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Processing time-warped sequences using recurrent neural networks:
Modelling rate-dependent factors in speech perception
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Neural Networks Research Group
Department of Psychology
University of Edinburgh
Edinburgh EH8 9JZ
UK.
mukhlis@cogsci.ed.ac.uk

Abstract

This paper presents a connectionist approach to the
processing of time-warped sequences and attempts to
account for some aspects of rate-dependent processing
in speech perception. The proposed model makes use
of recurrent networks, networks which take input one
at a time and which can pick up long-distance depen-
dencies. Three recurrent network architectures are
tested and compared in four computational experi-
ments designed to assess how well time-warped
sequences can be processed. The experiments involve
two sets of stimuli, some of which reflect aspects of
rate dependent processing in speech; one where the
sequences are distinguished by the way their consti-
tuent elements are sequentially ordered, and another
where the sequences share similar arrangement of the
constituent elements but differ in the duration of some
of these elements. The results establish certain condi-
tions on rate-dependent processes in a network of this
type vis-a-vis the obligatory use of rate information
within the syllable, and throw some light on the basic
computer science of recurrent neural networks.

1. The problem of time-warped sequences

Time-warping of utterances occur frequently in
conversational speech. This results from speakers'
tendency to speed up and slow down when they talk
rather than maintain a constant rate of speech. The
variation in rate that occurs in conversational speech
can be substantial (Miller, Grosjean & Lomanto 1984).
At the lexical level, such time-warping can be seen as
a distortion in the temporal structure of words so that
some parts of the word may be compressed, others
stretched, and some remain durationally invariant to
changes in the speech rate. Yet listeners appear to
have little difficulty making the appropriate perceptual
adjustments for these variations.

The problem is more complex at the phonetic level.
As articulation time is altered due to changes in the
speech rate, certain acoustic properties that specify the
identity of phonetic segments are modified, since they

* Also Department of Linguistics, University of Wales,
Bangor, Gwynedd LL57 2DG, UK.

191

Nick Chater
Neural Networks Research Group
Department of Psychology
University of Edinburgh
Edinburgh EH8 9JZ
UK.
nicholas@cogsci.ed.ac.uk

are themselves temporal in nature. For instance, a
short duration of some property may specify one
phonetic segment while a longer duration specifies
another (Lisker & Abramson 1964). This may cause a
problem for deriving the phonetic structure of an
utterance. Again, listeners are able to maintain
perceptual constancy in the face of such changes
(Summerfield 1981).

To-date, there have been various standard attempts
at solving time-warping problems (e.g., hidden
Markov modelling (Huang, Ariki & Jack 1990) and
dynamic programming (Sakoe & Chiba 1971)).
However, these are essentially engineering in design
and claim little psychological relevance. The present
work attempts to fill this gap by offering a processing
account of the rate adjustment process using
connectionist tools.

2. Using recurrent backpropagation

Recurrent neural networks have been widely used in
modelling sequence processing (e.g. Elman 1990).
The presence of recurrent connections gives the
network the opportunity to store information about
past items, and thus to respond on the basis of the
sequence as a whole, rather than just the present input
item. In the present application, the network must
ascertain the rate of speech from the sequence of past
input, and use this information to classify later
material. The networks are trained to classify input
sequences into a small number of categories, in some
cases corresponding to different syllables.

These networks are trained by recurrent back-
propagation (Rumelhart, Hinton & Williams 1986) in
which the recurrent network is unfolded into a
feedforward network (Fig 1). This network is trained
using conventional backpropagation, with the
constraint that the weight changes for each link in the
original recurrent network are the sum of the weight
changes for each copy of that link in the unfolded
network, so that the feedforward network can be
folded back up into a recurrent form. This is a slightly
different training regime from that used in related
work (Elman 1990; Norris 1990), but this method is
preferred since recurrent backpropagation appears to
be better at encoding information across many items in
a sequence (see Chater and Conkey 1992 for dis-
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Figure 1. (a) A folded recurrent network
(b) Network unfolded through three time-steps.

cussion). All simulations were implemented using the
Xerion simulator (van Camp, Plate & Hinton 1992).

2.1. Comparing architectures

Perhaps the main advantage of using recurrent
networks is their ability to treat speech as a sequence
of events and take input one at a ime. We trained the
network by feeding it with the relevant sequences one
element at a time and keeping the target output pattern
present throughout the presentation of each sequence.
The production of the correct output when the
sequence is presented indicates that the sequence has
been classified successfully. If performance is
optimal, correct classification should occur after the
"recognition point" of the category is reached - that is,
when enough of the sequence has been encountered
that it can be classified unambiguously (Norris 1990
uses a model of this kind to capture cohort effects in
word recognition).

To see how well networks can make such classi-
fications with time-warped stimuli, we compared this
basic architecture (Network A) with two minor
variants. These networks contain additional output
windows of different lengths at the output layer (Fig
2). In one (Net B), this output window contain nodes
representing inputs at the past and future two time
slices and the current input (cf. Maskara & Noetzel
1992; Shillcock, Lindsey, Levy & Chater 1992). For
the other variant of the network (Net C), the nodes in
the extra output window represent input at t+2 time
step only. In contrast to the target output which
remains constant, these additional outputs change with
the presentation of each input. The idea is to force the
network to pay attention to the individual elements
being presented in succession for a specified window
and/or to prepare the net to accept inputs that arrive at
a specified time in the future.

3. Non-duration-based stimuli

The interesting question we asked ourselves was: how
might a recurrent network solve the problem of
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Figure 2. Folded versions of (a) Network A,
(b) Network B, (c) Network C

learning to classify a set of sequences presented at a
rate it was not familiar with? In our first two series of
studies, we used sequences which were unique in the
sequential order of their constituent elements and
whose respective identities remained unaffected by
changes in the duration of these elements. Two train-
ing versions and one test version of 27 sequences were
built from all possible combinations of three numbers;
each version representing different rates of input. The
rate at which the test sequences were presented were
intermediate between the two training sets. The num-
bers were implemented as three-bit binary elements.

3.1. Simple variation of input

The stimuli for the first experiment were prepared
following the procedure used by Norris (1990). The
stimuli comprised a 'fast’, ‘medium’ and 'slow’' series,
the 'medium’ series being set aside as test items. In the
‘fast' series each element of a sequence remained con-
stant for one time slice, in the 'medium' series, this is
extended to two units of time each, and in the 'slow’
series, each element lasted for three units of time.
Table 1 illustrates the temporal composition of a pat-
tern across the three rates.

In this and the next set of simulations, the basic
network consists of an input layer of 3 input nodes, a
single hidden layer of either 30 or 36 nodes, and an
output layer of 27 nodes. The two variants of the net-
work contain an additional 15 and 3 output nodes res-
pectively. The networks were unfolded for 13 cycles
during training. We ran each simulation twice with a
different weight start. Batch leaming was employed.

Table 1. Breakdown of rate sequences for a temporal
pattern ABC

Time Jt1 Jt2 Jt3 |t4 |t5 |t6 |t7 |t8 |9
Fast Al]B |C

Slow |[AJAJA|B |B |B |C |C |C
Test AJlA|]B |[B |C |C




Table 2. Results from the best of two weight starts,

Net A |[Net B |Net C
no. h.u.s 30136130} 36 30| 36
no.targets | 2527|124 26| 25| 26
correct
no. identified | 20 | 21| 22| 22| 21} 21
on time

Results Training ceased when the sum-squared error
of the training set no longer decreased by at least a ten
thousandth of a fraction. Total training time was
usually between 1,000 to 2,000 iterations. The net-
work leamned the training set to a total sum-squared
error of less than 250. In interpreting network
response, we used a winner-take-all criterion. Since
the uniqueness point of each training sequence can be
determined a priori, the nets' performance in
identifying the winning node with respect to these
uniqueness points was also compared.

All the three nets correctly classified all the training
stimuli (Table 2). The nets also performed surprisingly
well with the test stimuli. A large proportion of these
correct responses were achieved at the point the
sequences became unique. Figure 3 demonstrates the
recognition process of the 'medium’ version of pattern
132 (appeared as 113322). Notice that the sequence of
input up to the third time step is an exact copy of the
fast’ version of pattern 113. Since the net has learned
to recognize this pattern during training, it responded
by exciting the output node of this pattern. However,
as more information became available with the pre-
sence of subsequent input, this earlier decision was
revoked; activations of pattern 113 began to decrease
while that of pattern 132 increase. At the fifth time-
step, pattern 132 was declared the winner. Two other
competing patterns are also shown in the figure. The
nets' strategy was to accumulate just enough informa-
tion to make the final decision; this usually coincided
with the uniqueness point of the relevant sequence.

3.2. Complex variation of input
In real speech, changes in rate do not result in a simple

compression and expansion of the speech signal as
modelled in the previous section. Rather the time
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Figure 3. On-line recognition of the test sequence
113322 (obtained by network C)

the absolute and relative durations of vowels.
Evidence has shown that an increase in speech rate
reduces the duration of a long vowel ([i]) more than a
short vowel ([I]), so that the absolute difference
between the two vowels is reduced at the faster rate of
speech (Miller 1981). In this section we modified the
earlier stimuli to incorporate such complexity.

Instead of varying the duration of all the elements of
the sequences linearly, only some were varied linearly,
while others nonlinearly (Table 3). Two versions of
these stimuli were constructed (versions Z and X) by
switching the rate at which the durations of the first
and third elements of each sequence grow in length.
As in the previous experiment, the medium series in
both versions served as the test set.

The motivation behind having two versions of the
complex variation of sequences was the intuition that a
left-to-right processing model of this kind will exact a
higher cognitive cost if the transition from one element
to another occurs much later in the sequence than if it
occurs earlier in time, since the system must learn to
pay attention to temporally more distant information.
We wanted to confirm this intuition.

Results Again all the nets were successful in correctly
classifying the training stimuli. As shown in Table 4,
the nets also handled quite well the test stimuli,

Table 4. Results from the best of two weight starts.

warping is quite complex. One case in point concems VersionZ | Net A |Net B |Net C
no. h.u.s 30 ] 36 ] 30 | 36 | 30 | 36
Table 3. Breakdown across rates for a temporal no.targets | 27 | 27 | 27 | 27 | 27 | 27
pattern ABC correct
no. identified § 27 | 27 | 27 | 26 | 27 | 27
Time tl 2 |3 Jtd4 Q5|6 |t7 |t8 on time
Fast AlB|C Version X
Version | Medium JA |B |B |C |C no. h.u.s 30 | 36 | 30 | 36 | 30 | 36
Z Slow JAIBIBIBICICICIC no.targets | 22 [ 25 [ 21 [ 22|26 | 23
Fast A|lB|C correct
Version | Medium JA JA |B |B |C no.identified | 22 | 25 | 15 | 17 | 24 | 19
X Slow AJAJAJA|BI|B|B|C on time
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recognizing a large number of them at their unique
points. However, as expected, version X proved more
difficult for the networks as compared to version Z.

Comparatively, network B performed less better
than the other two networks. A look at the activity of
its target nodes suggested that the net has a much more
powerful discriminant decision capability than the
other networks, but this held only for the training
phase; the net, in fact, wasn't as good at generalizing
for this group of stimuli.

4. Duration-based stimuli

In the last two experiments, the duration of the consti-
tuent elements of a sequence made no difference to the
identity of that sequence. In this section, we consider
a set of sequences whose identity depends on the dura-
tion of these very elements. This occurs in real speech
and is extensively discussed in the speech production
and perception literature (see Miller 1981 for a
review). One commonly cited example involved the
voicing distinction between /bi/ and /pi/ as specified by
the voice onset time (VOT). These syllables can be
differentiated simply by the duration of this property:
the VOT of /b/ being typically shorter than that of /p/.
More importantly, however, as speaking rate changes
from fast to slow and the individual words become
longer, the criterion VOT value that distinguishes /b/
and /p/ also move toward longer values (Miller, Green
& Reeves 1986). Interestingly, the perceptual system
seems to adjust accordingly, as though taking into
account the change in rate and treating VOT in a rate-
dependent manner when categorising voiced and
voiceless stop consonants (Summerfield 1981). Our
goal is to work towards a first approximation of this
rate normalization process.

In general, the magnitude of the boundary shift
obtained for production data was greater than that typi-
cally found in perceptual experiments (Miller, et al.
1986). Although we remain agnostic about which data
our stimuli were modelled after, for consistency, they
can be taken as modelling production data.

The stimuli were loosely patterned after the
synthesized syllables used by Volaitis & Miller (1992).
We represent the /bi/ and /pi/ syllables as follows:

/bi/ —-> 21133333333333444444
Jpi/ > 21111111111333444444

where the number correspond to various acoustic
properties, in this case, 2 refers to the release burst, 1
silence, 3 transition, and 4 steady-state. Each property
is repeated depending on how long we want to repre-
sent the duration of that property in the syllablel. The

I synthetic stimuli, the standard way of incrementing
VOT is by replacing periodic portions of the transitions with
aspirated portions instead of silence but we didn't consider
this minor variation as crucial for the simulations.
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representation for /pi/ was derived simply by length-
ening the VOT (counted from the onset of burst till the
offset of silence) of the /bi/ syllable. This meant
replacing the transition portions with a lengthening
silence.

The properties were implemented as 4-bit patterns.
The basic network consisted of 4 input units, 5 or 10
hidden units, and 2 output units. The two variant
networks have additional output windows of 20 and 4
nodes respectively. In this and the next set of
simulations, the nets were unfolded for 36 time cycles
during training.

4.1. Non-overlapping stimuli

From the speech production data of Miller et al.
(1986), it appears that within place of articulation,
there is some overlap in the distribution of VOT values
for voiced and voiceless consonants across different

speech rates2. In this section, however, we assume no
overlap of VOT values across rates. This should be a
straightforward task from the processing point of view:
a property that lasts for a certain time range specifies
one segment, and another if it extends beyond that
range. Several /bi/-/pi/ pairs were constructed across

six rates3. Figure 4 shows how the VOT values for
the syllables vary across these rates. One of the
(vertical) pairs was set aside as test material.

Results All the nets were able to handle both the
training and test stimuli. The fact that the net was able
to make appropriate generalisations was interesting.
As expected, the mechanism employed by the nets
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Figure 4. VOT against syllable duration (Items
circled used as tests)

2 Overlap here is defined as the range of VOTS between that
value obtained in a voiceless token produced at the fastest
speech rate and that value obtained in a voiced token pro-
duced at the slowest speech rate. This differs from the com-
mon use of the term which defines overlap locally in relation
to a particular speech rate specified by the syllable duration.

3 In natural speech, there is no one-to-one mapping between
speech rate and VOT for both voicing categories, as assumed
in this paper. Instead, for any given speech rate, listeners
often encounter tokens of both categories produced with not
only just one VOT each but a range of VOTs.



operates in terms of a criterion VOT boundary range,
such that stimuli with VOTs lower than the criterion
are classified as /b/ and those with higher VOTs are
classified as /p/. Syllable duration is therefore irrele-
vant in cueing phonetic distinction and has no in-
fluence over the perceptual task for this group of non-
overlapping stimuli. The offset of the VOT was the
critical point in the syllable that triggered the contrast.

4.2. Overlapping stimuli

In this section, we asked how the nets might perform
in the face of stimuli whose VOT values overlap over
a certain range, as are in real speech. Figure 5 shows
the distribution of the /bi/-/pi/ syllables across VOTs
and syllable durations. Three of the /bi/-/pi/
(horizontal) pairs are within the overlap range; they
share VOT values but differ in syllable duration, as
illustrated below. Sequence A is a /pi/ syllable
presented at a faster speech rate (as specified by a
shorter syllable duration) than sequence B, a /bi/
syllable, but their VOT values are identical. To
recover the intended phonetic segment specified by the
VOT value, one has to consider the entire syllable.

A /pi/ 21113333344444
B /bi/ 21113333344444444444

Two (vertical) pairs were set aside as test material. Of
these, one (horizontal) pair (with identical VOTSs)
assumes the form A and B above.

Results All the networks were successful in learning
to classify the training stimuli including those within
the overlap range. However, only networks B and C
were able to generalize appropriately all the test
stimuli. The syllables in the overlap range proved
difficult for network A. It classified both /bi/ and /pi/
as /bi/. Nevertheless, the fact that the other nets can
make appropriate generalisations with this kind of
stimuli was encouraging.

The on-line processing by the network revealed that
the identification of voiced and voiceless tokens lying
outside the overlap region was straightforward, with
performance reaching optimal point at the offset of the
VOT (Fig 6a). The processing of the tokens in the
overlap region, however, proceeded in two stages. In
the first stage, the VOT was calculated. Given that in
the stimulus set the VOT values for the voiceless
tokens are located at the higher end of the continuum,
the net showed a first preference for /pi/ by gradually
increasing the activation of /pi/ through the entire
length of the VOT. Upon reaching the end of the
VOT, however, the activation for the voiced and
voiceless tokens switched direction, triggered by the
possibility that a short VOT might indicate the
presence of a /bi/. In the second stage, syllable
duration was considered. Given that for each VOT
value in the overlap case the overall syllable duration
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Figure 5. VOT against syllable duration (Items
circled used as tests)

of the voiced tokens is always greater than the voice-
less tokens, the net assumed from the start of transition
that it perceived a /bi/. It thus reinforced the acti-
vations of /bi/ from that point on until it was classified
unambiguously. For the voiceless tokens, their acti-
vations began to pick up only at the offset of the
syllable; that is, syllable duration was, in this case,
critical for the identification of these tokens (Fig 6b).

§. Discussion

The basic computer science of the recurrent networks
emerged in an interesting way. Without additional
output windows, the networks work wonderfully well
in accomodating shorter non-duration-based time-
warped sequences as well as longer duration-based
sequences whose constituent elements do not overlap
in time. With additional windows, the networks
perform better with duration-based stimuli but
otherwise with non-duration-based ones. However, if
the output window is limited to serve only one input at
a time, in this case given a look-ahead of 2 time-steps,
the recurrent network can be made to accomodate all
types of time-warped sequences.

In terms of speech processing, the present finding is
significant in that it offers a plausible account for the
correspondence between the way in which a contextual
variable alters VOT values and the way in which the
variable secks relevance in the restructuring of the
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Figure 6a. On-line recognition of a fast /bi/ syllable
(duration 14), a token outside the overlap range.
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Figure 6b. On-line recognition of the test syllable /pi/
(duration 17), a token from the overlap range. Its acti-
vation shoots up at the offset of the syllable, at which
point it differs from the /bi/ syllable of identical VOT
but longer syllable duration (26 time-slice)

phonetic category in perception. We have shown a
mechanism whose strategy is to pick up information
carly in the syllable, and use only those that are rele-
vant to the contrast being judged, which means they
don't always have to consider all information within
the syllabic unit. Spcifically, where no overlap is
present, and the range of VOTs is distinct between /bi/
and /pi/ across different speech rates, syllable duration
is an unnecessary aid to phonetic distinction. But
where there is overlap in the VOT distribution as one
would find in real speech, the mechanism discrimi-
nates between stimuli on the basis of whether they are
within or outside the overlap region of the VOT conti-
nuum; the use of rate information as provided by the
syllable duration is obligatory only when processing
tokens from the overlap range (cf. Miller, 1987). This
raises some questions about the nature of the human
speech processing system. Firstly, in the face of
changing speech rates, is the system sensitive to the
structural distribution of temporal properties such as
the VOT that provide cues to phonetic contrasts? In
particular, does the system treat differently tokens that
belong to the overlap region and those that do not?
Secondly, assuming that the system can make a voic-
ing decision partway through the syllable, is the initial
decision made on the VOT and then changed due to
later rate information, or is the decision postponed
until the rate information is available? Apparently,
these are questions beyond the scope of this paper.

6. Conclusions

We have described a useful way of modelling some
rate-dependent factors in speech perception. This was
possible through the use of recurrent neural networks
whose behaviour brought out the aspects relevant to
understanding time-warping problems. Although we
cannot determine precisely how the representational
compromises that have been made contributed to this
behaviour, we were nevertheless encouraged by the
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results we obtained. Future work will necessarily have
to address this issue if more factors linked to effects of
speaking rate are to be accounted for.
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