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This study aims at using Road-side Unit (RSU)-assisted Vehicular Edge Computing

(VEC) systems to support nowadays compute-intensive and delay-sensitive vehicular applications.

Vehicles can offload these applications to the VEC server at the RSU to ease the burden on their

limited onboard computing resources. Although VEC servers usually have higher computing

capacity than vehicles, their computing resource, as well as the RSU’s communication and

energy resources, are not unlimited due to deployment constraints and operating costs. Our goal

is to find the optimal resource allocation strategies for the RSU-assisted VEC systems to enable

low-latency compute-intensive vehicular applications for vehicles.
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In the first part of the study, we consider Solar-powered RSU-assisted VEC systems,

where the RSUs are solely powered by solar energy. Firstly, we aim to minimize service

disruption of the offloaded vehicular applications under the intermittent solar power supply.

We propose a two-phase approach that jointly optimizes solar energy usage and storage, user

association, and RSU’s computing and communication resource allocation for the involved RSUs

and vehicles in the VEC system. Secondly, we further reduce the application’s execution delay

by a framework that uses computing resources from both the VEC server and the vehicle’s

local computing (VLC) unit for application execution through task partitioning and offloading.

Furthermore, the framework is able to adjust the VEC server’s platform configuration and

balance between the vehicular application’s execution delay and its application-level performance,

according to the available computing, communication, and solar energy resources of the Solar-

powered RSU.

In the second part of the study, we focus on using the RSU-assisted VEC system to

support an emerging advanced vehicular application, the multi-vehicle perception fusion. It is

challenging to effectively allocate RSU’s computing and communication resources to support the

multi-vehicle perception fusion application due to its complex and uncertain task composition

natures. To minimize the end-to-end delay of the above application, we present a real-time

mechanism that jointly determines the optimal RSU’s computing and communication resource

allocation, as well as task partitioning and scheduling strategies, which are adaptive to the

dynamic task composition of the application.
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Introduction

Advanced Driver Assistance Systems (ADAS) in modern vehicles involve multiple

vehicular applications, many of which are compute-intensive and delay-sensitive Artificial

Intelligence (AI) driven algorithms. Performing these complex applications on some vehicles

may not be feasible due to the application’s high computing complexity and the vehicle’s

limited computing capacity. A Road-side Unit (RSU)-assisted Vehicular Edge Computing (VEC)

system, where the RSUs are equipped with small cell base stations (SBSs) and VEC servers,

can be used to support these applications through task offloading. However, the computing,

communication, and energy resources of RSU-assisted VEC system might be limited due to

deployment constraints and operating costs. It is important to study how to effectively utilize

these resources to support compute-intensive and delay-sensitive vehicular applications for

vehicles.

In Chapter 1, we consider a VEC system consisting of Solar-powered RSUs to support

vehicular applications from multiple vehicles, where RSUs are solely powered by solar energy.

Vehicles can offload the applications to the Solar-powered RSUs for low-latency application

executions. Although Solar-powered RSUs are promising as they are sustainable and easy to

deploy, they may suffer from a high risk of power deficiency due to the intermittent nature of

solar power. We aim to reduce the service disruption for the offloaded continuous delay-sensitive

vehicular applications due to the sporadic solar power supply. We propose a two-phase approach

that jointly optimizes solar energy usage and storage, user association, as well as computing and

communication resource allocation decisions to minimize service disruption. Our study shows

the effectiveness of the proposed approach to reduce service disruption in a dense Solar-powered
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RSU environment, which is simulated with real-world urban vehicular traffic data and solar

generation profile.

In Chapter 2, we further consider the potential improvement of the application’s execution

delay by dynamically adjusting the vehicular application-level performance (e.g., object detection

accuracy) and by jointly utilizing the computing resources from both the VEC server and the

vehicular local computing (VLC) units on the involved vehicles through task partitioning and

offloading. We also consider adaptively changing the system configuration of the VEC server

according to the available solar power supply. We aim to minimize the end-to-end delay of the

vehicular application while maximizing its application-level performance. We propose a dynamic

programming-based algorithm that jointly makes the task partitioning and offloading, as well as

system and application-level performance adaptation decisions, in real-time. To be more realistic,

we implement an object detection vehicular application on a low-power edge computing platform

and establish corresponding empirical models for the energy consumption, execution delay,

and application-level performance (i.e., object detection accuracy) of the above Solar-powered

RSUs-assisted VEC system. Analysis based on the empirical models shows the ability of our

proposed approach to minimize the application’s end-to-end delay while maximizing its detection

accuracy.

In the last chapter, we study the problem of using an RSU-assisted VEC system to support

a more comprehensive vehicular application, a multi-vehicle perception fusion application, which

involves multiple vehicles’ individual vehicular perception tasks and additional fusion tasks at

the end. Achieving this edge-collaborated perception fusion with task partitioning and offloading

involves multiple challenges: (i) frequently varying uplink channel conditions, (ii) sequential

and parallel task dependencies, and (iii) uncertain task composition induced by unknown object

detection outputs in the dynamic driving environment. We propose a real-time mechanism to

minimize the end-to-end delay of the application by addressing these challenges. Based on

the real-time channel conditions, VEC and VLC server capacities, and the number of detected

objects, the proposed mechanism jointly determines the bandwidth allocation, task partitioning,

2



offloading, and execution scheduling for all the involved tasks of the multi-vehicle perception

fusion application. Numerical results with real-world traffic data simulation show that the

proposed approach significantly reduces the end-to-end delay of the fusion application compared

to existing techniques.
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Chapter 1

Real-time QoS Optimization for Vehicular
Edge Computing with Off-Grid Roadside
Units

1.1 Introduction

This chapter presents our work to study service disruption minimization for offloading

vehicular applications to solar-powered Roadside Units (RSUs)-assisted Vehicular Edge Com-

puting (VEC) systems. RSUs equipped with small cell base stations (SBSs) are evolving as a

key infrastructure to support connected vehicles. Due to the low latency and high throughput,

communications provided by SBSs to connected vehicles, RSUs can enable or extend various

vehicular applications, such as autonomous driving, road safety, infotainment, and collaboration

services [1]. Further, when augmented with Mobile Edge Computing (MEC) servers, the RSUs

can fulfill the computation-intensive needs of vehicular applications, while maintaining low

latency, through offloading vehicle users’ (VUs’) computing tasks to RSUs. The scenario has

been defined in literature as Vehicular Edge Computing [2, 3].

In 2020, SBSs are projected to consume 4.4 TWh of energy and emit 2.3 million tons of

carbon dioxide equivalent (CO2e) [4, 5]. Furthermore, dense deployments of RSUs are expected

in order to support the massive growth of emerging connected vehicles and their high throughput

requirements [6], leading to further power consumption and carbon emissions. One promising
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solution is the use of renewable energy (RE) in wireless communications [7]. In order to enhance

the sustainability of RSUs by easing their grid power consumption, we proposed the idea of

Solar-powered Roadside Units (SRSUs) in [8], which consist of SBS, MEC, and a self-sustained

solar system.

The main challenge of adopting RE in an SRSU network is the intermittent and fluctuating

nature of RE (i.e., solar energy) generation [9]. RE-powered VEC must consider the SRSU’s

communication and computing resources as opportunistic due to the intermittent harvested RE.

Further, RE-powered VEC must also consider the VU’s high mobility and low application latency

requirement. In this work, we consider that VUs offload their applications (e.g., object recognition

and collision prediction using camera or lidar data) to the MEC server of the associated SRSU.

For these time-sensitive and computation-intensive applications, VUs will send the raw data to

SRSU and receive the processed results with ultra-low latency. Such applications will inevitably

suffer from service degradation when the communication and/or computing capacity of SRSU

is limited. In this work, we aim to minimize Quality of Service (QoS) loss in a dense SRSU

network. We define QoS loss as a weighted sum of instances of (i) service outage (when no

SRSU can serve the VU) and (ii) service disruption (when the VU is handed over to another

SRSU), over total number of VUs.

In our preliminary work [8], we proposed an offline QoS Loss Minimization Algorithm

(QLM) to heuristically minimize the weighted QoS loss using SRSUs. However, QLM assumes

accurate predictions of SRSUs’ solar generations and VUs’ offloading demands. The impact of

prediction error on the performance of QLM was not discussed. Moreover, the offline solution

provided by QLM cannot adapt to dynamic solar generation and offloading demands. Finally,

QLM assumes unlimited battery capacity in order to provide an analytic solution, which is not

viable in real-world SRSU deployment.

In this work, given: (i) predictions of SRSUs’ solar generations and power consumptions,

(ii) current VUs’ locations, wireless channel conditions, and offloading demands, and (iii) current

SRSUs’ stored energy, communication, and computing resources, we propose to jointly solve
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solar energy scheduling, VU-SRSU association, and SRSU resource allocation problems. We

propose to solve this problem in two phases: (i) solar energy scheduling phase, which determines

battery charging/discharging for SRSUs in advance in order to schedule the available solar

energy in each time slot, and (ii) user association and resource allocation phase, which decides

VU-SRSU association and SRSU resource allocation in real-time to minimize the weighted QoS

loss, based on the available energy determined from the first phase. Compared to QLM, the

proposed solution adapts the solar generations and offloading demands dynamically in real-time.

Our simulation results show that this approach produces up to a 54% reduction in the weighted

QoS loss compared to our preliminary work in [8].

The contributions of this paper are summarized as follows:

(a) To the best of our knowledge, this is the first work to address the problem of using SRSUs

in vehicular edge computing. Specifically, the paper considers the problem of SRSU

edge computing and small cell communication resource allocation problems given the

real-time offloading demands of the fast moving VUs as well as the limited solar energy

availabilities of SRSUs.

(b) For the first time, service outage incurred when no SRSU can serve a VU and service

disruption caused by VU handover between SRSUs are considered in defining QoS. We

propose a weighted QoS objective function to incorporate preference between these two

factors.

(c) To optimize the weighted QoS, we propose a two-phase approach consisting of an offline

solar energy scheduling (battery charging/discharging scheduling) phase and an online

user association and SRSU resource allocation phase. The proposed approach is real-time

adaptive to offloading demands, locations, and channel conditions of VUs, as well as

SRSU resource availabilities.

(d) To demonstrate the feasibility and effectiveness of the proposed technique, we develop a
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simulation framework consisting of real-world solar generation [10], urban traffic profiles

[11], and offloading demands. The simulation results show that the proposed approach

significantly reduces the weighted QoS loss compared to existing techniques.

The rest of the paper is organized as follows. We review the related work in Section

1.2. In Section 1.3, the overview of our system model and problem formulation is presented. In

Section 1.4 we introduce the proposed two-phase approach. The simulation results are presented

in Section 1.5 and we conclude in Section 1.6.

1.2 Related Work

There have been various studies addressing either RE-powered wireless communication

system [12–14] or RE-powered edge and cloud server network [15, 16]. However, they do not

jointly consider both wireless communication and edge computing resources. For RE-powered

MEC system, to jointly consider these resources while using RE as the only power supply, Mao

et al. [17] address the fluctuating RE challenges for computation task offloading between a

single BS-user link. Xu et al. [18, 19] characterize multiple aspects of RE-powered MEC system

by Markov Decision Process (MDP) states and propose an online learning-based algorithm

to minimize system delay, battery depreciation, and backup power supply cost. The above

techniques only consider single-BS scenario, while our work considers load-balancing and

intercell interference in the multi-BS scenario.

[20–22] address the challenges of RE-powered multi-BS system, where each BS is

equipped with a MEC server. [20] and [21] provide online solutions to control MEC capacity

based on Lyapunov optimization [23]. In [20], Chen et al. aim at minimizing system delay

through workload balancing among BSs under their long-term energy availability constraint,

which does not consider the real-time availability of RE. In [21], Wu et al. minimize the drop

rate of computation task and downlink data traffic due to excessive delay or lack of RE. The

authors propose a workload balancing and data traffic admission control solution. However, they
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model the computation task and the downlink data traffic separately. In VEC, delay constraint

of vehicular applications usually jointly constrains both task execution and data transmission

delay. Therefore, in this work, we consider a joint delay constraint consisting of execution and

transmission delay. In [22], Gou et al. maximize the number of offloading users by an algorithm

that iteratively decides SBS coverage, channel allocation, and MEC computing allocation.

However, compared to our proposed technique, the iterative nature of the solution is not real-time

adaptive to the current RE availability, VU traffic, and offloading demand.

The above studies do not consider challenges specific to characteristics of VUs, such as

high mobility, fast-changing channel condition, and ultra-low delay constraint. On the contrary,

RE-powered Vehicle-to-Everything (V2X) studies [24–26] take these VU characteristics into

consideration. Yang et al. [24] and Atoui et al. [25, 26] both consider a straight stretch of road

with RE-powered RSU deployed along it. Based on vehicles’ locations and velocities, they

schedule the uplink [24] and downlink [25, 26] data transmission between BSs and vehicles to

maximize both network throughput [24] and the number of served vehicles [25,26]. These studies

focus on data transmission and do not consider the challenges for computation task offloading in

VEC. Also, these studies require vehicle to buffer the data and transmit at the scheduled time

slot, which is not feasible for time-sensitive vehicular applications that our research considers.

Without the use of RE, there are a few papers integrating both MEC and V2X with

in-grid RSUs [2, 3]. In [3], Zhang et al. leverage vehicle-to-vehicle (V2V) technology and

propose a predictive task offloading scheme to address the communication overhead when a

vehicle is moving between different RSUs. In [2], Dai et al. balance the offloading tasks from

vehicles by jointly considering vehicle mobility, transmission rate, and MEC computing capacity

to minimize task completion delay. These two studies do not consider RE and how to utilize

the opportunistic MEC computing and V2X communication resources given limited RE power

supply is not discussed.
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1.3 System Model and Problem Formulation

In this section, we will first introduce our system model. Then we define the weighted

QoS loss and formulate a QoS loss minimization problem. For ease of reference, we list the key

notations of our system model in Table 1.1.

1.3.1 Network and Channel Model

We consider an SRSU network with a set of SRSUs B. Each SRSU consists of a

communication module SBS and a computation module MEC server. For the sake of notation

brevity, we will use SBS b and MEC b to represent the SBS and MEC server in SRSU b ∈ B,

respectively. The total operation time is equally divided into T time slots. The duration of each

time slot is τ . At the tth time slot, there is a set of VUs It = {1,2, ..., lt} in the network, where

lt = |It | is the number of VUs in It . We denote the location of VU i ∈ It as at
i. At the tth time

slot, let η t
D,bi be the signal-to-interference-noise ratio (SINR) of downlink transmission from

SBS b to VU i. η t
D,bi is given by,

η
t
D,bi =

pb ∗gt
b,i

N0 +∑b′ ̸=b p′b ∗gt
b′i

(1.1)

where gt
b′i denotes the downlink channel gain, pb is the transmit power of SBS b and N0 is the

noise level. b′ is the interfering SBS, which operates the same frequency bands as SBS b.

Let rt
D,bi be the achievable downlink transmission rate from SBS b to VU i per subcarrier,

rD,bi =W ∗ log2(1+η
t
D,bi) (1.2)

where W is the bandwidth per subcarrier. Similarly, we denote pi as the transmit power of VU

i and ht
ib as the uplink channel gain. The uplink transmission rate from VU i to SBS b per

subcarrier can thus be represented as,
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Table 1.1. Summary of key notations and abbreviation in chapter 1
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rU,bi =W ∗ log2(1+
piht

ib
N0

) (1.3)

where the interference from other VUs is negligible with frequency reuse and bandwidth alloca-

tion techniques [27].

Note that in vehicular communication, the channel condition between SRSU and VU

changes rapidly due to mobility of VU. Therefore, we assume the duration of time slot τ to be

small enough so that the channel condition is unchanged within the time slot.

1.3.2 Workload Model

In this work, we consider the case that VU has no spare computing capacity, which is

the case for current vehicles and will be so for a vast majority of vehicles in the near future.

Therefore, each VU will offload all the computation tasks of its vehicular applications. We

refer to these tasks as workloads. At the tth time slot, each VU will generate a workload to

be offloaded, which is modeled by the following parameters. First, ω t
i is the data generation

rate of the on-board sensor (e.g., camera or Lidar) on VU i, which will be uplink transmitted

to the MEC server. Second, ct
i is the computing resource required for processing the uploaded

data, which is quantized as number of machine instructions. Third, δ t
i is the processing result

(e.g., an alert/guidance message), which will be downloaded by VU i. Fourth, dt
i is the delay

requirement from MEC server receives the data to VU i receives the result. Finally, VU may

request to download extra information from the MEC server or the Internet, which has data size

ε t
i and delay constraint θ t

i . Note that the MEC processing result is critical to driving safety and

needs low latency, therefore, dt
i is much smaller than θ t

i . We refer to the MEC processed data as

delay sensitive downlink data, and the extra information as delay tolerant downlink data.

1.3.3 SRSU Association and Resource Utilization

Let xt
bi = {0,1} be the user association indicator at the tth time slot. xt

bi = 1 if VU i is

associated with SRSU b (its data processing tasks are thus offloaded to SRSU b), and xt
bi = 0
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otherwise. At each time slot, we assume each VU can only associate with one SRSU. A MEC

server, on the other hand, can serve workloads from different VUs by using techniques like

Virtual Machine (VM) [28]. Also note that workload cannot be offloaded between different

SRSUs. To satisfy the workload demand, SRSU needs to allocate adequate amounts of computing

and communication resources to each associated VU. In our case, the connection between VU

and SBS will create two bearers, one default bearer and one Guaranteed Bit Rate (GBR) bearer

(i.e., dedicated bearer) [29]. Note that the delay tolerant downlink data is transmitted through

the default bearer, we let kt
DT,bi be the number of downlink subcarriers allocated to VU i by SBS

b for this bearer at the tth time slot. On the other hand, the offloaded data and the delay sensitive

downlink data are transmitted through the GBR bearer. We denote kt
U,bi and kt

DS,bi as the number

of uplink and downlink subcarriers, respectively, used for the GBR bearer between VU i by SBS

b. We also denote ut
bi as the computing speed, which is quantized as machine instructions per

second, of the VM server created for VU i by MEC b. To ensure that the data generated by

the on-board sensor will not be dropped due to VU’s memory buffer overflowing, the average

uplink transmission rate of VU i should be greater than (or equal to) the data generation rate ω t
i

of the on-board sensor. The uplink subcarriers allocated to VU i, henceforth, should satisfy the

following constraint,

∑
b∈B

xt
bir

t
U,bik

t
U,bi ≥ ∑

b∈B
xt

biω
t
i (1.4)

To satisfy the downlink delay constraint, the number of subcarriers allocated to VU i for

the delay tolerant downlink data should satisfy,

∑
b∈B

xt
bir

t
D,bik

t
DT,bi ≥ ∑

b∈B
xt

bi
ε t

i
θ t

i
(1.5)

Note that the delay sensitive downlink data need to be processed and transmitted in low

latency. Hence, the computing speed of VM server and downlink subcarriers allocated to VU i
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by SRSU b should satisfy the following,

∑
b∈B

xt
bi(

ct
i

ut
bi
+

δ t
i

rt
D,bik

t
DS,bi

)≤ ∑
b∈B

xt
bid

t
i (1.6)

On the other hand, the computing and communication resources of each SRSU are

limited, which is constrained by the following three equations,

∑
i∈It

xt
biu

t
bi ≤Ub, (1.7)

∑
i∈It

xt
bik

t
U,bi ≤ KU,b, (1.8)

∑
i∈It

xt
bi(k

t
DS,bi + kt

DT,bi)≤ KD,b (1.9)

where Ub is the maximum number of machine instructions the processor of MEC b can execute

per second [30]. KU,b and KD,b are SBS b’s maximum number of available sub-carriers for uplink

and downlink transmission, respectively.

1.3.4 Power Consumption Model

Power consumption of each SRSU is modeled by the power consumption of MEC plus

the power consumption of SBS. At the tth time slot, we denote Pt
S,b as the power consumption of

MEC b, which linearly increases with the overall processor’s computing speed [28]. Let pM,b

be the idle power of MEC b and pC,b be the power consumption for each unit utilization of the

processor’s speed of MEC b. Pt
S,b can then be represented by the following equation,

Pt
S,b = τ pM,b + τ pC,b ∑

i∈It
xt

biu
t
bi. (1.10)

Besides, power consumption of SRSU also includes energy consumed by the SBS.
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The energy consumption of SBS is the energy consumed by operating uplink and downlink

transmissions. Power consumption of uplink transmission is the circuit power for demodulation

and baseband processing. It increases linearly with the number of active subcarriers [31].

Secondly, operating downlink transmission consumes circuit and RF related power; both are

linearly increasing with the number of active downlink subcarriers [32]. Hence, the power

consumption of SBS at the tth time slot can be expressed as:

Pt
X ,b = τ ∑

i∈It
xt

bi(pD,b(
δ t

i
rt

D,bi
+ kt

DT,bi)+ pU,bkt
U,bi)+ τ pN,b. (1.11)

where pN,b is the idle power of SBS b, pU,b is the circuit power consumption per active uplink

subcarrier, and pD,b is the joint circuit and transmission power consumption per active downlink

subcarrier. The overall power consumption of SRSU b at the tth time slot can, therefore, be

represented as, Pt
b = Pt

S,b +Pt
X ,b.

1.3.5 Solar Generation and Battery Model

At the tth time slot, let St
b be the amount of energy harvested from the solar panel of SRSU

b. We assume St
b is available at the beginning of the tth time slot and will be immediately stored

without any loss of energy. The battery level of SRSU b is denoted as Et
b, which is constrained

by energy causality and battery capacity. We assume battery is lossless and let Emax ∈ (0,∞)

denote the battery capacity. Therefore, the battery level Et
b should satisfy,

0≤ Et
b = Et−1

b +St
b−Pt

b ≤ Emax. (1.12)

1.3.6 QoS Model

The evaluation of QoS in this paper is defined according to the instance of service outage

and service disruption on workloads.
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Service Outage

Because the energy, computing, and communication resources are limited, SRSUs may

not be able to serve a VU while satisfying this VU’s workload requirements 1.4-1.6. Because

there is no computing capacity in a VU, service outage happens when its workload cannot be

offloaded to any SRSU in the network. We denote the number of VUs experiencing service

outage at the tth time slot as Ct
drop, which can be calculated as,

Ct
drop = ∑

i∈It
(1−∑

b∈B
xt

bi). (1.13)

and the service outage rate is
Ct

drop
lt , where lt = |It | is the total number of VUs in the network at

the tth time slot.

Service Disruption

Service disruption happens to a VU when an SRSU hands it over to another SRSU. The

handover can take place when a VU is leaving an SRSU’s coverage or when we actively change

its associated SRSU. During the handover, the VU’s workload cannot be offloaded, leading to

service disruption. We denote the number of VUs experiencing service disruption at the tth time

slot as Ct
handover, which can be calculated as,

Ct
handover = ∑

i∈It
(∑

b∈B
xt

bi)(1−∑
b∈B

xt
bix

t−1
bi ). (1.14)

and the service disruption rate is Ct
handover

lt .

The level of impact of the above two cases, service outage and service disruption, on

driving experience is different. In the first case, the VU will be left unserved during the whole

time slot. However, in the second case, the duration of handover disruption may be small. Once

the VU is successfully associated with the next SRSU, it can then be served by the MEC server

during the remaining period of the current time slot. Therefore, we introduce a weighted factor
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κ < 1 on the service disruption rate to capture the different impacts on VUs between these cases.

We then define the weighted QoS loss of the tth time slot as Lt =
Ct

drop+Ct
handover

lt , and the weighted

QoS loss of the total operation time as,

L=
∑

T
t=1Ct

drop +κCt
handover

∑
T
t=1 lt

. (1.15)

By properly adjusting κ , solving Problem 1.16 can effectively optimize QoS for VUs, depending

on the network policy.

1.3.7 Problem Formulation

Our objective is to determine the user association xt
bi, and the resource allocation ut

bi,

kt
U,bi, kt

DS,bi, and kt
DT,bi for VU i to minimize the weighted QoS loss of the total operation time.

The decision is made at the beginning of each time slot based on the current SRSUs’ available

energy, computing, and computation resources, as well as VUs’ locations, workload demands,

and wireless channel conditions. The optimization problem is formulated as,

minimize
xt

bi,u
t
bi,k

t
U,bi,k

t
DS,bi,andkt

DT,bi∀i∈It ,∀t
L (1.16a)

subject to(1.4)− (1.9),(1.12) (1.16b)

∑
b∈B

xt
bi ≤ 1 ∀i ∈ It , t ∈ [1,T ] (1.16c)

xt
bi = {0,1} ∀i ∈ It , t ∈ [1,T ] (1.16d)

∑
b∈B

xt
biη

t
D,bi ≥ ∑

b∈B
xt

biγ ∀i ∈ It , t ∈ [1,T ] (1.16e)

Constraint 1.16c, together with 1.16d, state that the workload is not separable and cannot

be offloaded to multiple SRSUs simultaneously. Moreover, constraint 1.16e limits a VU to only

offload its workload to the SRSU that provides enough downlink SINR, with the threshold being

set by γ .

Furthermore, we assume to have the knowledge of the predicted profiles of SRSU’s solar
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energy generation and power consumption in advance. These data will help us plan the utilization

of solar energy (i.e., the battery charging/discharging scheduling strategy) for each SRSU. SRSU

power consumption and solar generation profiles are shown to be predictable in [10,33]. We will

list the prediction performance in Section 1.5.2 and further discuss the effect of prediction error

on the optimization problem.

1.4 Solution Methodology

The solution of Problem 1.16 involves decisions in two dimensions, as shown in Fig. 1.1.

In the spatial dimension, feasible solutions of user association and resource allocation at each

time slot should be decided to minimize the weighted QoS loss. However, the decision at each

time slot is coupled with the temporal solar energy availability. As an example, if SRSU A in

1.1a uses most of its solar energy (shown in the blue bar) in the tth time slot to serve as many

VU as possible, 3 VUs at the (t +2)th time slot will experience service outage due to the lack

of solar energy. But if SRSU A reserves some energy and lets SRSU B serve more VUs than it

served in 1.1a, SRSU A will have enough energy to serve all its VUs at the (t +2)th time slot,

as 1.1b shows. Based on this observation, we follow the logic of [14, 34, 35] to schedule the

utilization of renewable energy for each time slot in advance so that multiple BSs will not run out

of renewable energy simultaneously. We therefore propose a two-phase QoS loss Minimization

Algorithm (TQMA). TQMA solves P1 in two phases corresponding to the two dimensions:

(i) solar energy scheduling phase (temporal dimension), and (ii) user association and resource

allocation phase (spatial dimension). The process flow of TQMA is depicted in Fig. 1.2. Note

that Phase 1 is executed offline based on the predicted profiles of SRSUs’ solar generations

and power consumptions, and Phase 2 is executed online based on current (i) VUs’ workloads,

locations, and transmission rates, and (ii) SRSUs’ available communication, computing, and

scheduled solar energy resources.

Fig. 1.3 shows the overview of the SRSU-assisted vehicular edge computing network
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(a) (b)

Figure 1.1. Two dimensions that are involved in solving Problem 1.16: offline solar energy
scheduling (temporal dimension), and online user association and resource allocation (spatial
dimension); also showing two scenarios describing the impact of energy scheduling (a) left, the
condition with the absence of not performing energy scheduling at SRSU A and (b) right, the
condition when performing energy scheduling at SRSU A.

Figure 1.2. The proposed two-phase approach, TQMA, to solve Problem 1.16

and the information flows for Phase 2 of TQMA. At the beginning of each time slot, each VU

will send the workload offloading request (blue arrows), including all the workload parameters,

to the SRSU it associated with. Each SRSU will then send all the required information for Phase

2 decision to the SRSU network coordinator (green arrow). The SRSU network coordinator

will make the Phase 2 decision and forward the resulting user association and SRSU resource

allocation decisions back to SRSUs (purple arrows). Note that while the offloaded tasks are
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Figure 1.3. Overview of the SRSU-assisted vehicular edge computing system, including request
and decision flows

executed on the MECs associated with the SRSUs, the network coordinator and hence the

proposed TQMA algorithm will be run in a separate server.

1.4.1 Phase 1 and Solar Energy Scheduling Algorithm (SESA)

We denote Lt
b as the scheduled solar energy of SRSU b at the tth time slot, which will

be regarded as the maximum allowable amount of energy for SRSU b to utilize at the tth time

slot. We also define πt
b = Lt

b/P̂t
b as SRSU b’s Solar Utilization Ratio (SUR) for the tth time

slot, where P̂t
b is the predicted SRSU power consumption. For SRSU b, the objective of Phase

1 is to maximize the minimum value of SUR within the whole operation time by optimally

arranging the value of Lt
b, t ∈ [1,T ]. Note that Lt

b needs to follow the energy causality constraint,

0≤ ∑
t
t ′=1 Ŝt

b−∑
t
t ′=1 Lt

b ≤ Emax, t ∈ [1,T ], where Ŝt
b is the predicted solar generation profile for

SRSU b.

The rationale is to distribute the solar energy at each time slot proportional to the SRSU’s

expected power consumption. This will prevent all SRSUs from having energy surplus and deficit

at the same time. Therefore, neighboring SRSUs can better balance their power consumption

based on their energy availability in Phase 2. Moreover, this can also prevent SRSUs from fully

depleting their batteries during the hours when solar energy is not being generated.

20



Algorithm 1: SESA
Input:
Predicted solar generation profile {Ŝt

b|t ∈ [1,T ]}
Predicted SRSU power consumption profile {P̂t

b|t ∈ [1,T ]}
Battery capacity Emax

Output:
Scheduled solar energy L = {Lt

b|t ∈ [1,T ]}
1 β ← zeros(1,T ) ;
2 Lt

b← Ŝt
b,∀t ∈ [1,T ], t f ← tend ;

3 for t← tend to 1 do
4 update β ,L, t f using DistributeEnergy(β ,L, t, t f ,b)
5 return {Lt

b|t ∈ [1,T ]}

It is inevitable that imperfect predictions will lead to a non-optimal Lt
b, t ∈ [1,T ] when

applied to actual solar generation and SRSU power consumption. We will discuss the effect of

prediction error on performance in Section 1.5.2.

To arrange Lt
b, we propose the algorithm, SESA, which is shown in Algorithm 1. To

begin with, we initialize Lt
b as Ŝt

b for each time slot t ∈ [1,T ]. Let β t
b be the expected battery

level of SRSU b at the tth time slot, which is initialized as zero. Let t f be the last time slot that

we can schedule the solar energy to. t f is initialized as T in line 2 of SESA. To satisfy the energy

causality constraint, we will start to schedule the solar energy iteratively from the last time slot

to the beginning. At each iteration, we execute DistributeEnergy in Algorithm 2 for the current

time slot t. In DistributeEnergy, we will decide how much energy to be scheduled to each future

time slot of t. We will first calculate the SUR πt
b for t and the average SUR π̄ for the time slots

between t and t f . If πt
b > π̄ , we will decrease the value of Lt

b until the new πt
b equals π̄ . The

remaining energy will be distributed to time slots t ′ ∈ (t, t f ]. Each time slot t ′ will receive ε t ′

amount of energy that will be added to Lt ′
b . We assume ε t ′ is proportional to the required energy

for πt ′
b to reach π̄ for t ′. The above steps are listed in lines 1-6 of DistributeEnergy.

However, during the scheduling process, the expected battery level may achieve the

maximum capacity at any time slot between t and t f . Assume the maximum capacity is achieved

at t
′′
, no more energy can be stored and scheduled from t to any time slot after t

′′
. Let t∗ ∈ (t, t f ]
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Algorithm 2: DistributeEnergy
Input: β ,L, ts, t f ,b
Output: β ,L, t f

1 calculate π̄ ← ∑
t f
t=ts Lt

b

∑
t f
t=ts P̂t

b

;

2 calculate π t ,∀t ∈ [ts, t f ];
3 if π ts > π̄ and t f > ts then
4 J←{t|π t < π̄, t ∈ (ts, t f ]};
5 ∆← Lts

b − π̄P̂ts
b ,β

′← β ,ε ← zeros(1,T );
6 calculate ε t ,∀t ∈ J;
7 calculate β ′t ← β ′t +∑

t f
t ′=t+1 ε t ′ ,∀t ∈ [ts, t f );

8 T̃←{t|β ′t ≥ Emax,∀t ∈ [t1, t f )} ;
9 if T̃ /∈ φ then

10 t∗←min
t∈T̃

t,ε ← (Emax−β ′t
∗
) ;

11 β t ← β t + ε∗,∀t ∈ [ts, t∗];
12 Lts

b ← Lts
b − ε∗,Lt∗+1

b ← Lt∗+1
b + ε∗;

13 update β ,L from DistributeEnergy(β ,L, t∗+1, t f ,b);
14 t f ← t∗;
15 update β ,L, t f from DistributeEnergy(β ,L, ts, t f ,b);
16 else
17 β ← β ′,Lts

b ← Lts
b −∆ ;

18 Lt
b← Lt

b + ε t ,∀t ∈ (ts, t f ];
19 return β ,L, t f ;
20 else
21 return β ,L, t f ;

be the earliest time slot that achieves the maximum battery capacity after ε t ′ is added to each time

slot t ′ ∈ (t, t f ]. We then set its expected battery level β t∗
b to full and add the corresponding solar

energy to Lt∗
b . After that, we split (t, t f ] into two segments: (t, t∗] and (t∗, t f ] , and recursively

apply DistributeEnergy to these segments. The recursive process, which is shown in lines 13-15

of DistributeEnergy, ends when t∗ doesn’t exist within the new segment. Finally, we update the

value of t f and β t , t ∈ [1,T ] in lines 14 and 17 of DistributeEnergy, then proceed to the next

iteration. SESA will return Lt
b, t ∈ [1,T ], until the solar energy scheduling process is executed

for all the time slots.

Therefore, at each time slot, SRSU b will drain Lt
b− Ŝt

b amount of energy from the battery

if Lt
b− Ŝt

b ≥ 0, or store Ŝt
b−Lt

b amount of energy to the battery, otherwise.
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The complexity of SESA is O(T 3), where T is the number of time slots. Since SESA

is executed offline before the whole operation time starts, the complexity will not affect the

real-time feasibility of our technique.

1.4.2 Phase 2 and the MRGAP Problem

In Phase 2, we formulate a user association and SRSU resource allocation problem to

minimize the weighted QoS loss Lt at each time slot. At the tth time slot, the above problem can

be formulated as,

minimize
X t ,ψ t

Ct
drop +κCt

handover

lt (1.17a)

subject to(1.4)− (1.9) (1.17b)

∑
b∈B

xt
bi ≤ 1 ∀i ∈ It (1.17c)

xt
bi = {0,1} ∀i ∈ It ,∀b ∈ B (1.17d)

∑
b∈B

xt
biη

t
D,bi ≥ ∑

b∈B
xt

biγ ∀i ∈ It (1.17e)

Pt
b ≤min(Lt

b,E
t−1
b +St

b) ∀b ∈ B (1.17f)

where ψ t = {kt
U,bi,k

t
DT,bi,k

t
DS,bi,u

t
bi|i ∈ It ,b ∈ B} and Xt = {xt

bi|i ∈ It ,b ∈ B}. Constraints 1.17c

and 1.17d state that the workload is not separable and can only be offloaded to one SRSU.

Constraint 1.17e limits a VU to only associate with the SRSU which provides enough signal

strength (with the SINR threshold be γ). Due to prediction error, it is possible that an SRSU’s

available energy is less than Lt
b. Therefore, the power consumption of SRSU should be limited

by the minimum between actual available energy St
b +Et−1

b and scheduled solar energy Lt
b, in

Constraint 1.17f.

We next show that Problem 1.17a can be formulated as a variant of Multi-Resource

Generalized Assignment Problem (MRGAP) [36]. MRGAP is originally proposed to minimize a
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total cost when assigning items to containers under multiple resource constraints. Given N is a

set of items, M is a set of containers, and K is a set of multiple resources provided by containers

to the items, MRGAP is formulated as

minimize
Xmn,n∈N,m∈M

∑
n∈N

∑
m∈M

zmnxmn (1.18a)

subject to ∑
m∈M

xmn = 1,∀n ∈ N (1.18b)

xmn = {0,1} ∀n ∈ N,∀m ∈M (1.18c)

∑
n∈N

vmnkxmn,∀m ∈M,k ∈ K (1.18d)

where n is the index of the item, m is the index of the container, and k is the index of the resource.

xmn is the decision of whether to assign item n to container m. zmn is the cost of assigning item

n to container m, wmk is the maximum capacity on resource k of container m, and vmnk is the

amount of resource k required to assign item n to container m. Finding the optimal solution of

MRGAP is NP-Hard [37]. To map Problem 1.17a to MRGAP, we consider a special case where

the assignment constraint 1.17f is relaxed to ∑m∈M xmn ≤ 1,∀n ∈ N , which allows items without

any assignment. Different from conventional MRGAP, this special case always has a feasible

solution.

Next, we show how Problem 1.17a is mapped to the relaxed case of MRGAP. Because

Problem 1.17a has a constant denominator lt , we rewrite the numerator of its objective function,

Ct
drop +κCt

handover = lt + ∑
i=It

∑
b=B

(−1+κ−κΩ(xt
bi,x

t−1
bi ))xt

bi. (1.19)

where Ω(x,y) is an indicator function, it returns 1 if x = y, or otherwise returns 0 (See section

1.7.1). Minimizing Eq. 1.19 is equivalent to minimizing its second term (i.e. the summation

of −1+κ −κΩ(xt
bi,x

t−1
bi ), which can be mapped to zmn in MRGAP. Let M be the SRSU set

B, N be the VU set It , and K to contain resources of the (i) computing speed, (ii) downlink
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subcarriers, (iii) uplink subcarriers, and (iv) energy. Let vbi1,vbi2,vbi3,andvbi4 be the amount of

computing speed, the number of uplink subcarriers, the number of downlink subcarriers, and the

corresponding power consumption allocated to VU i by SRSU b, respectively. Consequently,

Problem 1.17a can be formulated as a special case of MRGAP with relaxed constraint 1.17f and

additional constraints 1.17e, 1.17f, and 1.6.

Next, we develop a real-time heuristic algorithm H-URA for Problem 1.17a. To begin

with, let vt
bik denote the value of vbik in the corresponding MRGAP problem of Problem 1.17a at

the tth time slot. We first show how many subcarriers for uplink and delay tolerant downlink data

transmission are needed to serve VU i. The allocation of kt
U,bi and kt

DT,bi from SRSU b should

follow constraints 1.4 and 1.5, respectively. Once these constraints are satisfied, there is no need

to increase the value of kt
U,bi and kt

DT,bi. The constraints in 1.4 and 1.5, thus, can be reduced to

deterministic allocation decision,

kt
U,bi = ⌈

ω t
i

rt
U,bi
⌉,kt

DT,bi = ⌈
ε t

i
θ t

i rt
D,bi
⌉ (1.20)

The value of vt
bi2 can, therefore, be set as ⌈ ωt

i
rt
U,bi

for VU i. On the other hand, the allocation

of computing speed and downlink subcarriers for the delay sensitive downlink data should

satisfy the joint delay constraint 1.6. Therefore, deterministic allocation decision does not exist.

A reasonable way is to define vt
bi1 (required computing speed) and vt

bi3 (required downlink

subcarriers) based on the availability of these two resources,

vt
bi1 = ⌈

KD,b +Ub

KD,b
(

ct
i

dt
i
)⌉,vt

bi3 = ⌈
KD,b +Ub

Ub,b
(

δ t
i

rt
D,bid

t
i
)+

ε t
i

θ t
i rt

D,bi
⌉ (1.21)

Meanwhile, vt
bi4 is set to be the power consumption for SRSU b when utilizing vt

bi1,v
t
bi2,

and vt
bi3 amount of resources. With the value of vt

bi1,v
t
bi2,v

t
bi3, and vt

bi4, we propose to solve

Problem 1.17a by heuristically solving the Lagrangian dual problem of its MRGAP form [38].
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The Lagrangian dual of Problem 1.17a can be formulated as,

maximize
λ t

b,µ
t
b,ρ

t
b,σ

t
b∈R+,b∈B

minimize
xt

bi,b∈B,i∈It ∑
i∈It

∑
b∈B

zt
bix

t
bi+ (1.22a)

∑
b∈B

λ
t
b(∑

i∈It

xt
biv

t
bi1−Ub)+ (1.22b)

∑
b∈B

µ
t
b(∑

i∈It

xt
biv

t
bi2−KU,b)+ (1.22c)

∑
b∈B

ρ
t
b(∑

i∈It

xt
biv

t
bi3−KD,b)+ (1.22d)

∑
b∈B

σ
t
b(∑

i∈It

xt
biv

t
bi4−L′tb) (1.22e)

subject to1.17c−1.17e (1.22f)

where L′tb = min (Lt
b , Et−1

b + St
b ). λ t

b,µ
t
b,ρ

t
b,σ

t
b are the Lagrangian multipliers for dualizing

constraints 1.7-1.9 and 1.17f. The optimality of Problem 1.22f for 1.17a depends on the values

of λ t
b,µ

t
b,ρ

t
b,σ

t
b. However, since the workload demands will change in different time slots,

the optimal values of these Lagrangian multipliers will also change. Consequently, traditional

searching-based methods [36, 38] to find the optimal Lagrangian multipliers are time-consuming

since the solution is only applicable to the current time slot. Therefore, we propose to define the

Lagrangian multipliers as follows,

λ
t
b = γ

∑i∈It−1 xt−1
bi ut−1

bi
Ub

,µ t
b = γ

∑i∈It−1 xt−1
bi kt−1

U,bi

kU,b
,ρ t

b = γ
∑i∈It−1 xt−1

bi kt−1
D,bi

KD,b
,σ t

b = γ
Pt−1

b

L′t−1
b

(1.23)

where γ is a constant scaling factor. The rationale is as follows. Consider two SRSUs which have

the same zt
bi to VU i, we tend not to assign this VU to the SRSU whose resources are more likely

to be fully utilized. The likelihood relies on the resource utilization condition at the previous

time slot.

Lemma 1.4.1. With fixed λ t
b,µ

t
b,ρ

t
b,σ

t
b, solving Problem 1.22f is equivalent to finding the SRSU

which minimizes qt
bi = zt

bi +λ t
bvt

bi1 +µ t
bvt

bi2 +ρ t
bvt

bi3 +σ t
bvt

bi4 for each VU.
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Proof. See section 1.7.2.

To further minimize the service disruption, we tend to assign VU to the SRSU that locates

on its future path. We propose to use a Maximum Likelihood Markov Chain [39] to predict

the probability of a VU’s future location. First, we divide the network neighborhood into A

non-overlapping areas. Each area is represented by a state in the Markov Chain. Second, we

create an |A|x|A| transition matrix Ât for this Markov Chain at the tth time slot, where —A—

is the size of A. We define Nt
s1s2

as the total instances of VUs moving from area s1 to area s2

during any consecutive time slots before t. The state transition probability Ât
s1,s2

can then be

represented as Ât
s1,s2

= Nt
s1s2

/∑s∈A Nt
s1s. Let bs2 be the SRSU which provides the best signal

strength to the geological center of area s2. If a VU is in area s1, the probability that bs2 is the

next SRSU for this VU to associate in the next time slot is predicted as Ât
s1,s2

. This probability is

then multiplied by κ and added to qt
bi for each VU-SRSU pair. For each s ∈ A, the complexity

of calculating ∑s∈A Nt
s1s is O(|A|) and hence the complexity of updating Ât

s1,s2
,s1 ∈ A,s2 ∈ A is

O(|A|2). Note that in an SRSU network, the number of VU is usually larger than |A|. Therefore,

O(|A|2)< O(l2).

Based on lemma 1.4.1 and Ât , we assign each VU to the SRSU which corresponds to the

VU’s minimal qt
bi. However, this assignment may not be valid since we relax constraints 1.7-1.9,

and 1.17f in Problem 1.17a. Therefore, we propose to make association decisions for VUs one by

one while checking if the decision satisfies the relaxed constraints. We will pick the VU which

has the largest difference between its best and second-best qt
bi,b ∈ B, as the highest priority VU

to make the association decision for. We then assign the VU to the SRSU that corresponds to the

best qt
bi if the constraints 1.7-1.9, 1.17e, 1.17f of Problem 1.17a can be satisfied, and proceed to

the next VU.

To check if a VU association satisfies the constraints 1.7-1.9, 1.17e, 1.17f of Problem

1.17a and determine the optimal resource allocation decision, we adopt the procedure Minimize

SRSU Power Consumption Algorithm (MPCA), which is proposed in our previous work [8].

27



Given a VU set ζ of an SRSU, MPCA will first check if the SRSU can serve all the workloads

from ζ . If possible, then MPCA will allocate computing and communication resources to the

VUs in ζ while minimizing the power consumption of the SRSU (with the rationale to save

solar energy). MPCA determines the optimal resource allocation as follows. We have argued the

optimal value of kt
U,bi and kt

DT,bi. To show the optimal allocation of kt
DS,bi and ut

bi in Eq. 1.25 for

a given VU set ζ of SRSU b, we define the following terms for all the VUs in ζ ,
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Then, the optimal resource allocation for ut
bi and kt

DS,bi will be,

ut
bi = ⌈y

t
i(c

t
i)

1/2⌉,kt
DS,bi = ⌈

yt
i(l

t
i d

t
i )

1/2

Ht
b

⌉, i ∈ ζ (1.25)

The above resource allocation solution to minimize power consumption of the SRSU

can be solved by analyzing the problem’s Karush–Kuhn–Tucker (KKT) conditions [40] or using

convex optimization programming tools [41]. We omit the proof here for the sake of brevity.

MPCA returns 0 if the KKT conditions are violated or constraints 1.7-1.9, 1.17e, 1.17f

are not satisfied. Otherwise, MPCA returns the optimal resource allocation decisions ut
bi, kt

U,bi,

kt
DT,bi, and kt

DS,bi for each VU in ζ .

Based on the above discussion, we propose H-URA for real-time user association and

SRSU resource allocation, which is shown in Algorithm 3. The pseudocode of MPCA is also

included in Algorithm 4. H-URA takes real-time VUs’ locations workload demands, and channel

conditions, as well as SRSUs’ resource availabilities and Lagrangian multipliers as input. To

begin with, Qt in line 3 of H-URA records the value of qt
bi for all the VU-SRSU pairs. The user

association procedure is determined by the while loop in lines 4-18. H-URA will decide the

highest priority VU to make the association decision for in lines 5-8. If H-URA determines VU
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i∗ as the highest priority VU and b∗ is the SRSU corresponds to its minimal qt
bi, then H-URA will

consider associating i∗ with b∗. H-URA will check if this association satisfies all the constraints

of Problem 1.17a in lines 9 and 11 by using MPCA. If constraints are satisfied, H-URA will

confirm the association, update the association indicator and resource allocation decisions in

lines 12-15. Note that ζ ′ in line 8 is the set of VUs that have been associated with SRSU b∗

by H-URA. The elements in Qt
bi related to VU i∗ will then be set as ∞ in line 16 so that VU i∗

will not be considered again in the next iteration. If the constraints of Problem 1.17a cannot be

satisfied, H-URA will set the value of Qt
b∗i∗ as ∞ in line 18 and proceed to the next iteration. The

iteration ends when all the VUs are associated with an SRSU or when all the elements in Qt are

∞.

Note that in the worst case, the while loop will iterate lB times, which is the size of Qt .

For each iteration, in the worst case, the time complexity of lines 5-7 is lB while the complexity

of other steps is less than or equal to l. On the other hand, the complexity of updating Ât is less

than O(l2). Therefore, the time complexity of H-URA is O(l2B2) for time slot t. Hence, H-URA

is possible to be executed in real-time for reasonable sizes of the current VU set It and SRSU set

B. This is validated with experimental results reported in the next section.

By combining the proposed SESA and H-URA algorithms, we present our proposed

heuristic method to solve Problem 1.16, TQMA, as shown in Fig. 1.4. In Phase 1, SESA will

schedule the solar energy for each time slot. Then, H-URA will be executed at each time slot to

make user association the resource allocation decisions real-time in Phase 2.

1.5 Experimental Result

1.5.1 Simulation Framework

The objective of our simulation framework is to observe the weighted QoS loss perfor-

mance of different solar energy scheduling, user association, and SRSU resource allocation

strategies. In the simulation results below, we assume that VUs offload object detection tasks
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Algorithm 3: H-URA
Input:
The scheduled solar energy, battery level and solar generation Lt

b,E
t−1
b ,St

b,∀b ∈ B
VU location {at

i}, and workload {ω t
i ,c

t
i,δ

t
i ,d

t
i ,ε

t
i ,θ

t
i },∀i ∈ It

Channel conditions {gt
bi|i ∈ It ,b ∈ B}

System Parameters γ,Emax,KD,b,KU,b,andUb,∀b ∈ B
Previous association indicators xt−1

bi ,∀i ∈ It ,b ∈ B
Next SRSU probability prediction Ât

Lagrangian multipliers λ t
b,µ

t
b,ρ

t
b,σ

t
b,∀b ∈ B

Output: User association X t , and Resource allocation ψ t

1 L′tb← min(Lt
b,E

t−1
b +St

b),∀b ∈ B;
2 visit UE← 0 ;
3 Qt ←{qt

bi}b∈B,i∈It ;
4 while visit UE ≤ l and ∃qt

bi ̸= ∞ do
5 for ∀i ∈ It do
6 b1

i ← argminb∈BQt
bi ;

7 b2
i ← argminb∈B\{b1

i }
Qt

bi ;
8 i∗← max

i
Qt

b2
i i−Qt

b1
i i,b
∗← b1

i ,ζ
′←{i|xt

b∗i = 1}+{i∗} ;

9 {ũt
b∗,i, k̃

t
DS,b∗i, k̃

t
U,b∗i, k̃

t
DT,b∗i|i ∈ ζ ′}←MCPA(ζ ′,b∗) ;

10 calculate Pt
b∗ using 1.11;

11 if MCPA(ζ ′,b∗) ̸= 0 and Pt
b∗ ≤ L′tb then

12 xt
b∗i← 1;

13 for ∀i ∈ ζ ′ do
14 kt

U,b∗i← k̃t
U,b∗i,k

t
DT,b∗i← k̃t

DT,b∗i ;
15 ut

b∗i← ũt
b∗,i,k

t
DS,b∗i← k̃t

DS,b∗i ;
16 Qt

bi∗ ← ∞,∀b ∈ B, visit UE← visit UE+1 ;
17 else
18 Qt

b∗i∗ ← ∞,ζ ′← ζ ′ \{i∗};
19 return X t ,ψ t

to SRSUs. In the meantime, some VUs will request to download videos as the delay tolerant

downlink data. To simulate realistic VU movement and topology, we take a 1000∗800 (meters)

rectangular area in Brooklyn, New York City, as shown in Fig. 1.5. We use historical vehicular

traffic data in this area collected by New York State Department of Transportation [11]. Fig. 1.5

also shows the placement of 20 SRSUs used in our simulation environment. We list the related

simulation parameters in Table 1.2. The duration of each time slot τ is 1 second. Because the

duration of the handover process in LTE-A can be less than 100 ms [43], we set κ=0.1. Total
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Algorithm 4: MPCA
Input: ζ ,b
Output: 0 or {ũt

bi, k̃
t
DS,bi, k̃

t
U,bi, k̃

t
DT,bi|i ∈ ζ}

1 for ∀i ∈ ζ do
2 calculate ũt

bi, k̃
t
DS,bi, k̃

t
U,bi, k̃

t
DT,bi using Eq. 1.20 and 1.25 ;

3 if constraints 1.7-1.9, 1.17f are satisfied for SRSU b and every i ∈ ζ satisfies Eq.
1.17e and Ht

b > 0 then
4 return {ũt

bi, k̃
t
DS,bi, k̃

t
U,bi, k̃

t
DT,bi|i ∈ ζ};

5 else
6 return 0;

Figure 1.4. Breakdown of TQMA algorithm

simulation time is 24 hours, starting from 9 AM to include both day and night. Therefore, T is

86400.

At the beginning of each time slot, VUs enter the area from both ends of each street

following a Poisson distribution with rate Θ. Each VU travels with predetermined route and

speed. The travel route decision, speed, and Θ are set in a manner that the average traffic volume

of each street satisfies the historical data in [11]. Furthermore, the channel model and the transmit
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Figure 1.5. A neighborhood in Brooklyn, NY and SRSU deployment studied in this paper [42]

Table 1.2. Key parameters in simulation framework

Parameter Value Parameter Value
KD,b 710 pU,b 0.0067 W/subcarrier
KU,b 710 pU,b 0.0067 W/subcarrier
Ub 4744 MIPS pN,b 10 W
pM,b 4.8 W γ 0 dB
pC,b 6.25 W N0 -174 dBm/Hz
pb 30 dBm E0

b 0Wh
pi 23 dBm Emax 600 Wh

Parameter Value
gt

bi,h
t
ib Pathloss and slow fading: Manhattan grid layout (B1) in [44];

Fast fading: Nakagami-m distribution [45]

power of SRSUs and VUs are listed in Table 1.2 [46, 47]. We set A = 40 for the next SRSU

prediction. To model the workload, we assume that each VU will upload an H.264 encoded video

file with the data rate ω t
i be uniformly distributed between 11 and 13.5 MB/s. It requires 10

million instructions per second (MIPS) as ct
i for video processing, including decoding and object

detection [8] at the MEC. We assume the size of the delay sensitive downlink data δ t
i is uniformly

distributed between 0.1 and 0.3 MB and the delay constraint dt
i is 0.1s. In the meantime, VUs

will have 0.25 probability to download a video file with size uniformly distributed between 7 and

9 MB as the delay tolerant downlink data, which has delay constraint θ t
i = 1s.
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We model the downlink and uplink channel gains, gt
bi and ht

ib, by using Manhattan grid

layout (B1) in [44] as the pathloss and slow fading, and the Nakagami-m distribution [45] as the

fast fading, which have been widely used by the industry [46, 48] and are shown to be sufficient

to model the vehicular communication channel [45].

The subcarriers are allocated to VUs in groups, and each group has 12 subcarriers

(i.e., W=180kHz/group) [49]. Multiple groups of subcarriers can be allocated to the same VU

simultaneously. We assume each SRSU can utilize 710 subcarrier groups concurrently for each

direction of transmission. To improve the inter-cell interference, we adopt the frequency reuse

mapping technique [50] with reuse factor 3.

We model the MEC server of an SRSU by a Raspberry Pi 2 Model B [51], which is used

to serve the offloaded workloads. Its corresponding computing resource and power consumption

profiles are specified in Table 1.2.

For the solar generation profile, we use the data collected at multiple sites in UC San

Diego [10]. We normalize the solar energy data and assume the solar panel size is 1 m2 for each

SRSU. We use the proposed algorithm in [10] to predict solar generation profiles 24 hours in

advance.

To compare against SESA, we use a best-effort technique, denoted as the Best effort Solar

Energy scheduling Algorithm (BSEA). BSEA consists of a best-effort solar energy scheduling

strategy and the same user association and SRSU resource allocation technique (H-URA) as

TQMA. BSEA allows each SRSU to serve the associated VUs without constrained by the

scheduled solar energy.

Another comparison is the Green energy and delay Aware User association and Resource

Allocation (GAURA) algorithm proposed by [14]. GAURA is a combination of battery charg-

ing/discharging scheduling, SBS transmit power control, and user association algorithms, which

is the closest approach to TQMA compared to other works. We assume GAURA follows the

same way of H-URA to allocate subcarriers for uplink and the delay tolerant downlink data trans-

mission. On the other hand, to fulfill the delay constraint in 1.6, we assume that GAURA will
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allocate kt
DS,bi downlink subcarriers and ut

bi computing speed to VU i by the ratio: ut
bi = 4kt

DS,bi.

We also compare TQMA with our previous approach, QLM [8]. We assume that QLM

has accurate predictions of VU’s location and workload.

In the following sub-section, we will first present a performance comparison of our

proposed TQMA with BSEA, GAURA, and QLM. Second, to show the efficiency of the Phase

2 algorithm, H-URA, a dynamic programming based Optimal User association and Resource

allocation Algorithm (OPTA) [52] is implemented. Since [52] does not solve phase 1, we use

the proposed SESA as the Phase 1 algorithm. We will compare the performance of TQMA and

OPTA to show the efficiency of our proposed Phase 2 algorithm, H-URA. We introduce and

analyze the complexity of OPTA in section 1.7.3. Third, to show the gap between the optimal

solution and the proposed TQMA algorithm, we implement the exhaustive search method for

Problem 1.16. The complexity analysis of the exhaustive search method is listed in section 1.7.4.

Finally, we will show the effect of solar energy prediction error on the performance of TQMA.

1.5.2 Simulation Results

We have implemented the proposed TQMA algorithm using MATLAB on a computer

with a 3.8 GHz CPU, which is used to perform the offline battery scheduling and online user

association and resource allocation for all the SRSUs in a neighborhood, like shown in Fig.

1.5. Note that a TQMA instance will be responsible for the SRSUs and the VUs of each such

neighborhood. Since the battery scheduling algorithm SESA is run offline, we focus here on

the run-time performance of H-URA. From our simulation-based experiments, the worst-case

run-time of H-URA algorithm for a time slot is less than 180 ms. This is well below the time

interval of 1s H-URA is executed (each time slot). Note that the input information (e.g., VU

locations, workloads, and harvested solar) will not change dramatically during the 180 ms

run-time of H-URA. Hence, we can conclude that H-URA is real-time, validating our time

complexity based assertion in Section 1.4.
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(a) (b)

Figure 1.6. The empirical cumulative distribution function of (a) left, the service outage time
ratio and (b) right, the service disruption time ratio for individual VUs.

Performance comparison of TQMA with other techniques

The weighted QoS loss performance of TQMA, BSEA, QLM, and GAURA are 0.125,

0.145, 0274, and 0.453, respectively. The performance of TQMA is the best compared to other

techniques. To further discuss the effect of the above algorithms on individual VUs, we define

service outage time ratio and service disruption time ratio for each VU as the following:

service outage time ratio =
service outage time
service request time

(1.26)

service disruption time ratio =
service disruption time

service request time
(1.27)

where the service outage time is the duration that this VU is experiencing the service outage, the

service disruption time is the duration that this VU is experiencing the service disruption. The

service request time is the duration that this VU is in the neighborhood and sending offloading

demands.

In Fig. 1.6, we show the empirical cumulative distribution function (CDF) of the service

outage time ratio and service disruption time ratio for the VUs. In Fig. 1.6a, 86.2% of the VUs
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are served by the SRSUs for at least 80% of the service request time (service outage time ratio <

0.2) by using TQMA. On the contrary, 85.8%, 47%, and 40% of the VUs are served by SRSUs

for at least 80% of their service request time by using BSEA, QLM, and GAURA algorithms,

respectively. The performance of BSEA is close to TQMA because they share the same H-URA

algorithm. On the other hand, in Fig. 1.6b, we can see that 85.7% of the VUs have less than

50% of their service request time experiencing the service disruption (the service disruption

time ratio < 0.5) by using TQMA. Compared to TQMA, 9.6%, 59.6%, and 90.1% of the VUs

have the service disruption time ratio < 0.5 by using QLM, BSEA, and GAURA, respectively.

QLM performs the worst because it will first consider associating a VU to the SRSU which

provides the best signal strength, regardless of the VU’s location, future movement, and the

current associated SRSU. Compared to other algorithms, TQMA enables more VUs being served

by SRSUs for longer duration while reducing their chances of experiencing service disruption.

Fig. 1.7 shows the weighted QoS loss performance comparison of the above algorithms

under various system parameters (i.e., solar panel size, available computing speed, subcarrier

groups, and battery capacity of SRSU). Fig. 1.7a shows the weighted QoS loss performance of

these four algorithms under different solar energy availabilities, which are controlled by changing

the solar panel size. TQMA has the best performance in terms of the weighted QoS loss among

all the listed algorithms for different solar panel sizes. For instance, when the solar panel size

equals 1 m2, the performance of TQMA is 13.8% better than BSEA, 54.4% better than QLM,

and 72.5% better than GAURA. The QoS loss of TQMA decreases while the solar panel size

increases. However, the decrease starts to slow down and stops after the solar panel size exceeds

1.1 m2. It is because the bottleneck of the performance becomes other limited resources after

SRSU has enough solar energy.

From Fig. 1.7b, we can observe that the weighted QoS loss decreases when the avail-

able number of subcarrier groups of each SRSU increases. Again, TQMA outperforms other

algorithms. The performance gap between TQMA and the second-best algorithm, BSEA, grows

with the number of subcarrier groups. The gap grows from 0.0273 to 0.0353 when the number
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(a) (b)

(c) (d)

Figure 1.7. The weighted QoS loss performance of various algorithms on (a) upper left, different
solar panel sizes, (b) upper right, different available subcarrier groups of SRSU, (c) lower left,
different available computing speeds of SRSU, and (d) lower right, different battery capacities of
SRSU.

of subcarrier groups increases from 250 to 1050, which shows that TQMA can more efficiently

utilize these increased subcarrier resource. In Fig. 1.7c, the weighted QoS loss decreases when

the available computing speed of each SRSU increases. Again, TQMA outperforms the other

three algorithms under all conditions. Notice that the performance of TQMA improves slowly

after the available computing speed exceeds 3520 MIPS. The weighted QoS loss only improves

0.0048 (i.e., 4%) from 3520 MIPS to 5280 MIPS. The performance of GAURA rises vastly in low

available computing speed conditions, as its resource allocation mechanism (i.e., ut
bi = 4kt

DS,bi)

will put a heavier burden on utilizing the computing speed than downlink subcarrier groups,
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especially in low available computing speed conditions.

In Fig. 1.7d, the weighted QoS loss increases rapidly after the battery capacity decreases

to a certain level. For TQMA, QLM, and BSEA, we can observe that the critical point is 400

Wh. The weighted QoS loss starts to increase below this capacity because the capacity cannot

fulfill the SRSU’s power demand at night when there is no solar energy generated. The results in

Fig. 1.7 demonstrate the tradeoff between QoS and different resource availabilities, including

solar panel sizes, battery capacities, MEC specifications, and configurations of SBS (subcarriers).

This enables the service providers to identify what might be the best configurations of SRSU for

expected solar generations and offloading demand profiles.

Performance Comparison with OPTA

In this comparison, we investigate the efficiency of our proposed Phase 2 algorithm,

H-URA, by comparing TQMA to QLM and OPTA. To lower the complexity, we consider a

smaller neighborhood surrounded by the dashed rectangle in Fig. 1.5. There are 2 SRSUs in

this neighborhood and less than 14 VUs during peak hours. We equally divide the available

computing speed into 5 levels and allocate them to each VU by levels. Subcarriers are divided

into 5 groups. Fig. 1.8a shows the weighted QoS loss performance of QLM, TQMA, and OPTA

when the solar panel size varies from 0.76 m2 to 0.98 m2. When the solar panel size is 0.9 m2, the

performance gap is 0.109 between TQMA and OPTA, while the gap between QLM and OPTA is

0.244. In terms of the peak time complexity (i.e., the recorded longest computation time for a

time slot), TQMA takes 0.0938s while OPTA requires 333.5s when running on a 3.8 GHz CPU.

In Fig. 1.8b, we present the weighted QoS loss performance of these 3 algorithms on

different average VU density scenarios. The average VU density is calculated as ∑
T
t |It |/T ,

where It is the VU set at the tth time slot and T is the total number of time slots. We control the

value of the average VU density by changing the vehicle generating rate Θ. In the meantime,

Fig. 1.8c shows the corresponding peak time complexity. The gap between TQMA and OPTA

increases linearly from 0.01 to 0.211 when the average VU density increases from 1.6 to 8.1.
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However, the corresponding peak time complexity of OPTA increases exponentially from 78.7s

to 1047s. Although OPTA’s dynamic programming Phase 2 algorithm provides promising QoS

performance under different solar energy availability and average VU density conditions, it is

prohibitively expensive in terms of time complexity. On the contrary, our proposed Phase 2

algorithm H-URA can keep the peak time complexity low for real-time decision making while

compromising somewhat on optimal QoS performance though significantly better than QLM.

(a) (b)

(c)

Figure 1.8. (a) the weighted QoS loss performance of various algorithms on different solar
panel sizes, (b) the weighted QoS loss performance of various algorithms on different Average
VU densities, and (c) the peak time complexity of various algorithms on different Average VU
densities.
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Performance Comparison with Exhaustive Search

In this experiment, we investigate the efficiency of our proposed TQMA algorithm for

solving Problem 1.16 by comparing with an exhaustive search method, which finds the optimal

solution for Problem 1.16. The exhaustive search method searches all the solar energy scheduling

possibilities and uses dynamic programming algorithm (i.e. OPTA’s Phase 2 algorithm) for user

association and resource allocation for each solar energy scheduling possibility. Fig. 1.9 shows

the performance comparison of BSEA, TQMA, OPTA, and the exhaustive search method. As

shown in 1.7.4, the complexity of the exhaustive search method is O(TUBKB
U KB+1

D l2
maxB2T !Ŝ),

where ! is the factorial function, Ŝ is the maximum harvested solar energy of a time slot, and

lmax is the maximum number of VUs for a time slot. Due to the extremely high complexity,

in this experiment we simulate only 4 time slots to represent a day (i.e., the gap between each

slot is 6 hours). The granularity of the solar energy scheduling decision is 10 W. We consider

the same neighborhood as in the previous subsection. Similar to the previous subsection, we

control the value of the average VU density by changing the value of the vehicle generating

rate Θ. We equally divide the available computing speed into 5 levels and allocate them to each

VU by levels. The subcarriers are divided into 5 groups. Compared to BSEA, where no solar

energy scheduling algorithm is implemented, TQMA’s performance is closer to the optimal

solution. The performance gap between TQMA and the optimal solution is 0.15 under regular

traffic conditions (i.e. average VU density = 5.0). However, the peak time complexity of TQMA

is 19.2ms, while the exhaustive search method requires 192,038s when running on a 3.8 GHz

CPU. Therefore, finding the optimal solution is prohibitively expensive in terms of peak time

complexity. To show their performances for high VU density scenarios, we increase Θ and create

a 5.5 average VU density scenario. The weighted QoS loss gap between TQMA and the optimal

solution is 0.14, which is almost the same as the gap when the average VU density is 5.0. But

the peak time complexity of the exhaustive search method increases to 228,220 s while TQMA

only requires 20.3 ms. Therefore, our proposed TQMA is more efficient in terms of both the
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peak time complexity and the weighted QoS loss.

To further investigate the cause of the performance gap between TQMA and the exhaus-

tive search method, we include the performance of OPTA in Fig. 1.9. OPTA achieves the same

weighted QoS loss as the optimal value. Because TQMA and OPTA share the same solar energy

scheduling algorithm, the performance of OPTA shows that the gap between TQMA and the

optimal value is due to the heuristic user association and resource allocation. Moreover, OPTA

also demonstrates an approach for narrowing the performance gap without sacrificing largely on

the time complexity. Its peak time complexity is 144.7s under regular traffic conditions, which

is between TQMA (i.e. 19.2 ms) and the exhausted search method (i.e. 192,038 s). Note that

the performance of OPTA converges to the optimal value in Fig. 1.9 because this experiment is

conducted under a limited-scale scenario. In fact, OPTA is not an optimal approach for Problem

1.16 as it considers only one solar energy scheduling possibility.

Effect of prediction error on TQMA

Finally, in this sub-section, we present the effect of the prediction error of solar generation

on the performance of TQMA. For each experiment, we run TQMA two times with the same

simulation settings. For the first time, we use the predicted solar generation profile for SESA.

The second time, we use the exact solar generation profile (no prediction error) for SESA.

The simulation results of two different days are shown in Table 1.3, where SD is the service

disruption rate and SO is the service outage rate. For day number 1, we observe prosperous and

less intermittent solar generation since the weather is mostly sunny. Therefore, the prediction

error is very small. We observe that its weighted QoS loss, SD, and SO are very similar with

and without solar prediction error (compared to no prediction error). The weighted QoS loss

of using solar prediction increases by 0.5(4.2%) compared to no prediction case. On the other

hand, for day number 2, we observe poor and highly intermittent solar generation since the

weather is partly sunny and partly cloudy. Consequently, the prediction error is worse than day

number 1. The weighted QoS loss of using solar prediction increases by 0.6(1.6%) compared to
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Table 1.3. Performance with prediction error

Solar Prediction Error Performance

Day 1 MAE MAPE(%) RMSE QoS loss SO SD

Prediction Error 3.31 6.61% 5.73 12.5 8.74 37.5
No error - - - 12.0 8.23 37.6

Day 2 MAE MAPE(%) RMSE QoS loss SO SD

Prediction Error 8.63 49.8% 18.29 37.8 35.3 34.2
No error - - - 37.2 34.8 25.1

Figure 1.9. The weighted QoS loss performance of TQMA, OPTA, and BSEA, compared with
the optimal solution using exhaustive search

no prediction error case. Its SO increases by 0.5 % and SD drops by 0.9%. In this case,SD drops

because SO increases. If a VU is experiencing service outage, it will not be counted as service

disruption. Although the prediction error increases, the performance drop of TQMA in terms of

the increased weighted QoS loss is still under 5%.
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1.6 Conclusion

In this paper, we propose a real-time QoS loss minimization algorithm to support the

offloading of delay-sensitive vehicular applications in a Solar-powered RSU network. The

algorithm involves a two-phase approach: (i) the solar energy scheduling phase and (ii) the

user association and resource allocation phase. SESA and H-URA respectively are developed

for these two phases. A complete algorithm, TQMA, is proposed by integrating the above two

algorithms which our simulation shows to significantly reduce the weighted QoS loss for the

total operation time compared to existing techniques under various resource availabilities. The

results help service providers and city planners to identify adequate SRSU configurations for

expected solar energy generation and offloading demands.

In the next chapter, we will present a framework that utilizes both the VEC server

computing resource and the local computing resource of each vehicle to further reduce the exe-

cution delay of the vehicular applications through task partitioning and offloading. Additionally,

the framework can adaptively adjust the VEC server’s system configuration and the vehicle’s

application-level performance according to the available resources at the Solar-powered RSU.

Chapter 1, in full, is a reprint of the material as it appears in IEEE Transactions on

Vehicular Technology 2020, Yu-Jen Ku, Po-Han Chiang, and Sujit Dey. The dissertation author

was the primary investigator and author of this paper.
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1.7 Appendix

1.7.1 Proof of Eq. 1.19

Ct
drop +κCt

handover = ∑
i=It

(1− ∑
b=B

xt
bi)+κ ∑

i=It
(∑

b=B
xt

bi)(1− ∑
b=B

xt−1
bi xt

bi)

= lt−∑
i=It

∑
b=B

xt
bi +κ ∑

i=It
(∑

b=B
xt

bi− ∑
b=B

xt
biΩ(xt

bi,x
t−1
bi ))

= lt−∑
i=It

∑
b=B

xt
bi +κ ∑

i=It
∑

b=B
xt

bi−κ ∑
i=It

∑
b=B

xt
biΩ(xt

bi,x
t−1
bi )

= lt + ∑
i=It

∑
b=B

(−1+κ−κΩ(xt
bi,x

t−1
bi ))xt

bi

(1.28)

1.7.2 Proof of Lemma 1.4.1

With fixed Lagrangian multipliers λ t
b,µ

t
b,ρ

t
b,σ

t
b, problem in 1.22f is reduced to:

minimize
xt

bi,b∈B,i∈It ∑
i∈It

∑
b∈B

zt
bix

t
bi+ (1.29a)

∑
b∈B

λ
t
b(∑

i∈It

xt
biv

t
bi1−Ub)+ (1.29b)

∑
b∈B

µ
t
b(∑

i∈It

xt
biv

t
bi2−KU,b)+ (1.29c)

∑
b∈B

ρ
t
b(∑

i∈It

xt
biv

t
bi3−KD,b)+ (1.29d)

∑
b∈B

σ
t
b(∑

i∈It

xt
biv

t
bi4−L′tb) (1.29e)

subject to1.17c−1.17e (1.29f)

The objective function of 1.29f can then be rewritten as,

∑
i∈It

∑
b∈B

xt
bi(z

t
bi +λ

t
bvt

bi1 +µ
t
bvt

bi2 +ρ
t
bvt

bi3 +σ
t
bvt

bi4)−∑
b∈B

(λ t
bUb +µ

t
bKU,b +ρ

t
bKD,b +σ

t
bL′tb)

(1.30)
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where the second term is a constant. Therefore, 1.29f is equal to,

minimize
xt

bi,b∈B,i∈It ∑
i∈It

∑
b∈B

xt
biq

t
bi (1.31a)

subject to1.17c−1.17e (1.31b)

with qt
bi = zt

bi +λ t
bvt

bi1 +µ t
bvt

bi2 +ρ t
bvt

bi3 +σ t
bvt

bi4.

Note that qt
bi and constraints 1.17c-1.17e are separate for different VUs. Therefore, the

optimal solution of 1.29f (which is also the optimal solution of 1.22f) will be finding the SRSU

which minimizes qt
bi under constraints 1.17c-1.17e for each VU.

1.7.3 OPTA Algorithm

Since we have introduced SESA in Section 1.4, in this appendix, we analyze the complex-

ity of OPTA’s Phase 2 algorithm, which is based on dynamic programming. For a given instance

of Phase 2, integers i,n,α1, ...,α3B, we use f (i,n,α1, ...,α3B) to represent the optimal value of

1.17 with B SRSUs, which considers the VU set {1,2, ..., i} ∈ It and allows at most n dropped

VUs. Furthermore, each SRSU b utilizes exactly α3b−2 amount of computing speed, α3b−1 up-

link subcarriers, and α3b downlink subcarriers. To track the optimal user association and resource

allocation decisions, we let X(i,n,α1, ...,α3B ) and Ψ(i,n,α1, ...,α3B) be the corresponding user

association and computing speed allocation of VU i for the instances i,n,α1, ...,α3B. We only

track the allocation of computing speed because once we get xt
bi from X , the optimal kt

U,bi,k
t
DT,bi

can be derived by choosing the smallest possible values which satisfy workload constraints 1.4,

1.5. With the recorded ut
bi in Ψ, we can calculate the optimal kt

DS,bi by delay constraint 1.6.
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The core formula of OPTA is,

f (i,n,α1, ...,α3B) =



∞, if n < 0

∞, if ∃b ∈ B,α3b−2 < 0orα3b−1 < 0orα3b < 0

0, if i = 0,n≥ 0,α3b−2 ≥ 0orα3b−1 ≥ 0orα3b ≥ 0,∀b ∈ B

∞, if ∃b ∈ B,Pt
b(α3b−2,α3b−1,α3b)< L′tb

min(A1,A2) otherwise
(1.32)

where Pt
b(α3b−2,α3b−1,α3b) returns the corresponding power consumption of SRSU b for utiliz-

ing α3b−2 amount of computing speed, α3b−1 uplink subcarriers, and α3b downlink subcarriers.

L′tb = min(Lt
b,E

t−1
b +St

b) is for SRSU b to follow constraint 1.17f. A1 = 1+ f (i,n,α1, ...,α3B) is

the optimal value when choosing not to serve VU i. Finally, A2 is the optimal value considering

all possible values of xt
bi,u

t
bib ∈ B for VU i, and can be defined as,

A2 = minimize
b,xt

bi,u
t
bi

zt
bi + f (i−1,n,α1, ...,α3b−2−ut

bi,α3b−1− kt
U,bi,α3b− kt

DT,bi− kt
DS,bi, ...,α3B)

(1.33)

with kt
U,bi, kt

DT,bi, and kt
DS,bi be the optimal numbers of uplink and downlink subcarriers corre-

spond to xt
bi and ut

bi. Note that in Eq. 1.33, if η t
D,bi > γ , zt

bi =−1+κ−κΩ(xt
bi,x

t−1
bi ), otherwise

zt
bi = ∞.

f is initialized by an arbitrarily large value. X and Ψ are initialized as zero matrices. We

recursively calculate the elements in f for i from 1 to l, n from 1 to l, α3b−2 from 1 to Ub, α3b−1

from 1 to KU,b, α3b from 1 to KD,b, ∀b ∈ B, until all the elements in f are updated. We record

the corresponding optimal values of xt
bi and ut

bi in X(i,n,α1, . . . ,α3B) and Ψ(i,n,α1, . . . ,α3B),

respectively. The optimal value of Problem 1.17 is then the smallest element in matrix f (l, l, :

, . . . , :) (i.e., f with the specific indices, i = l,n = l,1 ≤ α3b−2 ≤ Ub,1 ≤ α3b−1 ≤ KU,b, and

1 ≤ α3b ≤ KD,b∀b ∈ B ). We then calculate the optimal xt
bi,u

t
bi,k

t
U,bi,k

t
DT,bi and kt

DS,bi for VU
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i iteratively from i = l to i = 1, by using X , Ψ, and the indices correspond to the minimum

element.

The time complexity of OPTA is O(UBKB
U KB+1

D l2B2) if all the SRSUs have the same

computing capacity U , number of uplink subcarriers KU , and number of downlink subcarriers

KD. The complexity grows exponentially with the number of SRSUs in the network. Since the

value of U , KU , and KD are usually very large, OPTA will be prohibitive in terms of run-time if

there are more than 2 SRSUs in the network.

1.7.4 Complexity Analysis of the Exhaustive Search Method

Here we perform a complexity analysis of the exhaustive search method for Problem 1.16.

The optimal solution of Problem 1.16 requires the solar energy to be optimally scheduled to each

time slot, while the VUs are associated with the optimal SRSU and SRSU resources are optimally

allocated. For the sake of simplicity of analysis, we assume each SRSU has the same value

of downlink subcarriers (i.e., KD), uplink subcarriers (i.e., KU ), and computing capacity (i.e.,

U). By dynamic programming analysis in section 1.7.3, the complexity of the Phase 2 problem

is O(UBKB
U KB+1

D l2B2) for each time slot, where B is the number of SRSU and l is the current

number of VU. On the other hand, since energy is continuous, there are unlimited possibilities of

how many portions of the generated solar energy can be used in the current time slot and how the

rest of it can be scheduled in the future time slots, so as to the energy stored in the battery. For

simplicity, we assume the granularity of energy is 1 W and the maximum harvested solar energy

for each time slot is Ŝ. For the tth time slot, because every 1 W of the harvested solar energy

can be scheduled to any time slot t ′ ∈ [t,T ], there are O((T − t +1)Ŝ) scheduling possibilities.

Therefore, for the overall operation time, there are O(∏T
t=1 (T − t +1)Ŝ) = O(T !Ŝ) possible solar

energy scheduling strategies will be searched, where ! is the factorial function. Consequently,

with lmax = max
t

lt , the complexity of exhaustively searching the optimal solution of Problem

1.16 is O(TUBKB
U KB+1

D l2
maxB2T !Ŝ).
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Chapter 2

Adaptive Computation Partitioning and
Offloading in Real-time Sustainable Vehi-
cular Edge Computing

2.1 Introduction

This chapter presents our study to further reduce vehicular applications’ execution delay

through task partitioning and offloading technologies. Additionally, we will present a framework

that can adaptively adjust the vehicular edge computing (VEC) server’s system configuration

and the vehicle’s application-level performance according to the available resources at the Solar-

powered Road-side Unit (RSU). The rapid advancement in vehicular technology in recent years

has enabled modern vehicles to be equipped with a wide range of vehicular applications, many

of which are based on compute-intensive machine learning based algorithms. The vehicular local

computing (VLC) units often cannot satisfy the computing demands of such applications, due

to limited computing resources, or contention with other applications. A promising solution to

resolve this problem is using the emerging new generation of RSUs, consisting of a small cell

base station (SBS) and a VEC server [2, 3]. The VEC servers being one hop wireless distance

away from the Vehicle Users (VUs), provide much lower communication delay compared to

using conventional cloud computing resources, or even mobile edge computing units in wireless

networks. VEC servers, although inferior to cloud or mobile edge computing servers, have more
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computing capabilities than individual VLC resources in most vehicles. By VUs offloading the

compute-intensive vehicular applications like object detection to RSUs, VUs can receive better

service quality and improve driving experience.

However, transportation systems need dense deployment of RSUs, especially in urban

areas, to support the high density of VUs. The dense deployment will significantly increase the

cellular networks’ energy consumption, thus worsening the carbon footprint. Recent studies have

projected 110 million tons of carbon dioxide equivalent (CO2e) emitted by the operation of base

stations in global cellular networks in 2030 [4, 53]. Therefore, the future dense RSUs should

be deployed without increasing the cellular network’s greenhouse gas emission burden. In our

previous work [54] , we proposed the use of Solar-powered RSU (SRSU), which consists of

SBS, VEC server, and a self-sustained solar energy system. Note that in an SRSU, the generated

solar energy is limited and fluctuating. If solar energy cannot meet the SRSU’s power demand,

the SRSU will need to reduce its computing and communication loads by preventing some of the

VUs from offloading their applications to the VEC server.

In this work, we assume that each VU has a VLC node which can be supplemented with

VEC resource to execute the VU’s application. To efficiently utilize the computation resources

of VLC node and VEC server, we consider a dynamic offloading scenario, where different

subtasks of an application can be chosen to be either executed locally at the VLC node, or

offloaded to a VEC server. The dynamic offloading decisions will depend on current computing,

communication, and energy resources of the serving SRSU, as well as the VLC node capacity

and channel condition for each VU.

In our previous work [54], we aimed at minimizing the disruption of vehicular applica-

tions due to the limited solar energy supply in real-time by optimally partitioning and executing

the application tasks to either VLC nodes or VEC servers. The vehicular application is considered

as disrupted when its delay requirement cannot be satisfied. However, the proposed method does

not consider the potential latency improvement under an energy constraint by dynamically chang-

ing the system configuration of the VEC server. In one of our recent studies [55], we showed
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the average computation delay can be further optimized satisfying a given energy constraint

by appropriately configuring the CPU and GPU frequencies of the VEC server. Additionally,

the proposed offloading method in [54] does not consider the potential delay improvement

achievable by adapting application-level performance parameters. For example, machine vision

based vehicular applications can lower their processed image quality for reducing the size of the

data for offloading to further minimize the transmission delay, however, with possible impact on

application-level performance, such as object detection accuracy.

In this paper, given the current channel condition and VLC node capacity of each VU,

as well as the current computing, communication and energy resources of the SRSU, we aim

at minimizing the end-to-end delay of the vehicular application and maximizing the applica-

tion’s performance. We propose to dynamically determine the task partitioning and offloading,

VEC server’s system configuration, and VUs’ application-level performance adaptions. The

decisions are calculated in real-time to accommodate the rapidly changing locations and channel

conditions of the VUs. To show in real-world the benefit of our proposed method, we consider a

vehicular object detection application, which is an essential building block for various complex

vehicular applications such as Advanced driver-assistance systems (ADAS), path planning, and

navigation. We implement the object detection application using SSD-MobileNetV2 [56] on

an edge computing platform Nvidia Jetson TX2 Board [57]. With extensive experiments, we

establish empirical energy consumption, end-to-end delay, and detection accuracy models, which

are used in simulation-based evaluations for the proposed method. The simulation results show

that our proposed approach can significantly reduce the end-to-end delay while maximizing the

detection accuracy compared to existing strategies.

The main contributions of this work are summarized below.

(a) To the best of our knowledge, this is the first work to optimize delay and accuracy

performance of a vehicular object detection application for the SRSU-assisted VEC

system using task partitioning and offloading, as well as joint system and application-level
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adaptations.

(b) Specifically, we develop a technique which determines in real-time the optimal VEC

server’s hardware configuration, image quality for detection, and task partitioning and

offloading decisions for an SRSU-assisted VEC system.

(c) Using a real-world edge computing platform, we establish empirical models of the energy

consumption, computing capacity, end-to-end delay, and accuracy for an SRSU-assisted

VEC system.

(d) To demonstrate the effectiveness of the proposed technique, we develop a simulation

framework consisting of real-world solar generation, urban traffic traces, and the above

empirical models. The simulation results show that the proposed approach significantly

improves the end-to-end delay and accuracy compared to existing techniques.

2.2 Related Work

There have been many studies on computation task offloading for vehicular edge com-

puting [58–61]. These studies focus on task offloading strategies which leverage computing

resources at the edge to minimize the task completion delay [58, 60, 61], while maximizing

the edge computing resource utilization [59] or the number of offloaded tasks [58]. Their

approaches address the challenges in highly varying bandwidths under the constraint on com-

putation delay [60] or vehicle’s energy consumption [61] for real-time applications. However,

these techniques do not study the trade-off between leveraging VLC node and VEC server, and

hence can not be used for task partitioning according to the computing capacities of both VLC

node and VEC server. Since in our considered scenario, both the capacities of VLC node and

VEC server are limited, these resources need to be carefully allocated to computation tasks to

achieve real-time computation delay.

To facilitate computation capacity-aware task offloading, [62] proposed a learning-based

task partitioning and scheduling algorithm which partitions and assigns subtasks among multiple
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VEC servers to minimize the completion delay and handover-induced service disruption. The

technique requires data exchange between multiple RSUs, which will cause prohibitively large

communication delay when applied to our high-data volume vehicular perception applications.

[63–65], on the other hand, study the optimal computation task partitioning between VEC server

and VLC node by proposing joint task partitioning and offloading as well as SBS communication

and VEC server computation resource allocation methods. Among these studies, [63] and [64]

aim at minimizing the system cost in terms of utilized communication and computation resources,

under delay constraints while [65] jointly minimizing the task execution delay and the utilized

VEC server’s computing resources. However, the partitioning techniques proposed in these

studies cannot be applied to subtasks with task dependencies as they assume the computation

tasks can be arbitrary partitioned, offloaded, and executed in parallel.

To consider task dependency during partitioning and offloading, [66, 67] divide the

sequential convolution layers of a Deep Neural Network (DNN) into several independent subtasks.

These subtasks can be executed in parallel on multiple edge nodes to minimize task completion

time [66] or the utilized edge server memory [67] as well as the communication overhead

for task offloading. However, the proposed parallel partitioning techniques cannot leverage

the potential reduction of communication delay with sequential partitioning. On the other

hand, [68] and [69] enable local devices to early stop a DNN and offload the result to edge

server. The edge server can choose to adopt the result or further execute the rest layers of the

DNN. [68] aims at minimizing the execution delay and [69] aims at minimizing the utilized

communication and computing resources on local and edge devices while maximizing the

object detection results transmitted to the edge server under communication resource constraint.

[70] proposes a real-time task partitioning and bandwidth allocation strategy to maximize the

throughput (i.e. the number of processed data per second) using limited edge computing and

communication resources. Although these task partitioning methods consider both the computing

capacities in VLC nodes and VEC servers during decision making, they are not applicable to

VEC servers whose operations are not only constrained by the limited communication and
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computing resources, but energy availability.

The authors in [71] propose a joint task offloading and user association strategy for the

multi-user mobile edge computing system to minimize the overall energy consumption of the

users and edge server. However, firstly, the proposed method does not consider task dependency

as they assume multiple mutually independent tasks in each user. Secondly, the challenges

of minimizing the SRSU’s energy consumption is different from the challenges of operating

the SRSU under limited energy availability, as the computing and communication resources of

SRSU will also be constrained due to the lack of energy. Both [72] and [18] consider renewable

energy powered edge server. In [72], task partitioning and offloading as well as the utilization of

renewable energy is determined online using Lyapunov optimization to maximize the number of

offloaded tasks. The authors in [18] propose an online learning technique for partitioning and

offloading of the incoming tasks as well as autoscaling of the computing capacity for the edge

servers to jointly minimize the application delay, battery deprecation, and back up power usage.

The learning technique is used to predict the system’s long-term channel rate and workload states.

However, these techniques do not consider the task dependency graph, and the corresponding

transmitted data size is linear to the partitioned load. In practice, the computation loads of

subtasks in a task graph are discrete and do not possess such linearity relationship with the input

data. Therefore, the proposed theoretical approaches can not be applied to our problem.

To the best of our knowledge, this is the first study to consider not only the compute and

communication-intensive, delay-sensitive dependency-aware task partitioning and offloading

with the collaboration of VLC node and VEC server, but the challenges of utilizing limited

communication, computing, and energy resources of an SRSU.

2.3 Systems Overview

In this section, we introduce an overview of the SRSU-assisted VEC system, including

vehicular applications, solar energy-driven communication, and computing paradigms. For ease
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Table 2.1. Summary of key notations and abbreviations in chapter 2
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of reference, we list the key notations in Table 2.1.

2.3.1 Network and Channel Models:

We consider an SRSU-assisted VEC system consisting of one serving SRSU b and

multiple served VUs. The SRSU is equipped with a communication module SBS and a computa-

tion module VEC server. The operation time is divided into multiple time slots. Note that the

following modellings and discussions are within a single time slot t, for simplicity, we do not

attach superscript t for each variable. We denote the duration of time slot t as τ . For each time

slot, there exists a set of VUs I = {1,2, ..., I} in the coverage area of the SRSU b and the VUs’

locations will vary in different time slots due to the mobility of the vehicles. For each VU i ∈ I,

we denote ηb,i =
ρi∗gb,i

N0
as the current signal-to-noise ratio (SNR) of uplink transmission from

VU i to the SBS of SRSU b. ρi is the transmit power of VU i, gb,i is the uplink channel gain, and

N0 is the noise level. The uplink transmission rate from VU i to SBS b can be represented as,

rb,i =Wi ∗ log2(1+ηb,i) (2.1)

where Wi is the bandwidth allocated by SBS to VU i and the interference from other VUs is

negligible with the use of Orthogonal Frequency-Division Multiplexing (OFDM) technology.

We ignore the inter-cell interference by assuming it is mitigated by inter-cell interference

coordination (ICIC) technologies, e.g. Fractional Frequency Reuse (FFR) [73]. We assume

the wireless communication between the SBS and the VUs use C-V2X protocols [74] and the

available bandwidths are evenly distributed among the VUs which require uplink transmission.

We model the uplink channel gain, gb,i, by using B1 Manhattan grid layout [44] as the pathloss

and slow fading, and the Nakagami-m distribution [45] as the fast fading, which have been widely

used by the industry [46, 48] and are shown to be sufficient to model vehicular communication

channels [45].

Compared to the uplink data of the vehicular applications, e.g., the captured images or
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radar point clouds, whose data sizes are usually more than several KBytes (images) or even

several MBytes (point clouds) [75], the data sizes of the vehicular applications’ computation

results are very small. The computation results, such as the bounding boxes for object detection,

classification, and fusion as well as basic safety messages (BSM) for collision detection, are less

than 1 KBytes in terms of data size. Moreover, the downlink data rate is usually higher than the

uplink data rate due to the higher transmission power [47]. Therefore, we ignore the impact of

downlink data transmission in our study.

We assume the duration of time slot, τ , to be small enough so that rb,i is unchanged

within one time slot [54]. Note that rb,i will still change across different time slots due to the

mobility of VU.

2.3.2 Vehicular Task Model

Most vehicular applications involve computation tasks that can be expressed as a depen-

dency graph of sequential subtasks. For example, Fig. 2.1 shows two dependency graphs of radar

and camera-based vehicular applications. In Fig. 2.1(a), the detection range determination block

decides the range of distance to perform the energy detection on the radar signal. Lane interval

estimator and lane detector are applied if enough signal energy is detected. If a lane is present

and the application detects possible departure due to the vehicle’s speed, a departure warning

will be sent to the driver [76]. In Fig. 2.1(b), the image captured by the camera will be decided

and resized to be the input feature for the DNN-based object detection and classification, where

we use SSD-MobileNetV2 [56] as an example. In Fig. 2.1(b), conv. is the convolution layer,

which is the most common layer in SSD-MobileNetV2. If any object is detected, the application

will return the coordination of the bounding boxes for the detected object.

We assume that at each time slot, every VU generates a computation task that consists

of a set of K = {1,2, ...,K} sequentially dependent subtasks, as shown in Fig. 2.2. That is, the

data input of subtask k depends on the data output of subtask k+1. Therefore, subtask k+1 can

start only after the completion of subtask k. For each subtask k ∈ K of VU i, we assume ωk,q,i
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Figure 2.1. Task dependency graphs of (a). Radar signal-based lane departure warning system
(b). DNN-based object detection and classification application for the cameras.

is the input data size and ω(k+1),q,i is the output data size, where q is an application adaptation

parameter. For example, if the considered vehicular application is vehicular machine vision, such

as object detection and classification, q can be the encoding bitrate of the input image.

Figure 2.2. Subtask breakdown of a vehicular application

Each subtask can be executed locally in the VLC node or, offloaded and executed at the

VEC server. In such cases of computation offloading to edge, data at the task-splitting point, e.g.

subtask k′, needs to be transmitted over the wireless communication channel, such that the first

{1,2, ..,k′} subtasks are executed at the VLC node and the remaining {k′+1, ...,K} subtasks

are executed at the VEC server.
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2.3.3 Performance Metrics

Herein, we consider the performance metrics for object detection, which is a critical

component in various complex vehicular applications as mentioned above. Therefore, we

primarily focus on two object detection performance metrics - the end-to-end delay and the

accuracy.

End-to-end delay The end-to-end delay in our study is defined as the summation of the comput-

ing delay of each subtask in K and the communication delay of transmitting the required data for

computation offloading. Therefore, the end-to-end delay of VU i can be represented as,

di =
K

∑
k=1

Tk,i +Ttx,i (2.2)

where Tk,i is the computing delay of subtask k. Ttx,i is the transmission delay for offloading

subtask k′ and its subsequent subtasks to the VEC server, that is, for transmitting the input

of subtask k′ with data size ωk′,q,i. Therefore, Ttx,i can be defined as
ωk′,q,i

rb,i
. Ttx,i = 0 if all the

subtasks of VU i are executed locally.

Note that as we focus on optimizing the end-to-end delay in this study, without loss of generality,

we assume the data is processed frame-by-frame in the vehicular application, that is, subtask

1 starts processing the next input data after subtask K, which is the last subtask in K, finishes

processing the previous input. Therefore, queuing delay is negligible in the network.

Accuracy The accuracy of the object detection ai of VU i can be represented as a function of the

application level adaption parameter q, namely, ai = a(qi), where qi is the parameter q used by

VU i. In this paper, we take compression level of the input image (i.e. the encoding bitrates of

the jpeg compressed image) as an example of the application adaptation parameter. We measure

the accuracy in terms of the intersection over union (IoU). IoU is the intersection over union of

the areas of the bounding boxes of the detected objects in the input image with respect to the

result of the uncompressed base image.

Assume for image m, the bounding box area of the detected objects in the base image
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(i.e., at q = 1, the lowest possible compression level) is Nm
1 , and the bounding box area of the

detected objects in the corresponding input image (with compression level q′) frame is Nm
q′ . The

accuracy of this input image is defined as: (Nm
1 ∩Nm

q′ )/(N
m
1 ∪Nm

q′ ). Without loss of generality,

we define the overall accuracy of images at image quality q′ by averaging the accuracy over M

different frames,

a(q′) =
1
M

M

∑
m=1

(Nm
1 ∩Nm

q′ )

(Nm
1 ∪Nm

q′ )
(2.3)

where M is a large whole number. Note that (0 < a(q′)< 1).

QoS utility The quality of service (QoS) of vehicular applications aims to have lower delay and

higher accuracy. However, higher accuracy is usually achieved by larger data size, that potentially

impacts the end-to-end delay, which is a function of data transmission time and computation

delay at the VLC node and VEC server as expressed in Eq. 2.2. Therefore, the system needs

to consider a trade-off between end-to-end delay and accuracy. In this paper, we define a joint

performance metric, QoS utility, which we represent as a weighted function of the end-to-end

delay and accuracy. For each VU i, the QoS utility is defined as,

QoSi = α
dn

di
+(1−α)∗a(qi) (2.4)

and the average QoS utility of all the current VUs is,

ˆQoS =
1
I ∑

i∈I
QoSi (2.5)

where dn is the term used to normalize di to the same range of a(qi). For example, if the value of

a(qi) is between 0 and 1, dn will be determined as the smallest possible value of di. α (0<α < 1)

is the trade-off factor between the end-to-end delay and accuracy, and is determined by the

service provider. Higher value of α means the QoS utility emphasizes more on the performance
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of end-to-end delay and vice versa. For example, for the SRSUs deployed along a highway,

where end-to-end delay is critical to driving experience due to high vehicle speed, the service

provider can choose higher value of α to focus more on reducing the end-to-end delay than very

high accuracy. Meanwhile, because the moving patterns of vehicles on the highway are stable

and easy to track across multiple consecutive frames, detection accuracy can be compensated

by object tracking techniques so that the impact of the trade-off in accuracy will not affect the

driving safety.

2.3.4 Energy Consumption and Harvesting at SRSU

The energy consumption of the SRSU ER consists of the energy consumed by its VEC

server and SBS. We denote ES and EB be the energy consumed by the VEC server and SBS,

respectively. Therefore, ER = ES + EB. Note that ES depends on the load and CPU-GPU

configuration ce of VEC server. The load of VEC server is a function of the offloaded subtasks,

therefore, ES for the current time slot can be represented as,

ES = ES,idle +Ec (2.6)

where ES,idle is the idle energy consumption and Ec is the energy consumed for executing the

offloaded subtasks.

On the other hand, the energy consumption of the SBS can be represented as the follow-

ing,

EB = EB,idle +∑
i

P(rb,i)∗Ttx,i (2.7)

where P(rb,i) is the base-band signal processing power consumption at SBS for uplink transmis-

sion at datarate rb,i. Ttx,i is the transmission time (i.e. the time when SBS is actively processing

the uplink signal at datarate rb,i).

At the beginning of each time slot, we let Et be the amount of energy harvested from

the solar panel of SRSU b and can be immediately used by the SRSU. Therefore, the energy
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consumption of VEC server and SBS should satisfy,

ER = EB +ES ≤ Et (2.8)

In the following section, we build the empirical system models for the vehicular tasks,

performance metrics and energy consumption with real-world control parameters, e.g., appli-

cation adaptation parameter, computing configurations and load, that instills the non-linear

behaviors in the aforementioned system models.

2.4 Empirical System Model

We emulate the SRSU-assisted VEC system by using a setup of Nvidia Jetson TX2 boards

which are power-efficient embedded AI computing devices [57], and use NI USRP B210 radios

for communications. We operate the Nvidia Jetson TX2s at different CPU-GPU configurations

to emulate the different computing capacities of the VEC server and VLC nodes. We list the

corresponding hardware configurations in Table 2.2, including CPU and GPU frequencies and

the number of available CPU and GPU cores. Note that the CPU and GPU frequencies listed in

Table 2.2 are chosen from the available frequencies allowed by the Nvidia Jetson TX2 board.

We mimic different computing capacities of the VEC server with two configurations,

VEC config1 and VEC config2, by choosing two sets of available CPU-GPU configurations of

the Nvidia Jetson TX2 board. Each set consists of a collection of CPU and GPU frequencies that

the VEC server can tune to operate at depending on current performance and energy requirements.

Similarly, for VLC nodes, we emulate their computing capacity by choosing two different

CPU-GPU configurations, VLC config1 and VLC config2. For the disparity of computing

capacity between the edge and local computing devices, we choose the lowest available GPU

frequency for both VLC config1 and VLC config2. Additionally, we assume VLC config1 and

VLC config2 can only access two and one CPU cores, respectively, on the Nvidia Jetson TX2

board, while both edge configurations can access six CPU cores. Finally, for the CPU frequency
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Table 2.2. Chosen CPU and GPU configurations to emulate the computing capacity of VLC
node and VEC server.

Configuration
name

VLC
config1

VLC
config2

VEC
config1

VEC
config2

CPU cores 2 1 6 6
CPU frequency

(MHz) 960 652
{960, 1267,

1574}
{652, 824,

960}
GPU cores 1 1 1 1

GPU frequency
(MHz) 114 114 {725, 1300} {725, 1300}

of VLC config1, we choose the lowest frequency listed among the available CPU frequencies

of VEC config1, and likewise, we determine the CPU frequency of VLC config2 as the lowest

CPU frequency listed for VEC config2.

As mentioned earlier, while we use object detection using a vehicle camera as an example

of the real-time vehicular application, our work can be easily extended to other types of vehicular

applications as well. We use SSD-MobileNetV2 [56] for object detection due to its lightweight

computations, favorable for real-time applications. In this section, first we provide the task model

for object detection with SSD-MobileNetV2 and show the impact of corresponding application

adaptation parameter, i.e. compression level, on the data size in the task pipeline and accuracy.

Second, we will present the empirical model for the computing delay at the VLC node and

VEC server w.r.t. different system settings. Third, we will demonstrate the empirical model for

energy consumption of the SRSU, including energy consumption at the SBS and VEC server, by

extending the theoretical models described in the previous section, considering different system

configurations and load conditions.

2.4.1 Object Detection Task Model and Impact of Compression

The task graph considered for object detection is shown in Fig. 2.3. After the vehicle

camera captures a 1080p image, the image is decoded and resized into a 2-dimensional 300 by

300 matrix input and forwarded to the neural network of SSD-MobileNetV2 for object detection.
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For the sake of simplicity, we choose a combination of functional blocks as one subtask, as

shown in the dotted boxes A and B (i.e., the following two subtasks, Decoding & Resizing and

Neural Network Inference), for the rest of this study. However, note that our approach is not

limited to two subtasks and is scalable for more subtask scenarios.

Figure 2.3. Task dependency graph of object detection using SSD-MobileNetV2, showing data
size and compression level.

As the application adaptation parameter, we use compression level q ∈ Q, which is

applied to camera, to control the encoding bitrate and hence the data size of images. Q is

the set of available compression levels. The impact of compression level is two-fold. Higher

compression level reduces the size of the input image, thus reducing the dataflow transmission

time to forward to the next node in the task pipeline, but it also affects the accuracy of the object

detection.

Table 2.3 shows the data size along the processing flow of the object detection using

a compressed 1080p jpeg image, under different values of q. Note that ω2,q,i is the decoded

300x300 pixels image, therefore, its size is not impacted by the encoding bitrate compression

level.

Table 2.4 shows the corresponding impact on accuracy for different values of q for a

set of 70 image frames of 1080p resolution. We choose the base image when the compression

level is 1 with 100% encoding bitrate. Thus the accuracy for q = 1 is 1.0 based on Eq. 2.3 and

it decreases with the increasing values of q. Note that the lowest accuracy in Table 2.4 (i.e.

qi=4), is just 10% less than the accuracy of the base image. However, even with a 10% decrease,

the accuracy of SSD-MobileNetV2 is still higher than some of the other object detectors,
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Table 2.3. Input data size of each subtasks at different compression level

Compression level q 1 2 3 4
Encoding bitrate level 100% 75% 50% 25%

ω1,q,i (KByte) 92 79 55 27
ω2,q,i (KByte) 270 270 270 270

Table 2.4. Accuracy at different compression levels

q 1 (Base image) 2 3 4
Accuracy 1.0 0.97 0.93 0.9

e.g., YOLOV2 [77], which has been largely used for autonomous vehicles as mentioned in

literature [78, 79]. Therefore, our study can still meet the same driving safety performance as

other vehicular object detection studies even with the trade-off in accuracy.

2.4.2 Computing Delay and Impact of Computing Capacity

Here, we empirically model the computing delay for the object detection using the

different computing capacities of VLC node and VEC server. Note that VLC node will run

the application for a single VU and thus its computing capacity is impacted by CPU-GPU

configurations only as mentioned in Table 2.2. However, the VEC server runs applications for

multiple VUs and thus is impacted by both its CPU-GPU configurations and the load in terms

of the number of application instances. Now, based on Fig. 2.3, there are two subtasks in the

task graph. Therefore, K = 2, and T1 is the DR delay (execution delay of Decoding and Resizing

subtask) and T2 is the inference delay (execution delay of neural network inference), which

together constitutes the computing delay.

Computing Delay at the VLC Node

We implement the object detection subtasks in Fig. 2.3 on the Nvidia Jetson TX2 board

and measure T1 and T2. Table 2.5 shows the observed computing delay of each subtask for

processing an image frame under the VLC configurations listed in Table 2.2. Note that the
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Table 2.5. Breakdown of the end-to-end delay of object detection using different VLC computing
capacities

Computing delay (s) VLC config1 VLC config2
T1 0.036 0.085
T2 0.095 0.103

Overall 0.131 0.188

minimum computing delay of the object detection at the VLC node is higher than 0.130 s, which

is not fast enough for the 0.1 s requirements for vehicular applications to react to the fast changing

traffic condition [80]. Therefore, offloading some of the subtasks to the VEC server, which has

higher computing capacity than VLC node, can reduce the computing delay, and thus, potentially

reduce the end-to-end delay. In the next subsection, we demonstrate the empirical model of the

computing delay at the VEC server.

Computing Delay at the VEC Server

We model the computing delay of subtasks on the VEC server empirically by observing

T1 and T2 under different VEC server load conditions. Fig. 2.4 shows the DR delay T1 and the

inference delay of neural network inference T2, under the conditions of different VEC server

capacities and different number of instances of DR and the neural network subtasks. Note that

(a) (b)

Figure 2.4. (a) DR delay T1 and (b) Inference delay T2, under different number of running
instances and VEC server’s computing capacities
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the CPU and GPU frequencies used in Fig. 2.4 are listed in Table 2.2. In Fig. 2.4(a), the

DR delay does not change between different GPU frequencies because the execution of DR

does not use any GPU resource. On the other hand, Fig. 2.4(b) shows that the relationship

between the inference delay and the increasing CPU-GPU frequencies as well as the number of

application instances is not easy to represent by simple linear and quadratic models. Therefore,

such knowledge of nonlinear correlation between delay and computing capacity shown in Fig.

2.4 is necessary for accurate delay performance optimization.

2.4.3 Energy Consumption Model

Energy consumption at the VEC server

In our empirical study, we observe the major factors that impact the energy consumption

at the VEC server are the server’s CPU-GPU configuration, the number of offloading VUs (i.e.

the running application instances), and the offloaded computation loads. Fig. 2.5(a) shows the

energy consumed per second of a Jetson TX2 board as VEC server while a number of VUs

offload both DR and the neural network inference simultaneously. The measurement is taken

under different CPU-GPU configurations. The energy consumption is linearly increasing with

the CPU frequency and number of offloading VUs. However, the increasing rate varies when the

Jetson board is operated with different GPU frequencies. In reference to Fig. 2.4a, we can see

that although higher CPU and GPU frequencies lead to less computing delay, the corresponding

energy consumption will be higher. Under the condition when the SRSU lacks of available

energy, VEC server needs to reduce its operating CPU-GPU frequency while sacrificing the

computing delay of the offloaded subtasks. Fig. 2.5(b) shows the energy consumed per second

while multiple VUs offload only the neural network subtask. While it shows similar trend of

increasing energy consumption as Fig. 2.5(a), its absolute value is less than Fig. 2.5(a) under

fixed CPU-GPU frequency settings and number of instances, because only one of the subtasks

(i.e. neural network inference) is executed.
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(a) (b)

(c)

Figure 2.5. Energy consumption per second of (a) VEC server executes instances of both DR and
the neural network inference and (b) VEC server executes various instances of the neural network
inference under different VEC server’s computing capacities, and (c) SBS under different uplink
data rates

Energy consumption at the SBS

To measure the energy consumed by the wireless communication at the SRSU, we use

the same experimental settings as in [81], with one Jetson board and one NI USRP B210 radio to

emulate the SBS. The wireless channel is established by srsLTE tool [82], which is used to create

an LTE link between SRSU and VU. We create different values of uplink data-rate using iperf

and measure the corresponding energy consumption on the Jetson TX2 board and the NI USRP

B210 radio. The result of the consumed energy per second is reported in Fig. 2.5c. Note that due

to hardware limitations, the maximum uplink datarate achievable over LTE by our experimental
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setting is 6 Mbps. Therefore, we use curve fitting approach for the energy consumption model of

the SBS at high data rate conditions. It can be observed that the energy consumption P(rb,i) is

linear to the uplink data rate rb,i, that is, P(rb,i) = 0.14rb,i, with the idle power = 4.5 W. Based

on Eq. 2.7, we consider the following energy consumption model for EB.

EB = 4.5τ +0.14∑
i

rb,i ∗
ωk′,q,i

rb,i

= 4.5τ +0.14∑
i

ωk′,q,i

(2.9)

where ωk′,q,i is the data size per frame required to be transmitted corresponding to splitting point

of subtasks for offloading.

2.5 Overall Approach and Problem Formulation

2.5.1 Task partitioning and offloading

From the above real-world system models, we can observe that to optimize a single

VU’s end-to-end delay, we can offload all of its subtasks to the more powerful VEC server.

However, an inferior wireless channel quality can potentially increase the communication delay

and thus increase the end-to-end-delay resulting in low QoS utility. Hence, partitioning a task

at a point that reduces the data size is desirable, in order to reduce the communication delay.

Moreover, when multiple VUs try to offload all their subtasks to one VEC server simultaneously,

the resource constraint at the VEC server may increase the average computing delay and can

potentially violate the energy constraint in Eq. 2.8. Therefore, we need an optimal offloading

strategy that allows VUs to selectively offload part of their subtasks based on their transmission

rate, local computing capacity, and current VEC server load, as well as energy constraint.

In this paper, we consider the following three partitioning and offloading strategies

denoted by yi, for a VU with the considered object detection application (1) yi = 1: Full

Offloading, (2) yi = 2: Partial Offloading, and (3) yi = 3: Encoded Partial Offloading. We

also denote yi = 0 as the Local Only strategy, where all the subtasks are executed at the VLC
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node. The high level block diagrams of these strategies are shown in Fig. 2.6, where the blocks

represent each subtask. Blue blocks indicate the subtask is executed locally and green blocks

indicate the subtask is executed at the VEC server. Red dash arrow indicates where the wireless

uplink data transmission between the VU and the VEC server happens.

Figure 2.6. Possible task partitioning and offloading strategies in object detection application
using SSD-MobileNetV2

For Full Offloading, strategy, VU will transmit the captured image (i.e. with size ω1,q,i)

to the SRSU, and hence, offload both of the DR and neural network inference to the VEC server.

On the other hand, for Partial Offloading strategy, VU will first execute DR subtask at VLC

node, then offload the decoded as well as resized 2-dimensional input image features (i.e. with

size ω2,q,i) to SRSU, and let the VEC server execute the neural network inference. However,

note that the data size after decoding is several times larger than the encoded image, which is not

feasible for transmission in real-time unless the transmission rate is very high. Therefore, in this

paper, we propose another partial offloading strategy: Encoded Partial Offloading.

In Encoded Partial Offloading strategy, at VLC node, VU will encode the resized image

feature again to a jpeg image with the same resolution as the smaller resized image (i.e. 300x300

pixels in the studied example) before transmission. Subsequently, the VEC server will decode the

received image to the 2-dimensional image feature and then send to the neural network inference
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Table 2.6. Encoded data size for transmission of Encoded Partial Offloading strategy with
different compression levels

Compression level q 1 2 3 4
Encoding bitrate level 100% 75% 50% 25%

ωc
2,q,i (KByte) 21 18 12.5 6.2

for object detection. Compared to Partial Offloading strategy, Encoded Partial Offloading

strategy incurs overhead of execution of extra encoding at the VLC node and extra decoding at

the VEC server, with the trade-off for a high gain in reduction of communication delay due to

highly reduced data size. The data size of the 300x300 resized image feature after encoding is

shown in Table 2.6, where ωc
2,q,i is the encoded data size of ω2,q,i.

Impacts of offloading strategies to end-to-end delay

Previously we have separately modeled T1, T2 at the VLC node and the VEC server, and

Ttx under different data rates and transmitted data sizes. In this section we model the end-to-end

delay combining the offloading strategies and the above empirical models. While all of the

offloading strategies (i.e. yi > 0) offload the neural network inference to the VEC server, only

Full Offloading strategy offloads the DR subtask. Therefore, we model T1 for DR as a function

of the number of Full Offloading users h and T2 for the neural network inference as a function of

the number of total offloading users n, where h = ∑i:yi=1 1 and n = ∑i:yi>0 1.

We use T l
1(cl,i) and T e

1 (ce,h) to denote DR delay on VLC node and VEC server, re-

spectively, given h, VLC node configuration cl,i and VEC server configuration ce ∈ C. C is the

set of available CPU-GPU configurations for the VEC server. Similarly, T l
2(cl,i) and T e

2 (ce,n)

denote the inference delay, respectively, given n, VLC node configuration cl,i and VEC server

configuration ce. Therefore, the end-to-end delay of VU i using yi offloading strategy can be
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modeled as,

di(yi,qi,n,h,ce,cl,i) =



T l
1(cl,i)+T l

2(cl,i); if yi = 0

T e
1 (ce,h)+T e

2 (ce,n)+
ω1,qi,i

ri,b
; if yi = 1

T l
1(cl,i)+T e

2 (ce,n)+
ω2,qi,i

ri,b
; if yi = 2

T l
1(cl,i)+T e

2 (ce,n)+T l
3(cl,i)+T e

4 +
ωc

2,qi,i
ri,b

; if yi = 3

(2.10)

where T l
3(cl,i) is the encoding delay for a smaller resized 300x300 pixels jpeg image given

the VLC node configuration cl,i, and T e
4 is the decoding delay for the same resized image at

the VEC server. Based on our observation, T3 is 0.003s and 0.007s, respectively, for VLC

configuration VLC config1 and VLC config2. We have measured that given the worst VEC

server configuration, T e
4 is 0.003 s, which is very small compared to T1 (i.e. decoding and

resizing for 1080p jpeg image). Therefore, we set T e
4 to 0.003 s and ignore the impact of ce to

the value of T e
4 .

Similarily, with the above offloading strategies, based on Eq. 2.8 and 2.9, we model the

empirical total energy consumption of SRSU ER as,

ER(ω
′,n,h,ce) = ES(n,h,ce)+EB(ω

′) =

τ

n
(hE ′1(n,ce)+(n−h)E ′2(n,ce))+4.5τ +0.14ω

′
(2.11)

where ω ′ is the summation of the data size that needs to be transmitted depending on the decisions

of yi and qi, ∀i ∈ I. E ′1 is the energy consumption of the VEC server shown in Fig. 2.5(a), and

E ′2 is the energy consumption shown in Fig. 2.5(b).

Since not all of the n VUs will offload both of the subtasks simultaneously, for the sake of

simplicity, we assume the overall energy consumption is the interpolation of the corresponding

energy consumption values when all of the n VUs offload both subtasks (i.e. E ′1(n,ce)) and

when all of the n VUs offload just the neural network (i.e. E ′2(n,ce)). The above empirical
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models are specifically for SSD-MobileNetV2-based object detection applications. For other

types of applications, once the action space of yi is defined and the delay, accuracy, and energy

consumption models are established correspondingly, our work can be applied to those vehicular

applications.

2.5.2 Overall Approach and Problem Formulation

We assume that at each time slot, each VU will send an offloading request for this

application. The request will include information of the local computing capacity cl,i, available

compression levels Q, and the subtask composition of K. The SRSU will take the above infor-

mation, along with the available solar energy Et , bandwidth W , and VEC server configurations

C, and make optimal offloading decision yi as well as compression level qi for each VU i. We

assume the SRSU already knows the delay and accuracy models like Table 2.4 and Fig. 2.4. The

decisions will be sent to each VU by the SBS as the offloading instruction. In the meantime,

SRSU will need to decide the VEC server’s CPU-GPU configuration ce for operation.

Fig. 2.7 depicts the whole process. In Fig. 2.7, blue arrow shows the flow of offloading

requests from VUs to the SRSU, with the included information listed in blue boxes; green

arrow shows the flow of SRSU’s information, which is listed in green boxes including channel

conditions, bandwidth, solar energy, and VEC server’s computing availabilities; red arrows

indicate the flow of decisions for the SRSU and VUs. The objective of this paper is to determine

in real-time the VEC server’s operating configuration ce and the optimal offloading strategy yi as

well as the compression level qi for each VU i to maximize the average QoS utility of all the

VUs in I at any given time slot. The decision is made at the beginning of the time slot. The

optimization problem for each time slot can, therefore, be formulated as,
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maximize
yi,qi:i∈I,ce

ˆQoS (2.12a)

subject to ER ≤ Et (2.12b)

Wi =Wj,∀i, j : yi > 0,y j > 0 (2.12c)

∑
i:yi>0

Wi ≤W (2.12d)

∑
i:yi>0

1≤ NV EC (2.12e)

where Constraint 2.12b is the energy consumption constraint of SRSU. Constraint 2.12c states

that the utilized bandwidth is evenly distributed among the VUs who are offloading. Constraint

2.12d ensures that the overall utilized bandwidth does not exceed the available bandwidth of

the system W . Constraint 2.12e shows that the total number of offloading VUs can not exceed

the maximum capacity of the VEC server, which is also equivalent to the maximum number of

application instance NV EC that the VEC server can run simultaneously due to the computing

capacity and computer memory limitations. For example, NV EC = 6 for the Jetson TX2 board

running SSD-MobileNetV2-based object detection applications.

Fig. 2.8 shows the time domain flow of the SRSU-assisted VEC system. For each VU,

Fm represents the execution of the mth frame of the application to process the mth input camera

image in the current time slot t, and the width of the Fm box shows its end-to-end delay. The

small colored blocks in each Fm box are the subtasks for the application, where blue and green

blocks indicate that the corresponding subtask is executed locally at the VLC or offloaded to the

VEC, respectively. The orange boxes represent the execution of the offloading decision making.

The offloading decision making for the next time slot takes the current states of VUs’ request

information and SRSU’s resource capacities, then returns the optimal offloading decisions as

well as compression levels at the beginning of the next time slot.

Since the partitioning and offloading decisions are made at the beginning of a time slot,
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Figure 2.7. Overview of the SRSU-assisted VEC system, including offloading request and
decision flows

the duration of the current time slot, τ , should be determined by the following equation,

τ ≥max{max
i∈I

di,Tdecision}, (2.13)

so that no computation task will occupy any computing and communication resources when

the next time slot begins. Note that for VU i, di is upper bounded by di(0,qmax,0,0,0,cl,i) =

∑
K
k=1 T l

k (cl,i), which is the local execution delay (yi = 0) in Eq. 2.10, where cl,i is the VLC

configuration and k is the index of each subtask. Tdecision is the delay of making optimal

partitioning and offloading decisions, which depends on the VEC computing capacity and

complexity of the decision making. We will show with experimental result in latter section that τ

is mostly bounded by the Tdecision of our proposed decision algorithm with reasonable size of

VLC and VEC computing capacities, and can be small enough to ensure an unchanged data rate,

rb,i.
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Figure 2.8. Overview of the time domain flow of both application execution frames and task
partitioning as well as offloading decisions in the SRSU-assisted VEC system.

2.6 Solution Methodology

Note that in our problem formulation 2.12, the decision variables yi,qi,∀i ∈ I and ce are

integers while ˆQoS is a non-linear function of the above variables. Therefore, problem 2.12 is an

NP-hard nonlinear integer programming problem [83]. The complexity of exhaustively listing

all the possible values of yi,qi and ce, and tracking for the solution which gives the maximum

objective value is O(Y IQI). Where Y is the number of possible choices for partitioning and

offloading (including Local Only strategy), Q is the number of compression levels for application

level adaption of each VU, and I is the total number of VUs. If there are only a few VUs in the

area, exhaustively search can provide optimal solution with a low time-complexity. However,

the complexity of this problem grows exponentially with the number of VUs. Moreover, since

we are considering vehicular users, the number of VUs changes over time, and it is very likely

that there are tens of vehicles in the coverage area of an SRSU (e.g. during the peak hour of

a highway). This leads to prohibitively expensive time-complexity for the exhaustive search

approach. Therefore, in this work, we propose a dynamic programming-based heuristic algorithm

to solve problem 2.12.

76



For a given instance of problem 2.12, and assuming ∑i:yi>0 1 = N′, ce = c′, where both N′

and c′ are fixed integers, we consider a matrix f with dimension I ∗N′ ∗N′ ∗N′ ∗N′. f (i,n,h,u,v)

represents the maximum average QoS utility achievable considering VU set {1,2, ..., i} and

allowing n VUs offloading. On the other hand, h, u, and v are the numbers of the offloading VUs

using Full Offloading, Partial Offloading, and Encoded Partial Offloading strategies, respectively.

The core formula of this dynamic programming strategy is in Eq. 2.14,

f (i,n,h,u,v) =



0; if n ̸= h+u+ v

0; if i = 0

0; if i,h,u, or v < 0

max(Ay, ∀y ∈ Y);otherwise

(2.14)

where Y is the set of all the possible values of yi, and Ay is defined in the following. For y = 0,

A0 = Pl
i + f (i−1,n,h,u,v) (2.15)

is the QoS utility when including VU i in the considered VU set while VU i is not offloading any

subtask, where Pl
i is the QoS utility using VLC node of VU i. For y > 0,

Ay =


maxq Pi,y,q + f (i−1,n−1,h−1y=1,u−1y=2,v−1y=3);

if ER(w′(i−1,n−1,h−1y=1,u−1y=2,v−1y=3)+ωy,q,i,n,h,c′)< Et

0;otherwise

(2.16)

is the QoS utility while including VU i using yi = y (y = 1,2, or 3 in the considered use case)

with compression level q∗i , which gives the maximum QoS utility Pi,y,q among all the possible q.

Note that Pi,y,q = α ∗dn/di(y,q,n,h,ce,cl,i)+(1−α)∗a(q). 1y= j is an indicator function whose

value is 1 if y = j, otherwise, its value is 0. The ER < Et inequality is used to ensure the energy
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Algorithm 5: Dynamic programming Algorithm for Fixed Offloading VU and
System configuration (DAFOS)

Input: N′,c′,I, pl
i,rb,i,cl,i,∀i ∈ I

Output: f ′, ŷ, q̂
1 f ,ψ,π ← zeros(I,N′,N′,N′,N′);
2 for i← 1 to I do
3 for n← 0 to N′ do
4 for h← 0 to N′ do
5 calculate

Pi,yi,qi = α ∗dn/di(yi,qi,n,h,ce,cl,i)+(1−α)∗a(qi) ∀yi ∈ Y,qi ∈Q ;
6 for u← 0 to N′ do
7 for v← 0 to N′ do
8 update f (i,n,h,u,v) by Eq. 2.14 ;
9 update ψ(i,n,h,u,v), π(i,n,h,u,v), and w′(i,n,h,u,v);

10 f ′←maxh,u,v f (I,N′, :, :, :) ;
11 h∗,u∗,v∗← argmaxh,u,v f (I,N′, :, :, :) ;
12 N̂← N′ ;
13 ŷ, q̂← zeros(I) ;
14 for i← I to 1 do
15 ŷ[i]← ψ(i,N′,h∗,u∗,v∗) ;
16 q̂[i]← π(i,N′,h∗,u∗,v∗) ;
17 if ŷ[i]> 0 then
18 N̂← N̂−1 ;
19 if ŷ[i] == 1 then
20 u∗← h∗−1;
21 else if ŷ[i] == 2 then
22 v∗← u∗−1 ;
23 else
24 z∗← v∗−1;
25 return f ′, ŷ, q̂ ;

constraint, where w′(i−1,n−1,h−1y=1,u−1y=2,v−1y=3) is the total data size required to

be transmitted for VU 1 to i−1. ωy,q,i is the data size required to be transmitted by VU i when

using yi = y and qi = q.

On the other hand, we use ψ(i,n,h,u,v) and π(i,n,h,u,v) to record the optimal offloading

decision y∗i and compression level q∗i that correspond to the value of f (i,n,h,u,v) for VU i.

Matrices f ,ψ,π are initialized as zero matrices. We then recursively calculate the elements

in f for v from 0 to N′, u from 0 to N′, h from 0 to N′, n from 0 to N′, i from 0 to I, until all

the elements in f are updated. The optimal cumulative QoS utility for VU set I considering

∑i:yi>0 1 = N′ and ce = c′ is then the maximum elements among f (I,N′, :, :, :). We then calculate
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Algorithm 6: System and Application aware Multiple User Offloading Algorithm
(SAMOA)

Input: I,C,NV EC,Y,Q,rib,cl,i,∀i ∈ I
Output: L∗, p∗

1 pl ← zeros(N);
2 for i in I do
3 pl

i ←
α∗dn

di(i,0,qmax,0,0,cl,i)
+(1−α)∗a(qmax);

4 P̂← zeros(NV EC,C);
5 L̂← list();
6 for N′← 1 to NV EC do
7 for c′ in C do
8 P̂[N′,c′], ŷ, q̂← DAFOS(N′,c′,I, pl

i,rib,cl,i,∀i ∈ I);
9 append {ŷ, q̂} in L̂

10 N∗,c∗e ← argmax
N′,c′

P̂[N′,c′];

11 p∗← P̂[N∗,c∗e ];
12 L∗← L̂[N∗,c∗e ];

the optimal offloading and compression level decisions for each VU iteratively from i = I to

i = 1 by using ψ and π . We list the steps for updating elements in f in Algorithm 5, which we

name as Dynamic programming Algorithm for Fixed Offloading VU and System configuration

(DAFOS). Steps 2 to 9 execute the core function of dynamic programming and steps 14 to 24

retrieve the recorded optimal offloading and compression level decisions in ψ and π .

Note that DAFOS returns the heuristic solution of problem 3.14 under the condition that

∑i:yi>0 1 = N′ and ce = c′. To obtain the solution of problem 3.14, all the possible values of

N′ and c′ need to be considered. Therefore, we propose the following System and Application

aware Multiple User Offloading Algorithm (SAMOA), which executes DAFOS on different N′

and c′ and returns the maximum QoS utility, the corresponding offloading strategies as well as

compression levels for each VU. The steps of SAMOA are listed in Algorithm 6. In SAMOA,

steps 1 to 3 calculate the QoS utility of Local Only for each VU. We start to execute DAFOS on

different N′ and c′ and pick the maximum possible optimal solution between steps 6 to 9. We use

P̂[N′,c′] to record the returned optimal QoS utility. We then append the corresponding offloading

strategies and compression levels {ŷ, q̂} to L̂[N′,c′]. After all the possible sets of N′ and c′ are

iterated, in steps 10 to 12, SAMOA will return the maximum elements in P̂ as the optimal QoS
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utility and its corresponding offloading strategies and compression levels of each VU.

Note that for DAFOS, the variables n,h,u,v need to iterate NV EC times and Eq. 3.16

requires iteration of all the Q compression levels and Y offloading decisions in the worst case.

Therefore, the complexity of DAFOS is O(I ∗N4
V EC ∗Q ∗Y ). On the other hand, in SAMOA,

DAFOS is the component that has the largest complexity and DAFOS is executed NV EC ∗C

times, where C is the number of possible VEC server configurations. Therefore, the complexity

of SAMOA is O(I ∗N5
V EC ∗Q∗C ∗Y ). Since NV EC,Q, and C are constant, the time complexity

of SAMOA is O(I), where I is total number of VUs. Hence, as validated with our experimental

results reported in the next section, SAMOA can be executed in real-time for reasonable size of

VU set I.

2.7 Performance Evaluation

We first show how SAMOA performs under different resource conditions. Then, we

present the online trace-driven simulation framework and demonstrate the performance compar-

ison of SAMOA with existing approaches. Finally, we show how SAMOA can be applied to

more dense VU scenarios.

2.7.1 SAMOA Performance Evaluation

Herein, we present and analyze how our algorithm decides the optimal decisions in a

single time slot. In Fig. 2.9 (a), (b), (c), and (d), we show the evolution of offloading strategies

yi as well as compression level qi of each VU determined by SAMOA in different resource

availability and system parameter regions. The time slot duration τ is set to 1 second. For

simplicity, we assume there are 5 identical VUs in I, all of them have an VLC node with

VLC config2 configuration (i.e. listed in Table 2.5) and SNR value 50 dB. We consider scenarios

with different bandwidth, energy, and VEC computation capacities as well as different trade-

off factors α . We mimic the impact of computing load caused by other applications sharing

the VEC server by reducing the CPU-GPU resources of the Jetson TX2 board. VEC server
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Figure 2.9. Partitioning and Offloading strategy with compression levels for individual VU
under different resource availability

without external load (i.e. using VEC config1 configuration) represents the condition when

the VEC server is not busy computing other applications and VEC server with external load

(i.e. using VEC config2 configuration) means the VEC server is simultaneously executing other

applications. On the other hand, vertically we vary the trade-off factor value α from 0.2 to

0.8. The color and shape of each circle show the yi and qi decisions, respectively, to each VU.

Blue, yellow, red, and green colors represent Local Only, Partial Offloading, Encoded Partial

Offloading, and Full Offloading strategies, respectively. Circle, pentagon, diamond, and triangle

shapes, respectively, show the compression levels 1 to 4 (i.e. listed in Table 2.6).

Fig 2.9(a) considers the scenario where α = 0.2 and VEC without external load, where yi

changes from Local Only to Encoded Partial Offloading, then to Full Offloading strategy when

the available solar energy and bandwidth increases. It is because compared to Full Offloading

strategy, (1) Encoded Partial Offloading strategy needs less bandwidth as it transmits the encoded

image after resizing, (2) Encoded Partial Offloading strategy executes the DR subtask in VLC
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node and transmits lesser number of bits, hence requires less energy consumption in VEC server.

Therefore, in the regions where SRSU lacks of either bandwidth or solar energy, Encoded Partial

Offloading outperforms Full Offloading strategy in terms of QoS utility.

On the other hand, with α = 0.2 and when VEC server has external load (i.e. the Fig.

2.9(b)), the Encoded Partial Offloading strategy dominates when the available bandwidth is

below 100 MHz and solar energy is below 13 J. After the bandwidth reaches 150 MHz, we can

observe some VUs use Partial Offloading strategy. This is because Partial Offloading strategy

transmits the resized image without encoding, while the reduction in computing delay dominates

the growth of transmission delay only when the transmission rate is very high. Also, there is no

Full Offloading strategy observed because the computing capacity at VEC server is low because

of load. Thus offloading with VLC node executing DR subtask first can achieve higher average

QoS utility.

In Fig. 2.9(c), we can observe the optimal decision involves different compression levels

because of higher α which indicates more importance of delay sacrificing some accuracy. We

can observe that VUs offload at the highest compression level (i.e. lowest image quality, the

triangle shape) when both the bandwidth and solar energy are in lower availability. We also

observe some VUs transmit at the compression level 2 (e.g. the pentagon shape at 10 J, 50 MHz)

when the bandwidth is higher than 50 MHz and available solar energy is in medium region (i.e.

10 J). In Fig. 2.9(d), we can also observe that VUs offload at the highest compression level when

the bandwidth availability is low. After the available bandwidth exceeds 10 MHz, VUs offload at

the lowest compression level because the resulting transmission delay will be small enough such

that high accuracy can be achieved.

For the sake of consistency in the granularity of dimensions of the labels in Fig. 2.9,

we did not show the condition when our algorithm chooses compression level 3. Actually, in

Fig 2.9(c), compression level 3 will be chosen at 10 J, 25 MHz with Full Offloading strategy

for 3 VUs while the rest 2 VUs use Local Only strategy with compression level 1. Overall, Fig.

2.9 demonstrates how VEC server’s computing capacity and different choices of α impact the
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(a) (b)

Figure 2.10. Impact of different offloading decisions on QoS utility under different bandwidth
resource availability when available solar energy is 13 J for 1 second time slot and VEC server is
(a) without external load and (b) with external load

optimal partitioning and offloading strategy for each VU under different resource availabilities.

When the algorithm emphasizes more on optimizing the end-to-end delay, we observe some

higher compression levels used by VUs for the trade-off between accuracy and end-to-end delay.

While Fig. 2.9 shows the optimal offloading decisions by SAMOA, Fig. 2.10 shows the

resulting average QoS utility that drives the decision for the above 5 VUs. We show two scenarios

(VEC with and without load) under various bandwidth conditions with 13 J of available solar

energy and α=0.8, and show the QoS utilities for various offloading decisions. Note that, a VU

can always use Local Only strategy, if other available strategies are not feasible in a parameter

region. Fig. 2.10(a) shows the results for VEC server without external load. The red curve (i.e.

Encoded Partial Offloading) tops the blue curve (Full Offloading) when bandwidth availability

is low (<5MHz), while the green curve (i.e. Full Offloading strategy) dominates the others

afterward. The observation matches the results in Fig. 2.9(c), where the Full Offloading strategy

dominates at high solar energy and bandwidth regions. On the other hand, the result for VEC

server with external load is shown in Fig. 2.10(b). We can observe the red curve dominates

other curves until bandwidth reaches 150 MHz, where the yellow curve (i.e. Partial Offloading

strategy) tops the red one. Also, the green curve is always lower than either red or yellow curves.
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Figure 2.11. QoS utility comparison of SAMOA, SAMOA-NC, SAMOA-NR, SAMOA-NRC
under varying bandwidth availabilities at solar energy 10 J and VEC without external load

The observation conforms with the results in Fig. 2.9(d).

Impact of system and application level adaption:

Next we present results to show the benefit of using system level as well as application level (i.e.

compression levels) adaptions. Fig. 2.11 shows the results for the scenario when the solar energy

is 10 J for a time slot with τ = 1s and VEC server does not have external load. In this figure,

SAMOA-NC denotes the SAMOA algorithm with no additional compression (i.e. lowest fixed

compression level 1), SAMOA-NR denotes the SAMOA algorithm with no reconfiguration (i.e.,

fixed VEC server configuration with highest possible CPU-GPU frequencies in VEC config1),

and SAMOA-NRC denotes the SAMOA algorithm with no additional compression and reconfig-

uration, i.e., fixed compression level as SAMOA-NC and the fixed VEC server configuration as

SAMOA-NR.

Including the compression and reconfiguration, the gain in the performance of SAMOA

is apparent. When bandwidth is above 60 MHz, the average QoS utility of SAMOA is 2%, 4%,
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(a) (b)

Figure 2.12. QoS utility of 4 algorithms under various scenarios of (a). solar panel size (b)
bandwidth availability

and 13% higher than SAMOA-NR, SAMOA-NC, and SAMOA-NRC. The difference between

SAMOA and SAMOA-NRC is > 10%, shows the importance of joint system and application

level adaptation to improve the QoS utility performance.

2.7.2 Real-world Trace Driven Simulation

Next, we present the online performance of SAMOA using a simulator we have developed

[84], which allows creation of realistic trace driven movements, topology, location, and channel

condition for each VU at every time slot. The tool simulates the vehicle’s trace in a 1000x800 m2

rectangular neighborhood in Brooklyn, New York City based on historical vehicular traffic data

obtained from [11]. With the street topology and traces of vehicles, the tool generates the SNR

values from each VU to the 20 SRSUs located in the area. The SNR is generated by assuming

VU’s transmit power, ρi, is 23 dbm and using B1 Manhattan grid layout [44] as the pathloss

and slow fading, and the Nakagami-m distribution [45] as the fast fading for the uplink channel

model.

At each time slot, we assume each VU is associated to the SRSU which corresponds to

the highest signal strength. For the following experiment, we pick one of the SRSUs in this area

to demonstrate the simulation result. We assume each VU will have 50% of probability to have a
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VLC node with capacity VLC config1 and 50% of probability to have a VLC node with capacity

VLC config2, which are listed in Table 2.5. On the other hand, at each time slot, we assume

VEC server will have 50% of probability to be without external load (VEC config1) and 50% to

be with external load (VEC config2), with the specific available CPU-GPU configurations as

specified in Fig. 2.9.

Compared Algorithms

We compare the performance of SAMOA with two other relevant algorithms, MILP

Solver [68] and PFH-M [70], which are the two closest approaches to SAMOA as they both

allow task dependency aware partitioning and offloading with limited VEC communication and

computing resources.

MILP Solver: In [68], the authors model the partitioning and offloading problem as a Mixed

Integer Linear Programming (MILP) problem. They then propose to use existing standard MILP

software packages to find the optimal solution and minimize the end-to-end delay of an DNN

application.

PFM-H algorithm: In [70], the authors address the challenges of maximizing the throughput

under limited edge computing and communication resources using optimal task partitioning and

bandwidth allocation decisions. They formulate the problem to a variant of Knapsack Problem

and propose to find the heuristic solution by using Performance Function Matrix based Heuristic

(PFM-H) algorithm.

Although the above two approaches consider the constrained communication and com-

puting capacities in VEC server, they do not consider energy constraint. Therefore, we impose

an energy constraint check point after these approaches return their offloading and partitioning

solution. If the resulting energy consumption violates the constraint, we ask all the VUs to

execute their tasks locally. We also present the performance of the naive strategy, Local Only,

which only allows VUs to execute their tasks locally using VLC nodes.
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Trace driven online simulation result

In this experiment, we run the simulation for 1 hour, starting from 9 AM. The duration of

each time slot is 1 second, namely, τ= 1s. Fig. 2.12 (a) and (b) demonstrate the average QoS

utility over the total simulation time for all the 4 algorithms under different solar panel sizes and

bandwidth, respectively. The average QoS utility of the total simulation time is defined as the

average of the QoS Utility of every VU instance in every time slot during the total simulation

time. In the simulated neighborhood area of Brooklyn, because vehicles are dense and vehicle

speed is high, the end-to-end delay is very critical to driving experience. Therefore, we set α=

0.8, which make SAMOA emphasizes more on the end-to-end delay.

Impact of solar panel size:

In Fig. 2.12 (a), the x-axis shows the different solar panel sizes vary from 0.1 to 0.8 m2.

The bandwidth of the SRSU is 20 MHz and equally distributed among the offloading VUs. When

the solar panel size is 0.5 m2, it is shown that the average QoS utility of SAMOA is the best

among all the algorithms and is 18.4%, 24.8%, and 29.5% better than MILP Solver, PFM-H, and

Local Only, respectively. On the other hand, the dash lines in Fig. 2.12(a) shows the end-to-end

delay and accuracy values corresponding to the specific average QoS utility values. Note that

except SAMOA, none of the above algorithms can achieve the 120 ms end-to-end delay and 95%

accuracy simultaneously. SAMOA achieves the average QoS utility of 120 ms end-to-end delay

and 95% accuracy when solar panel size is around 0.3 m2. Moreover, when the solar panel size

is higher than 0.55 m2, SAMOA delivers an average QoS utility of 100 ms end-to-end delay and

95% accuracy.

Impact of bandwidth availability:

In Fig. 2.12 (b), the x-axis shows the different available bandwidth varies from 0 to

80 MHz and the solar panel size of SRSU is 0.5 m2. When the bandwidth is 40 MHz, the average

QoS utility of SAMOA is the best among all the algorithms and is 16.6%, 26.3%, and 31.6%

better than MILP Solver, PFM-H, and Local Only, respectively. On the other hand, except
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(a) (b)

Figure 2.13. PMF of the QoS utility for each individual VU using SAMOA and MILP solver,
with 20 MHz bandwidth and solar size equals (a). left, 0.3 m2 (b) right, 0.8 m2

SAMOA, none of the above algorithms can achieve the 120 ms end-to-end delay and 95%

accuracy simultaneously. SAMOA achieves an average QoS utility of 120 ms end-to-end delay

and 95% accuracy when the available bandwidth is around 2.5 MHz. Moreover, when available

bandwidth is higher than 35 MHz, SAMOA achieves an average QoS utility of 100 ms end-to-end

delay and 95% accuracy.

Empirical probability mass function (PMF) of the QoS:

In Fig. 2.13, we show the empirical probability mass function (PMF) of the individual

QoS utility for the VUs. To clearly demonstrate the gap between SAMOA and others, we

compare SAMOA with the second best algorithm, MILP Solver, in Fig. 2.13. In Fig. 2.13(a),

solar panel size is 0.3 m2 and bandwidth is 20 MHz. Even though the energy availability is low,

45% of the VU instances can still achieve the QoS utility corresponds to 120 ms end-to-end delay

and 95% accuracy by using SAMOA algorithm while only 6% of VUs achieves the same QoS

utility by using MILP Solver. When the solar panel size increases to 0.8 m2, in Fig. 2.13(b), the

VU instances that achieve the same QoS utility increases to 65% by using SAMOA algorithm,

which is 3 times larger than using MILP Solver.

Impact of α values in delay and accuracy performance:
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Figure 2.14. Impact of different α values on the end-to-end delay and accuracy performance

In Fig. 2.14, we show how the average end-to-end delay and accuracy will change when

α value changes from 0 to 1. For consistency with Fig. 2.13, we also choose 20 MHz bandwidth

with 0.3 m2 and 0.8 m2 solar panel size, respectively, for comparison. When α increases, the

accuracy is reduced in exchange for the decreased end-to-end delay. On the other hand, while

the accuracy starts to decrease at α = 0.5 when solar panel size is 0.8 m2, it starts decreasing

earlier at α = 0.2 when solar panel size is 0.3 m2. Although larger solar panel size leads to a

lesser tunable range for α values, the delay improvement is better. For example, the end-to-end

delay reduces by 7% when α increases from 0.5 to 1 for 0.8 m2 solar panel size while the delay

reduces just by 2% for 0.3 m2 solar panel size within the same range of α . With results like Fig.

2.14, the SRSU operators or service providers can jointly decide the optimal solar panel size and

α value during the SRSU deployment based on the desired delay and accuracy performance.
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2.7.3 Scalability of SRSU

Note that, in the empirical model and the experiment setup, the maximum available

number of offloading VUs NV EC is 6. Herein, we demonstrate the performance of SAMOA

when both the capacity of SRSU and the number of served VUs are scaled up. We emulate the

scaled up computing capacity of SRSU by adding additional Jetson TX2 boards to the SRSU.

The bandwidth and energy availabilities are scaled up in terms of Hz and Joule, respectively. At

each time slot, which has duration 1 second, for a given instance which has more than 6 VUs,

we execute the following VU distribution algorithm before executing SAMOA. VU distribution

algorithm will first calculate the required number of Jetson boards x,

x = min(
⌈

I
NV EC

⌉
,

⌊
Et

10

⌋
) (2.17)

where I is the total number of VU, NV EC is 6 in our scenario, and Et is the current available

energy. We use
⌊Et

10

⌋
to ensure each active board has at least 10 J of energy for operation within

the time slot. Then the algorithm will sort VUs by their SNR values and evenly distribute them

by the sorted order into x groups. Finally, the distribution algorithm will assign each group to

one Jetson board and execute SAMOA respectively for VUs in that group. For performance

comparison, we use the same VU distribution algorithm for MILP Solver and PFM-H. Fig.

2.15 shows the numerical result of these three algorithms using the distribution algorithm under

different values of I. We consider all the VUs are using VLC node configuration VLC config2

and VEC servers (i.e. Jetson boards) without external load. The average QoS utility is calculated

after 10 rounds of simulations, in which we randomly and uniformly generate the SNR values

between 10 to 50 dB for each VU in set I.

Fig. 2.15 shows that with the same available bandwidth and energy, SAMOA performs

the best compared to the other two algorithms and Local Only even when the number of VUs is

high. For example, when there are 20 VUs, SAMOA performs 17.1%, 24.4%, and 27.5% better

than MILP Solver, PFM-H, and Local Only approaches, respectively, with 80 MHz bandwidth
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Figure 2.15. QoS utility performance of the 4 algorithms with distributive computing capacity
expansion under different number of VUs

and 40 J solar energy. In low resource availability when there are 20 MHz bandwidth and 15 J

solar energy, SAMOA’s capability will be constrained, but still performs 9.1%, 8.6%, and 9.1%

better than MILP Solver, PFM-H, and Local Only approaches, respectively, for 20 VUs.

Fig. 2.15 also shows that when the number of VUs exceeds 10, only SAMOA can

achieve the average QoS utility of 100 ms end-to-end delay and 95% accuracy even when the

available bandwidth and energy resources are high (i.e. 80 MHz and 40 J). SAMOA achieves the

average QoS utility of 120 ms end-to-end delay and 95% accuracy at lower resource availability

(20 MHz and 15 J) for up to 30 VUs. However, MILP Solver requires higher available resources

to achieve the same average QoS utility for up to 30 VUs and PFM-H can only achieve the same

performance for up to 17 VUs.

The results in Fig. 2.15 clearly demonstrate the advantage of SAMOA over other

approaches. Moreover, the above trade-off analysis between QoS utility and different resource

availability will enable the the service providers to identify the best SRSU configurations given
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expected solar generation and VU density.

Run-time analysis:

To measure the run-time complexity of SAMOA, we implement SAMOA and the VU

distribution algorithm using Python on the Nvidia Jetson TX2 board. Since the Nvidia Jetson

TX2 platform allows parallel processing on multiple cores, we have developed an efficient

implementation of SAMOA with parallel multi-core processing, as shown in Fig. 2.16, where

we parallelly distribute and execute all the c DAFOS processes of a SAMOA algorithm to the M

available CPU cores on the edge computing platform. Note that c is decided by the number of

available CPU-GPU configurations. In our experimental setup, c = 6 and M = 6.

The resulting average execution time of SAMOA, Tdecision is 250 ms, allowing SAMOA-

based task partitioning decision to be made as frequently as every 250 ms. Note that the

end-to-end delays for local execution of the vehicular object detection application are 131 ms and

188 ms, respectively, using VLC config1 and VLC config2. Hence with reasonable size of VEC

and VLC configurations, this experimental result shows that the duration of a time slot τ can be

defined as small as 250 ms, which makes the assumption of the constant data rate within a time

slot more realistic while ensuring the completion of all the vehicular computation tasks. Note

that the application’s end-to-end delay is independent of the execution time of SAMOA. SAMOA

is executed before a time slot starts, and the resulting decision is used by each VU to partition

and offload the application tasks for multiple subsequent executions of the application during

the decision time slot, till the next execution of SAMOA and resulting change in partitioning

decision.

2.8 Conclusion

In this paper, we propose a real-time system and application adaptive task partitioning

and offloading algorithm, SAMOA, to support the computation intensive applications of the

vehicles using solar-powered RSU. The algorithm jointly minimizes the end-to-end delay and
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Figure 2.16. Multi-core parallel processing of SAMOA using Nvidia Jetson TX2

maximizes the object detection accuracy, which we jointly define as QoS utility, based on the

communication bandwidth, computing, and energy resources availabilities at the SRSU, as well

as the computing capacity at the VLC nodes.

We establish empirical models for the computation and communication capacities as

well as energy consumption of SRSU. With the empirical model-based simulation, we show that

SAMOA significantly maximizes the average QoS utility compared to existing techniques under

various resource availability and VU density. As dense deployment of RSUs takes place in our

cities and neighborhoods in the next several years, our research results will help service providers

and city planners to adopt solar energy based RSUs to avoid additional impact on carbon footprint.

Moreover, they will be able to use SAMOA and the simulation and analysis tools we provide

to identify adequate SRSU designs, with appropriate computing, communication and solar

capacities, for the expected vehicular traffic load and desired delay-accuracy performance.

In the next chapter, we present how the RSU-assisted VEC system can facilitate a more

complicated and advanced vehicular application, the multi-vehicle perception fusion application,

which involves multiple vehicles’ individual vehicular perception tasks and additional fusion

tasks at the end. We identify specific challenges and address them with a two-step approach that

determines bandwidth allocation, as well as task partitioning and scheduling in real time.

Chapter 2, in full, is a reprint of the material as it appears in IEEE Transactions on
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Vehicular Technology 2021, Yu-Jen Ku, Sabur Baidya, and Sujit Dey. The dissertation author

was the primary investigator and author of this paper.
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Chapter 3

Uncertainty-aware Task Offloading for
Multi-vehicle Perception Fusion over Ve-
hicular Edge Computing

3.1 Introduction

This chapter presents our study on enabling an advanced and complex vehicular ap-

plication, the multi-vehicle perception fusion application, with low execution delay by using

an Road-Side Unit (RSU)-assisted Vehicular Edge Computing (VEC) system. The rapid ad-

vancement of Internet of Things (IoT) technologies has enabled the emerging connected and

autonomous vehicles with the capabilities of multi-sensor data acquisition, processing, and

connectivity to support advanced vehicular applications. As a result, these vehicles are now

smarter and can coordinate with other vehicles, pedestrians, and road side infrastructures over

vehicle-to-everything (V2X) [85] communications, creating an Internet-of-Vehicles (IoV) [86]

paradigm.

Nowadays, Advanced Driver Assistance Systems (ADAS) [87] involve multiple vehicular

applications, e.g., object detection, localization, navigation, and tracking, which are highly

based on complex Artificial Intelligence (AI) driven algorithms. One of the important vehicular

applications in the IoV is the perception of the vehicular environment in terms of obtaining

knowledge of surrounding objects. A good perception of the vehicular environment helps in
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driving assistance, avoiding collisions and accidents, and reducing traffic congestion. However,

the individual vehicular perception may at times miss visual or contextual information due to

limited field of view, occlusions, bad light, or bad weather conditions. Fusion of perceptions

from multiple vehicles can improve the perception of the vehicular environment as a whole, and

provide more precise and complete assistance to the involved vehicles.

The above multi-vehicle perception fusion application needs AI-based algorithms for

both object detection on each Vehicle User (VU) and object matching across multiple VUs to

identify distinct objects. Therefore, performing this perception fusion on some VUs may not

be feasible due to insufficient computing capabilities, or may be inefficient in terms of fusion,

as choosing a VU for the fusion application can be complex and nontrivial. In order to support

the aforementioned computations, a more powerful computing server is required apart from the

on-board computing units of the VUs. A viable solution is to use VEC server, which is collocated

with a RSU, as VEC server is usually more powerful than the vehicle’s on-board Vehicular Local

Computing (VLC) unit. Moreover, VEC server is located at the vehicular network edge with just

one-hop wireless communication away from the VUs, and thus doesn’t incur routing or queuing

delays as in the cloud computing over the backbone network. Additionally, VEC server being a

centralized unit can efficiently perform the fusion of perception data from individual vehicles.

Fig. 3.1 shows the schematic diagram of the edge-based multi-vehicle perception fusion system,

with a Macro Base Station (MBS) acting as a controlling entity.

However, offloading the whole multi-vehicle perception fusion application to the VEC

server may not be always feasible due to inferior wireless channel conditions and the limited

computing capacity of the VEC server. Partitioning and offloading the application, thus, may be

necessary. In this work, we consider a fine-grained dynamic offloading scenario where the above

application can be partitioned into multiple tasks. For those tasks that are originated from the

VUs (e.g. object detection), they can be executed locally at the VLC servers or offloaded and

executed at the VEC server. To efficiently utilize the computing resources of both the VLC and

the VEC servers, making partitioning and offloading decisions is challenging and involves the
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considerations of different wireless channel conditions between each VU and the RSU, different

computing capacities of the VLC and the VEC servers, and the dependency among the tasks.

Moreover, the decisions need to be determined in real-time due to the highly dynamic wireless

channel conditions and network pattern of the vehicular network.

With a different objective and system scenario, in one of our another works [88], we

proposed a real-time task partitioning and offloading algorithm for the offloading of AI-based

object detection applications to minimize the end-to-end execution delay while maximizing the

detection accuracy performance. However, the proposed algorithm can only be applied to tasks

with sequential dependency, and the available bandwidth is assumed to be evenly distributed

between all the VUs. The tasks of the multi-vehicle perception fusion application considered in

this study, on the contrary, may have both sequential as well as parallel dependencies. Moreover,

note that the task composition of a multi-vehicle perception fusion application is dependent

on the number of detected objects, which is the output of the object detection task. Now, the

object detection task itself is one of the tasks in this application. In this situation, partitioning

and offloading decisions need to be made while the algorithm is uncertain of the complete task

dependency graph. Finally, to utilize the wireless communication resources more efficiently, we

also actively determine the bandwidth allocated to each VU for task partitioning and offloading,

according to real-time channel conditions.

To minimize the end-to-end delay of a multi-vehicle perception fusion application while

addressing the above challenges, in this work, we propose FOrecasting and unceRtainty-aware

Multi-vehicle task Offloading and Scheduling Algorithm (FORMOSA). FORMOSA is running

at the MBS’s Mobile Edge Computing (MEC) server and determines in real-time the optimal

task partitioning and offloading strategy, the task execution schedule (i.e. the start and end time

of the execution of each task), and the bandwidth resource allocation. To address the uncertainty

of the task dependency graph, FORMOSA adopts a two-step approach. The first step enforces

a dynamic programming-based heuristic algorithm that determines the above decisions over

an estimated static task dependency graph. The second step is a heuristic task offloading and
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scheduling refinement algorithm, which reacts in ultra-low latency after the actual graph is

known.

The main contributions of this work are summarized below.

(a) To the best of our knowledge, this is the first work of joint task partitioning, offloading,

and scheduling with bandwidth coordination to minimize the end-to-end fusion delay for

edge-based multi-vehicle perception fusion applications.

(b) We identify the uncertainty of the task dependency graph to the multi-vehicle perception

fusion applications as the major challenge during offloading decision-making, and address

this challenge by task graph prediction and proposing a two-step algorithm.

(c) Given a task dependency graph with both sequential and parallel dependencies, we propose

a dynamic programming based heuristic algorithm for task partitioning and offloading,

task scheduling, and bandwidth allocation to minimize the application completion time.

(d) We propose a two-phase task offloading and scheduling adaptation algorithm to accommo-

date any immediate change of the task dependency graph in real time during the execution

of the multi-vehicle perception fusion application.

3.2 Related Work

Information sharing in an IoV network can be a challenging topic, [89] and [90] analyze

the challenges for information sharing in a city-scale Vehicular Sensing Network (VSN). They

optimally select the optimal information source to maximize the network capacity and minimize

communication costs. Additionally, in [89], a gaming-based methodology is further proposed to

ensure that each participating vehicle shares the correct information with the network. However,

these works only address the data transmission challenges. The corresponding challenges in

vehicular application computing are not considered.
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Figure 3.1. A building block overview of the edge-based multi-vehicle perception fusion system
with participating IoV devices

Minimizing the application’s computation delay for the vehicular edge computing system

by using task offloading strategies has been studied in [58, 60, 61]. However, these works

consider only the utilization of edge computing resources. In this work, both the VUs and

RSU are equipped with computing units (i.e. VLC and VEC servers), and hence, are capable of

executing tasks for vehicular applications. Since the computing capacity at VLC and VEC servers

are limited, how to wisely utilize their computing resources for computing vehicular applications

is a challenging problem. [63–65, 91] study task offloading strategies that are aware of both the

VLC and VEC servers’ capacities. [63] and [64] proposed joint task partitioning and offloading

as well as communication resource allocation methods to minimize the cost for utilizing the

communication and computation resources, under the application’s delay constraints. [65]

minimizes both the application’s computation delay and the utilized VEC server’s computing

resources. [91] proposes a particle swarm optimization-based partial computation offloading

approach to maximize the application reliability under task latency constraints. However, these

studies assume the tasks of the considered applications can be arbitrarily partitioned and executed

in parallel on different servers, ignoring the dependency between each task.
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The authors in [66–69], progressively, consider the task dependency while designing the

task partitioning and offloading strategies. These studies focus on Deep Neural Network (DNN)-

based applications. To minimize computation delay and communication overhead, [66] proposed

to partition the convolutional layers of the DNN network into several tasks which, because of the

data dependency, can be executed in parallel on different edge servers. [67] proposed a similar

idea to jointly minimize the utilized edge server memory and communication resources. On the

other hand, [68] and [69] partition the DNN network sequentially for offloading to minimize

the DNN network’s execution delay [68] or to minimize the cost for utilizing communication

and computing resources [69]. They allow the VLC server to stop the execution of a DNN early

and offload the rest of the convolutional layers to the VEC server. The edge server can decide

whether to execute the rest of the layers or to adopt the current output with an object detection

performance trade-off. Although these task partitioning methods consider task dependency during

decision-making, they require the tasks to be fully partitioned either in parallel or in sequential.

Multi-vehicle perception fusion application considered in this work, however, involves tasks that

have both parallel and sequential dependencies. Therefore, the decision-making complexity and

the possible partitioning and offloading decisions for all the tasks are much more sophisticated

than the above scenarios.

[92] and [93] aim at facilitating task partitioning and offloading under joint parallel and

sequential task dependencies. [92] proposed a bucket algorithm that determines the set of tasks

for offloading to minimize the maximum task completion time among all vehicles. [93] focuses

on minimizing the average application completion time and average energy consumption for

all the vehicles by planning the task offloading schedule with a three-phase algorithm. These

works rely only on VEC servers to execute the tasks, and the rest of the tasks are queued in

each vehicle. [94–99], on the other hand, consider task partitioning and offloading between

both VLC and VEC servers while the tasks have both parallel and sequential dependencies.

They proposed to assign priority to each task to address the offloading challenge under joint

parallel and sequential task dependencies. For example, in [94–96], the priority assigned to a
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task depends on its computation complexity, communication cost, and the maximum priority

value among all of its immediate successor tasks. Tasks are scheduled and offloaded following

the descending priority order. They then propose the task offloading and scheduling algorithms

to minimize the maximum task completion time [94, 95], or to minimize the overall reliability

of execution of all the tasks for an application under the assumption that each server has a

failure rate for task execution [95]. The authors in [97, 98] assign to each task a priority

based on its computational complexity and determine the maximum priority among all its

immediate successor tasks. Following the descending priority order, Reinforcement Learning

algorithms are then proposed to determine the offloading decision for each task to minimize the

average application completion time [97, 98] and the average energy consumption [97] of all the

vehicles. [99] proposed to categorize tasks into high, medium, and low priority groups based on

the dependency of the tasks that are currently being executed. Separate algorithms are proposed

for each priority group to determine the task offloading and scheduling plans for minimizing

the maximum task completion time. However, these studies require the complete task graph of

the vehicular applications to be available for the algorithms during the decision-making phase.

Contrary to these works, in this study, we consider a scenario where the information of the

task dependency graph is not complete when the task partitioning, offloading, and scheduling

decisions are made. Moreover, these studies either assume the bandwidth allocated to each

VU is fixed or equally divided. Hence cannot leverage the potential delay reduction for data

transmission by actively and optimally allocating bandwidth resources to each VU. The authors

in [100] jointly determine the task partitioning and offloading, as well as bandwidth allocation

decisions while considering both the parallel and sequential task dependencies. They focus on

data streaming applications and aim at maximizing the data streaming throughput by optimizing

the maximum delay of the slowest task and the slowest data transmission link. However, in

our considered scenario of multi-vehicle fusion, the application completion time involves the

accumulation of both the execution delay of all the tasks and the transmission delay of their input

data. Moreover, similar to the aforementioned studies, the proposed approach cannot be applied
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Figure 3.2. Two cases of multi-vehicle perception fusion from real-world vehicular images

to task partitioning and offloading decision-making with incomplete knowledge of the whole

task graph.

To the best of our knowledge, this is the first work that not only jointly determines the

optimal task partitioning, offloading, and scheduling along with bandwidth allocations for the

edge-based multi-vehicle perception fusion applications, but also addresses the challenges of

minimizing the application completion time under the uncertainty of the task dependency graph.

3.3 Edge-based Multi-vehicle Perception Fusion

In this section, we briefly introduce the background of edge-based multi-vehicle per-

ception fusion and the concept of object matching. Perception fusion combines the perception

of individual sources in a given region and fuses them together to give an enhanced view of

the environment. This enhanced perception is more powerful as it covers missing detections,

occluded objects, and out-of-view objects from individual perceptions. The beneficiaries from

this perception fusion are not only the smart vehicles that are the individual data sources, but all

road users including the legacy vehicles, bicyclists, and pedestrians as well. In this work, we

focus on camera-based multi-vehicle perception fusion.

3.3.1 Fusion at the Edge

Perception fusion involves fusion tasks to combine the pre-computed data from multiple

sources. If fusion tasks are executed at each individual source site, it requires high volume

camera data sharing among all the vehicles, creating extremely huge data transmission overhead.
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Moreover, all individual vehicles may not have enough computation capability to perform the

fusion tasks along with their individual tasks. Therefore, in this work, we consider that the fusion

tasks are executed at the edge. The edge computing server has a much higher computational

capacity than individual vehicles, and each source only needs to share the camera data once to

the edge server. Furthermore, vehicle dynamics do not change the computing paradigm.

3.3.2 Object Matching

A single vehicle can miss detections of some objects’ presence due to false negatives, or

not being able to detect objects out of its field-of-view. Augmenting views from other sources

can include objects not detected by a vehicle, but it can also have some duplicate detections of

the same objects, although from different angular viewpoints. Fig. 3.2 shows two such scenarios.

Fig. 3.2(a) and (b) are images taken at the same time, facing the same intersection, from vehicles 1

and 2, respectively. In the left image pair, Fig. 3.2(a) sees 4 vehicles, but only 3 are in the view of

Fig. 3.2(b); hence the additional detection can be shared with the vehicle 2. Similarly, Fig. 3.2(c)

and (d) are images taken at the same time, facing the same intersection, from vehicles 3 and 4,

respectively. The object detection result in Fig. 3.2(c) encounters a false negative due to occlusion

from pedestrians (i.e. presence of the white car is blocked by the pedestrians). However, vehicle

4 (i.e. Fig. 3.2(d)) can clearly see the white car and can share the corresponding detection with

vehicle 3. To facilitate correct and efficient detection information sharing, object matching across

vehicles is required. Object matching aims to determine which object’s information is missing for

a vehicle so that correct information can be provided. The matching result (i.e., fusion result) is a

list of distinct objects the involved vehicles detect. Determining this list is essential, as duplicate

detections can cause misleading information and distrust for the vehicles receiving duplicate

information. Meanwhile, drivers might be misinformed due to missed detections. Matching

objects from different viewpoints is challenging; moreover, the cameras are at different distances

from the objects, and thus the size of detected objects will vary across cameras. In one of our

previous studies [101], we used a deep learning approach for object matching which learns the
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Figure 3.3. Object matching machine learning model

correspondence of the same objects from different views and thus can find distinct objects for

perception fusion.

For the object matching learning model, we use ResNet-18 [102] pre-trained on Ima-

geNet [103] as a feature extractor with an additional Fully Connected (FC) layer added to the

output to act as the object matching classifier as shown in the Fig. 3.3. To preserve the feature set

learned from the large ImageNet dataset, we freeze the ResNet-18 layers during training and only

adjust the weights of the FC layer. We collected real-world images from an IoV environment

and created our own dataset of 13,781 pairs of images from various viewpoints, including both

vehicle-to-vehicle camera views as well as street camera-to-vehicle camera views. The dataset is

used for model training, and the corresponding performances are listed in [101].

3.3.3 Perception fusion Performance

To determine the gain of perception fusion, Fig. 3.4 shows an example of the cumulative

number of objects detected on a temporal scale of 3 seconds with camera framerate of 6 fps. In

this experiment, we used the same two cameras settings as Fig. 3.2(a) and (b), one of which

produced n detections per frame and the other which produced m detections per frame. We
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Figure 3.4. Temporal performance of different perception schemes of the two vehicles over 3
seconds

compare the performance of one individual camera’s detections with respect to the average

detections, i.e. (m+n)/2, and perception fusion performance (i.e., collaborative perception),

which is in terms of the number of detections of distinct objects. The plot shows that the

perception fusion can detect more distinct objects than the average perceptions of the individual

camera sources, and can sometimes experience a significant gain when an individual camera is

under occlusion or false negative situations. The percentage gain w.r.t. the average perception

for the entire image pair dataset is 38.2%.

Based on the proposed fusion application for perception fusion, in the next section, we are

going to introduce the system model of the edge-based multi-vehicle perception fusion system

considered in Fig. 3.1.

3.4 Systems Overview

In this section, we introduce an overview of the edge-based multi-vehicle perception

fusion system and the corresponding challenges. The fusion application modeled in this section

includes both the object matching tasks and the object detection tasks for each vehicle. For ease

of reference, we list the key notations in Table 3.1.
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Table 3.1. Summary of key notations and abbreviations

Notation Description
rb,i uplink transmission rate from VU i to SRSU b
I current VU set
b the SRSU for study
i the index of VU
v index of tasks, can also be represented as Vi,k,n
D(k) data size of each input for task type k
xv offloading decision of task v
Bi bandwidth allocated to VU i
Sv the scheduled start time of task v
Fv the scheduled finish time of task v
cl

i CPU-GPU configuration of VLC node of VU i
ce CPU-GPU configuration of the VEC server
T e

v the execution delay of task v at VEC server
T l

v the execution delay of task v at VLC server
Ψs

v the immediate successor set of task v
Ψ

p
v the immediate predecessor set of task v

Oi
the random variable for the number of detected
objects at VU i

oi the actual number of detected objects at VU i
ôi the predicted number of detected objects at VU i
ti the time when the outcome of Oi is available
G the fusion application task graph
V the set of nodes (i.e. tasks) in G
E the set of edges (i.e. task dependencies) in G

3.4.1 Network Model:

We consider that the edge-based multi-vehicle perception fusion system consists of one

RSU b and multiple VUs, whose operations are controlled by a MBS. The RSU is equipped

with a radio unit Small Base Station (SBS) and a computation module VEC server. Each VU is

equipped with an On-Board Unit (OBU) radio unit as well as a computation module VLC server,

and is capable of providing the vehicular data for fusion. We assume both VEC and VLC servers

can only execute one task at a time. We divide the operation time of the system into multiple

time slots. We assume the following modelings and discussions are within a single time slot t.

Therefore, we simplify superscript t for each variable. For each time slot, there exists a set of

VUs I = {1,2, ..., I} in the coverage area of the RSU b. The set I and the channel condition of
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each VU in I will vary in different time slots due to the mobility of the vehicles.

3.4.2 Communication Model:

The Signal-to-Noise Ratio (SNR) of uplink transmission from VU i to the SBS of RSU b

is denoted as ηb,i =
ρi∗gb,i

N0
, where ρi is the transmit power of VU i, gb,i is the uplink channel gain,

and N0 is the noise level. We assume Orthogonal Frequency-Division Multiplexing (OFDM)

technology is used for uplink transmission, hence, the interference from other VUs is negligible

and the uplink transmission rate from VU i to RSU b can be represented as,

rb,i =W ∗Bi ∗ log2(1+ηb,i) (3.1)

where Bi is the number of the Smallest Bandwidth Element (BE) (e.g. the Physical Resource

Block (PRB)s in Long-Term Evolution (LTE) system) that allocated to VU i and W is the

bandwidth of each BE. Note that the overall bandwidth available for the SBS are limited, in other

words,

I

∑
i=1

W ∗Bi ≤Wmax (3.2)

where Wmax is the maximum available bandwidth for the uplink transmission.

The inter-cell interference is assumed to be mitigated by Inter-Cell Interference Co-

ordination (ICIC) technologies, e.g. Fractional Frequency Reuse (FFR) [73]. Note that the

multi-vehicle perception fusion application’s output data size is very small compared to its input

data size. For example, the application considered in this study uses the captured images as

input, whose data sizes are usually more than several KBytes. However, its output, the list of

detected distinct objects, can be stored in less than 1 KBytes of memory. Moreover, due to the

higher transmission power, the downlink data rate is usually higher than the uplink data rate [47].

Therefore, we ignore the impact of downlink data transmission in our study.

Note that the uplink channel gain gb,i, and hence rb,i will change rapidly across different
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time slots due to the mobility of VU. In fact, in Section 3.6, we assume the channel gain is

generated for each time slot by the current VU’s position. We use B1 Manhattan grid layout [44]

as the pathloss and slow fading models, and the Nakagami-m distribution [45] as the fast fading

model, which have been widely used by the industry [46, 48] and are shown to be sufficient to

model vehicular communication channel [45]. Therefore, the optimal bandwidth allocation Bi

will be different for each time slot.

3.4.3 Multi-vehicle Perception Fusion Task Model:

We assume that at each time slot, every VU provides an image frame captured by its

onboard camera for fusion. Each image is assumed to be a 1080p RGB image. Each image is

first decoded, resized, and encoded into a 2-dimensional 300 by 300 matrix input and forwarded

to an object detection application. Note that the data size of the decoded 1080p RGB image

is very large, typically around 6 MB. Therefore, we combine decode and resize as one task in

our task model. In this study, we use SSD-MobileNetV2 [56] for object detection because of

its lightweight computations. An image of the bounding area of each detected object is then

sent to a ResNet-18 DNN network, which is the feature extractor of the object matching model.

Each detected object needs an exclusive ResNet-18 task. Its output feature, along with the output

feature of another ResNet-18 for another detected object from a different VU will be provided to

an FC layer, where final object matching classification decision is made. Note that each pair of

objects, where these two objects are from two different VUs, requires an FC layer for the object

matching classification decision.

The task graph of the whole multi-vehicle perception fusion application considered in

this study is then shown in Fig. 3.5. Vi,k,n denotes the n-th type k task that is created by device

i, where i ∈ {I ∪0} and i = 0 denotes the RSU. k is the task type. For example, in this study,

k = 1,2,3,4,5 represent Decoding and Resizing, Encoding, SSD-MobileNetV2, ResNet-18, and

FC layer tasks, respectively. For consistency, we assume task type 1 ≥ k ≥ 4 are created by

devices i > 0 (i.e. VU), and task type k = 5 is created by devices i = 0 (i.e. RSU). 1≥ n≥N(i,k),
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Figure 3.5. Task composition of the edge-based multi-vehicle perception fusion application

Table 3.2. The data size of each input for different task types

Task type k 1 2 3 4 5
Data size (KBytes) 27 270 6.2 0.9 4

where N(i,k) is the maximum number of the k-th type of tasks created by device i. Without loss

of generality, we assume the data size of each input for the task Vi,k,n only depends on k and is

the same across different VUs. We denote the data size of each input for task Vi,k,n as D(k). We

have listed the input data size for all the task types considered in this work in Table 3.2.

For each VU i, i > 0, the number of ResNet-18 tasks N(i,4) depends on oi, the number

of objects detected in its captured image (i.e. one of the outputs of its SSD-MobileNetV2).

Consequently, for RSU, the number of FC layers N(0,5) depends on the value of oi from each

VU i, i > 0. Note that the values of oi, ∀i > 0 are not determined at the beginning of the current

time slot t0. Therefore, mathematically, we model the tasks shown in Fig. 3.5 as a task graph

G(O1,O2, ...,OI) = (V(O1,O2, ...,OI),E(O1,O2, ...,OI)), Oi, i ∈ I is the random variable of the

number of detected objects in VU i’s image. V is the set of nodes representing the tasks, that

is V = {Vi,k,n|∀i,∀k,∀n}. E is the set of edges representing the dependency between these
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tasks. The value of Oi is determined at time ti, where ti > t0 and is equal to the time when

SSD-MobileNetV2 of VU i (i.e. Vi,3,1) is completed. Therefore, it is challenging to determine

the optimal bandwidth allocation and task offloading as well as scheduling decisions at t0 based

on incomplete knowledge of the task graph G. On the other hand, if the above decisions are

made at ti, the offloading and scheduling of any tasks before Vi,3,1 that were already executed

will not be optimal.

We assume that if a task v ∈ V is created by a VU (i.e. v = Vi,k,n and i > 0), it can be

either executed locally at the VLC server or be offloaded and executed at the VEC server. On

the other hand, for a task v = Vi,k,n such that i = 0, it can only be executed at the VEC server.

We use xv to represent the offloading decision of task v, the action space of xv for each task v is

defined as following,

xv ∈


{i,0} if v = Vi,k,n and i > 0,

{0} if v = Vi,k,n and i = 0.
(3.3)

Furthermore, once a task v is offloaded and executed at the edge, its successor tasks will

be executed at the edge. That is,

xv ≤ min
v′∈Ψs

v

x′v (3.4)

where we define Ψ
p
v and Ψs

v as the sets of immediate predecessors and successors for each task

v ∈V , respectively. That is, v′ ∈Ψ
p
v if the directed edge (v′,v) ∈ E and v′ ∈Ψs

v if the directed

edge (v,v′) ∈ E .

3.4.4 Task Execution Delay

In this work, we choose to empirically model the execution delay for each task v ∈ V

when using the VEC and VLC servers for execution. Since both VEC and VLC servers can only

execute one task at a time, the task execution delay depends only on the computing capacity of

VEC and VLC servers. For each task v =Vi,k,n, we denote T e
v (c

e) as the task execution delay
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Table 3.3. The measured execution delay for each task type under different server configurations
(unit: ms)

Task
type k

Configuration
index

1 2 3 4 5 6

1 123 61 33.3 19 16.5 15.5
2 11.4 5.4 3.5 2 1.7 1.58
3 51 18 11 5.1 5.9 4.3
4 16.9 6 3.6 1.7 1.6 1.5
5 2.25 1.05 0.65 0.38 0.32 0.3

Table 3.4. The CPU, GPU, and EMC configurations for each chosen server configuration index
(unit: MHz)

Configuration index 1 2 3 4 5 6
CPU frequency 345 652 960 1570 1880 2300
GPU frequency 112 318 522 1120 1230 1400
EMC frequency 200 665 665 2300 2300 2300

when task v is executed at the VEC server which has computing capacity ce and T l
v (c

l
i) as the task

execution delay when task v is executed at the VLC server which has computing capacity cl
i . Table

3.3 shows an example of the empirical task execution delay that we measured by implementing

each type of tasks on a commercial edge computing device, Nvidia Jetson Xavier [104]. We

also list the corresponding computing capacity in Table 3.4, where the computing capacity is

modeled in terms of the CPU, GPU, and EMC (External Memory Controller) frequencies which

we extracted from Nvidia Jetson Xavier board [105].

3.4.5 Task Start and Finish Time

We denote Sv and Fv as the start and finish time for task v. The start time Sv indicates the

time when task v starts to be executed at the computing unit defined by xv and the finish time Fv

represents the time when the execution of task v finishes and its output data is available at the

computing unit. In the following, we discuss the start and finish time of task v in two modes, the

local computing mode (xv > 0) and edge offloading mode (xv = 0):
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Local computing mode (xv > 0)

If task v =Vi,k,n is assigned to be executed at the VLC server, its finish time Fv can be

defined as,

Fv = Sv +T l
v (c

l
i) (3.5)

where T l
v (c

l
i) is the execution delay by using VU i’s VLC server to execute task v. Furthermore,

its start time Sv can be defined as the following,

Sv ≥ max{Fserver
l,v ,F pred

l,v } (3.6)

where Fserver
l,v represents the earliest available time at VU i’s VLC server that can start to execute

task v and F pred
l,v is the time when all of the task v’s immediate predecessor tasks are executed.

We model Fserver
l,v and F pred

l,v by using the following equations:

Fserver
l,v = max

v′ s.t. Sv′<Sv and xv′=xv
Fv′ (3.7)

and,

F pred
l,v = max

v′∈Ψ
p
v

Fv′ (3.8)

Edge offloading mode (xv = 0)

If task v is assigned to be executed at the VEC server, its finish time Fv can be defined as,

Fv = Sv +T e
v (c

e) (3.9)

where T e
v (c

e) is the execution delay by using the VEC server to execute task v. However, before

the VEC server starts to execute task v, the following requirements need to be fulfilled, 1) the

VEC server is not executing any task, 2) the immediate predecessor tasks of task v are completed,

and 3) the output of the immediate predecessor tasks of task v are transmitted to the VEC server

if these tasks are executed locally. Therefore, Sv should satisfy the following equation,

Sv ≥max{Fserver
e,v ,F pred

e,v } (3.10)
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and Fserver
e,v denotes the earliest possible time when the VEC server is available, which can be

defined as,

Fserver
e,v = max

v′ s.t. Sv′<Sv and xv′=0
Fv′ (3.11)

On the other hand, F pred
e,v denotes the time when all the immediate predecessor tasks of

task v are executed and their output are transmitted to the VEC server, which can be expressed

as,

F pred
e,v = max

v′=Vi′,k′,n′∈Ψ
p
v

Fv′+1xv′>0(xv′)
D(k′)
ri′,b

(3.12)

where 1xv′>0(xv′) is the indicator function such that,

1xv′>0(xv′) :=


1 if xv′ > 0 ,

0 if xv′ = 0 .

(3.13)

Based on the above discussion, the task execution scheduling Sv and Fv, and task offload-

ing decision xv need to be jointly determined while satisfying both parallel and sequential task

dependencies (e.g., Fig. 3.5).

3.4.6 End-to-end Fusion Delay and Problem Formulation

Herein, we consider the performance metric for multi-vehicle perception fusion in terms

of the end-to-end fusion delay, which is the time taken for all the tasks to be completed. Therefore,

the end-to-end fusion delay can be defined as the maximum finish time among all the tasks in V .

Take Fig. 3.5 as an example, the end-to-end fusion delay is defined as the finish time of the last

FC layer task that is being executed.

Given each VLC server’s capacity and the channel conditions between RSU to each VU,

the objective of this paper is to determine the optimal task partitioning and offloading strategy

xv, the task scheduling plan Sv and Fv, and the bandwidth resource allocation Bi, to minimize

the end-to-end fusion delay for a multi-vehicle perception fusion application. Since VUs are

moving, and hence the VU set and each VU’s uplink channel conditions are changing, the above

decisions need to be updated for every time slot to guarantee that they are still optimal. At the
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beginning of each time slot, the decisions have to be made in real-time based on incomplete

knowledge of the actual task graphs, as shown in Section 3.4.3, while satisfying both parallel

and sequential task dependencies in Eq. 3.6-3.12. For each time slot, the optimization problem

can be formulated as,

minimize
xv,Sv,Fv∀v∈V,Bi∀i∈I

max
v∈V

Fv (3.14a)

subject to (3.2)− (3.6),(3.9),(3.10) (3.14b)

3.5 Solution Methodology

We first consider a rather restricted and simple formulation where the task graph G is fixed

before t0, that is, the outcomes of random variables of the number of detected objects of each VU,

o1,o2, ...,oI , are known before t0 (i.e. ti ≤ t0∀i ∈ I). Note that in our problem formulation 3.14,

given the fix task graph G, the decision variables xv,Sv,Fv∀v ∈ V and Bi∀i ∈ I are a mixture

of integers and continuous values, and the objective of problem 3.14 is a non-linear function

of the above variables. Therefore, problem 3.14 is an NP-hard nonlinear integer programming

problem [83]. The complexity of exhaustively searching for the optimal solution is extremely

high for this restricted problem formulation. Even by assuming Sv and Fv can be optimally

determined within linear time, the complexity of exhaustively searching for all possible values of

xv ∀v ∈ V and Bi ∀i ∈ I is O(2|V|BI), where I is the total number of VUs and |V| is the overall

number of tasks in G. Note that |V| grows exponentially with the number of VUs, and the number

of objects detected by each VU. This leads to prohibitively expensive time complexity.

However, the problem considered in this study is more complicated than the above

restricted formulation as the task graph G(O1,O2, ...,OI) varies over time. G(O1,O2, ...,OI)

varies at ti, i ∈ I , which is the time when the object detection task of VU i is completed. That is,

ti = Fv such that v =Vi,3,1.

Although the scheduling decisions for the object detection tasks do not affect the outcome
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Figure 3.6. The variance of knowledge of task graph by time according to the outcome of
random variables of the number of detected objects

values of O1,O2, ...,OI , they will affect the time when the exact composition of the task graph is

revealed to the decision-making algorithm. Before all the object detection tasks are completed,

the decision-making algorithm can only be based on incomplete knowledge of task graph G,

leading to non-optimal end-to-end fusion delay.

Fig. 3.6 demonstrates an example of the variance of the task graph across time by

assuming VU 1 detects 2 objects and VU 2 detects 3 objects. At t1, the greedy offloading and

scheduling decision will offload one of the two ResNet-18 tasks to the VEC server and execute

the remaining one locally. As the red outline orange boxes show in Fig. 3.7(a). Then, at t2, the

three ResNet-18 tasks of VU 2 will be scheduled at the VEC server because their predecessor task

(i.e. V2,3,1) has been offloaded. However, if the decisions made at t1 are aware of the existence of

the three ResNet-18 tasks of VU 2, both the VU 1’s ResNet-18 tasks can be scheduled to local

execution and hence reduce the end-to-end fusion delay, as shown by Fig. 3.7(b). Therefore, the

scheduling and offloading decisions made under task uncertainty are easily non-optimal if they

are greedily determined. Moreover, it is not practical to wait until t2 to make those decisions,

as the waiting time will impact the end-to-end fusion delay, especially when the number of VU

increases.

Therefore, in this work, we propose a real-time predictive two-step based algorithm,
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Figure 3.7. An offloading and scheduling timeline example with decisions made (a) without the
complete knowledge of G, and (b) with the complete knowledge of G

FOrecasting and unceRtainty-aware Multi-source task Offloading and Scheduling Algorithm

(FORMOSA) to solve problem 3.14. The overview of the FORMOSA algorithm is shown

in Fig. 3.8. First, Fig. 3.8(a) shows the FORMOSA procedures before a new cycle of multi-

vehicle perception fusion application (i.e., before time slot t0 begins). Each VU will share

its VLC capacity and the predicted number of detected objects with MBS (i.e., step 1⃝ in

Fig. 3.8). In the meantime, RSU will share with MBS the measured uplink channel conditions

of each VU. The MEC at MBS will produce a fixed graph G′ based on the predicted number

of detected objects of each VU (step 2⃝). Then, we propose a low complexity Dynamic

Programming-based heuristic algorithm, namely, Dynamic programming-based static Multi-

source task Offloading and Scheduling Algorithm (DMOSA), which jointly determines the

task partitioning and offloading strategy, the task scheduling plan, and the bandwidth resource

allocation to minimize the end-to-end fusion delay of the predicted graph G′ (step 3⃝). Note that

DMOSA is executed at MEC server. Hence, it can be processed while the previous instance of
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multi-vehicle perception fusion application for the previous time slot is still in execution.

Second, Fig. 3.8(b) demonstrates the FORMOSA procedures when t0 begins. The

determined task partitioning and scheduling plan, and the bandwidth resource allocation will be

sent to VUs and RSU (step 4⃝), where the tasks of the multi-vehicle perception fusion application

will be executed according to the received task partitioning and scheduling plan (step 5⃝). Note

that the FORMOSA decision-making is processed and made at MEC server, but the tasks of

a multi-vehicle perception fusion application are executed at VUs and RSU. In Fig. 3.8(b)’s

example, VU 1’s task V1,4,1 is scheduled to be executed at VEC. Due to the limited space, we

didn’t show the examples for VU 2 and VU 3, but the corresponding tasks will be partitioned

and scheduled in the meantime.

Finally, in Fig. 3.8(c), we show the FORMOSA procedures whenever an object detection

task of a VU is completed and the actual number of detected objects is known. If the predicted

number of detected objects is not aligned with the actual number of detected objects, then G′

is mispredicted from G. The actual number of detected objects will be sent to MEC, where the

task partitioning and scheduling plan is adjusted accordingly (step 6⃝). We propose a real-time

offloading and scheduling re-arrangement algorithm, namely Rectifying Misprediction dynamic

Offloading and Scheduling Algorithm (RMOSA), to make the adjustment (step 7⃝). The adjusted

task partitioning and scheduling plan will then be sent to VU and RSU (step 8⃝), where the task

execution will resume based on the new partitioning and scheduling plan (step 9⃝). Note that

the procedures in Fig. 3.8(c) will take place once for every VU, as long as the object number

mis-prediction happens. The whole signaling process of FORMOSA in the temporal domain

is described in Fig. 3.9, where an example of two VUs is shown, the color of each signaling

procedure and the step numbers align with the signaling color in Fig. 3.8.

Note that the task graph prediction and DMOSA are executed before the time slot begins

(i.e. t0), they can be processed simultaneously with the previous instance of multi-vehicle

perception fusion application as they are executed at the MEC server. Therefore, when t0 begins,

the tasks for the current instance of multi-vehicle perception fusion application can be executed
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Figure 3.8. Overview of FORMOSA with phases (a) DMOSA determines task partition-
ing/scheduling plan and bandwidth resource allocation, based on predicted task graph, and
(b)VUs and RSU execute the task partitioning/scheduling plan, and (c) RMOSA updates task
partitioning/scheduling plan when an object detection task of a VU is completed. (DMOSA and
RMOSA are executed at the MEC server, while the multi-vehicle perception fusion application
is executed at the VEC and VLC servers)

immediately by VEC and VLC servers by following the DMOSA’s task offloading and scheduling

decisions. In the simulation result section, we will show that the time complexity of task graph

prediction and DMOSA is low enough, such that they can be executed before the time slot begins

by assuming that the channel condition will not change during the algorithm execution, and

hence, will not affect the optimal solution.

3.5.1 Signaling Cost

Note that the signaling delays induced by FORMOSA procedures are negligible. For

example, in Fig. 3.8(a), the VLC capacity and predicted number of objects can be represented by

two integers. Uplink channel conditions can be represented by 16-bit floating point values. The

corresponding signaling cost is 4 Bytes per VU. In Fig. 3.8(b), there is no additional signaling

cost for bandwidth allocation as it is already implemented in existing standards. For each task,

its offloading decision is an 8-bit integer and its scheduling plan can be represented by a 16-bit

floating point value (either the start time or finish time, or even just the execution order needs to

be shared). Even by assuming there are a thousand tasks, that is only 3 KB of downlink data

for signaling. Based on our study in [106], these data can be transmitted within 15 ms by using

the commercial Cellular-V2X technology, with the lowest possible transmission datarate (i.e.,
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Figure 3.9. Overview of the temporal domain signaling of FORMOSA.

broadcasting with the lowest Modulation Coding Scheme (MCS)). Given that the used unicast

downlink datarate is usually higher and the channel capacity between RSU and MBS can be even

higher (with a consistent channel), the corresponding signaling delay can be negligible. The

signaling delay for procedures in Fig. 3.8(c) is similar to Fig. 3.8(a) and Fig. 3.8(b), therefore,

the corresponding discussion is skipped.

3.5.2 Task Graph Prediction

First, we propose to predict the outcome of (O1,O2, ...,OI) to form a predictive task

graph for the current time slot. Note that Oi represents the number of detected objects in the

captured camera image of VU i. Because vehicle camera is continuously capturing images and

by nature, the objects are continuously moving across multiple consecutive images. Therefore,

the outcome of Oi for the current time slot can be predicted based on the oi history from the

previous time slots. In this work, we predict the value of Oi as ôi by averaging the number of

detected objects from the previous 5-time slots.
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3.5.3 Dynamic programming-based static Multi-source task Offloading
and Scheduling Algorithm (DMOSA)

Once the predicted graph G′ is formulated, we then apply DMOSA algorithm, which is

shown in Algorithm 7. DMOSA uses dynamic programming-based heuristic technique to solve

problem 3.14 given that Oi = ôi ∀i ∈ I.

Task sorting

Firstly, for a given predicted dependency graph G′, DMOSA sorts all the tasks in G′ to

derive a task sequence which will be used as the task order when determining the task offloading,

scheduling and bandwidth allocation decisions. Based on the discussion in [94], given that

v =Vi,k,n, we first assign to each task v a rank value by the following equation,

rank(v) =
T l

v +T e
v

2
+

D(k)∗max(|ψ p
v |,1)

2∗ ri,b
+ max

v′∈ψs
v

rank(v′). (3.15)

where the first and the second terms are the expected task execution and the input data

transmission delay, respectively, by assuming this task has 50% probability to be executed at

VLC and VEC servers. The third term is the maximum rank among all this task’s immediate

successors. Then, we sort all the tasks in G′ by their rank values in descending order. Because of

the third term in Eq. 3.15, all the predecessors of a task v will be ordered before v. We denote

the sorted task sequence as V̂ .

Dynamic programming

First, to control the complexity of DMOSA, we control the bandwidth allocation granular-

ity (i.e. the size of the Smallest Bandwidth Element (BE)). We denote B̂ as the maximum number

of the BE that can be allocated to a VU, that is, B̂ = floor(Wmax/W ), where W is the bandwidth

of each BE and Wmax is the maximum available bandwidth for uplink data transmission. For

example, if the bandwidth allocation granularity is 2 PRB (i.e. W = 2*180kHz) for an 18 MHz

data channel, then B̂ = 50.
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For a given instance of problem 3.14 with the predicted graph G′ and sorted task sequence

as V̂ , we consider a matrix F with dimension |V̂| ∗ B̂, where |V̂| is the number of all the tasks.

F(u,β ) represents the minimum of the maximum task completion time among tasks with order 1

to u in V̂ using exactly β amount of BE. The core formula of this dynamic programming strategy

is in Eq. 3.16 by assuming u =Vi,k,n,

F(u,β ) =



0; if u≤ 0

0; if β ≤ 0

min(Aedge,Alocal);otherwise

(3.16)

where Alocal and Aedge are the achievable minimal of the maximum task completion time with u

and β settings under the condition that task u =Vi,k,n is executed at the VLC and VEC servers,

respectively. Alocal can be determined by Eq. 3.17,

Alocal =max{T l
u +L(u−1,β , i),F(u−1,β )} (3.17)

where L(u− 1,β , i) represents the earliest available time of vehicle i’s VLC server,

considering the task offloading and scheduling plans are determined for the first to the (u−1)-th

tasks in V̂ while using β BEs. Therefore, T l
u +L(u−1,β , i) is the maximum task completion

time for all the tasks among task order 1 to u that are scheduled to be executed at vehicle i’s

VLC server. Since there may be other VLC or VEC servers that have larger task completion time

than vehicle i’s VLC server, we determine the value of Alocal by choosing the maximum between

T l
u +L(u−1,β , i) and F(u−1,β ), where the latter term records the maximum task completion

time among all the servers, except vehicle i’s VLC server.

On the other hand, Aedge can be calculated by the following equation for assigning task u

to VEC server and using bandwidth resource β to serve all the first to u-th tasks,
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Aedge =

min
b′≤β

{max[T e
u +max(L(u−1,β −b′,0),L(u−1,β −b′, i)

+

∑
j∈ψ

p
u

(1−X(u−1,β −b′, j))∗D(k)

ri,b ∗b′
),F(u−1,β −b′)]}

(3.18)

Firstly, for Aedge, since task u =Vi,k,n is assigned to VEC server, it can only be executed

after i) when the VEC server completes executing any tasks between the first to the (u−1)th

tasks, and ii) when all the task u’s inputs are transmitted or available at the VEC server. These

two requirements are involved in the last max function in Eq. 3.18. For the first requirement,

we denote L(u− 1,β − b′,0) as the earliest available time of VEC server after the first to the

(u−1)-th tasks are executed based on the corresponding offloading plan and β −b′ BEs are used.

Similarly, we denote the same for vehicle i’s VLC server as L(u−1,β −b′, i). If any of the task

u’s predecessors is executed at the VLC server, then the delay for transmitting its output to the

VEC server needs to be considered, as the second term in the last max function shows.

Secondly, since there may be other VLC servers that have larger task completion time

than the VEC server, we use the first max function in Eq. 3.18 to record the maximum among

them. Eventually, the value of Aedge is chosen after all the possible number of BEs 0 < b′ ≤ β

are evaluated. We choose the optimal b′∗ as the number of BEs that are allocated to vehicle i

(i.e., VU i) for task u’s offloading.

The steps of DMOSA is shown in Algorithm 7. Steps 1 and 2 are for task sorting. Steps

3 to 18 are the dynamic programming process, whereW records the number of BEs that are

being allocated to each VU and is calculated as the summation of BEs that are assigned to

any tasks of VU i (i.e. ∀1 ≤ v ≤ u s.t. v = Vi,k,n for any possible k,n). On the other hand, we

use matrix X to record the corresponding task offloading strategy for all the tasks in V ′ and

we use matrix P to indicate whether this task can only be executed at the VEC server (i.e. at

least one of its predecessor tasks is offloaded to the VEC server). Note that in steps 10, 12, 14,
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the ”X ← (condition)?Y : Z” statement means that if condition is true, X will be assigned with

the value of Y , otherwise, X will be assigned with the value of Z. DMOSA then recursively

calculates the elements in F for task v from 1 to |V̂| and bandwidth elements b′ from 1 to B− I,

where I is the total number of vehicles. Note that we reserve 1 BE for each vehicle to guarantee

their minimum uplink transmission capabilities. Finally, based on the task partitioning and

offloading results and available bandwidth resources for each VU, in steps 22 to 34, DMOSA

heuristically determines for each task u the start and finish time, Su and Fu, following the order

in the sorted task sequence V ′.

3.5.4 Rectifying Misprediction dynamic Offloading and Scheduling
Algorithm (RMOSA)

Because G′ and the decisions of DMOSA are determined based on the prediction Oi = ôi,

the prediction deviation needs be accommodated once a SSD-MobileNetV2 task of a vehicle

(i.e. v = Vi,3,1 for VU i) has been executed. We then propose the Rectifying Misprediction

dynamic Offloading and Scheduling Algorithm (RMOSA) algorithm to adjust the current task

offloading and scheduling decisions in real time. The steps of RMOSA are listed in Algorithm 8.

If the predicted value is less than the actual number of detected objects for VU i (i.e. ôi < oi),

RMOSA will execute the underprediction() function to add the extra tasks, the new ResNet-18s

and the following FC layers, that are created for the additional detected objects to the current

task offloading and scheduling plan. On the contrary, if ôi > oi, RMOSA will execute the

overprediction() function to remove the tasks, the redundant ResNet-18s and their following FC

layers, that are created previously in G′ for the objects that do not exist, from the current task

offloading and scheduling plan. The new task offloading and scheduling plan is then sent to RSU

and VUs, as the lower part of Fig. 3.9 shows.
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Algorithm 7: Dynamic-programming-based static Multi-source task-Offloading
& Scheduling Algorithm (DMOSA)

Input: G′,V ′,T e
v ,T

l
v∀v ∈ V,rb,i,cl

i∀i ∈ I,ce,D(k)∀k
Output: xv,Sv,Fv∀v ∈ V,Bi∀i ∈ I

1 calculate rank forV by Eq. 3.15;
2 V̂ ← sort all tasks in V by rank ;
3 initialize F ,L,W,X ,P;
4 for j← 1 to B− I do
5 for u =Vi,k,n ∈ V̂ do
6 Alocal,Aedge← ∞ ;
7 if P(u−1, j,u) = 0 then
8 calculateAlocal by Eq. 3.17
9 calculateAedge by Eq. 3.18, record Q∗ be the minimum of the first term in Eq. 3.18

10 and b′∗ is the optimal b′ ;
11 b̂′← (Alocal ≤ Aedge)?0 : b′∗;
12 X(u, j, :)← X(u−1, j− b̂′, :) ;
13 X(u, j,u)← (Alocal ≤ Aedge)?i : 0;
14 L(u, j, :)← L(u−1, j− b̂′, :);
15 L(u, j, i)← (Alocal ≤ Aedge)?L(u−1, j, i)+T l

v (c
l
i) : Q∗ ;

16 W (u, j, :)←W (u−1, j− b̂′, :);
17 W (u, j,u)←W (u, j,u)+ b̂′;
18 P(u, j, :)← P(u−1, j− b̂′, :) ;
19 If Alocal ≤ Aedge: P(u, j,q)← 1∀q ∈ ψs

u

20 xv← X(|V̂|,B− I,v)∀v ∈ V̂ ;
21 bi←W (|V̂|,B− I, i)∀i ∈ I ;
22 L′← zeros(I +1),TF ← zeros(I +1);
23 for u =Vi,k,n ∈ V̂ do
24 if xu > 0 then
25 Su = L′(xu), Fu = Su +T l

u (c
l
u);

26 L′(xu) = Fu;
27 else
28 dready = 0;
29 for q =Vi′,k′,n′ ∈ ψ

p
u do

30 if xq > 0 then
31 TF(k′)← Dk

ri,bbi
+max(TF(k′),Fq) ;

32 dready = max(dready,TF(k′)) ;
33 xq← 0 ;
34 Su = max(L′(xu),dready) , Fu = Su +T e

u (c
e);

35 L′(xu) = Fu;
36 return xv,Sv,Fv∀v ∈ V,Bi∀i ∈ I ;

124



Algorithm 8: Rectifying Misprediction dynamic Offloading and Scheduling
Algorithm (RMOSA)

Input: xv,Sv,Fv∀v ∈ V,Bi∀i ∈ I,Oi = oi

Output: xv,Sv,Fv∀v ∈ V
1 if oi > ôi then
2 xv,Sv,Fv∀v ∈ V ← underprediction();
3 if oi < ôi then
4 xv,Sv,Fv∀v ∈ V ← overprediction();
5 return xv,Sv,Fv∀v ∈ V

Underprediction

The steps of underprediction() function are listed in Algorithm 9. First, we denote the

set of timelines on the VEC server that has not been scheduled to execute any tasks as Θ, which

is defined as the free schedule slot set. Θ is in the (Θs,Θ f ) format with θs ∈Θs represents the

start time of the free schedule slot θ and θ f ∈Θ f represents the end time of the free schedule slot

θ . Note that we will remove any free schedule slot θ in Θ which has θ f < Svm , where vm =Vi,3,1,

as these schedule slots are no longer available for task scheduling.

For each additional object j detected by VU i, we create a new ResNet-18 task Vi,4,ôi+ j

in step 5. Then, we first check if there is any free schedule slot θ ∗ which has enough duration

that Vi,4,ôi+ j can be scheduled for execution in steps 6 and 7. Scheduling Vi,4,ôi+ j to any schedule

slot in Θ will not increase end-to-end fusion delay. Note that end-to-end fusion delay is defined

as the maximum finish time of all the tasks. Since there exists a task vk which has a larger

start time than SVi,4,ôi+ j (i.e., the beginning of this free schedule slot θ ∗s ), based on lemma 3.5.1,

Fvk > Svk > FVi,4,ôi+ j . End-to-end fusion delay must be greater or equal to Fvk , and hence will not

be impacted.

Lemma 3.5.1. Given two tasks va and vb running on the same server, if Sva > Svb , then Sva ≥

Fvb . Where Svi is the scheduled start time of vi, and Fvi is the scheduled finish time of vi.

Proof. Since we assume a server can only run one task at the same time, if Sva < Fvb when Sva >

Svb , then the server needs to execute va and vb simultaneously from time Sva to Fvb , contradicts

the assumption above.
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Algorithm 9: Underprediction
Input: xv,Sv,Fv∀v ∈ V,Bi∀i ∈ I, ôi,Oi = oi,Θ = (Θs,Θ f )
Output: xv,Sv,Fv∀v ∈ V

1 let vm =Vi,3,1;
2 LF ←maxv s.t. xv=iFv ;
3 EF ←max(Fvm +

D(4)
ri,b∗Bi

,maxv s.t. xv=0Fv);

4 for j← 1 to oi− ôi do
5 create a task v′ =Vi,4,ôi+ j ;
6 if ∃ θ ∗ ∈Θ s.t. θ ∗f −θ ∗s > T e

v′ then
7 xv′ ← 0, Sv′ ← θ ∗s , Fv′ ← θ ∗s +T e

v′ , θ ∗s ← Fv′ ;
8 else
9 if xvm is 0 then

10 EF ← EF +T e
v′ ;

11 if EF−maxv s.t. xv=0Fv > ε then
12 Θ = Θ∪ (maxv s.t. xv=0Fv,EF)
13 xv′ ← 0, Sv′ ← EF−T e

v′ , Fv′ ← EF ;
14 else
15 if LF +T l

v′ < EF +T e
v′ then

16 xv′ ← i, Sv′ ← LF , Fv′ ← LF +T l
v′ ;

17 LF ← LF +T l
v′ ;

18 else
19 EF ← EF +T e

v′ ;
20 if EF−maxv s.t. xv=0Fv > ε then
21 Θ = Θ∪ (maxv s.t. xv=0Fv,EF)
22 xv′ ← 0, Sv′ ← EF−T e

v′ , Fv′ ← EF ;
23 V ← {V ∪ v′}, E ← {E ∪ (vm,v′)} s.t. vm =Vi,3,1;
24 EF ←maxv s.t. xv=0Fv;
25 First return: xv,Sv,Fv ∀v ∈ V;
26 for j← 1 to oi− ôi do
27 for i′ ∈ I \ i do
28 for o← 1 to oi do
29 create a task v′ =V0,5,(o+maxv=V0,5,n∈V n);

30 xv′ ← 0, Sv′ ← EF , Fv′ ← EF +T e
v′ ;

31 EF ← EF +T e
v′ ;

32 V ← {V ∪ v′}, E ← {E ∪ (vm,v′)} s.t. vm =Vi,3,1;
33 Second return: xv,Sv,Fv ∀ new created v =V0,5,n ;

If such free schedule slot in Θ doesn’t exists, the schedule and offloading solution of

Vi,4,ôi+ j depends on where its predecessor vm is executed. If vm is offloaded to the VEC server, in

steps 10-13, we will schedule Vi,4,ôi+ j to the end of VEC server’s task schedule. If vm is executed

locally, in steps 15-22, we will compare the expected finish time of Vi,4,ôi+ j at VLC and VEC

servers and assign it to the optimal server and update Θ correspondingly. That is,
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xVi,4,ôi+ j =


i if LF +T l

Vi,4,ôi+ j
< EF +T e

Vi,4,ôi+ j
,

0 otherwise .

(3.19)

where LF = maxv s.t. xv=iFv is the current end time of the VLC server i’s task schedule and

EF = max(Fvm + D(4)
ri,b∗Bi

,maxv s.t. xv=0Fv)) is the maximum among the current end time of the

VEC server’s task schedule and the earliest time that the input of this Resnet-18 Vi,4,ôi+ j (i.e., the

image of the detected object) is available at the VEC server.

After all the new ResNet-18 tasks are scheduled, in steps 26 to 32, Algorithm 9 adds extra

FC layers for the pairs of each extra detected object and each existing detected object of other

VUs. These new FC layers are scheduled to the end of the VEC server’s current task schedule.

Note that all the servers will stop executing after a vm (i.e.Vi,3,1) is completed, until

receiving the new task offloading and scheduling plan. Hence, the time complexity of RMOSA

will impact the end-to-end fusion delay. To minimize the end-to-end fusion delay, we propose

to separate the last step of underprediction() into two phases. The first phase is steps 4-24 and

returns the new task offloading and scheduling plan for the current tasks and the new created

ResNet-18s. While the first phase returns the new plan and the servers resume task execution,

MEC server calculates the second phase and returns the task scheduling plan for the new created

FC layer tasks.

Overprediction

The steps of overprediction() are listed in Algorithm 10. We denote Ω as the set of

tasks that are going to be removed from G′ and the current task scheduling plan. To optimally

choose ôi−oi ResNet-18 tasks for VU i from G′ for removing, we first consider the following

two lemmas,

Lemma 3.5.2. Given a task graph G = (V,E) and a task offloading and scheduling plan

xv,Sv,Fv∀v ∈ V for a multi-vehicle perception fusion application, the schedule plan for an object

feature extraction task (i.e., Resnet-18) va and va’s successor tasks (i.e., FC layers) can be
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exchanged with the schedule plan for another object feature extraction task vb and vb’s successor

tasks when va and vb share the same predecessor object detection task (i.e., SSD-MobileNetV2).

Proof. Note that va and vb are object feature extraction tasks, they have only one predecessor

task, as shown in Fig. 3.5. If va and vb share the same predecessor object detection task, then

Sva ≥ Fvm and Svb ≥ Fvm , where vm is the common predecessor of va and vb. Therefore, we can

exchange values of Sva (and Fva) with Svb (and Fvb) without breaking the task dependency to va

and vb’s predecessor task. On the other hand, each va’s successor task vs
a has two predecessors, va

and an object feature extraction task vc (e.g. Resnet-18) from another VU j, as shown in Fig. 3.5.

Therefore, Svs
a ≥ Fva and Svs

a ≥ Fvc . On the other hand, there exists one of vb’s successor tasks

vs
b that shares the same vc as its predecessor. Thus, we have Svs

b
≥ Fvb and Svs

b
≥ Fvc . Under the

condition that Fva is exchanged with Fvb , we can swap the value of Svs
a and Svs

b
while satisfying

the above two equations. Therefore, va and va’s successor tasks’ schedule plan can be exchanged

with vb and vb’s successor tasks’ schedule plan.

Lemma 3.5.3. Assuming tasks va and vb are the same type and scheduled to be executed on the

same server and Fva < Fvb , if a task vd can be rescheduled to the schedule slot (Sva , Fva) that is

originally scheduled to execute task va, then vd can be reassigned to slot (Svb , Fvb), too.

Proof. If a task vd can be rescheduled to the schedule slot (Sva , Fva) that is originally scheduled

to execute task va, then all vd’s predecessors must be completed before Fva and vd’s inputs must

be ready before Fva . Note that Svb ≥ Fva because of Sva < Svb and lemma 3.5.1. It guarantees that

all vd’s predecessors and inputs are completed and ready, respectively, before Svb . Since va and

vb are of the same type, the schedule slot (Svb , Fvb) has the same duration as (Svb , Fvb). Therefore,

vd can be rescheduled to the schedule slot (Svb , Fvb).

According to lemma 3.5.2, removing any ResNet-18 task of VU i can result in the same

free schedule slots θs, by swapping another ResNet-18 task of VU i to the schedule slots of the

removed ResNet-18 task. On the other hand, based on lemma 3.5.3, removing the task which has
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a larger finish time than the other same type of task creates more flexibility for rescheduling the

remaining tasks. Therefore, in Algorithm 10, we will first iteratively pick the ResNet-18 tasks

which have the maximum finish time, along with their successor FC layer tasks, for removing.

Then we append this ResNet-18 task and its immediate successor FC layers to Ω. Once

all the extra ResNet-18 tasks and the corresponding FC layers are added to Ω in steps 3 to 8, we

remove them from G′ and the current task offloading and scheduling plan, and update the free

schedule slot set Θ accordingly in steps 9 to 11. Finally, we examine all the remaining tasks on

whether their start and end time can be shifted forward according to the new Θ in steps 13 to

26. Similar to underprediction() function, we divide overprediction() into two phases. For the

first phase, steps 13 to 19, we will only update the schedule of tasks whose start time is within

ω duration after Fvm . ω is carefully chosen so that the first phase will update task scheduling

for only a limited set of tasks. While the new decisions of task schedule is transmitted to the

VLC and VEC servers, which then resume the execution of tasks, RMOSA will calculate for the

remaining tasks the new schedule in steps 20 to 26 for the second phase.

3.5.5 Complexity Analysis

Note that in DMOSA, the variables j and u need to iterate B− I and |V| times for the for

loop begins from steps 4 to 18, respectively. Within the for loop, step 9 will check at most B− I

possible bandwidth allocations. Therefore, the complexity of DMOSA is O((B− I)2 ∗ |V|). To

further reduce the complexity of DMOSA, note that FC layers will always be executed at the

VEC server in the considered edge-based multi-vehicle perception fusion system. Therefore, in

step 5, we can iterate variable u for tasks in |V| without iterating u for all the tasks u = Vi,k,n

where k = 5.

The complexity of RMOSA depends on the complexity of underprediction() and

overprediction(). In the first phase of underprediction(), the j variable iterates from 1 to

oi− ôi and step 6 takes |Θ| times in worst case. Note that |Θ| is limited by |V| and oi is very

small compared to |V|. Therefore, first phase complexity is O(|V|). For the second phase,
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Algorithm 10: Overprediction
Input: xv,Sv,Fv∀v ∈ V,Bi∀i ∈ I, ôi,Oi = oi,Θ = (Θs,Θ f )
Output: xv,Sv,Fv∀v ∈ V

1 let vm =Vi,3,1;
2 Ω← list() ;
3 while ôi > oi do
4 oi← oi +1;
5 v∗← max

v=V (i,4,n)∀n
Fv;

6 if xv∗ is 0 then
7 Θ←Θ∪ (Sv∗ ,Fv∗);
8 Ω←Ω∪{v∗}∪ψs

v∗ ;
9 Θ←Θ∪{(Sv′ ,Fv′)∀v′ ∈ ψs

v∗};
10 V ← V \Ω;
11 E ← E\ all the edges correspond to Ω;
12 sort Θ by Θs in ascending order ;
13 for v′ ∈ V s.t. x′v is 0 and S′v−Svm ≤ ω do
14 for θ ∈Θ do
15 if θs > Sv′ then
16 break;
17 if θ f −θs > T e

v′ then
18 Sv′ ← θs,Fv′ ← θs +T e

v′ ,θs← Fv′ ;
19 First return: xv′ ,Sv′ ,Fv′∀v′ ∈ V s.t. Sv′−Svm ≤ ω;
20 for v′ ∈ V s.t. x′v is 0 and S′v > Svm +ω do
21 for θ ∈Θ do
22 if θs > Sv′ then
23 break;
24 if θ f −θs > T e

v′ then
25 Sv′ ← θs,Fv′ ← θs +T e

v′ ,θs← Fv′ ;
26 Second return: xv′ ,Sv′ ,Fv′∀v′ ∈ V s.t. Sv′ > Svm +ω

assuming ON is the maximum number of detected objects of a single VU, its complexity is

defined by the for loop in steps 24 to 30, which is O(O2
N ∗ I) in worst case.

On the other hand, the complexity of the first phase of overprediction() includes the

while loop in steps 3 to 9 and for loop in steps 13 to 18. Because step 5 takes O(1) if Fv are

sorted for v = Vi,4,n∀n, the while loop iterates oi− ôi times. Also, the ω parameter in step 13

limits the for loop in steps 13 to 18 to constant iterations. Therefore, its first phase complexity is

O(|V|) because of the for loop complexity in step 14. Similarly, the second phase complexity is

O(|V|2).
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3.6 Performance Evaluation

In this section, we first show the performance evaluation of DMOSA and RMOSA

separately. Then we demonstrate the performance comparison of FORMOSA with existing

approaches using real-world trace-driven simulations.

3.6.1 DMOSA and RMOSA Performance Evaluation

Herein, we first analyze the performance of DMOSA under different bandwidth allocation

granularities. Then we demonstrate the gain of using RMOSA to adjust the task scheduling

plan. Both DMOSA and RMOSA are implemented by using Python. In both experiments,

we assume each vehicle has 50% probability to possess a configuration index 1 (defined in

TABLE 3.3) VLC server and another 50% probability for a configuration index 2 VLC server.

The configuration index for VEC server is 6. DMOSA and RMOSA are executed on a MEC

server, whose computing capacity is emulated by a computing server that has 20 CPU cores

(Intel 12-th Gen i7 cores) with 2.1 GHz CPU frequency and 16 GB RAM. The SNR, ηb,i, is

randomly generated by U(0,40) dB for each VU i. oi is randomly generated by U(1,8) and

oi− ôi is randomly generated by by U(−4,4). The total bandwidth is 20 MHz. The experiment

results are generated after 500 times of simulation.

Fig. 3.10a demonstrates the end-to-end fusion delay performance of DMOSA under

multiple number of VUs scenarios by using different bandwidth allocation granularities. For

example, the blue curve shows the average end-to-end fusion delay performance of DMOSA

when BE, the Smallest Bandwidth Element, is 2 PRBs. While smaller granularity leads to

lower end-to-end fusion delay because of a more fine-grained bandwidth resource allocation,

the corresponding time complexity for DMOSA to search for the optimal solution is higher.

As Fig. 3.10b shows, DMOSA takes more than 400 ms to calculate the solution with 2 PRBs

bandwidth allocation granularity. Note that in Fig. 3.9, DMOSA calculates for the task offloading,

scheduling, and bandwidth allocation decisions before the beginning of the execution of the
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(a) (b)

Figure 3.10. The performance of DMOSA by using different bandwidth allocation granularities
on (a). end-to-end fusion delay, and (b). algorithm time complexity

multi-vehicle perception fusion application. To guarantee that DMOSA’s decision is optimal,

the channel conditions should remain the same during the execution of DMOSA. In one of our

previous work [88], we have shown that it is practical to assume the channel condition will not

change for a vehicular wireless channel within a 250 ms time slot. Therefore, in the rest of the

experiments, we will operate DMOSA with 3 PRBs bandwidth allocation granularity (i.e. BE

is 3 PRBs), which takes less than 200 ms to compute the decisions for 10 VUs as shown in

Fig. 3.10b.

Fig. 3.11a demonstrates the benefit of using RMOSA to minimize the impact of mispre-

diction of the number of detected objects for each VU on the end-to-end fusion delay. Without

RMOSA, the end-to-end fusion delay values with just DMOSA are 19%, 13%, and 8% larger

than the performances with FORMOSA when the number of VUs are 6, 8, and 10, respectively.

Fig. 3.11b shows that by enabling two-phase response in RMOSA, the first response time of

RMOSA can be reduced to less than 1 ms. That means, all the servers need to wait less than

1 ms until they receive the new task offloading and scheduling decisions once a VU completes

its SSD-MobileNetV2 task.
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(a) (b)

Figure 3.11. (a) The performance comparison between FORMOSA and DMOSA (i.e. with and
without RMOSA), and (b). RMOSA’s first and second response time complexity

3.6.2 FORMOSA Performance Evaluation

Next, we evaluate the performance of FORMOSA by comparing it with three other

relevant algorithms, CEFO [94], PCSO [99], and Last Step Edge Offloading (LSEO).

CEFO algorithm: In [94], the Centralized Earliest-Finish time Offloading (CEFO) algorithm first

assigns a computing and communication cost-related priority value to each task. Tasks are sorted

by the priority values and are greedily determined to be offloaded to the server which provides

the earliest possible finish time, following the sorted task order.

PCSO algorithm: Instead of assigning priority values to each task, the authors in [99] propose

dynamic Priority-based Computation Scheduling and Offloading (PCSO) algorithm and classify

tasks into high, medium, and low priority groups based on the current tasks that are being

executed and their dependencies. They then propose a knapsack-based algorithm and a depth as

well as data size-based heuristic algorithm to determine task offloading and scheduling strategies

for the high and medium priority groups, respectively.

LSEO algorithm: The Last Step Edge Offloading (LSEO) algorithm is created in this study to

provide comparisons with the scenario without task offloading. Under this algorithm, tasks that

are created by VUs (i.e. k ≤ 4) will be executed locally and only the FC layers for fusion are

133



(a) (b)

Figure 3.12. The probability mass function of (a) the number of detected objects in each frame
over the dataset traces, and (b) prediction error

executed at the edge.

To be more realistic, we use the object detection and tracking trace data from the KITTI

dataset [107, 108] to generate the value of oi. Also, we use the method proposed in Section

3.5.2 to predict the number of detected objects on each trace. Fig. 3.12a shows the probability

mass function (PMF) of the number of objects detected in each frame over the 21 traces and

8008 frames in the above object detection and tracking trace dataset. Fig. 3.12b shows the

corresponding prediction error, namely oi− ôi, in terms of the number of objects. Therefore, we

randomly generate the value of oi and ôi by using the distributions shown in Fig. 3.12. VLC

server configuration and SNR assumptions are the same as Section 3.6.1. FORMOSA will take

ôi, and SNR of all the VUs as input, then generate the task graph and the corresponding task

execution schedule. The schedule is generated considering each VLC and VEC’s capacity and

VUs’ uplink data rate. The schedule for tasks before SSD-MobileNetV2 is fixed for each VU.

But the remaining tasks’ schedule will be adjusted once for each VU, by RMOSA with the actual

number of objects oi. We will first adjust the VU with the earliest SSD-MobileNetV2 finish time

and vice versa. The execution delay of RMOSA first response is recorded and will be added to

the resulting end-to-end fusion delay. Finally, the end-to-end delay is calculated as the finish

time of the last FC layer plus the RMOSA execution delay.

Impact of VU density : We first compare FORMOSA with the other three algorithms under
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(a) (b)

(c)

Figure 3.13. End-to-end fusion delay under different scenarios of (a) VU densities, (b) VEC
server capacities, and (c) available bandwidth resources

different VU densities in Fig. 3.13a. In this experiment, the VEC configuration index is set to

6 and bandwidth is 40 MHz. The number of VUs in the network are controlled from 6 to 12

and we average the end-to-end fusion delay over 500 times of simulation for each VU density

case. Over all the tested cases, FORMOSA outperforms other algorithms. For example, the

end-to-end fusion delay by using FORMOSA is 15%, 24%, and 28% lower than the delay by

using CEFO, PCSO, and LSEO, respectively, when there are 8 VUs. Moreover, when VU density

increases, the performance gap between CEFO and FORMOSA escalates from 47.6 ms(15%)

to 115 ms(19%) when the number of VUs grows from 8 to 11. This is because when CEFO

determines an offload decision for a task, it greedily compares the task completion time of this
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task at VEC and VLC servers and doesn’t consider the impact of the successor tasks to the

end-to-end fusion delay. When the VEC’s capacity is higher than the VLC server, CEFO tends

to offload tasks to the edge. However, this will put higher burden on the VEC server and piles up

the end-to-end fusion delay when VU increases. Fig. 3.13a also shows that FORMOSA can keep

the average end-to-end fusion delay to less than 500 ms when the number of VUs is no more

than 10. In Section 3.6.3, we will demonstrate how FORMOSA can support larger numbers of

VUs in a practical scenario.

Impact of VEC computing capacity: In this experiment, we vary the VEC configuration index

from 3 to 6 and keep the number of VU and bandwidth to 8 and 40 MHz, respectively. The

results are shown in Fig. 3.13b. FORMOSA outperforms other algorithms across all the tested

VEC configuration indices. For example, the end-to-end fusion delay by using FORMOSA is

19%, 16%, and 14% lower than the delay by using CEFO, PCSO, and LSEO, respectively, when

the VEC configuration index is 3. While CEFO has the closest delay performance to FORMOSA

when VEC configuration index ≥ 4, it performs the worst when the VEC configuration index is

3. This matches the observation in the previous experiment about the disadvantage of CEFO

when the VEC server has higher burden.

Impact of available bandwidth: In Fig. 3.13c, we compare FORMOSA’s end-to-end fusion

delay performance with the other three algorithms under different bandwidth availabilities. The

X-axis shows the different available bandwidth from 10 MHz to 40 MHz. The configuration

index for VEC server is 6 and the VU density is 8. It shows that FORMOSA utilizes the increased

available bandwidth resources more efficiently. The gap between FORMOSA and the second best

algorithm, CEFO, increases from 1.3% at 10 MHz to 11.7% at 40 MHz. Moreover, FORMOSA

can achieve less than 300 ms end-to-end delay performance when the available bandwidth is

> 20 MHz while CEFO cannot achieve the same level of performance.
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Figure 3.14. Real-trace driven simulation layout in Brooklyn, New York City

3.6.3 Real-trace driven simulation

In this section, we demonstrate the performance of FORMOSA for a real-world traffic

scenario. In our previous work [84], we have developed a traffic simulator, which allows the

creation of realistic trace-driven movements, topology, location, and channel conditions for each

VU at every time slot. The simulator generates the VU’s trace in a 1000x800 m2 rectangular

neighborhood in Brooklyn, New York City, using historical vehicular traffic data collected

from [11]. It then generates the channel conditions between each VU and the 20 RSUs located

in the area based on street topology and the real-time location of vehicles. VU’s transmit power

is 23 dBm. The channel condition is generated by using B1 Manhattan grid layout [44] as the

pathloss and slow fading models, and the Nakagami-m distribution [45] as the fast fading model.

At each time slot, VUs are associated with the strongest signal RSU. The geographical layout of

the simulated neighborhood and RSU locations are displayed in Fig. 3.14.

Fig. 3.15 shows the simulated history of the number of associated VUs for 4 of the busiest

RSUs from 6:00 to 22:00. These 4 RSUs have the highest average number of VUs from 6:00 to

22:00 in the neighborhood. To demonstrate the performance of FORMOSA over a large number

of VUs, for the following experiment, we pick RSU 1 (the busiest RSU) and its associated VUs at
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each time slot from 14:00 to 20:00 (i.e., the region between the two black dash lines in Fig. 3.15)

for performance evaluation. Note that based on Fig. 3.13a, we can observe that FORMOSA

can support up to 10 VUs if we want to guarantee less than 500 ms of end-to-end fusion delay.

We believe the above limitation is mainly due to the VEC server computing capacity constraint.

Based on Fig. 3.15, the number of VUs for RSU 1 can be close to 20. Therefore, we expand

the VEC server computing capacity by adding two more Nvidia Jetson Xavier boards to the

VEC server. At each time slot, we will execute the following VU distribution mechanism before

executing FORMOSA. The mechanism will first sort VUs by the value ôi
rb,i

, where ôi and rb,i

are the predicted number of detected objects and uplink data rate (assuming Bi = 1) for VU i,

respectively. Then it will evenly distribute VUs by the sorted order into 3 groups and assign each

group to a VEC server (i.e., one Jetson Xavier board). FORMOSA is then executed separately

for each group. The available bandwidths are separated evenly to each group.

After the multi-vehicle perception fusion is complete for each group, extra object match-

ing tasks will be executed to match the resulting detected distinct objects across different groups.

Therefore, the corresponding object matching task execution delays are added to the maximum

end-to-end fusion delay among all the groups. The complete end-to-end fusion delay is then

estimated as,

max
v∈V

Fv = ( max
v′∈Vg,1≤g≤G

Fv′)+
1
G

G

∑
g=1

G

∑
q=g+1

og ∗oq (3.20)

where G is the number of VU groups (i.e., 3), og and oq are the number of distinct objects

detected by VUs in groups g and q, respectively. Vg is the set of all the multi-vehicle perception

fusion tasks for group g. Fig. 3.16 shows the complete end-to-end fusion delay performance of

the compared 4 algorithms for associated VUs of RSU 1 between 14:00 to 20:00. Each data

point in the figure is the average over all the simulated time slot in a 10-minute period. The

performance of FORMOSA is the best among all the algorithms. The average end-to-end fusion

delay of LSEO, CEFO, and PCSO over the simulated period are 23.1%, 11.3%, and 18.2% worse

than FORMOSA. Moreover, the gap between FORMOSA and the second-best algorithm, CEFO,
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Figure 3.15. History of the number of associated VUs of the busiest 4 RSUs from 6:00 to 22:00

will further increase to over 13% when the number of VUs peaks between 17:00 and 18:00. Note

that the number of VEC servers is not limited to 3. Based on the traffic load pattern of an RSU,

our algorithm allows the service provider to support a higher number of vehicles, by choosing a

higher VEC server capacity (e.g., using multiple VEC servers).

3.7 Conclusion

In this paper, we propose a real-time joint task partitioning, offloading, and scheduling as

well as bandwidth allocation algorithm, FORMOSA, for an edge-based multi-vehicle perception

fusion system. FORMOSA minimizes the end-to-end fusion application delay of the perception

fusion application while addressing joint parallel and sequential task dependencies, varying

uplink channel conditions, as well as uncertain task graph challenges. With real-world trace-

driven simulation results, we demonstrate that FORMOSA significantly reduces the end-to-end

fusion application delay compared to existing algorithms under various resource availability and

VU density scenarios. Nowadays, as the vehicular applications are becoming more and more

compute-intensive and latency-sensitive, our research facilitates the network service providers
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Figure 3.16. End-to-end fusion delay for RSU 1 from 14:00 to 20:00

and vehicular application designers an additional dimension of using RSU to accelerate the

execution of vehicular applications. Moreover, with the real-world trace-driven simulation results

provided, they will be able to determine the adequate communication and computing capacity of

RSUs for the expected end-to-end fusion delay performance and VU density.

Chapter 3, in full, has been submitted for publication of the material as it may appear in

IEEE Transactions on Vehicular Technology 2023, Yu-Jen Ku, Sabur Baidya, and Sujit Dey. The

dissertation author was the primary investigator and author of this paper.
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Chapter 4

Conclusion

This thesis has presented several methodologies to address existing and new challenges in

enabling delay-sensitive modern vehicular applications by using resource-limited RSU-assisted

VEC systems. The presented methodologies address the challenges of using edge computing

resources to assist vehicular applications and the challenges of communication, computing, and

energy resource allocation for the RSU.

Chapter 1 has presented a two-phase approach that jointly optimizes solar energy usage

and storage, user association, and RSU’s computing and communication resource allocation for

Solar-powered RSU-assisted VEC systems. The approach minimizes service disruption of the

offloaded vehicular applications under the intermittent solar power supply.

Chapter 2 has presented an algorithm that further reduces the vehicular application’s

execution delay by using computing resources from both the VEC server and the VLC units.

Furthermore, the algorithm is able to adjust the VEC server’s platform configuration and appli-

cation’s detection accuracy performance based on the available resources at the RSU. We have

also implemented an object detection vehicular application on a low-power edge computing

platform and established empirical models for the RSU-assisted VEC systems running vehicular

applications. Analysis based on the empirical models shows the ability of the proposed algorithm

to minimize the application’s end-to-end delay while maximizing its detection accuracy.

Chapter 3 has presented a real-time mechanism to minimize the end-to-end delay of a
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more comprehensive vehicular application, the multi-vehicle perception fusion application, using

the RSU-assisted VEC system. The mechanism jointly determines the optimal RSU’s computing

and communication resource allocation, as well as task partitioning and scheduling strategies,

which are adaptive to the dynamic task composition of the application. Numerical results with

real-world traffic data simulation show that the proposed approach significantly reduces the

end-to-end delay of the fusion application compared to existing techniques.

In the future, we would like to extend our research in the following directions. Firstly,

for the solar-powered RSU-assisted VEC system, when the generated solar power is low due to

weather conditions, vehicular applications will always have the risk of experiencing high QoS

loss or high execution delay, even with our proposed approaches. Hence, we plan to investigate

including other RE sources (e.g., wind energy) to ensure diversity of energy supply and, more

surely, minimize the QoS loss and execution delay.

Secondly, we plan to investigate the feasibility of using solar or other renewable energy

power sources to support the RSU-assisted VEC system for the multi-vehicle perception fusion

application. Renewable energy-powered RSUs are more sustainable and easier to deploy com-

pared to grid-powered RSUs. However, both the RSU’s communication and computing resources

will be constrained by the limited energy supply. Therefore, the corresponding optimal resource

allocation to minimize the application’s end-to-end delay will be more challenging.

Finally, the multi-vehicle perception fusion application supported by the RSU-assisted

VEC system, we would like to study a content-aware task offloading scenario for vehicular

perception fusions based on the information that each detected object contains e.g. image,

moving direction, object type, and how such information can benefit the perception of the current

or future vehicular environments.
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