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ABSTRACT OF THE DISSERTATION

Automorphisms of Hilbert Schemes of Points of Abelian Surfaces

by

Patrick Girardet

Doctor of Philosophy in Mathematics

University of California San Diego, 2024

Professor Dragos Oprea, Chair

Belmans, Oberdieck, and Rennemo asked whether all unnatural automorphisms of

Hilbert schemes of points on surfaces, i.e. those automorphisms which do not arise from

the underlying surface, can be characterized by the fact that they do not preserve the

diagonal of non-reduced subschemes. Sasaki recently published examples, independently

discovered by the author, of automorphisms on the Hilbert scheme of two points of certain

abelian surfaces which preserve the diagonal but are nevertheless unnatural, giving a

negative answer to the question.

We construct additional examples of unnatural automorphisms for abelian surfaces

which preserve the diagonal for the Hilbert scheme of an arbitrary number of points. The
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underlying abelian surfaces in these examples have Picard rank at least 2, and hence are

not generic.

We prove the converse statement that all automorphisms are natural on the

Hilbert scheme of two points for a principally polarized abelian surface of Picard rank 1.

Additionally, we prove the same if the polarization has self-intersection a perfect square.
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Chapter 1

Introduction

Let X be a smooth complex projective surface and let X [n] denote the Hilbert

scheme of n points on X. It is a standard theme to ask to what extent the geometry of X

determines the corresponding geometry of X [n]. In this thesis we concern ourselves with

automorphism groups, the algebro-geometric symmetries of X.

Any automorphism g : X → X induces an automorphism

g[n] : X [n] → X [n]

defined by the action of the pullback (g−1)∗, where we view the points of X [n] as ideal

sheaves. We call an automorphism of X [n] natural if it arises as g[n] for some automorphism

g of X. This construction formalizes an intuitive idea. We imagine that a generic element

of X [n] consists of n distinct points, and we can then act pointwise via g to get another

collection of n distinct points. When Z ∈ X [n] consists of n distinct points then g[n] acts

in precisely this fashion, but is defined for non-reduced subschemes as well. We call the

locus of non-reduced subschemes in X [n] the diagonal or exceptional divisor.

This procedure induces an injective homomorphism

(−)[n] : Aut(X) → Aut(X [n])
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of groups. The injectivity can be seen by considering the action of a natural automorphism

on the locus of subschemes in X [n] supported at a single point with multiplicity n.

The converse question of determining for which X this map is surjective, i.e. when all

automorphisms of X [n] are natural, has been studied for some time and is still open in

general.

The first classic result in the subject is that of Beauville [Bea2, Section 6], who

showed that if X is a general smooth quartic K3 surface in P3 then one can construct an

involution on X [2] which is not natural. The construction and proof of unnaturality are

geometric in nature. Two points on X define a line in P3 which will then intersect X in a

complementary length 2 subscheme, yielding an involution on X [2]. This automorphism

is not natural because any natural automorphism would need to preserve the diagonal

on X [2] of subschemes, but this involution does not do so (Figure 1.2). Subsequent works

have often focused on studying automorphisms of X [n] for K3 surfaces X and generalized

Kummer varieties as these are examples of hyperkähler varieties. Some of this work will

be reviewed below.

Figure 1.1. The Beauville involution on the Hilbert scheme of two points of a quartic
surface.1

1These illustrations are slightly inaccurate - for the involution to be well-defined we require that the
K3 surface not contain any lines, but the depicted surfaces are ruled for simplicity of drawing.
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Figure 1.2. The Beauville involution can send nonreduced subschemes to reduced
subschemes, and hence is not a natural automorphism.

We note that one can ask the analogous question for naturality of automorphisms

of symmetric products of smooth projective curves. This question has been settled entirely

except for the case g = 2. One can find a good review of the problem in [CS2] which

proves naturality of automorphisms of the symmetric product C [d] where C is a smooth

projective curve of genus g for g > 2, d ≥ 2g− 2. The other cases can be found in [CS1] for

g > 2, g ≤ d ≤ 2g − 3, [Mart], [Ra] for g > 2, 1 ≤ d ≤ g − 2, [CC] for the case g = 1 and

all degrees d, and [We] for the case g > 2, d = g − 1 (in which case there is an additional

involution on C [g−1] if C is not hyperelliptic). For the case g = d = 2 it is possible to

construct unnatural automorphisms by taking a curve C whose Jacobian decomposes as

a product J(C) ∼= E × E of isomorphic elliptic curves - see [HN] for examples of such

curves. There are infinitely many automorphisms of J(C) given by GL2(Z) which fix the

canonical divisor KC ∈ J(C), and hence lift to the blowup C [2] of the Jacobian at the

point KC [MPo]. Though the author has not seen this example explicitly written, Ciliberto

and Sernesi seem aware of the possibility in [CS2]. Some of these naturality results were

rediscovered more recently by Biswas and Gómez [BG] in the case g > 2, d > 2g − 2.

More recently, Belmans, Oberdieck, and Rennemo studied this question of naturality

of automorphisms of Hilbert schemes of points for surfaces in [BOR], proving that if X
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is a weak Fano or general type smooth projective surface, then all automorphisms of

X [n] are natural except for the case X = C1 × C2 where C1, C2 are smooth curves which

either are both genus 0 or are both of genus at least 2. Thus, the question of naturality

of automorphisms is mostly settled for surfaces to one end or another of the positivity

spectrum, whereas the Calabi-Yau region in the middle can allow for interesting unnatural

automorphisms. It has been shown that unnatural automorphisms necessarily do not

preserve the diagonal with X either a K3 or Enriques surface [BSa], [Hay].

The following question thus appears in [BOR]:

Question 1. Suppose X is a smooth projective surface and g : X [n] → X [n] is an

automorphism preserving the diagonal. Unless X = C1 ×C2 and n = 2, does it follow that

g is natural?

An affirmative answer to this question would imply that while unnatural auto-

morphisms can exist, there is some measure of control on the groups Aut(X [n]) in that

those elements which don’t come from Aut(X) can be detected simply by considering their

action on the diagonal of X.

Recently, Sasaki gave examples in [Sa] of automorphisms on the Hilbert scheme

of two points of certain abelian surfaces which preserve the diagonal but which can be

shown to be unnatural, giving an answer in the negative to the previous question. These

examples were independently discovered by the author and presented in a talk but not

published at the time. We construct counterexamples in this paper that work for the

Hilbert scheme of n points of certain abelian surfaces for all n (Section 3.2):

Theorem 1. For all n ≥ 2, there exist abelian surfaces A and unnatural automorphisms

g : A[n] → A[n] which fix the diagonal.

To do this, we use work of Ekedahl and Skjelnes [ESk] and Rydh and Skjelnes [RS]

describing the (smoothable locus of the) Hilbert scheme of points of an arbitrary scheme

4



as a particular blowup of the symmetric product. However, our examples are not for

generic abelian surfaces, but rather for specific abelian surfaces of Picard rank at least 2.

These constructions rely on proving that Sn-equivariant automorphisms on the Cartesian

product Xn induce automorphisms of the smoothable locus of X [n] for certain schemes

X (Proposition 2). We believe that this opens up the possibility of constructing many

counterexamples to the question of Belmans-Oberdieck-Rennemo for higher dimensional

abelian varieties using algebraic number theory, which we will demonstrate in one instance

(Section 3.3).

Furthermore, we address the natural converse question for surfaces of whether

automorphisms of A[2] are natural for abelian surfaces of Picard rank 1. We find an answer

in the affirmative for many polarization types:

Theorem 2. If A is a complex abelian surface of Picard rank 1 admitting a polarization

Θ such that either:

(i) Θ2 = 2, or

(ii) Θ2 is a perfect square

then all automorphisms of A[2] are natural.

We suspect this result should hold for all polarization types, but we are unable to

fully apply our techniques at present to all polarizations:

Question 2. If A is any complex abelian surface of Picard rank 1, does it follow that all

automorphisms of A[2] are natural?

One may ask the same question for all n, and we present some evidence in Section

3.3 consistent with an affirmative answer (Proposition 4). We discuss the obstructions to

extending our proof to all polarization types or to higher values of n in Chapter 6.

Recall that if A is a complex abelian surface of Picard rank 1 then its group

automorphisms are simply multiplication by ±1 [Yo, Lemma 1.2], and every automorphism

5



of A as a variety is the composition of a group automorphism followed by a translation [BL,

Proposition 1.2.1]. Thus, Theorem 2 gives an explicit description of all automorphisms of

A[2] for A of Picard rank 1 and appropriate polarization.

To put our result in perspective, other recent work studying automorphisms of

Hilbert schemes of points for K3 surfaces includes calculations of the full automorphism

groups for generic K3 surfaces in [BCNS] for n = 2 and a subsequent generalization to all

n [Ca], and a recent determination of the automorphism group of the Hilbert square of

Cayley’s K3 surfaces [Lee]. This list is hardly exhaustive of recent work on the general

theme of automorphisms of Hilbert schemes and related “punctual” moduli spaces (e.g.

punctual Quot schemes [BD]).

1.1 Conventions

Throughout this paper, “automorphism” will denote an automorphism as a variety,

and any group automorphisms will be specifically designated. We will write End(A) for the

group endomorphisms of A, and Aut(A),Aut0(A) for respectively the full automorphism

group scheme (i.e. including translations) and the connected component of the identity.

1.2 Plan of the thesis

We will first state some necessary facts regarding Hilbert schemes of points (Section

2.1) and abelian surfaces (Section 2.2). We will then outline the construction of some

unnatural automorphisms of abelian surfaces and higher dimensional abelian varieties

which nevertheless preserve the diagonal (Chapter 3). We calculate top intersection

numbers of divisor classes in A[2] for A an abelian surface of Picard rank 1 (Section 4.1)

and the dimensions of various spaces of global sections of lines bundles on A[2] (Sections

4.3, 4.4). We then use this to show that the exceptional divisor is fixed by any given

automorphism of A[2] for appropriate polarization types (Sections 5.1, 5.2, 5.3). To do
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so, we will first show that any automorphism of A[n] descends to an automorphism of A

under the summation morphism Σ : A[n] → A (Proposition 10), though this alone will

not give the theorem as it holds regardless of Picard rank. The intersection numbers we

calculate are valid for any polarization type while the dimensions of global sections of line

bundles are specifically for the principally polarized case. This will yield an automorphism

on the symmetric product A(2) which we can then lift to A2 by results in [BOR] and show

naturality (Section 5.4).
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Chapter 2

Preliminaries

2.1 Hilbert schemes of points on surfaces

For X a smooth complex projective surface, the Hilbert scheme of n points on X,

written X [n], parametrizes length n subschemes of X. It is a smooth complex projective

variety of dimension 2n. The symmetric product X(n) is the quotient of the Cartesian

product Xn by the action of the symmetric group Sn interchanging the factors, and is

a complex projective variety of dimension 2n with singularities along the big diagonal

∆ ⊂ X(n) of points
∑

aixi with some multiplicity ai ≥ 2. The Hilbert-Chow morphism

π : X [n] → X(n)

which sends a subscheme Z ∈ X [n] to its support with multiplicities is an isomorphism on

the locus of reduced subschemes where all points in the support have multiplicity 1, and

hence is birational. It is well-known that π is crepant (i.e. π∗ωX(n) = ωX[n]) and that for

n = 2 the Hilbert scheme X [2] is simply the blowup of X(2) along the ideal sheaf of the

diagonal, so that π is the blowdown map

π : Bl∆X
(2) → X(2).

8



For n = 2 we may easily illustrate the picture to have in mind. A generic element of

X [2] consists of two distinct points, and the diagonal ∆ ⊂ X [2] consists of “double points”

- length two subschemes which record the tangent direction of two colliding points of

multiplicity one:

Figure 2.1. Examples of length two subschemes in the plane. Left: a reduced subscheme
consisting of two distinct points of multiplicity one. Right: a nonreduced subscheme
obtained as the limit of the subscheme on the left.

For all n, we write E for the exceptional divisor of π, which is the preimage π−1(∆)

of the big diagonal ∆ ⊂ X(n). We have a natural projection map

p : Xn → X(n),

such that p∗Pic(X(n)) = Pic(Xn)Sn . Given a line bundle L → X, we may form the box

product

L⊞n = p∗1L⊗ . . .⊗ p∗nL

on Xn, where each pi is a projection map to a factor of X. This line bundle is clearly

symmetric, inducing a line bundle L(n) on Pic(X(n)) and thus gives a homomorphism

(−)(n) : Pic(X) → Pic(X(n)), L 7→ L(n).
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We can pull back L(n) under the Hilbert-Chow morphism to X [n], and will write L[n]

for this line bundle π∗L(n) on X [n]. Since π is crepant, ωX[n] = (ωX)[n] [BOR, Section 2],

so that if X is K-trivial then so is X [n]. In particular, if X is an abelian surface then ωX[n]

is trivial. If X is a scheme of dimension at least 3, then some of the preceding discussion

breaks down. There still exists a Hilbert-Chow morphism from X [n] to the symmetric

product X(n). However, there can exist points in X [n] which are not the limit of reduced

subschemes, and these points can constitute multiple distinct irreducible components even

when X is irreducible (see [Ia1] for examples of this phenomenon). We will call the closure

in X [n] of the locus of reduced subschemes the smoothable locus, and write X
[n]
sm for this

component. For dimX ≤ 2 the smoothable locus is just X [n]. For dimX ≥ 3, it is not

fully known for which values of n the smoothable locus differs from X [n], only that there

are examples where it does. Even more pathologically, in these examples the smoothable

locus can be a component of positive codimension in X [n], violating our intuition for

surfaces that X [n] consists “mostly” of collections of n distinct points along with some

scheme-theoretic behavior when these points run into each other.

In [Fo2, Section 6] , Fogarty proves for X a surface that

Pic(Xn) ∼= Pic(X)n × Hom(Alb(X),Pic0(X))(
n
2)

Pic(X(n)) ∼= Pic(Xn)Sn ∼= Pic(X)× Hom(Alb(X),Pic0(X))S2 ,

where the Pic(X) factor in Pic(Xn)Sn injects into Pic(X)n as the Sn-invariant divisors,

Alb(X),Pic0(X) are respectively the Albanese and Picard varieties (connected component

of the identity in Pic(X)) of X. The term Hom(Alb(X),Pic0(X)) comes from classes of

“diagonal” line bundles on X ×X, as a map X → Pic0(X) naturally gives a line bundle on

X ×X and such a map necessarily factors through Alb(X) since Pic0(X) is an abelian

variety. Note that Hom here refers to group homomorphisms rather than morphisms of

varieties. In Pic(Xn) we get one such factor for each of the
(
n
2

)
pairs in Xn. Since elements
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of Hom(Alb(X),Pic0(X)) correspond to classes of line bundles on X × X, S2 acts on

Hom(Alb(X),Pic0(X)) by swapping the factors of X × X. In Pic(X(n)) the Sn action

leaves but a single Hom factor, from which we take only the S2-invariant bundles.

In a subsequent paper [Fo3], Fogarty shows that the fixed part

Hom(Alb(X),Pic0(X))S2 ⊂ Hom(Alb(X),Pic0(X))

can be identified with the Neron-Severi group of the Albanese variety of X (see Theorem

3.8 in said paper and the subsequent table), so that

Pic(X(n)) ∼= Pic(X)× NS(Alb(X)).

Over C, it is a nice exercise to use the Appell-Humbert theorem to prove this. Additionally,

if we set B =
E

2
it is well-known that

Pic(X [n]) ∼= π∗Pic(X(n))× Z[B],

giving a full description of the Picard group of X [n]:

Pic(X [n]) ∼= Pic(X)× Hom(Alb(X),Pic0(X))S2 × Z[B]

∼= Pic(X)× NS(Alb(X))× Z[B].

As noted by Lehn [Leh, Lemma 3.7] this latter generator B = E
2
is the same as −c1(O[n]

X ),

where O[n]
X is the tautological vector bundle obtained by pushing forward the structure

sheaf OZn of the universal subscheme Zn ⊂ X [n] ×X under the natural projection to X [n].

The group of homomorphisms between any complex tori is a free abelian group

[BL, Proposition 1.2.2] and hence is discrete. The two abelian varieties Pic0(X),Pic0(X [n])

have the same dimension (see e.g. [Gö, Theorem 2.3.14], [GSo], [Ch] and the fact that the
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dimension of Pic0 is the irregularity dimH0,1 - see [Bel] to calculate this easily), so that

Pic0(X [n]) lives inside the Pic(X) factor of Pic(X [n]). This implies

NS(X [n]) ∼= NS(X)× NS(Alb(X))× Z[B].

We note that while much work on the subject has focused on the case where X

is a surface of irregularity zero so that Pic(X [n]) ∼= Pic(X) × Z[B], for a surface with

dimAlb(X) = h1(X,OX) ̸= 0 the NS(Alb(X)) factor need not be zero, giving an extra

term in the formula for Pic(X [n]).

We can describe X [2] as either the blowup of X(2) along the ideal sheaf of the

diagonal or as the quotient of the blowup Bl∆X
2 of X2 along the diagonal ∆ by the

natural involution, see Appendix 7.1 for a more detailed discussion. These descriptions fit

in a natural commutative diagram

Bl∆X
2 X2

X [2] X(2)

q

π̂

p

π

.

Let us write F for the exceptional divisor of q : Bl∆X
2 → X [2], so that q∗B = F as divisor

classes. Since X2 is smooth (hence normal) and S2 is finite, the quotient X(2) is normal

[MFK, p.5]. By [De, Lemma 7.11, 7.12] , the pushforward π∗OX[2](mB) is isomorphic to

the trivial sheaf OA(2) for m ≥ 0. Thus, if L is a line bundle on X(2) we have by push-pull:

Formula 1. If m ≥ 0 then

H0(X [2], π∗L⊗OA[2](mB)) ∼= H0(X(2), L).

The same is true for arbitrary n, not just n = 2, as [De, Lemma 7.11] applies more generally

to proper birational morphisms to a normal variety. Since X [2] is the quotient of Bl∆X
2

by the cyclic group S2, by [EV, Corollary 3.11] the pushforward q∗OBl∆X2 decomposes as
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a direct sum of line bundles

q∗OBl∆X
2 ∼= OX[2] ⊕ L

where OA[2] , L are respectively the 1,−1 eigensheaves of the action of S2 on OBl∆X2 . By

push-pull, we conclude that:

Formula 2. If F is a sheaf on X [2], then

H0(X [2],F) ∼= H0(Bl∆X
2, q∗F)S2 .

If our sheaf is in fact of the form π∗G for a sheaf G now on X(2), then by commuta-

tivity we have the equality

H0(Bl∆X
2, q∗π∗G) ∼= H0(Bl∆X

2, π̂∗p∗G).

Since the fibers of π̂ are connected, we have an isomorphism

H0(Bl∆X
2, π̂∗p∗G) ∼= H0(X2, p∗G)

induced by π̂∗. The respective involutions on Bl∆X
2, X2 commute with π̂, so that taking

S2-invariant sections respects this last isomorphism. The upshot then is that:

Formula 3. If m ≥ 0, then

H0(X [2], π∗G ⊗ OX[2](mB)) ∼= H0(X2, p∗G)S2 .

Thus, calculating dimensions of global sections of certain sheaves on X [2] is equiva-

lent to calculating invariant global sections on X2. We mention this interpretation as we

will eventually calculate the dimension of global sections for many line bundles on X [2],

while calculating the dimension of invariant sections on X2 can be difficult to do directly.
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2.2 Abelian surfaces

Let A be a complex abelian surface. In the case X = A, Alb(X) = X, so that the

work of Fogarty in the previous section immediately yields:

Proposition 1. For A a complex abelian surface,

Pic(A[n]) ∼= Pic(A)× NS(A)× Z[B],

where NS(A) is the Neron-Severi group of A. In particular, if A has Picard rank 1, then

Pic(A[n]) ∼= Pic(A)× Z× Z[B].

When A is principally polarized, it is a decent exercise in the theory of abelian va-

rieties to prove this directly. Given a morphism in Hom(Alb(X),Pic0(X)) ∼= Hom(A,A∨),

under the identification A ∼= A∨ given by the principal polarization we may thus identify

Hom(Alb(X),Pic0(X)) with Hom(A,A) = End(A). Under this identification, the action

of swapping the factors on the Hom side turns out to coincide with the Rosati involution

on End(A), and it is well-known that the Rosati-fixed part of End(A) may be identified

with NS(A). However, this proof requires a principal polarization to identify A with A∨,

which is insufficiently general for our purposes.

There is a summation morphism Σ : A(n) → A defined via

Σ(a1x1 + . . .+ akxk) = a1x1 + . . .+ akxk,

where the latter sum uses the group operation on A. Precomposing this map with

π : A[n] → A(n) gives a summation map from A[n] to A which we will also denote with

Σ and make clear the source from context. The fibers of Σ : A[n] → A are hyperkähler

varieties of dimension 2(n− 1) called generalized Kummer varieties, first studied in [Bea1,
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Section 7]. For n = 2 these fibers are the usual Kummer K3 surfaces.

Let PA denote the Poincaré bundle on A× A∨. By [MMR, p.78], we have that

Formula 4.

Σ∗D = (1⊗ ϕD)
∗PA + π∗

1D + π∗
2D

in Pic(A2) for D a divisor on A, where ϕ : A → A∨ is the map x 7→ [t∗xD − D]. Thus,

Σ∗D = (D,ϕD, 0) in Pic(A[2]) ∼= Pic(A)× Hom(A,A∨)S2 × Z[B]. With the identification

Hom(A,A∨)S2 ∼= NS(A) described previously, we may then identify

Σ∗D = (D,D, 0) ∈ Pic(A[2]) ∼= Pic(A)× NS(A)× Z[B].

We will use this formula later to perform a convenient change of basis for NS(A), by

replacing the generator ϕΘ with Σ∗Θ in Pic(A[2]),NS(A[2]) for Θ a polarization.

Observe that this formula implies that Σ∗ : Pic0(A) → Pic0(A[2]) is an injective

homomorphism of complex abelian varieties. These two abelian varieties have the same

dimension as noted in Section 2.1, and hence Σ∗ : Pic0(A) → Pic0(A[2]) is an isomorphism

since we are working with complex tori over C. This argument holds regardless of the

Picard number of A.
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Chapter 3

Construction of unnatural
automorphisms

Here we give a description of some counterexamples to Question 1 using special

abelian varieties of Picard rank at least 2. Our constructions give automorphisms on A[n]

for different values of n and dimA, where A is an abelian variety.

The key result permitting these constructions is the following:

Proposition 2. If X is either an affine scheme or a projective scheme over an infinite

field k, then any Sn-equivariant automorphism f : Xn → Xn induces an automorphism

on the smoothable locus of X [n].

We defer the proof of this to the appendix. In short, one can describe the smoothable

locus of X [n] as a blowup of the symmetric product X(n) at an ideal sheaf supported along

the big diagonal by work of Ekedahl and Skjelnes [ESk] or a similar description by Rydh

and Skjelnes [RS]. An Sn-equivariant automorphism of Xn descends to an automorphism

of X(n) by the universal property of quotients by finite groups, and will necessarily restrict

to the big diagonal pointwise. We prove a stronger version of this last statement in

Proposition 3. One can show moreover that this automorphism will fix the ideal sheaf in

question which we blow up to yield the smoothable locus of X [n]. Thus, the automorphism

of X(n) will lift to an automorphism of the blowup by [Har, Corollary II.7.15]. As discussed

in the appendix, we believe the hypotheses of this proposition can probably be weakened
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by using the full generality of the constructions of Ekedahl-Rydh-Skjelnes, but these

conditions are already significantly more general than what we need in this paper.

Given a Sn-equivariant automorphism f : Xn → Xn, write f̄ , f̃ for the associated

automorphisms on X(n) and the smoothable locus X
[n]
sm. The map f 7→ f̃ induces a group

homomorphism Aut(Xn)Sn → Aut(X
[n]
sm) as one can easily check. We always have the

commutative diagram

Aut(X) Aut(X)

Aut(Xn)Sn Aut(X
[n]
sm)

id

where Aut(X) ↪→ Aut(Xn)Sn embeds via the diagonal action (to check that the two maps

in question on X [n] arising from an element in Aut(X) agree in the diagram, simply check

on the dense open locus of reduced subschemes).

The map Aut(Xn)Sn → Aut(X
[n]
sm) is injective for n ≥ 3. To see this, suppose

f ∈ Aut(Xn)Sn is such that f̃ is the identity on X
[n]
sm. It must be then that f̄ is the identity

on X(n), so that the image of a point (x1, . . . , xn) ∈ Xn under f must be σ(x1, . . . , xn) for

some σ ∈ Sn. This σ must be the same for all points in a given irreducible component

of Xn by continuity. To elaborate, suppose we fix an irreducible component Z ⊂ Xn.

For each σ ∈ Sn the locus Zf,σ of points in Z where f agrees with σ is closed, since X

is separated whether it is affine or projective. However, the Zf,σ cover Z but if all the

Zf,σ are proper then a finite union of proper closed subsets cannot cover Z since Z is

irreducible. Thus, f |Z = σ for some σ ∈ Sn. However, f |Z is Sn-equivariant, implying

that στ = τσ for all τ ∈ Sn. As the center of Sn is trivial for n ≥ 3, f |Z is the identity.

Since this holds for all irreducible components Z of Xn, we conclude that f is globally

trivial. For n = 2 the S2-equivariant automorphism f(x1, x2) = (x2, x1) also induces the

identity on X [2], so that the fibers of Aut(X2)S2 → Aut(X [2]) have size 2 (since n = 2,

specifying the smoothable locus is superfluous).

Definition 1. For a point Z =
∑k

i=1 aixi in X(n) we say that Z has multiplicity λ
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where λ is the partition (a1, . . . , ak) with a1 ≥ . . . ≥ ak. We have the same notion

for points on Xn and X [n] by looking at the multiplicity of the image under the maps

Xn → X(n), X [n] → X(n).

We now prove the following important fact about our induced automorphisms:

Proposition 3. Suppose f : Xn → Xn is an Sn-equivariant automorphism with X as

in Proposition 2. The automorphisms f, f̄ , f̃ on Xn, X(n), X
[n]
sm respectively all preserve

multiplicities.

Proof. By this we mean that if Z is an element of either Xn, X(n), X
[n]
sm with multiplicity

λ then f(Z) also has multiplicity λ. It is immediate by construction that the map f

on Xn preserves multiplicities if and only if f̄ does on X(n), and since the Hilbert-Chow

morphism π : X [n] → X(n) preserves multiplicities the same equivalence holds between f̄

and f̃ . Thus, it suffices to prove that any Sn-equivariant automorphism f : Xn → Xn

preserves multiplicities.

Since the Sn-equivariant automorphisms of Xn are in correspondence with the

automorphisms of X(n), this is just a general statement about automorphisms of X(n). For

a partition λ = (λ1, . . . , λk), λ1 ≥ . . . ≥ λk of n, we write X
(n)
λ for the locus of points in

X(n) of multiplicity type λ. We may also write Xn
λ for the preimage of X

(n)
λ under the

projection. Given two partitions λ = (λ1, . . . , λk), τ = (τ1, . . . , τl) we say that λ refines τ

if k ≥ l and there exists a partition {1, . . . , k} = I1 ∪ . . . ∪ Im of the index set of λ such

that for each j,
∑

s∈Ij λs = τj. For example, (2, 2, 1, 1) and (3, 1, 1, 1) both refine (3, 3)

since we may group up elements of these partitions and add them up so as to get (3, 3). By

contrast, (4, 2) and (3, 3) do not refine each other. This notion endows the set of partitions

of n with the structure of a poset, so that we will write λ ≥ τ if λ refines τ .

We may now prove the proposition by inducting up the poset of partitions of n

(strictly speaking, we are inducting with respect to a topological sort of this finite poset).

To start the induction, we need to prove that f fixes Xn
(n) since any partition refines
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(n) (and this is the only element of the poset for which this is true, so there is a unique

base case). We write out f into coordinate functions f1, . . . , fn : Xn → X, so that at

a point of multiplicity (n) we may write f(x, . . . , x) = (f1(x, . . . , x), . . . , fn(x, . . . , x)).

Any permutation of the input (x, . . . , x) to f does nothing to the left hand side, but

will permute the factors fi(x, . . . , x) on the right hand side. Since this applies to any

permutation, we conclude that fi(x, . . . , x) = fj(x, . . . , x) for any i, j, so that f(x, . . . , x)

is also a point of multiplicity (n).

Suppose now that f preserves Xn
τ for any τ ⪇ λ, with λ = (λ1, . . . , λk). We may

without loss of generality consider a point x⃗ = (x1, . . . , x1, x2, . . . , x2, . . . , xk, . . . , xk) ∈ Xn

with multiplicity λ (i.e. we assume the coordinates are grouped up). We have f(x⃗) =

(f1(x⃗), . . . , fn(x⃗)) as before. Using the Sn-equivariance of f , we see that the input x⃗ is

unaffected if we permute the first λ1 entries, so that the first λ1 of the fi(x⃗) on the right

hand side are all equal. The same is true for the next λ2 entries, and so on. To show that

the right hand side (f1(x⃗), . . . , fn(x⃗)) has the desired multiplicity λ, we need to show that

the coordinates in different groups corresponding to different λi are distinct. If not, then

necessarily two groups corresponding to different λi are all equal, so that the right hand

side is a point with multiplicity τ refined by λ. However, we know that f restricts to an

automorphism of Xn
τ by induction, so by invertibility it cannot send a point of Xn

λ to a

point of Xn
τ . Thus, we are done.

As an aside, we require that f : Xn → Xn be an automorphism as there exist

Sn-equivariant morphisms on Xn which do not preserve multiplicities. As an example, fix

a point p ∈ X - the constant map f(x1, . . . , xn) = (p, . . . , p) is equivariant but sends any

point to a point of multiplicity (n).

We remark additionally that if λ ≥ τ then the closure Xn
λ contains Xn

τ . This is

quite intuitive. As an example, in the case where (3, 1, 1, 1) refines (3, 3), if we have three

distinct points of multiplicity 1 in X then we can let them run into each other, so that

any point of multiplicity type (3, 3) is the limit of points of type (3, 1, 1, 1). One can
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be more formal as an exercise in point-set topology, which we now sketch. On Xn, by

taking complements we wish to prove that any open set U contained in (Xn
λ )

c is in fact

contained in (Xn
τ )

c. Any such open set U may be written as a union of product open

sets, so it suffices to show that if a product open set U1 × . . . × Un ⊂ Xn contains a

point of multiplicity τ then it contains a point of multiplicity λ. Since X is projective

over an infinite field these open sets Ui have infinitely many points, so given our point of

multiplicity τ ∈ U1 × . . .×Un we can perturb the coordinates to get a point of multiplicity

λ.

Note that preserving the multiplicity structure of points in X [n] is a stronger

statement than simply fixing the diagonal of non-reduced points in X [n]. Thus, to produce a

counterexample to the question of [BOR] it suffices to find anSn-equivariant automorphism

f : Xn → Xn which does not arise from the diagonal embedding Aut(X) ↪→ Aut(Xn)Sn .

For X = A an abelian variety, a group endomorphism f : An → An may be decomposed

as a matrix of group endomorphisms of A:

f =


f11 . . . f1n

...

fn1 . . . fnn


where f(x1, . . . , xn) = (

∑n
j=1 f1j(xj), . . . ,

∑n
j=1 fnj(xj)). One can check that this identi-

fication transforms composition of morphisms into matrix multiplication using the ring

structure of End(A). For such a matrix to be Sn-equivariant it must have all diagonal

entries equal and all off-diagonal entries equal, and certainly such a matrix is indeed

Sn-equivariant. Thus, to produce Sn-equivariant automorphisms of An we need only find
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entries x, y ∈ End(A) such that the determinant of the matrix



x y y . . . y

y x y . . . y

...

y y y . . . x


is a unit in the ring End(A), as then the matrix (and hence the endomorphism) has an

inverse given by the adjoint matrix. If y ̸= 0, then the automorphism of An does not arise

from the diagonal embedding of Aut(A) (these are automorphisms as a variety) and so

the corresponding automorphism of A[n] will give a desired counterexample.

We now give some examples of such matrix solutions.

3.1 dimA = 2, n = 2 via Pell’s equation

These examples were first published by Sasaki [Sa] and independently discovered

by the author. Let d ≥ 2 be a positive integer which is not a perfect square. The Pell’s

equation

x2 − dy2 = 1

has infinitely many integer solutions (x, y). One can construct complex abelian surfaces

whose endomorphisms are precisely the ring of integers OK of a totally real number field

- see [Go, Chapter 2.2] and the discussion after equation (2.46). Let A be a complex

abelian surface with End(A) = OK where K = Q(
√
d), so that in particular A has an

endomorphism
√
d such that the self-composition

√
d◦

√
d coincides with the endomorphism

d ∈ Z ⊂ End(A). The Picard rank of A is 2, since OK is a Z-module of rank 2 so that the

Picard rank is at most 2, but if it were 1 then we could write every element of NS(A) as

an integer multiple of some generator Θ, so that (
√
d)∗Θ = kΘ for some integer k and

hence dΘ = k2Θ, contradicting that d is not a perfect square. Alternatively, simply invoke
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[Yo, Lemma 1.2].

Fix an integer solution (x, y) to the Pell’s equation x2 − dy2 = 1 with x, y ≠ 0. The

matrix

M =

 x y
√
d

y
√
d x

 ∈ End(A2)

has determinant x2−dy2 = 1 as an element in End(A), and so defines an automorphism of

A2. Since the entries on the diagonal and off-diagonal are separately equal to some fixed

value, the automorphism is S2-equivariant, and since the off-diagonal entry is nonzero it

is not in the image of Aut(A) ↪→ Aut(A2)S2 . By the preceding discussion, we obtain an

automorphism of A[2] which is not natural, but which nevertheless preserves the diagonal.

For another way to see that the associated automorphism of A[2] is not natural,

note that M(0, 0) = (0, 0), so that the induced automorphism of A[2] preserves the set

of multiplicity two points supported at 0 ∈ A. Thus, if this automorphism were natural

it would in fact be of the form f [2] for f a group automorphism of A, so that if Z is a

reduced subscheme supported at distinct points 0, a ∈ A then f [2](Z) would also have a

point supported at 0. However, one can find points (0, a) ∈ A2 such that M(0, a) has both

coordinates nonzero.

3.2 dimA ≥ 2, n ≥ 2 via nilpotent endomorphisms

Suppose B = Am for A an abelian variety. Any endomorphism N of B whose

m × m matrix is upper triangular with all zeros on the diagonal is nilpotent by linear

algebra, so that Nk = 0 for some k. Suppose N ̸= 0 so that 2 ≤ k ≤ m. The determinant
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of the n× n matrix 

I N N . . . N

N I N . . . N

N N I . . . N

...

N N N . . . I


is I+N2T ∈ End(B) = End(Am) where T is some polynomial in N, I. To see this, expand

the determinant along the first row. The first term of this expansion will be I times the

determinant of the (n − 1) × (n − 1) version of this matrix, and the subsequent terms

will be ±N times the determinant of a matrix whose first column is all N ’s. We thus

inductively get either I or terms divisible by N2, as desired.

The term N2T is upper triangular with zeros on the diagonal, so that I +N2T is

an m×m upper triangular matrix of the form

I +N2T =



1 ∗ . . . ∗

0 1 . . . ∗

. . .
...

0 0 . . . 1


with 1’s on the main diagonal. This matrix has determinant 1 ∈ End(A) by expanding

along the first column successively, so that I +N2T is an invertible element of End(B)

and hence our original Sn-equivariant endomorphism on Bn defined by the first matrix is

an automorphism, and thus induces an unnatural automorphism preserving the diagonal

on the smoothable locus of B[n]. For B = E × E a product abelian surface where E is an

elliptic curve we obtain counterexamples to the question of Belmans-Oberdieck-Rennemo

for all n, proving Theorem 1. Note that these product abelian varieties have Picard rank

greater than 1 coming from pullbacks from the individual factors and from maps between
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the factors.

3.3 dimA ≥ 3, n = 3 and beyond using higher degree

number fields

By now the pattern is clear for how to construct counterexamples using abelian

varieties - we have to find an abelian variety A such that the determinantal equation

det



x y y . . . y

y x y . . . y

y y x . . . y

...

y y . . . y x


∈ End(A)×

admits solutions over End(A) with y ̸= 0. As previously discussed, by [Go, Chapter 2.2]

we can try to look for solutions in rings of integers of totally real fields. This is not the

only possibility, as many other rings can arise as the endomorphisms of abelian varieties.

For one example, take n = 3, so that the determinant above becomes x3−3xy2+2y3.

View y as a fixed coefficient, and set the determinant equal to 1, so that we wish to find

solutions in x to

x3 − (3y2)x+ (2y3 − 1) = 0.

The discriminant of this cubic in x is

∆ = −(4(−3y2)3 + 27(2y3 − 1)2) = 108y3 − 27.

If y is a positive integer then the discriminant is positive, so that the equation has three

distinct real roots. Picking one of these solutions x = α gives a degree 3 totally real field

K = Q(α), and hence we may find an abelian variety A admitting multiplication by OK
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(one can take A to be a threefold). The resulting endomorphism on A3 given by the matrix

M =


α y y

y α y

y y α


is therefore invertible, and so we obtain an induced unnatural automorphism on A[3]

fixing the diagonal. For a smooth variety X it is known that X [3] is also still smooth,

and therefore equal to its smoothable component. Whether more solutions of these

determinantal equations exist for other values of n and with other endomorphism rings of

abelian varieties is an interesting question to which we do not know the answer.

We can however rule out nontrivial solutions over the integers:

Proposition 4. Let Mn be the n× n matrix

Mn =



x y y . . . y

y x y . . . y

...

y y . . . y x


.

There are no pairs (x, y) of integers with y ̸= 0 such that det(Mn) = ±1 for n ≥ 3.

Proof. The key is to show how to factor this determinant for all n. To do this, set Tn to

be the matrix

Tn =



y y y . . . y

y x y . . . y

y y x . . . y

...

y y y . . . x


which consists of all y’s in the first row and column and a copy of Mn−1 in the bottom
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right hand minor. By expanding determinants along the top row and using row operations

to transform the resulting minors into copies of Mn−1, Tn−1, a straightforward induction

shows that

Formula 5.

det(Mn) = (x− y)n−1(x+ (n− 1)y)

det(Tn) = y(x− y)n−1.

We may now prove the proposition. Suppose that det(Mn) = (x− y)n−1(x+ (n−

1)y) = ±1 for x, y integers. It must be then that either x − y = 1 or x − y = −1. If

x− y = 1 then x+(n− 1)y = ny+1 must be equal to ±1, so that ny = 0,−2, which can’t

happen if n ≥ 3 unless y = 0. Similarly, if x− y = −1 then x+ (n− 1)y = ny − 1 = ±1,

implying ny = 0, 2, which can’t happen unless y = 0. We conclude the proposition.

This gives some evidence that automorphisms A[n] should be natural for all n if A

is an abelian surface of Picard rank 1. However, it is not a proof, as it is not immediate

that all automorphisms of A[n] arise from A(n).
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3.4 Action on generalized Kummer fibers

Suppose (a1, . . . , an) ∈ An is a vector such that a1 + . . .+ an = 0. Any matrix Mn

defining an automorphism on An with x, y ∈ End(A) as before acts on this point as

Mn(a1, . . . , an) =



x y y . . . y

y x y . . . y

...

y y . . . y x





a1

a2
...

an


=



x(a1) + y(a2 + . . .+ an)

x(a2) + y(a1 + a3 + . . .+ an)

...

x(an) + y(a1 + . . .+ an−1)



=



(x− y)(a1)

(x− y)(a2)

...

(x− y)(an)


since ai = −(a1+ . . .+ ai−1+ ai+1+ . . .+ an) by hypothesis. Since x, y are endomorphisms

of A, we see that

n∑
i=1

(x− y)(ai) = (x− y)

(
n∑

i=1

ai

)

= 0.

Thus, the induced automorphism f̃ of the smoothable locus of A[n] restricts to an

automorphism of the fiber over 0 of the summation morphism Σ : A[n] → A preserving the

diagonal. [BNS, Theorem 3.1] implies for an abelian surface that such an automorphism

of the generalized Kummer variety Kn−1(A) ⊂ A[n] must be the restriction of a natural

automorphism (ta ◦g)[n] of A[n], where g is a group automorphism of A and ta is translation

by an n-torsion point if n ≥ 3. This creates an apparent contradiction: though our

automorphism f̃ on A[n] is unnatural, its restriction to Kn−1(A) ⊂ A[n] is the restriction
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of an unnatural automorphism of A[n].

However, there is no contradiction. Though our f̃ on A[n] is globally not a natural

automorphism, its restriction to Kn−1(A) agrees with the restriction of the natural endo-

morphism (x − y)[n] per our calculation. We just need to show that x − y is in fact an

automorphism to resolve the issue.

By formula 5 we know that

det(Mn) = (x− y)n−1(x+ (n− 1)y)

is a unit in the ring End(A). It is not true for arbitrary rings that if the product of two

elements is a unit then those elements must have been units. However, it is true for End(A),

since if g ◦ h = id in End(A) then we may lift this to a product of linear maps on some

complex vector space, and those linear maps must be invertible by taking determinants.

Thus, x− y is an automorphism of A, so (x− y)[n] is a natural automorphism whose action

on Kn−1(A) agrees with that of f̃ . We summarize the results of this section as follows:

Proposition 5. Let A be an abelian variety. Let f̃ be an automorphism of A
[n]
sm induced

by a matrix Mn as before, where x, y are endomorphisms of A. Then x− y is necessarily

an automorphism of A. Moreover, f̃ preserves the fiber over 0 of the summation morphism

Σ : A[n] → A, and its restriction to this fiber coincides with the action of the natural

automorphism (x− y)[n].
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Chapter 4

Numerical preliminaries

In this section, let A be a complex abelian surface of Picard rank 1, whose Neron-

Severi group is generated by a polarization Θ such that Θ2 = 2k for some positive integer

k. To prove Theorem 2, we will need to calculate various numerical invariants on A[2].

The reader who is only interested in the main theorem may immediately begin with the

proof in the next section and refer back to these results as they are used.

4.1 Intersection numbers on A[2]

We have that

NS(A[2]) ∼= Z3,

with generators Θ[2], ϕΘ, B. Formula 4 allows us to change our basis to have generators

Θ[2],Σ
∗Θ, B

instead. We will calculate all top intersection numbers of these divisors, and for simplicity

will write

x = Θ[2]

y = Σ∗Θ
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so that NS(A[2]) has free generators x, y, B.

Consider the following commutative diagram:

Bl∆A
2 A2

A[2] A(2)

q

π̂

p

π

where all maps are the obvious ones. Note that q, p are generically of degree two and

π̂, π are generically of degree 1 with connected fibers. We will lift our calculations of

intersection numbers in A[2] upstairs to Bl∆A
2. We will respectively denote the exceptional

divisors of A[2], Bl∆A
2 as E,F . The normal bundle to the diagonal in the self-product

of any variety X is well-known to be isomorphic to the tangent bundle TX (the diagonal

∆ ⊂ X2 is itself isomorphic to X), which for X = A an abelian surface is just a trivial rank

two bundle TA
∼= O⊕2

A . Thus, the exceptional divisor F = P(N∆/A2) is simply isomorphic

to A× P1, with normal bundle in Bl∆A
2 simply given by the pullback of OP1(−1) along

the projection F = A × P1 → P1. Since F = q−1(E) set-theoretically and q has degree

two, we have that q∗E = 2F in Picard.

Suppose we wish to calculate an intersection number on A[2] of the form

∫
A[2]

Em · π∗α

where m > 0 and α is a cycle on A(2) of complementary codimension. Since q∗E = 2F

and q is generically of degree 2, we may instead calculate this as

∫
A[2]

Em · π∗α =
1

2

∫
Bl∆A2

q∗(Em · π∗α)

=
1

2

∫
Bl∆A2

(q∗E)m · π̂∗p∗α

= 2m−1

∫
Bl∆A2

Fm · π̂∗p∗α.

Consider then the following blowup diagram:
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F ∼= A× P1 Bl∆A
2

∆ ∼= A A2

j

p1 π̂

i

.

We note first that [F ] = j∗1 in the Chow ring A∗(Bl∆A
2) and that j∗F = −H, where H is

the first Chern class of the line bundle OP1(1) on the P1 factor of F ∼= A× P1. The latter

equality is because j∗F is the class of the self intersection F · F ∈ A∗(F ), which is given

by the first Chern class of the normal bundle O(−1) of F in Bl∆A
2.

By using these facts and the push-pull formula we find for any m ≥ 1 that as

classes in A∗(Bl∆A
2):

Fm = Fm−1 · j∗1

= j∗(j
∗Fm−1 · 1)

= (−1)m−1j∗(H
m−1).

Thus, for any m ≥ 1 and β ∈ A∗(A2) we find that

Fm · π̂∗β = (−1)m−1j∗(H
m−1) · π̂∗β

= (−1)m−1j∗(H
m−1 · j∗π̂∗β)

= (−1)m−1j∗(H
m−1 · p∗1i∗β).

For this last quantity to give a nonzero codimension 4 cycle, we see that we must have

m = 2 and codim β = 2. Moreover, since H is just a point in each P1 fiber of F ∼= A× P1

and the map p1 : F → ∆ ∼= A is just projection onto the A factor,

∫
Bl∆A2

j∗(H
m−1 · p∗1i∗β)

simply counts the number of points in the intersection
∫
∆
i∗β =

∫
A2 β · ∆ in A2 when
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m = 2.

Returning to our initial calculation of Em · π∗α in A[2], by setting β = p∗α we find

that

∫
A[2]

Em · π∗α = 2m−1

∫
Bl∆A2

Fm · π̂∗p∗α

= (−2)m−1

∫
Bl∆A2

j∗(H
m−1 · q∗i∗β)

= −2

∫
A2

β ·∆

if m = 2 to make this intersection number potentially nonzero.

If instead m = 0 so that we are calculating the intersection number on A[2] of

divisors purely coming from A(2), then since p : A2 → A(2) is generically of degree 2 and

π : A[2] → A(2) is generically of degree 1 we find that

∫
A[2]

π∗β =

∫
A(2)

β

=
1

2

∫
A2

p∗β,

allowing us to calculate any top intersection number of divisors on A[2] on A2 instead.

With our basis x, y, B for NS(A[2]), when lifting to A2 we have that x lifts to

π∗
1Θ+ π∗

2Θ where the πi are the natural projections. By our preceding work calculating

intersection numbers on A[2], we know that any monomial of the form

∫
A[2]

xaybEc

can only be nonzero if c = 0, 2. We now calculate the intersection numbers of all these

monomials. Recall that Θ2 = 2k, and write p for the class of a point.
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We first calculate

∫
A[2]

x2y2 =
1

2

∫
A2

(π∗
1Θ+ π∗

2Θ)2(Σ∗Θ)2

=
1

2

∫
A2

(π∗
1(Θ

2) + 2(π∗
1Θ)(π∗

2Θ) + π∗
2(Θ

2))Σ∗(Θ2)

=

∫
A2

π∗
1(Θ

2)Σ∗(Θ2) + (π∗
1Θ)(π∗

2Θ)Σ∗(Θ2)

= 4k2

∫
A2

π∗
1(p)Σ

∗(p) + 2k

∫
A2

(π∗
1Θ)(π∗

2Θ)Σ∗(p)

where we use the symmetry π∗
1(Θ

2)Σ∗(Θ2) = π∗
2(Θ

2)Σ∗(Θ2). Thinking set-theoretically,

π∗
1(p) simply fixes the first coordinate of a point (x, y) in A2, and Σ∗(p) fixes the sum of

the point, which together determines the second coordinate of (x, y) so that

∫
A2

π∗
1(p)Σ

∗(p) = 1.

To calculate the second term above, if we fix a representative for Θ then (π∗
1Θ)(π∗

2Θ)Σ∗(p)

consists of those points (x, y) where x, y ∈ Θ and x+ y = p for some fixed point p. This is

equivalent to counting the number of points x ∈ A such that both x, p− x are in Θ. This

is simply the self intersection of Θ with the pullback of Θ under a translation and (−1)∗,

neither of which change the numerical equivalence class of Θ, giving

∫
A2

(π∗
1Θ)(π∗

2Θ)Σ∗(p) =

∫
A

Θ2 = 2k.

Hence,

∫
A[2]

x2y2 = 4k2

∫
A2

π∗
1(p)Σ

∗(p) + 2k

∫
A2

(π∗
1Θ)(π∗

2Θ)Σ∗(p)

= 8k2.

Any terms involving (π∗
iΘ)m = π∗

i (Θ
m) and ym = (Σ∗Θ)m = Σ∗(Θm) vanish if m > 2, and
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thus

∫
A[2]

x3y =
1

2

∫
A2

(π∗
1Θ+ π∗

2Θ)3Σ∗(Θ)

=
1

2

∫
A2

(3(π∗
1Θ)2(π∗

2Θ) + 3(π∗
1Θ)(π∗

2Θ)2)Σ∗(Θ)

= 3

∫
A2

π∗
1(Θ

2)(π∗
2Θ)Σ∗(Θ)

= 6k

∫
A2

π∗
1(p)(π

∗
2Θ)Σ∗(Θ).

The class π∗
1(p)(π

∗
2Θ)Σ∗(Θ) corresponds to points (x, y) such that both y, p + y

are in Θ for some fixed point p = x, which amounts to the intersection of Θ with the

translation of Θ by p which doesn’t change numerical equivalence, and hence has value

∫
A2

π∗
1(p)(π

∗
2Θ)Σ∗(Θ) =

∫
A

Θ2 = 2k,

so that

∫
A[2]

x3y = 6k

∫
A2

π∗
1(p)(π

∗
2Θ)Σ∗(Θ)

= 12k2.

Finally,

∫
A[2]

x4 =
1

2

∫
A2

(π∗
1Θ+ π∗

2Θ)4

= 3

∫
A2

π∗
1(Θ

2)π∗
2(Θ

2)

= 12k2

∫
A2

π∗
1(p)π

∗
2(p)

= 12k2.

These are all the classes involving no E term that we need to calculate, since any monomial
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with ym for m > 2 will be zero. Using our formula for intersection numbers of the form

Em · π∗α, we find that

∫
A[2]

x2E2 = −2

∫
A2

(π∗
1Θ+ π∗

2Θ)2 ·∆

= −4

∫
A2

(π∗
1Θ)2 ·∆− 4

∫
A2

π∗
1(Θ)π∗

2(Θ) ·∆

= −8k

∫
A2

π1(p) ·∆− 4

∫
A2

π∗
1(Θ)π∗

2(Θ) ·∆.

The first term π∗
1(p) ·∆ counts points (x, y) with x = p fixed and y = x giving just

one point, and for π∗
1(Θ)π∗

2(Θ) ·∆ we consider the commutative diagram(s)

A ∼= ∆ A× A

A
(x,x)7→x

i

π1,π2

so that

∫
A2

π∗
1(Θ)π∗

2(Θ) ·∆ =

∫
A

Θ2

= 2k

by push-pull with i. We thus conclude that

∫
A[2]

x2E2 = −8k

∫
A2

π1(p) ·∆− 4

∫
A2

π∗
1(Θ)π∗

2(Θ) ·∆

= −16k.
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Similarly,

∫
A[2]

y2E2 = −2

∫
A2

(Σ∗Θ)2 ·∆

= −4k

∫
A2

Σ∗(p) ·∆

= −64k.

We use that if we take Σ∗(p) to be represented by the fiber over 0 then the integral

∫
A2

Σ∗(p) ·∆

counts the points (x, y) with y = −x and x = y, corresponding to the 16 2-torsion points

of A.

Finally, we calculate the last relevant term

∫
A[2]

xyE2 = −2

∫
A2

(π∗
1Θ+ π∗

2Θ)(Σ∗Θ) ·∆

= −4

∫
A2

π∗
1(Θ)Σ∗(Θ) ·∆.

This integral counts points (x, y) with x ∈ Θ, x+ y ∈ Θ, and x = y, i.e. points x ∈ A such

that x, 2x ∈ Θ. This amounts to calculating the intersection Θ · (·2)∗Θ where (·2)∗ is the

pullback under the multiplication by 2 map on A. We can pick Θ to be symmetric (we

only care about numerical equivalence), so that from the formula

(·n)∗L ∼= L⊗n(n+1)
2 ⊗ (−1)∗L⊗n(n−1)

2

[MMR, p.59 Corollary 3] we get (·2)∗Θ = 4Θ (using symmetry so that Θ = (−1)∗Θ). Thus,
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we conclude that

∫
A[2]

xyE2 = −4

∫
A2

π∗
1(Θ)Σ∗(Θ) ·∆

= −4

∫
A

Θ · (4Θ)

= −32k.

We summarize this discussion with a table, recalling that Θ2 = 2k for the chosen polariza-

tion Θ on A and that B = E
2
:

Table 4.1. Intersection numbers of cycles on A[2], where Θ2 = 2k.

Cycle
∫
A[2]

x4 12k2

x3y 12k2

x2y2 8k2

x2B2 −4k

xyB2 −8k

y2B2 −16k

4.2 Wirtinger pullbacks

Consider the Wirtinger map ξ : A×A → A×A defined via ξ(x, y) = (x+ y, x− y)

for A any abelian variety with symmetric line bundle Θ. By the see-saw theorem, we have

that

ξ∗(π∗
1Θ⊗ π∗

2Θ) = π∗
1Θ

⊗2 ⊗ π∗
2Θ

⊗2

(see [Mu1, Section 3 Proposition 1] for a proof and [Mu2, p. 336]). Direct calculation

shows that the diagram
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A× A A× A

A A

ξ

π1 Σ

·2

commutes where ·2 is the endomorphism x 7→ 2 · x on A, so that

ξ∗Σ∗Θ = π∗
1(·2)∗Θ. (4.1)

Since Θ is symmetric we conclude that

ξ∗Σ∗Θ = π∗
1Θ

⊗4,

and hence that

ξ∗((π∗
1Θ⊗ π∗

2Θ)⊗a ⊗ (Σ∗Θ)⊗b) ∼= π∗
1Θ

⊗(2a+4b) ⊗ π∗
2Θ

⊗2a (4.2)

on A2. We will use this later to rule out certain coefficients for g∗B in Neron-Severi by

considering dimensions of global sections.

4.3 Dimensions of global sections on symmetric

product

Intersection numbers alone will not suffice to show what we want about the action

of automorphisms of A[2] on NS(A[2]). If c ≥ 0, then any line bundle L on A[2] in the

Neron-Severi equivalence class ax+ by + cB can be written as π∗L′ ⊗OA[2](cB) for some

line bundle L on A(2) in the equivalence class ax+ by ∈ NS(A(2)) where π : A[2] → A(2)

is the Hilbert-Chow morphism. We recall by formula 1 that it suffices to calculate the

dimensions of global sections of L′ on A(2) in this case.

We give the following nearly-complete formulas when Θ is a symmetric principal

polarization:
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Formula 6.

dimH0(A(2),Θ⊗k
(2) ⊗Σ∗Θ⊗ℓ ⊗L0) =



0, if k < 0 or k + 2ℓ < 0

0, if k ≥ 0 & k + 2ℓ = 0 & L⊗2
0 ≇ OA(2)

ℓ2, if k = 0 & ℓ > 0

(k2+1)(k+2ℓ)2

2
, if k > 0 & k + 2ℓ > 0

where L0 is a line bundle in Pic0(A(2)). The coefficients k, ℓ index the class in the Neron-

Severi group NS(A(2)), and twisting by arbitrary L0 gives a class in Pic(A(2)). We will

partially address and generalize the remaining cases in the next section.

We note by formula 3 that these formulas give the dimension of the space of S2-

invariant sections of the pullbacks of these line bundles to A2, when it can be difficult to

explicitly determine the global sections of these pullbacks and the corresponding S2-action.

Let us consider each of our cases.

4.3.1 Cases where H0 = 0

Since Σ∗ : Pic0(A) → Pic0(A(2)) is an isomorphism, we may write our line bundle

on A(2) as

L = Θ⊗k
(2) ⊗ Σ∗(Θ⊗ℓ ⊗ L0)

for some L0 ∈ Pic0(A). Since the projection p : A2 → A(2) is surjective, the pullback p∗

induces an injection on global sections of locally free sheaves (if p∗s is the zero section for

some s ∈ H0(A(2), V ) with V → A(2) a vector bundle, then s(p(x)) = 0 for all x ∈ A2, but

since p is surjective this implies s(y) = 0 for all y ∈ A(2) so that s = 0). Thus, if we can

show that the pullback p∗L on A2 has no global sections, then H0(A(2), L) = 0, as desired.

Moreover, since the Wirtinger map ξ : A2 → A2 considered in the previous subsection

is surjective, we can instead try to show that H0(A2, ξ∗p∗L) = 0. By our results in the
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previous section, this is the same as

H0(A2, ξ∗p∗L) = H0(A2, ξ∗((π∗
1Θ⊗ π∗

2Θ)⊗k ⊗ Σ∗(Θ⊗ℓ ⊗ L0)))

= H0(A2, π∗
1Θ

⊗(2k+4ℓ) ⊗ π∗
2Θ

2k ⊗ π∗
1(·2)∗L0).

From [MMR] we have that (−1)∗L0
∼= L⊗−1

0 , and hence (·2)∗L0
∼= L⊗2

0 by the usual formula

for (·n)∗L, so that this becomes

H0(A2, ξ∗p∗L) = H0(A2, π∗
1(Θ

⊗(2k+4ℓ) ⊗ L⊗2
0 )⊗ π∗

2Θ
⊗2k)

= H0(A,Θ⊗(2k+4ℓ) ⊗ L⊗2
0 )⊗H0(A,Θ⊗2k)

by the Künneth decomposition for the sheaf cohomology of a box product ([St, Tag 0BEC]).

This gives us the desired vanishing in all of our cases. If k < 0, then the second factor

H0(A,Θ⊗2k) = 0 automatically. If k + 2ℓ < 0 then Θ⊗(2k+4ℓ) has no global sections and

Euler characteristic

χ(A,Θ⊗(2k+4ℓ)) =
(2k + 4ℓ)2

2

∫
A

Θ2

= (2k + 4ℓ)2

̸= 0,

so that by [MMR, p.150] the sheaf cohomology of Θ⊗(2k+4ℓ) is concentrated in a single

degree. This degree (the index ) is determined by the first Chern class of each line bundle

(see [BL, p.61]), which is an element of the discrete group H2(A,Z) and hence is constant

within a numerical equivalence class in Pic(A), so that H0(A,Θ⊗(2k+4ℓ) ⊗ L⊗2
0 ) = 0 if

2k + 4ℓ < 0. If 2k + 4ℓ = 0, then the only line bundle in Pic0(A) with a global section is

OA, so we again get the desired vanishing if L⊗2
0 ≇ OA.
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4.3.2 Case where k = 0, ℓ > 0

This case is almost immediate. We have that L = Σ∗(Θ⊗ℓ ⊗ L0) for some L0 ∈

Pic0(A). We may pushforward under Σ to instead calculate

H0(A(2), L) = H0(A,Σ∗L)

= H0(A,Θ⊗ℓ ⊗ L0)

by push-pull, since Σ has connected fibers. Since ℓ > 0, we have that

χ(A,Θ⊗ℓ ⊗ L0) =
ℓ2

2

∫
A

Θ2

= ℓ2

̸= 0

since L0 is numerically trivial. Since ℓ > 0, Θ⊗ℓ is effective and hence has a section, so that

by concentration of cohomology dimH0(A,Θ⊗ℓ) = ℓ2. Since the index of a non-degenerate

line bundle is unchanged by twisting with L0 ∈ Pic0(A), we are done.

4.3.3 Case where k > 0 and k + 2ℓ > 0

This case requires substantially more work than the previous two. Define the

morphism

w(x, y) : A× A → A(2)

w(x, y) = (x+ y, x− y),
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and note that w is invariant if we replace y with −y, so that w commutes with the natural

Z/2Z action on the second A factor and hence descends to a morphism

µ(x, y) : A× (A/± 1) → A(2)

µ(x, y) = (x+ y, x− y).

Proposition 6. The following diagram is Cartesian:

A× (A/± 1) A(2)

A A

µ

π1 Σ

(·2)

Proof. A simple calculation shows that the square is commutative. It remains to prove

the universal property of pullback squares. Suppose that X is a scheme equipped with

morphisms f : X → A, g : X → A(2) such that the diagram

X A(2)

A A

g

f Σ

·2

is commutative. We wish to show the existence of a morphism h : X → A× (A/± 1) such

that the diagram

X

A× (A/± 1) A(2)

A A

f

g

h

µ

π1 Σ

·2

commutes. We will construct this morphism as h = h1 × h2 for morphisms h1 : X →

A, h2 : X → A/± 1. We unsurprisingly set h1 = f . To find h2, consider the anti-diagonal

embedding i : A ↪→ A2, x 7→ (x,−x), which is equivariant with respect to Z/2Z where the

group action is via multiplication by ±1 on the left and swapping the factors on the right,
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and hence descends to an embedding ī : A/± 1 ↪→ A(2). Given any point a ∈ A we have a

natural translation morphism t
[2]
a : A(2) → A(2) acting pointwise. Observe that

Σ ◦ t[2]−f(x)(g(x)) = Σ(g(x))− 2f(x) = 2f(x)− 2f(x) = 0

for any x ∈ A, so that t
[2]
−f(x)(g(x)) lies in the image of ī. We may thus define

h2(x) := ī−1(t
[2]
−f(x)(g(x))) ∈ A/± 1.

The commutative relation f = π1 ◦ h is immediate. To prove the other relation

g = µ ◦ h, suppose that we may write g(x) = (a, b) = (b, a) ∈ A(2) for points a, b ∈ A.

The translate t
[2]
−f(x)(g(x)) = (a− f(x), b− f(x)) satisfies a− f(x) = −(b− f(x)) per our

calculation, and h2(x) may be identified with the image of a− f(x) ∈ A/± 1. We then

calculate

µ ◦ h(x) = µ(f(x), h2(x))

= (f(x) + h2(x), f(x)− h2(x))

= (f(x) + (a− f(x)), f(x) + (b− f(x)))

= (a, b)

= g(x).

The universal property of pullbacks thus holds, so that our original diagram was Cartesian,

as desired.

Set Bk = Σ∗(Θ
⊗k
(2)). Let L0 ∈ Pic0(A) be arbitrary, so that we wish to calculate

the dimension of H0(A(2),Θ⊗k
(2) ⊗ Σ∗(Θ⊗ℓ ⊗ L0)). By push-pull we wish to determine the

dimension of H0(A,Bk ⊗ (Θ⊗ℓ ⊗ L0)). Since the preceding diagram is Cartesian we find
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that

(·2)∗Bk
∼= π1∗µ

∗Θ⊗k
(2).

We wish to show that

µ∗Θ⊗k
(2)

∼= π∗
1Θ

⊗2k ⊗ π∗
2Lk

for some line bundle Lk on A/ ± 1 where π2 : A × (A/ ± 1) → A/ ± 1 is the projection

(since k > 0 in this section, we hope that the choice of notation Lk will not cause confusion

with the fixed element L0 ∈ Pic0(A)). Consider the twisted line bundle

Mk = µ∗Θ⊗k
(2) ⊗ π∗

1Θ
⊗−2k.

It suffices by the seesaw principle ([MMR, p.54]) to show that Mk|A×{y} ∼= OA for

all y ∈ A/ ± 1. This restriction is the same as the pullback i∗A,yMk under the inclusion

map iA,y : A ↪→ A × (A/ ± 1), x 7→ (x, y). Fix a lift ŷ of y from A/ ± 1 to A: there are

two such choices. We have a similar inclusion map iA,ŷ : A ↪→ A×A, x 7→ (x, ŷ) yielding a

commutative diagram

A A× A A× A

A A× (A/± 1) A(2)

iA,ŷ

id π1×q

ξ

p

iA,y µ

where q, p are natural projections and ξ : A2 → A2 is the Wirtinger map ξ(x, y) =

(x+ y, x− y). To show that Mk|A×{y} ∼= i∗A,yMk is trivial it suffices to prove that

id∗i∗A,yMk
∼= i∗A,ŷ(π

∗
1Θ

⊗−2k ⊗ (π1 × q)∗µ∗Θ⊗k
(2))

∼= i∗A,ŷ(π
∗
1Θ

⊗−2k ⊗ ξ∗p∗Θ⊗k
(2))

∼= i∗A,ŷ(π
∗
1Θ

⊗−2k ⊗ ξ∗(π∗
1Θ⊗ π∗

2Θ)⊗k)

∼= i∗A,ŷ(π
∗
1Θ

⊗−2k ⊗ (π∗
1Θ⊗ π∗

2Θ)⊗2k)

∼= i∗A,ŷπ
∗
2Θ

⊗2k
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∼= OA

is trivial, as we have just done. We conclude that i∗A,yMk is trivial for all y ∈ A/± 1 so

that

µ∗Θ⊗k
(2) ⊗ π∗

1Θ
⊗−2k = Mk

∼= π∗
2Lk

for some line bundle Lk on A/± 1 by the seesaw principle. Hence,

µ∗Θ⊗k
(2)

∼= π∗
1Θ

⊗2k ⊗ π∗
2Lk.

We thus derive that

(·2)∗Bk
∼= π1∗µ

∗Θ⊗k
(2)

∼= π1∗(π
∗
1Θ

⊗2k ⊗ π∗
2Lk)

∼= Θ⊗2k ⊗H0(A/± 1, Lk)

where by tensoring a sheaf F with a vector space V we mean the direct sum F⊕dimV . Set

Vk = H0(A/± 1, Lk) in what follows. Twisting our previous equality yields

(·2)∗(Bk ⊗ (Θ⊗ℓ ⊗ L0)) ∼= (Θ⊗2k+4ℓ ⊗ L⊗2
0 )⊗ Vk

since Θ is symmetric so that (·2)∗Θ ∼= Θ⊗4 and (·2)∗L0
∼= L⊗2

0 since L0 ∈ Pic0(A) as

discussed in previous cases. Set Fk,ℓ = Bk ⊗ (Θ⊗ℓ ⊗ L0), the sheaf whose cohomology we

wish to determine. We will see later (Lemma 3) that the higher pushforwards RjΣ∗Θ
⊗k
(2)

vanish, so that Bk is in fact a vector bundle and hence so is Fk,ℓ.
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To calculate the global sections of this, we may in fact just calculate Euler charac-

teristics:

Lemma 1. For all j > 0, Hj(A,Fk,ℓ) = 0. In particular, dimH0(A,Fk,ℓ) = χ(A,Fk,ℓ).

Proof. We first claim that the pushforward (·2)∗OA splits as the direct sum of all 2-torsion

line bundles:

(·2)∗OA
∼=

⊕
L∈Pic0(A)[2]

L.

This follows by [MMR, p.72] applied to the group G = A[2] of 2-torsion points acting on

A by addition. By push-pull we have that

(·2)∗(·2)∗Fk,ℓ
∼=

⊕
L∈Pic0(A)[2]

L⊗Fk,ℓ.

Since ·2 : A → A is finite it is affine, so that the pushforward (·2)∗ preserves higher

cohomology (combine [St, Lemma 01XC] and [St, Lemma 01F4]). Thus,

Hj(A, (·2)∗(·2)∗Fk,ℓ) = Hj(A, (·2)∗Fk,ℓ)

= Hj(A, (Θ⊗2k+4ℓ ⊗ L⊗2
0 )⊗ Vk)

= Hj(A,Θ⊗2k+4ℓ ⊗ L⊗2
0 )⊗ Vk

= 0

for j > 0 since 2k + 4ℓ > 0. Since Fk,ℓ embeds into (·2)∗(·2)∗Fk,ℓ as a direct summand,

we conclude that Fk,ℓ has vanishing higher cohomology since cohomology respects direct

sums.

We now wish to compute the dimension of Vk = H0(A/± 1, Lk), and will do so by

first showing H i(A/± 1, Lk) = 0 for i > 0 and then calculating χ(A/± 1, Lk). To show

this, note that since q : A → A/ ± 1 is finite the higher pushforward sheaves Riq∗q
∗Lk
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vanish giving the equality

H i(A, q∗Lk) = H i(A/± 1, q∗q
∗Lk)

of higher cohomology groups using [St, Lemma 01XC] and [St, Lemma 01F4] as before.

The canonical adjunction morphism OA/±1 → q∗OA exhibits OA/±1 as a factor of q∗OA,

so by push-pull

H i(A, q∗Lk) = H i(A/± 1, q∗q
∗Lk)

= H i(A/± 1, Lk ⊗ q∗OA)

and hence H i(A/±1, Lk) is a factor of H
i(A, q∗Lk). In particular, to show H i(A/±1, Lk) =

0 for i > 0 it suffices to show that H i(A, q∗Lk) = 0.

To this end, recall the previous diagram

A× A A× A

A× (A/± 1) A(2)

(id×q)

ξ

p

µ

so that on the one hand

(id× q)∗µ∗Θ⊗k
(2)

∼= (id× q)∗(π∗
1Θ

⊗2k ⊗ π∗
2Lk)

∼= π∗
1Θ

⊗2k ⊗ π∗
2q

∗Lk

where we use π1, π2 to denote projections on each of the product spaces A×A,A×(A/±1),
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but on the other hand

(id× q)∗µ∗Θ⊗k
(2)

∼= ξ∗p∗Θ⊗k
(2)

∼= ξ∗(π∗
1Θ⊗ π∗

2Θ)⊗k

∼= π∗
1Θ

⊗2k ⊗ π∗
2Θ

⊗2k,

so that

π∗
1Θ

⊗2k ⊗ π∗
2q

∗Lk
∼= π∗

1Θ
⊗2k ⊗ π∗

2Θ
⊗2k

and hence q∗Lk
∼= Θ⊗2k since we may twist this equality by π∗

1Θ
⊗−2k to cancel the first

factor and then pushforward to A under π2 (noting that the fibers of π2 are connected).

We know that H i(A,Θ⊗2k) = 0 for i > 0 since k > 0 by Kodaira vanishing. Thus,

H i(A, q∗Lk) = 0, so that H i(A/± 1, Lk) = 0 as previously noted.

Since we have shown that the higher cohomology of Lk vanishes, we now calculate

dimVk = χ(A/ ± 1, Lk). To do this, we will calculate χ(A,Bk) = χ(A,Σ∗Θ
⊗k
(2)) in two

different ways. We recall the following fact:

Lemma 2. If f : X → Y is a morphism and G a sheaf on X such that Rjf∗G = 0 for

j > 0, then χ(X,G) = χ(Y, f∗G).

Proof. This is an immediate consequence of [St, Lemma 01F4], as the Leray spectral

sequence Hj(Y,Rif∗G) ⇒ H i+j(X,G) will degenerate.

In light of this, we have the following:

Lemma 3. For all j > 0, RjΣ∗Θ
⊗k
(2) = 0, and hence

χ(A,Bk) = χ(A(2),Θ⊗k
(2)).
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Proof. Since our previous diagram was Cartesian, we have that

(·2)∗RjΣ∗(Θ
⊗k
(2)) = Rjπ1∗µ

∗Θ⊗k
(2)

= Rjπ1∗(π
∗
1Θ

⊗2k ⊗ π∗
2Lk)

= Θ⊗2k ⊗Rjπ1∗π
∗
2Lk

= Θ⊗2k ⊗Hj(A/± 1, Lk)

= 0

since we showed that Hj(A/± 1, Lk) = 0. Since RjΣ∗(Θ
⊗k
(2)) pulls back to the zero sheaf

under the surjective morphism ·2 : A → A, we claim it must have been the zero sheaf to

start with. While intuitive, we provide a proof of this implication for completeness.

Since A is smooth and ·2 : A → A has equidimensional fibers (all dimension zero),

·2 is flat by miracle flatness. We claim that if f : X → Y is any flat, surjective morphism

of schemes such that f ∗G = 0 then G = 0. It suffices to show that the stalks Gx are all zero.

We have by [St, Lemma 0098] that (f ∗G)x ∼= Gf(x) ⊗OY,f(x)
OX,x, and this left hand side

will always be zero. Since f is a flat morphism of schemes, the map f ♯ : OY,f(x) → OX,x is

a flat map of rings by definition, and since these rings are local this map is faithfully flat

by [St, Lemma 00HR]. Thus, if OX,x is a faithfully flat OY,f(x)-module then the condition

Gf(x) ⊗OY,f(x)
OX,x = 0

implies Gf(x) = 0 by the standard characterization of faithfully flat modules. Since f is

surjective, all points in Y are of the form f(x) for some x ∈ X, so that G has all zero

stalks and hence is the zero sheaf.

We conclude that RjΣ∗(Θ
⊗k
(2)) = 0 as desired.
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Corollary 1.

χ(A,Bk) =
k2(k2 + 1)

2

for k > 0.

Proof. Since A(2) is the quotient of A2 by the finite group Z/2Z, the resolution π : A[2] →

A(2) satisfies Rjπ∗OA[2] = 0 for j > 0 by [Vi], see also [CR, Theorem 2] for the same result

in positive characteristic. Thus,

χ(A(2),Θ⊗k
(2)) = χ(A[2], π∗Θ⊗k

(2))

by push-pull and Lemma 2. We may calculate the latter term by [EGL, Lemma 5.1],

obtaining that

χ(A,Bk) = χ(A(2),Θ⊗k
(2))

= χ(A[2], π∗Θ⊗k
(2))

=

(
χ(A,Θ⊗k) + 1

2

)
=

(
k2 + 1

2

)
,

as desired.

Corollary 2.

dimVk = 2(k2 + 1).

Proof. We calculate χ(A,Bk) another way. We have that χ(A,Bk) =
1
16
χ(A, (·2)∗Bk) by

[EGM, Corollary 9.12] since ·2 : A → A has degree 16. We may compute this via our
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Cartesian diagram to find

χ(A,Bk) =
1

16
χ(A, (·2)∗Bk)

=
1

16
χ(A, π1∗µ

∗(Θ⊗k
(2)))

=
1

16
χ(A, π1∗(π

∗
1Θ

⊗2k ⊗ π∗
2Lk))

=
1

16
χ(A,Θ⊗2k ⊗ Vk)

=
dimVk

16
χ(A,Θ⊗2k)

=
k2 dimVk

4
.

Equating this last expression with
k2(k2 + 1)

2
from Corollary 1 gives the desired equality.

We now conclude with our desired result:

Proposition 7. If k > 0 and 2k + 4ℓ > 0, then

dimH0(A(2),Θ⊗k
(2) ⊗ Σ∗(Θ⊗ℓ ⊗ L0)) =

(k2 + 1)(k + 2ℓ)2

2

for L0 ∈ Pic0(A).

Proof. As noted, this is the same as calculating the dimension of H0(A,Fk,ℓ), and this is
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simply χ(A,Fk,ℓ) due to the vanishing of higher cohomology. We find that

χ(A,Fk,ℓ) =
1

16
χ(A, (·2)∗Fk,ℓ)

=
1

16
χ(A, (·2)∗(Bk ⊗ (Θ⊗ℓ ⊗ L0)))

=
1

16
χ(A, π1∗µ

∗Θ⊗k
(2) ⊗ (·2)∗(Θ⊗ℓ ⊗ L0))

=
1

16
χ(A, (Θ⊗2k ⊗ Vk)⊗Θ⊗4ℓ ⊗ L⊗2

0 )

=
dimVk

16
χ(A,Θ⊗2k+4ℓ ⊗ L⊗2

0 )

=
k2 + 1

8
(2k + 4ℓ)2

=
(k2 + 1)(k + 2ℓ)2

2
,

as desired.

4.4 Dimensions of global sections on Hilbert square

Our formulas in the previous sections show that if L0 ∈ Pic0(A[2]) is not a 2-torsion

line bundle, then the line bundle Θ⊗2k
[2] ⊗ Σ∗Θ−⊗k ⊗ L0 on A[2] has no global sections, for

Θ a symmetric principal polarization. However, when L0 is 2-torsion we can get nonzero

global sections. We can go further and give bounds for the dimension of

H0(A[2],Θ⊗2k
[2] ⊗ Σ∗Θ⊗−k ⊗OA[2](−mB))

where k,m are a positive integers. Note that the pushforward π∗OA[2](−mB) is not trivial

but rather a power of the ideal sheaf of the image, which will nontrivially impact the

number of global sections. For simplicity we will only consider the case where L0
∼= OA[2]

and Θ is the symmetric principal polarization given by the vanishing of the Riemann theta

function, which we will shortly explain more concretely. These assumptions will suffice

for our proof. One could devise similar formulas for the general case by considering theta
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functions with characteristics [BL, Exercise 4.11].

Consider the difference map d : A×A → A, d(x, y) = x− y. It is easy to check by

the theorem of the square that d∗L ∼= (L⊠ L)⊗2 ⊗ Σ∗L⊗−1 for any symmetric line bundle

L on A. We extend our usual Cartesian blowup square with d:

Bl∆A
2 A2 A

A[2] A(2)

q

π̂

p

d

π

Set Tk = Θ⊗2k
(2) ⊗ Σ∗Θ⊗−k on A(2) for simplicity. By our formula for d∗L we see that

p∗Tk
∼= d∗Θ⊗k. We may calculate global sections on A[2] by pulling back to Bl∆A

2 and

taking S2-invariants by formula 2, so that

H0(A[2],Θ⊗2k
[2] ⊗ Σ∗Θ⊗−k ⊗OA[2](−mB)) ∼= H0(A[2], π∗Tk ⊗OA[2](−mB))

∼= H0(Bl∆A
2, q∗(π∗Tk ⊗OA[2](−mB)))S2

∼= H0(Bl∆A
2, π̂∗p∗Tk ⊗ q∗OA[2](−mB))S2

∼= H0(Bl∆A
2, π̂∗d∗Θ⊗k ⊗OBl∆A2(−mF ))S2

where F is the exceptional divisor on Bl∆A
2. Since d(y, x) = −d(x, y), we have a

commutative diagram

Bl∆A
2 A2 A

Bl∆A
2 A2 A

π̂

σ̂

d

σ −1

π̂ d

where σ, σ̂ are the usual involutions on A2, Bl∆A
2 and −1 is multiplication by −1 on A.

Thus, in the equality

H0(Bl∆A
2, π̂∗d∗Θ⊗k ⊗OBl∆A2(−mF )) ∼= H0(A,Θ⊗k ⊗ (d ◦ π̂)∗OBl∆A2(−mF ))

we may take S2-invariants on both sides, where the action on the left is by swapping

factors of A2 and on the right we multiply A by −1. It remains only to describe the
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pushforward (d◦ π̂)∗OBl∆A2(−mF ). Since π̂ : Bl∆A
2 → A2 is a blowup of smooth varieties,

π̂∗OBl∆A2(−mF ) ∼= I⊗m
∆ ,

where I∆ is the ideal sheaf of the diagonal in A2. The map d : A2 → A is a surjective

map of smooth projective varieties with equidimensional fibers (they are all isomorphic to

A by calculation), so d is flat by miracle flatness. The inverse image of 0 ∈ A is just the

diagonal ∆ ⊂ A2, so by flatness the inverse image ideal sheaf I∆
∼= d−1(I0) · OA2 coincides

with the pullback d∗I0. We conclude that

H0(A[2],Θ⊗2k
[2] ⊗ Σ∗Θ⊗−k ⊗OA[2](−mB)) ∼= H0(Bl∆A

2, π̂∗d∗Θ⊗k ⊗OBl∆A2(−mF ))S2

∼= H0(A,Θ⊗k ⊗ (d ◦ π̂)∗OBl∆A2(−mF ))+

∼= H0(A,Θ⊗k ⊗ I⊗m
0 )+

where we write + for the sections invariant under pullback by ±1 on the A side. This is

the space of even theta functions of weight k which vanish to order m at 0. Though we do

not have exact formulas, we can estimate the number of these.

Remark. The relevance of L0 being 2-torsion or not in our previous formula now makes

sense: if L0 is not 2-torsion then (−1)∗(Θ⊗ L0) ∼= Θ⊗ L⊗−1
0 ̸= Θ⊗ L0, so that we cannot

even define the action of ±1 on H0(A,Θ⊗ L0). If L0 ∈ Pic0(A) is 2-torsion, then

d∗(Θ⊗k ⊗ L0) ∼= (Θ⊗2k ⊗ L⊗2
0 )⊠ (Θ⊗2k ⊗ L⊗2

0 )⊗ Σ∗(Θ⊗−k ⊗ L⊗−1
0 )

∼= (Θ⊠Θ)⊗2k ⊗ Σ∗(Θ⊗−k ⊗ L0),

so that if L0 is an arbitrary 2-torsion line bundle in Pic0(A) (equivalently Pic0(A[2])) then

H0(A[2],Θ⊗2k
[2] ⊗ Σ∗Θ⊗−k ⊗OA[2](−mB)⊗ Σ∗L0) ∼= H0(A,Θ⊗k ⊗ I⊗m

0 ⊗ L0)
+
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as well.

Our work that follows here consists of well-known results and is very similar to the

proof of [BL, Corollary 4.6.6] and copies the work in [BL, Section 15.6]. Suppose that

A = Cg/Λ is a principally polarized abelian variety defined by a matrix τ in the Siegel

upper half space, such that the principal polarization Θ has the Riemann theta function

θ(z) =
∑
n∈Zg

exp(2πintz + πintτn)

as a section (where we view n, z as columns vectors so that the transposes make sense to

yield scalars). The weight k theta functions H0(A,Θ⊗k) have as basis the kg functions of

the form

θϵ(z) =
∑

n≡ϵ (mod (kZ)g)

exp(2πintz +
π

k
intτn)

where ϵ is a vector in (Z/kZ)g [Bea3, equation 3.1]. We see that this sum is unchanged

if we replace z with −z and n with −n, so that θϵ(z) = θ−ϵ(−z) for all z, ϵ. Thus, if

s(z) =
∑

ϵ aϵθϵ(z) satisfies s(z) = s(−z), then aϵ = a−ϵ for all ϵ, and hence the space

H0(A,Θ⊗k)+ of even weight k theta functions is spanned by the orbit vectors θϵ + θ−ϵ,

or simply θϵ if 2ϵ ≡ 0 (mod (kZ)g). It is easy to check that this collection is linearly

independent as well, so that to determine the dimension of H0(A,Θ⊗k)+ we simply need to

count the number of these orbit vectors. Set X to be the set (Z/kZ)g, so that this number

of distinct orbit vectors is simply the sum |Xfixed| + 1
2
|Xmov|, where Xfixed consists of

those ϵ modulo (kZ)g unchanged by multiplying by −1, and Xmov consists of those ϵ that

are not fixed. If k is odd then the only fixed ϵ is the zero vector, and if k is even then

in each coordinate one may choose either 0 or k
2
to get a fixed vector, yielding 2g fixed ϵ.

Since Xmov is the complement of Xfixed and |X| = kg, we see that
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Formula 7.

dimH0(A,Θ⊗k)+ =


1
2
(kg + 2g), if k ≡ 0 (mod 2)

1
2
(kg + 1), if k ≡ 1 (mod 2)

.

We now incorporate the order of vanishing at 0, and return to the case g = 2

of abelian surfaces for simplicity. Choosing local complex coordinates z1, z2 about 0, if

s(z) = s(−z) then all of the terms of odd degree in the Taylor expansion of s about 0

will vanish automatically. For s to vanish at 0 up to order m amounts to the terms of

degree ≤ m− 1 all vanishing in the Taylor expansion, so that if s is even then its order

of vanishing will automatically be even as well (if it vanishes up to odd order m then

it automatically vanishes to even order m + 1). In dimension 2 there are d + 1 Taylor

terms of degree d (zd1 , z
d−1
1 z2, . . . , z

d
2). Write I⊗ℓ

0 for the ideal sheaf of functions vanishing

to order ℓ at 0 ∈ A, so that we wish to estimate the dimension of H0(A,Θ⊗k ⊗I⊗2m
0 )+ for

integers k,m (we put 2m since the order of vanishing is automatically even for even theta

functions as discussed). Since we only care about the vanishing of the even Taylor series

terms, vanishing to order 2m imposes

1 + 3 + 5 + . . .+ (2m− 1) = m2

linear conditions on the vector space H0(A,Θ⊗k)+. Some of these linear conditions may

be redundant, giving a lower bound

dimH0(A,Θ⊗k ⊗ I⊗2m
0 )+ ≥ dimH0(A,Θ⊗k)+ −m2.

We may plug in our formula 7 to compute the latter term. Putting everything together,

we conclude the following:
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Proposition 8. For m ≥ 0,

dimH0(A[2],Θ⊗2k
[2] ⊗ Σ∗Θ⊗−k ⊗OA[2](−(2m− 1)B)) =

dimH0(A[2],Θ⊗2k
[2] ⊗ Σ∗Θ⊗−k ⊗OA[2](−2mB)),

and

dimH0(A[2],Θ⊗2k
[2] ⊗ Σ∗Θ⊗−k ⊗OA[2](−2mB)) ≥ 1

2
(k2 + 4)−m2

for even k and

dimH0(A[2],Θ⊗2k
[2] ⊗ Σ∗Θ⊗−k ⊗OA[2](−2mB)) ≥ 1

2
(k2 + 1)−m2

for odd k, for our given choice of symmetric principal polarization Θ. If m = 0 this is an

equality.

4.5 Kummer K3 surfaces

We will need to study divisors on the Kummer K3 surface associated to A to rule

out one final unwanted case.

Let Km(A) denote the Kummer K3 surface associated to A, which we may view as

the fiber over 0 of the summation morphism Σ : A[2] → A, or equivalently as the blowup

of the singular surface A/ ± 1 at the 16 singular points corresponding to the 2-torsion

points of A. We may define a map

µ̃ : A×Km(A) → A[2]

by sending a pair (a,Z) to the natural translation t
[2]
a (Z). This map fits into the commu-
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tative diagram

A×Km(A) A[2]

A A

µ̃

π1 Σ

·2

(4.3)

which is Cartesian as noted by [Bea1, footnote 2]. Thus, µ̃ has degree 16 since (·2)

does. Since µ̃ is a map of smooth projective varieties with equidimensional fibers, it is

flat by miracle flatness. Viewing Km(A) as the blowup of A/ ± 1 at the 16 singular

2-torsion points gives that µ̃ is simply the functorial extension of our previously-defined

µ : A× (A/± 1) → A(2) to the blowup. To elaborate, tracing out the definitions shows

that the diagram

A×Km(A) A[2]

A× (A/± 1) A(2)

µ̃

π1×b π

µ

(4.4)

commutes, by identifying a pair of points (x, y) ∈ A(2) whose sum x+ y is zero with the

equivalence class x ∼ −x ∈ A/± 1. The preimage of the diagonal of A(2) under µ is simply

A × A[2] ⊂ A × A/ ± 1 (that is, consists of any point in the first factor and a singular

point of A/± 1 corresponding to a 2-torsion point of A in the second factor), so that by

the universal property of blowups there exists a unique morphism f : A×Km(A) → A[2]

such that the diagram

A×Km(A) A[2]

A× (A/± 1) A(2)

f

π1×b π

µ

commutes, so that this induced f agrees with µ̃.

Recall that the second cohomology H2(Km(A),Z) contains a factor isomorphic

to H2(A,Z) with double the original intersection form, and this factor is the orthogonal

complement to the sublattice of H2(Km(A),Z) rationally generated by the classes Ei of

the 16 exceptional divisors [GSa, Section 2]. Moreover, this decomposition holds when
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restricting to the Picard lattice of Km(A), and the map τ : H2(A,Z) ↪→ H2(Km(A),Z)

is induced via pullback and pushforward along the commutative blowup diagram

BlA[2]A Km(A)

A A/± 1

b̂

q̂

b

q

[BHV, Section VIII.5]. When A has Picard rank 1 with ample generator Θ, the Picard

lattice is of rank 17, containing an ample class we denote H = τ(Θ) such that H2 = 2Θ2.

We wish to calculate the pullback under µ̃ of an arbitrary line bundle on A[2].

Proposition 9. Set L = Θ⊗k
[2] ⊗ Σ∗Θ⊗ℓ ⊗ OA[2](mB) ⊗ Σ∗L0 for integers k, ℓ,m and

L0 ∈ Pic0(A). Then

µ̃∗L ∼= (Θ⊗2k+4ℓ ⊗ L⊗2
0 )⊠OKm(A)

(
kH +

m

2

16∑
i=1

Ei

)
.

Proof. Using the notation and work from Section 4.3.3, we know that

µ̃∗L ∼= (π1 × b)∗µ∗(Θ⊗k
[2] ⊗ Σ∗Θ⊗ℓ ⊗ Σ∗L0)⊗ µ̃∗OA[2](mB)

∼= ((Θ⊗2k+4ℓ ⊗ L⊗2
0 )⊠ b∗Lk)⊗ µ̃∗OA[2](mB).

We thus need to calculate b∗Lk and µ̃∗OA[2](mB). For any divisor D on A/ ± 1 we see

that τ(q∗D) = 2b∗D since

τ(q∗D) = q̂∗(b̂
∗q∗)(D)

= q̂∗(q̂
∗b∗)(D)

= 2b∗D

as q̂ : BlA[2]A → Km(A) is generically of degree two. We may thus calculate b∗Lk by

looking at the pullback to A and dividing by two. From the original commutative diagram
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A× A A× A

A× (A/± 1) A(2)

ξ

π1×q p

µ

where ξ : A× A → A× A is the Wirtinger map we see that q∗Lk is just the second factor

of ξ∗(Θ⊗k
(2)) = Θ⊗2k ⊠Θ⊗2k on A× A, so that

b∗Lk
∼= τ(Θ⊗k) = OKm(A)(kH).

To calculate µ̃∗OA[2](mB), we need to determine the preimage of the exceptional

divisor E = 2B under µ̃. Since any natural automorphism preserves the multiplicity

structure of a subscheme, we see that µ̃(a,Z) = t
[2]
a (Z) lies in E if and only if Z is a

subscheme supported at a single point with multiplicity 2 (with no condition on the

point a in the first factor), so that µ̃∗E consists of the 16 exceptional divisors
∑16

i=1Ei ∈

Pic(A×Km(A)), and hence µ̃∗B = 1
2

∑16
i=1Ei (since µ̃ is flat, we may identify pullbacks

of line bundles with preimages of divisors). We thus conclude that

µ̃∗OA[2](mB) ∼= OA ⊠OKm(A)

(
m

2
+

16∑
i=1

Ei

)
.

Putting everything together, we find that

µ̃∗L ∼= ((Θ⊗2k+4ℓ ⊗ L⊗2
0 )⊠ b∗Lk)⊗ µ̃∗OA[2](mB)

∼= (Θ⊗2k+4ℓ ⊗ L⊗2
0 )⊠OKm(A)

(
kH +

m

2

16∑
i=1

Ei

)
,

as desired.
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4.5.1 Automorphisms of Jacobian Kummer K3 surfaces

The preceding discussion did not require A to have a specific polarization type, and

can clearly be extended to abelian surfaces of higher Picard rank. We now suppose that A

is principally polarized, so that Km(A) is a Jacobian Kummer surface. The terminology

is due to the triviality of the Schottky problem in genus 2. Equivalently, Km(A) is the

minimal resolution of a quartic surface in P3 with 16 nodes. Given a principally polarized

abelian surface (A,Θ), the image of linear series |2Θ| is precisely this singular quartic

surface in P3.

The automorphisms of Jacobian Kummer surfaces have been studied since the

19th century, and completely classified in the generic Picard rank 17 case by Kondo

[Ko1]. There, Kondo shows that Aut(Km(A)) is generated by various classically known

automorphisms, along with 192 automorphisms of infinite order constructed by Keum

[Ke]. One of these classical automorphisms is the switch involution σ on Km(A), which

arises from the fact that the singular quartic Kummer surface in P3 is birational to its

projective dual surface in P3. Since K3 surfaces are minimal, this birational involution

lifts to an isomorphism of Km(A). The following is known:

Lemma 4.

σ∗H = 3H −
16∑
i=1

Ei

and

σ∗

(
1

2

16∑
i=1

Ei

)
= 4H − 3

2

16∑
i=1

Ei

in the Picard lattice of Km(A).

To see this, refer to [Ke, Table 5.2], where the Ei are written as Nα (“nodes”) for

α ∈ (Z/2Z)4. In their notation, this will yield that

σ∗

(
1

2

∑
α

Nα

)
=

1

2

∑
α

Tα
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where the Tα are rational curves in Km(A) called the tropes. To evaluate this sum of

tropes, use section (1.8) of the same paper to write the tropes in terms of H and the Nα.
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Chapter 5

Proof of main theorem

5.1 Preliminaries

We return now to the proof of Theorem 2.

Proposition 10. Given a morphism g : A[n] → A[n] where A is a complex abelian surface,

there exists a morphism ḡ : A → A of algebraic varieties such that the diagram

A[n] A[n]

A A

g

Σ Σ

ḡ

commutes.

Proof. Consider the composition Σ ◦ g : A[n] → A. Generalized Kummer varieties are

simply connected and hence have trivial Albanese variety (as then H1,0 = 0). The image

of any generalized Kummer fiber of Σ under this map Σ ◦ g must be a single point, and

hence g sends fibers of Σ to fibers. This gives a set-theoretic map ḡ on A which commutes

with g under Σ, which we must show is in fact a morphism of varieties. This map ḡ is

well-defined and satisfies the preceding commutative diagram by construction. To show

that this function is a morphism, we need to show that it is continuous with respect to

the Zariski topology on A and that it pulls back regular functions on open subsets of A to

regular functions.
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We first observe that Σ : A[n] → A is flat by miracle flatness [Har, Exercise III.10.9],

since A[n] and A are smooth and Σ has equidimensional fibers. By [St, Lemma 01UA] Σ is

thus an open map. Since Σ is surjective we have that Σ(Σ−1(X)) = X for any set X ⊂ A,

so that for any open set U ⊂ A we have that

ḡ−1(U) = Σ(Σ−1(ḡ−1(U)))

= Σ(g−1(Σ−1(U)))

which is open since Σ is an open mapping, and g,Σ are continuous, so that ḡ is continuous.

Let us now prove the second condition that ḡ pulls back local regular functions

to local regular functions. Let r ∈ OA(V ) be a local regular function for some open set

V in A, and write U = ḡ−1(V ) for convenience. We wish to show that the composition

(r ◦ ḡ)|U : U → C lies in OA(U). If U does not contain the point 0, fix a length n − 1

subscheme Z0 of A supported entirely at 0. There then exists a well-defined local section

s|U : U → Σ−1(U) by simply defining

s|U(p) = Z0 + (p) ∈ A[n],

so that Σ ◦ s|U is the identity. We thus find that

(r ◦ ḡ)|U = r ◦ ḡ ◦ Σ ◦ s|U

= r ◦ Σ ◦ g ◦ s|U

which is regular since Σ, g, s|U are all morphisms. If U does contain the point 0, then the

same argument gives that the pullback of r to U − {0} is regular, which extends uniquely

to a regular function on U by algebraic Hartogs since A is two-dimensional. This unique

extension to a regular function on U is just r ◦ ḡ, so that in either case r pulls back to a
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regular function as desired, proving that ḡ is a morphism.

The assignment g 7→ ḡ is clearly functorial by considering the following commutative

diagram:

A[n] A[n] A[n]

A A A

g

Σ

h

Σ Σ

ḡ h̄

where g, h : A[n] → A[n] are arbitrary morphisms. It then follows that if g : A[n] → A[n] is

an automorphism then so is ḡ, giving a group homomorphism which we denote by

indΣ
A : Aut(A[n]) → Aut(A)

indΣ
A(g) = ḡ

(to be read as “the automorphism on A induced by/under Σ”). Considering the natural

automorphism map (−)[n] : Aut(A) → Aut(A[n]), it is not true that indΣ
A ◦ (−)[n] is the

identity, since an automorphism of A as a variety may include a nontrivial translation

term. A simple calculation shows that this composition is the identity when restricted to

group automorphisms of A, however. Moreover, this gives a surjective map from Aut(A[n])

to Aut(A).

Proposition 11. The map

indΣA : Aut(A[n]) → Aut(A)

is surjective.

Proof. Let g ∈ Aut(A) be given, and decompose it as g = ta ◦ h, where h is a group

automorphism and ta is the translation by a ∈ A. Let b ∈ A be a point satisfying

nb = a - there are n4 possible choices for b. Fix a point p ∈ A and let Z ∈ A[n] be an
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arbitrary point in the preimage Σ−1(p), and write Z =
∑k

i=1 ai(xi) for the support of Z

with multiplicity. Our argument only cares about multiplicities rather than finer scheme

structure, so we will abuse notation and identify Z with this formal sum. We wish to

show that indΣ
A((tb ◦ h)[n]) = g. We calculate

Σ((tb ◦ h)[n]
(

k∑
i=1

ai(xi)

)
) = Σ

(
k∑

i=1

ai(tb ◦ h)(xi)

)

= Σ

(
k∑

i=1

ai(h(xi) + b)

)

=
k∑

i=1

aih(xi) + nb

= h

(
k∑

i=1

aixi

)
+ a

= h(p) + a

= (ta ◦ h)(p)

= g(p)

where we hope it is clear where Σ refers to a formal sum of points versus addition on A,

so that indΣ
A((tb ◦ h)[n]) = g and hence indΣ

A is surjective, as desired.

The calculation in the preceding proposition shows that indΣ
A is not injective

however, since any of the n4 possible points b ∈ A satisfying nb = a would yield the same

g = indΣ
A((tb ◦ h)[n]) but different initial automorphisms (tb ◦ h)[n] ∈ Aut(A[n]). For the

case n = 2 we will show that this fully describes the fibers of indΣ
A : Aut(A[2]) → Aut(A)

for certain polarization types by proving that all automorphisms of A[2] are natural in

those cases.

For the rest of the paper, let A denote a complex abelian surface of Picard rank 1,

so that End(A) = Z with group automorphisms Z/2Z, and hence its full automorphism

group Aut(A) is a disjoint union of two complex tori of dimension 2. We fix a symmetric
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polarization Θ satisfying (−1)∗Θ = Θ which generates the Neron-Severi group NS(A) ∼= Z,

such that either Θ2 = 2 (the principal polarization case) or Θ2 = (2ℓ)2 for ℓ a positive

integer. Note that Θ2 is necessarily even, so that this covers all polarizations with

self-intersection a perfect square.

Boissière proved that the automorphism groups of X and X [n] have the same

dimension [Bo, Corollaire 1] and hence the same identity component Aut0 by considering

the connected zero-dimensional quotient of Aut0(X [n]) by the inclusion of Aut0(X) under

the map (−)[n].

For the rest of the paper, we fix an arbitrary automorphism g : A[2] → A[2] and

decompose the induced automorphism on A as indΣ
A(g) = ta ◦ h where h(0) = 0. We will

first calculate various intersection numbers on A[2] to show that g necessarily fixes the

class of the exceptional divisor E in the Neron-Severi group of A[2]. We will then lift this

to show that g fixes the class of E in the Picard group and then as an actual subvariety.

This will allow us to descend g to an automorphism of A(2), which we can then lift to

an automorphism of A2 by results of Belmans, Oberdieck, and Rennemo and prove the

desired naturality.

5.2 Fixing the exceptional divisor in Neron-Severi

This is the most involved portion of the proof. Suppose that g∗B = ax+ by + cB

and that g∗x = dx + ey + fB in the Neron-Severi group of A[2], where a, b, c, d, e, f are

integers. We wish to show that g∗B = B in Neron-Severi, i.e. that a = b = 0, c = 1. Since

E = 2B, this will show the class of E is fixed as well.

We have the diagram

A[2] A[2]

A A

Σ

g

Σ

ta◦h

.

Since A has Picard rank 1, h is multiplication by ±1, so that h∗Θ = Θ regardless and hence
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(ta ◦ h)∗Θ = Θ in Neron-Severi. We conclude upon taking pullbacks that g∗Σ∗Θ = Σ∗Θ

and hence g∗y = y. Since g∗ acts as an invertible linear transformation on the lattice

NS(A[2]) ∼= Z3, we may write it as an invertible integer matrix with respect to the ordered

basis x, y, B as

g∗ =


d 0 a

e 1 b

f 0 c

 ,

which must necessarily have determinant ±1. Recall our calculated intersection numbers at

the end of Section 4.1. Since g∗ must preserve intersection numbers as it is an automorphism,

using our calculations in the previous section and our expressions for g∗B, we have the

equality

−16k =

∫
A[2]

y2B2

=

∫
A[2]

g∗(y2B2)

=

∫
A[2]

y2g∗(B)2

=

∫
A[2]

y2(a2x2 + b2y2 + c2B2 + 2(abxy + acxB + bcyB))

=

∫
A[2]

a2x2y2 + c2y2B2

= 8k2a2 − 16kc2

so that ka2 − 2c2 = −2, which implies that c2 ̸= 0. We note next that since B3 is
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numerically trivial, so is g∗(B3), so that

0 =

∫
A[2]

g∗(B)3B

=

∫
A[2]

3a2cx2B2 + 6abcxyB2 + 3b2cy2B2

= 3c

∫
A[2]

a2x2B2 + 2abxyB2 + b2y2B2

= 3c(−4a2k − 16abk − 16b2k)

= −12ck(a+ 2b)2.

where we simplified the expression by recalling that a monomial xaybBc can only be

nonzero if c = 0, 2. Since c, k ̸= 0, we conclude that a+ 2b = 0. As g∗y = y, we have that

8k2 =

∫
A[2]

x2y2

=

∫
A[2]

g∗(x)2y2

=

∫
A[2]

(d2x2 + e2y2 + f 2B2 + 2(dexy + dfxB + efyB))y2

=

∫
A[2]

d2x2y2 + f 2y2B2

= 8k2d2 − 16kf 2,

where we again cancel any term xaybEc with b > 2 or c ̸= 0, 2, so that kd2 − 2f 2 = k. We

also have the equality

12k2 =

∫
A[2]

x4

=

∫
A[2]

(dx+ ey + fB)4

=

∫
A[2]

d4x4 + 4d3ex3y + 6d2f 2x2B2 + 6d2e2x2y2 + 12def 2xyB2 + 6e2f 2y2B2

= 12k2d4 + 48k2d3e− 24kd2f 2 + 48k2d2e2 − 96kdef 2 − 96ke2f 2
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where we preemptively cancelled numerically trivial terms in expanding the multinomial,

so that

kd4 + 4kd3e− 2d2f 2 + 4kd2e2 − 8def 2 − 8e2f 2 = k.

Substituting in the 2f 2 = kd2 − k = k(d2 − 1), we find that

k = k(d+ 2e)2

so that d+ 2e = ±1, or d = ±1− 2e.

Substituting in the relations a = −2b and d = ±1 − 2e to our matrix for the action

of g∗ on NS(A[2]), we obtain

g∗ =


±1− 2e 0 −2b

e 1 b

f 0 c

 ∈ GL(NS(A[2])).

5.2.1 Perfect square polarization case

It is now almost immediate to conclude this section in the case that Θ2 is an even

perfect square. Suppose that k = 2ℓ2, then

−2 = ka2 − 2c2

= 2ℓ2a2 − 2c2

= 2(ℓa− c)(ℓa+ c)

so that (c − aℓ)(c + aℓ) = 1. Since c − aℓ, c + aℓ are integers, it must be the case that

they are either both 1 or both −1. In the first case, by adding together c+ aℓ = 1 and

c− aℓ = 1 we find that c = 1, whence al = 0 so that a = 0 and thus b = 0 since a = −2b,
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giving (a, b, c) = (0, 0, 1) as desired. In the second case where c+ aℓ = −1, c− aℓ = −1

then by adding together the equations we find that c = −1, and as before that a = b = 0

so that (a, b, c) = (0, 0,−1), which can’t happen as g∗B must be effective.

5.2.2 Principal polarization case

We assume for the rest of this section that Θ2 = 2, and that the symmetric

principal polarization Θ has the Riemann theta function as a section as described in

Section 4.4. By formula 6, we must have that d and a are nonnegative, as h0(A[2],Θ[2]) =

h0(A[2],OA[2](B)) = 1, but if d < 0 then h0(A[2], L) = 0 for all line bundles L in the

numerical equivalence class g∗x = dx+ ey + fB and similarly for g∗B. Moreover, we must

have k+2ℓ ≥ 0 in order for a line bundle in the numerical equivalence class kx+ ℓy+mB

to have global sections (regardless of m, as if m ≥ 0 then we can pushforward to A(2) to

remove the OA[2](mB) factor and if m < 0 then we only decrease global sections). We

have shown that d = ±1− 2e via intersection numbers, so that by plugging in k = d and

ℓ = e we deduce that k + 2ℓ = (±1− 2e) + 2e = ±1, so that necessarily d = 1− 2e.

Our matrix is thus of the form

g∗ =


1− 2e 0 −2b

e 1 b

f 0 c


where d = 1− 2e and a = −2b satisfy the relations d2 − 2f 2 = 1 and a2 − 2c2 = −2. We

will now describe the set of possible a, c, d, f such that the matrix

d a

f c


has determinant ±1 (the determinant of this 2× 2 matrix is the determinant of the matrix
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for g∗).

Write Pk for the set

Pk := {(x, y) ∈ Z2 : x2 − 2y2 = k}

of solutions to the generalized Pell’s equation x2 − 2y2 = k. Thus, for us (d, f) ∈ P1 and

(a, c) ∈ P−2. It is easy to check that the function (x, y) 7→ (2y, x) is a map from P1 to

P−2. Conversely, given integers satisfying x2 − 2y2 = −2, by reducing modulo 2 we see

that x must be even and hence the inverse function (x, y) 7→ (y, x
2
) is a well-defined map

from P−2 to P1, so that these two sets are in bijection.

Proposition 12. If integers d, f are fixed such that d2 − 2f 2 = 1, then the only possible

a, c such that the matrix d a

f c


has determinant 1 is the pair a = 2f, c = d obtained from our map P1 → P−2, and the

only option for a, c to obtain determinant −1 is the same with the right column flipped in

sign.

Proof. Suppose that d, f are fixed and that dc − af = 1. We assume that f ̸= 0, as if

f = 0 then necessarily d = c = 1 to have determinant 1 and thus a = 0 since a2−2c2 = −2,

whence e = b = 0 so that we have the identity matrix as desired. We thus find that

a =
dc− 1

f
, so that from the relation a2 − 2c2 = −2 we find that

−2 = a2 − 2c2

=

(
dc− 1

f

)2

− 2c2
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so

−2f 2 = (d2c2 − 2dc+ 1)− 2c2f 2

or

(d2 − 2f 2)c2 − 2dc+ (1 + 2f 2) = 0,

i.e.

c2 − 2dc+ (1 + 2f 2) = 0.

By the quadratic formula, we find that

c =
2d±

√
4d2 − 4(1 + 2f 2)

2

= d±
√
d2 − 2f 2 − 1

= d.

From the resulting matrix d a

f d


we see that d2 − af = 1 or a =

d2 − 1

f
=

2f 2

f
= 2f , so that our matrix is of the form

d 2f

f d


in order to have determinant 1. The statement for determinant −1 and fixed d, f follows.

We now can split up the argument according to whether the determinant is 1 or

−1.
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Case (I): Determinant dc− af = 1 Per proposition 12, we have that

d a

f c

 =

d 2f

f d


where d = 1 − 2e and a = 2f = −2b. Since g∗x, g∗B are effective, we must have that

d ≥ 0 and a = 2f ≥ 0 by formula 6. Since d = 1 − 2e ≥ 0, we have that e ≤ 0.

Suppose e < 0, so that we may apply the k > 0, k + 2ℓ > 0 case of formula 6 to calculate

dimH0(A[2], g∗x) = dimH0(A[2], dx+ ey + fB) = dimH0(A(2), dx+ ey) since f ≥ 0 and

d+ 2e = (1− 2e) + 2e = 1. We find that

dimH0(A[2], g∗Θ[2]) =
((1− 2e)2 + 1)((1− 2e) + 2e)2

2

=
2− 4e+ 4e2

2

= (1− e)2 + e2

since our formula applies to any line bundle in the same component dx + ey + fB of

the Neron-Severi group. If e < 0 then this last expression is at least 5, contradicting

that H0(A[2],Θ[2]) is 1-dimensional. Thus, e = 0, so that d = 1 and thus f = 0 since

d2−2f 2 = 1, and thus a = b = 0 and c = d = 1, giving that g∗B = B in this case, as desired.

Case (II): Determinant dc− af = −1 This case is more involved, and requires all of the

various numerical invariants we calculated. Per proposition 12, we have that

d a

f c

 =

d −2f

f −d


with d = 1− 2e ≥ 0 and a = −2b ≥ 0 as before, so that b = f ≤ 0 and e ≤ 0. If e = 0 then

from tracing out our equalities we see that g∗B = ax+ by + cB = −B, a contradiction
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since g∗B must be effective. Suppose now that e < 0, so that d ≥ 3. The first few solutions

of the Pell’s equation d2 − 2f 2 = 1 satisfying d ≥ 0, f ≤ 0 are

(d, f) = (3,−2), (17,−12), (99,−70), (577,−408), . . .

We can partition these solutions into the three sets {(3,−2)}, {(17,−12)}, and

{(99,−70), (577,−408), . . .}. Each set will require a different argument to rule out.

Subcase (i): (d, f) = (3,−2)

This case will correspond to (a, b, c) = (4,−2,−3). We wish to show that no

line bundle in the numerical equivalence class 4x− 2y − 3B has a section, contradicting

that g∗B must be effective. Any line bundle in this equivalence class can be written

Θ⊗4
[2] ⊗ Σ∗Θ⊗−2 ⊗OA[2](−3B)⊗ L0 for some L0 ∈ Pic0(A[2]). By formula 6 case 2 we see

that we must have L0 a 2-torsion line bundle, else this line bundle automatically has no

sections. If L0 is 2-torsion, then by our work in Section 4.4 we may identify

H0(A[2],Θ⊗4
[2] ⊗ Σ∗Θ⊗−2 ⊗OA[2](−3B)⊗ L0) ∼= H0(A, (Θ⊗2 ⊗ L0)⊗ I⊗3

0 )+

via the difference map, where + denotes invariance under (−1)∗, and I⊗3
0 denotes sections

vanishing to order at least 3 at 0 ∈ A. As in Section 4.4, if we take an even section of the

line bundle Θ⊗2 ⊗ L0 the odd degree terms of its Taylor expansion about the point 0 ∈ A

will automatically vanish, so that if it vanishes to order 3 at 0 it automatically vanishes to

order 4.

The Seshadri constant of Θ on A is 4
3
- the upper bound follows by [BSz, Theorem

A.1(a)], and the lower bound follows by [MNa] (note that since A has Picard rank 1, it

cannot be a product of two elliptic curves else we would have two independent classes in
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NS(A)). It follows by definition [BL, Chapter 15.3] that

Θ · C
mult0(C)

≥ 4

3

for any curve C on A numerically equivalent to kΘ, where mult0(C) is the multiplicity of

C at the point 0 ∈ A. Rearranging this and using that Θ · (kΘ) = 2k, we find that

mult0(C) ≤ 3k

2
.

In particular, for k = 2 we see that any section of Θ⊗2 ⊗ L0 vanishes to order at most 3

at 0 since twisting by L0 does not change numerical equivalence. We needed a section

vanishing to order 4, so that no line bundle in the numerical equivalence class 4x−2y−3B

on A[2] has sections, ruling out this case as desired.

Subcase (ii): (d, f) = (17,−12)

Since d = 1− 2e, we see in this case that g∗x = 17x− 8e− 12B. By Proposition 9,

if µ̃ : A×Km(A) → A[2] is the morphism defined in Section 4.5 then

µ̃∗(Θ⊗17
[2] ⊗ Σ∗Θ⊗−8 ⊗OA[2](−12B)) = Θ⊗2 ⊠OKm(A)

(
17H − 6

16∑
i=1

Ei

)

on A × Km(A), where H is the ample generator on Km(A) satisfying H2 = 2Θ2 = 4

and the Ei are the 16 nodes obtained by blowing up the singular points of A/ ± 1. If

σ : Km(A) → Km(A) is the switch involution then

σ∗

(
3H +

16∑
i=1

Ei

)
= 3

(
3H −

16∑
i=1

Ei

)
+ 2

(
4H − 3

2

16∑
i=1

Ei

)

= 17H − 6
16∑
i=1

Ei,
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by Lemma 4, matching the second factor of our previous pullback expression. Since∑16
i=1Ei is effective, we have the ideal sequence

0 → OKm(A)(3H) → OKm(A)

(
3H +

16∑
i=1

Ei

)
→ OKm(A)

(
3H +

16∑
i=1

Ei

)∣∣∣∣∣⋃16
i=1 Ei

→ 0.

Since
(
3H +

∑16
i=1Ei

)
· Ei = Ei · Ei = −2, we see that the sheaf OKm(A)

(
3H +

∑16
i=1Ei

)
restricts to the line bundle OP1(−2) on each of the 16 disjoint rational curves Ei. Thus,

the last sheaf in our exact sequence has no global sections, so

H0(Km(A),OKm(A)(3H)) ∼= H0(Km(A),OKm(A)

(
3H +

16∑
i=1

Ei

)
)

by taking the exact sequence in cohomology.

By Riemann-Roch for K3 surfaces, we find that

χ(Km(A), 3H) =
1

2
(3H)2 + 2 =

1

2
(9 · 4) + 2 = 20.

Since the divisor 3H has positive self intersection and zero intersection with all the Ei, it

is big and nef and hence the higher cohomology of OKm(A)(3H) vanishes by Kawamata-

Viehweg. We conclude that

dimH0(Km(A),OKm(A)(3H +
16∑
i=1

Ei)) = dimH0(Km(A),OKm(A)(3H)) = 20,
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and hence

dimH0(A×Km(A), µ̃∗(Θ⊗17
[2] ⊗ Σ∗Θ⊗−8 ⊗OA[2](−12B)))

= dimH0(A×Km(A),Θ⊗2 ⊠OKm(A)

(
17H − 6

16∑
i=1

Ei

)
)

= dimH0(A,Θ⊗2)⊗H0(Km(A), σ∗OKm(A)

(
3H +

16∑
i=1

Ei

)
)

= 4 · 20

= 80

since σ is an automorphism and hence preserves global sections. To relate this back to the

original line bundle on A[2], recall from Section 4.5 that the diagram

A×Km(A) A[2]

A A

µ̃

π1 Σ

·2

is Cartesian, so that the pushforward

µ̃∗OA×Km(A)
∼= Σ∗(·2)∗OA

∼=
⊕

L∈Pic0(A[2])[2]

L

is just the direct sum of the 16 2-torsion line bundles on A[2] by [MMR, p.72] as in the

proof of Lemma 1.

We conclude by push-pull that

∑
L∈Pic0(A[2])[2]

dimH0(A[2],Θ⊗17
[2] ⊗ Σ∗Θ⊗−8 ⊗OA[2](−12B)⊗ L) = 80.

Since there are 16 line bundles appearing in this sum, there must be a term with h0 at

least 5. Since the map L 7→ L[2] induces an isomorphism Pic0(A) → Pic0(A[2]), every line
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bundle in the numerical equivalence class of Θ[2] is of the form (Θ⊗ L0)(2). Every such

line bundle has exactly one section since

dimH0(A× A, (Θ⊗ L0)⊠ (Θ⊗ L0)) = 1.

We have a contradiction then - every line bundle in the equivalence class of x = Θ[2] has

one section, but there are line bundles with at least 5 sections in the equivalence class of

g∗x = 17x− 8y − 12B. We conclude that we can rule out this case (d, f) = (17,−12).

We note that if we remove the negative B coefficient and apply formula 6 to the

numerical equivalence class 17x−8y we obtain a 172+1
2

= 145-dimensional space of sections,

so it is plausible for there to be line bundles in the class of 17x− 8y− 12B with 5 sections.

Subcase (iii): (d, f) = (99,−70), (577,−408), . . .

Let us finally consider the third set containing all other valid solutions for (d, f).

We will show in this range that dimH0(A[2], g∗B) is too large. Applying Proposition 8

with k = 4,m = 3, we see that

dimH0(A[2],Θ⊗8
[2] ⊗ Σ∗Θ⊗−4 ⊗OA[2](−6B)) ≥ 1

2
(42 + 4)− 32 = 1.

Note that the ratio 8
6
= 1.33 . . . of the Θ[2] coefficient to the negative B coefficient is

less than
√
2 = 1.414 . . ., which is the ratio to which 2f

d
converges as d → ∞ for positive

solutions to the Pell’s equation d2 − 2f 2 = 1. The first solution (d, f) = (99,−70)

corresponds to g∗B = −2fx+ fy − dB = 140x− 70y − 99B. Recall the general fact that

if L = O(D) is an effective line bundle on a scheme X and E a locally free sheaf, the

twisted ideal sequence

0 → E → E(D) → E(D)|D → 0

implies that h0(X,E ⊗ L) ≥ h0(X,E). Using the cup product in sheaf cohomology, since
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Θ⊗8
[2] ⊗Σ∗Θ⊗−4⊗OA[2](−6B) has a section so does its 17th tensor power Θ⊗136

[2] ⊗Σ∗Θ⊗−68⊗

OA[2](−102B). Again invoking Proposition 8 we see that Θ⊗4
[2] ⊗ Σ∗Θ⊗−2 has 4 sections,

so that the tensor product Θ⊗140
[2] ⊗ Σ∗Θ⊗−70 ⊗OA[2](−102B) has at least 4 sections, and

hence the same is true if we replace −102B with −99B. Thus, the numerical equivalence

class 140x− 70y − 99B contains a point with at least 4 sections. However, any element in

the numerical equivalence class of OA[2](B) may be written as OA[2](B)⊗ Σ∗L0 for some

L0 ∈ Pic0(A), and

H0(A[2],OA[2](B)⊗ Σ∗L0) ∼= H0(A,L0)

by pushing forward under Σ and noting that Σ factors through π. Thus, there is only one

point in the numerical equivalence class of B that contains any sections, namely OA[2](B)

itself, and it only has one section. Thus, it cannot be that g∗B = 140x− 70y − 99B. For

all larger solutions (d, f) we can continue to run this argument, since 8
6
<

√
2 and the gap

between the ratios of x to B coefficients will only continue to widen. To illustrate what we

mean, take the next case (d, f) = (577,−408), which will give (a, b, c) = (816,−408,−577).

Since Θ⊗8
[2] ⊗ Σ∗Θ⊗−4 ⊗OA[2](−6B) has a section, so does

(Θ⊗8
[2] ⊗ Σ∗Θ⊗−4 ⊗OA[2](−6B))⊗101 = Θ⊗808

[2] ⊗ Σ∗Θ−404 ⊗OA[2](−606B).

Multiply this with Θ⊗8
[2] ⊗Σ∗Θ−4 to land in (816,−408,−606), and this latter line bundle has

16 sections (corresponding to the sections of Θ⊗4 on A), so that the numerical equivalence

class of g∗B = 816x − 408y − 577B has a point with at least 16 sections, which can’t

happen. Having illustrated the argument that we can find a section of a smaller multiple

of Θ⊗2 ⊗ Σ∗Θ⊗−1 with the desired multiplicity along B which we can then “pad” with

extra sections, we see that we can rule out all cases (d, f) in the third set.

We conclude that we can rule out the determinant dc− af = −1 case, and hence

that the only possibility for the action of g∗ on NS(A[2]) is as the identity.
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5.3 Fixing the exceptional divisor as a subvariety

That g∗B = B in the Neron-Severi group means that the differenceD = g∗B−B lies

in Pic0(A[2]). Since Σ∗ : Pic0(A) → Pic0(A[2]) is surjective we may write g∗B = B + Σ∗D′

for some D′ ∈ Pic0(A).

Since π∗OA[2](B) ∼= OA(2) (Chapter 2.1) we have that

h0(A[2],OA[2](B)) = h0(A(2),OA(2)) = 1.

As pushforward preserves dimension of global sections, we find that

1 = h0(A,Σ∗g
∗OA[2](B)) = h0(A,Σ∗OA[2](B + Σ∗D′)) = h0(A,OA(D

′)),

since the map Σ factors through the Hilbert-Chow morphism. Since D′ lies in Pic0(A) and

has a global section it must be trivial, and hence we conclude that g∗B = B in Picard.

Since g∗B = B in Pic(A[2]), if we write E for the actual subvariety of nonreduced

subschemes in A[2] then g(E) is another divisor within the linear equivalence class of E

since as a divisor class E = 2B. Since we know that h0(A[2],OA[2](E)) = 1 (via pushforward

under π∗ as for B), we conclude that g(E) = E and hence g restricts to an automorphism

of E ⊂ A[2].

5.4 Proving naturality

The restriction of the Hilbert-Chow morphism π : E ⊂ A[2] → ∆ ⊂ A(2) has

P1-fibers (see the proof of [Ia2, Corollary 3]). As ∆ ∼= A and there are no nontrivial

maps from the projective space P1 to the abelian variety A, the restriction of g to E must

necessary send P1-fibers of π to P1-fibers, as the image of a P1-fiber under π ◦ g must be

a single point. By [BOR, Proposition 7], g descends to an automorphism ḡ of A(2). By
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[BOR, Proposition 9, 12], this automorphism lifts to an automorphism ĝ of the Cartesian

product A2 such that we have the natural commutative diagram

A2 A2

A(2) A(2)

p

ĝ

p

ḡ

.

Since ĝ is an automorphism of the complex torus A2, we may write

ĝ = t(x0,y0) ◦ ĥ

for some points x0, y0 ∈ A where ĥ(0, 0) = 0 and ĥ is invertible. Since ĥ is a group

endomorphism of the product A× A we may write

ĥ =

ĥ11 ĥ12

ĥ21 ĥ22


for some endomorphisms ĥij : A → A per our discussion in Chapter 3. Since End(A) ∼= Z,

ĥ is an invertible 2× 2 integer matrix with determinant ±1.

Since ĝ descends to the automorphism ḡ under the covering p : A2 → A(2), we must

have the S2-equivariance condition

(ĥ11(x) + ĥ12(y) + x0, ĥ21(x) + ĥ22(y) + y0) = (ĥ22(x) + ĥ21(y) + y0, ĥ12(x) + ĥ11(y) + x0)

for all x, y ∈ A. Setting x = y = 0 gives x0 = y0, and then setting y = 0 and using that

x0 = y0 gives that ĥ11 = ĥ22, ĥ21 = ĥ12. Let us write ĥ1 for ĥ11 = ĥ22 and ĥ2 for ĥ12 = ĥ21,

so that our matrix can be rewritten as

ĥ =

ĥ1 ĥ2

ĥ2 ĥ1

 .
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Since this matrix has determinant ±1 and the ĥi are integers, we find that either ĥ1 =

±1, ĥ2 = 0, or ĥ1 = 0, ĥ2 = ±1 since we may factor the Diophantine equation ĥ2
1− ĥ2

2 = ±1

as (ĥ1 − ĥ2)(ĥ1 + ĥ2) = ±1. Thus, ĝ = t(x0,x0) ◦ ĥ where we have the choices

ĥ =

±1 0

0 ±1

 ,

 0 ±1

±1 0


(in all cases the nonzero entries are equal). In the first case, we have

ĝ(x, y) = (x0 ± x, x0 ± y),

so that the corresponding automorphism ḡ on A(2) is the natural automorphism (tx0 ◦±1)[2].

In the second case,

ĝ(x, y) = (x0 ± y, x0 ± x),

which again yields ḡ = (tx0 ◦ ±1)[2]. Since ḡ commutes with g : A[2] → A[2] under the

Hilbert-Chow morphism and A(2) −∆ ∼= A[2] − E is a dense open set in A[2], g must be

the natural automorphism (tx0 ◦ ±1)[2].

We conclude that all automorphisms of A[2] are natural, as desired.
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Chapter 6

Open directions

As we note in Question 2, it remains open whether all automorphisms of A[2] are

natural for arbitrary polarization types. The only issue with extending our proof is Section

5.2 where we use numerical invariants to show that the exceptional divisor is fixed by

an automorphism of A[2] in the Neron-Severi group. Our calculation of the intersection

numbers in A[2] in Section 4.1 allowed for any polarization type. Moreover, our formulas

for the dimensions of global sections of line bundles in Section 4.3 can be extended to

non-principal polarizations just by inserting the appropriate intersection numbers, and the

work of Section 4.4 in estimating theta functions that vanish at 0 to prescribed multiplicity

can also be carried out for arbitrary polarizations.

The main work of showing that the exceptional divisor is fixed in Neron-Severi

came down to the determinant −1 case, where we ruled out the various nontrivial solutions

of the corresponding Pell’s equation using different techniques. Our investigation suggests

that the arguments for the first and third cases still work for arbitrary polarizations. As

a reminder, the arguments for these two cases respectively followed from the Seshadri

constants of abelian surfaces and estimates of theta functions with prescribed orders of

vanishing. However, the second case crucially relied on using a particular automorphism

of Jacobian Kummer surfaces to rewrite a divisor class as a sum of effective classes with

positive coefficients. One would need to understand the automorphisms of Kummer

84



surfaces with arbitrary polarizations or use an alternative argument to handle the second

case.

In any case, one may ask whether automorphisms of A[n] are natural for abelian

surfaces A of Picard rank 1 for n ≥ 3. We believe that it would be difficult to simply

generalize our argument here for higher n, and that perhaps another idea is necessary. One

can calculate top intersection numbers using the recursions in [EGL], but this would grow

more painful as n increases, and the corresponding Diophantine equations in the Neron-

Severi group would grow more complex. Even if one could calculate out the Diophantine

equations for higher n, it is unclear whether the analogous numerical invariants to those

calculated in Section 4 are both tractably computable and sufficient to rule out nontrivial

solutions of these Diophantine equations.
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Chapter 7

Appendix

7.1 Description of S [n] as a blowup

Let S be a smooth complex projective surface, though much of this discussion holds

in greater generality. Instead of working intrinsically with S[n], one may wish to describe

S[n] in terms of the simpler Cartesian or symmetric products Sn, S(n). One may attempt

to either blow up first and then identify points under the action of Sn, or one may choose

to first identify points and then blow up. The former approach is commonly taken; in

[HNa] Nakajima describes the Hilbert scheme of two points S[2] as the quotient of the

blowup Bl∆S
2 of the diagonal by the induced S2 action:

S[2] ∼= Bl∆S
2/S2.

For higher n, Tikhomirov [Ti] showed how to construct an iterated blowup diagram

S̃n

S[n] Sn

π
σ

relating the Cartesian product and the Hilbert scheme of points. We have simplified some

notation as we do not fully describe the details of the construction here. The space S̃n is

not one single blowup but rather an iterated sequence of blowups of pullbacks of incidence

schemes. While the map π : S̃n → S[n] is Sn-equivariant and generically finite of degree
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n!, for n ≥ 3 it has some positive dimensional fibers, so that this construction does not

realize S[n] as the geometric quotient of S̃n by the finite group Sn. Hence, we cannot

immediately descend an Sn-equivariant automorphism of S̃n down to an automorphism of

S[n] as we might want (were S[n] a quotient of S̃n by the finite group Sn, then we could

descend by the universal property of such a quotient). To say more about why this map

has positive dimensional fibers, we recall that Tikhomirov uses the morphism φn in the

diagram

BlZn−1(S × S[n−1])

S[n] S × S[n−1]

φn

first defined by Ellingsrud (see [ESt] for a good exposition) which resolves the rational

map S × S[n−1] 99K S[n] of adding a point of S to a subscheme of length n − 1 (which

is only defined when the added point does not intersect the support of the subscheme).

In the diagram, Zn−1 is the universal subscheme in S × S[n−1]. As described in [ESt],

this blowup BlZn−1(S × S[n−1]) may be identified with the nested Hilbert scheme S[n−1,n],

such that φn is then just the projection from S[n−1,n] to S[n]. For n ≥ 3 this projection

can have positive dimensional fibers over non-reduced points. As an example for S = A2,

consider the fiber of ϕ3 : (A2)[2,3] → (A2)[3] over the degree 3 point defined by the ideal

I = (x2, xy, y2). Adding any nonzero linear polynomial ax+ by will give a colength 2 ideal

containing I, so that the fiber is positive dimensional here.

If we could instead realize S[n] directly as a blowup of S(n), then from the universal

property of blowups [Har, Corollary II.7.15] we could lift automorphisms of S(n) fixing the

ideal sheaf being blown up to automorphisms of S[n]. Such descriptions exist in varying

levels of generality. Before stating these descriptions, we illustrate the situation for S = A2

and n = 2.

Set S = Spec(C[x, y]) and set R = C[x1, y1, x2, y2], so that S2 = Spec(R) and S(2) =
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Spec(RS2) where the S2 action swaps x1 with x2 and y1 with y2. Set p : S2 → S(2) to be

the standard projection map, so that the dual map p# : RS2 → R is just the inclusion

map. Given an ideal I ⊂ RS2 , to compare the blowup of S(2) at I with a blowup of S2,

we need to understand the inverse image ideal sheaf p−1I · OS2 , which in the affine case

just corresponds to the ideal of R generated by the image p#(I). While the ideal of the

diagonal in S2 is generated as

I∆,S2 = (x1 − x2, y1 − y2),

these generators are not elements in RS2 as they are alternating rather than symmetric

polynomials for this S2-action. However, the square of this ideal

I∆,S(2) = ((x1 − x2)
2, (x1 − x2)(y1 − y2), (y1 − y2))

2

does define an ideal in RS2 whose vanishing yields the diagonal. Since taking the tensor

power of a coherent sheaf of ideals does not affect the corresponding blowup [Har, Exercise

II.7.11(a)], we obtain a blowup diagram relating BlI
∆,S(2)

S(2) and BlI∆,S2S
2 which one can

use to prove that BlI
∆,S(2)

S(2) ∼= BlI∆,S2S
2/S2

∼= S[2].

Haiman generalized this to all n, proving the following result ([Hai, Proposition

2.6] and subsequent discussion):

Proposition 13. Let k be an algebraically closed field of characteristic zero or greater

than n. Set k[X, Y ] = k[x1, y1, . . . , xn, yn] with the Sn-action σ(xi) = xσ(i), σ(yj) = yσ(j).

Let A be the subset of polynomials f such that σ · f = (−1)|σ|f , where |σ| = 0, 1 is the

sign of the permutation, and set Ai to be the vector space spanned by products f1 · . . . · fi,

with the fj ∈ A. A2 is thus a k[X, Y ]Sn ideal, and the Hilbert scheme of points (A2
k)

[n] is

isomorphic to the blowup Proj(k[X, Y ]Sn ⊕A2⊕A4⊕ . . .) of the symmetric product (A2
k)

(n)

at the ideal sheaf A2.
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This description has been significantly generalized by Ekedahl and Skjelnes [ESk]

and similarly by Rydh and Skjelnes [RS]. For dimX ≥ 3 the Hilbert scheme X [n] is

no longer necessarily the closure of the locus of reduced subschemes as is the case for

dimensions 1 and 2 (we call this closure the smoothable locus). It is the smoothable locus

which they show is the blowup of the symmetric product of X at a particular ideal sheaf

for an arbitrary scheme X (in fact, they show this even more generally for X → S a family

of algebraic spaces, but we do not need that level of generality). We will use the formalism

of Rydh and Skjelnes.

Given R an A-algebra, we write Tn
AR for the n-fold tensor product of R over A

with the obvious Sn-action and TSn
A R for the subalgebra of symmetric tensors in Tn

A R.

Given x1, . . . , xn ∈ R, we define the alternator map

α(x1, . . . , xn) :=
∑
σ∈Sn

(−1)|σ|xσ(1) ⊗ . . .⊗ xσ(n)

which induces a TSn
A R-linear map from Tn

A R to Tn
A R. The product map

α× α : Tn
AR⊗TSnA R Tn

AR → Tn
AR

produces Sn-invariant tensors, as one can check that α(σ(x)) = (−1)|σ|α(x), so that any

element α(x)α(y) is invariant. The image of α × α defines an ideal in the ring TSn
A R,

which we call the canonical ideal IR. By [RS, Proposition 6.4] these canonical ideals on

product affine schemes can be glued together to yield an ideal sheaf I on X(n) for a scheme

X, and by Corollary 6.11 the blowup of X(n) in I is isomorphic to the smoothable locus

of X [n]. We can then prove the key Proposition 2, whose statement we recall:

Proposition 2. If X is either an affine scheme or a projective scheme over an infinite

field k, then any Sn-equivariant automorphism f : Xn → Xn induces an automorphism
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on the smoothable locus of X [n].

Proof. Since f is Sn-equivariant, it descends to an automorphism f̄ on X(n) := Xn/Sn by

the universal property of quotients by finite groups. On affine opens the associated ring

homomorphism f̄# is just the restriction of f# to Sn-invariant functions, which works by

the equivariance of f . Since f̄ is an automorphism, it is flat, so the inverse image ideal

sheaf f̄−1(I) ·OX(n) is the same as the pullback f̄ ∗I. By [Har, Corollary II.7.15], it suffices

to show that f̄ ∗I = I to get an automorphism on the blowup of X(n) along I, which as

discussed is the smoothable locus of X [n].

We wish to find an affine cover {Ui = Spec(Ri)} of X such that Xn is covered by

the product affine schemes Un
i = Spec(TnR), and similarly that X(n) is covered by affine

schemes U
(n)
i = Spec(TSnR). If X is affine this is immediate as we may just take the

single product affine X itself. If X is projective, embed X as a closed subscheme of some

projective space Pn
k . Since k is infinite, for any finite collection of points in X we can find a

hyperplane in Pn
k which does not intersect any of the points. Hence, since the complement

in X of a hyperplane section is affine, we find covers of Xn, X(n) by product affines.

Note that since X(n) has the quotient topology of Xn under Sn, open sets in

X(n) correspond to Sn-invariant open sets upstairs in Xn. We first wish to show that

pullback under f does in fact send local sections of I to local sections of I - i.e. that

f̄# defines a module homomorphism I(U) → I(f̄−1(U)) for each open set U ⊂ X(n). It

is easy enough to show this for the product affines {U (n)
i }. Let s ∈ I(U (n)) for some

affine U ⊂ X be given, so that s is of the form s =
∑

j rjα(xj)α(yj) for elements

rj ∈ OX(n)(U (n)), xj, yj ∈ OXn(Un) by definition of I (it is straightforward to describe

elements of I over product affines, but not necessarily for general open sets). Since

f̄−1(U (n)) is open in X(n), its lift upstairs f−1(Un) is Sn-invariant, and hence we may

speak of the action σ# on OXn(f−1(Un)) given by a permutation σ. For x ∈ OXn(Un),
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we directly calculate that

f#(α(x)) = f#

(∑
σ

(−1)|σ|σ#(x)

)

=
∑
σ

(−1)|σ|f#σ#(x)

=
∑
σ

(−1)|σ|σ#f#(x)

= α(f#(x))

where we use that f is Sn-equivariant to commute σ#, f#. Thus, for s as before we

directly calculate that

f̄#(s) = f̄#

(∑
j

rjα(xj)α(yj)

)

=
∑
j

f̄#(rj)f
#(α(xj))f

#(α(yj))

=
∑
j

f̄#(rj)α(f
#(xj))α(f

#(yj))

where we swap between f̄ and f depending on whether we are pulling back invariant

sections from X(n) or sections coming upstairs from Xn. If X is affine then this formula

immediately shows that f̄# is an automorphism of I. We thus suppose for the rest of the

proof that X is projective over an infinite field k.

We first check that this last term

∑
j

f̄#(rj)α(f
#(xj))α(f

#(yj))

is indeed an element of I(f̄−1(U)). The open set f̄−1(U) is covered by the inter-

sections f̄−1(U) ∩ U
(n)
i with product affines, and the restriction map OX(n)(U

(n)
i ) ↠

OX(n)(f̄−1(U) ∩ U
(n)
i ) is a surjection since it is dual to an injective map of affine schemes
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(the intersection of two affine opens being affine). This surjection restricts to a surjection

of the corresponding ideal sheaves, so that every element of I(f̄−1(U) ∩ U
(n)
i ) can be

written in the standard form
∑

j rjα(xj)α(yj), since restriction maps commute with α.

Thus, f̄#(s) =
∑

j f̄
#(rj)α(f

#(xj))α(f
#(yj)) restricts to an element of I(f̄−1(U) ∩ U

(n)
i )

for each i, and these restrictions necessarily glue since they arise from a section f̄#(s) on

f̄−1(U), so f̄#(s) lives in I(f̄−1(U)) as desired.

As we have just shown that f̄# sends sections of I(U (n)
i ) to I(f−1(U

(n)
i )) for product

affines U
(n)
i , and these product affines cover X(n), it follows that f̄# does the same for

arbitrary open sets U . To elaborate, let s be a section of I(U) ⊂ OX(n)(U) for U ⊂ X(n)

open. Similar to our preceding argument, the intersections U
(n)
i ∩ U cover U , and each

element of I(U (n)
i ∩U) is the restriction of an element of I(U (n)

i ). Write si for the restriction

of s to I(U (n)
i ∩ U), and let s̃i be an element of I(U (n)

i ) which restricts to si. We have

just shown that f̄#(s̃i) is an element of I(f−1(U
(n)
i )), so that f̄#(si) is an element of

I(f̄−1(U
(n)
i )∩ f̄−1(U)) since restriction commutes with f̄#. Since the f̄#(si) glue to f̄#(s),

we see that f̄#(s) lives in I(f−1(U)).

Thus, we have that pullback under f̄ maps the ideal sheaf I to itself. Since f̄ is an

automorphism this map from I to itself must necessarily be injective - we have only to

show that it is surjective as well. This follows by Nakayama’s lemma since I is coherent

and X is projective (hence proper), see [Fr, Chapter 4 Exercise 1].

We conclude that f ∗ induces an automorphism of I, and hence there exists an

isomorphism between the blowup of X(n) at I and the blowup at f̄ ∗I = I commuting

with f̄ , i.e. an automorphism of the smoothable locus of X [n].

This proof is perhaps excessive in its caution - it is immediate that anSn-equivariant

automorphism of Xn fixes the points of the big diagonal in Xn, and it is stated without

proof in [RS] that the support of the sheaf I is the big diagonal. We gave a proof using

the explicit abstract definition of I to avoid any potential errors coming from nontrivial
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scheme-theoretic considerations. We do not claim that our hypotheses are the most general

ones possible - we imagine it is possible to prove the same result for more general X using

the full generality of the constructions in [ESk], [RS].
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