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The world’s ecosystems are losing biodiversity fast. A satellite mission designed to track changes 
in plant functional diversity around the globe could deepen our understanding of the pace and 
consequences of this change and how to manage it.  
 
The ability to view Earths’ vegetation from space is a hallmark of the space age. Yet decades of 
satellite measurements have provided relatively little insight into the immense diversity of form 
and function in the plant kingdom in space and time. Humans are rapidly impacting biodiversity 
around the globe1,2, leading to the loss of ecosystem function3, and the goods and services they 
provide4,5. Recognizing the gravity of this threat, the international community has committed to 
urgent action to halt biodiversity loss6-9. 

Ecosystem processes10–12 are often directly linked to the functional biodiversity of plants, 
that is, to a wide range of plant chemical, physiological and structural properties, connected to 
the uptake, use and allocation of resources. The functional biodiversity of plants varies in space 
and time and across scales of biological organization. Capturing and understanding this variation 
is vitally important for tracking the status and resilience of Earth’s ecosystems, and for 
predicting how our ecological life support systems will function in the future. 

We currently lack consistent, repeated, high-resolution global-scale data on the functional 
biodiversity of the Earth’s vegetation2,10–12. However, the technological tools, informatics 
infrastructure, theoretical basis, and analytical capability now exist to produce this essential data. 
Here we suggest that this capability is utilized in a satellite mission supporting a Global 
Biodiversity Observatory, that tracks temporal changes in plant functional traits across the globe 
to fill critical knowledge gaps, aid in the assessment of global environmental change, and 
improve predictions of future change. The continuous, global coverage in space and time such a 
mission would provide has the potential to transform basic and applied science on diversity and 
function, and to pave the way to a more mechanistically detailed representation of the terrestrial 
biosphere in Earth system models.  
 
The data and knowledge gap 
Plant functional biodiversity encompasses the wide-ranging variation in the chemical 
physiological and morphological properties of plants, such as the concentration of metabolites 
and nonstructural carbohydrates in leaves and the ratio of leaf mass to leaf area. These attributes 
are related functionally to the uptake, allocation and use of resources, such as carbon and 
nutrients, within the plant, and to defense against pests and environmental stresses. 

Functional properties vary within and among individuals (for instance as determined by 
the position of a leaf on a plant, or a tree in a forest), populations, species and communities, and 
may be measured at any of these levels of biological organization. With increasing spatial scale 
(and thus decreasing spatial resolution of measurement), the capture of functional properties may 
increasingly represent the aggregate properties of many individuals and species, reflecting the 
functional biodiversity of whole communities. Aggregate “functional diversity” metrics that 
characterise the breadth of functional properties of a group of organisms are known to be 
strongly associated with taxonomic13 and phylogenetic14 measures of biodiversity and their 
potential decrease under habitat loss15. Plant functional biodiversity is also closely linked to 
ecosystem processes such as carbon, water and energy exchange, which enables a direct 
integration with Earth system models16,17. Global information on the functional composition and 
diversity of plant communities thus provides a necessary foundation for monitoring, 
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understanding and predicting the productivity of ecosystems, and for relating productivity and 
carbon uptake to other critical ecosystem services.  

Available global data on plant functional biodiversity are grossly incomplete and non-
representative taxonomically, geographically, environmentally, temporally and functionally. 
While datasets of traits and their connection to function continue to grow18,19, local observations 
of plant functional traits are limited along multiple dimensions. On average, only around 2% of 
currently known vascular plant species have any trait measurements available at the regional 
scale (here defined as a 110 km x 110 km grid cell, N = 11,626), and the portion is even smaller 
in the species-rich tropical regions (Fig. 1). Data on other biodiversity attributes such as species 
occurrence, abundance, and biomass hold similar biases20,21. These spatial and environmental 
data gaps and biases are exacerbated by even scarcer information on temporal variation in plant 
functional biodiversity. Even in areas in which current data are relatively complete, widespread 
biodiversity change driven by anthropogenic pressures is rapidly outpacing incremental gains in 
our knowledge of the Earth’s biodiversity afforded by in situ biodiversity sampling22. 
Furthermore, existing “global” datasets have not been collected consistently or systematically, 
but instead compiled post hoc from thousands of disparate research activities, often not designed 
to address long-term trends or large-scale patterns23. These severe sampling inhomogeneities and 
resulting biases are not readily overcome statistically, and continue to impose severe limits on 
inference and application in global biodiversity science21,24,25.  An integrated system for rapidly 
and consistently monitoring plant functional diversity globally is thus urgently needed.  
 
Filling the gap 
Remote sensing has already proven itself to be a pivotal technology for addressing the global 
biodiversity data gap. Data on plant productivity, phenology, land-cover and other environmental 
parameters from MODIS and Landsat satellites currently serve as reasonably effective covariates 
for spatiotemporal biodiversity models based on in situ data12,20,26. However, the coarse spectral 
resolution of current satellite-borne sensors has so far prevented a more direct capture of 
biodiversity, and correlative models are limited by the above-mentioned data gaps.  

In contrast, imaging spectroscopy is a well-established, continuously advancing 
technology capable of monitoring terrestrial plant functional biodiversity in a way that is vastly 
richer and more sensitive than other remote sensing techniques22,27,28. It captures environmental 
information at extremely fine spectral resolution by simultaneously mapping the reflectance and 
emission of light from the Earth’s surface in hundreds of narrow spectral bands, producing 
essentially continuous spectra from the visible to infrared wavelengths29.  Distinctive features are 
imprinted in these spectra as light interacts with the chemical bonds and structural composition 
of plants. Spectra are thus an aggregate signal of the chemical and structural composition of 
vegetation, and can be directly related to a number of leaf biochemical and morphological 
functional traits (Table 1; 30–32). Air- or satellite-borne spectrometers are able to measure the 
aggregate functional traits of plant communities represented in the top layers of vegetation, and 
even the attributes of single species directly, depending on community spatial and spectral 
characteristics33. This capability has been successfully demonstrated using airborne 
spectrometers for many traits at regional scales across multiple biomes34,35. Similar techniques 
exist at various stages of development for characterizing freshwater36 and tidal ecosystems 37, 
marine phytoplankton38,39 and coral reefs40. Satellite technology is now poised to provide global 
coverage at spatial resolutions sufficiently fine (30 m to 60 m pixel size) to support biodiversity 
inference and applications.  
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Linking spectra, traits, phylogenies and distributions across scales 
A Global Biodiversity Observatory would integrate remotely sensed information on functional 
traits together with other remotely sensed information and in situ observations of phylogenetic 
relationships, functional traits and species distributions (Fig. 2). Such an Observatory would not 
be without challenges. Cloud cover, especially in the tropics, poses constraints for any optical 
remote-sensing method aiming to be spatially and temporally representative (but see 41 for some 
encouraging evidence regarding space-based spectrometry). Further, direct measurements of 
plant traits by imaging spectroscopy are currently limited to only those traits with a clear spectral 
signature expressed in the canopy layer (Table 1), rendering root and stem traits hard to capture. 
Finally, the vast quantity of data generated will constrain the spatial resolution a global mission 
can support, at least initially: envisioned spatial grains of around 30m will limit the direct capture 
of individuals or stands of single species to select cases. 
  The convergence of imaging spectroscopy with other remote sensing advances, together 
with prominent developments in plant biology and biogeography, can pave the way to a more 
integrated global assessment of plant functional biodiversity. Specifically, spectroscopic trait 
measurements combined with LiDAR data on ecosystem vertical structure at similar spatial 
resolutions may dramatically enhance the ecological interpretation of the spectral imagery and 
help overcome its limitation to surface signals only42,43. In addition, the continuing development 
of a global plant trait database should provide a means to both directly and indirectly connect, 
through models, spectral observations from the top layer of vegetation to a variety of plant 
traits18. While significant gaps remain (Fig. 1), select trait data has now been collected in situ for 
more than 100,000 vascular plant species, providing a means to both directly and indirectly 
connect, through models, spectral observations from the top layer of vegetation to a variety of 
plant traits.  And the global phylogeny (tree of life) for plants is becoming ever more complete44, 
enabling researchers to trace the evolutionary history of plant traits within lineages45. While for 
some traits and functions convergent evolution has pulled disparate, and often geographically 
distant, lineages into functional similarity46–49, traits and associated functions are in many cases 
conserved to relatively deep phylogenetic levels50–52. In combination, this provides several 
relevant opportunities. For example, advances in macroevolutionary models and data gap-filling 
techniques53–55 when coupled with increasingly complete phylogenies can allow for the 
prediction of traits for species lacking observations.  Further, the strong phylogenetic signal in 
the individual traits that make up overall functional biodiversity means that spectral observations 
of aggregate species may in some cases still be meaningfully connected to specific functional 
properties or clades, and interpreted or monitored as a unit56. 

The increasing volume of online species occurrence data is a fourth synergistic 
development that supports the predictive modeling and mapping of species' and plant community 
distributions57. Combined with trait and phylogenetic data, and potentially other ecological 
information (such as typical stand density), hierarchical statistical models and downscaling 
techniques58,59 may, with some uncertainty, allow the pinpointing of particular species and the 
make-up of communities. We hypothesize that such predictions will generally be much more 
effective at coarser levels of biological organization, such as higher-level clades or other well-
characterized species groups that can be associated with the aggregate functions of the spectral 
signal of a pixel. 

The envisioned imaging spectroscopy mission will naturally provide only some of the 
data required for global biodiversity monitoring and modeling. Nevertheless, the model-based 
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integration of detailed and global spectral information with other remote sensing data and rapidly 
growing in situ biological information points to an array of transformative new opportunities for 
monitoring plant functional biodiversity through space and time.  
 
Toward a Global Biodiversity Observatory 
Scaling up processes from fine-grained local studies to large regions and the globe is an urgent 
challenge for all of the Earth sciences. Environmental understanding at larger scales requires 
observations that capture dimensions of the entire system to place the microscale measurements 
in context. Plant functional biodiversity observations from space have the potential to provide a 
global context for biodiversity science, and to link the evolutionary and functional diversity of 
plants at local scales to ecosystem function around the globe. Such information would link key 
dimensions of diversity to ecosystem processes including the carbon cycle, the water cycle and 
the provisioning of ecosystem services. And it would revolutionize large-scale research on the 
stability and resilience of ecosystems to shocks such as drought, fire and pathogen outbreaks. 
Several space missions planned for launch within this decade 60, such as EnMAP 61 (DLR/GFZ, 
Germany) and HISUI62 (JAXA, Japan), will have some capability for mapping plant functional 
diversity over limited geographic areas. However, none of these will provide the spatial 
coverage, repeat frequency or mission duration needed to monitor ecosystem relevant changes in 
global plant functional biodiversity through time. Satellites technology such as that proposed for 
HyspIRI63, a mission called for in the 2007 NRC Decadal Survey64, would be able to serve the 
initial remote sensing capabilities of the envisioned Global Biodiversity Observatory, but no 
satellite development process or launch date has yet been determined.  

Predicting how ecosystems and the services they provide will respond to accelerating 
environmental change requires more comprehensive, globally-consistent and repeated data on 
the patterns and dynamics of functional biodiversity. Advanced observing technology, available 
but not yet deployed at scale, integrated with in situ measurements65 could transform this 
situation. The envisioned Global Biodiversity Observatory offers vastly more biologically 
relevant and spatially and temporally highly resolved information about vegetation than any 
existing or otherwise planned global sampling or observation scheme.  Rates of change today are 
so high that the longer a global spectroscopic mission is delayed, the more biological information 
is irretrievably lost22. The earliest possible launch of a mission able to spectroscopically monitor 
key plant functional traits globally is an urgent priority for understanding and managing our 
changing biosphere. 
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Table 1: Key functional plant traits that are remotely observable from space (see Table S1 for 
additional traits). 
 
 

Trait Trait definition Trait functions Trait 

role 

Remote 

observation 

 
Leaf Mass Per Area 

(LMA) [g m-2] 
 
 

One-sided area of a fresh leaf divided 

by its dry mass. The reciprocal is 

specific leaf area (SLA.  

A primary axis of the 

global leaf economics 

spectrum11 
49,66,67 34,35,68–70 

Nitrogen (N) [%] 
 

Concentration of elemental nitrogen in 

a leaf or canopy.  

Important for 

photosynthesis and 

other metabolic 

processes as a 

constituent of plant 

enzymes. 

67,71,72 34,35,73–75 

Non-structural 

carbohydrates (NSC) 

[%] 
 

Direct products of photosynthesis 

(sugars and starches), not yet 

incorporated into plant structural 

components and thus readily 

assimilable 

Useful as an indicator 

of tolerance to 

environment stress 76 77 

Chlorophyll [mg g-1] Green pigments  

Responsible for 

capturing light in the 

process of 

photosynthesis. 

78,79 35,80,81  

Carotenoids [mg g-1] Orange and yellow pigments  

Involved in the 

xanthophyll cycle for 

dissipating excess 

energy and avoiding 

oxygen radical 

damage under stress 

conditions (drought, 

chilling, low 

82,83  31,35 
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nutrients). 

Lignin [%] A complex organic polymer  

Provides mechanical 

support and a barrier 

to pest and 

pathogens; negatively 

correlated with tree 

growth rate and 

microbial 

decomposition. 

84,85 32,35,73,86 
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Figure 1: The data gap in regional species trait measurements. Latitudinal variation in the 

number of vascular plant species for which at least one trait has been measured regionally (white, 

left axis) in relation to all species expected for that region (right, black axis). Regions are here 

defined as 110 km x 110 km grid cells (N = 11,626), their expected richness is from 25, and 

region trait data comes from TRY18 (version June 2015). Regions are analyzed at the grid cell 

level and their variation is summarized in latitudinal bands of five degrees width. On average, 

only ca. 2% of species have any such regional measurements, and the data gap is largest in the 

tropics, limiting understanding of both biodiversity and of ecosystem function and services. 

 
Figure 2: The Envisioned Global Biodiversity Observatory. Space-based imaging spectrometer 

sensors capture global spatial data on key functional attributes in time, including leaf mass per 

area (LMA), nitrogen (N), and non-structural carbohydrates (NSC) and others (Table 1). Other 

sensors may contribute measurements such as LiDAR. An informatics infrastructure and 

appropriate modeling techniques connect this information with trait, evolutionary and spatial 

biodiversity information collected in situ worldwide at different spatial scales and levels of 

biological organization.  
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