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Abstract Prospective validation of methods for comput-

ing binding affinities can help assess their predictive power

and thus set reasonable expectations for their performance

in drug design applications. Supramolecular host–guest

systems are excellent model systems for testing such

affinity prediction methods, because their small size and

limited conformational flexibility, relative to proteins,

allows higher throughput and better numerical conver-

gence. The SAMPL4 prediction challenge therefore

included a series of host–guest systems, based on two

hosts, cucurbit[7]uril and octa-acid. Binding affinities in

aqueous solution were measured experimentally for a total

of 23 guest molecules. Participants submitted 35 sets of

computational predictions for these host–guest systems,

based on methods ranging from simple docking, to exten-

sive free energy simulations, to quantum mechanical cal-

culations. Over half of the predictions provided better

correlations with experiment than two simple null models,

but most methods underperformed the null models in terms

of root mean squared error and linear regression slope.

Interestingly, the overall performance across all SAMPL4

submissions was similar to that for the prior SAMPL3

host–guest challenge, although the experimentalists took

steps to simplify the current challenge. While some

methods performed fairly consistently across both hosts, no

single approach emerged as consistent top performer, and

the nonsystematic nature of the various submissions made

it impossible to draw definitive conclusions regarding the

best choices of energy models or sampling algorithms. Salt

effects emerged as an issue in the calculation of absolute

binding affinities of cucurbit[7]uril-guest systems, but were

not expected to affect the relative affinities significantly.

Useful directions for future rounds of the challenge might

involve encouraging participants to carry out some calcu-

lations that replicate each others’ studies, and to system-

atically explore parameter options.

Keywords SAMPL4 � Host-guest � Cucurbit[7]uril �
Octa-acid � Binding � Prediction � Blind challenge

Introduction

Structure-based computational methods for predicting

protein–ligand binding affinities are widely applied in the

pharmaceutical industry, to virtually screen and enrich

large compound libraries, for early-stage lead identifica-

tion, and in late-stage lead optimization [1]. However,

existing methods still cannot reliably rank candidate

compounds by affinity [2], and the goal of predicting

protein–ligand binding affinities to within typical experi-

mental uncertainties of perhaps * 1 kcal/mol remains

elusive. As a consequence, there is still a need for

improved techniques for computer-aided ligand design [3].

Methods for predicting protein–ligand binding affinities,

such as docking and free energy simulations, are typically
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tuned and tested based on existing binding data. This

approach is necessary and effective, but also poses a risk of

bias, often unconscious, due to the freedom to tune the

protocol and choose the operational parameters (e.g. vali-

dation sets, and simulation parameters such as force-field,

etc.) to achieve better agreement with experiment. When

such tuning is done widely, it can lead to over-fitting of the

available data, thereby artificially producing lower errors

and inappropriate confidence in the method. As a conse-

quence, retrospectively validated computational methods

often perform worse than expected when put to actual use

[4].

Prospective, blinded predictions are therefore of partic-

ular value for evaluating the predictive power of compu-

tational methods. The Statistical Assessment of the

Modeling of Proteins and Ligands (SAMPL) exercise [5–

7], as well as other blind prediction efforts including the

Community Structure–Activity Resource [4, 8], Critical

Assessment of Protein Structure Prediction [9], and the

pKa Cooperative [10] have proven the value of blind pre-

diction challenges in evaluating various computational

methods widely used for molecular modeling and drug

discovery. Although the first SAMPL challenges focused

mainly on prediction of solvation free energies and tauto-

meric states of drug-like small molecules [5, 6, 11, 12],

SAMPL’s scope has expanded significantly, through the

addition of not only protein–ligand but also host–guest

binding affinities, starting with SAMPL3 in 2011 [7, 13]

and continuing with the current SAMPL4 exercise [14, 15].

Host–guest systems offer a unique and useful validation

approach, as they bridge the scales of the other main

SAMPL challenges, i.e. solvation free energies and pro-

tein–ligand affinities. Supramolecular hosts are dramati-

cally simpler than proteins, owing to their smaller size (a

few hundred atoms) and limited conformational flexibility,

and this makes it much easier to generate well-converged

computational results that properly test the energy model

used [16, 17]. Despite their simplicity, currently available

host–guest systems exhibit a wide range of binding affin-

ities in aqueous solution, with maximal affinities rivaling

those of the tightest-binding protein–ligand systems [18].

In addition, relative to hydration free energies, host–guest

systems offer the advantage of testing the accuracy of not

only solute-water but also solute–solute interactions [19];

and, like proteins, but, unlike small molecules in solution,

hosts have concave binding surfaces which can lead to

locally structured water [20, 21]. For these reasons, host–

guest systems are now widely accepted as model systems

to validate computational binding affinity methods, and to

gain insight into the physical chemistry of molecular

recognition.

The current SAMPL4 challenge includes two different

host molecules, each with its own set of guests (Fig. 1):

cucurbit[7]uril (CB7) [22], a rigid, non-ionizable host; and

octa-acid (OA) [23], a somewhat more flexible host, having

a hydrophobic pocket and eight ionizable, carboxylic acid

groups situated around the entryway and projecting into

solvent. Here, we present an overview of the results from

all participants in the SAMPL4 host–guest challenge, and

discuss issues faced by current computational methods.

Methods

Host–guest systems

The previous SAMPL3 host–guest systems proved more

challenging than anticipated, due in large part to uncer-

tainties regarding the protonation states of one host and

several of the guest molecules, as well as the possibility of

pKa differences in the bound and unbound forms [13].

Accordingly, the participants’ results varied greatly

depending on the choice of protonation states. The present

SAMPL4 systems, especially those involving CB7, were

chosen to avoid such issues and thereby focus attention on

binding calculations, rather than the related problem of

pKa prediction. Figure 1 shows the structures of both host

molecules, CB7 and OA. The CB7 host has a relatively

nonpolar cavity and two carbonyl-rich portals, and is

known to strongly bind guests with a hydrophobic core and

one or two cationic groups, which reside near the carbon-

yls. The unusually high binding affinities, up to -20 kcal/

mol, of CB7 for some guests are attributed to the possi-

bility of achieving a high degree of chemical comple-

mentarity at a low cost in configurational entropy [18], and

to the expulsion of thermodynamically disfavored water

from the cavity upon binding [20, 21]. The OA host has a

10 Å deep hydrophobic pocket and an outer surface dec-

orated with eight water-solubilizing carboxylate groups. It

is known for its ability to bind hydrophobic or amphiphilic

guests in aqueous solution [23], presumably due primarily

to the hydrophobic effect, through desolvation of the guest

within the hydrophobic pocket of the host. In order to

minimize uncertainty in the protonation states of the car-

boxylate groups on OA, its binding measurements were

carried out at pH 9.2 (below). Figure 1 also shows the

chemical structures of the CB7 guests, C1–C14, and the

OA guests, O1–O9.

Drs. Lyle Isaacs and Bruce Gibb generously provided

measured binding affinities in advance of publication for

the CB7 and OA systems, respectively; these data are

summarized in Table 1. The binding affinities for CB7

were measured relative to C1, p-xylenediammonium, using

an 1H NMR competition assay. The binding affinity of

guest molecule C11 was measured for a racemic mixture of

the two isomers (endo and exo isomers). Subsequent
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measurement of the binding affinity of guest C1 allowed all

of the affinities to be reported as absolute, rather than

relative, binding free energies. The measurements were

performed at 298 K in 100 mM Na3PO4 in D2O, adjusted

to pH 7.4 using DCl. Absolute binding affinities of the OA

systems were determined using isothermal titration

Fig. 1 Structures of

cucurbit[7]uril (CB7; a) and

octa-acid (OA; b). c Chemical

structures of CB7 guest

molecules, C1–C14, and OA

guests, O1–O9. The numbering

used here is consistent with that

originally provided to the

participants

Table 1 Experimental binding

affinities of various host–guest

complexes

Measurements are reported as

mean ± standard deviation.

Uncertainty in binding free

energy is calculated through

error propagation,

rDG ¼ RT
rKa

Ka

� �
, where R is the

gas constant and T = 298 K

NMR nuclear magnetic

resonance spectroscopy, ITC

isothermal titration calorimetry

Host Guest Krel Ka (M-1) DG (kcal/mol) Analytic technique

CB7 C1 1.00 1.7 ± 0.3 9 107 -9.9 ± 0.1 NMR

CB7 C2 6.23 9 10-1 1.1 ± 0.2 9 107 -9.6 ± 0.1 NMR

CB7 C3 4.20 9 10-3 7.1 ± 1.3 9 104 -6.6 ± 0.1 NMR

CB7 C4 8.77 9 10-2 1.5 ± 0.3 9 106 -8.4 ± 0.1 NMR

CB7 C5 1.06 9 10-1 1.8 ± 0.3 9 106 -8.5 ± 0.1 NMR

CB7 C6 3.82 9 10-2 6.5 ± 1.2 9 105 -7.9 ± 0.1 NMR

CB7 C7 1.40 2.4 ± 0.4 9 107 -10.1 ± 0.1 NMR

CB7 C8 2.73 9 101 4.6 ± 0.8 9 108 -11.8 ± 0.1 NMR

CB7 C9 1.04 9 102 1.8 ± 0.3 9 109 -12.6 ± 0.1 NMR

CB7 C10 3.43 9 10-2 5.8 ± 1.1 9 105 -7.9 ± 0.1 NMR

CB7 C11 7.38 1.3 ± 0.2 9 108 -11.1 ± 0.1 NMR

CB7 C12 3.07 9 102 5.2 ± 0.9 9 109 -13.3 ± 0.1 NMR

CB7 C13 1.25 9 103 2.1 ± 0.4 9 1010 -14.1 ± 0.1 NMR

CB7 C14 1.81 9 101 3.1 ± 0.6 9 108 -11.6 ± 0.1 NMR

OA O1 – 5.4 ± 0.4 9 102 -3.73 ± 0.04 NMR

OA O2 – 2.0 ± 0.4 9 104 -5.9 ± 0.1 NMR

OA O3 – 4.0 ± 0.2 9 104 -6.28 ± 0.02 ITC

OA O4 – 8.5 ± 0.4 9 104 -6.72 ± 0.03 ITC

OA O5 – 7.1 ± 0.6 9 103 -5.3 ± 0.1 NMR

OA O6 – 1.3 ± 0.2 9 104 -5.6 ± 0.1 NMR

OA O7 – 3.8 ± 0.4 9 105 -7.6 ± 0.1 ITC

OA O8 – 5.4 ± 0.4 9 102 -3.73 ± 0.04 NMR

OA O9 – 7.0 ± 0.2 9 104 -6.61 ± 0.02 ITC
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Table 2 Summary of predictions submitted for the SAMPL4 host–guest binding affinity challenge

ID Method Energy modela Solvent

model

Conformational

sampling

RMSE_r RMSE_o R2 Slope SAMPL4

ref.

Host: Cucurbit[7]uril (CB7)

001 NULL1 – – – 3.2 ± 0.4 2.2 ± 0.3 0.0 ± 0.0 0.0 ± 0.0

010 NULL2 – – – 3.3 ± 0.4 2.3 ± 0.3 0.2 ± 0.1 0.5 ± 0.2 [45]

187 SIE GAFF/AM1-BCC BRI BEM Wilma 2.7 ± 0.4 1.8 ± 0.3 0.6 ± 0.1 0.18 ± 0.04 [38]

188 SIE ? HB GAFF/AM1-BCC BRI BEM Wilma 2.6 ± 0.4 1.8 ± 0.3 0.6 ± 0.1 0.19 ± 0.04 [38]

194b DOCK 3.7 AMSOL AMSOL DOCK 3.7 7.9 ± 1.9 5.4 ± 1.3 0.1 ± 0.2 -0.5 ± 0.7 [45]

528 RRHO DFT-D/HF-3c COSMO-RS Manual 3.7 ± 0.7 2.5 ± 0.5 0.8 ± 0.1 1.8 ± 0.3

541 QM/M2 PM6-DH? COSMO Tork 4.5 ± 1.0 3.0 ± 0.7 0.2 ± 0.2 0.7 ± 0.5 [36]

550 M2 CHARMm/VCharge PBSA Tork 5.0 ± 1.0 3.4 ± 0.7 0.7 ± 0.1 2.0 ± 0.4 [36]

553 FEP GAFF/AM1-BCC TIP4P Metadynamics 7.2 ± 1.5 4.9 ± 1.0 0.6 ± 0.1 2.2 ± 0.5

554 FEP GAFF/AM1-BCC TIP4P Metadynamics 5.7 ± 1.2 3.9 ± 0.8 0.6 ± 0.1 1.8 ± 0.4

555 FEP GAFF/AM1-BCC TIP4P-Ew Metadynamics 8.2 ± 1.4 5.6 ± 1.0 0.3 ± 0.1 1.6 ± 0.6

556 FEP GAFF/AM1-BCC TIP4P-Ew Metadynamics 6.9 ± 1.2 4.7 ± 0.8 0.3 ± 0.2 1.3 ± 0.6

557c Enthalpyd GAFF/AM1-BCC TIP3P/

TIP4P-Ew

MD 4.0 ± 0.6 2.7 ± 0.4 0.7 ± 0.1 1.6 ± 0.3

558 Enthalpyd GAFF/AM1-BCC TIP3P MD 5.8 ± 0.7 4.0 ± 0.5 0.7 ± 0.1 2.2 ± 0.4

559 Enthalpyd GAFF/AM1-BCC TIP4P-Ew MD 4.0 ± 0.7 2.7 ± 0.5 0.6 ± 0.1 1.4 ± 0.3

560e BAR AMOEBA AMOEBA MD 3.3 ± 0.6 2.2 ± 0.4 0.6 ± 0.1 1.3 ± 0.3

571 Intuitionf – – – 6.2 ± 0.7 4.2 ± 0.4 0.3 ± 0.2 1.4 ± 0.5

574 Water

countg
GAFF/AM1-BCC TIP4P MD 8.6 ± 1.5 5.8 ± 1.0 0.0 ± 0.1 -0.4 ± 0.7

576 OST GAFF/AM1-BCC TIP3P-

MOD

MD 2.8 ± 0.4 1.9 ± 0.2 0.8 ± 0.1 1.4 ± 0.2

577h OST GAFF/AM1-BCC TIP3P-

MOD

MD 2.8 ± 0.4 1.9 ± 0.3 0.8 ± 0.1 1.4 ± 0.2

579 PMF CGenFF TIP3P Funnel

Metadynamics

5.8 ± 1.1 4.0 ± 0.8 0.1 ± 0.2 -0.4 ± 0.4 [51]

584e BAR AMOEBA AMOEBA MD 3.3 ± 0.6 2.2 ± 0.4 0.6 ± 0.1 1.3 ± 0.3

600 EES GAFF/AM1-BCC TIP3P MD 5.0 ± 1.1 3.4 ± 0.7 0.7 ± 0.1 1.9 ± 0.4 [52]

601 EES GAFF/AM1-BCC TIP3P MD 4.2 ± 0.7 2.9 ± 0.5 0.6 ± 0.2 1.5 ± 0.3 [52]

Host: Octa-acid (OA)

002 NULL1 – – – 1.9 ± 0.4 1.2 ± 0.3 0.0 ± 0.0 0.0 ± 0.0

011 NULL2 – – – 1.4 ± 0.2 0.9 ± 0.2 0.5 ± 0.2 0.7 ± 0.3 [45]

140 BEDAM OPLS-AA AGBNP2 MD 1.3 ± 0.2 0.9 ± 0.1 0.9 ± 0.2 1.5 ± 0.2

170 FEP GAFF/AM1-BCC TIP3P MD 1.5 ± 0.4 1.0 ± 0.3 0.9 ± 0.1 1.5 ± 0.3 [41]

185 SIE GAFF/AM1-BCC BRI BEM Wilma 1.4 ± 0.3 1.0 ± 0.2 0.7 ± 0.2 0.2 ± 0.1 [38]

186 SIE ? HB GAFF/AM1-BCC BRI BEM Wilma 1.4 ± 0.3 0.9 ± 0.2 0.8 ± 0.2 0.3 ± 0.1 [38]

192b DOCK 3.7 AMSOL AMSOL DOCK 3.7 1.4 ± 0.3 0.9 ± 0.2 0.7 ± 0.2 0.3 ± 0.1 [45]

193b DOCK 3.7 AMSOL AMSOL DOCK 3.7 1.4 ± 0.3 0.9 ± 0.2 0.8 ± 0.2 0.3 ± 0.1 [45]

195b DOCK 3.7 AMSOL AMSOL DOCK 3.7 1.4 ± 0.3 0.9 ± 0.2 0.7 ± 0.2 0.3 ± 0.1 [45]

526 FEP GAFF/RESP TIP3P MD 1.3 ± 0.3 0.9 ± 0.2 0.9 ± 0.1 1.5 ± 0.3 [41]

527 RRHO DFT-D; HF-3c COSMO-RS Systematic

sampling

5.9 ± 2.2 4.0 ± 1.5 0.4 ± 0.3 2.2 ± 1.6

551 RRHO DFT-D; GAFF/RESP COSMO-RS MD 8.7 ± 3.9 5.8 ± 2.6 0.5 ± 0.2 3.9 ± 2.0 [41]

552 RRHO LCCSD(T)/CBS;

GAFF/RESP

COSMO-RS MD 9.2 ± 2.9 6.1 ± 1.9 0.4 ± 0.2 3.3 ± 2.1 [41]

578 NB-BAR DFT-D; GAFF/RESP QM/MM MD 6.5 ± 1.0 4.4 ± 0.7 0.0 ± 0.2 0.4 ± 1.3 [41]
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calorimetry (ITC) or 1H NMR spectroscopy, for strong and

weak binders, respectively. The measurements were per-

formed at 298 K in 10 mM sodium tetraborate (Na2B4O7)

buffer at pH 9.2. In all cases, a 1:1 stoichiometry of binding

was confirmed. Detailed descriptions of the experiments

are reported elsewhere [24, 25].

Challenge design and logistics

The SAMPL4 challenge for host–guest binding affinities

was designed similarly to the previous SAMPL3 challenge

[13]. While past SAMPL challenges were primarily orga-

nized by OpenEye Scientific Software, this year the chal-

lenge was coordinated by academic researchers, although

OpenEye provided significant logistical support. The

challenge was advertised by posting it on the SAMPL

website (http://sampl.eyesopen.com), as well as through

e-mails to past participants, the computational chemistry

list (http://www.ccl.net), and a number of researchers in the

field. These announcements were sent out beginning in

January 2013, and the participants then signed up through

the SAMPL website. Registered participants were notified

upon release of the host–guest challenge systems in mid-

February, and submissions were due August 16. Experi-

mental results were released to participants as soon as

possible after the Aug. 16 deadline, and our analysis of the

performance of the different submissions was released as

completed. The overall outcomes of the challenge were

discussed at a dedicated workshop on September 20, 2013,

at Stanford University. All participants were invited to

submit manuscripts for the present special issue in the

Journal of Computer-Aided Molecular Design.

The mid-February release included information on the

experimental methods used to measure the binding affini-

ties, including the buffer composition and pH (but see

below); crystallographic structures of the hosts, as MOL2

files; and 2D and computationally modeled 3D structures

of the guest molecules, in the form of 2D drawings,

SMILES strings, and MOL2 and SDF files. Geometries of

both the isomeric forms of guest C11 were provided to the

participants, for convenience. Although both the buffer

composition and pH used in the CB7 measurements were

provided in the initial release in February, only the pH was

provided at that time for the OA measurements, and so the

Table 2 continued

ID Method Energy modela Solvent

model

Conformational

sampling

RMSE_r RMSE_o R2 Slope SAMPL4

ref.

602 EES GAFF/AM1-BCC TIP3P EES 1.9 ± 0.4 1.3 ± 0.3 0.8 ± 0.1 1.7 ± 0.4 [52]

Null1 null model with a constant value assigned to all guests (0.0 and -5.0 for CB7 and OA, respectively), Null1 null model based on number of

heavy atoms (1.5 kcal/mol per heavy atom [46] ), SIE solvated interaction energy [39]; SIE ? HB solvated interaction energy model with

explicit corrections for hydrogen bonding [38, 40], DOCK UCSF docking program [53], RRHO rigid rotor harmonic oscillator approximation

[35], QM/M2 quantum mechanical mining minima [37], M2 mining minima [17], FEP free energy perturbation [54, 55], BAR Bennett acceptance

ratio [32], OST orthogonal space tempering [29], PMF potential of mean force [56], EES expanded ensemble simulations [57], BEDAM binding

energy distribution analysis method [42], NB-BAR non-Boltzmann Bennett acceptance ratio [58], GAFF general amber force field [26], AM1-

BCC [27, 28], AMSOL a semiempirical quantum chemistry program [59], DFT-D dispersion-corrected density functional theory [60], HF-3c

corrected small basis set Hartree–Fock method [61], PM6-DH ? PM6 semiempirical method with dispersion and hydrogen bonding corrections

[62, 63], CHARMm chemistry at Harvard molecular mechanics [64]; VCharge VeraChem charge model [65], AMOEBA atomic multipole

optimized energetics for biomolecular simulation [33], CGenFF CHARMM general force field [66], OPLS-AA optimized potentials for liquid

simulations all-atom force field [43], RESP restrained electrostatic potential [67], LCCSD(T) local coupled-cluster method with single and double

excitations, and non-iterative perturbative treatment of triple excitations [68], CBS complete basis set, BRI BEM biotechnology research institute

boundary element method for solving Poisson equation [69], COSMO-RS conductor-like screening model for real solvents [70]; COSMO

conductor-like screening model [71], PBSA Poisson-Boltzmann surface area [72], TIP4P transferable interaction potential four-point [30],

TIP4P-Ew TIP4P for use with Ewald summation [49], TIP3P transferable interaction potential three-point [30], AGBNP2 analytical generalized

Born plus non-polar (version 2) [44], QM/MM mixed quantum mechanics and molecular mechanics, Wilma an exhaustive docking algorithm

[38], Tork an aggressive conformational search method using normal modes [73], Metadynamics [74], MD molecular dynamics, Funnel

Metadynamics [75]
a In case of mixed energy models used in the calculations, the different energy models are listed separated by a semicolon
b Per the submitters, submissions 192–195 are potentially flawed due to problems with the parameter files not being processed correctly
c The free energy of binding was estimated as the average of submissions 558 and 559
d Direct calculation of enthalpy change from long MD simulations of end states
e Submissions 560 and 584 are identical except for the reference binding affinity assigned for guest C1
f Submitter provided numerical estimates based on his/her chemical intuition regarding these systems
g Binding affinities were estimated based on change in the number waters within 4.8 Å of the guest between the bound and the unbound states
h The approach used in submissions 576 and 577 is identical, except that in submission 577, the participant used ionic-strength dependent

binding affinities of CB7 published in an earlier work [76] to calibrate AMBER Na? parameters
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participants were not informed of the buffer composition

used in the OA measurements. Participants were further-

more informed that the protonation, conformation, and

tautomer states provided might not be optimal for the

experimental conditions, and were given suitable dis-

claimers about conformational sampling and other factors.

A document containing background information on the

hosts, and references to relevant publications, was also

provided. For the CB7 host, our initial understanding was

that the results would be reported as binding free energies

relative to guest C1, p-xylenediammonium. Participants

were therefore instructed to submit binding free energies

relative to this compound C1. For the OA system, partic-

ipants were given a special disclaimer about the uncertain

protonation state of the host. For both hosts, participants

were asked to submit the uncertainties of their predictions,

in addition to the binding free energies themselves.

Error analysis

All submissions were analyzed by standard error metrics,

including root mean-squared (RMS) error, Pearson coeffi-

cient of determination (R2), and linear regression slope. As

noted above, we had anticipated that the CB7 affinity

measurements would yield relative free energies, so par-

ticipants were asked to predict relative binding free ener-

gies. In the end, however, the experiments additionally

yielded absolute binding free energies. Because of an

unclear file format specification, many participants sub-

mitted relative binding free energy predictions, but some

submitted absolute predictions. At first, we handled this by

converting all CB7 relative free energy predictions into

absolute values by adding the experimental binding free

energy of the reference compound, C1. However, this

initial approach proved problematic, as follows. One group

had submitted both absolute and relative free energy pre-

dictions based on the same set of absolute free energy

calculations. Because their calculated absolute free energy

for compound C1 happened to be particularly poor, when

they converted these free energies into relative free ener-

gies by subtracting their computed result, and we then

converted them back into absolute free energies by adding

the experimental result for C1, this resulted in poor

apparent performance. Effectively, our procedure resulted

in the difference between their predicted absolute binding

free energy for C1 and the actual experimental value being

added as an offset to all the absolute free energies ana-

lyzed. Thus, our initial approach of converting relative free

energies into absolute free energies by adding the experi-

mentally measured binding affinity of C1 turned out to

penalize any submission that happened to perform partic-

ularly poorly for compound C1. To avoid this problem, we

computed the RMS error of predicted binding affinities

after subtracting the average signed error, which is referred

to as RMSE_o in the following, given by,

RMSE o

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

DG
exp
i � DGcalc

i � 1

n

Xn

j¼1

DG
exp
j � DGcalc

j

� �" #2
vuut

where n is the number of measurements, DGexp and DGcalc

are the experimental and calculated binding affinities,

respectively. For similar reasons, we evaluated the accu-

racy of relative binding free energies by considering all

differences among all pairs of guest molecules; the

resulting metric is termed RMSE_r, given by,

RMSE r

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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The uncertainties of the various error metrics were

determined with a bootstrapping procedure which

accounted for experimental uncertainty; details are pro-

vided in another article in this issue [14].

Results

The current round of the SAMPL host–guest binding

affinity challenge saw an increase in the number of sub-

missions relative to the previous SAMPL3 host–guest

challenge, with 22 submissions for the CB7 host, and 13

submissions for the OA host, compared with 18 submis-

sions in toto for SAMPL3 [13]. Table 2 summarizes the

various submissions, along with various measures of

accuracy. Scatter plots of the predicted versus experimental

binding affinities of all the submissions are given in sup-

plementary material. Table 2 also includes results for two

simple null models for each of the hosts, as detailed below.

The methods used by the participants ranged from

simple scoring methods, to free energy calculations using

extensive conformational sampling, to quantum mechani-

cal energy models based on a relatively modest number of

conformations. The methods differed from each other in

many ways, including the solute energy model (empirical

force field or quantum mechanical theory), solvent model

(continuum or explicit water), and sampling method

cFig. 2 Rank ordering of submissions based on various error metrics

for the CB7 and OA systems. Null models are shown in red and

horizontal dotted lines are provided as visual guides to distinguish

which submissions surpass the null models
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(docking, simulation, and conformational search). Free

energy simulations with classical force fields were partic-

ularly popular, and, as in SAMPL3, the general AMBER

force field (GAFF) [26] coupled with AM1-BCC [27, 28]

partial charge model remained the predominant choice for

the assignment of force field parameters. A significant

number of submissions, 19 of 35, used an explicit-water

model to include solvent interactions, a marked departure

from SAMPL3 where implicit solvation models were the

most popular. The number of submissions based on

ab initio quantum mechanical theory also increased relative

to the SAMPL3 challenge.

Overview of results

The correlation coefficients (R2) of the various methods

ranged from near zero to greater than 0.8, for both host

datasets (Fig. 2). Overall, the RMSE_o and RMSE_r

measures for the CB7 host are higher than those for OA

host, perhaps due to the broader range of CB7 binding

affinities. The majority of submissions, 23 of 35, had a

linear regression slope greater than 1.0.

While none of the methods ranked best across all the

error metrics for the CB7 dataset, a few alchemical free

energy methods, using classical force fields, were consis-

tently among the top for all the metrics. The orthogonal

space tempering (OST) method [29] (ID 576, 577) yielded

a correlation coefficient of 0.8, along with RMSE_o and

RMSE_r values of 1.9 and 2.8 kcal/mol, respectively. This

method used GAFF/AM1-BCC with a modified TIP3P

water model [30, 31], coupled with an enhanced confor-

mational sampling method. Another method, which used

the standard Bennett Acceptance Ratio (BAR) free energy

method [32], coupled with a more sophisticated, polariz-

able force field, AMOEBA [33, 34] (IDs 560, 584), did

nearly as well, with a correlation coefficient of 0.6, and

RMSE_o and RMSE_r values of 2.2 and 3.3 kcal/mol,

respectively. A few end-point methods also did as well as

the above alchemical methods. A method using density

functional theory with three-body dispersion corrections

(DFT-D3) and the COSMO-RS continuum solvation model

[35], coupled with a rigid-rotor harmonic oscillator-like

approximation for configurational entropy (ID 528) had a

correlation coefficient (R2) of 0.8 with experiment. The

RMSE_o and RMSE_r metrics for this method were also

fairly low, at 2.5 and 3.7 kcal/mol, respectively. Interest-

ingly, this approach yielded below average accuracy for the

OA host (ID 527), with a low correlation coefficient of 0.4.

The poor performance of this method for OA host may

have resulted from the high flexibility of OA, as the par-

ticipant used single optimized structures for computing

binding affinities. Furthermore, the participant assumed

OA to be fully protonated even at pH 9.2, which seems

rather unlikely. Another method, mining minima (M2) is

structurally similar [17], in that it estimates free energies

based on what is essentially a harmonic approximation, for

a solute potential energy model combined with an implicit

solvent model. This approach, using a classical force field

(ID 550), also performed well for CB7, in terms of corre-

lation (R2 = 0.7), but had higher RMSE_o and RMSE_r

values of 3.5 and 5.0 kcal/mol, respectively, and a large

linear regression slope of 2.0 [36]. Perhaps surprisingly, the

M2 method when coupled with a semi-empirical quantum

mechanical energy model [36, 37] (ID 541) did not perform

as well as the classical version. Interestingly, the relatively

simple and fast SIE method [38, 39] (IDs 187, 188), which

is based on docking using a classical force field and a

continuum solvation model, performed slightly better than

average in terms of correlation (R2 = 0.6, both with and

without hydrogen bond corrections [40]), and afforded the

best RMSE_o and RMSE_r measures of 1.8 and 2.6 kcal/

mol, respectively. On the other hand, its linear regression

provided particularly shallow slopes (0.18–0.19).

For the OA host, predictions based on free energy

simulations with non-polarizable classical force fields

again performed well (IDs 170, 526, and 602). The BAR

method coupled with a classical force field and explicit

water model [41] (ID 170, 526) performed the best in terms

of correlation coefficient, RMSE_o, and RMS_r metrics,

closely followed by the BEDAM method [42] coupled to

the OPLS-AA classical force field [43] and the AGBNP2

[44] continuum solvation model (ID 140). Curiously, all

the methods based on quantum mechanical energy models

(IDs 527, 551, 552, and 578) performed below average for

the OA host. We note that many methods performed well

for the OA host, and the differences among them are not

statistically significant (See supplementary material).

Unfortunately, there was little overlap between the meth-

ods tested for CB7 and for OA. For example, the M2, OST

and AMOEBA approaches were tested for CB7 but not

OA. Given the inconsistent performances of those methods

that were tested across both hosts, it is difficult to draw

conclusions about which methods are most accurate in

general.

Comparison with null models

In order to assess the significance of the present results, we

put them into the context of two simple null models [45].

One assigned a constant binding affinity to all the guests,

and the other assigned -1.5 kcal/mol of binding free

energy per heavy atom [46]. For CB7, both null models had

rather low RMSE_o and RMSE_r values of *2.3 and

*3.3 kcal/mol, respectively, and the heavy atom count

model showed some correlation, with R2 = 0.2. For OA

host, both the null models had low RMSE_o and RMSE_r,
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between 0.9 and 1.9 kcal/mol, which can be explained by

the narrow binding affinity range (3 kcal/mol) for these

systems. In terms of correlation, the null model based on

heavy atom count did better for the OA host, with an R2 of

0.5. For the OA host, binding is predominantly due to

hydrophobic effect [23], as reflected here by the fact that

solvent-accessible surface area of the guests correlates

strongly with the binding affinity, with R2 = 0.8 (Fig. 3).

This possibly explains why the heavy atom count, which is

presumably proportional to the solvent-accessible surface

area for small molecules, correlated well with the

experiment.

For CB7, 18 of the 22 submissions outperformed both

null models in terms of correlation, but fewer than half

performed equally well or better in terms of RMSE_o,

RMSE_r, and linear regression slope (Fig. 2). The methods

that generally performed better than both the null models

are: 1) SIE (IDs 187, 188), OST (IDs 576, 577), and BAR/

AMOEBA (IDs 560, 584). Interestingly, both SIE and OST

performed well in SAMPL3 as well [13]. The third method,

BAR with the polarizable force field AMOEBA, is a new

entry this year. Perhaps surprisingly, these three methods

differ from each other in many ways: as described above,

OST is an enhanced sampling free energy perturbation

approach using a pairwise additive force field; BAR/

AMOEBA is a standard free energy perturbation method

using a polarizable force field; and SIE is a fast docking

model with a classical force field and continuum solvent

model.

On the other hand, for the OA host, many of the methods

performed equally well or better than both null models, in

terms of both the correlation and the RMS error (Fig. 2).

Interestingly, the methods that did significantly worse than

the null models are all based on quantum mechanical

energy models, including the method (ID 527) that did the

best on the CB7 host in terms of correlation (above). It is

also worth noting that the SIE method did better than the

null models for both CB7 and OA hosts, and also did better

than most other methods in the previous SAMPL3 chal-

lenge [13]. The BEDAM method with AGBNP2 implicit

solvent model, one of the top-performing methods for the

OA host, also did well in the SAMPL3 challenge [13];

however, it was not used for the present CB7 systems. It is

encouraging to see that some methods are performing well

rather consistently, even if no single approach emerges as a

consistent top performer.

SAMPL4 versus SAMPL3

It is of interest to know how well the different computa-

tional methods performed this round compared to the last.

In terms of correlation, the overall performance this year

(average R2 = 0.56) is essentially the same as that of the

previous SAMPL3 challenge [13] (average R2 = 0.54).

The performance for each of the hosts, CB7 and OA, is not

significantly different, a departure from SAMPL3, where

the performance for the CB7/CB8 hosts was significantly

better than the performance for the acyclic cucurbituril

congener host (Host1 in SAMPL3), although the number of

guests for CB7/CB8 were low in number. The OA host was

expected to be somewhat less challenging than Host1 in

SAMPL3 [13], since the protonation state of OA is

expected to be well defined based on the experimental pH

(9.2), and moreover, the ionic carboxylate groups are

located away from the binding cavity. Accordingly, the

performance of the different methods for OA host was

considerably better than that for the SAMPL3 Host1. Based

on SAMPL3, we also expected the blind predictions for

CB7 in SAMPL4 to perform about as well as they did for

the CB7/CB8 hosts in SAMPL3, and this is at least roughly

true. Thus, the average R2 for all the submissions is equal

to 0.50, with 15 submissions performing better than the

average; while, for CB7 and CB8 in SAMPL3, the average

R2 value was 0.69. Thus, the overall performance of this

round is similar to the previous one.

Discussion

The participation of computational groups in the SAMPL4

host–guest binding affinity challenge has increased since

the last round, indicating a growing interest in blind eval-

uation of computational methods based on host–guest data.

The methods tested in the present challenge are quite

varied, and each focusing on certain aspects of the binding

affinity calculation. For example, some focused on using

Fig. 3 Binding free energy of guests for the OA system as a function

of guest’s solvent accessible surface area
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presumably more accurate ab initio or semiempirical

quantum mechanics, whereas others used simpler classical

force fields, and focused instead on conformational sam-

pling. Although this study is not sufficiently large and

systematic to allow one to draw definite conclusions

regarding the usefulness and accuracy of any specific

methodological choice (e.g. explicit vs. continuum solvent,

or quantum vs. classical), the various submissions offer

some interesting insights.

Previous studies have shown that explicit water effects

might play an important role in binding for the CB7 system

[20, 21, 47, 48], and suggested that expulsion of thermo-

dynamically disfavored structured waters in the host’s

cavity might drive the high binding affinities of some

guests for CB7. Nonetheless, the overall performance has

been similar for both continuum and explicit-water solva-

tion models, and some of the better performing methods

here used continuum solvation models. Currently, there is

no clear indication as to which solvation model is better, at

least when applied to these host–guest systems. It is

important to note that the overall predicted affinities

depend on a number of other important factors besides the

solvent model, including the force field and conformational

sampling methods. Errors due to these other factors could

be larger and therefore mask the importance of a specific

solvation model.

A recurring theme in the host–guest binding affinity

challenge is that different free energy methods using very

similar energy models (force field, partial charges, and

water model) sometimes yield significantly different pre-

dictions. For example, submission IDs 553-556 used an

energy model very similar to the OST submissions (ID 576,

577), but generated significantly different results. Although

the small variations across the water models used (TIP3P

[30], TIP3P-Mod [31], TIP4P [30], TIP4P-Ew [49] ) might

cause these large variations in RMS errors and correlation

coefficients, two submissions (IDs 558 and 559) that dif-

fered only by water model showed similar performance,

suggesting that the variations may result from something

other than the water models. One may speculate that these

differences could stem from subtle methodological differ-

ences, such as the treatments of ions, periodic electrostat-

ics, convergence of conformational sampling, or issues in

the manual part of calculation setup. On the other hand, the

results were very similar for BAR calculations of OA-guest

binding with two different charge models, RESP and AM1-

BCC (IDs 170 and 526).

Finally, it is worth noting that the effect of dissolved salt

on binding was a potential issue for both hosts, since the

measurements were done in salt solutions. Amongst

methods based on molecular dynamics simulations, a few

submissions accounted explicitly for salt concentration

effects, while others only included counterions to maintain

neutrality of the system. While OA binding affinity mea-

surements were done at a relatively low salt concentration,

10 mM sodium tetraborate, the CB7 experiments were

carried out in 100 mM sodium phosphate buffer. Cations in

solution bind to the carbonyl portals of cucurbiturils and

compete with the guest molecules for binding, thus low-

ering the absolute binding affinities [50]. Thus, binding

affinities of guests C1 and C4 previously measured at a

relative low salt concentration (50 mM NaO2CCD3) [22]

were more favorable by 2.8 and 2.4 kcal/mol, respectively

than the newly measured SAMPL4 values at higher salt

concentration. The difference in relative binding free

energy is thus reduced by 0.4 kcal/mol in the current study,

relative to the prior results obtained under low salt condi-

tions. Furthermore, all of the CB7 guests here are cationic

and therefore could strongly interact with the counterions

in solution, further lowering the guest’s binding affinity.

Salt concentration can also be important for OA binding

calculations, since the host is expected to have a net charge

of -8e at pH 9.2. However, the OA binding measurements

were done at relatively low salt concentration, so salt

effects might be less important than in the case of CB7

binding.

Conclusions and perspectives

The participation of computational groups in the host–

guest challenge has grown significantly since SAMPL3,

and a wide range of methodological approaches is now

represented. The present results offer a uniquely objective

snapshot of the state of the art in affinity predictions for

these simple model systems, and allow some insights to

be extracted regarding the strengths and weaknesses of

the various approaches. On one hand, some approaches

appear to be emerging as fairly reliable contenders across

the systems of SAMPL3 and SAMPL4. On the other hand,

there are still decided inconsistencies in the pooled

results. For example, high accuracy for one host need not

imply high accuracy for another; the most accurate results

for a given system may derive from strikingly varied

approaches; and quite similar approaches may yield sur-

prisingly different results. In the future, it may be useful

to try building in basic consistency checks by encouraging

multiple submissions with overlapping methods. In

addition, more systematic combinations of methodologi-

cal components (e.g. free energy methods and water

models) could enable clearer answers to such questions as

which energy models are most accurate and the role of

conformational sampling. Given the collaborative spirit of

this ongoing exercise, it may indeed be possible to inte-

grate some level of coordination along these lines in the

coming years.
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