µσ ,Pσ

)
. (4.26)

4.8.6 Sign constraint on the loadings

Regardless of which prior (i.i.d. vs shrinkage) or constraint (sparsity vs orthogonality) we

choose, we must enforce a sign constraint on a single element in each row of L for full

identifiability. Let γk ∈ {1, . . . , P} be the index of the Kth row of L with the sign constraint

(i.e. require ℓγkk ≥ 0). If the sample ℓ
(d)
kγk

< 0, then we simply multiply row k of L(d) by −1

to ensure ℓ
(d)
kγk
≥ 0. These K sign-constrained elements are not required to be in the same

row of L, and we choose these rows in a way that maximizes the posterior identifiability of

L. In practice, we apply a simple heuristic where for k = 1, . . . , K

γk = argmax
j∈1,...,P

 ℓ̄
abs
jk√∑D

d=1

(∣∣∣ℓ(d)jk

∣∣∣− ℓ̄absjk

)2
 and ℓ̄

abs
jk =

1

D

D∑
d=1

∣∣∣ℓ(d)jk

∣∣∣ . (4.27)

In the absence of sign constraints, the marginal posteriors of many elements of L are bimodal

and symmetric across zero. Our heuristic aims to find an index in each column of L with

low mass near 0 and simply chose the positive mode.

4.8.7 Sampling from Λ

Regardless of the prior on the loadings, we sample from Λ
∣∣F,Yobs,L using the same con-

jugate Gibbs sampler as Tolkoff et al. (2018) in conjunction with the data augmentation
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algorithm from Section 4.3.1.1. The Gamma(aΛ, bΛ) (shape, rate parameterization) prior on

the diagonal elements of Λ results in a simple expression for the full conditional distribution

of λj for j = 1, . . . , P conditional on the factors F. Specifically, each λj is distributed as

λj
∣∣Yobs,F,L ∼ Gamma

(
aΛ +

Nobs
j

2
, bΛ +

1

2

N∑
i=1

δij
(
yij − ℓtjfi

)2)
. (4.28)

This computation only requires run time O(NPK) and, in our experience, time spent esti-

mating Λ does not contribute significantly to the overall run time of the MCMC chain.

Note that as with the loadings in Section 4.3.1.2, we also derive a strategy for sampling

from these precisions without conditioning on F via HMC. As we are satisfied with the

Tolkoff et al. (2018) procedure, we have not implemented this strategy, but the derivation

can be found below. Naturally, this HMC sampler requires we compute the gradient of the

likelihood with respect to the loadings as follows:

∂ log p
(
Yobs

∣∣Λ)
∂λj

=
1

p(Yobs |Λ)

∫
p(F)

∂p
(
Yobs

∣∣F,Λ)
∂λj

dF

=
1

p(Yobs |Λ)

∫
p(F)p

(
Yobs

∣∣F,Λ)
×

(
Nobs

j

2
λ−1
j −

1

2

(
Fℓj − yobs

j

′
)t

δ′
j

(
Fℓj − yobs

j

′
))

dF

= E

[
Nobs

j

2
λ−1
j −

1

2

(
Fℓj − yobs

j

′
)t

δ′
j

(
Fℓj − yobs

j

′
) ∣∣∣∣∣Yobs,Λ

]

=
Nobs

j

2
λ−1
j −

1

2
ℓtjE
[
Ftδ′

jF
∣∣Yobs,Λ

]
ℓj + ℓtjE

[
Ft
∣∣Yobs,Λ

]
δ′
jy

obs
j

′

− 1

2
yobs
j

′t
δ′
jy

obs
j

′

(4.29)

The conditional expectations of the latent factors are the same as in Section 4.3.1.2. Note

that we restrict Λ to be diagonal, so we only consider the diagonal elements of the gradient.

Once we have computed this gradient, we employ it in standard HMC to sample from the

full conditional of Λ.
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4.8.8 Timing

4.8.8.1 Simulation details

To simulate each data set for the timing comparison, we generate a random coalescent tree

with N tips (Kingman, 1982). We then simulate the factors F according to K independent

Brownian diffusion processes on the tree and subsequently re-scale the factors so that each

column has unit variance. We draw V from a uniform distribution on the Stiefel manifold.

To avoid identifiability challenges associated with values of Σ having similar magnitudes, we

set σk = 2−k
√
P for k = 1, . . . , K. Note that we multiply by

√
P so that the expectations

of ℓ2kj = σ2
kv

2
kj remain the same regardless of P . We sample the residual variances λ−1

j

independently from Gamma(2, 4) for j = 1, . . . , P , which keeps the contribution of the

residual variance to the total variance similar to that of the latent factors. Finally, we draw

ϵ ∼ MN
(
0, IN ,Λ

−1
)
and compute Y = FΣV+ϵ. As all methods rely on the same principles

for handling missing data, we do not remove any observations from the simulated data sets.

When performing inference, we assume the tree is fixed to its true value used to simulate

the factors F. We use the orthogonality constraint on the loadings and employ the post-

processing regime discussed in Section 4.3.1.3 to rotate results from each sampler (except the

one associated with the orthogonal shrinkage prior) to enforce this constraint. For the model

with the orthogonal shrinkage prior, we assume both forced ordering and spacing (α = 0.9).

4.8.8.2 Effective sample size calculations

To understand the relative performance of each inference regime, we compare the effective

sample size (ESS) per second of the loadings across all four samplers. Draws from an MCMC

simulation are often auto-correlated, and the total number of steps in the chain is rarely a

direct proxy for our confidence in the posterior estimates. ESS approximates the number of

independent samples from the chain. As researchers typically set a minimum ESS threshold

to determine the length of MCMC simulations, we compare the minimum ESS per unit time.
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Let ESS
(m)
kj be the effective sample size for ℓkj in replicate m and ESS

(m)
min = mink,j ESS

(m)
kj for

m = 1, . . . , 3. We compute ESSmin = 1
3

∑3
m=1 ESS

(m)
min/t

(m) for all models, where t(m) is the

time required for the mth MCMC simulation. Actual ESS values were calculated using the

Julia package MCMCDiagnostics.jl. We compare these values in Figure 4.1 and Table 4.2.
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Table 4.2: Comparison of computational efficiency. Effective sample size computed using
the Julia package MCMCDiagnostics.jl.

N P K
minimum ESS per minute speed increase over sampled

Sampled Gibbs HMC orthogonal Gibbs HMC orthogonal

50

10
1 530 5100 5700 2000 9.8× 11.0× 3.8×
2 500 3900 2500 810 7.8× 4.9× 1.6×
4 680 2200 1400 450 3.3× 2.0× 0.7×

100
1 190 1400 1700 170 7.6× 9.1× 0.89×
2 150 1000 870 130 7.1× 5.9× 0.89×
4 52 550 250 20 11× 4.7× 0.39×

1000
1 34 460 250 5.2 14× 7.4× 0.15×
2 27 390 85 0.87 14× 3.1× 0.032×
4 23 320 23 0.51 14× 1.0× 0.022×

100

10
1 270 4100 3000 1100 15× 11× 4.0×
2 160 2100 2000 400 13× 12× 2.5×
4 51 680 500 110 13× 9.9× 2.1×

100
1 33 360 480 94 11× 14× 2.9×
2 18 240 290 35 13× 16× 1.9×
4 17 200 83 38 12× 4.8× 2.2×

1000
1 3.9 54 53 2.9 14× 14× 0.75×
2 2.5 82 15 0.98 33× 5.8× 0.39×
4 2.0 99 5.3 0.19 49× 2.6× 0.092×

500

10
1 5.0 740 460 170 150× 92× 33×
2 3.4 260 280 59 77× 83× 17×
4 1.7 160 170 30 93× 98× 18×

100
1 0.77 95 110 25 120× 140× 32×
2 0.37 20 28 5.4 56× 77× 15×
4 0.46 18 12 3.7 40× 25× 8.1×

1000
1 0.02 1.8 0.71 0.68 90× 35× 34×
2 0.018 2.4 0.65 0.11 130× 36× 6.1×
4 0.011 1.5 0.16 0.032 140× 15× 2.9×

(table continued on next page)
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N P K
minimum ESS per minute speed increase over sampled

Sampled Gibbs HMC orthogonal Gibbs HMC orthogonal

1000

10

1 1.1 170 290 58 160× 270× 54×

2 0.54 84 190 28 160× 350× 52×

4 0.24 49 80 10 210× 340× 44×

100

1 0.098 35 38 9.2 350× 390× 94×

2 0.064 15 12 2.8 230× 180× 44×

4 0.065 7.6 5.8 1.0 120× 90× 15×

1000

1 0.0017 0.5 0.25 0.3 300× 150× 180×

2 0.0015 0.67 0.15 0.085 450× 100× 57×

4 0.0015 0.4 0.06 0.02 270× 40× 14×

4.8.9 Identifying label switching

As discussed in Section 4.5.2, the post-processing algorithm used to induce orthogonality

when sampling under the i.i.d. prior can result in label switching. This phenomenon occurs

when elements of the scale parameter σ have significantly overlapping posterior distributions.

As the post-processing algorithm orders the factors based on the magnitude of the scale

parameters, it will swap two factors when their scales switch in order. Because of this, the

estimated posterior distribution of the loadings and factor values associated with two factors

undergoing label-switching will be a mixture of some (unknown) underlying distributions

that we are trying to estimate. This mixing can obscure signals in our data.

Consider Figure 4.7 as a toy example where we know the true underlying distributions.

In practice, we do not know these distributions (if we did we wouldn’t need to infer them).

We assume a 3-factor model where the posterior of scales σ1 and σ2 are slightly overlapping.

If we then order the rows of the loadings according to the the scales σ, the estimated rows
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of the loadings clearly switch at the places where the true σ1 < σ2. We see evidence of

this occurring in the plot of the loadings where samples from the posterior of ℓ11, which are

normally greater than 1, occasionally have unusually low values near 0. At the same points

in the chain samples from ℓ21, which are normally near 0, have unusually high values near

1. It appears that the estimated samples from the posterior of ℓ11 and ℓ21 are occasionally

switching between the two.

Label switching is not always as obvious as the simple example depicted here in Figure 4.7.

In Figure 4.2, all elements of σ appear close to each other and there is likely a higher degree of

overlap between pairs of factors. Rather than obvious switching, the posteriors of the loadings

under the i.i.d. prior appear to blend into each other. While it is possible that the posteriors of

the loadings really are overlapping, the apparently overlapping scale parameters and skewed

tails of the each of loadings posterior densities toward the mean of the other distribution

suggests label switching. Repeating the analysis with the orthogonal shrinkage prior reveals

distinct posterior distributions in the relevant parameters of the loadings, confirming that

label switching is occurring under first analysis (i.i.d. prior with post processing).

4.8.10 Cross validation

Our model selection strategy seeks to identify the shrinkage strength (when using the shrink-

age prior) or number of factors (when using the i.i.d. prior) that provides optimal predictive

performance via cross-validation. To this end, we posit M sub-models characterized by the

meta-parameters Ω1, . . . ,ΩM . Under the i.i.d. prior, Ωi = K [i] is the number of factors in

model i. For example, our default for the i.i.d. prior assumes Kmax = 5 and M = 5 models

with (K [1], . . . , K [M ]) = (1, 2, 3, 4, 5). Under the shrinkage prior, let Ωi = {a[i],b[i]} be the

shapes and rates, respectively, of the gamma priors on the shrinkage multipliers ν1, . . . , νK

for model i. We typically retainKmax = 5 and define the 5 sub-models as a[i] = 10(i+1)/21Kmax

and b[i] = 1Kmax for i = 1, . . . , 5.

We evaluate the predictive performance of each model on R replicate data sets via R-fold
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Figure 4.7: Example of label switching. The top trace plots are samples from a known
distribution. Note that in practice, we to not know the true underlying distribution. The
bottom plot demonstrates how ordering the scale parameters can induce label switching
between rows of the loadings. Here, there is label switching between the first two factors,
but not the third. The switching in the estimated parameters occurs at the MCMC states
where the “true” σ1 < σ2 (normally the reverse is true).

cross-validation. For each replicate j = 1, . . . , R, we randomly partition the observed data

Yobs into a training set Ytr
j containing (100 − 100

R
)% of the data and a validation set Yval

j

with the remaining 100
R
% such that each observation occurs in exactly one validation set.

LetΘ = {L,Λ} be the model parameters relevant to the likelihood. We first approximate

p
(
Θ
∣∣Ytr

j ,Ωi

)
for i = 1, . . . ,M , j = 1, . . . , R via MCMC simulation as described in Section

4.3. We then compute the expected log predictive density (Gelman et al., 2013) πij =

E
[
logp

(
Yval

j

∣∣Ytr
j ,Θij

)]
for i = 1, . . . ,M , j = 1, . . . , R, where Θij is a random variable with
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density p
(
Θ
∣∣Ytr

j ,Ωi

)
. We select Ωm, where m = argmaxi

1
R

∑
j πij, as the optimal model

and approximate p
(
L,Λ

∣∣Yobs,Ωm

)
as the final step in the analysis plan.

4.8.11 Phylogenetic latent liability model

In the case of binary traits, we assume the latent liability model of Cybis et al. (2015).

Specifically, rather than assuming the observations Y = FL+ ϵ, we introduce an additional

latent variable Z = {zij} for i = 1, . . . , N , j = 1, . . . , P and assume Z = FL + ϵ. These

latent liabilities zij are connected to the observations yij via the link function yij = gj(zij)

where gj(x) = x if trait j is continuous, gj(x) = 1{x ≤ 0} if j is binary.

Under this model, the full conditional distributions of the latent liabilities are independent

truncated Gaussian distributions with densities

p
(
zij
∣∣ yij, fi, ℓj, λj, tj ) ∼ θ

(
zij; f

t
iℓj, λj

)
1{gj(zij) = yij} . (4.30)

As these full conditional distributions are independent, we can sample from them efficiently

via a simple rejection sampler. Specifically, we first draw from F |Z,Λ,F as in Section

4.3.1.1. We then sample the proposal zij ∼ N
(
ftiℓj, 1/λj

)
that we accept if gj(zij) = yij and

reject otherwise. Note that for each discrete trait j, we must also fix λj = 1 to ensure the

variance of the latent traits j are identifiable (see Tolkoff et al., 2018).

4.8.12 Phylogenetic tree inference

4.8.12.1 Yeast

For they yeast analysis, we first infer a phylogenetic tree for the 154 phenotyped strains

using the 2.8 megabase DNA sequence alignment of Gallone et al. (2016) (see subsection

Phylogenetic Tree for the Sequenced Collection inMethods of Gallone et al. (2016) for details).

Our phylogenetic tree model includes an uncorrelated relaxed clock model (Drummond et al.,
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2006), an HKY+G substitution model (Hasegawa et al., 1985; Yang, 1994) and a constant-

population coalescent prior on the tree (Kingman, 1982).

We perform MCMC simulation via BEAST (Suchard et al., 2018) to approximate the

posterior distribution of the phylogenetic tree. We run the MCMC chain for 10 million

states, sampling the tree and related parameters every thousand states and the factor related

parameters every 10 thousand states. Inspection of relevant trace plots indicated the the

MCMC chain had achieved stationarity by 1 million states, and we exclude the first million

states as burn-in. We compute the maximum clade credibility (MCC) tree as a point estimate

of the phylogenetic tree using TreeAnnotator (Rambaut and Drummond, 2015).

4.8.12.2 New World monkeys

We simultaneously infer the NWM tree structure with the latent factor model using DNA

sequence alignments of Aristide et al. (2015). To infer the tree structure, we partition the taxa

into four monophyletic clades consisting of the 1) Atelidae, 2) Aotidae and Callitrichidae, 3)

Cebidae and 4) Pitheciidae respectively and place zero prior probability on tree topologies

that do not maintain these clades. Otherwise, we use the same phylogenetic tree model and

inference procedure as described in Section 4.8.12.1.

4.8.13 Additional results

We present the full results of our yeast analysis below.
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Figure 4.8: Posterior summary of loadings of 5-factor PFA on yeast data set. (caption on
next page)
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4.8 (previous page): The first factor primarily captures differences associated with tolerance
to environment and nutrient stress as well as reproductive ability. Dots represent posterior
means while bars cover the 95% highest posterior density (HPD) interval. Colors represent
the posterior probability that the parameter is greater than 0.
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Figure 4.9: All five factors plotted on yeast phylogeny with strain origin. Stars at the tips
indicate mosaic strains as identified by Gallone et al. (2016). The first factor separates the
Beer 1 clade from the remaining strains.
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CHAPTER 5

Phylogenetic structural equation modeling

5.1 Introduction

Phylogenetic comparative methods seek to untangle the complex relationships between phe-

notypes over a group of organisms’ evolutionary history. Until recently, Bayesian comparative

methods have been limited computationally in the number of unique traits or phenotypes

they can simultaneously examine. Recent work by Tolkoff et al. (2018) and Hassler et al.

(2022, Chapter 4) has expanded the realm of computationally feasible Bayesian analyses from

those examining dozens of traits to those examining thousands. These approaches, however,

rely on a phylogenetically-informed latent factor model that is agnostic to the structure of

the data.

We generalize phylogenetic factor analysis to phylogenetic structural equation modeling

that explicitly accounts for the underlying structure in the data. By structure, we mean that

the overall data set can be naturally partitioned into two or more groups of traits that may

be related to each other but are likely to have different sets of selective pressures acting on

them. For example, in Section 5.4.3 we study the domestication of beer yeast with data from

Gallone et al. (2016). We analyze a data set with 154 strains of yeast and 82 observations

per strain. These 82 traits are divided as follows: 62 traits describing yeast growth rates

under varying conditions, 16 traits related to the production of various aromatic compounds

and four other traits primarily associated with reproductive ability. When Hassler et al.

(2022, Section 4.6.2) analyze this data set using phylogenetic factor analysis, they include
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all 82 traits in a single latent factor model. However, it is possible, and indeed likely, that the

selective forces driving growth under varying stress conditions are distinct from those driving

the production of aromatic compounds. Mapping all 82 traits to the same low-dimensional

latent factors ignores this.

As an alternative, we develop a more structured model that can map different sets of

traits to an evolutionary process on a phylogenetic tree in different ways. Some groups of

traits may be mapped to the tree using their own phylogenetic factor model, where the

high-dimensional traits arise from the evolution of low-dimensional factors on tree. Other

traits may be mapped directly to the tree without dimension reduction. Importantly, the

model permits correlated between different groups of latent factors / traits. In the yeast

domestication analysis, for example, we measure the evolutionary correlation between the

traits related to reproductive ability and both sets of latent factors associated with growth

under stress and production of aromatic compounds, respectively.

Phylogenetic structural equation modeling inherits many of the advantages and challenges

of the less-structured models on which it is based. Namely, assuming the model extensions

all meet certain criteria, one can compute likelihoods and perform inference in linear time

with respect to both the number of taxa and traits. Conversely, the lack of identifiability that

plagues latent factor models is compounded by this more-structured model. We develop new

inference procedures to address these challenges, including a novel procedure for sampling

from the space of unusually structured correlation matrices.

We demonstrate the utility of this new modeling framework in four real-world applica-

tions, including measuring the relationships between 1) HIV immune escape mutations and

clinical outcomes, 2) floral phenotypes and pollinator species, 3) yeast stress tolerance and

reproductive ability and 4) SARS-CoV-2 ACE2 binding affinity (related to infectiousness)

and the virus’ ability to evade human immune response. We describe the model and inference

details in the sections below.
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5.2 Phylogenetic structural equation model

Assume that we have observed a set of P traits across N taxa. We partition those traits

into M non-overlapping subsets and form the N × Pm matrices Ym for m = 1, . . . ,M . Let

ymi be the traits for taxon i in partition m. We assume that

ymi | fmi,Lm,Λm
ind∼ N

(
Lt

mfmi,Λ
−1
m

)
for i = 1, . . . , N,m = 1, . . . ,M (5.1)

where fmi is a Km-vector of latent factors, Lm is a Km × Pm (Km ≤ Pm) loadings matrix

and Λm is a Pm × Pm precision matrix.

Let fi =
(
ft1i, . . . , f

t
Mi

)t
be the K-vector (K =

∑M
m=1Km) of latent factors for taxon

i and all M trait subsets. We assume that these latent factors arise from a multivariate

Brownian diffusion (MBD) process on a phylogenetic tree. The phylogeny F is a directed

acyclic graph with N degree-one tip nodes ν1, . . . , νN , N − 2 degree-three internal nodes

νN+1, . . . , ν2N−2 and one degree-two root node ν2N−1. With the exception of the root, there

is an edge connecting each node νi to its parent νpa(i) with length ti corresponding to the

amount of evolutionary time separating the two nodes. The MBD process implies that

for i = 1, . . . , 2N − 2 (i.e. all non-root nodes), the latent factors fi associated with each

node νi are drawn from a normal distribution fi ∼ N
(
fpa(i), tiΣ

)
, where Σ is an estimable

K × K between-factor covariance matrix. This results in the latent factors at the tips

F = (f1, . . . , fN)
t being matrix-normally (MN) distributed as follows:

F ∼ MN

(
1Nµ

t,Ψ+
1

κ0
JN ,Σ

)
(5.2)

where µ is latent factor value at the root of the tree, 1N is a N -vector of ones, JN is a N×N

matrix of ones, κ0 is the prior sample size of the root mean and Ψ = {Ψij} is the between-

taxon covariance matrix that is a deterministic function of the phylogeny. Specifically, each

diagonal element Ψii of Ψ is the sum of the branch lengths from the root node ν2N−1 of the
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phylogeny F to tip node νi, and each off-diagonal element Ψij is the sum from the root to

the most recent common ancestor of nodes νi and νj.

This model construction results in the data Y = (Y1, . . . ,YM) being distributed as

vec(Y) ∼ N
(
vec
(
1Nµ

tL
)
,LtΣL⊗

(
Ψ+

1

κ0
JN

)
+Λ−1 ⊗ IN

)
(5.3)

where vec(.) is the column-wise vectorization operator,

L =


L1 0 · · · 0

0 L2 · · · 0
...

...
. . .

...

0 0 · · · LM

 and Λ =


Λ1 0 · · · 0

0 Λ2 · · · 0
...

...
. . .

...

0 0 · · · ΛM

 . (5.4)

Qualitatively, this model is structured so that each partition of the data Ym for m =

1, . . . ,M has its own sub-model characterized by parameters Lm and Λm that map the data

to the tips of the phylogenetic tree. Conditional on the factors F at the tips of the tree, the

data associated with each sub-model are independent from each other. However, the latent

factors F evolve along the phylogeny F where they may be correlated with each other via

the evolutionary covariance matrix Σ. As such, information is shared between these various

sub-models through the evolutionary process on the tree. This model allows researchers to

learn the low-dimensional structure of different groups of traits independently while also

measuring the evolutionary correlation between groups that may or may not be mapped to

the tree via dimension reduction.

5.2.1 Fast likelihood computation

Computing the likelihood naively from the likelihood in Equation 5.3 scales O(N3P 3) and

is computationally prohibitive for all but the smallest problems. However, straightforward

application of the algorithms developed by Hassler et al. (2020, Section 3.2.1.2) and Hassler
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et al. (2022, Section 4.2.1.1) allow for likelihood calculation in order O(NPK2 +NK3).

Specifically, these approaches allow fast likelihood calculation when one can compute some

ri, mi and Pi for i = 1, . . . , N such that

p(yi | fi,L,Λ) = riθ̂(fi;mi,Pi) , (5.5)

where

logθ̂(z;µ,P) =
1

2
logd̂et(P)− rank(P)

2
log2π − 1

2
(z− µ)t P (z− µ) (5.6)

and d̂et(P) is the product of the non-zero singular values ofP. Given that p(ymi | fmi,Lm,Λm ) =

rmiθ̂(fmi;mmi,Pmi) for m = 1, . . . ,M (Hassler et al., 2022, Section 4.8.1) and that the tip

observations ymi are independent conditional on the latent factors fi, we have

logp(yi | fi,L,Λ) =
M∑

m=1

logp(ymi | fmi,Lm,Λm )

=
M∑

m=1

logrmi + logθ̂(fmi;mmi,Pmi)

= logri + logθ̂(fi;mi,Pi), where

ri =
M∏

m=1

rmi,

mi =
(
mt

1i, . . . ,mMi

)t
and

Pi =


P1i 0 · · · 0

0 P2i · · · 0
...

...
. . .

...

0 0 · · · PMi

 .

(5.7)

As such, the computational burden of computing these partials in this more structured

model is simply the sum of the computational costs of each of the sub-models. Once these

partials have been calculated, we can complete the likelihood calculation in O(NK3) using
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the Hassler et al. (2020, Section 3.2.1.2) algorithm.

5.2.2 Common model extensions

While there are numerous possible model extensions that place constraints on Lm andΛm, we

focus on three that have been previously explored. We summarize these various extensions

in Table 5.1.

Sub-model Description Dimensions Lm Λm

un-
extended

trait values are directly ob-
served at the tips of the tree

Km = Pm Lm = IPm Λm =∞IPm

residual
variance

trait values are observed
with some uncertainty

Km = Pm Lm = IPm

positive-
definite

latent
factor

high-dimensional trait val-
ues are generated via some
low-dimensional process

Km < Pm unrestricted* diagonal

Table 5.1: Three possible Gaussian model extensions for the phylogenetic structural equation
model. *Restrictions may be necessary in practice for identifiability during inference.

5.3 Inference

We approach inference from a Bayesian perspective as it allows for both 1) simpler estimation

of uncertainty in model parameters and 2) simultaneous inference of the phylogenetic tree

to account for uncertainty in the evolutionary history. From this perspective, we seek to

sample from the posterior distribution

p(Σ,L,Λ,F |Y,S) ∝ p(Y |Σ,L,Λ,F )p(S | F )p(Σ)p(L)p(Λ)p(F), (5.8)

where S is genetic sequence data (e.g. DNA or RNA). See Lemey et al. (2009) for a thorough

discussion of estimating the tree structure F .
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Relevant model parameters that must be inferred are the loadings Lm associated with

any latent factor model, residual precision Λm associated with any residual variance or latent

factor model, and joint evolutionary covariance matrix Σ. To exploit existing approaches

for sampling from correlation matrices, we decompose Σ into a diagonal scale component

D = diag[d] and correlation component C such that Σ = DCD. We partition Σ by sub-

model such that

Σ =


Σ11 · · · Σ1M

...
. . .

...

Σt
1M · · · ΣMM

 =


D1 · · · 0
...

. . .
...

0 · · · DM




C11 · · · C1M

...
. . .

...

Ct
1M · · · CMM



D1 · · · 0
...

. . .
...

0 · · · DM


(5.9)

We consider two different kinds of sub-models. We define low-rank sub-models as those

where Km < Pm, and full-rank sub-models as those where Km = Pm. For any low-rank

sub-model m, we impose the identifiability constraint Σmm = Dm = Cmm = IKm . Note that

we do not place any restrictions on off-diagonal blocks Cmn for m ̸= n besides the global

constraint that C be positive-definite. This means that latent factors may not be correlated

with other factors within the same sub-model, but may be correlated with factors from other

sub-models.

We explore the procedures for sampling from the posterior distributions of these model

parameters in the sections below.

5.3.1 Inferring the residual precisions Λ1, . . . ,ΛM

For un-extended sub-models n, the residual precisionΛn is fixed and need not be inferred. For

residual variance or latent factor sub-models m, we utilize the conditional independence of

each partition to sample independently from Λm |Ym,Fm,Lm . Of course, F = (F1, . . . ,FM)

is unobserved, so we first draw from F |Y,Σ,L,Λ,F via a full conditional Gibbs sample

using methods discussed in Hassler et al. (2022, Section 4.8.2.1).
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For sub-models where Λm is diagonal, we place conjugate gamma priors on each diagonal

element of λj and sample them according to the procedure in Hassler et al. (2022, Section

4.3.4). For sub-models where Λm is not necessarily diagonal, we place a Wishart prior on

Λm and sample it according to the procedure in Hassler et al. (2020, Section 3.3.1).

5.3.2 Inferring the loadings L1, . . . ,LM

For latent factor sub-models, we must infer the loadings matrices Lm. As with the error

precisions Λ1, . . . ,ΛM , the sampling methods of Hassler et al. (2022, Section 4.3.1) apply

in this context with only trivial modification. Preliminary experiments with inference un-

der this more structured model, however, suggested that the methods developed by Hassler

et al. (2022) to induce posterior identifiability and prevent label switching may be inade-

quate in this new context. As such, we explore alternative procedures for inducing posterior

identifiability below.

5.3.2.1 Procrustes post-processing

While all the procedures for sampling from the loadings discussed in Tolkoff et al. (2018)

and Hassler et al. (2022, Section 4.3) apply in this partitioned model, we are still faced with

the same identifiability challenges that plague latent factor models generally. While much

work has been done to address these challenges (see Holbrook et al., 2016; Jauch et al.,

2021; Papastamoulis and Ntzoufras, 2022), Hassler et al. (2022, Section 4.3.1.3) attempt to

address this issue by post-processing the posterior samples so that the loadings matrix has

orthogonal rows with decreasing norms. This post-processing induces identifiability up to

sign changes and row-wise permutations of the loadings. In some cases, however, the lack of

identifiability with respect to row-wise permutations of the loadings results in label switching

in the posterior.

To combat the label switching problem, Hassler et al. (2022, Section 4.3.2.1) also imple-
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ment a geodesic Hamiltonian Monte Carlo (HMC) sampler modeled on work by Holbrook

et al. (2016) that can sample directly from the space or orthogonal matrices. The geodesic

HMC sampler, however, is relatively slow compared to alternatives that sample from un-

restricted space, particularly for big-P data sets. It also sometimes requires artificial iden-

tifiability constraints that may potentially bias the relative magnitudes of each row of the

loadings matrix.

We borrow from the mixture model and multidimensional scaling literature to find an

alternative solution to the label switching problem. Specifically, we follow Okada and

Mayekawa (2018) and use Procrustes analysis to find the rotation for each sample from

the posterior that minimizes the distance to some iteratively updated value. We adapt this

post-processing procedure to the case of factor analysis in Algorithm 5.1. This approach is

Algorithm 5.1 Generalized Procrustes rotations to induce posterior identifiability in
Bayesian latent factor analysis

Lref
m ← 1

D

∑D
d=1 L

(d)
m

ϵ←∞
while ϵ > tol do

L̄m ← 0
for d← 1 to D do

W← Lref
m L

(d)
m

t

Compute orthonormal U,V and diagonal Σ s.t. UΣVt = W
via singular value decomposition

Q← UVt

L
(d)
m ← QL

(d)
m ▷ F and C, if sampled, must also be rotated by Q or Qt

L̄m ← L̄m + L
(d)
m /D

end for
ϵ←

∣∣∣∣Lref
m − L̄m

∣∣∣∣
Lref

m ← L̄m

end while

substantially similar to the procedure independently developed in the economics literature

by Aßmann et al. (2016) to induce identifiability in latent factor models.

This generalized Procrustes procedure differs from alternative post-processing techniques

in that, rather than restricting the loadings to some sub-space (e.g. the space of orthogonal
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matrices), it seeks to minimize posterior the variance of the loadings. This means that even

if the initial reference matrix Lref
m is restricted to some space, there is no guarantee that any

other samples L
(d)
m will be rotated to that space. However, we do not find this particularly

restricting as the constraints on the loadings are typically not motivated by biological insights

but rather the necessities of inducing identifiability.

In Figure 5.1, we demonstrate the ability of this approach to dealing with the label switch-

ing problem in the posterior of the loadings matrix from the New World monkey brain shape

analysis of Hassler et al. (2022, Section 4.6.4). Label switching was particularly present in

the Hassler et al. (2022) analysis, and they rely on Geodesic HMC to address this. Rather

than relying on geodesic HMC, we use the faster unrestricted Gibbs sampler of Hassler et al.

(2022, Section 4.3.1.1) coupled with Procrustes post-processing. Notably, Procrustes post-

processing results in substantially similar results as the geodesic HMC sampler. However,

the geodesic HMC approach requires about 80 minutes to achieve a median effective sam-

ple size (ESS) of 200, whereas sampling from un-restricted space using the Gibbs sampler

and Procrustes post-processing requires only 30 seconds to reach equivalent ESS. This is a

speedup of roughly 160 times for this particular N = 48, P = 1197, K = 3 data set.

5.3.2.2 Optimal rotation of the posterior

One advantage of the Procrustes post-processing approach is that it does not require arbi-

trarily imposing an identifiability constraint on the loadings. As such, we are free to find a

particular rotation of the loadings that is informed by biological data and the problem of

interest. As the motivating goal of the phylogenetic structural equation model introduced

in this paper is to measure associations between latent factors and some number of addi-

tional traits, we propose an (optional) additional step after post-processing that orients the

loadings and factors in a way that is most biologically informative (i.e. that maximizes the

posterior correlation between a factor and the trait(s) of interest). Assume trait j is the

trait of interest. Let the Km-vector cmj be the correlations between the latent factors in
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Figure 5.1: Comparison of sampling and post-processing methods for inducing identifiabil-
ity in the loadings matrix. Data consists of 3-dimensional coordinates for 399 endocranial
landmarks (P = 1197) in 48 species of New World monkeys (Aristide et al., 2016). We fit
a 3-factor model using an unrestricted Gibbs sampler to sample from the full conditional
posterior of the loadings (with the exception of the “geodesic HMC” run where we use
geodesic HMC (Holbrook et al., 2016) to sample directly from the space of orthogonal ma-
trices). For the unrestricted run, we post-process the output using 1) SVD post-processing
as described in Hassler et al. (2022, Section 4.3.1.3), 2) SVD post-processing followed by iter-
atively permuting the rows of the loadings to minimize posterior variance and 3) Procrustes
post-processing described in Algorithm 5.1. We show the marginal posterior distributions
for elements ℓ1,1, . . . , ℓ1,15 of the loadings matrix corresponding to coordinates for the first
five endocranial landmarks (points). The SVD post-processing regime results in a largely
non-identifiable posterior, characterized by high posterior variance on the elements of the
loadings matrix. Procrustes post-processing and geodesic HMC avoid this problem. SVD
post-processing with permutations does decrease posterior variance, but not to the extent of
Procrustes post-processing or geodesic HMC.

sub-model m and trait j (not in sub-model m). Any rotation of the loadings QLm must

be accompanied by an equivalent rotation of the correlations Qcmj so that post-processing

leaves the posterior density invariant.
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Let

Rm = {rm1, . . . , rmKm}, rmk = k +
m−1∑
n=1

Kn (5.10)

be the indices of the latent space associated with sub-model m. Without loss of generality,

we seek to find the rotation matrix Q∗ that maximizes the posterior mean of the element

crm1j in the correlation matrix C (i.e. the first element of cmj). If we let Q = (q1, . . . ,qKm)
t

and c∗mj = Qcmj, then c
∗
rm1j

= qt
1cmj. As such, we seek to identify some q∗

1 such that

q∗
1 = argmax

q1;qt
1q1=1

(
1

D

D∑
d=1

qt
1c

(d)
mj

)
= argmax

q1;qt
1q1=1

(
qt
1c̄mj

)
, where

c̄mj =
1

D

D∑
d=1

c
(d)
mj.

(5.11)

Therefore, q∗
1 = c̄mj/

∣∣∣∣c̄mj

∣∣∣∣ is just the normalized posterior mean of cmj. The remaining

q∗
2, . . . ,q

∗
Km

can then be set to an arbitrary basis for the null space of q∗
1. Alternatively, one

can repeat this procedure for additional factors in sub-model m with additional traits k. In

this case, you would perform the same calculations to calculate q∗
2, . . . ,q

∗
Km

. At each step

in the process however, one would project the result onto the null-space of the previously

optimized rows. In this way, one can choose a rotation of the loadings that maximizes the

association of the latent factors with specific traits of interest, rather than some arbitrary

rotation.

We emphasize that the rotations to optimize the posterior correlation between a latent

factor and a trait of interest are fundamentally different from the Procrustes rotations for

inducing identifiability. The Procrustes post-processing procedure starts with a posterior

distribution over unidentifiable or only weakly identifiable parameters and finds many ro-

tations (one for each sample from the posterior) that minimize the distance between each

sample and an iteratively updated reference matrix. The optimal rotation suggested in this
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section, however, starts with an identifiable posterior distribution and finds a single rotation

that, when applied to all samples from the posterior together, maximizes the posterior mean

of the correlation between one of the latent factors and a trait of scientific interest.

Finally, if one cannot easily choose a single trait with which to orient the posterior, then

it is possible to optimize some linear combination of the correlations between a factor and

several traits. For example, in Section 5.4.3, rather than rotating the posterior to maximize

correlation between the first factor and either yeast spore viability or sporulation efficiency,

we maximize the sum of the correlations between the first factor and spore viability and

sporulation efficiency.

5.3.3 Inferring the evolutionary scales d

Recall that we decompose the evolutionary covariance matrix Σ = DCD where D = diag[d]

and C is a correlation matrix with ones on the diagonal. As such, the vector d describes the

rate at which individual traits evolve along the tree.

One can sample from the scales d with HMC using the method proposed by Bastide et al.

(2021). HMC uses the gradient of the log-posterior

∇d logp(d,C,L,Λ |Y,F ) = ∇d logp(Y |d,C,L,Λ,F ) +∇d logp(d) (5.12)

to more efficiently traverse high-dimensional parameter space than the Metropolis-Hastings

algorithm. The Bastide et al. (2021) approach works for any model where we can calculate

the partial mean mi and precision Pi for i = 1, . . . , N as described in Section 5.2.1. We

modify this approach slightly so that we only update the elements of d that are not fixed

to 1 due to identifiability constraints. Otherwise, we use this approach with no additional

modification.
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5.3.4 Inferring the evolutionary correlation C

While inference procedures for other model parameters remain largely unchanged from pre-

vious work, the phylogenetic structural equation model requires new approaches to infer the

evolutionary correlation matrix C. Recall that to induce posterior identifiability, we assume

Cmm = I for any latent factor sub-model m. However, we do not place any constraints

on off-diagonal blocks Cmn,m ̸= n. This unusual structure where C has structural zeros

in some diagonal blocks but is not block-diagonal poses challenges to inference. While a

block-diagonal structure would solve these problems, the primary motivation for this model

is to explore the correlations between latent factors across sub-models, which would be zero

by construction in a block-diagonal C. We separate our inference strategies into two cases:

a special case with exactly one low-rank sub-model and a general case with two or more

low-rank sub-models. Note that, without loss of generality, we assume that there is at most

one full-rank sub-model, as multiple full-rank sub-models can be grouped together to form

one large, full-rank sub-model.

5.3.4.1 LKJ prior with structural zeros

Regardless of which scenario applies above, we place a modified Lewandowski-Kurowicka-Joe

(LKJ, Lewandowski et al., 2009) prior on the correlation matrix C:

p(C) ∝ det(C)η−1
∏

(k,ℓ)∈S

1{ckℓ = 0} (5.13)

where S = {(k, ℓ) : 1 ≤ k < ℓ ≤ K, {k, ℓ} ⊂ Rm for some m = 1, . . . ,M} is the set of index

pairs such that ckℓ is identically 0 and Rm (defined in Equation 5.10) is the set of indices

corresponding to sub-model m. We show below that this LKJ distribution modified to have

structural zeros arises naturally from the original derivation of the LKJ distribution in Joe

(2006). We also show that the structural zeros do not influence the marginal distributions

of the non-zero elements of C.
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Joe (2006) and Lewandowski et al. (2009) derive the LKJ distribution over the space of

correlation matrices (i.e. positive-definite matrices with ones along the diagonal). The LKJ

distribution has a appealingly simple density p(C) ∝ det(C)η−1, where high values (> 1) of

the parameter η place higher density on smaller correlations and low values (< 1) do the

reverse. Notably, η = 1 results in a uniform distribution across all correlation matrices.

While the LKJ distribution was developed for dense correlation matrices, it readily ex-

tends to our case with structural zeros. Joe (2006) derives this density by placing independent

Beta distributions (shifted to have support (-1, 1)) on the partial correlations arising from

a D-vine on the correlation matrix C. Lewandowski et al. (2009) extend this derivation to

any set of partial correlations that arise from any regular vine. While the positive-definite

constraint on C does not permit one to sample C by independently sampling each of its

off-diagonal elements from (-1, 1), the partial correlations, by construction, have no such

constraint.

A vine (Bedford and Cooke, 2002) onK variables is a series of nested trees {T1, . . . , TK−1}

where the edges tree Ti become the nodes of tree Ti+1 (see Joe and Kurowicka (2011) for

a detailed discussion of vines). The nodes in the base tree T1 represent the indices of

the correlation matrix {1, . . . , K} and the K − 1 edges represent a subset of the pairwise

correlations. Edges of the trees T2, . . . , TK−1 capture the remaining
(
K
2

)
− (K − 1) pair-wise

partial correlations. The D-vine is a vine where all nodes are at most degree-2. In this

case, the base tree T1 can be represented as a line of nodes connected by edges and can

be easily represented by v = (v1, . . . , vK) ∈ PK where PK is the set of all permutations of

(1, . . . , K). Joe (2006) assumes v = (1, . . . , K), but we relax this assumption for the sake of

demonstrating that structural zeros do not influence the marginal distributions of the free

parameters.

We introduce the following notation before demonstrating invariance of the LKJ dis-

tribution with structural zeros. Recall that we partition the correlation matrix as follows:
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C =


C11 · · · C1M

...
. . .

...

Ct
1M · CMM

 , (5.14)

where each diagonal block is a square matrix. Assume some U ⊂ {1, . . . ,M} such that

m ∈ U ⇒ Cmm = I. Let Rm =
{
1 +

∑m−1
n=1 Kn, . . . ,

∑m
n=1Kn

}
be the indices associated

with partition m, and let vm =
(
vm1 , . . . , v

m
Km

)
be a vector of length Km containing all the

elements of Rm in no particular order. We define the concatenation operator (x1, . . . , xn)⌢

(y1, . . . , ym) = (x1, . . . , xn, y1, . . . , ym). Let P = {pkℓ} be the matrix of partial correlations

defined by the D-vine on C with upper-triangular elements:

pvkvℓ =

 cvkvℓ if ℓ− k ≤ 1

cvkvℓ:vk+1,...,vℓ−1
if ℓ− k ≥ 2

(5.15)

where cvkvℓ:vk+1,...,vℓ−1
is the partial correlation between traits vk and vℓ conditional on traits

vk+1, . . . , vℓ−1. Finally, let f(.) be an invertible function such that f(C) = P.

Claim: Assume a D-vine with ordering v = (vu1 ⌢ . . . ⌢ vuM
), where u = (u1, . . . , uM) ∈

PM . The following then hold:

1. Pmm = I ⇒ Cmm = I

2. Sampling

pvkvℓ ∼ Beta(-1,1)(αℓ−k, αℓ−k) if {vk, vℓ} ̸⊂ Rm for all m = 1, . . . ,M

pvkvℓ = 0 if {vk, vℓ} ⊂ Rm for any m = 1, . . . ,M,
(5.16)

where αi = η + [K − 1− i]/2, imposes a the joint distribution on C = f−1(P)

p(C) ∝ det(C)η−1
∏

(k,ℓ)∈S

1{ckℓ = 0} . (5.17)
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3. A random correlation matrix distributed with kernel defined by Equation 5.17 will

have identical (but not independent) marginal correlations

ckℓ ∼ Beta(-1,1)(η +K/2− 1, η +K/2− 1). (5.18)

Proof (part 1): Within a partition, we must show that Pmm = I ⇒ Cmm = I. Assume

we have a partition defined by indices vm =
(
vm1 , . . . , v

m
Km

)
. We can divide this partition

into a series of overlapping sub-partitions v
1|j
m , . . . ,v

Km−j|j
m for j = 1, . . . , Km − 1 where

v
i|j
m =

(
vmi , . . . , v

m
i+j

)
. Finally, let C{(x1, , . . . , , xn)} be the diagonal block of C associated

with indices (x1, , . . . , , xn).

We demonstrate Pmm = I ⇒ Cmm = I by induction by noting that:

C
{
vi|j
m

}
= I for i = 1, . . . , Km − j and

pvmi vmi+j+1
= 0 for i = 1, . . . , Km − j − 1

⇒ C
{
vi|j+1
m

}
= I for i = 1, . . . , Km − (j + 1)

(5.19)

By the construction of the D-vine, pvmi vmi+1
= cvmi vmi+1

for i = 1, . . . , Km − 1. Therefore,

pvmi vmi+1
= 0 for i = 1, . . . , Km − 1 implies C

{
v
i|1
m

}
= I for i = 1, . . . , Km − 1.

To finish the proof we follow Lewandowski et al. (2009) and use the following formula for

calculating partial correlations. Given random variables X1, . . . , Xn with correlation matrix

R, the partial correlation between X1 and Xn with all other variables held constant is

c1n:2,...,n−1 =
cof(R; 1, n)√

cof(R; 1, 1) cof(R;n, n)
(5.20)

where cof(R; i, j) is the (i, j) cofactor of R (i.e. (−1)i+j times the determinant of the matrix

formed by removing row i and column j of R). In the context of the recursion, the becomes:

pvmi vmi+j+1
= 0 =

cof
(
C
{
v
i|j+1
m

}
; 1, j + 2

)
√

cof
(
C
{
v
i|j+1
m

}
; 1, 1

)
cof
(
C
{
v
i|j+1
m

}
; j + 2, j + 2

) (5.21)
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Note that cof
(
C
{
v
i|j+1
m

}
; 1, 1

)
= det

(
C
{
v
i+1|j
m

})
and cof

(
C
{
v
i|j+1
m

}
; j + 2, j + 2

)
= det

(
C
{
v
i|j
m

})
.

By the inductive assumption C
{
v
i|j
m

}
= I for i = 1, . . . , Km − j, we have

cof
(
C
{
vi|j+1
m

}
; 1, j + 2

)
= 0. (5.22)

To express this cofactor in terms of the correlation cvmi vmi+j+1
, note that the inductive assump-

tion results in

C
{
vi|j+1
m

}
=


1 0 cvmi vmi+j+1

0 I 0

cvmi vmi+j+1
0 1

 (5.23)

Therefore:

cof
(
C
{
vi|j+1
m

}
; 1, j + 2

)
= (−1)j+3 det

 0 I

cvmi vmi+j+1
0


= −cvmi vmi+j+1

(5.24)

Equations 5.22 and 5.24 imply that cvmi vmi+j+1
= 0 and C

{
v
i|j+1
m

}
= I. We conclude the proof

by noting that C
{
v
1|Km−1
m

}
= Cmm. ■

Proof (part 2): We use the standard change of variable formula:

pC(C) = pP(P) |det(J)| , (5.25)

where f(C) = P and J = ∂f(C)
∂C

. The following proof follows directly from Joe (2006). While

Joe (2006) relies on a specific D-vine with ordering v = (1, . . . , K), symmetry implies that

all results hold for any D-vine with arbitrary ordering. As such, we replace all indices k, ℓ

in Joe (2006) results with vk, vℓ.

The only challenge that prohibits immediate application of the Joe (2006) result to the

situation with structural zeros is the fact that the number of free parameters in P from
(
K
2

)
to(

K
2

)
−
∑

m∈U
(
Km

2

)
. Conveniently, the proof above demonstrates that P and C = f−1(P) have
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the same structure. Let R = {(k, ℓ) : 1 ≤ k < ℓ ≤ K, {k, ℓ} ̸⊂ Rm for all m = 1, . . . ,M} be

the set of index pairs such that pkℓ is not identically 0. We must compute the Jacobian J

that maps from {pvkvℓ : (vk, vℓ) ∈ R} → {cvkvℓ : (vk, vℓ) ∈ R}.

Joe (2006) demonstrate that the fully-parameterized Jacobian is lower-triangular. For

the case without structural zeros, Lemma 3 and Theorem 4 in Joe (2006) rely on this lower-

triangular structure of the Jacobian matrix J to calculate.

|det(J)| =
K−1∏
k=1

K∏
ℓ=k+1

∂pvkvℓ
∂cvkvℓ

=
K−1∏
k=1

K∏
ℓ=k+1

ℓ−k−1∏
m=1

[
(1− p2vkvk+m

)(1− p2vℓ−mvℓ
)
]−1/2

=
K−1∏
k=1

K∏
ℓ=k+1

(
1− p2vkvℓ

)[1+(ℓ−k)−K]/2
.

(5.26)

As the columns corresponding to the zero values of C are the same as the rows corresponding

to the zero values of P, removing the necessary rows and columns retains the same lower-
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triangular structure. In the case with structural zeros, Equation 5.26 becomes

|det(J)| =
∏

(vk,vℓ)∈R

∂pvkvℓ
∂cvkvℓ

=
∏

(vk,vℓ)∈R

ℓ−k−1∏
m=1

[
(1− p2vkvk+m

)(1− p2vℓ−mvℓ
)
]−1/2

=
∏

(vk,vℓ)∈R

ℓ−k−1∏
m=1

[
(1− p2vkvk+m

)(1− p2vℓ−mvℓ
)
]−1/2

×
∏

(vk,vℓ )̸∈R

ℓ−k−1∏
m=1

[
(1− p2vkvk+m

)(1− p2vℓ−mvℓ
)
]−1/2

=
K−1∏
k=1

K∏
ℓ=k+1

ℓ−k−1∏
m=1

[
(1− p2vkvk+m

)(1− p2vℓ−mvℓ
)
]−1/2

=
K−1∏
k=1

K∏
ℓ=k+1

(
1− p2vkvℓ

)[1+(ℓ−k)−K]/2

=
∏

(vk,vℓ)∈R

(
1− p2vkvℓ

)[1+(ℓ−k)−K]/2

(5.27)

The third equal sign is the result of the fact that, in the case with structural zeros

∏
(vk,vℓ )̸∈R

ℓ−k−1∏
m=1

[
(1− p2vkvk+m

)(1− p2vℓ−mvℓ
)
]−1/2

= 1 (5.28)

Theorem 1 in Joe (2006) states

det(C) =
K−1∏
k=1

K∏
ℓ=k+1

(
1− p2vkvℓ

)
. (5.29)
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We can rewrite Equation 5.29 as

det(C) =

 ∏
(vk,vℓ)∈R

(
1− p2vkvℓ

) ∏
(vk,vℓ )̸∈R

(
1− p2vkvℓ

)
=

 ∏
(vk,vℓ)∈R

(
1− p2vkvℓ

) ∏
(vk,vℓ )̸∈R

(1− 0)2


=

∏
(vk,vℓ)∈R

(
1− p2vkvℓ

)
(5.30)

Finally, the shifted Beta distribution Beta(-1,1)(α, β) has density:

p(x) ∝ (1 + x)α−1 (1− x)β−1 (5.31)

If α = β, this becomes:

p(x) ∝
(
1− x2

)α−1
(5.32)

Therefore, drawing all partial correlations as in Equation 5.16 results in a density (over the

partial correlations) of:

p(P) =
∏

(vk,vℓ)∈R

(
1− p2vkvℓ

)η+[K−1−(ℓ−k)]/2−1

(5.33)

Applying Equations 5.27 and 5.33 in the change-of-variable formula, we get

pC(C) = pP(P) |det(J)|

=

 ∏
(vk,vℓ)∈R

(
1− p2vkvℓ

)η+[K−1−(ℓ−k)]/2−1

 ∏
(vk,vℓ)∈R

(
1− p2vkvℓ

)[1+(ℓ−k)−K]/2


=

∏
(vk,vℓ)∈R

(
1− p2vkvℓ

)η−1

= det(C)η−1.

(5.34)
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The last equality follows from Equation 5.30. ■

Proof (part 3): Finally, we demonstrate that sampling the partial correlations as in 5.16

induces identical marginal distributions on the correlations

ckℓ ∼ Beta(-1,1)(η +K/2− 1, η +K/2− 1). (5.35)

Given that the marginal density can be derived from the joint density alone, the marginal

densities resulting from any particular D-vine with ordering v must hold regardless of choice

of v as long as the locations of the structural zeros remains the same. By construction of

the D-vine and assumptions in Equation 5.16,

cvivi+1
= pvivi+1

∼ Beta(-1,1)(η +K/2− 1, η +K/2− 1) ∀ i such that (vi, vi+1) ∈ R

(5.36)

given any choice of v that respects the location of the structural zeros. For any pair (k, ℓ) ∈ R

we can define some v such that (k, ℓ) = (vi, vi+1) for some i. As such, for any arbitrary ckℓ

such that (k, ℓ) ∈ R, we can construct a v such that ckℓ ∼ Beta(-1,1)(η +K/2− 1, η +K/2− 1).

■

5.3.4.2 Special case: exactly one low-rank sub-model

We develop two different strategies for inferring the evolutionary correlation matrix C with

structural zeros. The first, presented here, applies in the special case where there is exactly

one low-rank sub-model. In this special case we modify the inference procedure for sampling

from unconstrained C developed by Bastide et al. (2021). Bastide et al. (2021) decompose C

into its Cholesky factors C = ΓΓt (i.e. Γ is lower-triangular with positive diagonals). If we

arrange the sub-models such that the m = 1 corresponds to the single low-rank sub-model
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and m = 2 corresponds to the full-rank sub-model, C has the following structure:

C =

 I C12

Ct
12 C22

 . (5.37)

Claim: A correlation matrix structured as in Equation 5.37 will have a Cholesky decom-

position structured as

Γ =

 I 0

Γt
12 Γ22

 . (5.38)

Proof: Let

Γ =

Γ11 0

Γt
12 Γ22

 (5.39)

be the Cholesky decomposition of a matrix structured as in Equation 5.37. If Γ is lower-

triangular with positive diagonals, then Γ11 must also be lower-triangular with positive

diagonals. By definition

ΓΓt =

Γ11Γ
t
11 Γ11Γ

t
12

Γ12Γ
t
11 Γ12Γ

t
12 + Γ22Γ

t
22

 =

 I C12

Ct
12 C22

 . (5.40)

This implies that Γ11Γ
t
11 = I. As Γ11 is, by construction, a lower-triangular matrix with

positive diagonals, it is itself a Cholesky decomposition. By the uniqueness of the Cholesky

decomposition, Γ11Γ
t
11 = I implies that Γ11 is the Cholesky decomposition of the identity.

As such Γ11 = I. ■

The transference of structural zeros in C to the same structural zeros in Γ permits a

computationally convenient procedure for sampling from the posterior of Γ via MCMC.

While the constraints on the Cholesky decomposition of a correlation matrix (i.e. lower-

triangular with positive-diagonals and unit-norm rows) are substantially simpler to enforce

than that of the raw correlation matrix, Bastide et al. (2021) develop a bijective map from the
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space of K ×K Cholesky decompositions to R(
K
2 ) so that one can sample from unrestricted

space. Let γk = (γk,1, . . . , γk,k−1) be the first k− 1 elements of the kth row of Γ. The vectors

γ1, . . . ,γK are sufficient to define Γ as γkk =
√

1− γt
kγk and γk,k+1 = · · · = γk,K = 0. Each

γk is constrained to the Euclidean ball Bk−1. For each row, Bastide et al. (2021) sample from

the posterior of the transformed random variable xk = f−1(g−1(γk)) ∈ Rk−1 via HMC and

map from Rk−1 → Bk−1 in two steps by first using the inverse Fisher z-transformation f :

Rk−1 → B∞
k−1; fℓ(y1, . . . , yk−1) = exp(2yℓ)−1/(exp(2yℓ) + 1) and then the function g : B∞

k−1 →

Bk−1; gℓ(z1, . . . , zk−1) = zℓ
∏ℓ−1

i=1

√
1− z2i , where B∞

k−1 is the infinity-norm ball. Conveniently,

this mapping preserves zeros, so maintaining the zeros while sampling in transformed space

also maintains the zeros in Cholesky (and therefore correlation) space. In other words

γkℓ = gℓ(f(xk)) = 0 ⇐⇒ xkℓ = 0. As such, one can adapt the Bastide et al. (2021) procedure

for sampling from the posterior of the Cholesky decomposition Γ of the correlation matrix

C by simply fixing to zero each xkℓ ∈ R corresponding to the zeros in γk.

5.3.4.3 General case: two or more low-rank sub-models

For the general case with two or more low-rank sub-models, zeros in correlation space do

not necessarily translate to zeros in Cholesky space. Let Γm =
(
Γm1 · · · ΓmM

)
be the

rows of Γ corresponding to sub-model m. Without loss of generality, assume that sub-

models 1, . . . ,M − 1 are low-rank and sub-model M is full-rank. As demonstrated above,

C11 = I ⇐⇒ Γ1 =
(
I 0

)
. For m = 2, . . . ,M − 1, Cmm = I ⇐⇒ ΓmΓ

t
m = I (i.e. Γt

m

inhabits the Stiefel manifold VKm

(
RK
)
). However, the fact that Γ is lower-triangular means

that there are structural zeros in Γm, which existing methods for sampling from the Stiefel

manifold (e.g. Holbrook et al., 2016) cannot easily accommodate.

To avoid the challenging task of sampling from this unusual sub-set of the Stiefel manifold,

we do not re-parameterize via the Cholesky decomposition and instead sample directly from

the full conditional posterior of C via HMC. The gradient ∇C logp(Y |C,d,L,Λ,F ) is sup-

plied by Bastide et al. (2021). However, the challenge of implementing HMC in correlation-
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space is that correlation-space is bounded with multivariate boundary det(C) = 0. Any

HMC algorithm for sampling directly from correlation space must respect this boundary.

We first explain the fundamentals of HMC before discussing the specifics of dealing with

this boundary. For a more thorough introduction, see Neal (2010). Like the Metropolis-

Hasting algorithm, HMC samples from a distribution of interest by repeatedly proposing

new parameter values conditional on the current parameters and subsequently accepting or

rejecting those proposals. HMC, however, leverages the geometry of the posterior distri-

bution to make proposals that are both farther away from the current position and have

a high acceptance probability, allowing HMC to more efficiently traverse parameter space.

Specifically, HMC posits a particle with position variable q corresponding to some set of

model parameters and an auxiliary momentum variable p. This particle traverses a poten-

tial energy landscape defined by U(q) equal to the negative full conditional log-posterior of

the parameter corresponding to q. HMC generates parameter proposals q(t′) for some t′

where q(t) is the solution to the ordinary differential equation system

dq

dt
= M−1p(t)

dp

dt
= −∇qU(q(t))

(5.41)

with initial conditions q(0) equal to the current parameter value and p(0) randomly drawn

from a Gaussian distribution N(0,M). Typically, the Hamiltonian equations do not have

an analytical solution, and the trajectory of the parameter is approximated via a series of

linear steps. We outline a common HMC algorithm in Algorithm 5.2.

Algorithm 5.2 assumes that the parameters reside in unrestricted Euclidean space. This

algorithm, however, can easily be adapted to a bounded parameter space by allowing elastic

collisions off boundaries. Without loss of generality, let the boundaries of the parameter

space be defined by the curve b(q) = 0. Following from Afshar and Domke (2015), we modify

Algorithm 5.2 to handle reflections at the boundary (see Algorithm 5.3). In addition to
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Algorithm 5.2 HMC using leapfrog approximation

1: t← 0
2: Draw p(0) ∼ N(0,M)
3: q(0)← the current parameter value
4: for h = 1, . . . , H do
5: p(t+ ϵ/2)← p(t)− (ϵ/2)∇qU(q(t))
6: q(t+ ϵ)← q(t) + ϵM−1p(t+ ϵ/2)
7: p(t+ ϵ)← p(t+ ϵ/2)− (ϵ/2)∇qU(q(t+ ϵ))
8: t← t+ ϵ
9: end for
10: q∗ ← q(t)
11: H ← exp

(
−U(q(t)) + U(q(0))− p(t)tM−1p(t)/2 + p(0)tM−1p(0)/2

)
▷ Hastings ratio

12: α← min(1, H)
13: Draw u ∼ Uniform(0, 1)
14: if u < α then
15: Accept proposal q∗

16: else
17: Reject proposal q∗

18: end if

the gradient ∇qU(q(t)), reflective HMC also requires computing the time t at which the

trajectory q + tv hits the boundary and (assuming a collision occurs) the vector normal to

the boundary at the collision point.

In the context of sampling from the space of correlation matrices, the boundary is the

curve det(C) = 0. To implement reflective HMC, we must compute the time to collision

ϵintersect = min{s : det(C+ sV) = 0, s > 0} for some symmetric velocity matrix V with

zero-diagonals. To find the solutions to det(C+ sV) = 0, recall that the eigenvalues of

any matrix A are the roots of the characteristic polynomial det(A− sI). For invertible

V, det(C+ sV) = 0 ⇐⇒ det(−CV−1 − sI) = 0 which implies ϵintersect in Line 8 of

Algorithm 5.3 is the smallest positive eigenvalue of −CV−1. The velocity V, however, is

guaranteed to be singular in certain circumstances as the elements of V corresponding to

the structural zeros in C must also be zero. To circumvent this obstacle, we note that for

invertible C, det(C+ sV) = 0 ⇐⇒ det(−C−1V − (1/s)I) = 0. As such, the solutions to

det(C+ sV) = 0 are the reciprocal eigenvalues of −C−1V. C is a correlation matrix and
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Algorithm 5.3 HMC with reflections

1:
...

2: for h = 1, . . . , H do

3:
...

4: tsub ← t ▷ this code block replaces Line 6 in Algorithm 5.2
5: psub ← p(t+ ϵ/2)
6: while tsub < t+ ϵ do
7: v←M−1psub

8: ϵintersect ← min{s : b(q(tsub) + sv) = 0, s > 0}
9: if tsub + ϵintersect ≤ t+ ϵ then ▷ reflection occurs
10: q(tsub + ϵintersect)← q(tsub) + ϵintersectM

−1psub

11: a← ∇qb(q(tsub + ϵintersect)) ▷ vector normal to the boundary at intersection

12: psub ← psub − 2
pt
suba

ata
a ▷ reflection off boundary

13: tsub ← tsub + ϵintersect
14: else
15: q(t+ ϵ)← q(tsub) + (t+ ϵ− tsub)M−1psub

16: tsub ← t+ ϵ
17: end if
18: end while

19:
...

20: end for

21:
...

therefore invertible everywhere except along the boundary det(C) = 0. If C is in fact at the

boundary and non-invertible, we can still find the solutions to det(C+ sV) = 0 by selecting

some arbitrary offset u and noting that

det(C+ sV) = det((C+ uV) + (s− u)V) (5.42)

Even if C is singular, C + uV is almost surely full rank (although not necessarily posi-

tive definite). If e are the reciprocal eigenvalues of −(C+ uV)−1V, then the solutions to

det(C+ sV) = 0 are e + u1. As such, we can calculate the time to colliding with the

boundary ϵintersect = min{s : det(C+ sV) = 0, s > 0} even with singular C and V. Each

of these checks requires an inverse and eigendecomposition, resulting in complexity O(K3).

However, calculating the gradient ∇Cp(Y |C, . . .) requires at least O(NK3) work, so the
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cost of computing ϵintersect does not significantly impact run time.

For HMC steps that require reflection off the boundary, we must also compute the vector a

normal to the boundary, which is equal to the gradient of the boundary function at the point

of interest. Therefore, we must compute the gradient ∇C det(C) = adj(C)t, where adj(.) is

the adjugate operator. For invertible C, adj(C) = det(C)C−1. However, at the boundaries

where we must compute the gradient when det(C) = 0 and C is not invertible. While the

adjugate may also be constructed using the cofactors of C (i.e. the matrix of determinants

of K − 1×K − 1 sub-matrices formed by removing individual rows and columns of C), this

approach scales O(K5) and we seek a more elegant solution. Stewart (1998) provides such

a solution and demonstrates that one can compute the adjugate of singular matrices using

the singular value decomposition with computational complexity O(K3).

5.4 Example analyses

We demonstrate the utility of these methods in four examples below. All data are standard-

ized on a per-traits basis unless otherwise noted.

5.4.1 HIV-1 virulence

As discussed in Section 3.7.3, clinical outcomes in virally infected individuals are at least

partially attributable to viral genetics. Payne et al. (2014) examine the effects of specific

human leukocyte antigen (HLA) escape mutations (i.e. mutations that help the virus evade

the human immune system) on viral load and CD4 T-cell count in HIV-infected individuals

as well as viral replicative capacity. While Payne et al. (2014) identify associations between

clinically relevant viral phenotypes (viral load, CD4 T-cell count, replicative capacity) and

specific HLA escape mutations, they do not account for the phylogenetic relationships be-

tween viruses in the study. Zhang et al. (2021, 2022) re-analyze this data set of N = 535

sequences with associated mutations and clinical measurements in the phylogenetic context
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using the multivariate probit model of Cybis et al. (2015). This multivariate probit model

maps discrete traits on a tree to continuous space so that the correlation between discrete

traits can be estimated using a Gaussian process on the tree (e.g. multivariate Brownian dif-

fusion). Zhang et al. (2021, 2022) identify several mutations associated with viral load and

replicative capacity and infer conditional dependency graphs based on these associations.

Here, we re-examine this work through the lens of phylogenetic structural equation mod-

eling. Specifically, we assume two sub-models with sub-model one being a latent factor model

capturing the low-dimensional structure of the HLA escape mutations (P1 = 20) and the

second sub-model capturing relationships between replicative capacity, viral load, and CD4

T-cell count (P2 = 3). As the model selection strategy described in Chapter 4 underesti-

mates the number of factors when a large proportion of traits are discrete, we arbitrarily

choose K1 = 3 factors for the first sub-model (the second sub-model does not rely on di-

mension reduction). We perform inference using a fixed phylogenetic tree inferred by Zhang

et al. (2021). We post-process the results using Procrustes rotation (see Section 5.3.2) and

subsequently rotate the posterior to maximize correlation between the first factor and a

combination of replicative capacity, viral load, and (negative) CD4 T-cell count. We present

the results in Figure 5.2.

The first factor has correlations of 0.27 (0.11 - 0.45 highest posterior density interval), 0.12

(-0.06 - 0.31) and -0.16 (-0.36 - 0.01) with replicative capacity, viral load, and CD4 T-Cell

count, respectively. Notably, this first factor only loads positively onto two mutations, both

with very small loadings magnitudes. There are, however, several mutations (e.g. V168I,

Q182X, T186X, T190X) that this first factor loads negatively onto. This suggests that these

mutations may interact and result in viruses with lower replicative capacity and infections

with lower viral load and higher host CD4 T-cell counts. This recapitulates known biology

to a certain extent, as T186X is a known immune escape mutation that dramatically lowers

replicative capacity. However, when a T186X mutation is paired with a T190I mutation (a

subset of T190X mutations), this drop in replicative capacity is partially offset (Wright et al.,
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Figure 5.2: HIV mutation profile and correlation with clinically relevant phenotypes. A)
Loadings matrix mapping latent factors on the phylogenetic tree to HIV immune escape
mutations. The samples have been rotated to maximize the sum of the correlations between
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2012). Note that a similar relationship is known between A163X and S165X mutations. The

interaction between those mutations is captured by the third factor, but this third factor

does not appear to be significantly associated with any of the relevant clinical variables.

5.4.2 Aquilegia pollination

Plants in the genus Aquilegia (i.e. columbines) have a high degree of floral phenotypic diver-

sity. This phenotypic diversity is accompanied by a diversity in the animals that pollinate

these plants. Namely, Aquilegia species are pollinated by either bumblebees, humming-

birds, hawk moths or some combination thereof. Whittall and Hodges (2007) explore the

relationship between floral phenotypes and pollinator and identify “pollination syndromes”

(i.e. collections of floral phenotypes) associated with each pollinator. Tolkoff et al. (2018) and

Hassler et al. (2022, Section 4.6.1) examine this problem using phylogenetic factor analysis

to evaluate the extent to which the pollination syndromes of Whittall and Hodges (2007)

correspond to the low-rank structure of floral phenotypes. One limitation of the Tolkoff et al.

(2018) and Hassler et al. (2022) analyses, however, is that pollinator types are included as

phenotypes in the latent factor model. Jointly inferring the low-dimensional structure of

both the floral phenotypes and pollinator type makes the resulting factors difficult to in-

terpret. Moreover, Hassler et al. (2022) note that discrete traits (e.g. pollinator type) seem

to have an out-sized influence on the loadings matrix of a phylogenetic factor analysis, and

inclusion of these discrete traits may influence the loadings associated with other traits.

Phylogenetic structural equation modeling solves these problems by allowing us to sep-

arate the dimension reduction over the floral phenotypes from the pollinator type. Rather

than including all traits in a single latent factor model, we assume a latent factor model for

the floral phenotypes only (P1 = 11) and infer the association between these low-dimensional

floral factors and pollinator type (P2 = 3). Hassler et al. (2022) identify a two-factor model

as having optimal predictive performance, so we opt for K1 = 2. The second sub-model is a

full-rank (i.e. K2 = P2 = 3) residual variance model with diagonal variance. To induce iden-
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Figure 5.3: Relationship between floral phenotypes and pollinator type in Aquilegia. A)
Loadings matrix mapping latent factors to floral phenotypes. The posterior of the loadings
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figure details. The first factor is strongly associated with bumblebee pollination, while the
second factor captures a hummingbird/hawk moth axis.

tifiability, we post-process the factor results using Procrustes rotation. Finally, we rotate the

latent factors such that the correlation between the first factor and bumblebee pollination

is maximized. We present the results in Figure 5.3.

The results are generally consistent with those of Hassler et al. (2022). Specifically, the

first factor here, which we rotate to optimize association with bumblebee pollination versus

hummingbird and hawk moth pollination, has the same general pattern as the second factor

that Hassler et al. (2022) identify (see Figure 4.3). A major exception is that Hassler et al.

(2022) did not infer association between bumblebee pollination and anthocyanin production,
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while we do here. Notably, the second factor here which is strongly negatively correlated with

hummingbird pollination positively correlated with hawk moth pollination is nearly identical

to the first factor identified by Hassler et al. (2022). Generally, the structural equation

approach here confirms the earlier results of Hassler et al. (2022) and clearly identifies two

axes along which Aquilegia flowers have evolved.

5.4.3 Yeast domestication

The yeast species Saccharomyces cerevisiae is a staple of human culinary and industrial

activity and has been in the process of domestication for at least the last 400 years (Gallone

et al., 2016). Gallone et al. (2016) and Gallone et al. (2019) study this domestication process

by collecting numerous measurements of growth rates under varying stress conditions, the

production of aromatic compounds, and the ability to reproduce outside of industrial settings

for N = 154 strains of S. cerevisiae. Hassler et al. (2022, Section 4.6.2) seek to identify a

“domestication phenotype” via phylogenetic factor analysis. However, this approach includes

all phenotypes in a single latent factor model, which makes it challenging to explicitly study

certain sub-sets of phenotypes.

Here, we reanalyze this N = 154, P = 82 data set using phylogenetic structural equation

modeling. Specifically, we separate the 82 phenotypes into three partitions. The sub-model

on the first partition with P1 = 62 measurements of growth under stress conditions is a

latent factor model with K1 = 2. The second sub-model is also a latent factor model covering

P2 = 16 measurements of production of various aromatic compounds with K2 = 2. Note that

we arbitrarily choose K = 2 for both latent factor models. The final sub-model includes the

four remaining traits without dimension reduction: flocculation (i.e. the tendency of yeast

to clump together and fall out of solution), ethanol production, sporulation efficiency and

spore viability. We assume a fixed tree inferred by Hassler et al. (2022). We post-process

the results of both factor models using Procrustes rotation and rotate the resulting posterior

to maximize the combined correlation with sporulation efficiency and spore viability. We
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present the results in Figures 5.4 and 5.5.

The first stress factor captures general patterns of tolerance to environmental and nutrient

stress, with high factor values corresponding to faster growth under stress conditions. The

notable exceptions are growth at 20◦C (near room temperature) and in maltotriose growth

medium (a common element of beer wort but rare outside of brewing contexts). This first

factor has low values in a clade of pre-dominantly beer yeasts, suggesting that these yeast

strains have adapted to survive primarily in beer wort and have lost tolerance to many

stressors uncommon in industrial beer production. The first aroma factor (also rotated to

have optimal correlation with sporulation efficiency and spore viability) paints a less clear

picture, but concentrates posterior mass on several esters and 4-vinyl guaiacol (4-VG), known

to cause off flavors in beer. As expected, yeast strains in the large beer clade have lower

values for this factor suggesting that they produce less 4-VG. The first stress factor and first

aroma factor show strong correlation, suggesting that the selective forces on both growth in

stress conditions and production of aromatic compounds may have been driven by the same

underlying process (i.e. adaptation of yeast to industrial beer production).

5.4.4 SARS-CoV-2 antigenic evolution

RNA viruses are some of the most fast-evolving organisms on the planet (Peck et al., 2018),

and SARS-CoV-2 (the virus responsible for COVID-19) is no exception. While the selective

pressures driving this evolution are numerous, two of the most important in the context

of SARS-CoV-2 are the affinity of the SARS-CoV-2 spike protein for the human ACE2

receptor (Shang et al., 2020) and its ability to escape the human immune system (Harvey

et al., 2021). Starr et al. (2020) and Greaney et al. (2021) perform deep mutational scanning

to identify how individual mutations affect the binding affinities of the SARS-CoV-2 spike

protein with the human ACE2 receptor and polyclonal antibodies, respectively. In both

studies, researchers intentionally mutate the SARS-CoV-2 genome to produce all possible

amino acid substitutions for a given codon. They then test the binding affinity between
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Figure 5.4: Relationship between yeast growth rates under stress conditions, production of
aromatic compounds, ethanol production and reproductive ability. A) Loadings matrix for
growth under stress conditions. The posterior has been rotated to maximize correlation of
the first factor with sporulation efficiency and spore viability. This first factor characterizes
tolerance to environmental stress generally, with the only negative values associated with
either growth under normal temperatures or in environments similar to beer wort. B)
Loadings matrix for production of aromatic compounds. 4-VG in particular causes off flavors
in many beers. (caption continues on next page)
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5.4 (previous page): C) Correlation between both sets of latent factors and remaining pheno-
types. The posterior distributions of the first stress factor and first aroma factor have both
been rotated to have maximum correlation with sporulation efficiency and spore viability.
See Figure 5.2 for a description of plot elements.
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origin

Figure 5.5: Latent factors and other yeast phenotypes plotted on a phylogenetic tree. The
tree was inferred by Hassler et al. (2022, Section 4.6.2). The large clade consisting of pre-
dominantly beer yeast on the right show strong signs of domestication, with low values of
the stress factor 1 (associated with tolerance to stress) and aroma factor 1 (associated with
aromatic compounds known to produce off flavors). These factors co-evolved on the tree
with lower ethanol production, sporulation efficiency, and spore viability.

the spike protein of the mutated virus and either the human ACE2 receptor or human

polyclonal anti-SARS-CoV-2 antibodies. They repeat this for each amino acid in the spike

protein. Note that this approach looks at the individual effects of mutations at a single

codon. The researchers do not directly test how interactions between multiple mutations

can influence binding. Regardless, these studies give valuable insight into which sites on the

spike protein may be particularly good targets for natural selection.

Phylogenetic factor analysis and phylogenetic structural equation modeling offer tools for

studying the evolution of SARS-CoV-2 through antigenic space similar to the HIV analysis

in Section 5.4.1. We collect N = 3210 SARS-CoV-2 RNA sequences and build a phylogenetic

tree. From the RNA sequences we determine per-site amino acid substitutions on the spike
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protein and identify the change in ACE2 and antibody binding affinity associated with each

mutation. We structure the phylogenetic structural equation model with one latent factor

sub-model (P1 = 199, K1 = 2) corresponding to the per-mutation ACE2 binding affinities

and another (P2 = 172, K2 = 2) corresponding to the per-mutation polyclonal antibody

binding affinities. We map the resulting factors onto the phylogenetic tree in Figure 5.6.

We first emphasize that the total proportion of variance explained by the factor sub-

models for both ACE2 and antibody binding affinities are 3.95% (3.86%-4.04%) and 16.3%

(15.5%-17.3%), respectively. The extremely low proportion of variance explained by the

factor model for the ACE2 binding affinities suggests that either there is not some low-

dimensional structure that well-describes the pattern of evolution of ACE2 binding affinity

or that this low-dimensional process is not well captured by the assumptions the latent

factor model on a phylogenetic tree. With that in mind, the first ACE2 factor captures

general variation across the entire phylogeny, while the second has very low values for the

Omicron variant. Similarly, both antibody factors capture essentially the same variation in

the phylogenetic tree in that for a given taxon positive values in the first antibody factor

are almost always accompanied by negative values in the second factor. The only notable

exception to this pattern is the Omicron variant. While we cannot make broad claims

about the evolution of SARS-CoV-2 in antigenic space due to the low proportion of variance

explained by this model, one clear result is (unsurprisingly) that the Omicron variant has

a highly unusual mutational profile with potential implications for both its ability to bind

to human ACE2 receptors and evade pre-existing immunity. We do not explore these topics

here, but they are an area of active research (see Han et al., 2022; Junker et al., 2022; Lupala

et al., 2022; Planas et al., 2022; Wu et al., 2022).

Notably, there is also a high degree of correlation between the ACE2 and antibody factors,

with correlations of some rotations of the factors (not shown) in excess of 0.99. This is not

entirely surprising however, as both the ACE2 and antibody binding data sets rely on the

same underlying mutational profile. In other words, if a particular sequence has a mutation
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Figure 5.6: Posterior means of latent factors associated with binding between SARS-CoV-
2 spike protein and human ACE2 receptors and polyclonal antibodies on a phylogenetic tree.
The tree includes a small number of sequences belonging to the Omicron variant. Factors
values associated with the Omicron sequences are outliers, which is consistent with existing
research that the Omicron variant is antigenically highly distinct from other variants.
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that changes a spike protein amino acid, the change in that amino acid will be registered

in both the ACE2 and antibody data sets (although with different effects on their relative

binding affinities). As such, one would expect extremely high correlation between these two

sets of factors, which we indeed observe. This extremely high correlation between the factors

means that there is a region of high posterior density near the boundary of the correlation

space det(C) = 0. We demonstrate here that the reflective HMC sampler introduced in

Section 5.3.4.3 functions well even in this extreme situation.

5.5 Discussion

We develop here an efficient and flexible set of models for studying the evolution of biological

traits on phylogenetic trees. This approach synthesizes previous work (Tolkoff et al., 2018;

Hassler et al., 2020, 2022) under a unifying framework that allows for highly structured yet

computationally tractable models where information between sub-models is shared via some

evolutionary process on a phylogenetic tree. We design these models so that all calcula-

tions for inference scale linearly in both the total number of species N and traits P despite

complex dependencies between observations. These innovations allow Bayesian inference in

phylogenetic trait models at unprecedentedly large scales. For example, in Section 5.4.4, we

perform inference in a problem with N = 3120 sequences and P = 371 traits. Moreover,

this analysis requires sampling from a nearly singular correlation matrix with non-trivial

constraints.

In addition to the computational efficiency and ability to sample from challenging spaces,

we adapt post-processing methods to the factor analytic context that dramatically reduce

identifiability challenges. We also describe a simple approach to chose one particular rotation

of the posterior based on the scientific question of interest rather than arbitrary identifiability

constraints.

These approaches, however, have limitations that we would like to address before they can
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be broadly adopted. First, both the Procrustes post-processing and correlation-maximizing

rotations have the potential to increase type 1 error. While both procedures create valid

posterior samples, they do so in a way designed to minimize posterior variance in the loadings

and maximize posterior correlation, respectively. While preliminary results from simulation

studies suggest that these effects are both measurable and manageable, we believe further

study is warranted.

Additionally, there appears to be a tendency in some data sets to infer nearly-singular

correlation matrices when there are at least two latent factor sub-models, both of which have

a high number of traits. While these observations may be the result of the idiosyncrasies

of individual data sets (as with our example in Section 5.4.4), we believe this phenomenon

should be more thoroughly explored. One advantage, however, of our approach to inferring

the correlation matrix is that we can place non-traditional priors on different elements of

the correlation matrix to correct for this tendency (if it does indeed exist). The commonly

used LKJ prior induces exchangeability between elements of the correlation matrix, which

hold even in the case where we require structural zeros (see Section 5.3.4.1). Alternative

priors that shrink certain elements of the correlation (e.g. those corresponding to correlation

between two latent factors in different high-dimensional sub-models) toward zero could help

address this issue. While we have not fully explored this, it is possible that such priors

could be motivated by partial-correlation vines similar to those used to construct the LKJ

distribution (Joe, 2006).

Finally, while we have focused on the very specific case of multivariate Brownian diffusion

on a phylogenetic tree, all methods discussed here apply more broadly. In the phylogenetic

context, they apply to alternative Gaussian models such as Ornstein–Uhlenbeck (OU) pro-

cesses commonly used to model directional selection. Outside of phylogenetics, these meth-

ods apply to any Gaussian model where the covariance between observations is additive on

an acyclic graph (see Ho and Ané, 2014). This applies to any hierarchical Gaussian model

where the dependence structure can be mapped to a tree.
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CHAPTER 6

Conclusion and future directions

6.1 Methodological advances

The work I have presented here, culminating in Chapter 5, enables scalable inference in

flexible models of continuous trait evolution on phylogenetic trees. These methods, how-

ever, are not unique to the phylogenetic context and are broadly applicable to any highly

structured Gaussian hierarchical model. These methodological advances collectively permit

efficient Bayesian inference with missing data (Chapter 3), model extensions with different

between-trait covariance structures (Chapter 3), dimension reduction (Chapter 4) and mul-

tiple, correlated sub-models with unusual constraints on the correlation matrix (Chapter 5).

The increases in computational efficiency are not simply a matter of convenience but often

make the difference between analyses that are doable by a researcher with ordinary resources

and those that are not. The methods in Chapters 3 and 4 achieve increases in computational

efficiency of two orders of magnitude in large data sets, bringing computation times down

from an order of months to an order of hours. While I have yet to formally benchmark the

new statistical methods developed in Chapter 5, they rely on the same principles as those

developed in the earlier chapters and I anticipate comparable computational performance.

6.2 Scientific contributions

While many of the empirical examples presented in Chapters 3, 4 and 5 were chose to

illustrate the capabilities of the new methods, several have contributed to scientific knowledge
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in their own right. Specifically, Section 3.7.2 identifies a relationship between the GC content

of bacterial genomes and their optimal growth temperatures. This relationship had been

hypothesized, but evidence for it was inconclusive partly due to studies that either did not

correct for phylogenetic relationships between bacterial lineages or had small sample size.

Our analysis is the largest (N = 435) that examines this relationship while correcting for

shared ancestry.

Similarly, in Sections 4.6.2 and 5.4.3 we identify a single latent factor contributing a

plurality of the variance in yeast stress tolerance that separates industrial beer yeast from

other strains of S. cerevisiae. While these traits had been examined on an individual basis,

this was the first to quantitatively map a low-dimensional “domestication factor” capturing

broad patterns of variation to the phylogenetic tree of industrial yeast.

In Section 4.6.3, we study the evolution of life history traits in the largest known phylo-

genetic analysis of its kind with N = 3649 species of mammals. This analysis partitions the

variance in mammalian life history into that which is body-size dependent and that which is

body-size independent. We identify that the primary source of variation on mammalian life

history traits is body-size independent and that these size-independent patterns of variation

correspond to predictions made by pace-of-life theory.

Finally, novel statistical methods are unhelpful to the broader scientific community with-

out user-friendly software implementation. All of the core methods described in this disser-

tation have been implemented in the widely used Bayesian phylogenetic inference software

BEAST (Suchard et al., 2018), which is well known in both the ecology and viral phylo-

dynamics communities. I am in the process of including these methods the the BEAST

graphical user interface to further aid community adoption. Additionally, I have written the

Julia package PhylogeneticFactorAnalysis.jl (Hassler et al., 2022, Section 4.5.4) that wraps

BEAST and includes all post-processing procedures developed in Chapters 4 and 5. The ul-

timate goal, however, is to include all PhylogeneticFactorAnalysis.jl functionality in BEAST

and its graphical user interface, avoiding a two-language analysis pipeline.
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6.3 Limitations and future directions

While statistical models discussed here are indeed flexible at modeling relationships between

different traits, all impose a Gaussian likelihood over the data. Related to this assumption is

that all dimension reduction relies on linear maps between high- and low-dimensional space.

These assumptions are not appropriate for all data, particularly when some observations

are discrete. While the multivariate probit model of Cybis et al. (2015) helps address this

challenge for discrete traits, it requires sampling from a high-dimensional truncated Gaussian

distribution that remains challenging, although substantially less so after recent work by

Zhang et al. (2021) and Zhang et al. (2022). Regardless, researchers may want to use

generalized linear models to link continuous latent space on phylogenetic trees to discrete

phenotypes. Additionally, there are many continuous traits that are difficult to transform

to normality, such as the SARS-CoV-2 spike protein binding affinities in Section 5.4.4 where

the distribution of each affinity across multiple taxa has a large number of true zeros. Such

cases may require more flexible, non-Gaussian model extensions that may disrupt the ability

to analytically marginalize latent traits on the tree.

These models, where the latent variables evolve along a phylogenetic tree according to

the same underlying Gaussian process but the model extension connecting the process on the

tree to the data is non-Gaussian, may require returning to data augmentation of the latent

traits at the tips of the tree. However, assuming the gradient of the augmented likelihood

with respect to these latent traits is tractable (and I believe it is), then it may be possible

to sample efficiently from the full conditional posterior of this latent space. Assuming such

an approach were computationally efficient, it would open the door to even more flexible

models of phenotypic evolution.
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