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ABSTRACT OF THE DISSERTATION
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by

David Andrew Jekel
Doctor of Philosophy in Mathematics
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Professor Dimitri Shlyakhtenko, Chair

The thesis presents two applications of evolution equations for non-commutative variables

to the theory of non-commutative probability and von Neumann algebras.

In the first part, non-commutative processes (X;)icpo, ) with boolean, free, monotone,
or anti-monotone independent increments, under certain continuity and boundedness as-
sumptions, are classified in terms of certain evolution equations for their F-transforms
Fx,(z) = (E[(z — X;)7!])"!. This classification is done in the setting of operator-valued
non-commutative probability, in which the expectation takes values in a C*-algebra B rather
than C. Thus, the F-transform is a function of an operator variable z from (matrices over)
B, and it is understood through the theory of fully matricial or non-commutative func-
tions, an operator-valued analogue of complex analysis. The classification of these processes
generalizes previous work on the Lévy-Hinc¢in formula for processes with independent and
stationary increments, and it leads to Bercovici-Pata-type bijections between the processes
with independent increments for the four different types of independence. We also describe
a canonical model for each process with independent increments using operators on a Fock
space. In fact, the interaction between operator models and analytic function theory is a

major theme of the first part, and leads to a new “coupling” technique to prove estimates
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for the non-commutative central limit theorem and for Loewner chains.

In the second part, we strengthen the probabilistic, information-theoretic, and transport-
theoretic connections between asymptotic random matrix theory and tracial W*-algebras
through the study of functions and differential equations for several non-commuting self-
adjoint variables. We consider a random variable X™ in M, (C)? given by a probability
distribution

1 n
) = e de

where V™ : M, (C)% — R is uniformly convex and semi-concave. We assume that (VV ™), cx
is asymptotically approximable by trace polynomials, which means that V1V behaves
asymptotically like some element f from a certain space of “functions of d self-adjoint vari-

ables from a tracial W*-algebra.”

Then we show first that X (™ almost surely converges in non-commutative law to some
d-tuple X from a tracial W*-algebra (M, 7), meaning that (1/n) Tr(p(X™)) — 7(p(X))
almost surely for every non-commutative polynomial p (which is comparable to earlier known
results). The strategy to prove convergence of the expectation E[(1/n) Tr(p(X™))] is to show
that the heat semigroup associated to the measure p(™ preserves asymptotic approximability
by trace polynomials. The same method leads to a new conditional version of this result,
which shows that if & < d and if (f™) is asymptotically approximable by polynomials,
then so is the function g™ given by ¢™(X™, ... ,Xlgn)) = E[f™(xm)x™ ,X,in)].
Understanding the large-n behavior of such conditional expectations is a key step in showing
our second main result that the classical entropy of X, after renormalization, converges
to Voiculescu’s non-microstates free entropy x*(X) (and an analogous result for conditional
entropy given Xf"), o X ,in)) In particular, we obtain a new proof of the result from a

preprint of Dabrowski [Dab17] that x*(X) agrees with the microstates free entropy x(X) for

any X that arises from such random matrix models.

The final main result studies the large-n behavior of certain functions F(™ that transport

the measure ;™ to the distribution UYL) of a standard Gaussian self-adjoint d-tuple Z™. The
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transport map F(™ is obtained by the same construction as in Otto and Villani’s famous proof
of the Talagrand inequality based on heat semigroups and transport equations [OV00]. Using
successive conditioning, we can obtain a transport function F(™ that is lower-triangular in

the sense that
FO(zy, . ag) = (FX (@), B (21, 2), . F\ (24, 2a)),s

where © = (21,...,24) € M,(C)?. We show that F™ is asymptotically approximable by
trace polynomials as n — oo, and consequently, in the large-n limit, we obtain an isomor-
phism W*(Xq,..., Xy) = W*(Zy,..., Zy) that maps W*(Xy,..., Xy) to W*(Zy,..., Z;) for
every k = 1,...,d. As an application, we show that this statement holds when X itself
is given by X; = Z; 4+ dp;(Z) where Z is a free semicircular d-tuple, p; is a self-adjoint

non-commutative polynomial, and 0 is sufficiently small, depending on py, ..., pqg.
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Part I

Complex evolution equations



CHAPTER 1

Introduction I

1.1 Non-commutative probability theory

Non-commutative probability theory is a branch of mathematics that studies random vari-
ables which do not commute under multiplication. In classical probability theory, random
variables are one of the fundamental objects of study. If (2, P) is a probability space,
then the space L>(€), P) of bounded random variables is an algebra, and the expectation
E : L*(Q, P) is a linear functional on this algebra. In non-commutative probability theory,
L>(Q, P) is replaced by a possibly non-commutative algebra A, and the expectation is a
linear function ¢ : A — C. Often, A is an algebra of operators on a Hilbert space (a C*- or
W+-algebra), and F is assumed to satisfy certain positivity conditions.

In classical probability, the notion of independence is so fundamental that many con-
sider the study of probability spaces without independence to be merely measure theory.
Therefore, we regard non-commutative probability theory as having begun when Voiculescu
defined free independence in [Voi85, [Voi86], even though the notion of operator algebras as
non-commutative analogues of measure spaces had already been around for decades.

If Ay, ..., Ay are unital C*-algebras and ¢; : A; — C is a state (the linear functional
giving the “expectation”), then one can construct the reduced free product (A, ¢) of (Ay, ¢1),
.., (AN, én); it similar to the free product of groups. Voiculescu realized that the subalge-
bras A;, ..., Ay satisfy a certain condition in “joint moments” with respect to the state ¢,
called free independence. Furthermore, the addition of freely independent random variables
satisfies a central limit theorem directly analogous to the classical one.

From that point, free probability has expanded in several related directions:

(1) A large number of results and constructions from classical probability theory were found
to have analogues in free probability, with strong similarities but also interesting dif-
ferences. Several other types of independence, namely, boolean and monotone indepen-
dence, have parallel theories as well.

(2) Classically independent n x n random matrices (under certain conditions) become freely
independent in the large-n limit. Thus, free probability has been an invaluable tool for
asymptotic random matrix theory.

(3) Free probability theory has proved new structural results about operator algebras gen-
erated by freely independent random variables.

2



We shall explain the results and history in more detail later.

1.2 Broad structure of the thesis

This thesis comprises two parts, the first focusing on item (1) above and the second focusing
on (2) and (3). The main results in the first part are largely based on [Jek20], and the
the second part is based on [Jek18] and [Jek19]. The results in the two parts are largely
separate and they can be read independently. However, there are broad similarities between
the topics and the techniques in both parts.

e The first part explores the parallel between free, boolean, and monotone probabil-
ity theories. The second part explores the connection between free probability and
classical probability theory, describing how n x n random matrix tuples behave like
non-commutative random variables in the large-n limit.

e The first part studies operator-valued expectations, which are a natural non-commutative
analogue of conditional expectations. The second part relates classical conditional ex-
pectations for n x n random matrix models to operator-algebraic conditional expecta-
tions for the non-commutative random variables in the large-n limit.

e The first part studies “functions of non-commutative complex variables” in the sense of
Taylor |[Tay72, [Tay73], Voiculescu [Voi00, Voi04], Voil0], and Kaliuzhnyi-Verbovetskyi
and Vinnikov [KV14]. The second parts studies “functions of several non-commuting
real variables” for tracial W*-algebras using a new framework introduced in [Jek18|
Jek19, [HJINT9).

e In the first part, a non-commutative function F' over a C*-algebra B is a sequence of
functions (F™),ecn, where F™ : M, (B) — M,(B). In the second part, we study a
sequence of functions F™ : M,,(C)% — M, (C) for each n € N and describe its large-n
asymptotic behavior using a non-commutative function (where d € N is fixed).

e In both parts, we study the evolution over time of non-commutative functions associ-
ated to certain families of non-commutative random variables (X;):>o.

1.3 Non-commutative convolutions and Lévy-Hinc¢in formulas

A large amount of work in free probability has been devoted to developing free versions
of results and constructions in classical probability. In particular, the free convolution of
two measures p and v on R is defined as the distribution of X + Y where X ~ p and
Y ~ v are freely independent; the boolean and monotone convolution are defined in the same
way. For monotone independence, the order of the variables matters, and the independence
relation obtained by reversing the order is called anti-monotone independence, so that the

3



monotone convolution of  and v is the anti-monotone convolution of v and u. There are
also multiplicative free, boolean, and monotone convolutions, although we will not discuss
them in this thesis.

In the study of classical convolution, a central role is played by the Fourier transform,
which changes convolution into multiplication. For free, boolean, and (anti-)monotone inde-
pendence, that role is played by certain complex-analytic functions related to the Cauchy-
Stieltjes transform G, (z) = [5(z —t)7" du(t) and the F-transform F,(z) = 1/G,(2). These
transforms for instance provide one standard proof of the free, Boolean, and monotone cen-
tral limit theorems.

A primary motivation for our main results in the first part is the Lévy-Hincin formula,
which classifies convolution semigroups. If (X;);>0 is a process with classically independent
and stationary increments and p; is the distribution of Xy, then pg * py = psye for s, ¢ > 0,
that is, ()0 is a convolution semigroup. Such convolution semigroups are classified by
the Lévy-Hincin formula which expresses the Fourier transform of p; in terms of some other
measure 7 on R.

The Lévy-Hinc¢in formula for additive free convolution was studied in [Voi86) Maa92,
BV92, BV93]. For general measures (not necessarily of bounded support), it says that
()10 is a free convolution semigroup if and only if there exists a € R and a finite measure

p such that
1+ a2z
-1
P (z)—z=t (a —|—/R dp(x)) : (1.1)

Z—XT

In the case where p; has finite variance, this can be equivalently expressed as

F 1 (2) —z=tb+ Gs(2)) (1.2)

Mt

for some b € R and some finite measure o on R.

It follows from this characterization that there is a bijection between the convolution
semigroups for free convolution and classical convolution since both can be parametrized by
areal number @ and a finite measure p. Amazingly, this bijection arises from a correspondence
between free and classical limit theorems. Bercovici and Pata showed in [BP99] that given
sequences of measures i and natural numbers n, — oo, the classical convolution powers
p,"™* converge to some probability measure y if and only if the free convolution powers ,uf”’“
converge to some probability measure v. (This framework includes the sums of independent
random variables considered for instance in both the central limit theorem and the Poisson
limit theorem.) In this case, the measures p and v embed into a classical convolution
semigroup (f4:)¢>0 and a free convolution semigroup (14 )0 as i = p1 and v = vy respectively,
and (gt )s>0 and (v4)¢>o correspond under the bijection described by the Lévy-Hinéin formulas.
Thus, this correspondence between infinitely divisible measures is known as the Bercovici-
Pata bijection.

In the same paper, Bercovici and Pata proved the analogous result linking boolean con-
volution semigroups and limit theorems with the free and classical cases. Here the boolean
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Lévy-Hin¢in formula [SW97, [PV13] is given by

P Fo(2) =t (a + /R 1;_55; dp(x)) , (13)

and every probability measure on R turns out to embed into a boolean convolution semi-
group.

The Lévy-Hinc¢in formula and Bercovici-Pata bijection for monotone independence were
studied in [Mur00, Has10al, [Has10bl [AW14] [AWT6]. If ()0 is a convolution semigroup,
then (F},)i>o forms a semigroup under composition and there are some a € R and finite
measure p on R with

d
dt

zZ—XT

F,(z) = a+/R Lt dp(z).

t=0

Let A(z) = a+ [p(1+1tz)(t — z) dp(t). Some straightforward computations yield that for
a convolution semigroup, we have

—F,(2)A(F,,(2)), free case,

OF,.(2) —A(2), boolean case,
4 \2) =
— I, (2)A(2), monotone case,
—A(F,,(2)), monotone case.

(The last two equations both hold in the monotone case, and also in the anti-monotone case
since every anti-monotone convolution semigroup is also a monotone convolution semigroup
and vice versa.) Written in these terms, the parallel among the four equations is quite
apparent, and is much closer than the parallels between classical independence and the
non-commutative independences.

Our goal is to study the situation where (u¢):>o arises from a process with independent
but not necessarily stationary increments. Then in the above equations, A(z) is replaced by
a time-dependent A;(z). In this setting, the third equation describes the monotone case and
the fourth equation the anti-monotone case (while for the case of convolution semigroups
there is no distinction between the monotone and anti-monotone cases).

We should also mention here the connection between the above evolution equations and
the chordal Loewner equation from complex analysis [Bau04, [Sch17, [FHS1§|. In particular,
Schleiffinger [Schi7] noticed that the monotone and anti-monotone equations were exactly
the forward and backward Loewner equations in the upper half-plane (see [Bau05]).

1.4 Operator-valued non-commutative probability

We will carry out our analysis of the above equations in the setting of operator-valued non-
commutative probability, a version of non-commutative probability in which the expectation



is not scalar-valued, but rather takes values in a C*-algebra B. One of the main motivations
was that if B is a W*-subalgebra of a tracial W*-algebra (A, ), then there is a unique
trace-preserving conditional expectation A — B, which can be thought of as an B-valued
expectation and has many of the same properties as the scalar-valued expectation 7 (see
. Furthermore, conditional independence can be thought of simply as an B-valued
version of independence.

Thus, in the operator-valued theory we take the additional complexity of conditioning
and remove it at the cost of enlarging the algebra of scalars. Many other types of complexity
can be absorbed into the algebra B in this way.

(1) The law of a tuple (X3,...,X,) over B can be represented as the M, (B)-valued law of
the diagonal matrix X; & --- & X,,.

(2) A non-commutative polynomial over B can be represented as the top left corner of a

monomial over M, (B) in the variable ()1( )1()

(3) The resolvent of a polynomial in Xy, ..., X, can be represented as the corner of a
matrix-valued resolvent (z — X)~! where z is scalar matrix and X is a matrix with
entries that are affine in Xy, ..., X,,.

For further discussion on these matrix amplification tricks, refer to [HMS15] Liul§].

Motivated by these examples, mathematicians began to develop operator-valued non-
commutative probability along the same lines as scalar-valued non-commutative probability.
Thus, for instance, free, boolean, and monotone independence all generalize to the operator-
valued setting, as well as the central limit theorems and Lévy-Hincin formulas.

A crucial difference is that in the B-valued setting, the notions of positivity for laws and
analyticity for the various transforms associated to a law need to take into account matrix
amplification. This means, roughly speaking, that anything we write down should make
sense in M, (B) just as well as it does in B.

Unfortunately, in the operator-valued setting, it is difficult to make sense of measures with
unbounded support, and thus the Lévy-Hinc¢in formulas carry an additional boundedness
assumption compared to the optimal results in the scalar-valued setting. We have not found
any way to circumvent this issue, and thus will stick to the case of bounded support. Actually,
we will provide estimates for the support radius of various distributions throughout the thesis.

1.5 Overview of the first part

The main new results of the first part are contained in §7] and §8 However, before that,
we shall give extensive exposition of the technical background in operator-valued non-
commutative probability theory. The aim of these chapters is to provide a reasonably short,



accessible, and self-contained development of a lot of material that has not been explained
in one place before.

reviews C*-correspondences, which are representations of a C*-algebra A on a “Hilbert
space” with a B-valued inner product for some other C*-algebra B. We define non-commutative
laws and explain the GNS construction which allows any B-valued law non-commutative law
to be realized by operators on some C*-correspondence.

explains the theory of fully matricial, or non-commutative, functions from [Tay72,
Tay73|, [Voi00], Voi04], Voil0, KV14]. We give a succinct development emphasizes the parallels
with single variable complex analysis. The main point of this chapter is the exposition, since
the subject already has a good systematic treatment in [KV14] which is more general and
emphasizes the algebraic aspects.

explains the theory of the B-valued Cauchy-Stieltjes transform of a non-commutative
law as in [Voi00, Voi04, Voil0]. We give basic explicit estimates on the Cauchy-Stieltjes
transform that will be important for our results on evolution equations. The chapter in-
cludes an exposition of Williams’ analytic characterization of the Cauchy-Stieltjes transform
[WillT].

go| explains B-valued boolean, free, monotone, and anti-monotone independence. Besides
setting the stage for our later results, we aim to draw out the parallels between the four types
of independence as much as possible. We include the characterizations of convolution in terms
of the Cauchy-Stieltjes transform with purely algebraic-analytic (rather than combinatorial)
arguments.

§0] explains estimates that compare the “support radius” of non-commutative laws g
and po with that of their convolution. These results are well known in the scalar-valued
setting, but slightly more subtle in the operator-valued setting and do not seem to have
been explained systematically before.

explains our first main result about subordination families. A subordination family
is a collection of laws (fit)icjo,r; Which arises from a process with independent (but not
necessarily stationary) increments. Assuming that the mean and variance are Lipschitz
in £ and the support is uniformly bounded, we show that the reciprocal Cauchy-Stieltjes
transforms (F),,):>o of such a family satisfy a certain differential equation, which relates
them to another family of B-valued generalized laws o;.

The equation is slightly different for each type of independence. For instance, in the
case of monotone independence, this is the operator-valued version of the chordal Loewner
equation [Bau04, [Sch17, [Jek20]. The four equations are presented in direct parallel, and
even much of the proof is shared for the four types of independence.

Although the results of §7] are generalizations of known results about convolution semi-
groups, the treatment of B-valued subordination families is technically much more subtle
because we cannot differentiate F),, with respect to ¢ in a pointwise sense. Rather, we
perform the differentiation in a distributional sense, but we show that the derivative of a
Lipschitz function from [0, T] into an arbitrary Banach space is not too badly behaved, and



can be manipulated in many ways like a pointwise defined function.

proves the converse result that given a family of generalized laws (o), satisfying
certain assumptions, one can construct laws (ju)co,m satisfying the differential equation.
Rather than producing the functions F),, analytically as in [Bau04, [Jek20], we directly con-
struct a process (Xi)iejo,r] With independent increments using operators on a version of
the Fock space. This is generalization of the technique used for convolution semigroups in
[GSS92, Mur97, [Lu97, [Sped8, [PV13]. The Fock space construction in has been well-studied
in the free and Boolean cases, but the monotone Fock space for subordination families was
new in [Jek20].

Although the proof is technical, the independence of the increments arises in a completely
natural way, because the Fock space itself can be decomposed as the independent product
of Fock spaces associated to the subintervals in some partition of [0, T]. Moreover, the proof
that the laws (u)cp,m satisfy the differential equation is quite short once we know the
independence of increments.

Finally, in §9 we explain some examples and applications of these results. In particular,
the results of §7]and §8 produce bijective correspondences between the subordination families
for the four types non-commutative independence, which is a generalization of the Bercovici-
Pata bijections for convolution semigroups.

We also explain a short proof of the free, boolean, and monotone central limit theorem (for
laws with bounded support) that is based on “coupling” two operators on the same Hilbert
space. This proof seems to have been overlooked until [JL19], perhaps because it heavily
depends on the assumption of bounded support and perhaps because it has no analogue in
classical probability. We also discuss a similar coupling technique from [Jek20] for processes
with independent increments using the Fock space construction, and we illustrate it with an
example of Loewner chains driven by a function on R.



CHAPTER 2

Background: B-valued non-commutative probability

2.1 (Cr-algebras

As background, we recall some fundamentals of the theory of C*-algebras. We do not give
proofs for many of the statements. We refer to Blackadar [Bla06l Chapter II] for an ency-
clopedic list of results, proof sketches, and references.

2.1.1 (Cr-algebras and x-homomorphisms

Definition 2.1.1. A x-algebra over C is an algebra over C together with a map a — a*
such that (a*)* = a, the * operation is conjugate-linear, and (ab)* = b*a*. If A and B are
x-algebras, then a *-homomorphism p : A — B is a homomorphism such that p(a*) = p(a)*.

Definition 2.1.2. A (unital) C*-algebra is a unital x-algebra A over C together with a norm
||-|| such that

(1) (A, |- is a Banach space.
(2) llabll < llallfl6]]-
(3) lla*all = [lal]*.

Theorem 2.1.3. Let H be a Hilbert space. If A is a subalgebra of B(H) which is closed
under adjoints and closed in operator norm, then A is a C*-algebra, where the x-operation is
the adjoint and the norm is the operator norm. Conversely, every C*-algebra is isometrically
x-isomorphic to such a C*-algebra of operators on a Hilbert space.

Proposition 2.1.4. Suppose that A and B are C*-algebras.

(1) If p: A — B is a x-homomorphism, then ||p(a)|| < ||a|| for every a € A.
(2) If p: A — B is an injective x-homomorphism, then ||p(a)|| = ||a|| for every a € A.

(3) If A is a C*-algebra, then there is only one norm on A which satisfies the C*-algebra
conditions.



2.1.2 Positivity and states

Definition 2.1.5. An element a of a C*-algebra A is said to be positive if a can be written
as ¥z for some x € A. We also write this condition as a > 0. Furthermore, we write a > b
ifa—5b>0.

Definition 2.1.6. A linear functional ¢ : A — C is positive if a > 0 implies ¢(a) > 0.

Definition 2.1.7. A state on a C*-algebra A is a positive linear functional with ¢(1) = 1.
We denote the set of states by S(A).

Proposition 2.1.8. Let A be a C*-algebra.

(1) Suppose that A is a C*-algebra acting on a Hilbert space H. An element a € A is positive
if and only if a is a positive operator on H.

(2) If ¢ is a positive linear functional, then ||@|
state is 1.

(3) If a € A is self-adjoint, then

A+ = |o(1)]. In particular, the norm of a

lall = Sup)|¢(a)|-

PeS(A
(4) If a € A, then a is self-adjoint if and only if ¢(a) is real for every state ¢.
(5) If a € A, then we have a > 0 if and only if ¢p(a) > 0 for every state ¢.

2.1.3 The GNS construction

Given a state ¢ on a C*-algebra A, one can define a sesquilinear form on A by (a, b), = ¢(a*b).
This form is nonnegative definite, and hence it satisfies the Cauchy-Schwarz inequality. If
Kg = {a: ¢(a*a) = 0}, then the completion of H /K, with respect to |lall, = ¢(a*a)'/? is a
Hilbert space, which we denote by L?(A, ¢).

Moreover, every a € A defines a bounded operator on L?(A, ¢) by left multiplication.
Indeed, because a — ¢(b*ab) is a positive functional and [lal|* — a*a > 0, we have ||ab||? =
p(b*a*ab) < |lal*¢(b*b) = [lal/?[|b]|3. Thus, the multiplication action of a is well-defined on
the separation-completion L?(A, ¢).

Therefore, there is a *-homomorphism 7, : A — B(L*(A, ¢)) given by m4(a)b] = [ab],
where [b] is the equivalence class of b in the separation-completion. This is called the Gelfand-
Naimark-Segal representation of A on L?(A, ¢). Furthermore, as a consequence of Proposi-
tion [2.1.8] (3), we have the following representation of .A.

Theorem 2.1.9. Let H = @ g4y L*(A, ¢), and let 7 : A — B(H) be the direct sum of the
GNS representations wg. Then m is an isometric x-isomorphism.

This construction is the basis of the fact that every C*-algebra can be represented con-
cretely on a Hilbert space.
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2.1.4 Matrices over a C*-algebra

Suppose that A is a C*-algebra and let us realize A as an algebra of operators on the Hilbert
space H as in Theorem 2.1.3] Then a matrix z € M, xm(A) = A® M, xm,m(C) can be viewed
as an operator H"™ — H™, and we denote by ||z its operator norm. Note that M, x,,(A) is
already complete in the operator norm.

In particular, M, (A) is a C*-algebra. Moreover, Proposition [2.1.4] (3) implies that M, (A)
has a unique norm and thus the norm is independent of our choice of representation for A
on a Hilbert space H. Furthermore, the norm on M, ,(A) is also independent of the
representation because if x € M, x,,(A) then the operator norm satisfies ||z||?> = ||z*z||, and
z*z € M,,(A) hence ||z*z|| is independent of the choice of representation.

Furthermore, there is a coordinate-free characterization of positivity in M, (A) in terms
of positivity in A.

Lemma 2.1.10. Let A € M,,(A). Then the following are equivalent:

(1) A>0in A.
(2) For every v € Myy,(A), we have v*Av > 0 in A.
Proof. As in Theorem we can represent A as a concrete C*-algebra of operators on

H = D yesa) Ho» where Hy = L*(A, §).

We can view A as an operator H" — H™ and v as an operator H — H". If A > 0, then
v*Av is positive by the basic theory of operators on Hilbert space, and hence v*Av > 0 in

A.
Conversely, suppose that (2) holds. Observe that

n = Hy,
$eS(A)

and the action of A on H" is the direct sum of its actions on each ’Hg So it suffices to show
that A|Hg is positive for each state ¢. We know that for each v € My, (A) = A", we have

o(v*Av) > 0.
Let [v] denote the vector ([v1],...,[vn]) as an equivalence class in H}. Then ([v], A[v]) > 0
Such vectors [v] are dense in Hy by construction and hence Alz, > 0 as desired. O

2.2 Right Hilbert B-modules

We begin with the B-valued analogue of a Hilbert space. Right Hilbert B-modules were
introduced by Kaplansky [Kap53], Paschke [Pas73|, and Rieffel [Rie74]. For further detail,
see [Lan95]. A list of theorems and references can be found in [Bla06l, §I1.7].
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2.2.1 Definition, inner products, separation-completion

Definition 2.2.1. Let H be a right B-module. Then an B-valued pre-inner product on H is
amap (-,+) : H x H — B such that

(1) Right B-linearity: We have
(€ Gib1 + Gab2) = (&, C1)b1 + (&, G2)ba.
for f, Cl, §2 € H and bl, bQ e B.

(2) Symmetry: We have (£, ()* = ((, &).
(3) Nonnegativity: (£,€) > 0 in B for every £ € H.

If in addition, (£,£) = 0 implies that £ = 0, then we say (-, -) is an A-valued inner product.

Observation 2.2.2. An A-valued pre-inner product satisfies (¢ia1 + (aa9,&) = ai((1,€) +
a; <C27 £> .

Lemma 2.2.3. Let H be a right B-module with an B-valued pre-inner product, and define
1€l = 1<, 11>

(1) (€, &), O) < lIENI*(¢ €)-

(2) 1K€, QN < €Il

(3) €]l = (&, E)I'/* defines a semi-norm on H.
(4) 1€l = supy¢< (€ Ol-

Proof. Suppose that ¢ € S(B). Then ¢((¢,()) is a scalar-valued pre-inner product and
therefore satisfies the Cauchy-Schwarz inequality. Thus, we have

B({C€)(&,0)) = d({¢, €€, C)))
((C, )P ((E(€, €), £(€, N2
((C, N2 B((€, ) (€, €)(E, )

Next, note that a — ¢((§, {)*a(&, ()) is positive linear functional on B and therefore
|6((€, )" (& )& NI < I ONI((€, €) (€, O)) = €A (€, ¢ (€, €))-

[ IA

< S

Altogether,
(G (€ Q) < o((G O lillo(C, €4 ).
We cancel the term ¢((¢, €)(€, ¢))'/? from both sides and then square the inequality to obtain

A((C. 6)(€ O)) < [IElPo((¢, ¢))-
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Because (¢, £)(&,¢) and [|£]|*(¢, ¢) are self-adjoint elements of B and this inequality holds for
every state ¢, we have

(G ¢) < IElP(¢. ),

so (1) is proved. Inequality (2) follows by taking the norm of both sides in B and then taking
the square root.

The norm on H is clearly positive-homogeneous. The triangle inequality holds because

1€ +CI1> = [[{€ + ¢, €+ Ol
< NN+ 1K Ol + 1IKGET+IKE O]
< (lEl+ 11>

This proves (3). Moreover, (4) follows immediately from the Cauchy-Schwarz inequality
(2). O

Definition 2.2.4. A right Hilbert B-module is a right B-module with an B-valued pre-inner
product such that # is a Banach space with respect to the semi-norm [|£]| = [|(¢, £)[|*/2.

Lemma 2.2.5. Let H be a right B-module with an B-valued pre-inner product. Define
K={¢eH [ =0}

Then (-,-) defines an inner product H/IC, and the completion of H /K with respect to the
corresponding norm is a right Hilbert B-module.

Proof. The Cauchy-Schwarz inequality implies that (-,-) yields a well-defined inner product
on H/K. The right B-action is bounded with respect to the norm of H since

1€B1* = (1<, &b I = 116" (&, E)bll < lIEIP (1Bl

Thus, the right B-action maps K into K and hence passes to a bounded action on the quotient.
This in turn extends to the completion. The B-valued inner product on H /K extends to
an B-valued inner product on the completion because of the Cauchy-Schwarz inequality and
the boundedness of the right B-action. m

The module defined in the lemma above will be called the separation-completion of the
right B-module H.

2.2.2 Orthogonality

Definition 2.2.6. If H is a right Hilbert B-module, then we say that &, ..., &, € H are
orthogonal if (§;,&;) = 0 for i # j.

Unlike the scalar case, there is no reason why orthonormal bases would exist in general.
However, when we have orthogonal vectors, a version of the Pythagorean identity still holds

13



Observation 2.2.7. If &, ..., &, are orthogonal, then

<Z§],Z@> _le 6.6,

1/2
< (ZH&IIQ> .

2.2.3 Operators on right Hilbert B-modules

and hence

Z &
j=1

Definition 2.2.8. Let H; and H, be right Hilbert B-modules. A linear map T : Hy — Ho
is bounded if
IT1| := sup |ITh]| < +oo.
llR][<1

We say that T is right-A-linear if (T'h)b = T'(hb) for each b € B.

The adjoint of a linear operator is defined the same way as in the scalar case, except that
there is a no guarantee that an adjoint exists.

Definition 2.2.9. Let T : H; — Hs be a bounded right-B-linear map between right Hilbert
B-modules. Then T is adjointable if there exists T : Ho — H; such that

(Thy, ho)y, = (h1, T ho)3y,
In this case, we say that 7™ is an adjoint for T
Proposition 2.2.10.
(1) If T : Hy — Ho is adjointable, then the adjoint is unique.
(2) If T : H1 — Ho and S : Ha — Hs are adjointable, then (ST)* = T*S*.
(8) If T is adjointable, then T* is adjointable and T** =T.
(4) IT*T|| = |IT|]* = |T*|]>.
Proof. (1) Suppose that S and S” are two adjoints for 7. Then for every h; and hs, we have
(h1, (S — S)ho) = (Thy, ha) — (Thy, hy) = 0.

For each hy, we can take hy = (S — S")hy to conclude that Shy = S’hs.
(2) Given that the adjoint is unique, this equality follows from the fact that

(SThi, hs) = (Thy, S*hs) = (hy, S*T*hs).
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(3) Note that

<T*h2, h1> - <h1,T*h2>* — <Th1, h2>* — <h2,Th1>.

(4) Observe that

1Tl = sup [[Thil = sup [[(Ths, hs)
IS I 1l <1
= sup  |[(hy, Tho)|| = sup  [[{T"h, hy)|| = | T7]].
Izl <1 I 1| <1

Moreover, using the Cauchy-Schwarz inequality,

2
17T\ = sup [{T"Thy,hy) = sup [{Thy,Thy)| = ( sup IIThlll) = T)*

[Pl [Py ]I <1 IRl [Py <1 [[Pall<1
[l

Definition 2.2.11. We denote the *-algebra of bounded, adjointable, right-B-linear opera-
tors H — H by B(H).

2.3 (C*-correspondences

Now we introduce the B-valued analogue of a representation of a C*-algebra on a Hilbert
space.

Definition 2.3.1. Let A and B be C*-algebras. An A-B-correspondence is a right Hilbert
B-module H together with x-homomorphism 7 : A — B(H).

In this case, for a € A, we write af := 7w(a), and thus view H as a A-B-bimodule.
The left and right actions commute because by definition B(#) consists of right-B-linear
operators. A Hilbert A-B-correspondence can be thought of as a representation of a C*-
algebra A on a B-valued Hilbert space. Of course, a C-B-correspondence is equivalent to a
right Hilbert B-module.

2.3.1 Direct sums

Given a family of A-B-correspondences {H,;}icr, we define the direct sum @ie ; Hi as the
completion of the algebraic direct sum with respect to the B-valued inner product

<Z@-,Zg> = (& G

i€l el el
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where ) ., & and ), ; ¢; are elements of the algebraic direct sum represented as sums of
& € Hi and (; € H; with only finitely many nonzero terms.

We must still verify that this definition makes sense. It is straightforward to check that
this is an inner product, and therefore the completion is well-defined as a right Hilbert
B-module by Lemma [2.2.5] But it remains to show that left A-action is bounded and
extends to the completion. Let a € A and let ), ;& be in the algebraic direct sum. Then
|al|* — a*a > 0 in A, and hence

lal*(&, &) — {a&, a&) = (& (lal* — a”a)&) = 0,

which implies that

<GZ§MLZ§¢> =) (a&,a&) < lal* ) (& &) = Ha2||<25z'72&>-

icl iel iel icl iel el
Therefore, the A-action is bounded and so extends to the completion.

The direct sum operation is commutative and associative, up to natural isomorphism.

2.3.2 Tensor products

Suppose we are given an A-B-correspondence H and a B-C-correspondence K. Then we
define the tensor product H ®z IC by equipping the algebraic tensor product with the pre-
inner product

(61 ® (1,8 ® G) = (C1, (61,62)C2)
and then forming the separation-completion as in Lemma [2.2.5]

Let us expound the definition in more detail and verify that the construction makes sense.
Let V be the algebraic tensor product of H and I over B. That is, V' is the vector space
spanned by ¢ ® ¢, where £ € H and ¢ € K, modulo the span of vectors of the form

ER(G+G)—ER G — £ (a (EH1R&6L)RC—6ER(—E® IR (—ER B,

where b € B. Note that V is a A-C-correspondence with the actions given by
a(§ ® () = af ® ¢, (€ ®Qe=¢® (e
We equip V with a C-valued form (-, -) given by

(&1 ® (1,6 ® G) = (1, (61,&2)C2)-

Observe that if we replace ;b ® (; with ; ® b(; for j = 1 or 2 and b € B, the result is
unchanged due to the right B-linearity of the inner product on H; therefore, this C-valued
form on V is well-defined. It is straighforward to check that this C-valued form is right
C-linear and symmetric.
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In order to check that this is nonnegative, consider a sum of simple tensors Z?Zl § R

Note that
<Z§i ®G, ) 6O Cj> = (G (& 6)6) = (¢ X en,

1,3
where ¢ = ((1,..., () € K™ and X is the matrix [(&;, &)]i; in M, (B). We claim that X >0
in M,,(B). This follows from Lemma [2.1.10| because for v € M, »1(B), then

v'Xv = Z(fﬂ%fj%‘) = <Z€ivia ij?fj> > 0.

4,3
Thus, X can be written as B*B for some B € M, (B). Thus,

(€. XCYpun = (B, BC)pn > 0.

This shows nonnegativity of the inner product.

Therefore, Lemma shows that the separation-completion of V with respect to (-, -) is
a well-defined right Hilbert A-module K @3 H. Finally, we must verify that the left A-action
is well-defined. Let a € A. Then ||a]|* — a*a > 0, so that ||a]|> — a*a = z*x for some z € A.
Thus, for a simple tensor > ;& ® ¢, we have

<Z@- © G, ([la]® —a*a) Y ¢ ®cj> = <Zx@- ® G, Y 7 ®<j> >0,
) i ) 7

which implies that

<GZ§z’ ®Q;7GZ§J‘ ®Cj> < Ha”2<Z§z‘®Q>Z§j ®Cj>-

Hence, the action of a is bounded and thus passes to the separation-completion. Moreover,
direct computation shows that the action of A is a *-homomorphism.

This shows that the tensor product is well-defined. Furthermore, it is straightforward to
check that the tensor product is associative, that is, if H; is an A;_;-A;-correspondence for
7 =1, 2,3, then

(H1 @4, Ho) @u, Hs = Hi @4, (Ho @4, Hs)
as an Ag-As-correspondence. In particular, we can unambiguously (up to natural isomor-
phism) write
Hi®a, - Qa,y Ha
as an Ay-A,,-correspondence when #; is an A;_;-Aj-correspondence for j = 1,...,n. More-

over, tensor products distribute over direct sums in the obvious way. We also have the
following useful property:
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Lemma 2.3.2. Let H be an A-B-correspondence, let IC be a B-C-correspondence, and con-
sider the tensor product H @p K. If £ € H and ¢ € K, then

(€®¢E® Q) < EOHIC )

and hence

1€ @ ¢l < NSl
Proof. Use (€ ® (,£® () = (¢, (£,£)¢) and the fact that ||£]|? — (£, &) is a positive operator
in B. ]

2.4 Completely positive maps and the GNS construction

Now we will define the B-valued analogue of positive linear functionals on an algebra A
and the GNS construction. It turns out that positivity of a map ¢ : B — A is not a
strong enough condition to make the GNS construction work. Rather, we need the notion
of complete positivity. Complete positivity was first studied by Stinespring [Sti55], and the
operator-valued GNS construction is closely related to the Stinespring dilation theorem and
its extension by Kasparov [Kas80]. For further references, see [Bla06l §11.6.9-10, §II1.7.5].

Definition 2.4.1. Let 0 : A — B be a linear map. We denote by ¢™ : M, (A) — M, (B)
the map given by applying o entrywise. We say that o is completely positive if o™ is positive
for every n, that is, o™ (A*A) > 0 for every A € M, (A).

Lemma 2.4.2. Let H be an Hilbert A-B-correspondence and & € H. Then o(b) := (£, b€) is
a completely positive map A — B.

Proof. Choose a positive element A*A in M, (A) and write A = [a;;]. By Lemma [2.1.10} to
show that o™ (A*A) > 0, it suffices to show that for v € M, (B), we have v*¢(™ (A*A)v > 0.
But

v* o™ (A*A)v = Z@% (A*A); ;€v;) = Z<ak,i5”i: ar;§v;) = (A(&v), A(§v))wn > 0,

i7j i7j7k

where v € H™ is the vector (§vq, ..., &v,) and A acts on H™ by matrix multiplication in the
obvious way. O

Conversely, we will show that every completely positive map o : A — B can be realized
by a vector £ in a Hilbert A-B-correspondence. We define an A-B-correspondence A ®, B
by equipping the algebraic tensor product A ®a, B over C with the pre-inner product

<(11 X bl, as X bQ) = biO’((ZTCLQ)bQ.
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This pre-inner product is clearly right B-linear and symmetric. To show that it is nonnega-

tive, consider a vector
n
f = E aj & bj
j=1

and note that

(€,€) = bia(a;a;)b;.
i.j

The matrix C' = [afa;] can be written in the form A*A and hence is positive in M, (A).
Therefore, by complete positivity of o, the matrix [o(a}a;)] is positive in M, (B). Then by
Lemma , >ijbio(aia;)b; > 0in A. This shows nonnegativity of the pre-inner product.

Thus, by Lemma [2.2.5] we can define the separation-completion A®, B as a right Hilbert
B-module. Finally, we claim that the left multiplication action of A4 on A ®,, B passes to
the separation-completion. To do this, it suffices to show that this action is bounded with
respect to (-, ).

The argument is the same as in the construction of the tensor product for bimodules.
Given a € A, we have ||al]|> — a*a > 0 and hence it can be written as z*x for some x € B.
Using complete positivity, one argues that (z€,z€) > 0 whenever { = 37 | a; ® b;. Thus,
we conclude that ||a&,af]] < |lal|?(¢,€). In summary, we have shown that the following
definition makes sense.

Definition 2.4.3. Let 0 : A — B be completely positive. We denote by A ®, B the Hilbert
A-B-correspondence defined as the separation-completion of the algebraic tensor product
A ® B over C with respect to the pre-inner product (a; ® by, as ® be) = bio(ajaz)bs.

Moreover, a direct computation shows the following.

Lemma 2.4.4. Let 0 : A — B be completely positive. Let £ be the vector 1 ® 1 in A®, B.
Then o(a) = (£,af). In particular, a map o is completely positive if and only if it can be
expressed as o(a) = (£, a&) for some vector & in a Hilbert A-B-correspondence H.

Finally, let us point out, that just as in the case of states, completely positive maps are
automatically bounded (in fact, completely bounded).

Lemma 2.4.5. Let 0 : A — B be completely positive. If A € M,(A), then |[c™(A)| <
lo (COIIA-

Proof. First, consider a € A (for the case n =1). Let H = A®, B and { =1® 1. Then by
Cauchy-Schwarz,

lo(@)ll = 1€, a)ll < gllllag]l < llallligl* = lallllo(L)]].

For n > 1, note that if o is completely positive, then o™ is also completely positive and
hence by the preceding argument ||o™ (A)|| < [|A||||le™ (1)| = || Al/|le(1)]]. O
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2.5 B-valued probability spaces

Completely positive maps are the B-valued analogue of positive linear functionals on C*-
algebras and measures on compact Hausdorff spaces. The analogue of a state or probability
measure is a B-valued expectation, also known as a conditional expectation A — B. The
probabilistic viewpoint on this construction is due largely to [Voi85l §5].

Definition 2.5.1. Let B C A be unital C*-algebras. An B-valued expectation FE : A — B is
a unital, positive B-B-bimodule map.

By “unital” we mean that F[1] = 1 and by “B-B-bimodule map,” we mean that E[ba] =
bE[a] and Elab] = Elalb for b € B and a € A. The unital condition is the analogue of
the normalization of a state or probability measure, and the B-B-bimodule property is the
analogue of the property that E[f(X)g(Y)|X] = f(X)E[g(Y)|X] in classical probability
theory.

Remark 2.5.2. Complete positivity is automatic in this case. Indeed, if BC Aand ®: A — B
is a positive B-B-bimodule map, then ® is completely positive. To see this, consider a positive
element A*A € M,,(A) and given v € My, (B). Then we have

v*EM[A*Alv = E[v*A*Av] > 0

since v*A*Av > 0 in A by Lemma [2.1.10, Since v*E™[A*AJv > 0 for every v, Lemma [2.1.10
implies that E(™[A*A] > 0.

Definition 2.5.3. A B-valued probability space is a pair (A, E), where A is a C*-algebra
unitally containing B (in other words, the inclusion B — A is specified as part of the data,
though suppressed in the notation), and F : A — B is a conditional expectation, such that
the representation of A on A®pg B is faithful, that is, the *-homomorphism A — B(A®g B)
is injective.

This last condition that the representation is faithful is a type of non-degeneracy condi-
tion. For example, in the case where B = C and A = C(X) for a compact Hausdorff space
X and FE is integration against a given probability measure P, the faithfulness condition
says that (closed) support of P in X is all of X. In general, this condition says intuitively
that all information about the algebra A can be captured from the expectation E. This is a
reasonable assumption because in non-commutative probability theory, we only care about
aspects of the algebra A that are observable from E.

We have seen that a completely positive map A — B can always be represented as
a — (& a€) for a vector ¢ in an A-B-correspondence. To facilitate construction of non-
commutative probability spaces, we present the following characterization of when a +—
(&, a&) is a conditional expectation in terms of the vector £, which comes from [Liul8, Lemma
2.10].
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Definition 2.5.4. Let H be a Hilbert B-B-correspondence. A vector £ € H is said to be a
unit vector if (£,£) = 1. We say that & is B-central if b§ = &b for b € B.

Lemma 2.5.5. Let B C A be a unital inclusion of unital C*-algebras, let H be an A-B-
correspondence, and let & € H. Then the following are equivalent:

(1) The map E : A — B :aw (£,af) is a conditional expectation.
(2) (£,68) =0 for allb € B.

(8) & is a B-central unit vector.

Proof. 1f (1) holds, then F is a unital B-B-bimodule map and hence F|z = id, which means
exactly (2).

Suppose (2) holds. By substituting b = 1 in (2), we see that £ is a unit vector. Next, to
show that ¢ is B-central, fix b € B. Then we have

(b€ — &b, b€ — &b) = (b, bE) — (£b, bE) — (b, £b) + (€D, £D)
=bb—0bb—bb+0bb=0,

hence b§ = &£b.

Finally, if (3) holds, then E is unital since E[1] = (£,£) = 1 and it is a B-B-bimodule
map since

Elbiaba] = (€, biabs€) = (i€, aba€) = (€05, atbs) = by (€, a)bs = by Elalby. m

Remark 2.5.6. The previous lemma implies that if B C A and ® : A — B is completely
positive, then ® is a B-B-bimodule map if and only if ®|s = idg. This is because every such
® can be realized by a vector £ through the GNS construction.

We also remark that if £ is a B-central unit vector, then B¢ is automatically a direct
summand of H.

Lemma 2.5.7. Let H be a B-B-correspondence and let & € H be an B-central unit vector.
(1) BE and H° = {( : (,¢) = 0} are B-B-correspondences.
(2) H=DBEDH.

(8) BE is isomorphic as a B-B-correspondence to the bimodule B with the inner product given

by <bl, b2> = bTbQ
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Proof. Note that B¢ is an B-B-bimodule because it is a left B-module and b = £b. Moreover,
‘H° is a B-B-bimodule because if ( € H° and b € B, then

(€,¢b) = {5, )b =0

and
(€,bC) = (b7, ¢) = (€b", ¢) = b(&, () = 0.

Moreover, any ( € ‘H can be written as

¢ = (608 + (= (£ 0)9),

where the first term is in B¢ and the second term is in H° because

(6, ¢ = (&8 = (& ¢ = &£, Q) = (6, Q) — (£:6)(6,¢) = 0.

Therefore, H = B ®H°. Because this direct sum decomposition holds, the individual terms
B¢ and H° must be closed subspaces and hence are B-B-correspondences.

Finally, we can define a map ¢ : B — B¢ by b — b¢. This map is clearly surjective. Using
the fact that £ is B-central, one checks that this map preserves the inner product and is an
isomorphism of B-B-correspondences. O

2.6 B-valued laws and generalized laws

We now turn to the definition of B-valued laws (and generalized laws). The results of this
section are based on [Voi95, [PV13] [AWT6].

Recall that if X is a real random variable on a probability space (€2, P), then the law
of X is the measure px on R given by [ fdux = E[f(X)]. Similarly, if ¢ : A — C is
a state and X € A is self-adjoint, then the law of X with respect to ¢ is the measure py
given by [ fdux = ¢[f(X)]. In either case, if the measure py is compactly supported,
then it is uniquely specified by its moments [t"dux(t) = ¢(X™), that is, it suffices to
consider polynomial test functions. In the B-valued setting, there is no clear way to express
these moments in terms of a measure, we will simply define the law of X by its action on
polynomial test functions.

Definition 2.6.1. We denote by B(X) the algebra of non-commutative polynomials in a
formal variable X with coefficients in B, that is, the universal (non-commutative) algebra
generated by B and an indeterminate X. (As a vector space, B(X) is the linear span of
terms of the form by Xb1 X ...bx_1Xbx.) We endow A(X) with the x-operation determined
by

(Do Xb1 X ... bp_1 Xbp)" =0 Xb;_, ... Xb] XD,

Definition 2.6.2. Let (A, F) be a B-valued probability space and z a self-adjoint element
of A. The law of x is the map p, : B(X) — B given by p(X) — E[p(x)].
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In probability theory, it is a standard fact that every probability measure on R is the law
of some random variable. Indeed, the random variable given by the identity function on the
probability space (R, ) will have the law p. Thus, laws which arise from random variables
are characterized abstractly as measures. In operator-valued non-commutative probability,
there is also an abstract characterization of laws, and a way to explicitly construct a random
variable which realizes a given law, which is a version of the GNS construction.

Definition 2.6.3. An B-valued law is a linear map p : B(X) — B such that

(1) w is completely positive: For any P(X) € M,(B(X)) we have u™(P(X)*P(X)) > 0 in
M,(B).

(2) p is exponentially bounded: There exist some M > 0 and R > 0 such that

(0o X b1 X .. b1 Xb)|| < MR¥||bo|l . .. ||bg]| for all b, . .., by € B.

(3) w is unital: p(l) = 1.
(4) w is a B-B-bimodule map: p(byp(X)ba) = byu(p(X))by for by, by € B.

Definition 2.6.4. Let u : B(X) — B. If ||u(bo X0 X ... bp_1Xp)|| < MR¥||boll ... |bx]],
then we say that R is an exponential bound for . Finally, we define the radius of u as

rad(p) := inf{ R : R is an exponential bound for p}.

The characterization of B-valued laws is proved in [PVI13| Proposition 1.2], and it is
similar to earlier results such as [AGZ09 Proposition 5.2.14].

Theorem 2.6.5. A linear map p: B(X) — B is a B-valued law if and only if there ezists a
B-valued probability space (A, E) and a self-adjoint x € A with u = p,. Moreover, for each
W, we can choose x such that ||x|| = rad(u).

The most substantial part of the proof will work in greater generality, and we will need
the more general result later when we work with analytic transforms associated to B-valued
laws.

Theorem 2.6.6. Let B and C be C*-algebras and o : B(X) — C a linear map. Then the
following are equivalent:

(1) o is completely positive and exponentially bounded.

(2) There exists a B-C-correspondence H, a vector & € H, and a self-adjoint operator x €

B(H) with o( (X)) = (€, f()€) for all f € B(X).

(8) There exists a C*-algebra A and a x-homomorphism p : B(X) — A, and a completely
positive map & : A — C such that o =7 o p.
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Moreover, for a completely positive and exponentially bounded o, the operator x can be chosen
such that ||x|| = rad(o), and we have

lo(boXby ... Xbe)|| < [lo(1)][xad(a)"[[boll - .- [[bw]l- (2.1)
Proof. (1) = (2). We define a C-valued pre-inner-product on B(X) Qa1 C by

(1(X) @ c1, f2(X) @ e2)y = Tu(f1(X)"g2(X)) 2.

As we saw earlier with tensor products and the GNS construction, the complete positivity of o
implies that the pre-inner-product is nonnegative. Therefore, the Cauchy-Schwarz inequality
holds and we can define the separation-completion with respect to this pre-inner-product,
which we denote by B(X) ®, C.

The space ‘H := B(X) ®, C is a B-C-correspondence with the left action of B defined
in the natural way. Indeed, to show that the left multiplication by b € B extends to the
separation completion, it suffices to show that ||bS|| < ||b]|||¢]| for £ € B(X) ®a C. This is
done by writing ||b||> — b*b = y*y for some y € B as before.

Next, we claim that the linear operator given by f(X)®c+— X f(X)® ¢ on the algebraic
tensor product passes to a well-defined and bounded operator x on the separation-completion
B(X) ®, C. Let R be an exponential bound for ¢ and let "> R. Unfortunately, we cannot
claim that 7% — X? is a positive element of B(X), or that it can be written as g(X)*g(X)
for some ¢g(X) € B(X), since B(X) does not have the same completeness properties as a
C*-algebra. However, we can fix this problem by looking at a certain power-series completion

of B(X) and defining ¢g(X) as the power series for v/1? — X?2.

For a monomial by Xb; ... Xbs, we denote
p(boXby ... Xby) = RF[|bol| .. . [|bl]-
Then for f(X) € B(X), we define

| f(X)||z = inf {Zp(fj) . f; monomials and f = ij} .
1 7j=1

j= =

Let B((X))r be the completion of B(X) in this norm. One checks easily that

1A (X g(X)[r < IF(X)[rllg (X &,

and this inequality extends to the completion, which makes B((X))r a Banach algebra.
Similarly, the x-operation on B(X) extends to the completion. By standard results from
complex analysis, the function g(t) = v/1? — t? has a power series expansion

g(t) =Y ot
=0
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which converges for |[t| < T. In particular, the series converges absolutely for ¢ = R, which
implies that

9(X) =) a; X’
7=0

converges absolutely in B((X))r. Moreover, because of the absolute convergence and the
Banach algebra properties, we can compute ¥ (X)? by multiplying the series term by term
and hence conclude that g(X)? = T? — X2, Because R is an exponential bound for o, we
know that ||o(f(X))|| < M| f(X)||r, where M is a constant such that ||bgXb; ... Xb|| <
MRF||bo]| ... ||bx]|- Hence, o extends to a linear map B{(X))r — C, which is still completely
positive, and hence the pre-inner-product (-,-) extends to B((X))r ®ae C. Then for each
vector ¢ € B((X))r Qalg C, we have

(€ (T* = X?)€) = (9(X)¢, g(X)¢) = 0,

which implies that || X (|| < T'||¢||, and in particular, this holds for ( € B(X) ®a, C. By
taking 7'\, R, we have || X(|| < RJ|(]||, which means that the multiplication operator by
X is bounded with respect to the pre-inner-product and hence extends to the separation-
completion.

The operator x thus defined is clearly self-adjoint. Moreover, letting £ = 1®1 € B(X) ®,
C, we have

(€, f(2)§) = o(f(X)) for f € B(X).

Since R was an arbitrary exponential bound, we have ||z|| < rad(o), and thus,
lo(boXby ... X0p) || = [, bowbs - .. bkl < NEI* N2 *[1boll - .- 1Bl < [lo (1) xad(a)"[1Boll - - . [1Dkll-

This proves (1) = (2) as well as the last claim of the theorem.

(2) = (3). Fix H, &, and x asin (2), and let A = B(H). Let m be the x-homomorphism
B — B(H) given by the left B-module structure. Then there is a unique *-homomorphism
p: B(X) — B(H) satisfying p|g = 7 and p(X) = z. Moreover, the map & : B(H) — C given
by a — (&, a&) is completely positive and satisfies o p = 0.

(3) = (1). If (3) holds, then ¢ is completely positive because it is the composition of
the two completely positive maps p and o. Moreover, it is exponentially bounded because

lo(boXbr ... Xbi)|| = [[F(bop(X )i ... p(X)b) | < o (o [[ol - - - 1B
by Lemma [2.4.5 [

Proof of Theorem[2.6.5 Suppose that p is a B-valued law. Let H, &, and « be as in Theorem
(2) for 0 = p. Since (€,b€) = p(b) = b, Lemma implies that & is a B-central unit
vector, hence A = B(H) and E = (&, (-)€) form a B-valued probability space. And clearly
ty = p. Conversely, if u = u, for some x in a B-valued probability space (A, E), then by
Theorem m, i is completely positive and exponentially bounded. Since E(1) =1 and E
is a B-B-bimodule map, the same holds for u. O

25



From the use of Lemma [2.5.5] above, the following corollary is obvious.

Corollary 2.6.7. Let o : B{X) — B be completely positive and exponentially bounded. Then
o is a law if and only if o|g = idg.

Lemma 2.6.8. If 0 and 7 are generalized laws, then o + 7 is also a generalized law, and we

have rad(o + 7) = max(rad(o),rad(7)).

Proof. 1t is straightforward to check from the definition that o+ 7 is a generalized law. Next,
if p(X) = boXb1 e ka7 then

l(o + 7)) < lo(e(XN + [Im(p(X)]
< llo ()] rad(@)*1boll .. [1Bell + 17 (1) | rad(7)*[[Bol - .- 1[15]
< (loW + (1)) max(rad(e), rad(r))*[lbo]| . . [[be]l,
which shows that rad(c + 7) < max(rad(c),rad(7)). On the other hand,
lo(p(XD < [l ()2l (p(X)*p(X))[I2
< |l(e + )Wl (o + 7)(pX) p(X))]?
< [l(o + YOI (It + 7)(1) | rad( + ) {[bol. - [be]*) "
= ll(o+ 7))l rad(e + 7)*[1boll . - 1Bl

where we have used the fact that 0 < o(p(X)*p(X)) < (0 4+ 7)(p(X)*p(X)). But the
above estimate implies that rad(c) < rad(o + 7), and of course rad(7) < rad(c + 7) by
symmetry. O
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CHAPTER 3

Background: Fully matricial functions

3.1 Introduction

One of the key tools in scalar-valued non-commutative probability is the Cauchy-Stieltjes
transform of a random variable X given by

Gx(2) = El(z — X)™],

which is an complex-analytic function for z in the upper half-plane and in a neighborhood
of oo (provided that X is bounded). The law of X can be recovered from the power series
expansion of Gx at oo because

Gx(z™h =FE[z Z FHEXH,

k=0

which is essentially the moment generating function for the law of X.

In this chapter, we describe a B-valued analytic function theory suitable for B-valued
non-commutative probability, and in the next, we analyze the B-valued Cauchy-Stieltjes
transform. It should not be surprising at this point that our notion of analyticity needs to
take into account matrix amplifications. One concrete motivation for this is that, without
taking matrix amplifications, the Cauchy-Stieltjes transform is insufficient to encode the
B-valued law of a random variable X.

One would naively define the Cauchy-Stieltjes transform Gx as a function on an open
subset of B given by Gx(z) = E[(z — X)™']. Looking at the power series of Gx(z7!) at 0,
we have .

Gx(z)=E[(z"' = X) = E[(1-2X)"2] =) _E[(
k=0
From this, we can recover all moments of the form E[2Xz... Xz]. However, to know the law
of X, we would need to consider all moments of the form E[z; Xz ... Xz]. Of course, for

the Cauchy-Stieltjes transform not to encode the law of X would severely handicap analytic
methods for operator-valued non-commutative probability.

But fortunately this problem is resolved by matrix amplification. We can consider the
sequence of functions Gg?) with domain in M,,(B) given by Gg?) (2) = EM[(z—X™)~1], where
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X ™ is the diagonal matrix with entries given by X. To recover the moment E[2 Xz, ... X 2,]
for z; € B, we evaluate (the analytic extension of) Gg?ﬂ)(z*l) on the matrix

00 o ... 00

00 0 ... 00
= .

0 0 O 0 2,

0 0 0 0

and obtain

GY (=) =Y B[ X )]

k=0

[0 20 El2Xz] ... El20Xz ... Xzp1] El20Xz ... Xz, |

0 0 21 coo Bl Xz . Xzp] Elai Xz Xz

0 0 0 coo Blz3Xzz. . Xz ] El20X23X ... Xz,
0 0 0 Zn,

oo 0o .. 0 0 |

where E[20Xz; ... Xz,] can be recovered as the top right entry.

Thus, an analytic function F' ought to be a sequence of functions F™ defined on n x n
matrices over B. But we also need to guarantee that these functions “fit together consis-
tently.” More precisely, we will require that F' respects direct sums and conjugation by
invertible scalar matrices (see Definition [3.2.3).

Remarkably, these algebraic conditions, together with a local boundedness condition
which is uniform in n, are sufficient to imply the existence of local power series expansions
for the function F™. The terms in these power series expansions are given by multilinear
forms, much like the power series expansion for Gx(z7') is obtained from the multilinear
forms (20X z; ... X2,). Moreover, just as in the case of Gx(z!), these multilinear forms
are computed by evaluating F on certain upper triangular matrices.

The study of such non-commutative or fully matricial functions originated in the 1970’s
with the work of Joseph Taylor [Tay72|, [Tay73]. Dan Voiculescu studied fully matricial
functions in the context of the free difference quotient and generalized resolvents [Voi00],
[Voi04], [Voil0]. Mihai Popa and Victor Vinnikov clarified the connection between fully
matricial function theory in the abstract and the various analytic transforms associated to
non-commutative laws [PV13], which we will discuss in detail in the later chapters.

We have opted for a self-contained development of the theory of fully matricial functions,
though somewhat restricted in scope. We are indebted to the systematic work of Kaliuzhnyi-
Verbovetskyi and Vinnikov [KV14], although we have not presented the material in the same
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way. We write with the analogy to complex analysis always in mind, and with an eye towards
the results of Williams and Anshelevich on the Cauchy-Stieltjes transform [Will7], [AW16],
which we will discuss in the next chapter. We follow Voiculescu in using the term “fully
matricial” rather than “non-commutative” since it gives a more concrete description of the
definition.

3.2 Fully matricial domains and functions

In order to state the definition, we use the following notation.

(1) We identify M, (B) with B ® M, (C).

(2) If z € M,(B), then we denote

z 0 0 0
0O z ... 00
A= @l, = 0 . 0 | € Mun(B).
0 0 . z 0
_0 0 0 z]

(3) If z € M, (B) and w € M,,(B), then we denote

z 0

Z2Qw= {0 w} € Myym(B).

(4) If z € M, (B), then we denote B™(z,r) = {w € M,(B) : ||z — w|| < r}.

Definition 3.2.1. A fully matricial domain € over B is a sequence of sets Q™ C B™
satisfying the following conditions.

(1) Q respects direct sums: If z € QM) and w € Q™ then z @ w € Q™).

(2) Q is uniformly open: If z € QM then there exists r > 0 such that B™™) (20" ) C Qvm)
for all m.

(3) Q is non-empty: QU is non-empty for some n.
Notation 3.2.2. We denote by M,(B) the fully matricial domain (M,,(B))nen.

Definition 3.2.3. Let €2 and {2, be fully matricial domains over B; and Bs respectively. A
fully matricial function F' : ; — € is a sequence of functions F(™ : an) — Qg") satisfying
the following conditions.
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(1) F respects intertwinings: Suppose that z € Q" w € Q™ T € M,y (C). If 2T = Tuw,
then F(™(2)S = TF™ (w).

(2) F is uniformly locally bounded: For each x € an), there exist » and M > 0 such that
B("m)(z(m),r) C anm) and F(”m)(B(”m)(z(m),r)) C B(”m)(O, M) for all m.

In order to check that a function F' is fully matricial, it is often convenient to use the
following equivalent characterization of the intertwining condition.

Lemma 3.2.4. Let )y and €y be fully matricial domains and let F': 2y — €y be a sequence
of functions. Then F respects intertwinings if and only if the following conditions hold.

(1) F respects direct sums: If z € QM and w € QU then F+™ (2 @ w) = F™(z) @
FO) (w).

(2) F respects similarities: Suppose that z € QU that S € M,(C) is invertible, and that
SzS~t e QM. Then F™(S2871) = SFM™(z)S1.

Proof. First, assume that F respects intertwinings. To prove (1), fix z € QM and w € Q™.
Then we have the block matrix equations

[1 0] [S 3}}:41 0]
O R )

Because F' respects intertwinings, we have

[1 0] F™™(z @ w)=F™(2)[1 0]
[0 1] F™™(z @ w) = F™(w) [0 1],

which together imply that

it )(Z@w) — O( ) O () — p( )(2)@F( )(w)'

Next, fix z and S as in (2). Let w = SzS~'. Then Sz = wS and hence SF™(z) =
F®™(w)S, which means that F(™(SzS™1) = SF™(2)S~1,

Conversely, suppose that (1) and (2) hold and consider an intertwining 27" = T'w where
z € Q(ln), w e Q(lm), T € Mpxm(C). Then observe that

e | e il e
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and observe that
g_ 1 T
|01

is invertible. Hence, S(z @ w)S™! = 2 @ w and therefore by assumptions (1) and (2), we
have S(F™(z2) @ F™(w))S™! = F™(z) @ F™ (w). In other words,

F(n(;(z) FW?(w)] Ll) ﬂ

b 7 )]

and hence, looking at the top right block, '™ (2)T = TF™(w). O

In order to reduce the number of superscripts cluttering up our paper, we will use the
following notation.

(1) For F': Q; — Qs and z € an), we will usually write F(z) rather than F™(z), and the
context will make clear the size of the matrix z.

(2) If ©Q; and Q, are fully matricial domains, then we write €2; C 25 to mean that an) - Qén)
for every n.

(3) We write z € Q to mean that z € Q™ for some n.

(4) For T' C ©Q; and F : Q; — Q,, we denote by F(I') the sequence of sets F(I')™) =
F(D™), We define F~1(T') for T' C € similarly.

(5) For z € M, (B), we denote by B(z,r) the fully matricial domain

Brm) () )k =nm

g, otherwise.

B®(z,r) = {

In this notation, the uniform openness condition of Definition [3.2.1] states that for every
z € ), there exists r > 0 such that B(z,r) C Q. Moreover, F' : Q; — €5 is uniformly locally
bounded as in Definition if and only if for every z € 2, there exist R and M such that
F(B(z,R)) € B(0,M).

3.3 Difference-differential calculus

Definition 3.3.1. Let F': Q; — (5 be fully matricial, where €2; is fully matricial domain
over B;. Suppose that z, € Qg"O), co, 2k € Qg""'), suppose that wy € My xn, (B), ...,
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wg € My, xn, (B1), and suppose that the block matrix

20 Wq 0 . 0 0
0 Z1 W ... 0 0
0 0 2z ... 0 0
Z=1. . . : .
0 0 0 Zk—1 Wk
0 0 O 0 2z

is in Q") Then we define

AFF(zo,. .. z1)[wy, ... wy)

as the upper right ny x ny block of F(Z).

Lemma 3.3.2. Let zy, ..., zi and wy, ..., w, and Z be as above, and assume that each of
the submatrices _ _
Zi Wiyl ... 0 0
0 24y ... 0 0
Z,L'J' = . . . . .
0 0 I
o0 ... 0 z]
1s in the domain of F' for each v < j. Then we have
_F(zo) AF (2, z1)[w1] AZF(29, 21, 20)[wi,wa] ... AFF(z0,...,2)[w1, ..., w] 1
0 F(Zl) AF<21722)[w2] Ak_lF(Zb'"7Zk)[w27"'7wk]
F(zy=1| 0 0 F(z) v AFT2E (2o 2p)[ws, - wy]
| 0 0 0 F(zx) |
(3.1)

Proof. We proceed by induction on k with the base case k = 0 being trivial. Let £ > 1. Let
n; be the size of the matrix z; and let N; ; = n; +--- +n;. Then we have

7 1N0,k—1 XNok—1| _ 1N0,k—1><NO,k—l 7
O - O O,k—l
nEXNo k-1 nEXNo k-1

and therefore

Onk XNo k-1 OnkXNO,k—l
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From this relation together with the induction hypothesis applied to F/(Zy-1), we deduce
that

F(z0) AF(z0,21)[w] A:_IF(ZO, oo Zee)wr, o weg] %

0 F(z AF2E (21, o ) |we, - W] ¥
rno | (=) CAR [

0 0 0 *

In other words, (3.1)) is verified except in the last nj columns. Similarly, by considering the
intertwining

[Oleano 1N1,kXN1,k] Z - Zl,k‘ [ONl’ano 1N1,kXN1,k]
and applying the induction hypothesis to F'(Z; ), we can verify (3.1) except in the first ny

rows. It remains to check (3.1)) in the top right ng x ny block; but this holds by definition of
AFE. O

Lemma 3.3.3. Suppose that zy € ano), S, 2 € ank), suppose that wy € My xn, (B), ...,
Wi € My, xn, (B), and let (1, ..., ( € C. Then we have

AkF(ZO7 et Zk)l:clwlﬂ R 7Ckwk} = Cl ct CkF(ZO7 et zk‘)[,LUl’ ctt 7wk]
provided that both expressions are defined under Definition |3.5.1].
Proof. We consider the intertwining
B 0 0] [¢...¢ 0 0 0]
0 0 Zr-1 Grwg 0 0 G O
0 0 0 ze || 0 0 0 1]
e 0 0 0] [z w 0 0]
0 Ck 0 0 0 Zk—1 Wk
i 0 0 1] 10 0 U
apply the function F, and then examine the top right corner. O

Definition 3.3.4. If z; € Q" for j =0,...,k, then we extend the definition of

AFE (2o, .. 2wy, ... wg]
to arbitrary values of wy € My un, (B), ..., wp € My, xn, (B) by setting
1
F(Z07 SR )Zk>[w17 s 7wk] = C CkAkF<Z0ﬂ s 7Zk?>[<1w17 s 7<.k:wk]a
1.--
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where (1, ..

20

0

C1w1
21

0
0

Zk—1

0

0
0

Crwy
2k

., Cx € C\ {0} are chosen to be sufficiently small that

c ano-l—-"—i—nk)‘

Such a choice of (i, ..., (x is possible because Q{0+ )

that this definition of F'(z,..., zx)[w1, ..., ws] is independent of the choice of (i, ...
is consistent with the earlier Definition [3.3.1]

is open. Lemma m guarantees
) Ck’ and

Lemma 3.3.5. AFF(z,... ,wy] is multilinear in wy,. . .

s zk)[wr, .. AW

Proof. We have already shown that A*F(z, ..., 2;) behaves correctly when we multiply one
of the w;’s by a scalar, so it remains to show that AFF(zg, ..., z)[wi, ..., wy] is additive in
each variable y;. First, consider the case k = 1 in which we must show that

AF(z9,21)[w + w'] = AF (20, 21)[w] + AF (20, 21)[w'].

Choose ¢ € C\ {0} sufficiently small that the matrices

20 C(w+w') z0 Quw zo Cu' %) 0 wa
0 z1 ’ 0 21 ’ 0 21 ’ 20 Cw
0 0 21

are all in the domain of F. From the intertwining

10 o] |0V v % Cwl 1 0 0
00 1|0 2 =1y 00 1|
00 = -1
we deduce that
2o 0 C(w
{1 0 0] Fllo 2 ol = [F(zo) CAF(ZO,zl)[w]} ll 0 0]
0 — .
00 1 00 0 F(z) 00 1
Similarly,
20 0 CU) !
010 Fllo 2 cw F(zy) CAF(zo,2z1)[w']] [0 1 0
00 1 0 00 . 10 F(z) 00 1|’
1
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and thus altogether,

2 0 Cw F(z) 0 C(AF(z9,21)w]
Fl|10 2z Cw| =] 0 2z (AF(z0,2)w]
0 0 21 0 0 21

Finally, we use the intertwining

0 2z Cu

ey SR

110,200(20
0 21 0

O =

i)

[E——
I

to deduce that

0 F(z0) CAF(zy,21)[W'] ]|,

{F(zo) CAF(zo,zl)[w+w’]} {1 1 0] _ {1 10 : 0 Gz

F(z) 0 CAF(zg, z1)[w]
0 F(z1) 001 oo 1}

which shows that (AF(zg, z1)[w + w'] = (AF (20, 21)[w] + (AF (20, 21)[w'] as desired.

The argument in the general case is similar. To show linearity of F'(z, ..., zx)[ws, . .., wy]
in wj, we consider replacing w; by w; + wj. The block 3 X 3 matrix used above is replaced

by

_Zo Clwl e 0 0 0 0 c. 0 0 T
0 =z ... 0 0 0 0O ... 0
0 0 Zj—2 ijlefl 0 0 0 0
0 0 0 Zj—1 0 Cjwj 0 0
0 0 0 0z Gu 0 0
0 0 0 0 0 x; 0 0
1 0 o ... 0 0 0 0O ... 0 2k

and the intertwiners are replaced by

a [/ 0
].n0+...+nj_1 S5 |:O 0 1:| ) ]"ﬂj+1+"'+nk

where o, f = 0,1 and where n; is the size of the matrix z;. n

3.4 Taylor-Taylor expansion

We have defined the derivative operators A*F using the matricial structure of F. Now we
will show that these same operators A*F describe the differential and analytic properties of
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F, and in fact that F has local power series expansions in terms of A*F. We begin with
the finite Taylor-Taylor expansion. This formula is named for Brook Taylor, who developed
the Taylor expansion in calculus, and Joseph L. Taylor, who pioneered the theory of non-
commutative (fully matricial) functions [Tay72, Tay73].

Lemma 3.4.1 (Taylor-Taylor Formula). Let F': Qy — Q5 be a fully matricial function. Let

2 € Q" and m > 1 and suppose that B (2™ ry C Q"™ If» € Bﬁjz/i(z*), then

—2
F(z) = AF(z, . 2) e =2 2 = 2] F AT VR (2,20, 2)[2 = 22— 24,
0

3

B
Il

where the k = 0 term in the sum is to be interpreted as F(z.).

Proof. Observe that the m x m block matrix

(2 2 — 2, 0 0 0 0 |
0 Zs 2 — Zy 0 0 0
0 0 Zy 2 — Zx 0 0
7 — |0 0 0 Zs 0 0
0 0 0 R
0 0 0 0 ... 0 Zx

is in B("m)(zim),r) C Q™) provided that ||z — 2.]| < r/v/2 (here we put the v/2 because
there are two entries in the top row which need to be changed). We have the intertwining
relation

1 1... 1)Z==z11 ... 1],

and therefore,
1 1... 1JF(Z)=F(2)[1 1... 1].

Looking at the rightmost block of [1 1... 1} F™)(7) and applying Lemma we have

m—1

F(z*)—i—z AYF (2, 2)[e=2es o 2= 2 FATF (2, 24y . 2) [2=2s - ooy 2— 2] = FM(2).
k=1

]

Next, we give a non-commutative analogue of the Cauchy estimates from complex analy-
sis, which will help us prove convergence of the infinite Taylor-Taylor series. In the following,
|ARF (2, ..., 2)| denotes the norm of A¥F(z, ..., z;,) as a multilinear form between Banach
spaces, that is,

IA*F(z0,. .., 2)|| = sup |A"F(z,...,z5) w1, ..., wl.

flw;ll<1
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Lemma 3.4.2. Let F' : Oy — Q) be fully matricial. Let Z = 2y @ - - - © 2, where z; € anj)
and let N = ng+- - ~+ny. Suppose that B™(Z, R) C Q) and F(B™)(Z, R)) € B™(0, M).
Then

M
|AFF(zg,..., 2| < I for k> 1. (3.2)
Proof. Suppose that |Jw|| <1, ..., ||lwg]| < 1. For r < R, we have
(20 rwy ... 0 0|
We=|: & . € BY(Z,R),
0 0 ... 2z rw
o0 ... 0 2 |

and hence |F(W)— F(Z)|| < M. Looking at the top right block of F(W)— F(Z), we obtain
|E (20, .-, 2k)[rws, ..., rwg]|| < M.
Because this holds whenever r < R and ||w;|| < 1, we have proven (3.2)).

Lemma 3.4.3. Let F': Qy — Qy be fully matricial. Let z, € Qg"), and suppose B(z., R) C
and F(B(z,, R)) € B(0,M). Then for z € B™(z,, R), we have

z):ZAkF(z*,...,z*)[z—z*,...,z—z*]. (3.3)

Proof. 1t follows from Lemma that the power series on the right hand side of ({3.3))
converges when ||z — z*|| < R. It remains to show that the sum of the series is F'(z). If we
assume that ||z — z,|| < R/v/2, then by Lemma |3.4.1]

F(z) = AFE (2, 2) [ = 2Zay o 2 = 2 F AT F (2, 20, 2)[2 = Zay ooy 2 — 24).

Now if ||z — z.|]| < R/2, then we have B(z., R/2) C B(z, R) and hence F(B(z,R/2)) C
B(0, M). Hence, by Lemmam
2M]lz = 2"
(R/2)™
which vanishes as m — oo. Therefore, holds when ||z — 2| < R/2.

To extend (3.3)) to y € B™(z,, R), we use complex analysis. Fix z € B™(z,, R). Note
that for any state ¢ on B™ and for ¢ € C with |¢| < R/2||z — z.||, the function

|ATF (2, 2y oy 2)[2 — 2ay ooy 2 — 2 || <

g(() =0 F(z+((z— z.)) ZCk o A*F(z, ... 2) 2 — 2y 2 — 2]
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is a scalar-valued analytic function. Now because F' has also has a local power series expan-
sion centered at z + ((z — z,) whenever z, + ((z — z,) is in the domain of F, we see that
g is actually analytic for |(| < R/||z — z.||. It follows that the power series expansion for ¢
centered at 0 converges to g when |(| < R/||z — z.||. Thus, taking { = 1, we obtain

(boF(z):Z(boAkF(z*,...,z*)[z—z*,...,z—z*],
k=0

and because this holds for arbitrary states ¢, we have proved (3.3)). O]

3.5 Matricial properties of A*F

We will now describe how A*F(z,...,2;) behaves when we replace one of the z;’s with
a direct sum. As a consequence, we will evaluate A*F (z(()n), e ,z(()")) as a type of matrix
amplification of A¥F (2, ..., 2), and hence derive a Taylor-Taylor expansion around a point
z which will hold not only on a ball B™)(zy,r), but on a fully matricial ball B(zy,7). As a

first step, we describe how the direct sum property of F' carries over to AFF.

Lemma 3.5.1. For j=1,....k—1, we have

k / 17 | Wit
A F(Zo, ce ey Zj—1, %5 S5 Zj>zj+17 ce ,Zk) Wy, ..., Wj—-1, [wj,wj] s |:U), :| y Wi, ... ,wk}
Jj+1
Ak
=A F(Zo, ce s R, %5 41y e ,Zk) [U}l, vy Wi—1, Wy, Wig1, Wig2, - - - ,wk]
k / / /
+ A F (20,5 25215 2, Zj115 -+ -5 28) [wl, W1, W Wy, Wik, - ,wk] )
In the endpoint case j = 0, the same holds with the terms w; and wj left out, and the

endpoint case j = k, the same holds with the wj;, and w}H left out.

Proof. To simplify notation, first assume £ = 2 and j = 1. Using the intertwining

20 Clwl 0 0

1000 zo Guw; 0 1000
01008%13?;”?:021@%0100,
1 G2Wy
0001 0 0 0 2 0 O 29 0001
we deduce that
A*F(z0, 21 ® 21, 22) [wl 0]7 Z/Q = A*F (20, 21, z2)[w1, wy].
L L7721
A similar argument shows that
A?F (2,21 @ 2}, 22) [O w’l], zz = A F (2, 2}, 20)[w], wh)].




Then by linearity of A2F (2,21 @ 27, z2) in the first w coordinate, we get

w
AZF(Z(), 21 P Zi, 22) |:[UJ1 w/1:| R |:w/2‘|:| = A2F(207 21, ZQ)[’IUl, U)Q] -+ A2F(Zo, Zi, ZQ)[U)Il, wé]
2
The argument for the general case when 1 < j < k — 1 is the same except that we must
augment our intertwining matrix by taking the direct sum with copies of the identity at the
top left and bottom right (compare the general case of Lemma |3.3.5)). The endpoint cases

j =0 and j = k have a similar but simpler argument. O]

Now we generalize the previous lemma to replace each z; by an arbitrary direct sum.
Lemma 3.5.2. Let Z; be the R; x R; block diagonal matrix
Zj=2j1® D zr,,
where the block z;, is nj, X nj, and j runs from 0 to k. Let W; be an R;_1 X R; block matriz

where the (r,s) block wj, s has dimensions nj_1, X njs. Then A¥F(Zo, ..., Z;)[Wh,. .., W]
is an Ry x Ry, block matriz where the (r,s) block is given by

Z AkF(%,m 21y ey Rh—1,rp_1> Zk:,s)[wl,r,rl; W2y rgy -+ s Wk—1,rp_o,rK_1> wk,rk,l,s]-
1y Th—1
Remark 3.5.3. In the last lemma, the conditions on the dimensions are such that it would
make sense to multiply the matrices ZoW12; ... W, Z, together. The lemma asserts that
block entries of AFF(Zy, ..., Zy)[Wh, ..., W] is computed from A*F evaluated on the z;,’s
and w;,¢’s in the same way as we would evaluate the matrix product ZoW1Z; ... W;Z;, in
terms of products of the z;,’s and w;j, s’s.

Proof of Lemma[3.5.3. We fix k and proceed by induction on the total number of direct
summands of the Z;’s. If some Z; has more than one direct summand, we can break Z; into
the direct sum of z;; & --- @ zj r;~1 and z; g, and then apply Lemma and thus reduce

to an earlier stage of the induction. O
Next, we will explain how to express AkF(zémO), . ,z,(gm’“)) as a matrix amplification of
A*F(z,...,2), and in particular, we will be able to extend the Taylor-Taylor expansion at

z, to a fully matricial ball around z,.
Definition 3.5.4. Let Vi, ..., V. and V be vector spaces and let A : V; x --- x V, = V be
a multilinear form. Choose indices my, ..., mg. We then define the multilinear form

A(mo"“’m’“) . Mmoxm1 (Vl) X X MTrkalxmk(Vk) — MmOka (V>

by
[A(m07."7mk)<vl7 ce 7Uk)]i7j = Z A[(Ul)io,iw T (Uk>ik—17ik]

1=10,01 550k — 1,0k =]

We will sometimes denote the matrix amplification A(™0~"#) simply by A# when we do not
wish to specify the indices my, ..., mg.
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In particular, let ' : €; — Qy, where 2, is a fully matricial domain over B;. Let
z; € anj ) for j=0,...,k. Then we have a multilinear form

AkF(ZO7 e Zk) : Mnoxnk (Bl> X+ X Mnk71an (Bl) — Mnoxnk (82)

If we choose indices my, ..., my, and identify My, xm; (M, xn; (B1)) With My, . xnym; (Br),
then we have by Lemma that

Ak‘F(z(()mo), . ’Z]E:mk)) — AkF(ZO, o 7Zk;>(m0 ..... mk)'

The case where z5 = --+ = z, = z, is particularly relevant for non-commutative power
series expansions. We now state a version of the Cauchy estimates and Taylor-Taylor ex-
pansion that take into account matrix amplification, beginning with a norm for multilinear
forms which is stable under matrix amplification.

Definition 3.5.5. Recall that the norm of a multilinear form on M, xp, (B) X - - X M, _, xn, (B) —
M,y 5en, (B) is given by
IA|l = sup |A[wy, ..., wgl]].

We say that A is completely bounded if ||Al|x < +o0.

The next corollaries follow immediately from Lemma [3.5.2

Corollary 3.5.6. Suppose that F : Q1 — Qs is fully matricial and B(z., R) C € and
F(B(z,R)) C B(0,M). Then ||AFF (2., ..., 2:)|l4 < M/R*.

Proof. Let mg, ..., my € N. Then B(2{™ & - @ 2™ R) C B(z,, R) C Q, so it follows
from Lemma [3.4.2] that
AR F( 5m0) iy < M
IARE(", o 2 < oo

This holds for all mg, ..., myg, so we are done. O

Corollary 3.5.7. Let F': Qy — Qy, let 2z, € Qg”), and suppose that F(B(z., R)) C B(0, M).
Then for = € B™ (2™ R), we have

This amplified power series expansion will allow us to compute and to estimate the
derivatives of F' at points in B(z,, R).
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Proposition 3.5.8. Suppose that F : Qy — Qy is fully matricial, z, € Q™ and B(z,, R) C
Qy and F(B(z., R)) € B(0,M). Let zy, ..., z, be points with z; € B™™3)(0, R). Then we
have
AFF(2m0) g 2 ) [, - wg)
Z Afottbtk pmo) MY a0 2, W 21, 2Ly e Wiy 2y -5 2] (3.4)
—— S—— ——

00,0l >0 A A Oy

In particular,

M
(R —[2l) - (R = [z]])

|AFF(20m0) 2o 0 200 2]l < (3.5)

and

MY Izl
R—|zll) .- (R —lzl)
(3.6)

JAFF(20m0) 4 2o 2m0) o z) — ARF(2lm0) 2 mo)||, < (

Proof. Since z, € Q" the equatlons and estimates only concern the functions F™ for
m € N. Now F (m")( — ) is defined on B™™ (0™ R) for each m and defines a fully
matricial function on the domain B(0™, R). Thus, we may assume without loss of generality
that z, = 0, Furthermore, we denote

Ay = AFF(z,,..., 2%,

so that

=> Af(z ) for z € B(0™, R).
k=0

Before performing the computation, we first show that the series converges absolutely
and estimate it. Observe that

Z A€0+--~+€k+k[20a sy R0y W1y Ry e e 5 By e ey Wy By - - - 7Zk]
S——— S——— ———
Lo,....0x >0 Lo 121 1
M
< > Trerrar 2ol -zl el ]
£Lo,.... L >0
MJwsll. . [Jwg]]

T (Rl B = =)’

where the last equality follows from summing the geometric series.

Now let us show that sum converges to A*F(zg, ..., 2;)[w, ..., w;]. Consider the block
upper triangular matrix Z with the entries zg, ..., z; on the diagonal, the entries wy, ...,
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wy just above the diagonal, and zeroes elsewhere. By rescaling, assume that wy, ..., wg
are small enough that ||Z| < R. Recall that A*F(z, ..., z)[w1, ..., wy] is the upper right
corner of F'(Z). The upper right block of Af(Z, ..., Z) is given by

E #
AZ (Zio,ilv ERI) Zig_l,ig)a
1=i9,i1,...,ip=k~+1

where Z; ; denotes the (4, j) block of Z. Because Z is block upper triangular with the only
nonzero entries being on the diagonal and directly above it, the only nonzero terms in the
matrix expansion are of the form

#
AT (20,03 20, W1, 205 e vy 21y e o s Wy Zhy - -+ 5 2k)-
——— —_——— —_———

mo m1 my

Thus, we have

AFE (2o, .. z)[wy, ... wy

o0
:Z Z Af(zo,...,zo,wl,zl,...,zl,...,wk,zk,...,zk) ,
=0 mQ,...,mk >0 m m m
Mot my k=t 0 1 K
which is exactly ([3.4)) in the case z, = 0.
We already showed that when z, = 0™,
M

[AYF (20, .., z1)| < (R—||zol])--- (R = ||z]])

Because the same reasoning applies to A* (zémO), e z,gmk))

have bounded ||A*F(z, ..., z1)||4 and proven (3.5)).
To prove (i3.6]), observe that

and yields the same estimate, we

IA*F (20, ..., 2) — ARF(00mo) . glrma))|

< Z Afo+-~~+fk+k[207'--7207w17217"'7217"‘7wk7zka"'7zk]
44 £, >0
Ok = Lo 4 o
Lo+-+L>1
M
< Z WH'ZOHZO co el ]
Lo,y b, >0

1 1
=M Rk

[Jwr ]l - [l ((R_||zo||)...(R—||Zk:||) Rk)7
S ol

< M .
< Mlleol- el =y R =Tl
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The same argument also applies to the matrix amplifications of A¥F(z,...,2) and hence
we have bounded AFF(zg, ..., z,) — ARF(0M™0) 0 07™) in ||| 4. O

In particular, (3.6) implies the following corollary.

Corollary 3.5.9. Let F : Q; — Qy be fully matricial. Then F(z) and AF*F(z,...,2) are
uniformly locally Lipschitz functions of z with respect to ||-||x. That is, for every z, € an),
there exists 1 > 0 such that F(z) and A*F(z,...,z) are Lipschitz on BV ((2,)™ 1), with
Lipschitz constants independent of m.

Furthermore, the following lemma shows that the multlinear forms in this amplified
power series expansion are unique. That is, any other sequence of multilinear forms Ay
which satisfies the equation in Corollary must be equal to AFF(z, ..., 2). This lemma
justifies many ways of computing the derivatives of a fully matricial function F. As long as
we obtain a power series that converges to F' and the manipulation works for every size of
matrices, then we must have the correct answer. This includes for instance computing the
power series for products and compositions of fully matricial functions.

Lemma 3.5.10. Let F': Q) — Qs and z, € Qg”). Let Ay : M, (By)F — M, (Bs) be a sequence
of multilinear forms. If for some r > 0, have

F(z) = ZAggm """ m)(z— 22— 2™

for z € B™(z,,r) for all m, then A, = AFF(z,,...,2). In fact, we need only assume that
the expansion holds when z— 2™ s strictly upper triangular and in B("m)(zﬁm), Tm) for some

Tm > 0.

Proof. Fix k. Fix wy, ..., wy, € M,(B) and let (3, ..., (x be small scalars. Let

-O Clwl 0 ce 0 0
0 0 ngg c. 0 0
0 0 0 . 0 0
W=1|. . . . .
0 0 0 0 Gy
_O 0 0 0 O_
Then we observe that
-0 A1(C1w1) Az(Clwh C2w2) oo Ak(Clwl, e 7Ckwlc)
0 0 A1 (Gws) . A1 (Gws, . . ., Gawy,)
0 0 0 e Ap_o(Guws, ..., Gw
F(sz““) +W)=|. ‘ ' ‘ k-2(C3 3' Ckwe) ’
_O 0 0 0 0_
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and by examining the upper right block, it follows that

AFF(z,, .. 0 2) (G, ... Gwg) = Ap(Cwe, . . ., Guw).

Thus, AFF(z,,...,2.) = A as desired. ]

3.6 Examples

3.6.1 Series of multilinear forms

Our first example is closely related to the material from the last section on the matrix
amplifications of multilinear forms. We will characterize the fully matricial functions on the
ball B(0, R) (where 0 is the 1 x 1 zero matrix) as convergent series of multilinear forms. We
remark that the corresponding notion of formal power series of multilinear forms was studied
by Dykema [Dyk07].

Proposition 3.6.1. Suppose that Ay, : BY — By is a completely bounded multilinear form
and that limsupk%ooHAkH;/k < 1/R. Then

FO(2) =3 Az 2]

k=0

is a fully matricial function on B(0, R) which satisfies A¥F(0,...,0) = Ay. Moreover, F is
uniformly bounded on B(0,1) for each r < R. Conversely, if F' is a fully matricial function
on B(0, R) which is uniformly bounded on B(0,r) for each r < R, then F can be written in
this form, where Ay = A¥F(0,...,0).

Proof. Let Ay be given with lim supk_>oo||/\k||;/k < 1/R. Choose r < R and let r <1’ < R.
Then for k greater than or equal to some N, we have ||Agx|| < 1/r'. This implies that for
|z]| < r, we have

This shows that the series converges uniformly on B(0,r) and defines a function F' which is
bounded on B(0,7) for each r < R. To show that F' is fully matricial, suppose 2T = Tw
where z € B™(0,R) and w € B"™(0,R) and T € M,,,,(C). A direct computation from
the definition of the matrix amplification of multilinear forms shows that

Af(z,...,z)T:Af(z,...,z,zT) :Af(z,...,z,Tw):Ak#(z,...,z,zT,w):...
~~-:Af(Tw,w,...,w) :TAk#(w,...,w).
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Therefore, F'(z)T = TF(w) as desired.

Now consider the converse direction. Suppose that ||F(z)| < M, for ||z|| < r < R.

By Corollary [3.5.6, we have ||Agx|ly < M, /r*, so that limsup,_,[|A*F(0,. .. ,O)H;{k <1/r.

Thus holds for all » < R, and so limsup,_,[|A*F(0,... ,O)||71#/k < 1/R. Moreover, by
Corollary [3.5.7, F(z) is given as the sum of A*F(0,...,0)%[z,...,2]. O

3.6.2 Non-commutative polynomials

In particular, if F/(X) = byXb; ... Xb is a monomial in B(X), then there is a corresponding
multilinear form
A (21, RN Zk) — boZlbl R Zkbk

Note that
A(")(zl, ey ZR) = b(()n)zlbgn) . zkb,gn).

Thus, [[A™|| < ||bo]| ... ||bx]|, so that A is completely bounded. Thus, we can define a fully
matricial function by

FM(2) =AM (z,...,2) = bén)zbg") . zb,gn).

By linearity, for every non-commutative polynomial F/(X) € B(X), the function F(z) is fully
matricial on M,(B). Moreover, the derivatives A*F are computed as in Lemma [3.5.8, For
example, if F'(2) = bgzb; ... zby and if zg,..., z, € B, we have

AFF(zg, . 2wy, . wy] =

Z (boZObl Ce Zobglfl)wl (bgl ZlbglJrl Ce Zlng,l) c. .’wk(bgkzkbgk+1 C. Zkbg).

1<l <l <<l <L

3.7 Algebraic operations

Proposition 3.7.1. Suppose that F,G : Q — M,(A) are fully matricial. Then so are F+G
and FG.

Proof. Note that if 21" = Tw for some scalar matrix 7', then we have
(F+G)2)T=F )T +G2)T=TF(w)+TGw)=T(F + G)(w),

and
(FG)(2)T = F(2)G(2)T = F(2)TG(w) =TF(w)G(w) =T(FG)(w),

so that F'+ G and F'G respect intertwinings. To show F 4+ G and F'G are uniformly locally
bounded, pick zy € Q™. Then F is bounded by M, on some ball B(z, R;) and G is bounded
by M, on some ball B(zy, Ry). Letting R = min(R;, Rs), we have

|z — 2™ < R = ||F(2) + G(2)|| < My + M, and ||F(2)G(2)|| < M M.
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Lemma 3.7.2. The sequence of sets Q™ = {z € M,(B) : z is invertible} is a matricial
domain and the function

nv:0—Q:z— 27t

18 fully matricial.

Proof. Note that €2 respects direct sums and is nonempty. To show that €2 is uniformly open,
suppose that z € Q. Then we claim that B(z,1/||z"||) is contained in 2. To see this note
that if w € B(z,1/||z7Y||), then the series

wl=-G-w] =21~ z-wz'"t= Z (2 —w)z )
k=0
converges and we have
[Eal

=z = wli®

lw™H| <
1—

This same estimate shows that inv is uniformly locally bounded.

To show that inv respects intertwinings, suppose that 27" = Tw. Multiplying by z~! on
the left and w™! on the right yields Tw™! = 27T or inv(2)T = T inv(w). O

Proposition 3.7.3. Suppose that F : Q1 — Qg and G : Qs — Q3 are fully matricial. Then
sois GoF.

Proof. To show that G o F respects intertwinings, suppose that 27" = Tw. Then F(z)T =
TF(w) and hence G(F(z))T = TG(F(w)). To show uniform local boundedness, pick
a point zy. By uniform local boundedness of G, we can choose R and M > 0 such
that G(B(F(z),R)) € B(0,M). But by Corollary 3.5.9, there exists an R’ such that
F(B(z0, R")) € B(F(z), R). Thus, G o F' is uniformly bounded on B(z, R'). O

3.8 Inverse function theorem

We now present an inverse function theorem for fully matricial functions. For background
and related results, see [Voi04), §11.5], [AK13|, [AKT5], [AM16]. In particular, the following
result is a version of [AKT5, Theorem 1.4].

Theorem 3.8.1. Let z, € M,(By) and w, € M,(By). Suppose that F' : B(z., R) —
B(w., M) is fully matricial with F(z.) = w.. Suppose that Ay = AF(z.,z.) is invertible
with ||A7'|4 < K. Then there exist 1 and ro such that the following holds.

(1) For each w € B(wy,r3), there exists a unique z € B(z,, 1) with F(z) = w.
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(2) The inverse function F~' : B(w.,re) — B(z«,11) 48 fully matricial.

More precisely, we can take

_r MK _R MK
™ = 4p; R ) T2—KPQ R )

where
t/? 1/2 1/2
pl(t)zl—m pg(t):1+2t—2t/(1+t) .

Proof. First, consider the special case where By = Bs, 2z, = 0™, w, = 0, R = 1, and

Ay =id. Let Ay = A*F(0M ..., 00). For w € M,,,(B;), note that F(z) = w if and only if
z is a fixed point of the function

Hw(z):w—i-z—F(z):w—ZAk(z,...,z).
k=2

We want to show that if » and w are sufficiently small, then G, defines a contraction
E(”m)(o, r) — B (0,7) and hence has a unique fixed point in B (0,7).

To determine when H,, is a contraction, we estimate H,(z) — H,(%'). Let
Ay = AFF@O™ 0,

Then for ||2|| and ||z|| < r, we have

|Ho(2) — Hyo (2| < ZHAk(z, Y e\ VA - )|

oo k-1
< ZHAk(Z? )Ry 2 Zlazla---7zl)||
k=2 7=0 .
J k—1-j
oo
<MD kY=
k=2

Therefore, H,, is a contraction provided that

M(ﬁ—1)<1

or equivalently r < py(M).
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To determine when H,(z) maps B (0,r) into itself, note that for ||z|| < r

1Hu ()] < wll + Y llA(z, -, 2)l]
k=2

Mr?

< .
< Jlull + =

Thus, we have ||H,(z)|| < r provided that

Mr?

) < () i=r - T

Altogether, we have shown that r < p;(M) and ||w| < ¢(r), then H, is a strict con-
traction B (0,r) — B™™(0,r). Therefore, by the Banach fixed point theorem, H,, has a
unique fixed point in B™™(0,r). We denote this fixed point by G (w). Thus, G is a
function E(m”)(o, P(r)) — E‘m”)(o, r) for r < p1(M). By uniqueness of the fixed point, the
value of G(w) is independent of the choice of r, so G defines a function on the union of the
balls E(m")(o,w(r)) for r < p1(M). But ¥(p1(M)) = p2(M), and thus G defines a function
B(0™, pa(M)) = B(O™, p1 (M)).

We claim that G is fully matricial. Consider a similarity w’ = SwS~! where 2,2’ €
B(0™ py(M)) and S € GL,(C). For r sufficiently close to p; (M), we have |Jw|, ||w’'| < (r).
Note that F(SG(w)S™!) = SF(G(w))S™ = SwS™! and thus by uniqueness of the fixed
point for Hg,s-1 on B (0,7), we have G(SwS™!) = SG(w)S~!. The argument for direct
sums is similar.

This completes the proof in the special case where By = B, z, = 0, w, = 0™, R =1,
and A; = id. Now consider a function F' which satisfies the hypotheses of the theorem in
the general case. Let

Flm) () — %(A;l)#[ﬂ"m)(m b z) —w).
Then F is a fully matricial function B(0™,1) — B(0®™, MK/R). The previous argument
yields an inverse function G : B(0™, po(MK/R)) — B(0™, py(MK/R)). The inverse func-
tion to F'is given by

~ (1
G(w) = RG (}—%(Afl)#[w - w*]> + 2.,
and this function is defined B(w., (R/K)ps(MK/R)) — B(z., Ro1(MK/R)). O

Remark 3.8.2. Curiously, 1(r) is maximized when r = p;(M). Thus, the choice of r which
will guarantee that H, maps B (0,7) into B™™(0,r) for the largest range of w is r =
p1(M). This is the same as the largest choice of r which will guarantee that H, is a
contraction.
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Remark 3.8.3. In fact, the proof never used directly the fact that F(B(z., R)) C B(w., M).

It only used the Cauchy esimate
M
|A*F (2, ... 2|l < T

Thus, the conclusion of the theorem holds when we replace the boundedness assumption by
this Cauchy estimate.

Furthermore, the inverse function depends continuously on the original function F' in the

following sense.
Proposition 3.8.4. Let F,G : B(z., R) = M(Bs) be fully matricial. Suppose that

F(B(z,R)) C B(F(z),M), G(B(z«, R)) C B(G(24),M).
Suppose that AF (2, z.) and AG(zy, z.) are invertible with

ARG, 2) g S Ko [AG( ) Iy < K.
Let vy and ro be as in Theorem and let
F~': B(F(2,),72) — B(z,11), G B(G(z),72) = B(zs,71)
be the inverse functions given by that theorem. If we have
o IFG) -Gl < 3,
then
sup )~ G ) < 5 s [1F(:) = G|

weB(G(w),r2/3) 2€B(z«,r1)

Proof. Let w € B(G(z4),12/3). Note that B(G(z.)r2/3) C B(F(z.),2re/3) and hence
F~Y(w) is defined. Now let w’ = F o G~!(w) and note that

Flw) -G (w)=F ' (w)—F'oFoG ' w)=F(w) — F'(v).
Moreover, we have

Jw—w'|| = |GoG (w) = FoG ' (w)| < sup [[F(z)—G(z)] < 2—2
2EB(2x,71)
Now because F~! maps B(z.,73) into B(F(2,),r;), we have by Lemma and Proposition
B.5.8

1= (w) = F~Hw)]| = [[A[F ] (w, ) [w — w]]|
= (2~ Jw— FG) ) (ra — o/ = F) )
But w € B(F(z.),7r2/3) and w' € B(F(z.),2r2/3) and therefore

| E~ (w) — FH(w')] < (ra = 7*2/3)(17"2 ~2r0/3) lw — '
< s F() -G, -

— 2
2T2 2€B(2zx,71)

lw = w'|].
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3.9 Uniformly locally bounded families

In complex analysis, the identity theorem states that if two analytic functions on a connected
domain 2 agree in a neighborhood of a point zy, then they must agree on 2. Another related
result is that if a sequence of functions f,, is uniformly locally bounded, and if f, — f in a
neighborhood of a point, then f,, — f locally uniformly on €.

More generally, for a family of functions which is uniformly locally bounded, the topology
of local uniform convergence on 2 is metrizable with the metric given by sup,cp,, ) [f(2) —
g(z)|. In fact, for various choices of zy and r, we obtain equivalent metrics.

We will now describe the fully matricial analogues of these results.

Definition 3.9.1. A fully matricial domain Q is connected if z and w are in Q) then there
exists m > 0 such that 2™ and w™ are in the same connected component of Q™).

Definition 3.9.2. We say that a family F of fully matricial functions 2 — M,(B) is uni-
formly locally bounded if for every z, € €2, there exists R > 0 and M > 0 such that

sup ||F(2)|| < M for all F € F.

z€B(z«,R)

Definition 3.9.3. Let F be a uniformly locally bounded family of fully matricial functions
QO — M,(B). For z, € Q, we denote

rad(z,, F) =sups R>0:sup sup [F(z)] <+oop,
FeF zeB(0,R)

and we call rad(z,, F) the radius of uniform local boundedness of F at z,.

Definition 3.9.4. Let F be uniformly locally bounded family of fully matricial functions
Q — M,(B). For z, € Q and r < rad(z., F), we define

o, (F,G) = sup [|[F(z) = G(2)]|

2E€B(2«,7)
and .
d, (F,G)= ZrkHAkF(z*, o ze) = ARG (2, 20) ||
k=0

Definition 3.9.5. Let d; and ds be metrics on a set X'. We say that d; < ds if the map
idx : (X,dy) = (X,dy) is uniformly continuous. In other words, for every e > 0, there exists
0 > 0 such that

dy(z,y) <0 = do(x,y) <e.

We say that d; and dy are uniformly equivalent or dy ~ ds if we have d; < do and dy < d;.

Note that < is transitive and ~ is an equivalence relation.
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Theorem 3.9.6. Let 2 be a connected fully matricial domain. Let F be a uniformly locally
bounded family of fully matricial functions 1 — M¢(Bs).

(1) For z, € Q and r <rad(z.,F), the functions d., , and d,_, are metrics on F.

‘s

(2) All the metrics in the collection {d..,,d, , : z. € Q,r < rad(z.,F)} are uniformly
equivalent to each other.

Proof.
Step 1: From the definition d., ,, we see that d, , is finite, satisfies the triangle inequality,
and satisfies d, ,(F,G) = d,, .(G, F). To show that d/_, is finite, choose R with r < R <

Zx T

rad(z,, F). By applying the Cauchy estimates (3.5)), we see that for some constant M , we

have »
JAE = Gz 2 g < S

so for r < R, we have

o0

S IAKE — @) .2 < oo

k=0
It is also immediate that d,, , satisfies the symmetry and triangle inequality properties. In
other words, d., , and d’_, are pseudometrics.

In the rest of the proof, we will use the notation d < d’' for pseudometrics d and d’ as well
as for metrics. The meaning is that for every € > 0, there exists § > 0 such that d'(F,G) < ¢
implies d(F,G) < e.

Step 2: We claim that d., , < d.,_,. Note that for z € B"™)(z,,r), we have

I(F = G)(2)| <D IAMEF = G) (2, 2) [z = 2,2 = 2|

< SO = Gl 2

k=1

/
and hence d., , < d,_,.

Step 3: We claim that for ri,7y < rad(z., F), we have d,_, < d.,,,. First, choose R
with 7 < R < rad(z., F), choose M such that

sup [[F(2)[| < M

ZEB(Z*,R)
and note that by the Cauchy estimate (3.5)), we have

2M
||Ak(F - G)(Z*v R Z*)H# S ﬁ

o1



By the same estimate we have

dz. 1, (F, G)
IAREF = G) (2, .y 2l < =27

Ty

Thus, we have

o0

d,, ,,(F,G) :Z rIANE = G) (.. 2) 14

dz W (FG) ( ) +22M<“)

(ri/r)N —1 2M(7"1/R)
r1/ro — 1 1—ri/R

z =

OM

= dz* ;T2 (F7 G)

If € > 0, then by choosing N large enough, we can make the second term smaller than €/2.
After we fix such an N, then if d,, ,,(F), G) is sufficiently small, then the first term will also
be less than €/2. This shows that d, , < d., .

Step 4: Using Steps 2 and 3, we see that for 1,7y < rad(z, F), we have

Zx, 1 Y

d

U
Zx,T1 ~o dz* T~ dz*,r27
so the pseudometrics d., , are equivalent for different values of r. Similarly,

! !
dz* L ~Y dz* T2~ dz* ,r27

so the pseudometrics d,_, are equivalent for different values of r. Finally, the pseudometrics
d.,r and d;_, are equivalent.

Step 5: Let us write z ~ 2’ if the pseudometrics d,, and d,/ ,» are equivalent for some

r and 7’ (or equivalently for all » and r’). This defines an equivalence relation on ;. We
claim that each equivalence class is uniformly open. To see this, fix z, € Q™. Choose an
R > 0and M > 0 such that

sup sup || F(z)] < M.

FeF zeB(0,R)
Suppose that z € B™™)(z,, R/3). Then B(z,2R/3) C B(z., R) and hence 2R/3 < rad(z, F).
Also, since B(z,2R/3) C B(z, R), we have

d.2r/3 < d., R

On the other hand, we also have ||z£m) — z|| < R/3 and hence B(zﬁm), R/3) C B(z,2R/3).
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Using the fact that F' preserves direct sums, we have

.. r3(F,G) = sup  ||[F(w) — G(w)]]

weB(z«,R/3)
= sup  [[F(w™)—Gw™)|
wGB(z*,R/3)
< sup |F(w) -G
w'eB(\"™ R/3)
< d.or;3(F,G).

Therefore, we have d., r/3 < d.2r/3 < d., g and hence z ~ z,.

Step 6: Now we show that any two points z; € Q™) and z, € Q") are equivalent.
Note that because € is connected, there exists m such that z\"™ and 2{""™ are in the same
connected component of Q2™ Ag a consequence of Step 5, the equivalence classes of
points in Q™™™ are open subsets of Q™™™ Each equivalence class in Q2™ ig also
relatively closed because its complement is the union of the other equivalence classes. Because

nam nim . nam nim
2™ and zé ™) are in the same connected component, we must have 2mem)  fmm) A

(nam

another consequence of Step 5, we have z; ~ z; ) and 2 ~ 2z

) and therefore 2~ 29.

Step 7: We have now shown that all the pseudometrics in claim (2) are uniformly
equivalent. As a consequence if d, ,.(F,G) = 0 for some z, and r, then this holds for all z,
and r which implies that F' = G. Therefore, each d,, , is a metric. O

Corollary 3.9.7 (Identity Theorem). Let Q2 C M,(B) be a connected fully matricial domain,

and let F,G : Q — My(B) be fully matricial functions and z, € Qg"O). The following are
equivalent:

(1) A*F(z,, ..., 2) = A*G(2,, ..., 2.) for all k.
(2) F =G on B(z.,r) for some r > 0.
(8) F =G on(Q.

Proof. Note that the family {F, G’} is uniformly locally bounded. Hence, this follows imme-
diately from Theorem [3.9.6 O]

Another consequence of the theorem is that if a sequence (F,)men is uniformly locally
bounded, and if F}, converges uniformly in a neighborhood of a point, then it converges on
all of 2 in the following sense.

Definition 3.9.8. We say that a sequence (F},,)men of fully matricial functions Q — M,(B)
converges uniformly locally to F if for every zy € Q") there exists R > 0 such that

lim sup ||F,.(z)— F(2)| =0.

m—0o0 ZEB(ZO,R)
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Lemma 3.9.9. If F,, is fully matricial and F,, — F uniformly locally as m — oo, then F
18 fully matricial.

Proof. Note that I’ respects intertwinings because 27" = Tw, then

F(2)T = lim F,(z)T = lim TF,(w)=TF(w).

m—o0 m—o0

To show that F' is uniformly locally bounded, fix zy. There exists R > 0 and n such that
SUDep(z,m) [ Fm(2) — F(2)|| < 1. Since F), is fully matricial, there exists 7 and M such
SUD,e 5z, | Fm(2)]| < M. This implies that [|[F(2)|| < M + 1 for 2z € B(z,, min(r, R)). O

Corollary 3.9.10. Let Q be a connected fully matricial domain and let F,, : Q — M,(B)
be a sequence of fully matricial functions which is uniformly locally bounded. Let z, € Q™.
Then the following are equivalent:

(1) For every m, the sequence A™F, (2, ..., z.) converges with respect to ||-||4.
(2) For some r > 0, the sequence (F,,)men converges uniformly on B(z., ).

(3) There ezists some fully matricial function F' such that F,, — F uniformly locally on €.

Proof. Suppose that R < rad(z,,{F,, : m € N}). Using the Cauchy estimates, we see that
the series

N RHMIAM(Fy = Fo) (2 20|
k=0

converges absolutely and the rate of convergence is independent of m and m’. Therefore, (1)
occurs if and only if (F),)men is Cauchy in d,, g. Because the metrics in Theorem are
uniformly equivalent, they preserve Cauchy sequences. Hence, (F};,)men is Cauchy in d, . for
every z and r < rad(z,{F,, : m € N}). This is equivalent to (2) and equivalent to (3) in
light of Lemma [3.9.9 O
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CHAPTER 4

Background: The B-valued Cauchy-Stieltjes transform

4.1 Introduction

Recall that the Cauchy-Stieltjes transform of a finite measure on the real line is g,(¢) =
Jo(¢ —t)""du(t). The Cauchy-Stieltjes transforms of spectral measures are an important
tool for non-commutative probability both for computation and for analytic estimates. Some
of its most useful properties are the following.

(1) For a compactly supported measure p on R, the power series coefficients of g, at co are
the moments of p.

(2) There are simple and sharp a priori estimates on g, and its derivatives; for instance, if
Im( > €, then 076, (C)] < p(R)/e™*.

(3) There are straightforward analytic conditions that test whether a function g is the
Cauchy-Stieltjes transform of some measure.

Properties (2) and (3) together mean that if an analytic function g satisfies some simple
analytic conditions, then we obtain much more precise analytic information about g “for
free.”

This chapter will prove analogous properties to (1) - (3) above for the fully matricial
Cauchy-Stieltjes transform of a B-valued law. The main theorem will be the analytic char-
acterization of Cauchy-Stieltjes transforms due to Williams [Will7, Theorem 3.1]. As moti-
vation for this result, and as an ingredient for the proof, we now state the analytic charac-
terization of Cauchy-Stieltjes transforms in the scalar case. Here H, = {¢ € C : Im( > 0}
and H. = {{ € C:Im( < 0} are the upper and lower half-planes.

Lemma 4.1.1. Let g : Hy — C. The following are equivalent:

(1) g is the Cauchy-Stieltjes transform of a measure p supported in [—M, M].

(2) g is analytic, g maps Hy into H_, and §({) = ¢g(1/C¢) has an analytic extension to

B(0,1/M) satisfying g(0) = 0 and g(¢) = g(().

95



Proof. 1f g(¢) = [x(¢—t)" " dpu(t), then clearly g is an analytic function H, — H_. Moreover,

§(0) = /R C(1 — )" du(t)

which is analytic on B(0,1/M), preserves complex conjugates, and vanishes at 0.

Conversely, suppose that g satisfies these analytic conditions. Recall that if u is bounded
and continuous on H; and harmonic on H,, then

mo:—élm«—ww@ﬁ

™

this is because the integral on the right hand side is harmonic and bounded with the same
limiting values as u on the boundary of H, . Letting us(¢) = Im g(¢ + d), we have

Im g(¢ + i0) =—/

1
Im(¢ —¢) "= Img(t + 40) dt.
R e

Now — [ ((—t)"'ng(t+id) dt is analytic on H, and has the same imaginary part as g(¢),
so they must be equal up to adding a real constant. But both functions vanish as ( — oo
along the positive imaginary axis, and hence

o(c-+8) = [ (¢~ ) dust),

R
where ]

dus(t) = ——Tm g(t + id) dt.

™
We want to define p as a weak limit of us as 6 — 0. To accomplish this, we first show that
s does not have much mass outside [—R, R| for R > M.

Because g(¢) is analytic on B(0,1/M), we know that for e > 0, we have
1 .
<5 = 130 < Cn
for some constant C'r > 0. Then by Schwarz’s lemma for functions on the disk, we have
1 .
< 5 = 19(0)] < CrRIc]

Therefore,

Cl
(>R = |g(O)] < ﬁ

Now Img =0 on R\ [-M, M| and hence for |t| > R,
| Tm g(t +40)| = | Im g(t +i0) — Im g(¢)|
< |g(t +i0) — g(t)]
< & sup |g/(t +is)|.

s€[0,8]

o6



Now B(t+is, 1(|t| = R)) C {|¢| > R+ 3(|t| = R)} where g is bounded by C%/(R+ (1/2)(|t| —
R)) =2C%/(|t] + R), and hence by the Cauchy estimates on derivatives,
o2 0, Ac

“|t{|-RIt|+R |t|>— R*

|9/ (L + is)

Thus, since Im g(t) = 0, we have

. ACRH6
| Im g(t +i0)| < m
In particular, letting M < R’ < R, we have
4C"%,
us(R\ [-R,R]) <6 — —;
R\CRR)SS [ e
where the integral is finite. Therefore, for each point ¢, we have
R
90) = 9(C+8)+00) = [ (¢~ 1) duslz) + O0)
-R
Moreover,
f 2R R
iR ) < [ G2 duslt) = ~2RIm g(iR+ i),

Thus, the measures /15| g, ) have uniformly bounded mass, and hence this family of measures
is precompact. Therefore, for each R, there exists a sequence d,, such that ji5, |~ g,z converges
to some limit p supported on [—R, R] as 6 — 0. In the limit, we have

g(0) = / (€ — 1)V dpt).

Thus, for each R > M, we have g = g, for some p supported on [—R, R]. The moments of x
are uniquely determined by the power series expansion of g at oo, hence p is unique. Then
 is supported in [—R, R] for every R > M, so that p is supported in [—M, M]. ]

4.2 Definition

We have seen in that the Cauchy-Stieltjes transform of a B-valued law should be viewed
as a fully matricial function over B rather than simply a B-valued function. To give the full
definition, we must first define the natural domain for the Cauchy-Stieltjes transform, which
consists of operators with positive imaginary part. Thus, we begin with the basic properties
of real and imaginary parts of operators.

Notation 4.2.1. For z € M, (B), we define Re(z) = 3(z + 2*) and Im(z) = o-(z — z%).
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Observation 4.2.2. The operators Re(z) and Im(z) are self-adjoint and z = Re(z)+iIm(z).
Moreover, if H is a Hilbert space or a right Hilbert B-module and z € B(H) and & € H, then

Re(¢, 26) = (6, Re(2)§)  Im(¢, 28) = (&, Im(2)§).

Lemma 4.2.3. Suppose that z € M,(B) and Im z > €, where € € (0,00) and the inequality
holds in M, (B). Then z is invertible with ||z~ < 1/e and Im(z7') < —¢/|2]]?.

Proof. Recall that M, (B) is a C*-algebra and hence can be realized as a concrete C*-algebra
of operators on a Hilbert space H. Then observe that for £ € H, we have

IElIzE 1l > €€, 2€)| = Im(€, 2€) = (&, (Im 2)€) > (¢, e€) = €ll¢]1%,

which shows that ||2&|| > €||€|| and hence ker z = 0 and Ran z is closed. On the other hand,
we have Im z* = —Im 2z < —¢, so similar reasoning shows that ||z*¢|| > €|¢]| which implies

that ker z* = 0 and hence Ran(z) = H. Since ker z = 0 and Ran(z) = H, it follows that z
is invertible as a linear operator. Because of the estimate ||2£]| > €||€]|, we know that 27! is
bounded with ||z~ < 1/e.

Finally, to show that Im(z71) < —¢/||2]|?, note that for & € H, we have

Im(€, z7'¢) = Im(zz7'¢, 271€) = Im(27'€, 2" (271¢))

= —Im{z"'€, 2(271€)) < —el|z7i¢|P? < H;!TQ

using the fact that ||€]| = [[zz7Y¢|| < ||z||]|z7 2] ]

Definition 4.2.4 (Fully Matricial Upper/Lower Half-plane). We define HT)E(B) ={z €
M, (B) : Imz > €} and define HS:L)(B) = Ueo HS:L)5<B) Finally, we define the fully matricial
upper half-plane as H, (B) = (HS:L)(B))%N.

Similarly, we define H(_n)g(B) ={z€ M,(B) : Imz < —¢} and H(_")(B) =U H(n)(B).

e>0 " —

€1,

Finally, we define Ein)([)’) ={ze M,(B): £Imz > 0}.
Observation 4.2.5. H(B) and H_(B) are connected fully matricial domains (although
H,(B) and H_(B) are not because they fail to be open).

Proof. To see that H, (B) respects direct sums, suppose z; € Hfl)(B) and z € HS:LQ)(B)-
Then Im2; > €; and Im 2y > € for some €1, € > 0. Then Im(z; @ 22) = Imz; @ Im 2, >
min(ep, €2), so that 21 @ 2z € HS:“JFM)(B)-

To see that H, (B) is uniformly open, suppose that z € HS:L)(B). If Imz > e > 0, then
we have B(z,¢) C H,(B). Indeed, if 2/ € B™ (2™ ¢), then

Im 2" > Im(2™) — ||z — /|| = Im 2)™ — |20 — 2| > e — ||z — || > 0.

Furthermore, each H@(B) is non-empty and connected (in fact, convex), and hence
H, (B) is non-empty and connected. The argument for H_(B) is symmetrical. O
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Definition 4.2.6 (Cauchy-Stieltjes Transform). Let o : B(X) — B be a generalized law.
We define the Cauchy-Stieltjes transform G, as the sequence of functions G . ]HIS:L)(B) —
H(_"E)(B) given by

G(n)(Z) — E(n) |:<Z . 7(”))71] 7

(e

where X is the operator of left multiplication by X on B(X)®,B and 7(b) = (1®1,b(1®1)),
(as in Theorem [2.6.6)).

Note here that the definition makes sense because if z € IHIST”)
have

, then for some € > 0, we

Im(z — X(n)) =TIm(z) >,

which implies that z — X =) is invertible.

Lemma 4.2.7. For a generalized law o, the Cauchy-Stieltjes transform G, is a fully matricial
function. We also have

2eHUUB) = [G,(2)]| < eIl (4.1)

€
€

Proof. Let B be the C*-algebra generated by B and X. Note that the inclusion B — B is fully

matricial. Moreover, the function z +— 2z — X™ is the sum of two fully matricial functions,

so it is fully matricial on M,(B) and in particular on H, (B). Since inv fully matricial, so is

(z — Y(n))*l. Finally, 7 is a completely bounded linear map and hence is fully matricial by
Proposition [3.6.1], so ™ |[(z — X™)~1] is fully matricial. O

In the future, we will simplify and slightly abuse notation by writing
Gy(z) = o™ [(z = X™)71,
that is, writing o instead of @ even though o is technically only defined on (A)(X) and

writing X for the multiplication operator X.

4.3 Derivatives and expansion at oo
Lemma 4.3.1. Let z; € M,,;(B) and w; € My, xn;(B). Then

AFGo(20,. .., 26)[we, ... wy]

= (—=D)kgmom)[(zy — XM0)) Ty (2 — X)L (2 — X)) 71

and in particular if Im z; > ¢; for ¢; € (0,00), then

1
|G, (20, ..., 2] < A7

- €p...€k
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Proof. Denote
Z = (z — X(no)) @@ (7 — X™).

Fix small scalars (i, ..., (x and define
-O Clwl 0 ce 0 O-
0 0 CQUJQ Ce 0 0
0 0 0 - 0 0
w=|. . _——
0 0 0 e 0 0
Note that if (y, ..., (; are sufficiently small, then

cW[(Z4+W = XN =Mz 1+ W (Z - X™)"H)7Y

— " oz = XO) Gz - X))

Jj=0

where the expansion is truncated because W Z~1 is nilpotent. By looking at the upper right
block, we obtain the desired formula for A*G,, and the upper bound for ||A*G,|| follows
immediately using Lemma [4.2.3] O]

Notation 4.3.2. We write G, (2) = G,(2") for all z where it is defined.

Lemma 4.3.3. Suppose that o is a generalized law with rad(c) < M. Then G, has a fully
matricial extension to B(0,1/M) given by

ia 2(X™ )k,

k=0

o)
Q
—~
I\
~—
||
A
—_
|
||

However, the latter function is also defined whenever ||z|| < 1/M. Now we claim that this
extension of G, is fully matricial on the domain

Q.= {z (11— y(n)z)*1 is invertible} O B(0,1/M)UH,(B) UH_(B),

where X is the multiplication operator on B(X)®, B. The argument that Q" is a matricial
domain is similar to the argument that invertible elements of a C*-algebra form a matricial

domain. Moreover, 7™ [z(1 — Y(n)z)*l] is fully matricial on 2 because it a built out of the
inclusion B — B by translation, inverse, products, and application of &. O
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Lemma 4.3.4. We have
ARG (000 0 N [y, .. wy] = om0 [ X gy X e,

Proof. From the geometric series expansion, we have for z € B™(0,1/M) that
Goy(2) = Za(”) [z(X(")z)k} :

k=0

If we let Ay, be the multilinear form
Ap(z1,. 0 20) = 0|1 X 20 oo X 2],
then for every n and every z € B™ (00, 1/M), we have
Go(2) = ZAén)(z, Cey 2).
k=0

Therefore, by Lemma [3.5.10, we have Ay = A’“CNJU(O7...,O). The general formula for
ARG, (00 0)) follows from Lemma .3'5'21 O

Lemma 4.3.5. If ||z|| < 1/M, then we have

~ o (1)]]<]
G| < 5

In particular,

2] < 1/(M +¢) = HG(Z')H < HU(el)H_

Proof. This follows by applying the triangle inequality to the geometric series expansion. [

4.4 Analytic characterization

The following theorem is due to Williams [Will7, Theorem 3.1] and Anshelevich-Williams
[AW16], Theorem A.1]. While we have nothing to add in terms of the proof, we aim to
improve the organization and explanation of details and thus to present the proof in a more
“textbook-like” manner.

Theorem 4.4.1. Let G : HT)(B) — M, (B). The following are equivalent:

(1) G = G, for some generalized law o with rad(c) < M if and only if the following
conditions hold.

(2) The following conditions hold:
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(a) G is fully matricial.

(b) G maps HT)(B) into (_”2)(15’)

(¢c) G(z) = G(z7Y) has a fully matricial extension to B(0,1/M).

(d) This extension satisfies G(0) = 0 and G(z*) = G(2)*.

(e) For every e > 0, there exists C. > 0 such that ||z|| < 1/(M +¢) implies |G(2)|| < C..

Proof of (1) = (2). Assume that (1) holds. We have already shown that (a), (b), (c), and
(e) hold in Lemmas [4.2.7] |4.3.3} [4.3.5 Moreover, (d) follows from power series expansion in

Lemma [£.3.3 O

The proof of (2) = (1) is more involved, so we will prove several lemmas before
concluding the proof of the Theorem. First, we define the map o : B(X) — B. The correct
choice of o is clear in light of Lemma [4.3.4

Lemma 4.4.2. Let G satisfy (2) of Theorem|4.4.1. Define o : B(X) — B by
o(20X21 ... Xz,) = A¥G(0,...,0)[20,. .., 2.
Then any R > M is an exponential bound for o™

Proof. Because ||z|| < 1/R implies ||G(2)| < Cr—as, we have by Lemmam that
|IARGO™, ... 0™)|| < Cr_nR". O

Next, we show that ¢ extends to the analytic completion of B(X). Fix R > M. As in
the proof of Theorem we define a norm on M, (B(X)) = M,(B)(X™) by

|F(X™)||g = inf {Z p(F;) : F; monomials and f = ZFJ} :
j=1

J=1

where p(20X ™z ... X™Mz) = R¥||z]| ... |lz]| for 20, ..., zx € M,(B). We denote the
completion by B(X >$§). Recall that this is a Banach x-algebra.

Lemma 4.4.3. Fiz R > M. Then the map ¢™ defined above extends to a bounded map
B(X>( ") — M,(B). Moreover, if |zllz < 1/R, then 1 — X™z is invertible in B(X >£) and
we have

G(z) = o™ [z(1 — X™2)7).

Proof. The first claim follows because || (F(X))|| < Cr_m||F(X)||r since R is an expo-
nential bound for o. Next, suppose that ||z||g < 1/R. Then because the geometric series
(1 — X™2)~1 converges in B(X >§§), we see that 1 — X ™z is invertible. Moreover, a direct
power series computation shows that G(z) = o™[z(1 — X™2)~'] after we invoke Lemma

B.5.7 O
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With these preparations in order, we can begin to prove complete positivity of 0. We
start out by proving that certain symmetric moments are positive.

Lemma 4.4.4. Suppose that G satisfies (2) of Theorem and define o as in Lemma
l4-4.3 Let By and By be self-adjoint elements of M, (B) with By > € > 0. Then

o (BI(X ™+ By) " B > 0.

Proof. Fix By and By and let ¢ be a state on M, (B). Consider the scalar-valued function
g :H, — H_ given by
9(¢) = ¢ G(By ¢ — By).

Now we analyze the behavior of g at co. Note that (~'B; ! — By is invertible in B(X}gl) if ¢
is small enough. In fact, for sufficiently small ¢, we have ||(("'B;* — Bo)~!|| < 1/R. Thus,
we have

(
(Br'¢ = Bo) (1= XM(B¢CT = By) ™)
(By'¢ = By — X))

Bi¢(1— (X™ + By)Bi() ']

= M ooo[(BiI(X™ + By))* By,
k=0

where the intermediate steps are performed in B(X >§§). In particular, §(¢) = ¢g(1/() extends
to be analytic in a neighborhood of 0. Because G preserves adjoints, we have g(¢) = g(¢).
Therefore, g is the Cauchy-Stieltjes transform of some compactly supported measure p on

R. Moreover, by examining the power series coefficients of g at 0, we have
so0 [(BUX® + B)" B] = [ #*dplt) 20
R

Because this holds for every state ¢, we have o[(B1(X™ + By))?*B,] > 0 by Proposition
2.1.8 (5). O

Lemma 4.4.5. Let G satisfy (2) and let o be as above. Let F(Y) = CoYCy...YCy be a
monomial in M,(B)(Y) and let By € M, (B) be self-adjoint. Then

o (F (X" + By)" F (X" + By) ) > 0.
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Proof. Let us write Y = X + B,. Consider the matrix

[0 8%C 0 ... 0 0 0
2C, 6 8Cr, ... 0 0 0
0 &Cry 6 ... 0 0 0
Co=1 : : : S :
0 0 0o ... & &C 0
0 0 0 ... 2Cy, ¢ 52C;
0 0 0 ... 0 &C §+6*Ci0,

Observe that if ¢ is sufficiently small, then Cs > € for some € € (0,00). Indeed, the diagonal
terms 0 will be much larger than the off-diagonal terms, while the extra diagonal term
54 CrCy, is already positive. Therefore, by the previous lemma,

o™ [(Cay(k—i-l))% C(;} > 0.

We claim that the top left n x n block of (CsY **1)26C; is equal to F(Y)*F(Y) 4+ O(9).
To see this, consider what happens when we multiply out (Cs(X ®*+1) 4 BYFy)2k 0y ysing
matrix multipication, treating each n x n block as a unit. The top left block of the product
will be the sum of terms of the form

(C5>1,i1Y(C5)i1,i2Y - (C5>ik727ikfly(06)ik7171

since Y*1 is a block diagonal matrix. Because Cj is tridiagonal, the sequence of indices
must have |i;_1 —4;| < 1. We can picture such a sequence as a path in the graph with
vertices {1,...,k+ 1} and edges between j and j 4+ 1 and a self-loop at each vertex j.

All the entries in Cs are O(§) except the bottom right entry with the term §~4*C3Cy.
Thus, any path which yields a term larger than O(d) must reach the last vertex k + 1 and
use the self-loop at the vertex k£ + 1. But if we travel along the path at a speed < 1, the
only way we can get from 1 to k + 1, use the self-loop at k£ 4 1, and get then back to 1 in
2k + 1 steps is to follow the path

1,2, kk+1k+1k. . .21
So the only term in the sum which is not O(0) is the term
(2CH)Y ... (B2CHY (0 + 6*CrCo)Y (0°CY) ... Y (6°Cy) = F(Y) F(Y) + O(9).
Hence, the upper left entry of (C5Y *+1)2kCs is F(Y)*F(Y) + O(6). As a consequence,
c™(F(Y)'F(Y)) 4+ 0(8) >0,

and thus by taking 6 to zero, we have ¢™ (F(Y)*F(Y)) > 0. O
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To finish the proof that o™ (P(X)*P(X)) > 0 for every P, we will use the following
matrix amplification trick to reduce to the case of a monomial.

Lemma 4.4.6. Let P(X) € M,(B(X)) be a polynomial of degree d. Denote

S X 1
[y
Then for some m, there exist matrices Cy, ..., Cq € My, (B) such that
{P (OX> 8} VSR Galed GO Colon

Proof. Fix d. Let T™ be the set of all polynomials B(X)™ of degree < d which can be
expressed as in the conclusion of the lemma.

First, we claim that I'") contains the monomials in B(X). Let p(X) = apXa; ... Xay, be
a monomial of degree k < d. Then we have

p(X)O_aOOXl Cl10 X 1 0 1 X 1 akO
0O O |0 o[l X[|0O O/""|1 X||0 O]|1 X||0O O
0o 1][x 11\""[1 o
0 0|1 X 0 0
Next, we claim that if P(X) € T™ and e, is the (4, j) matrix unit in Mk((C) then the

matrix P(X)®e;; with P(X) in the (4, j) block and zeroes elsewhere is in T'™*). Given such
a P(X), there exist Cy, ..., Cy in My, (B) such that

{P(X) 0

0 01 = Co XM X o, XMy,

Then observe the 2(m + n(k — 1)) by 2(m + n(k — 1)) matrix equation:

P(X)®e; 0 [1,®e:1 0 [Co O X (mtn(k—1) ¢y 0
0 0] 0 010 0 0 0]

Cq 0|1, ®e1; O
v (m+n(k—1)) d n 1,5
e K R

We caution the reader that the blocks C; are 2m x 2m while the blocks P(X) X e; ; and
1, ® e;; are nk x nk.

Finally, we claim that T'™ is closed under addition. Suppose that P(X) and Q(X) are
in I'™. Then there exist integers r and s and matrices By, ..., By € Ms,.(B) and (1, ...,
Cyq € Msy(B) such that

{P (OX) 8} — By X"B, XM .. B, X" B,
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and

{Q%X ) g] _ G R9CRS . B R9B,

Then observe that

P(X)+Q(X) 0 0| o@ts) |[B1 0 Sirts) [Ba 0| qs
{ 0 0| =% 0 o e e R e
Where
S = |: Lnxn Onx(n—r) Lyxn Onx(n—s) :|
0(r+s—n)><n O(r+s—n)><(n—r) O(r—i—s—n)xn 0(r+s—n)><(s—n)

Altogether, we have shown that I' = J~, '™ contains the 1 x 1 monomials of degree
< d, is closed under P — P® E; ;, and is closed under addition. This implies that I' contains
all matrix polynomials of degree < d as desired. O

Conclusion to the proof of Theorem[{.4.1. Suppose that G satisfies (2) of the theorem and
let o : B(X) — B be given as in Lemma m To show that o is completely positive, choose
a polynomial P(X) € M, (B(X)). Let

By — {(1) (ﬂ € My(B).

Then by Lemma [4.4.6] we can write P(X) in the form

{P(X) 0

0 O} = Co(X®™ 4 By (X @™ 4 BI™Y .0y (X 4+ By,

where C;j € My, (B). Thus, by Lemma {4.4.5, we have

oM [CH(X ™ 4 B Oy . (X®™ + B Cy
Co(X ™ + BI™) ... Cymr (XM + B{™)Cy] > 0,

which implies that o™ (P(X)*P(X)) > 0.

Next, we have shown in Lemma that o exponentially bounded by R whenever
R > M. Therefore, o is a generalized law with rad(c) < M.

It remains to show that the Cauchy transform of o is the original function G. It follows
from Lemma that G(z) = Go(2) when ||z|| < 1/R. If we let zy = 2iR, then we have z €
B™ (2, R) implies that Im z > R + ¢ for some € > 0 which implies that z=* € B™(0,1/R).
Hence, we have G = G, on B(z, R). So by the identity theorem (Theorem [3.9.7)), we have
G = G, on the whole matricial upper half-plane. O

We now give an analytic characterization of when the generalized law o is a law, and
hence complete the analytic characterization of the Cauchy-Stieltjes transforms of B-valued
laws.
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Lemma 4.4.7. Let o0 be a B-valued generalized law. Then the following are equivalent.

(1) o is a law.
(2) AG,(0,0)[2] = z for all z € B.

(3) For each n, limy, |02 'Gy(2) = 1,, where the limit occurs in norm and is taken over
all invertible z in M, (B).

Proof. We have AG,(0,0)[z] = o(z) for z € B. We also know by Corollary that o is a
law if and only if 0|z = id. This implies that (1) < (2).

(1) = (3). If 0 is a law, then
271G (2) = 27 oW [z(1 — XM = o™[(1 — XM 2),

which is fully matricial in a neighborhood of zero, and hence (3) holds.

(3) = (1). Fix an invertible operator z € B. Then we have for ¢ € C that

lim

=0 %é"(<2> = Zéﬁ%(gz)_léa(fz) = 2.

On the other hand,

¢—0 C

lim ~C, (C2) = lim >~ CFols(X2)4] = ol:).

Therefore, o[z] = z. Any element of B can be written as a linear combination of invertible
operators and hence o|g = id, which means that o is a law. O

We also have the following corollary of Theorem [4.4.1| which is helpful for estimating the
radius of generalized laws.

Corollary 4.4.8. Suppose that o and T are B-valued generalized laws and Im G,(z) >
ImG,(z). Then

(1) G, (z) — G,(z) is the Cauchy-Stieltjes transform of some generalized law p.

(2) rad(o) < rad(7).

(3) ForImz > ¢, we have |G,(2) — G- (2)]] < |lo(1) —7(1)||/e.

Proof. (1) Observe that G, — G, maps H, (B) into H_(B). Moreover, G, — G, extends to

be fully matricial in a neighborhood of 0 in a way which preserves adjoints. Therefore, there
is a generalized law p such that G, — G, = G,. Now p =7 — ¢ as maps B(X) — B.

(2) This follows from Lemma since 7 = o + p.
(3) This follows by applying the estimate for Lemma to Gp(2). O
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4.5 The F-transform

Definition 4.5.1. Let p be a B-valued law. We define the F'-transform
Ful(2) = Gul2) ™
Lemma 4.5.2. F}, is a fully matricial function Hy(B) — H,(B).

Proof. Suppose that z € H, (B). If we have Im z > ¢, then by Lemma |4.2.3, we have

) — —€
e =X S e xwp

By complete positivity of p and the fact that p(1) = 1, we have

—€

This implies that G,(2) € H_(B) and in particular G, (2) is invertible. Moreover, one checks
from Lemma that inv : H_(B) — H;(B) is fully matricial, and hence F,(z) is fully
matricial. n

4.5.1 A characterization of F-transforms

The following characterization of F-transforms will be useful in the later chapters for under-
standing the analytic transforms associated to non-commutative independence. A related
characterization of z — F),(2) as the self-energy of some law was given in [PV13] Theorem
5.6], and [Will7, Corollary 3.3], while the statement that z — F},(z) is the Cauchy-Stieltjes
transform of a generalized law was proved in [PVI3] Remark 5.7]. Compare also [BV93),
Proposition 5.2, [SW97, Proposition 3.1] (scalar case), [ABF13, §7], [Jek20, Proposition
3.9], and [JL19, Lemma 9.4].

Theorem 4.5.3. There is a bijection p < (b, o) between 3X(B) and By, x 38" (B) given by
the relation
EM(2) =z —=b"™ — GW(2) for all n. (4.2)

I o

Furthermore, we have b = u(X) and o(z) = p(Xz2X) — pu(X)zu(X) for z € B, and
max([|b], rad(0)) < rad(u) < max(||b], rad(0)) + [lo(1)]*/*. (4.3)

Proof. First, observe that for each (b, o), there is at most one p that satisfies the relation,
since p is uniquely determined by F},. Conversely, for each p, there is at most one choice of

(b, o). Indeed, if b™ + G (z) = ()™ + GU(z), then we recover b = I/ by evaluating this
function at 2! and then taking z — 0. Then since G, = G/, we have also 0 = o’.
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Next, we show that for each p, there exists (b, o) satisfying the given relation. Let
(H, &) be a B-B-correspondence with B-central unit vector and let X an operator on H with
pux = p and || X|| = rad(p). Let P be the projection onto B and @@ = 1 — P. We claim
that the relation Flsn)(z) =z — b — G((,n)(z) is satisfied with b = p(X) and o equal to
the distribution of QX () with respect to the vector QX¢. We start by using the resolvent
identity; for z € M, (B) with Imz > ¢ > 0,

(z — X(n))—l ( _ pxm _ g xn )
= (2 - Q(n);g(n))*l + (2= PO X0 — Q) x ()~ 1 p(n) x(n) (Z —Qmxn )
= (2 - Q<n>X(n>)—1 + (2 — X(n))—l PUX™ (z — QM x )

Let £ = ¢® 1, in H™ = M, (H). Clearly, P™ is the projection onto M, (B)¢™. Then we
have

<§<n>, (z— XM~ §(n>>

_ <5<n>’ (z— QUWXM) ™ e > <5 W (z— X)) §(n>><§<n>, X0 (z — Qmx ™)™ 5<n>>,
(4.4)

where we have used the relation (€M, SPMTEMY = (¢ et (e TeM)y for ST €
B(H™). Regarding the first term on the right hand side, we write

<5<n)7 (z— QUX™) ™! g(n>> _ <(Z* — XmQm) T glm, 5<n>>,

but (z* — X(”)Q(”))(z*)*lf(”) = Z*(z*)*lf(”) = ¢ and hence (z* — X(”)Q("))*lf(”) =
(z*)~1¢™). Thus,

<5<n>, (2 — Qmx ™)™ §(n>> — ()L™ gy = -1
Therefore, becomes
— n n n n n -1 n
G (z) = 27" + GU >(z)<g< ) XM (5= QX M) ¢l >>. (4.5)
-1

Now we must evaluate (¢, X (™) (z — Q(”)X(”))

(z = QUX) T =27 4 (2= QX ) T QXM (4.6)

But we claim that

€M), By the resolvent identity,

n n)\ ! n n n n n)\ n
(z—Q()X()) Q():Q()(Z_Q()X()Q()) QM. (4.7)
To see this, fix a vector ¢ and let n = (z — Q(")X(”))_1 Q™ (. Then
2 — QWXMy = Qe
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and so n = z7'Q™[X ™y + (], which shows that 7 is in the image of Q™. Thus,
(z — Q(”)X(")Q(”)) n=QM¢

and so

n=QMn=0Qm (z _ Q(”)X(”)Q("))f QM.

Now (4.6)) and (4.7) imply that

<5<n>7 X0 (2 — Q) x ™)™ §<n>>
— (™) X1y 4 <§<n>’ XmQW (- QU x™m)”

1

) X<n>2715<n>>
— (X)W1 ¢ <Q<n>X<n>5(n>7 (= — QWX MQm) ™ Q<n>X(n>§<n)>Z—1
= (" +GM(2)) 27

Plugging this into (4.5)), we get

GM(2) =271+ GW(2) (0™ + G (2)) 271

p p a
Then we multiply by F,En)(z) on the left and z on the right to get
z=FM(z) +b™ + G (2)

as desired. Clearly, ||b]| = ||u(X)|| < rad(p), and because o is the law of QX @, we have
rad(o) < [|QXQ| < || X|| = rad(u). So we obtain the left inequality of (4.3]).

Finally, we show that for each (b, o), there is a p satisfying the given relation. By the GNS
construction, there is a B-B correspondence IC, a self-adjoint operator Y on K, and a vector
¢ such that o is the distribution of Y with respect to (. Let H be the B-B-correspondence
B @ K. Define X € B(H) by

X(c@n) = (bc+(¢,n) & (Cc+Yn) for ce B,n e K.

Let ¢ be the B-central unit vector 1 & 0 in H. Let p be the law of X with respect to &.
If P € B(H) is the projection onto B¢ and @ is the projection onto I, then QX @ with
the domain and codomain restricted to K is exactly Y. Also, u(X) = b and QX¢ = (.
Therefore, we are in the same situation as the previous argument (minus the assumption
that || X|| = rad(i)), and thus holds. To check the right inequality of (4.3), we write
X=PXP+QXQ+ QXP+ PXQ, hence

rad(u) < [|X]| < [PXP +QXQ| + |[PXQ + QXP]|.

Now PXP + QX is a “block diagonal” operator composed of the blocks PXP = bP and
QX Q, which is essentially Y, and thus ||[PXP + QXQ| < max(||b]|,rad(c)). Meanwhile,
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using PQ) = QP = 0 and using the C* identity several times, we get

IPXQ+QXP|? = [(PXQ+ QXP)'(PXQ+ QXP)|
=||PXQXP+QXPXAQ|
= max (|[PXQX P, [|QXPXQ)
= max ([[(QXP)(QXP)|, [(QXP)(QXP)"|)
= QX P|*
= |[|PXQXP|.

Now a direct computation shows that PXQXP = ((,()P = o(1)P. Hence, |PXQ +
QXP|| = |lo(1)||*/?, which combines with our previous estimates to show the right inequality

of (4.3)). O
Remark 4.5.4. We also have the estimate
1/2
rad(i) < ([[Blf? + rad(e)? + 2/o(1)]]) 2.

To see this, start with ¥ and X as in the last part of the proof. Since PX and QX have
orthogonal ranges, we have

IPX +QX|* < | PX||* + QX"
But then also
IPX|* = | XP|* = |[PXP + QXP|* < [|PXP|* + |[QXP|?,
and the same applies to QX . Therefore,
IXI* < IPXPI* + |QXQI* + IPXQI* + [QX PII* = [[b]|* +rad(a)* + 2o (1)

Remark 4.5.5. The theorem (perhaps with less sharp estimates on the radius) can alterna-
tively be deduced by studying the analytic properties of F, and G, and invoking Theorem
4.4.1], as we suggested in [Jek20, Proposition 3.30]. Finding this alternative proof is a good
exercise.

The object Var,(a) := pu(XaX) — p(X)ap(X) will be significant in the coming chapters.
As a consequence of what we have just shown, Var, is a completely positive B — B. This
Var,, is related to the variance in classical probability theory. Indeed, if B = C and p is a
measure on the real line, then Var, is a map C — C which is simply multiplication by a
positive scalar, and this positive scalar is the classical variance of p. Thus, we will call Var,,
the operator-valued variance of .

Remark 4.5.6. The F-transform is related to theory of conformal mapping in complex anal-
ysis in the following way. Suppose that €2 is a connected region in the upper half-plane H
such that H \ €2 is bounded. Then there is a unique conformal map F' : H — € satisfying
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F(2) = 2+ O(1/z). The coefficient t such that F(z) = z +t/2z + O(1/2?) is known as the
half-plane capacity of Q. Now by Lemma [.1.1, one can show that F' = F), for some com-
pactly supported measure p. The normalization that F'(z) = z + O(1/z) then amounts to
the mean of p being zero, and the half-plane capacity of 2 is nothing but the variance of p,
which is also equal to the total mass of the measure ¢ that corresponds to p as in Theorem

453

4.5.2 Inversion of F-transforms

Our next result concerns the inverse of the F-transform, which will be relevant to the dis-

cussion of free convolution in and §7.4]

Lemma 4.5.7. Let p be a B-valued law. For each § > |[Var,(1)||'/2, the function F,Sn)
is injective on ]HIS:%(B) The inverse function is fully matricial and sends ]HIS:L;(;(B) into

H{(B).

Proof. By Theorem [4.5.3] there exists a self-adjoint b and a generalized law ¢ with rad(c) <
2rad(p) such that
F.(2)=2—-b—-G,(2).

Let § > |lo(1)]|['/2 = ||Var,(1)||"/2. Then we claim that F, has an inverse function ¥ :
H, 25(B) — H, 5(B). We will construct ¥ by a contraction mapping principle just as in the
inverse function theorem. We want to solve the equation

w=VY(w)—b—G,(V(w)),
so that U(w) satisfies the fixed point equation

W (w) = w+ 0™ + G (U (w)).

Let H,(z) = w+ b+ G,(z). Note that by Lemma [4.3.1} if z, 2" € HS:ZS(B), then

lo (D)l

52

| Huw(2) — Hy(2)|| = [|Go(2) — Go ()] <

Iz = 2ll.

Therefore, H, is a contraction provided that § > ||o(1)||'/2. Moreover, if Imw > 24, then
H,, maps H, 5(B) into itself because

ImH,(z) =Imw+ImG,(z) > 2§ — “‘jgl)H > 4.

Therefore, by the Banach fixed point theorem, H,, has a unique fixed point ¥(w) in H 5(B).
We also have

() — ] = 6+ Gy (e < ol + 170 < oy o
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Therefore, if we define
\IIO(w) = w, \I/k—&-l(w) = Hw(\Ilk(w»?

then for Imw > 26,

lo ()||

104 () — W(w)]| < (1 - ) (o] + 5).

In particular, Wy converges uniformly locally to ¥ on s ,(1)p/2 Hy26(B). It follows that
U(w) is fully matricial. ]

Lemma 4.5.8. If p is a B-valued law, then ®,(z) == F;'(2) — z is a well-defined fully
matricial function Us.var, )22 Has+ (B) — H_(B). If we write F,(2) = 2z — b — G,(2) for

a generalized law o and b € B self-adjoint and if § > ||Var,[1]]| = ||o(1)||, then
1
1D, (2)]| < [Ib]| + HUE; W for 1z > 26 (4.8)
and
[@,.(2) —b—Go(2)|| < o ( )” (HbH + lo(1 )H) for Tm z > 20. (4.9)

Proof. In the notation of the previous proof, we have
Q,(2) =V(2) — 2 =b+ G, (V(2)).

Therefore, @, is a fully matricial function s,y Hy25(B) = H_(B).

To check (4.8)), use the identity ®,(z) = b+G,(¥(z)). When Im z > 2§ and § > [|o(1)||V/?,
then we have Im W(z) > §. Hence, by applying (4.1)) to G,, we get (4.8)

To check (4.9)), observe that
Q,(2) —b—Gy(2) = Go(V(2)) — Go(2).
But by Lemma

1G5 (U(2)) = Go(2)]| < |AGH(V(2), )[4 ¥(2) — 2|
< H;f( )| (||b|| n HJES)”)

where in the last line we substituted ¥(z) — z = ®,(z) and used the previous estimate

E3). =
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Lemma 4.5.9. The function ®,(2) has a fully matricial extension to B(0, (3—2v/2)/ rad(u))
satisfying

and
2)|Var, (1) rad (1)

V2 -1

Proof. Consider the behavior of ®, = <i># near zero. We have

19,,(2) — (X)™|| <

§

By the inverse function theorem, since pé 4(0) = id, we know that G » has a inverse function
in a neighborhood of zero, and hence ®,, is defined in a neighborhood of 0 and ®,,(0) = b =
(X))

To get a more precise estimate on the size of the neighborhood, observe that for R =

1/rad(u), we have

~ 1
||AkGM<O’ et 70)”# S Rk_17

and therefore, we are in the setting of the inverse function theorem with M = R and K = 1.
Thus, by Theorem , G, ' maps B(0, R(3 — 2v/2)) — B(0, R(1 — 1/4/2)). But note that

1 1 1 1
1- —)R<-R= <
( \/§> =2 2rad(n) © rad(o)’

and hence B(0, R(1—1/1/2)) is within the ball where G, is defined, so that ®, = G,0G,+b™
is defined on B(0, R(3 — 2v/2)). Futhermore, G, is bounded by

le ()] _ le()ffrad(p) _ 2[[Var,(1)]| rad(n)
(1/2)R—(1-1/V2)R 1/2+1/v2-1 V2-1 '

4.6 Convergence in moments

Definition 4.6.1. If ¢ is a generalized law, then we define the kth moment of o as the
multilinear form
Momy (o) [wo, . . ., wy| = o(weXwy ... Xwy)

or equivalently )
Momy (o) = A*G,(0,...,0).
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Definition 4.6.2. Let 0,, and o be generalized laws. We say that o,, — o in moments if

lim ||Momy(o,) — Momy(o)||x = 0 for every k,

n—o0

where ||-||x is the completely bounded norm for multilinear forms. Similarly, we say that
{o,.} is Cauchy in moments if {Momg(0,,)} is Cauchy for each k.

Definition 4.6.3. We denote by 3,,(B) the set of B-valued laws with rad(pu) < M. We
denote by Y5/ (B) the set of B-valued generalized laws o with rad(c) < M and [lo(1)] < K.

Lemma 4.6.4. If {0,} in X5, (B) is Cauchy in moments, then it converges in moments.
Also, ¥p(B) is a closed subset of ¥5" (B) with respect to the convergence in moments.

Proof. Clearly, the multilinear forms Momy(c,,) converge to some multilinear form A;. We
can define o : B(X) — B by o(woXw; ... Xwg) = Ag(wp,...,wg). Then o,[f(X)] —
o[f(X)] for each f(X) € B(X) and hence o is completely positive and exponentially bounded
by M. Also, |lo(1)|| < K since ||, (1)|| < K. Therefore, o is a generalized law in X5 (B)
and o, — ¢ in moments.

To show that X,,(B) is closed, note that the property of o : B(X) — B being a unital
B-B-bimodule map is preserved under limits. n

Proposition 4.6.5. If r < 1/M and 0,7 € X5 (B), define

d.(o,7) = Zrk’HHMomk(U) — Momg (1) = do,(Gy, Gr).
k=0

Then we have the following.

(1) d, is a metric.
(2) The metrics d, for different values of v are uniformly equivalent.

(3) {on} C X5k is convergent (resp. Cauchy) in moments if and only if it convergent (resp.
Cauchy) in d,.

(4) X5k (B) is complete with respect to d,.
Proof. Observe that d,.(o,7) = do,r(éa, GT) It follows from Lemma that F = {G~’J :

o € X5/ (B)} is a uniformly locally bounded family of fully matricial functions on B(0,1/M)
and that rad(0, F) = 1/M. Therefore, claims (1) and (2) follow from Theorem [3.9.6]

(3) Note that
1
|IMomyg (o) — Momg(7)]|x < T—kdr(a, 7).
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Hence, convergence or Cauchyness in d, implies convergence or Cauchyness in moments.
Conversely, using standard geometric series estimates,

N-1
d(0,7) <> r*[Momy () — Momy (7)[| 4 +
k=0

(rm)™
1—rM

and hence convergence or Cauchyness in moments implies convergence or Cauchyness in d,..
(4) This follows from (3) and Lemma [4.6.4] O

Proposition 4.6.6.

(1) The collection Gy x = {Go : 0 € X5, % (B)} is a uniformly locally bounded family of fully
matricial functions on H(B).

(2) For each z € H, (B) we have rad(z,G) > e.
(3) The metrics d, ,(G,,G;) on G are uniformly equivalent to the metrics d.(o,T).

(4) G with the topology of uniform local convergence is homeomorphic to E%Z?K with the
topology of convergence in moments.

Proof. (1) and (2) follow from Lemma [4.2.7]

To prove (3), note that the metrics d,, are all equivalent to each other by Theorem 3.9.6]
Moreover, note that all the elements of B(3iM, M) are invertible and inv(B(3iM, M)) C
B(0,1/2M), so that

dsine i (Go, Gr) < dO,l/ZM(ém G,) = dyjoni (0, 7).

Thus, dsin,m(Go,G,) can be estimated above by dy/an(0, 7). For the converse direction,
note that inv(B(1/2iM,1/8M)) C B(2iM,2M/3) and hence

dl/QiM,l/SM(éa7 G,) < dainton3(Go, Gr).

By Theorem [3.9.6 the metric dy /2r,1/s0m i equivalent to d,(o,7), and thus d, (o, 7) can be
estimated from above by da;ns211/3(Go, Gr).

(4) is an immediate consequence of (3). O
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CHAPTER 5

Background: Four non-commutative independences

5.1 Introduction

The discovery of free independence is due to Voiculescu [Voi85, [Voi86] (and the combinatorial
aspects of the theory were developed by Speicher [Spe94]). His key insight was that the free
product operation on groups and the corresponding operator algebras could be viewed as a
non-commutative version of probabilistic independence. The analogy between the classical
and free theories included the following elements:

1. Rule for specifying mized moments: To say that algebras A;, ..., A, are freely in-
dependent specifies rule for determining the mixed moments of variables in the larger
algebra which they generate.

2. Product space construction: Any two algebras could be joined in an independent way.
In ordinary probability theory, this is the role of the product measure spaces, corre-
sponding to a tensor product of the L? spaces, on which the two individual algebras act
by multiplication on first and second coordinate. In free probability theory, products
of algebras act on the free product of the underlying Hilbert spaces, a construction
related to Fock spaces in physics.

3. Conwvolution operation and analytic transforms: In ordinary probability theory, the
law of a sum of independent random variables is the convolution of the two individual
laws, and the convolution can be computed using the Fourier transform of the measure.
Given (1), the law of the sum of independent random variables is determined by the
individual laws, and so “free convolution” is well-defined. Voiculescu found that the
R-transform played a similar role in free probability theory; namely, the R transform
of the “free convolution” of two laws is the sum of the R-transforms.

This theory was extended to the operator-valued setting in [Voi85, §5] as well as [Voi195] and
[Spe9sq].

Another type of non-commutative independence, called boolean independence, was intro-
duced into non-commutative probability by Speicher and Woroudi [SW97], based on previous
work by physicists. This independence had a rule for specifying mixed moments, a product
space construction, and a convolution operation. For operator-valued Boolean independence,
see [Pop09], [PV13] §2], [BPV13].
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Finally, monotone independence was discovered by Muraki [Mur97], [Mur00], [Mur01],
and adapted to the operator-valued setting by Popa [Pop0§] and Hasebe and Saigo [HS14].
There was a parallel theory of moment computations, product spaces, and analytic trans-
forms. Unlike free and boolean independence, monotone independence is sensitive to the
order of algebras. Thus, the monotone convolution operation is not commutative. It corre-
sponds to composition rather than addition of analytic transforms.

After the discovery of several types of independence, Speicher formulated axioms for
independences which lead to a natural commutative binary product operation, and he showed
that tensor, free, and boolean were the only three possilibities [Spe97]; Ben Ghorbal and
Schiirmann proved related results in the framework of category theory [BS02]. When the
product is no longer required to be commutative, there are exactly two more possibilities,
monotone independence and its mirror image anti-monotone independence, as proved by
Muraki in 2003 [Mur03]. This in some sense classified the possible notions of independence.
The analogous results in the operator-valued setting have not yet been studied.

Here we will focus on operator-valued free, boolean, monotone, and anti-monotone inde-
pendence. We exclude classical or tensor independence because it does not adapt well to the
B-valued setting if B is not commutative, and because the other types of independence have
closer similarities with each other. As much as possible, we will present theories of these
four types in parallel.

5.2 Moment conditions for independence
Definition 5.2.1. Let A D B be C*-algebras. We say that C is a (non-unital) B-*-subalgebra
of A if A if C is closed under addition, multiplication, and adjoints, and if BC C A.

Definition 5.2.2 (Boolean independence). Let (A, E) be a B-valued probability space.
Then B-subalgebras A, ..., Ay are said to be boolean independent if we have

Elay...a;] = Elaq] ... Elay]
whenever a; € A;(;), provided that the consecutive indices i(j) and i(j + 1) are distinct.

Definition 5.2.3 (Free independence). Let (A, E) be a B-valued probability space. Then
subalgebras A, ..., Ay containing B are said to be freely independent if we have

Elay...ar] =0

whenever a; € A;;y with Efa;] = 0, provided that the consecutive indices i(j) and i(j + 1)
are distinct.

Definition 5.2.4 (Monotone independence). Let (A, E) be a B-valued probability space.
Then B-subalgebras A, ..., Ay are said to be monotone independent if we have

Elay...ax) = Flay . ..a,1 Elay]ariq .. . ag)
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whenever a; € A;(;), provided that the index i(r) is strictly greater than the consecutive
indices i(r — 1) and i(r + 1) (if » = 1, we drop the condition on i(r — 1) and if r = k, we
drop the condition on i(r + 1)).

Definition 5.2.5 (Anti-monotone independence). Let (A, E) be a B-valued probability
space. Then B-subalgebras A;, ..., Ay are said to be anti-monotone independent if we
have

Elay...a;) = Flay ... a1 FElay]arsq ... ag)

whenever a; € Aj;(;), provided that the index i, is strictly less than the consecutive indices
i(r —1) and i(r + 1) (if r = 1, we drop the condition on i(r — 1) and if r = k, we drop the
condition on i(r + 1)).

Remark 5.2.6. Boolean and free independence are unchanged if we reorder the algebras

Ai, ..., Ay. However, monotone and anti-monotone independence are sensitive to order.
Also, Ay, ..., Ay are anti-monotone independent if and only if A, ..., A; are monotone
independent.

Next, we define what it means for random variables to be independent. In the following,
for a self-adjoint X in A D B, it will be convenient to denote by B(X) the subalgebra of A
generated by B and X. This object is strictly speaking not the same thing as the formal
polynomial algebra B{X), but this abuse of notation is already entrenched in algebra. We
also denote by B(X)¢ the polynomials with no constant term, that is,

B(X)o = Span{boXa, ... Xb : b; € B,k > 1}.

Definition 5.2.7. Self-adjoint random variables X, ..., Xy in (A, E) are said to be freely
independent if the algebras B(X), ..., B(Xy) are freely independent. Random variables X7,
..., Xy are said to be boolean / monotone / anti-monotone independent if the B-algebras
B{Xi)o, ..., B(X,)o are boolean / monotone / anti-monotone independent.

The definition of independence provides enough information to evaluate the expectation
of any element of the B-algebra generated by A;, ..., Ay. Here and in the rest of this
chapter, we state the result for all types of independence simultaneously.

Lemma 5.2.8. Suppose that Ay, ..., Ax are boolean (resp. free, monotone, anti-monotone)
independent B-subalgebras, and assume in the free case that they are unital. If a; € A;; for
j=1,..., k, then Ela; ...ay] is uniquely determined by E|4,, ..., E|ay-

Proof for the boolean case. Starting with a string a; . .. ax, we can group together consecutive
terms if they come from the same algebra. After this regrouping and relabeling, we can
assume that any two consecutive terms come from different algebras. Then by definition of
boolean independence Ela; ...ax| = Elai] ... Eag]. O
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Proof for the free case. Let C be the formal B-algebra generated by Ay, ..., Ay, that is, the
span of all strings of the form a; ...a; where a; and a;;; come from distinct algebras. Let

D = B+ Span{a; ...ay : Ela;] =0, a; € Ay, i(j) #i(j + 1)}
We claim that C = D.

We must show that every string a; ...a; can be represented as a linear combination of
the terms in D. We prove this by induction on k, the base case £ = 0 being trivial. In the
inductive step, let & > 1 and consider a string a; ... a; where a; € A;;) and i(j) # ij + 1).
We can write a; = ¢; + b; where b; = E[a;] and ¢; = a; — b; has expectation zero. Then

aj...ar = (c1+b1)...(ck + by).

We expand the right hand side into 2* terms using the distributive property. The first term
c1...c, has the desired form. We claim that each of the other terms can be expressed as
a word in C with length less than k (so that we can apply the inductive hypothesis). Each
term is a product of some ¢;’s and some a;’s, but we can group each a; together with all the
terms before or after until we reach one of the ¢;’s. Then if two adjacent elements come from
the same algebra A;, then we can group them together into one term. After applying as
many such regrouping operations as possible, we have expressed this term as a string of the
form a ... ajp, with k' < k and the terms a); coming from different A;(;)’s with i(j+1) # i(j).
Then by the inductive hypothesis, this term is in D.

This implies that every ¢ € C can be expressed as the sum of b € B plus a linear
combination of terms of the form a; ... ax, where Efa;] =0, a; € A;(;), and i(j) # i(j + 1).
This decomposition was reached using purely algebraic operations and knowledge of E|4,
for each 7. Using freeness, each term of the form a;...a; has expectation zero. Thus,

Elc] =b. O

Proof for the (anti-)monotone case. In the monotone case, we proceed by induction on the
length k of the string a; ... ag, where the base case k = 1 is trivial. By regrouping the terms
if necessary, assume that consecutive terms come from different algebras. Then choose an
index j such that i(j) is maximal. By monotone independence,

E[CLl e (lk] = E[a1 e CLj_lE[CLj]CLj_H e ak].

Since Ela;] € B, this can be represented as a string of length < k — 1, to which we apply
the induction hypothesis.

The anti-monotone case follows by symmetry from the monotone case. O]
5.3 Construction of product spaces

In classical probability theory, one constructs the product (2,P) = (3 ® 0, P, ® P)
of two probability spaces (€21, P1) and (€2, P»). The algebras A; = L*(€y, P;) and A, =
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L>(Qy, P») embed into A = L>®(f, P) as subalgebras which are classically independent, that
is, Elb1by] = Ela1]E[az] when a; € L>*(Q;, P;). The algebra A is thus a certain completed
tensor product of A; and A, with the state [ - dP being the tensor product of the two states
[ -dP; and [ -dP;. Moreover, the Hilbert space L?(€2, P) is the Hilbert-space tensor product
of L?(Qy, P1) and L?(y, P).

Similarly, in non-commutative probability, we seek to a way to independently join given
B-valued non-commutative probability spaces (Aj, E1), ..., (Anx, Ex). We construct the
joint algebra by first constructing a joint Hilbert space, in the same way that classical
independence arises from tensor products of Hilbert spaces. The constructions of these
product spaces can be found in the following references: scalar-valued boolean [Ber(6l, §2],
operator-valued boolean [PV13l Remark 2.3], scalar-valued free [Voi86), §3|, scalar-valued
(anti-)monotone [Mur00, §2], [Ber05], operator-valued (anti-)monotone [Pop08, §4].

5.3.1 Independent products of correspondences

Suppose that (Hi,&1), ..., (Hn,&n) are B-B-correspondences and §; is a B-central unit
vector in H;. Denote Ejla] = (&;,a&;) for a € B(H;). Let HS be the orthogonal complement
of & in H;, so that H; = BE;@HS by Lemmal2.5.7 For each ind € {bool, free, mono, mono 1}
(denoting boolean, free, monotone, and anti-monotone independence respectively), we define
K*indl(H1, 1), .-, (Hn, En)] to be the pair (H,§) of a B-B-correspondence and a central unit
vector constructed as follows:

e N
B¢ @ @ H, boolean case
=1

]7

B¢ & @ @ H; ®p---@pHj , free case
k>1 ji,....jr€[N]

H = Jr#jr+1

B¢ @ @ @ H;, ®p -+ ®@pH;j , monotone case

B¢ @ @ @ H;l ®gp--- R HS , anti-monotone case.

Ik

\ j’r <j7‘+1

Here B¢ represents a copy of B as a B-B-correspondence with £ corresponding to the vector
1.

Next, we define *-homomorphisms pina; : B(H;) — B(H) as follows. For each type of
independence and each j, there is a natural decomposition of H as

7’[27'[3'@5/\/13'@/\/;

given as follows:
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(1)

In the boolean case, we observe that
H=BeoH)o@PH =H; 0 PH;,
i#] i#]
so we take M; = B and N; = P, H;.

In the free case, we split the direct summands into the cases where j; = j and j; # j.
Thus, we write

nH= | P #H,es--est, |oHe|P P H os s,
k>0 j1,....j€[N] k>0 j1,....jk€[N]
JrFdr+1 Jr#EJr+1
J1#J J1#£7

1

Bow) e B 1 ononi,
k>0 j1,....jk€[N]
Jr#ir+1
N#J
where the £ = 0 terms in the big direct sum are evaluated as B or B¢ by convention.
Thus, we take N; = 0 and

Mj:@ @ H;1®B'“®BH;1¢'

k>0 jl,'.,.,j;?e[N]
]r#h-ﬂ
J17#]

In the monotone case, we take

[ (e}
Mj:@ @ Hjl®8”.®87_ljk’
k20 j1,...jK€[N]
JrFdrtt
J>J1

where the k = 0 term is evaluated as B, and

Ni=D D #ososh.
k=1 j1,....jk€[N]
jr?éj?j-ﬁ-l
J<Jji
The isomorphism H = H; ® M; & N, comes from similar manipulations as in the
previous cases. The term H; ®p M; splits as M; & H; ®p M;, and these two pieces
yield respectively all the direct summands of H where the first index is 7; < j and those
where the first index is j. Meanwhile, the N; term produces all the direct summand
where the first index is greater than j.
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(4) The anti-monotone case is the same as the monotone case except with the directions of
the inequalities reversed.

In each case, if we denote by ®; the (unitary) isomorphism H — H; @5 M; &N, we define
the x-homomorphism pinq ; by

Pind,j(@) = Pi[(a @ id ;) © O] P;.

Note that pinq,; is injective because pinq j(a) restricted to the direct summands B & ’H; inH
is a itself conjugated by the obvious isomorphism B & H; — H;. Moreover, by the same
token

<57Pind,j(a)§> = <§j7a§>a

which means that pi,q; is expectation-preserving. It is also easy to check that piqg; is a
B-B-bimodule map, where B(#;) and B(H) are given a B-B-bimodule structure through
the embeddings B — B(H;) and B — B(H) given by the left B-module structure of H; and
H.

5.3.2 Independence on the product space

Theorem 5.3.1. Let (H;,&;) for j =1,...,N be B-B correspondences with B-central unit

vectors. Let ind € {bool, free, mono, mono t}. Let (H,&) = dina[(H1,&1), .-, (Hn,EN)]. Let

E : B(H) — B be the expectation given by the vector . Then the algebras pinai(B(H1)),
.y pmnan(B(Hy)) are ind-independent in the B-valued probability space (B(H), E).

Although we have endeavored as much as possible to present the four independences in
a unified way, the proof of this theorem will necessarily be done in cases since the moment
conditions for each type of independence are idiosyncratic.

Proof of the boolean case. Let k > 1, and consider a product of terms p;, (a1), ..., pj,(ax).
We claim that

pi(ar) ... pj(ap)€ = Ej [a1] . .. Ej [ar]€ + ¢,

where ¢ € Hj , and we will prove this by induction. The base case k£ =1 is immediate. Now
suppose k > 1 and note by induction hypothesis,

(= pjplaz) ... pj ()€ = Eplas] . .. By [ar]§ + ¢

with (" € H5,. Since jp # ji, we have pj, (a1)¢" = 0. Meanwhile, if we set b = Ej, [as] . .. Ej, [ax],
then

Pij1 (a’l)c = P (a1>b€ = <€j1 ) a1b§j1>£ + ¢,
where ¢ € Hj, by virtue of the construction of pj, (a;) and the orthogonal decomposition of
H;, into BE; and Hj . But note that

<€j17 alb€j1>€ = <€j17 a1€j1 b>€ = <€j17 a1€j1>b€ = Ejl [al]Ej2 [aQ] s Ejk [&k]g,
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which completes the induction step. It follows from this claim that

Elpj (a1) ... pj(ar)] = (&, pji (@1) - . . pj, (ax)§)
= (& Eplai] ... By [ar]§) + (€, )
= Ejl [(11] st Ejk [ak]v

which demonstrates boolean independence. O

Proof of the free case. Let k > 1, and consider a product of terms p;, (a1), ..., pj, (ar) where
E; (a,) = 0 for each r. We claim that

pjl(a1> . 'pjk(ajk)§ S ,H;j ®p - OB H;k’

which we will prove by induction on k. In the case k = 1, we express a; §;, in H; as
b¢;, + C, where ¢ € H;, and the coefficient b = (&, a;,&j,). But by assumption b = 0, so that
aj, &, € Hj,. For k> 1, we know by inductive hypothesis that

¢ = pjz(a2> - ‘pjk<ajk)£ < /H;2 ®p - OB ij
This sits inside the direct summand
Hj2 Xp - QB ij - (B S% H;-)l) B H;-Q KB OB H;k - Hjl ®B Mj1'

Because a; maps B¢, into H:

%> we know that pj, (a1) maps ( into HS, @5 - ®p HS, as

desired.
Therefore, we have pj, (a1) . .. pj,(a;,)§ € Hj, ®p - @5 HS, , and hence
E[le (al) - Py (ajk)] = <€7 P (al) - P (&Jk)€> =0,
which demonstrates free independence. O

Proof of the (anti-)monotone case. In order to show monotone independence, we must show
that

Elpp,(as) ... pp,(a1)pj(a)pq, (ay) .. - Pay (ap)] = Elpp.(as) ... pp(a1)E; [a]pql(all) x 'th(aé)L

provided that j > p; if s > 0 and j > ¢; if t > 0, where a € B(H;) and a; € B(A,,) and
a; € B(H,,), and where E;[a] on the right hand side denotes the multiplication by E;[a] € H
using the left B-action on H. This claim is equivalent to

(o1 (a7) - - pp. (a2)€; (pj(a) — Ejlal)pg, (a) - pg.(a1)€) = 0.

Now we write



and our goal is to show that (C, p;(a)(’) = (¢, b(").

Recall that in the definition of pmono;, We used the direct sum decomposition H =
M; & H; @ M; & N;. With some of abuse of notation, let us pretend this isomorphism is
an equality. We claim ¢ and (" are in M. This is clear for ¢ if s = 0 and hence ( = ¢. On
the other hand, if s > 0, this follows because the image of p;(b}) is contained in

My M, =B P  H, @5 @sH;, CM,
kE>1 p12>j1>g2>>jk
and p; < j. The argument for {’ is identical.

By construction, for y € B(H;), the operator pmoeno,j(y) maps M; into (B ® Hj) @5
M. However, since Ej[a —b] = 0, pj(a — b) maps the space M; into Hj @ M;, which
is orthogonal to M;. Since p;(b)|x;, = b|n,, we have pj(a — b)(" = [pj(a) — b]¢". Thus,
[pj(a) = b]¢" € Hj ®5 M; and ¢ € M; are orthogonal, so that ((, [p;(a) — b]¢") = 0, which
proves the desired equality to show monotone independence. The anti-monotone case of
course is symmetrical. O

5.4 Associativity

For ind € {bool, free, mono, mono t}, the product operation ¥i,q satisfies the following as-
sociativity properties. These results are well known and we consider them folklore. For B-
B-correspondences ‘H and K and a bounded adjointable operator T : H — IC, let us denote
by Ad(T") the map B(H) — B(K) given by S+ T'ST*. There is a canonical isomorphism

D deinal(H1,61), (Ha, &), (Hs, €3)] = Kimal(Hi, &)y Kina[(He, &2), (Hs, €3]]

such that the following diagrams commute:

B(H1) —"— B (Skina[(H1. &), (Ha, &), (H3,&))])
Pind,1 lAd(CD)
B (Feina[(H1,&1), kina[(Ha, &2), (H3,3)]])
and for j = 2,3,
B(H,;) Pcd » B (Kinal(H1, 1), (Ha2, §2), (M3, 63)])

pmd,jl lAd(q’)

B (Feina[(Ha2, €2), (3, €3)]) 222 B (Feinal(Ha, &1), Feimal(Ha, &), (Hs, &)]])

The construction of the isomorphism & is a straighforward rearrangement of the sum-
mands in the product space, using the distributive and associative properties of tensor prod-
ucts. Let us describe this construction in the monotone case as an example. Denote

(K, ¢) = Fmonol(Ha, &2), (H3,83)]-
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Then W mono[(H1,&1), (IC, €)] is given by
BEDH] B K d (K° @5 HT)
=BEOHT @ [Hy © Hy @ (Hy @ Hy)| & ([Hy & Hy @ (Hs @5 Hy)| @5 H])
2BEOHT @ Hy @ Hy @ (Hy ®5H3) © (Hs @ HY) @ (Hs @5 HY) ® (Hs @5 Hs @5 HY),
which is precisely Wmono[(H1,&1), (H2,&2), (Hs,&3)].  The commutativity of the diagram
means that both ways of decomposing the product space will produce “the same” inclu-

sion of B(H;) into the bounded operators on the product space. This is a direct verification
that we leave to the reader.

More generally, given B-B-correspondences (H;;,& ;) fori=1, ..., kand j=1,...,n,,
we have an isomorphism
*ind[(Hl,la 51,1)7 s ey (Hl,nl ) fl,nl)u """ 9 (Hk‘,17 Ek,1>7 ceey (Hk,nk7 £k,nk)]

> eina [Foina[(H1,15€01)5 - Fann Enn)]s - Foind[(Hets 1)y -0 (i S )]

with the associated commutative diagrams. A complete argument for this fact (and in much
greater generality than only the boolean, free, and (anti-)monotone cases) can be found in
[JL19, Theorem 5.2].

As a corollary of this result and Lemma [5.2.8] we have the following method for checking
independence of subalgebras. We leave the argument to the reader; it can alternatively be
proved directly from the moment conditions defining independence.

Lemma 5.4.1. Let ind € {bool, free, mono,mono t}. Let (A, E) be a B-valued probability
space, and A;; fori=1,...,k and j =1,...,n; be B-subalgebras (assumed to the unital in
the free case). The following are equivalent:

1. Ava, oo, Adgs oeee e s Ak, oo, Ak, are independent.
2. The algebras Ay1 V-V Ay, oo, Agai VooV Ay, are independent and for each 1,
the algebras A; 1, ..., A;,, are independent.
Here A;1 V-V A, denotes the B-subalgebra generated by A; 1, ..., Ain,.

5.5 Convolution and analytic transforms

Definition 5.5.1. Let ind € {bool, free, mono, mono {}. We define the ind-convolution of
two B-valued laws p and v as the law of X +Y when X and Y are ind-independent and the
law of X is p and the law of Y is v. The convolution is denoted by u Hi.q v, or alternatively
pWr  (boolean case)
pBr  (free case)
w>v (monotone case)
(

p<<v (anti-monotone case).
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In order to verify this definition makes sense, observe first that using the GNS construc-
tion (Theorem and the product space construction, there always exist independent
operators X and Y in a B-valued probability space (A, E') such that the law of X is u and
the law of Y is v. And second, the law of X +Y is uniquely determined by p and v and the
independence of X and Y by Lemma [5.2.8]

More generally, given laws pq, ..., uy, we may construct operators Xy, ..., Xy which
are independent with X; having the law p;, using the GNS construction and the product
space construction. Then it follows from the associativity considerations of the previous
section that X+ -+ Xy has the law g Bing (2 Bing (- - - (un) - .. ). Moreover, we also have
p1 Bing (o Bing p3) = (p1 Bing p2) Bing 3, or in other words H,q is associative, and thus we
may remove the parentheses when expressing an iterated ind-convolution.

Observation 5.5.2.

(1) The operations &, B, >, and < are associative.
(2) The operations B and & are commutative.

(3) We have pt>v =v < p.

Proof. The first claim follows from the preceding discussion of associativity. The second
claim is true because the conditions defining free and boolean independence do not depend
on the order of the subalgebras, while for the third claim, if we were to reverse the order of
the indices in monotone independence, then we obtain anti-monotone independence. O

Our main task in this section is to develop analytic tools for computing the independent
convolution of two laws. In the classical case, this role is played by characteristic function
(Fourier transform) of a law given by Fu(§) = [ €™ du(z), since addition of independent
random variables or classical convolution of laws corresponds to multiplication of the Fourier
transforms. In the non-commutative setting, this role is played by various fully matricial
functions related to the Cauchy-Stieltjes transform.

5.5.1 The boolean case

The results of this section can be found in [SW97] [BerO6, Theorem 2.2] for the scalar case
and [PV13] §2 and §5.3] in the operator-valued case. The proof we give here is based on
analogy with the proof from the free case in the next subsection (where we also explain the
history and references).

Definition 5.5.3. For a B-valued law p, we define the K-transform as

K, (z) =z — F,(2).
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= K,(z) or slight

Remark 5.5.4. We caution that some authors work instead with B, (z) u
= u(X)™ 4+ G,(2) for

variants of this definition. We showed in Theorem m that K,(2)

some generalized law o.

Theorem 5.5.5. K, (2) = K,(2) + K,(2) as fully matricial functions.

Proof. Let X and Y be freely independent random variables in (A, E') which realize the laws
w and v respectively. For z in M, (B) with ||z|| < 1/rad(u), define

UP(2) = (1= 2X)7 =1 =3 " (2X M)k,
k=1
This is an A-valued fully matricial function. To simplify the notation, we will suppress all

the superscripts (n), so that X will stand for X, where n is the size of the matrix z. Note
that

1+ ElUx(2)] = E[(1 — 2X)7']| = Gu(2)z""
or in other words )
(1+ EUx(2)]) " = 2Fu(2)
Note that Ux(z) is in the closed span of B(X)q. Define Uy (z) analogously. Then

1—2X —2Y = (14 Ux(2)) '+ (1+ Uy(2) ' = 1
Therefore,

(1—2X —2Y) ' =[1+Ux(2) '+ 14+ Uy(2)) =11
= (14 Ux(2)[1 = Uy (2)Ux(2)] (1 + Uy (2))

o

= (14 Ux(2)) (Z(Uy(Z)Ux(Z))'“> (14 Uy (2))-

k=0

Next, we take the expectation. Because Ux(z) and Uy (z) are in the closures of M, (B(X)o)
and M, (B(Y)q) respectively and because X and Y are Boolean independent, we have

E[(1—2X —2Y)"'] = (1 + E[Ux(2)]) (Z(E[Uy(Z)]E[Ux(Z)])'“> (1+ E[Uy(2)])

=1+ EUx()) '+ 1+ E[Uy(2)) " =1

Therefore,

Guon(2)27! = [(1+ E[Ux(2)]) " + 1+ E[Uy(2)) " = 1]

By taking reciprocals,

2Fuon(2) = (1+ E[Ux(2)]) 7 + (1+ E[Uy (2)]) 7 — 1



Because 2E,(z) — 1 = 2K ,(2) and the same holds for Y and X 4 Y, this means precisely
that . . )
2K (2) = 2K, (2) + 2K,(2)

for z in a neighborhood of 0. By Corollary we have K, = K, + K, on the upper
half plane. [

5.5.2 The free case

The following analytic transforms were defined by Voiculescu [Voi86]. In the operator-valued
case, the definition was developed by Dykema [Dyk07, §6].

Definition 5.5.6. For a B-valued law p, we define F,(z) = G,(z)~! and
®,(2) = F,u_l(z> -z,
where F° !(2) is the functional inverse and z is in the image of F),.

Remark 5.5.7. Many authors work with the R-transform R,(z) = ®,(z) = ®,(271). We
showed in Lemma m that @, is defined for Im 2 > 2§ whenever § > ||Var,[1]||*/? and in
Lemma that R,(z) is defined in a fully matricial ball around zero.

The following result on the additivity of the R-transform was discovered in the scalar-
valued case by Voiculescu [Voi86]. The original proof by Voiculescu used canonical realiza-
tions of a law u by (non-self-adjoint) random variables on a Fock space, and this was adapted
to the operator-valued setting by Dykema [Dyk07, §6]. This theorem can also be proved
through the combinatorial apparatus of free cumulants due to Speicher [Spe94, [Spe98]. The
analytic proof presented here is due (in the scalar-valued setting) to Lehner [Leh01, Theorem
3.1].

Theorem 5.5.8. For Im z > 2§ > 2||Var,(1) + Var,(1)||'/2, we have
D m(2) = Pu(z) + @,(2).

Also, for z in a fully matricial neighborhood of 0, we have
Rum(2) = Ru(2) + R, (2)

Proof. Let X and Y be freely independent random variables in (A, F) which realize the laws
pand v.

We begin by analyzing R,(z) in a neighborhood of the origin. Now z~! + R, (2) is the
functional inverse of G, (z) in a neighborhood of 0 which means that

Bl + Ru(z) — X)) = 2.
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Multiplying by z~! on the right, we can write rewrite this as
E[(1+2R,(2) —2X)7 '] =1,
or in other words, the A-valued fully matricial function
Ux(2) = (14 2R, (2) — 2X)' =1

has expectation zero. (Here, as in the previous case, we suppress the superscripts (n) but

Ux(z) stands for U )((n )(z) and X denotes X ™ where n is the size of the matrix z). The same
holds for the analogously-defined function Uy (z). We want to show that z=!' — R, (z) — R, (2)
is the functional inverse of G m,, which means that

G271+ Ru(2) + R(2)) = 2,
which after multiplying by z~! on the right is equivalent to
E[(1+ 2R, (2) + 2R, (2) —2X —2Y) 7' = 1.
We will rewrite the left hand side in terms of Ux(z) and Uy (z) so that we can apply freeness
together with the fact that Ux(z) and Uy (z) have expectation zero. Note that
(1+2Ru(2) + 2R, (2) — 2X — 2Y) !

=[1+Ux(2) "+ 1+ Uy(2) " = 1]

= (1+ Ux ()1 + Uy (2) + (1 + Ux(2)) = (1 + Uy (2))(1 + Ux(2))] (1 + Uy (2))

= (14 Ux(2)[1 = Uy (2)Ux (2)] 7' (1 + Uy (2)).
Now because Ux(0) = 0 = Uy (0), we know that if ||z|| is sufficiently small, then we can
expand [1 — Uy (2)Ux(z)]"! as a geometric series, and thus for small z,

(1—2R,(2) — 2R, (2) — 2X — 2Y) 7' = (1 4+ Ux(2)) (Z(Uy(z)Ux(z))k> (14 Uy (2)).
k=0
Next, we take the expectation. Because Ux(z) and Uy (z) have expectation zero and because
X and Y are free, all the terms on the right hand side have zero expectation except the term
1 which comes from multiplying together the 1 from 1+ Ux(z), the 1 from the geometric
series, and the 1 from 14 Uy (z). Therefore, as desired,

El(1—-2R,(2) —zR,(2) — 2X — 2Y) =1
This shows that
Rysu(2) = Ru(2) + Ru(2)
holds in a neighborhood of zero.

This implies that ®,m, = ®, + ®, if Im 2 is sufficiently large, and hence by Corollary
, we have ®,m, = ®, + ®, on H, 55(B), provided that this lies inside the common
domain of ®,m,, ¢, and ®,. Since Var,m, (1) = Var,(1)+ Var,(1) and all these elements are
positive, we have ||Var,m,(1)|| > max(||Var,(1)||, ||Var,(1)||), and hence it is sufficient that

§ > || Var,m, (1) O
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5.5.3 The (anti-)monotone case

The following result is due to [Mur00, Theorem 3.1] in the scalar-valued case and [Pop08§|,
Theorems 3.2 and 3.7] in the operator-valued case, whose proof we follow here. Another
proof in the scalar case is in [Ber(5)].

Theorem 5.5.9. We have F,.,(2) = F,,(F,(2)) and F,4,(z) = F,(F,(2)) as fully matricial
functions.

Proof. Let inv denote the fully matricial function z — 2~ ! where defined. Since F,
inv oG oinv and inv is an involution, it suffices to show that GWV = G oG,

Let X and Y be monotone independent random variables in (A, F) realizing the laws p
and v. We know that

Elfo(Y)1(X) /1(Y) . gn(X) [ (V)] = E[E[fo(Y)]g1(X)E[[r(Y)] ... gu(X) E[fu(Y)]

whenever f(Y) € B(Y) and f(X) € B(X),. However, this also holds trivially if f;(Y") € B,
and thus by linearity it holds when f;(Y) € B(Y)).

Now for ||z|| sufficiently small, we have

Guen(2) = E[(1 — 2X — 2Y) 712

=E[(1—-(1—-2Y) " 2X) (1 -2Y)"

i 1—2Y) '2X]F(1 — 2y) !

Note that (1 — 2Y)™! is in the closure of M, (B(Y)) and zX € M,(B(X)y) and hence by
monotone independence

Guon(2) = E | [E[(1 - 2Y) 2 X" E[(1 — 2Y) 2]
=E | [G(2)X]*G,(2)
— G0 Gul2)

This equality extends to all z by Corollary [3.9.7. The anti-monotone case follows from the
monotone case since p v = v > U. O]
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CHAPTER 6

Tools: Norm estimates and subordination

6.1 The norm of an independent sum

The sum of “independent” operators on the product space H can be estimated as follows.
The statement and proof are very close to the scalar-valued free case proved in [Voi86, Lemma
3.2]. The exact formulation of the proof here is taken from [JL19, Proposition 3.18].

Lemma 6.1.1. Let (H;,&;) for j = 1,...,N be B-B correspondences with B-central unit
vectors. Let ind € {bool, free, mono, mono t}. Let (H,&) = Hima[(H1,&1), -, (Hn,EN)]. For
j=1,...,N, let a; € B(H;) with ({;,a;;) = 0. Then we have

1/2 1/2
ilaj)

ey

N
> (a;és,a;85)
j=1

N
Z a; §J,a]£J
=1

.....

Conwversely,
N

> pnai(a)|.

j=1

77777

Proof. Let P; € L(H;) be the projection onto &; and let Q); = 1 — P;. Because (¢, a;&;) = 0,
we have Pja;P; = 0, and hence

aj = Qja; Py + Pja;Q; + Q;a;Q;.

Thus, we will estimate

g(aj) (Qja; Fy) i (Pja;Q;5) 3(Q;a;Q;)]|-

For the first term, let us use the notation M; defined in and observe that pia;(Q;) is
the projection onto Hj ® M, that is, the direct sum of the tensor products where the first
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index is j. Thus, the ranges of pina;(Q;) are orthogonal, and hence

N * /N N
(Z Pind,j(Qjaij)> (Z Pind,j(Qjaij)> = pinaj(Pia;Q;a;P;).
j=1 j=1 j=1
Now Pja;P; = 0 implies that

(Qja; P)*(Qja;P;) = Pia;Qja; Py = Pyaja; Py = (a;&;, a;€;5) P

where the last equality follows because P; is the projection onto BE;. Thus,
N

Z pind,j(Q;a; P
j=1

Let b; = (a;¢;, a;&;) and note that b; > 0in B. Also, b; and P; commute in B(H;). Therefore,

we have b;pina ;(P;) = pina,j(P;)b; since pina ; is a B-B-bimodule map. This implies that in
B(H) we have

1/2

N
Z a;&j, a;&;) pina,j ()
=1

bjpind,j (P) - bl/2p1ndj(P )b1/2 < b

Thus,
N n
D (565, a,6) pmas(Py) < D (a€5,a5)).
=1 i=1
and so
N n 1/2
> pinas(@a; Fy) D a565,a8)
= =1
Similarly,
N " 1/2
> pina(Pra;Q;) (@505 P;) > (a;&),a585)
j=1 Jj=1

Finally, because the projections pinq j(@;)’s have orthogonal ranges, we have

N

Z Pind,j QJ“JQJ>

7=1

= maXHpde(Qja]Q])H < max||a]||

Adding the estimates for the three terms together completes the proof of the first estimate.
For the converse estimate, note that H contains the direct summands B¢ and H7, which

together form a copy of H;. Moreover, the compression of ijl pind,j(a;) to this subspace
is a copy of a;. Hence, as desired

N

> pnaia))|.

Jj=1

lasll <
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This proposition implies in particular that if uq, ..., uy are B-valued laws for self-adjoint
operators with mean zero, then

N 1/2
rad (1 Bing -+ - Binag ) < 2 <Z rad(,uj)z) + max_rad(u;).

—1..N
j=1 !

More precisely, the term (a;&;, a;€;) on the right hand side of Lemma is the norm of the
variance of p;. Also, the term max||a;|| can actually be replaced by ||Q;a;Q;||. Proceeding
as in the proof of Theorem m, if (0,0;) corresponds to p; by F, (2) = z — G4, (2), then
we can realize the law p; by an operator a; on BE; & (B(Y) ®, B) such that Q,a,Q; =Y,

and hence ||Q;a;Q;|| = rad(c;). Thus, we have
N 1/2
rad (s Bina - - Bina pov) < 2| Var(u)[1]||  + max_rad(o;). (6.1)
] j=1,..,.N

One would hope that conversely rad(yu;) < rad(u Bing - - - Bina pa) (still in the mean-
zero case). However, this does not immediately follow since a priori we cannot rule out the
possibility that ||pina1(a1) + - - + pima,n(an)|| could be larger than rad (s Bing - - - Bind pv)-

This issue does not arise in the scalar-valued setting for algebras with a faithful state since
then the norm of an operator is always the same as its spectral radius with respect to the
state. However, for boolean and monotone independence, the states constructed on product
Hilbert spaces are often not faithful on the algebra generated by the pinq ;(a;)’s. Nonetheless,
the desired sharp radius estimates are not difficult to establish in the scalar-valued setting
by complex-analytic methods.

For the operator-valued setting, we will prove slightly less sharp “reverse” radius estimates
in §6.3] Our method will reduce the free case to the monotone case, and the monotone case
to the boolean case using the theory of subordination for operator-valued independences
(, which has significant interest in its own right.

6.2 Subordination

This section will show that pq B o can also be written as py > v for some law v, and hence
F . my, = Fu,0oF, and G @, = G, oF),. This result, known as “analytic subordination”, has
a long history in free probability. In the scalar case, it was first proved by Voiculescu [Voi93),
Proposition 4.4], although under some additional transversality-type assumptions. The sub-
ordination theory was further developed by Biane [Bia98, Theorem 3.1], who connected it
with conditional expectations and Markov transition kernels. The operator-valued setting
was addressed in the sense of formal power series by [Voi00] and [Voi02al. In the sense of
analytic functions, the operator-valued case was addressed by [BMS13] using analytic tools
such as the Earle-Hamilton theorem, and a numerically viable approximation scheme was

described.
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We will instead follow the approach of Lenszewski [Len(07] that uses operator models
rather than complex analysis. We will construct an operator explicitly that realizes the
law v and show that gy B ps = w3 > v by manipulating free and monotone product B-5-
correspondences. Proposition and its proof are implicit in Lenczewski’s work in the
scalar-valued case [Len07, §7]; the multivariable case was considered in [Nic09] (see Remark
4.11); and the operator-valued version is given in [Liul8, Proposition 7.2]. The present

author and Weihua Liu have have generalized this approach to more types of convolution in
[JLI19. §6].

Similar to the free / monotone subordination result, there is another subordination result
that relates anti-monotone and boolean convolution. Namely, given laws p; and po, there
is another law v such that py < pe = p; W . We will prove this one first as a
because it is much simpler.

warm-up”

Proposition 6.2.1. Let p1 and po be B-valued laws. Then there is a B-valued law v such
that 1 < po = pup Y.

Proof. For j = 1,2, let X; be an operator on a B-B correspondence H; with B-central unit
vector ; that realizes the law p;. Let (7, &) be the anti-monotone product of (Hy,&;) and
(HQa 52)a that iS7
H=DB{DH] @ H;DH, @ Hs.
Let pmonot,; be the map B(H;) — B(#) given by the anti-monotone product construction.
Now let
Hs = B& ® Hy @ HY @5 Hs,

and note that H can alternatively be written as the boolean product of (H;,&;) and (Hsz, &3).
For j = 1,3, let pyoor; be the inclusion map B(#H;) — B(#) given by the boolean product.

We claim that

pmonoT,l(X1> + pmonoT,Q(X2) = pbool,l(Xl) + pbool,3<X3)7
where X3 is the operator given as follows: We may decompose Hs either as
(B @ M3) @ (Hi @p H;) = Ha @ (H] @5 H3)
or as
B @ (Hy @ H] @p Hy) = BEs @ (Hi @ Hs),
and then we define X3 to be the operator X5 @0 with respect to the first decomposition plus

the operator 0 & X; ® id with respect to the second decomposition.

The 1dent1ty pmonoT,l(Xl) + pmonoT,Q(X2> = pbool,l(Xl) + pb001,3(X3) is Straightforward to
check. Here ponot,1(X1) can be expressed as the direct sum of X; on BE®H] and X; ®id on
(B&HS) @ HS. The first piece is equal to prool,1(X1), while the second piece of pmonot,1(X1)
is one of the pieces of phoor,3(X3). The other piece of proor3(X3) is the operator X, acting on
the direct summands BE & H3 of H, which is the same as pmonot,2(X2)-
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Let v be the law of X3. Since ppooi1(X1) and prooi3(Xs) are boolean independent by
construction, we have py <l s = g W . O]

Proposition 6.2.2. Let py and po be B-valued laws. Then there is a B-valued law v such
that py B po = py > v.

Proof. For j = 1,2, let X; be an operator on a B-B correspondence H; with B-central unit
vector &; that realizes the law ;. Let (H,&) be the free product of (H;,&) and (Ha, &2),
that is,

H=BioD D H; o @sH;,
n>1 ji,...5n€{1,2}
JeFIk+1

Let pmonot,; be the map B(H;) — B(H) given by the free product construction. Next, let

=B P H, o5,

n>1 Jlseos ]'ﬂe{va}

Jn=2
JeFTk+1

the direct sum of B¢; and all the tensor products with Hg as the last term. Now observe
that
H=BEDH] D H; D (Hs @ HS),
that is, (H,&) is isomorphic to the monotone product of (H1,&;) and (Hs,&s). Let pmonon
and pPmeno 3 be the corresponding maps B(H1) — B(H) and B(Hs) — B(H).
We claim that

pfree,l(Xl) + pfree,2 (X2> = pmono,l(Xl) + pmon0,3(X3>7

where X3 is the operator given as follows: We may decompose Hs either as

(B®H3) @5 (@(H; ®5 H§)®B”)

n>0

or as
B& & (B® HY) @5 <@(7{§ ®5 H7)" @5 7'[3)
n>0
and then we define X3 to be the operator Xy ® id with respect to the first decomposition
plus the operator 0 & X; ® id with respect to the second decomposition.

We leave it to the reader to verify that pgee1(X1) + ptree2(X2) = Pmono1 (X1) + Pmono,3(X3)
because reading the explanation would not be any easier than working out the details by
oneself. To conclude, let v be the law of X3. Since pmono,1(X1) and pmono,3(X3) are monotone
independent by construction, we have py B puo = py > v. O]
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6.3 Reverse radius estimates

Now we use the results on analytic subordination from the previous section to get the reverse
radius bounds that we could not prove before. In the proposition below, we conjecture that
the constants 3 + 2v/2 and 2 can be replaced by 1, but we were not able to prove this in all
cases. However, the values of the constants do not make any qualitative difference in our
results, either here or in the rest of the paper.

Proposition 6.3.1. Let ind € {bool, free, mono, mono t}, and let p; and py be B-valued
laws. Then

rad(p) < (3 +2v2) (max(l (X)), 2(X) ) + 2 rad (s Bipa p2) ).

Proof. First, consider the boolean case. Let u = pu; W ps. Let (0,b), (01,b1), and (09, be)
correspond to p, i1, and ps as in Theorem [4.5.3l Then o = 01 + 02. Hence,

rad(oy) < rad(o) < rad(p)

and
ot (DY < o) < [|u(X?)]M? < rad(p).

Therefore,
rad () < [|ba]| + rad(o) + o (1|2 < [[ba]| + 2rad(p).

Of course, the analogous bound holds for py. This is already a better estimate than what
we asserted above.

Next, consider the (anti-)monotone case. Let y = pj > pus. Note that p = po Wv
where v is the law given by Proposition [6.2.1] Therefore, rad(u2) < ||bo + 2rad(u), where
by = p2(X). In order to get an estimate for rad(yu, ), observe that ém = é’# o @;21. As we
remarked in the proof of Lemma [4.5.9, it follows from the inverse function theorem that if
R < 1/rad(uz), then é’;l maps B(0, (3 — 2v/2)R) to B(0, (1 — 1/v/2)R). This implies that

G, is fully matricial and bounded on B(0, (3 — 2v/2)R) provided that

w1

1 1 1
R < , l—-—|R< ———.
[[b2]| + 2rad(u) ( V2 > rad(p)

The first condition is strictly stronger than the second. Therefore,

rad () < ﬁ (ba]] + 2 rad (1))

= (34 2v/2) (||ba]| + 2rad(n)) .

This finishes the (anti-)monotone case.

The free case follows because 1 B po = g > 9 = g > 14 for some laws vy, vy given by
Proposition [6.2.2] O
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CHAPTER 7

Results: Evolution equations for subordination families

7.1 Introduction

Our main goal in this chapter is to describe how the F-transforms Fl, evolve over time when
(Xt)teo,r) is a process with independent increments for each of the four types of independence
described in §5 The main result will be roughly speaking that if u; is the law of X;, then

F,,, satisfies the equation
—[b(t) + Go.0(2)], boolean case,
o F () — | ~PER I + G (B, free case -
e —DEM(2)b(t) + GE‘TZ_),t)(Z)], monotone case, '
—[b(t) + G((:E)t)(F,E?)(z))], anti-monotone case,

where G4 is the Cauchy-Stieltjes transform of a generalized law o(-,t) depending on t,
and where DF),,(2) = AF),,(z, 2).

The evolution of Fy, (or equivalently of Gx,) has been studied in many previous papers
in special cases. The first case to be worked out for each type of independence was when
(Xt)tepo,r) has independent and stationary increments (that is, X; — X, ~ X;_, in law), or
equivalently the laws (f1;)scpo,r) form a convolution semigroup. Prior work on the differential
equations associated to such semigroups is summarized in Table [7.I] See also the discussion
of the Lévy-Hinc¢in formula in and the subsequent discussion of semigroups in §9.1]

To address the differential equations for processes with non-stationary increments in the
operator-valued setting, we must deal with the technicalities of differentiation for Banach-
valued functions in order to even make sense of the equation. These difficulties do not
arise in the scalar-valued setting because scalar-valued absolutely continuous functions are

boolean free (anti-)monotone
scalar-valued [SWOT, Thm. 3.6]  [Voi86, Thm. 4.3]  [Has10a] [Has10b]
[Bia9s] [HS14] [AW14]
operator-valued / | [BNO§| [BPV12]  [Spe98| §4.5 - 4.7] [AW16]
multivariable [PV13] §2] [BPV12] [PV13] §3] [Jek20]

Table 7.1: References on non-commutative convolution semigroups.
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always differentiable almost everywhere. And in the operator-valued setting, if we have the
additional symmetry of stationary increments, the differentiability of F'x, in ¢ can be estab-
lished by direct arguments with inverse function theorems and/or iteration, as for instance
in [AW16, Proposition 3.3]. However, in the non-stationary operator-valued setting (even
with the assumption of bounded support), we inevitably run into the issue that not every
absolutely continuous function from [0, 7] into a Banach space can be differentiated almost
everywhere, even in the weak or weak-x-topology. But we will circumvent this problem by
instead treating the time-derivatives as operator-valued distributions on [0, 7).

The present author studied the monotone case of B-valued Lipschitz subordination fam-
ilies with bounded support in [Jek20] (the free and boolean cases being easier to understand
by previously existing techniques), and this chapter uses many of the same material as in
that paper. We first discuss some preliminary definitions and observations about processes
with independent increments. Then we describe the properties of the derivatives of Lips-
chitz functions from [0,7] into Banach spaces, and of Lipschitz families of fully matricial
functions. Finally, using these tools, we show that the transforms Fl, for a process X; with
independent increments (and some Lipschitz conditions in time) will satisfy the equation
above for some o.

7.1.1 Processes and subordination families

Definition 7.1.1. Let ind € {bool, free, mono,monot}. A process with B-valued ind-
independent increments on [0,T] is a collection of non-commutative self-adjoint operators
(Xt)tcpo,r) in B-valued probability space (A, E) such that for every 0 =ty < t; < --- <ty =
T, the operators X;,, X, — Xy, ..., Xty — Xty_, are ind-independent over B.

Another viewpoint on the same idea is to look at the non-commutative law p; of X,
rather than the operator itself. This leads to the following definition.

Definition 7.1.2. Let ind € {bool, free, mono,monot}. An ind-subordination family on
(0,77 is a collection of non-commutative laws (ju):co,m such that for each 0 < s <t < T,
there exists another non-commutative law p, such that p, = ps Bing fis-

We make the following observations:

o If (X)icpo,m is a process with independent increments, and if p, is the law of X;, then
(t4t)tcpo,r) is a subordination family because we can take p,, to be the law of X; — X;.

e Suppose that (u)cjo,r] is an ind-subordination family. Then there is only one possible
choice of ji, satisfying p1; = f1s Bina fts¢- This is because the analytic transforms of p
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must satisfy the equations

K,=K,, + K,,,, boolean case,

¢, =, +@,,,, free case,
F,, = F,, okF,, , monotone case,
F,, = F,,, oF,, anti-monotone case,
and s is uniquely determined by knowing K, ,, ®,,,, or F}, , in a neighborhood of

Q.

o Again, let (u:)icp,r) be a subordination family. Using associativity of convolution, we
have for s < ¢t < w that p, = s Bing (st Bina f1e0), and therefore it follows that
My = st Bing fe, Dy the previous claim about uniqueness of .

e A desirable property for a subordination chain would be that the rad () is uniformly
bounded for ¢ € [0,7]. However, this is automatic; it follows from Proposition [6.3.1]
that

sup rad(p) < (3 +2v2) (2 rad(pur) + sup Hut(X)H> :

te[0,T) t€[0,7]

Remark 7.1.3. It is not difficult to show that any subordination family arises from a process
with independent increments. Indeed, if we consider finitely many times 0 = tg < - -+ < ty,
then we can construct independent variables Yy, Y3 4, ..., Yiy_ ¢y and set Vi, = Vi, +
Yiotr + -+ Yiy 14y Then Yy, ..., Y, are a family of variables indexed by {to,...,tn}
with independent increments. We can do this for any finite family of times. It remains to
show that all the finite-time marginals can be realized simultaneously by the same process.
One can reduce this claim to the case where B is a von Neumann algebra. Then by using
compactness in the pointwise WOT of the space of laws of processes satisfying || X;|| < C,
one can conclude that there is a family (X¢);co77 that realizes each of these finite-time
marginals simultaneously. In the last argument, the only challenge is to get a uniform
bound on the operator norm Y; over all partitions {?g,...,tx} that contain ¢, in order to
obtain the existence of bounded operators (Xt)te[o,T]- This can be done by a careful use of
our operator-norm bounds Lemma [6.1.1] However, we will not carry out this argument in
detail because we will discuss a more enlightening systematic construction of processes with
independent increments in the next chapter, under some continuity assumptions.

7.1.2 Setup and conditions for differentiation

Consider a subordination family (,ut)te[gga]. Under what reasonably general conditions can
we expect to be able to differentiate F),, with respect to t? We know that sup, rad(y;) < +oo,
so it would be natural for ém to also be differentiable with respect to ¢ in a neighborhood
of zero, which implies that each of the moments of u; should be differentiable. Thus, we
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should at least guarantee that the mean p;(X) and the variance at 1 given by Var(u,)[1] =
wi((X — pe(X))?) are differentiable with respect to ¢, and in fact this will turn out to be
sufficient.

Next, under what conditions can we differentiate the maps t — p(X) and ¢ — p(X?)?
We should require that they are absolutely continuous as maps from [0, 7| into the Banach
space B. That is, for every ¢ > 0, there exists 6 > 0 such that if {[a;, b;)}Y, are disjoint
intervals in [0,7] with Y .(b; — a;) < 0, then > .||, (X) — pq,(X)|| < €, and the same for
(X — pe(X))?) rather than py(X). Now if we let ¢(¢) and (¢) be the total variation of
t — pe(X) and t > s ((X — ¢ (X))?) respectively, then we can reparametrize time using the
inverse function of f(t) = ¢(t) + 1 (t) +t. Letting vp-1¢), then we have [|14(X) — v4(X)| <
C|t — s| for some constant C, and the same is true for v,((X — v4(X))?).

Therefore, if we want to study subordination families where p;(X) and p;((X — (X))
are absolutely continuous, then without loss of generality, we can restrict our attention to the
case where they are Lipschitz in ¢t. Of course, for many concrete examples of subordination
families, the mean and variance might be of the form by + tb for some by, b € B, and the
Lipschitz assumption obviously holds in such cases. Thus, we make the following definition.

Definition 7.1.4. Let (j)ico,r] be a subordination family with respect to boolean, free,
monotone, or anti-monotone independence. We say that (u)cjo,r] is Lipschitz if t — p,(X)
and ¢ — py((X — pe(X))?) are Lipschitz on [0, T).

However, even in the Lipschitz case, we run into technical issues with differentiation. Our
solution will ultimately be to avoid pointwise differentiation altogether using a distributional
theory presented in the next section. As motivation, we will first explain why pointwise
differentiation is hopeless in the level of generality we are aiming for, where we do not
assume F),, is C'! in ¢ and where B is allowed to be a general C*-algebra.

A Lipschitz function from [0, 7| into a Banach space X may not be differentiable almost
everywhere with respect to the norm on X or even with respect to the weak topology, or
the weak-x topology if X happens to be a dual space. Known results about differentiating
Banach valued functions (see e.g. [Kom67, Appendix]) rely on either separability or reflex-
itvity of X', which is something we cannot assume in an operator algebras setting. Indeed,
infinite-dimensional C*-algebras are never reflexive, and furthermore, infinite-dimensional
von Neumann algebras are never separable in the norm topology.

Pointwise differentiation will certainly not be possible in the norm topology. If A is
a von Neumann algebra acting on a separable Hilbert space, then differentiation in the
strong operator topology (SOT) may be possible (thanks to the theory of differentiation of
Hilbert-valued functions). However, in order to use the chain rule and similar manipulations
for SOT differentiation (which we will have to do here since we must consider composition
of time-dependent functions), we would have to make the additional assumption that the
Fréchet derivatives of the maps we are composing are SOT-continuous, which means making
additional SOT continuity assumptions about the laws y; that are not automatic.
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Furthermore, suppose that we can for a fixed z, differentiate F'(z,t) almost everywhere
with respect to t; then it would still be problematic to carry out such differentiation with
the same exceptional null set of times for all values of 2z ranging over an open set in a
non-separable Banach space. One might try to solve this problem by assuming that A is
separable in SOT and that our analytic functions are continuous in SOT. However, even this
is not sufficient because we cannot enforce SOT equicontinuity of (F(z,t + 0) — F(z,t))/d
as 6 — 0.

Another possible idea would be to assume that A is tracial von Neumann algebra and
that for each function F'(z) = z — G,(z) that we are dealing with, the state 7 o o is tracial
on A(X). The problems with the SOT approach sketched above would be solved by using
explicit estimates in L? norm to guarantee SOT-equicontinuity of (F(z,t+6) — F(z,t))/d for
different values of 0, as well as SOT equicontinuity of a — DF;(z)[a] for different values of ¢.
However, traciality of o seems like an artificial and restrictive condition. If F,(2) = 2—G,(2),
it is unclear (at least to the author) whether traciality of o and traciality of u are related.

For free independence, we at least know that if ;4 and v can be realized by variables in a
tracial von Neumann algebra, then so can yHv. And perhaps tracial von Neumann algebras
are a good place to start developing the theory of non-commutative laws for unbounded
operator-valued random variables. However, that is not the goal of the present work.

7.2 Distributional derivatives

Since differentiation of F),, in a pointwise sense is not feasible, we will consider the time-
derivative in a distributional sense. Thus, this section examines distributional derivatives of
Lipschitz functions « : [0,T] — X, where X is some Banach space. The good news is that
this distributional derivative is not too badly behaved. It makes sense to pair with functions
in L'[0,7T], and it “almost as good as an L™ function” in that we can still in many ways
manipulate it as if it were a pointwise defined function. More precisely, we will describe
how to perform various “pointwise” operations with elements of £(L'[0,T],X), including
nonlinear operations involving composition.

As motivation, recall that if v : [0, 7] — C is Lipschitz, then the distributional derivative
3+ C(0,T) — C is represented by a function in L*(0,7) = L'(0,T)*. For functions
into a Banach space, there are several analogues of L*> functions, including the Bochner
L> space L ., (10,T],X), defined as follows: Consider countably-valued simple functions
o(t) = 372, X, (t), where (Ej)jen are disjoint measurable subsets of [0, 7] with positive
measure and @z o1 = sup,||z;|| is finite; then LF 4[0,7] is the completion of this

. Boch
space with respect to ||-|| L [0.7]-

If v:[0,7] — X is Lipschitz, then the distributional derivative 4 : C(0,7) — X is
not necessarily represented by a function in L , ([0, 7], X'). However, we claim that 4 does
extend to a bounded map L'[0,7] — X. In the following, we denote by L£(L'[0,T], X) the
space of bounded linear maps L'[0, 7] — X.
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Observation 7.2.1. If~y : [0,T| — X is Lipschitz, then there exists a unique ¥ € L(L'[0,T], X)
satisfying

YXtan)] = 7(b) = ~(a). (7.2)
Conversely, if p € L(L'[0,T],X), then the function
7(t) = plxjo.] (7.3)

is Lipschitz and satisfies ¥ = p. Also, ||||z1,x) equals the Lipschitz seminorm, of ~.

Proof. Suppose 7 : [0,T] — X is C-Lipschitz. The action of 4 on step functions is defined
by ¥X{ap] = 7(b) —(a). For any step function ¢, we have ||¥[¢]|| < C||¢||110,7], hence the
4 extends to bounded linear map L'[0, 7] — X. The other claims are left as exercises. [J

The following fact will be handy for proving identities and estimates involving distribu-
tional derivatives.

Lemma 7.2.2. If p € L(L'[0,T],X), then

pDxanlll _ ;. [ Dxas]l
= sup ———— =lim sup ———F—. 7.4
Pz 0§a<E§T b—a e—0 0<b_£)§6 b—a (7.4)
As a consequence, if p and p are bounded maps L'[0,T| — X and p[x(ap)] = plX[an]+0(|b—al),
then p = p.

Proof. The nontrivial part of the proof is to show that

- [reeml|
<liminf sup ————. 7.5
lolleqn o < limint sup 16Xet (7.5
If C is the right hand side, then it is sufficient to show that ||p[¢]|| < C|(¢| 110, When
¢ is continuous. This can be proved by approximating ¢ uniformly by a sequence of step
functions, such that mesh size of the partition also approaches zero. O

Remark 7.2.3. Note that by the previous lemma and some basic results on Ly, ;, there is
an isometric inclusion ¢ : LE 4 ([0, T], X) — L(L'[0,T], X) given by

o) s b / p()6(1) dt,

for p € L 4, ([0,T],X), so in the sequel we will regard L ([0, 7], X) as a subspace of
L(L'0, T, X).

If we had a bounded function R : [0,7] x [0,7] — X denoted R(s,t), then of course we
could define the diagonal restriction R(¢,t). We claim that under appropriate hypotheses,
this operation still makes sense when R(s,-) is an element of £(L'[0,T], X) rather than a

bounded function [0,7] — X. For this to be rigorous, we must view R as a map [0,7] —
L(L0,T], X).
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Lemma 7.2.4 (Diagonal restriction). There exists a unique linear map
diag : LY 4, ([0, T), L(L'[0,T], X)) — L(L'0,T], X)
such that
(1) If R(s) = 3>_72, X&;(s) - pj where the sets E; are disjoint measurable sets and

supl|p; |l czrpor1,2) < 00,
J

and if ¢ € L'[0,T], we have

(diag R)[¢] = > _ pjlx; - (7.6)
j=1
(2) We have
[diag Rl|z(rrpory,x) < 1Rl g, 0.1,2000 0,71,7))- (7.7)

Furthermore, this map diag satisfies the estimate

[(diag R)[¢]] S/O [ IR, )l ez o.11,2) di- (7.8)

Proof. For a simple function R, we can define diag R unambiguously by (|7.6)), that is, it is
independent of the decomposition of the simple function. We check that and hence
hold for simple functions. Then implies that diag R has a unique extension
to L, ([0, T], L(L*[0,T], X)). The inequality extends to L 4. ([0,T], L(L'0,T], X))
because both sides are continuous in the Bochner L* norm. O]

In the rest of the paper, we will often use more suggestive notation which treats the
elements of L(L'[0,T], X) like pointwise defined functions. Although using function notation
for distributions has some drawbacks, the ultimate benefit will be a more intuitive statement
of identities such Lemmal7.3.4|below, and more generally a compact notation for constructing
and transforming such distributions.

Notation 7.2.5. For a function p € L(L'[0,T],X), we will use the notation p(t) where ¢ is
formal or “dummy” variable. For ¢ € L*[0,T], we define

/0 o(t)p(t) dt = plo] (7.9)

as well as

| ooyt i= plxian) (7.10)
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To obviate potential confusion, when we apply p as a linear map to a function ¢ in
L0, T], we will use square brackets and not write the dummy variable ¢. For instance the

application of p to the identity function ¢ on [0, T'] would be denoted by p[idj 7] or fo t)tdt
and not by p(t) or p[t]. Similarly, p(2t) would denote the element of £(L'[0,T/2], X) deﬁned
by
T/2 A
| eenswar= 5 [ ot a

but on the other hand [ p(t) - 2t dt would denote the application of p as a linear map to the
function 2¢ on [0, 7).

Notation 7.2.6. If R is in LY 4 ([0,T], L(L'[0,T], X)), then we will write R formally as
a function of two variables (s,t), where the s corresponds to the first “[0,7]” and the ¢
corresponds to the second “[0,T]” in “Lg , ([0,T], L(LY0,T],X))”; in other words, the
distributional dependence occurs in the second variable t. We will denote (diag R)(t) by
R(t,t).

Thus, for example, if R(s,t) = > xg,(s)p;(t), then (7.6) becomes

| owrena =3 [ oo (7.11)

and hence in a formal sense -
D= xu, B (). (7.12)
j=1

Also, (7.8) becomes

T
Rttt < [ 6RC ewroa . (7.13)
0

We will mainly use two special cases of the diagonal restriction.

Definition 7.2.7. Suppose that p € L(L'[0,T],X) and A € Lg , ([0, 7], L(X,Y)). Then we
define (Ap)(t) = A(t)p(t) in L(L'[0,T],Y) as the diagonal restriction R(t,t) of the function
R(s,t) = A(s)p(t), which is in L., ([0, T], L(L'[0,T],)).

Observation 7.2.8.

(1) The product A - p defined above is bilinear in A and p.
(2) If I is a subinterval of [0,T], then we have Alr - p|lr = (Ap)|s.

(3) 1A plleronyy < Al qomcxpllellewion. -
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Definition 7.2.9. Suppose that W is a metric space, F(w,t) is a continuous map W —
L(L'0,T],X), and w : [0,T] — W is continuous. Then R(s,t) = F(w(s),t) is a continuous
map [0, 7] — L(L'[0,T], X). We define F(w(t),t) to be the diagonal restriction of R.

Observation 7.2.10. Suppose that F' is uniformly continuous as a map W — L(L'[0,T], X)
with modulus of continuity wr, and let dw, be the supremum metric on C([0,T],W). Then
for w,w € C([0,T],W), we have

[F(w(t),t) = F(w(t), D) ccror,ag < [Fow—Fowlpe

& n([0,T],L(L[0,T],X))
S WF(doo(wv w))

7.3 Locally Lipschitz families of fully matricial Functions

7.3.1 Definition and properties

Next, we consider functions F'(z,t) that are fully matricial in z and locally Lipschitz in ¢,
which of course includes the families of F-transforms in the main theorem for the chapter.

Definition 7.3.1 (Locally Lipschitz Family). Let €; and €2 be fully matricial domains over
C*-algebras B; and Bs respectively and let T > 0. A collection of functions (F™),cy where
F® . Qg") x [0,T] — Qé") is called a locally Lipschitz family of fully matricial functions if
F(,t) := (F™(-,t))pey is fully matricial for each ¢, and for each z, € Q; there exist r > 0
and C > 0 such that B(z,7) C Oy and

|F(z,s) — F(z,t)|| < C|s—t| for all s,t € [0,T] for all z € B(z,r). (7.14)

Here the word “locally” refers to the variable z but “Lipschitz” refers to the variable ¢,
fully matricial functions being automatically locally Lipschitz in the space variable by Corol-
lary [3.5.9f Moreover, if the codomain €5 is not specified, we assume that it is M,(B;). For

each z € Q" the function F™(z,-) is Lipschitz, and so &,F™(z,-) € L(L'[0,T], M,(B)).
This time derivative is the following type of object.

Definition 7.3.2 (Distributional family). Let ; be a fully matricial domain over By, let
By be a C*-algebra, and let T" > 0. A distributional family of{f ully matricial functions
O — M,(B,) is a collection of maps f = (f™),en where £ : Q™ x L0, T] — M, (Bs),
such that

(1) For each z € O™, the map f™(z,) is in L(L'[0,T], M, (Bs)).
(2) For each z, € an), there exist 7 > 0 and C' > 0 such that

1f (2, ) 2zt om Mo Bs)) < C for all z € B (%) 1) for all k € N.
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(3) For each ¢ € Ll[O T] the collection of functions H(z) = fOT f(,)é(t) dt given by
HM( fo ¢(t) dt is fully matricial.

Lemma 7.3.3 (leferentlatlon and Integration).
(1) If F' is a locally Lipschitz family of fully matricial functions Q1 — Me(Bs), then O.F is
a distributional family of fully matricial functions 1 — Me(Bs).

(2) Conversely, if f is a distributional family of fully matricial functions, then we can define
a locally Lipschitz family of fully matricial functions by

F™(2,t) = /t f™(z,s)ds
0

Proof. (1) For each z € an), since F(™(z,t) is Lipschitz, we have f(™(z,.) := 9,F"™(z,-) €
L(LY0,T], M,(B)). Now pick 2y € Qg”), and let C' and r be as in ([7.14]), then we have for
0<s<t<TandzE€ B("k)(zék),r) that

t
FU (2, u) dul| < Cls —t],

and by Lemma [7.2.2) we get that ||f™® (2, )| zz1j07,m nk(B2)) < C Next we must show

that for each ¢ € L'[0,T], the collection of functions H fo t)dt is fully ma-
tricial. Clearly this is true when ¢ = x(s,, hence it holds when gb is a step function, and
then it holds for all ¢ € L'[0,T] by approximation (given our uniform a priori bounds on
17 (20 )L eeaio ) anasa)-

The verification of (2) is similarly straightforward and is left to the reader (see Observa-

tion [7.2.1)). 0

If F:Q x[0,T] — My(Bs) is a locally Lipschitz family, then A*F also satisfies a local
Lipschitz condition. Given zy € M,,(B1), ..., zx € M,, (B1), we set Z = (2,...,2) and
choose a C and r as in (7.14) for this Z. Then by Lemma [3.4.2]

Cls—t
AR F (20, ..., 21,8) — AFF (20, .. 2, t) || 4 < | s I
Therefore, ,AFF (2, ..., 2, ) is well-defined as a bounded linear map from L![0, T] to com-
pletely bounded multilinear maps My, (B1) X -+ X My, | 0. (B1) = My, (Bz), with its

norm bounded by Cls — t|/r*. We also have that for ¢ € L'[0,T]

T
AF (/ O F (-, t)o(t) dt) 20, .., 2 / 0N F (2, ..., 2, t)0(t) dt,
0
which is proved by checking it for ¢ = X[, and then approximating an arbitrary ¢ in
L'[0,T] by step functions. This is the correct interpretation in our context of equality of

mixed partials “O,A*F = AFO,F.”
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7.3.2 Chain rule

Furthermore, we have the following version of the chain rule for computing 0;[F(G(z,t),t)].
Although we do not directly cite the chain rule in proving our main theorem, the proof of the
chain rule is a prototype for several of our arguments. The fact that the chain rule holds also
validates our approach of using distributional differentiation for locally Lipschitz families.
In the statement below, we use the notation DF(z) := AF(z,z) when F is a fully matricial
function.

Lemma 7.3.4 (Chain Rule). Let Q, Qo, and Q3 be fully matricial domains over C*-algebras
By, By, and Bs respectively. Let F' : Qy x [0,T] — Qo and G : Qy x [0,T] — Qg3 be locally
Lipschitz families of fully matricial functions. Then F(G(z,t),t) is also a locally Lipschitz
family of fully matricial functions. Moreover,

OF™ (G (2,1),1))] = DF™(G™(2,1),1)[0,G™ (2,1)] + O, F™ (G (2,1),t).  (7.15)

Here DF™(G™(z,t),1)[0,G™(z,1)] is given by Deﬁm’tion with p(t) = 0,F™(z,t) and
A(t) = DF™(G™(z,t),t). The other term O, F™(G™ (z,t),t) is given by Deﬁmtion
by taking W to be an appropriate open subset of Qé”) and setting w(t) = G(z,t).

Proof. Because a fully matricial function is assumed to be locally bounded and because of
the local Lipschitz estimate (7.14]), we see that for each wy € an), there exists r > 0 and
M > 0 such that

| F(w,t)|| < M for all t € [0,7T] and w € B(wy, ).

Then because of Corollary we have
(nk) (nk) (. 1 2M , ' k), (k)
| F7" ) (w, t) — FU (W', t)|| < —||lw — w'|| for all z,2" € B (wy,r/2) and t € [0, T].
r

Together with the local Lipschitz estimate ((7.14)), this implies that for each wg € an), there
exists some r(wp) > 0, M(wy) > 0, and C(wp) > 0 such that

1 (w, ) = FU (' ¢ < M (wo)|[w — w'| + C(uwo)[t — |

for all w,w’ € B™ (w{® r(wy)) and t € [0, T], for all k € N.
Now fix zy € Qg"). Since G is locally Lipschitz, pick § > 0 and v > 0 such that

|G(z,t) — G(z, )] < 7|t — | for z € B(z0,9).

Again using that G is fully matricial in z and locally Lipschitz in ¢, we conclude that for
each ty € [0, T, there exists €(ty) > 0 and d(ty) € (0,0) such that if [t — to] < €(to) and z €

108



B(Z(], 6<t0)), then G(Z, t) c B(G(Zo, to), T’(G(Zo, to))) Hence for all t, t/ c (tO—E(to), t0+€(t0))
and z € B(zp,d(ty)), we have G(z,t), G(z,t') € B(G(2o,10),7(G(20,1))), which implies that

HF(G(th)?t) - F(G<Z7t,)7t)|| < M<G(207t0))”G(27t) - G(’Z?t,)H + C(G(207t0))|t - t,|
< M(G(z0, t0))v[t = ¥'[ + C(G (20, to)) [t — ']

Because [0, 7] is compact, it can be covered by finitely many of the intervals (g — €(to), to +
€(to)), say those indexed by ty in a finite set S. Let

T et

C*" = max (M (G(z0,t0))y + C(G(z0,t0))) -

to€eS

By the Lebesgue number lemma, choose €* > 0 such that every interval of length €* is
contained in one of the intervals (to — €(to), to + €(to)) for to € S. Then if ¢, ' € [0,T] with
|t — t'| < €*, then they are both contained in one interval (¢, — €(to), %o + €(to)), and hence
for all z € B(z, "),

1F(G(z,1)) = F(G(z, 1) < C*[t = ']
Since this holds for |t—#'| sufficiently small, it holds for all ¢, ' € [0, T], and hence F(G(z,t),t)
is a locally Lipschitz family.

Now let us prove the chain rule identity . As mentioned in the statement of the
lemma, DE™ (G (z,1),t)[0,G™(2,t)] is given by definition ; here we use the fact
that DF™(G™(z,t),t) is locally Lipschitz in ¢ which follows by a straighforward argu-
ment, and hence that DF™ (G™(z,t),t) is a Bochner L™ function from [0, 7] to completely
bounded linear transformations M, (Bs) — M, (Bs). The other term 0,F™(G™(z,t),t)
is given by definition . Once we know that both sides of are well-defined in
L(L'0,T], M,(Bs3)), we can show that they are equal by proving that if we integrate both
sides on a small interval [s,t], then they agree up to a higher order error (Lemma .

So consider an interval [s,¢] € [0,7] and z € Q. Unsurprisingly, the first step is to
write that

F(G(20,1),1) — F(G(z0, 5), 5)
= [F(G(20,1),t) — F(G(20,5), )] + [F(G(20,5),t) — F(G(20,5),5)]. (7.16)

The first term on the right-hand side can be rewritten as
t
AF(G(20,t),G(z0,9))[G(20,t) — G(20,8)] = AF(G(20,1),G(20, 8)) {/ 0uG (20, u) du}

:/ AF(G(20,t),G(z0, 5))[0.G (20, u)] du.
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Using the local Lipschitz estimates for F' and G in both z and ¢, we know that for u € [s, ],
AF(G(z,t),G(z0,5))
= AF(G(20,u), G(20,u)) + O([|G(20, 1) — G20, uw)l]) + O([|G(20, 8) = G (20, u)])
= DF(G(zp,u)) + O(|s — t]),
where the estimate works uniformly for s,¢ € [0,7] and the error is measured in ||-||x. Then

applying Observation we get

/ AF(G(20.1), G20, 5))[0uC (20, 1)] dut = / DE(G (20, u))[0uG (20, u)] du + O(|s — 1]?2).

Therefore,
t
F(G(20,8),8) — F(G(20,5), 1) = / DF(G(20,1))[0uC 20, w)] du+ O(|s —t2).  (7.17)
Now we turn our attention to the second term on the right hand side of ([7.16|). Clearly,

F(G(zp,s),t) — F(G(20,5), s /8F (20, 5),u) du.

For u € [s,t], we have G(z0, s) = G(zp,u) + O(|s — t|) using the local Lipschitz properties of
G. So then using Observation [7.2.10| on the interval [s, ], we get that

F(G(20,5), ) — F(G(20,5), /aF (20, 1), u) du + O(|s — 1), (7.18)

Overall, by substituting (7.17) and (| into - we have

/ Ou[F )] du = / DF(G(20, 1)) [uC (20, 1) du+/ B F (G20, 1), 1) dus-O(|s—t]?).
By Lemma [7.2.2) _, the chain rule identity holds. O

Remark 7.3.5. One can show that the two terms on the right-hand side of the chain rule,
namely DF™(G(z,t),t)[0,G(z,t)] and 0,F(G(z,1),t) are distributional families of fully ma-
tricial functions. The proof uses the same simple-minded techniques we have used so far in
this section. To show that the integral against a function ¢ in L'[0, 7] is fully matricial, one
uses step function approximations the same as in the definitions of these two terms (Defini-
tions [7.2.7] and [7.2.9)). And to obtain bounds on the norm in £(L[0,T], M, (B)) uniformly
for z in a neighborhood of zy, one uses the local Lipschitz estimates and the compactness
argument in the proof of Lemma [7.3.4] where necessary.

Remark 7.3.6. More generally, suppose that f(z,t¢) is a distributional family of fully ma-
tricial functions and F'(z,t) is a locally Lipschitz family such that the image of F' is con-
tained in the space-domain of f. Then g(z,t) := f(F(z,t),t) is a distributional family
of fully matricial functions. Also, given another locally Lipschitz family G(z,t), we have
9(G(z,t),t) = f(H(z,t),t) where H(z,t) = F(G(z,t),t). In other words, the composition
f(F(G(z,1),t),t) is well-defined regardless of the order in which we perform the composition
operations. The proof is a routine usage of step-function approximation techniques.
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7.3.3 Distributional families of generalized laws

In (7.1), the left-hand side 8;F(z,t) will be a distributional family of fully matricial func-
tions. On the right-hand side, the term G, will also be a distributional family of fully
matricial functions. So o(-,t) needs to be a family of generalized laws that depends on ¢ in
a distributional sense. Let us now explain the precise definitions and properties of such a o.

Definition 7.3.7. A distributional family of generalized laws on [0,T] is a map o

BI) < 10T 2B, 6000 [ o) Dot
with the following properties:
(1) For each p(Y) € B(Y'), the map o(p(Y),) is in L(L[0,T], B).
(2) For each ¢ > 0, the map fOT o(-,t)p(t) dt is a generalized law.

Lemma 7.3.8. Let o be a distributional family of generalized laws on [0,T). Then we have
for p(Y) € B{Y) and ¢ € L0, T] that

In particular, for ¢ > 0, we have

md(ATdyﬂMﬂdojgmd(ATo@ﬂdﬁ, (7.20)

T k
o (boY by ... Yby, ')Hc(Ll[o,T],B) < llo(L, )l zzrom,5 rad </o o(- 1) dt) [boll - - - {[bx]]-
(7.21)

T
/ d%Yh“J%mﬂMﬂﬁH
0
k

T
< lo (L, )l ewror.z rad (/0 U(wt)dt) 1Boll - Wbkl @]l 1oy (719)

and we also have

Proof. First, consider an interval [s,t] C [0,7]. Note that

/OTU(',u)du:/OSU(-,u)du+/:a(.7u)du+/tTg(.7u)du’

and therefore by Lemma [2.6.8]

rad (/:g<.,u> i) < rad (/OTJ<.,u> ).
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k

Therefore, by (2.1]), we have
t t
/ o(1,u) du|| rad (/ o(-,u) du) 16o]| - - - ||bx]|

T k
< lo(, )l g1 0.11,8 rad </0 o(-t) dt) [1bol[ - - - 11w (s, | 22

If we consider a step function ¢, that is, a linear combination of indicator functions of disjoint
intervals, then (7.19)) holds by the previous estimate and the triangle inequality. Since step
functions are dense in L'[0, T, the relation ((7.19)) extends to all ¢ € L'[0,T]. Finally, (7.19)

easily implies ([7.20]) and (7.21)). O

Next, given a distributional family of generalized laws o, we will define the Cauchy-
Stieltjes transform (G, which will be a distributional family of fully matricial functions.
Given ¢ € L'[0,T], let us write ¢ = ¢; — @2, where ¢; and ¢, are nonnegative L' functions.
Then we set

t
/ o(bpYby...Yby,u)du|| <

T
(n) () ()
/0 Co(y(2)OWO) At =Crr s 0a®) = C 7 o onnal?)

The right-hand side makes sense because fOT o(-,t)¢;(t) dt is a generalized law; moreover, the
right-hand side is independent of the choice of decomposition of ¢ into ¢; and ¢, because of
the fact that G, .., = G, + G, for generalized laws 7, and 75.

Moreover, if ¢ = ¢; — ¢5, we have the estimate that for Im z > ¢,

T
. 1

/0 G((,(.),t)(z)%(t) dtH < EHU(L Mewror s léill o,
which follows from Lemma[£.2.7. So if we take ¢; and ¢, to be respectively the positive and
negative parts of ¢ and use the triangle inequality, we get the estimate

e 1
|| 6ot < ot lewnma ol
This means that G5”(z) is an element of £(L'[0,T], M,,(B)) and

n 1
HGEr )(Z)HE(Ll[O,T],Mn(B)) = EHU(L ')Hﬁ(Ll[OaTLB)' (7.22)

7.4 Differential equations associated to processes with indepen-
dent increments

Theorem 7.4.1. Let ind € {bool, free, mono, mono t}. Let (u)ecpo,r) be a Lipschitz ind-
subordination family. Then (F), )i 5 a locally Lipschitz family of fully matricial func-
tions, and there exists a unique b € L(L'0,T],B) and a unique distributional family of
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generalized laws o(+,t) such that

—[b(t) + Go.1y(2)], boolean case,
B F () = | ~DE @Ib() + Coly (P ()], free case, .23
e —DF™(2)[b(t) + G(?Vt)(z)], monotone case,
—[b(t) + G(n) (£ F(2))], anti-monotone case,

7.4.1 Construction of o

First, let b € L(L'[0,T1], B) be the distributional time-derivative of ¢ — (X ), which makes
sense because (X)) is Lipschitz. The distributional law o will be defined by a limiting
procedure using approximations by step functions associated to partitions, very much in the
spirit of Riemann integration.

Let P = {to,...,ty} be a partition of [0,7] (where we use the word “partition” in the
sense of Riemann integration and follow the convention that 0 =t; < t; < --- <ty =T).
We denote mesh(P) = max;(t; —t;_1). For 0 < s <t < T, let us; be the unique law such
that yi; = fts Bina s Let 7,4 be given by Theorem [4.5.3) by the relation

Fi" (2) = 2 = poa(X)™ — G (2).

Then define op : B(Y) x [0,7] — B by
Yoo
O'p(p(Y),t) = Z Lot thjfl,tj (p(Y))X[tj—latj)(t)'
j=1 J J—

Of course, op defines a map B(Y) x L'[0,T] — B by

N

1
.—>/ op(p(Y),t)dt = Zt_tjl'rtjlt / (1)

]

It is clear that if ¢ > 0, then fOT op(-,t)p(t) dt is a positive linear combination of generalized
laws, and hence is a generalized law. Thus, op may be viewed as a distributional family of
generalized laws. We claim that op converges as mesh(P) — 0 to a distributional family of
generalized laws o in the sense that

T

lim W@WMM@ﬁIKU@WMM@ﬁ (7.24)

mesh(P)—0 /q

for all p € B(Y) and ¢ € L'[0,T]. As a first step, we observe the following a priori bounds
for op.

Lemma 7.4.2. Let R = sup,,rad(us;), and let C' be the Lipschitz norm of t — p,((X —
w(X))?). Then rad(op) < R and ||op(1,-)|zipms < C. Moreover, for a monomial
p(Y) =boYby ... Yby, we have |lop(p(Y), )l crrorz) < R¥|boll - .. [|bk]|C.
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Proof. By Theorem {.5.3}, specifically (4.3)), we have rad(7,_, ;) < rad(u,_,+,) < R, and it
is easy to see that rad(op) = max;rad(r,_ ). For the second bound, note by the same
theorem and by our assumption that the subodination family is Lipschitz,

172, 21 (DI = I Var (e, o) )= ([ Var (e, ) [1] = Var(ue_ )[]]F < Cltj — 4.

Hence,

To prove the third estimate, it suffices by Lemma to show that Hfst op(p(Y),t)dt]| <
R¥||bo]| - .. [|bx||C|t — s| when [s,t] C [0,T]. But this follows from the estimate (2.1)) applied
to the generalized law fst op(-,t)dt. O

T N 1 t]'
/0 on(1,1)6(1) dtH <>ty —t) [ lotoldt = Cloloso
j=1

tj —tj1 tj—1

In order to establish the existence of o satisfying (7.24)), it is sufficient to show the
existence of the limit limyesn(p)—0 fOT op(p(Y),t)o(t) dt for every p(Y) € B(Y) and ¢ €
LY[0,T]. The fact that the limiting object o is a distributional family of generalized laws

will then follow automatically. Indeed, using our a priori bounds, we would have that
fOT a(p(Y),t)o(t)dt < R¥||bo]| ... ||bx]|L when p(Y) = byYby ... Yby. Also, for ¢ > 0, the ob-

ject fOT o(+,t)p(t) dt would be completely positive since op is completely positive. So o would
be a distributional family of generalized laws with rad(c) < R and ||o(1, )| z10,11,8) < L.

Moreover, to show that the limit limuesnp)—o fOT op(p(Y),t)o(t) dt exists, it suffices to
check this for a family of functions ¢ whose span is dense in L'[0,7] because of our a
priori bounds. Thus, we may restrict our attention to nonnegative continuous ¢. Now
fOT op(-,t)¢(t) dt is a generalized law with radius bounded by R and || [ o(1,¢)¢(t) dt|] <
L||¢|| 1[0, The convergence of this family of laws as mesh(P) — 0 is equivalent to conver-
gence of the Cauchy-Stieltjes transforms

T
(n) B (n)
GfOT o (00 27 = /0 Gonp(2)0(t) dt.

So it suffices to show that for z in the upper half-plane and ¢ > 0 continuous,

lim G(n)(. 9
mesh(P)—0 Jq TP

(z)o(t) dt exists in B.

To estimate the error when we pass from one partition to another partition which refines
the first, we will use the following lemma.

Lemma 7.4.3. Let [s,t] C [0,T], and let Q = {to,...,tn} be a partition of [s,t]. Then for
each z € H@(B), we have

G (2) =) _GW  (2)+0O(t - s,

-1t
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where the error estimate depends on z but holds uniformly for all (s,t) with |s — t| suffi-
ciently small and is independent of the partition P. The precise estimates for each type of

independence are written below in (7.25)), (7.27)), and (7.28)).

Proof. Clearly, it is necessary to split the proof into cases for each type of independence. In
the boolean case, p,; is the boolean convolution of pu, 4, ..., fiy_,.tx and hence

Mst :: ]lt

where
K (2) = 2= F{ () = sy (X)) + G (2).

We also have ps(X) = Zivzl fe;_1.1;(X), and hence

N

GM(z)=>_GW | (2). (7.25)

j=1

Next, consider the free case. By free convolution, we have

Nst : :

where

() = (B () - =
which is defined whenever Imz > 26 and § > ||7,+(1)||*/2. Now we claim that for such z,
we acutally have @us)t( ) = s (X)) + G(Tz)t(z) + O(]s — t|*) (and of course the same holds
with (s,t) replaced by (t;_1,t;)). Indeed, by and our assumption that (i) is a
Lipschitz subordination family, we get

s 7,
J#60,) — a0 — 6| < LD (4 LV
520
C
< 2_52(||b||L(L1[0,T],B) +C/8)(t — s)2. (7.26)
Therefore,

G (2 Z ® )

Since of course Z;V:l(tj —t;1)* < (t — 5)%, we get

N
C
< 252 s U0l 2o, + C/0) <(t—8 2+ g (t; —tj-1) >
Jj=1

N
- Z G‘(r?j)flatj (Z)
j=1

C
< Sbllewpme +C/O)(E = s5)* (7.27)
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whenever Im z > 20 > 2C"2(t — s)1/2.

Finally, consider the monotone case. Note that

N
c=FUG:) = (B0, ()= 2 (=)
j=1
N
=S (B, (- ES o FE(2)
j=1
N
= (id ~F. ) o F")_ (2)
j=1
N
=3 (1 00+ 68, 0 FELL))
j=1
so that
N
(n) _ (n) (n)
GTS t(Z) - Z GTt],l,tJ © Hs,t;_q (Z)
j=1

But recall that for Imz > § > 0, we have

and hence because Im F,Sn)t(z) > ¢ also, we have

F () = 2| S gy o (0] + 25552

. . I, (D 7oty 1 (D)
|6 o (=69 ()] £ TR (e (X)) + 555

C C
<5 (HbHc(LI[O,T],m + g) (tj —tj—1)(tj1 — ).

Therefore,

oY
<||b||5 Lo,1),8) T (5) Z(t]’ —ti_1)(tj—1 — ).

j=1

The summation on the right hand side is a lower Riemann sum for the function z — (z — s)
on [s,t], which integrates to (t — s)?/2. Therefore,

G (2) ZGJM 2)

C C
< 557 <||bHL(L1[0,T},B) + 3) (t —s5)2. (7.28)
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The identical estimate holds in the anti-monotone case, and the proof is the same except
that the order of the time indices is reversed. O]

Lemma 7.4.4. If ¢ : [0,T] — [0,00) is continuous and z € HS:L)(B), then

T
lim Gf:j(.’t) (2)o(t) dt exists.

mesh(P)—0 /q

Hence, there exists a distributional family of generalized laws o with

T

lim op(p(Y),t)o(t) dt = /0 a(p(Y),t)o(t)dt for ¢ € L0, T] and p € B(Y).

mesh(P)—0 /q

Moreover, o is the unique distributional family of generalized laws such that for each z €

HT)(B), we have
1 t
lim G (2) — o = 0.
st} 50 s — ¢ < 7oa(2) /5 Cot(2)du | =0

Proof. Fix ¢ : [0,T] — C continuous. Let P = {t1,...,tx} be a partition of [0, 7], and let
Q be a refinement of P. Let ¢p be the step function

¢P—2thltjt_tjl/ .

Let Q; = QN |[t;_1,t;]. Since ¢ is constant on [t;_1,t;), we can apply the previous lemma to
Q, to conclude that

tj t;
|t @ena—c @) [ ont)d = Oolmanlt; — )
tj—1 ti—1
= O([|¢l oo,y (t5 — tj—1) mesh(P)).

Summing over j leads to

| 6p@envrat = [ 60 (:10n(e) it = O] 1mu T mesh(P).

Moreover, from the definition of op, it is immediate that

/OG(") o (2)6p(t) dt = /G o(t) dt

Finally, since |[¢p — ¢|| 110, < Twg(mesh(P)), we have

| Go@onyai= [ 6L (o0 dt = OTus(mesh(P)).
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Thus, overall

| en@o = [ G ()60 dt = OTollmp mesh(P) +O(Ty mesh(P)))

This shows that the sequence of integrals is Cauchy as mesh(P) — 0, and therefore, the
limit exists.

From the discussion above Lemma [7.4.3] this implies the existence of a distributional
family of generalized laws o such that [ op(p(Y),t)d(t) dt — fOTU(p(Y),t)gb(t) dt for ¢ €
LY[0,T].

Now we prove the final claim of the lemma. From the preceding lemma, for every partition
Q of [s,t], we have

t
G~ [ 6y (2du=O(s — 1),
In particular, for every partition P of [0,T], if we let P’ = P U {s,t}, then we have

G (2) /G%, (2)du=0(]s — ).

Now as mesh(P) — 0, we also have mesh(P’) — 0, and hence op/ converges to o. So

t
GI(e) ~ [ 60,2 du=O(1s —P)

which is o(|s — t|). Conversely, if @ is another law satisfying

t
G (2) - / G (=) du = of]s — t)),

then we have . .
| 6= [ 65 du=ofls 1.

But by Lemma [7.2.2] this implies that GE:Z)) = G5(+,+) in L(L0,T],B) for each z. Hence,
o=0. [

7.4.2 Differential equations and estimates

The remainder of the proof of Theorem is to check that F),, and G, satisfy the
asserted differential equations. This will be done for each type of independence separately,
and we will also state precise estimates for the convergence of op to o as mesh(P) — 0.

Proposition 7.4.5. Let (fit)co,r) be a Lipschitz boolean subordination family, and continue
all the notation from above.
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(1) For0 <s<t<T,
t t
K (2) = / b(u)™ du + / G ) (2) du.
(2) (Fu,)icpom s a locally Lipschitz family of fully matricial functions and
OF(2) = =[bt)™ + G, (2)]

(3) b and o are uniquely determined by this differential equation.

(4) If ¢ : [0, T] — C is continuous with modulus of continuity wg, then

! g CT
/O G o (2)e(t)dt — /0 G (2)6(1) dt” < —wy(mesh(P)),

whenever Im z > 9.

Proof. (1) Fix s <t in [0,7]. Let P be a partition of [0,7] and let P" = P U {s,t}. By
applying (7.25) to Q := P' N [s, ], we obtain

t
G(T’j)t(z):/ G((:Q,(.’u)(z) du.

As mesh(P) — 0, we have mesh(P’) — 0 and hence
e
ng)t(z) —/8 Gyl (2) du.

Also have Kﬁ(fj)t(z) = ps+(X)™ + G(Tz)t(z) and pus.(X) = fstb(u) du, which completes the
proof of (1).

(2) It follows from (1) that

t t
FlE")t(z) =2z— /S b(u)™ du — /S Ggr(biu)(z) du

and hence

et Ho

t
FM(2)=2—-KM(z) - / [b(u)™ + Ggré)u)(z) du.
0

But since ¢ is a distributional family of generalized laws, the integral of b(u)®) + G((;z) u 18

a locally Lipschitz family of fully matricial functions. We obtain Fﬁ?) by adding the fixed
function z — K ,(]g)(z), so that is also a locally Lipschitz family. And by differentiating the
integral equation, we obtain the differential equation (2).
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(3) This is clear because b and ¢ are uniquely determined by b(t) + Gy 1) (2).
(4) In the proof of Lemma|7.4.4} we explained how to estimate [ fon (- (2)0 (1) du minus
i G(n »(2)8(u) du for a partition P, a refinement Q, and a contlnuous ¢:[0,T] — C. If

we carry out the estimates at each step explicitly and substitute , then we obtain the
estimate (3). We leave the details to the reader. O

Proposition 7.4.6. Let (ju;)icom) be a Lipschitz free subordination family, and continue all
the notation from above.

(1) For0 <s<t<T,

t t
oM (2) = / b(u)™ du + / G ) (2) du.
(2) (Fu,)ieo is a locally Lipschitz family of fully matricial functions and
OF(z) = —DEQ (2) [b(t)™ + GU (B0 (2))]

(3) b and o are uniquely determined by this differential equation.

(4) If ¢ : [0, T] = C is continuous with modulus of continuity ws, then

t)dt — / G(” dtH

C CcT
(||b”£ Ll [0,T],8) —+ g) mesh(P) + Tc%(mesh('P)),

< —
= 202
whenever Im z > 26 and 6 > C'/? mesh(P)/2,

Proof. (1) Fix s <t. Let P be a partition of [0,7], let P' =P U {s,t}, and Q = P' N s, t].
Let us write Q = {to,...,tny}. Then by (7.26]), we have

C
62, ) =0 = 68 ] < s (Wllewoman + 5 ) 5~ 517

whenever Im z > 2§ and § > CV/2(t; — t;_1)'/2. Therefore, summing over j, we get

l

Taking the limit as mesh(P’) — 0, we obtain ®,(2) = p,,(X)™ + IN G((;E) w(2) du as
desired.

t
2 (2) = paa () _/s Gy (2) du 252

C C /
< — (||b||£(L1[o,T],B) + E) (t — s) mesh(P").
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(2) In order to obtain our local Lipschitz estimates, fix s < ¢t and we will bound F, L(L?)(z) -
F{"(2). Note that for Im z sufficiently large

(FE) ™1 (=) = (F) 71 z) = =@ (2) + @0 (2) = @)Y, (2),

Ht Hs,t
so that (Fi}))™(2) = (F)7(2) + @ik (2). Thus,
n)\—1 n _ n)\—1 n n n
(FlEt )) © Flgs)(z) - (Fﬁgs)) © Flgs)(z) + ¢I(ls?t © FIES)<Z)
20l o FOIC).
It follows that
F{(z) = F"M o (FM)™ o F{"(2)
= F( n) (ZWL(I),(L )t F/ES (z)) )
and hence
FP () = B () = ) = B (2 + 0, 0 F{D(2))
= —AF (0, 0 FY(2)) [0, 0 FT(2)].

Since <I>§Z?t is given by the formula (1), it extends to a function on the entire upper half-plane.
Moreover, as long as § > CY2(t — 5)¥/2 and Im z > 2§, we have

t
(n) C(t — S) 5
Z Go‘(~,u)<z) du S T < 5
Thus,
Im(z +@,” (2)) = )+ Im G 2)du > 26 — o 52.
By analytic continuation, the relation
Fi(z) = B (z) = —AFO (2,2 + @), 0 FW(2)) |00 0 FO(2)] . (7.29)

extends to Imz > 24. Let 7; be the law such that Flg?)(z) =z — (X)) — G(T:L)(z) Note
that for z and w in the upper half plane,

HAF") (z,w ||#— |id — AG") (z,w ||#
L Var [A]

€1€2

<1
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whenever Im z > ¢; and Imw > €5, Setting w = z + @Lf?t(z) and noting that Imw > (3/2)4

and Im z > 20, we get

[Var,, (1)

[are = oo FRG| < 1+

Thus,

n n | Var,, (1) n n
7 - el < (10 D) lag o ric)

[Var,, (1)] ¢
< (1 P20 (1o + 55 ) =)

Note that ||Var,,[1]|| < ||Var,,[1]| is uniformly bounded. If we fix 6 and z with Im z > 24,
then the above Lipschitz estimate holds for |s — ¢| sufficiently small, which implies that it
actually holds for all s <t in [0,7] that

Var,,, C
WWM—%ﬂMK(HW @”D(WWMM@+%y“ﬂ-

Thus, we have a uniform Lipschitz estimate for z > 2§ for each 6 > 0, so (F}, )tco,r] is a
locally Lipschitz family.

Now to establish the differential equation, observe that since F;Et is a locally Lipschitz
family, if we fix z € H(f) (B), then 8tFlS?)(z) and —DF;E?)(z)[b( t)+ GU_( 5 © ;(L?)(Z)] are well-
defined elements of £(L[0,T], M, (B)). Thus, to show that they are equal it suffices to show
that for a fixed z, for all s <t in [0, 7],

/8F du—/ —DF|" )+G oF(”()]du+o(|s—tD.

The left hand side is simply F;(L?) (z) — F;Es (z), which we already know by ([7.29)) is equal to
—AF;S?)(Z, zZ+ (Pfﬁ)t o F(n)( ) [CIDEZ)t o F(S)( )], which we will now approximate by

/ “DED()b(w) + G o F()] du

by swapping out one piece at a time. Now if u € [s,t], then

~AF,, (2,2 + ‘bfﬁl o Fg)(z)) = —AF,E?(Z, 2) + Ot — s)
= —DF™(2) 4+ O(t — s).

Hu

Next, since Fﬁ?)(z) = Fﬁf)(z) + O(t — s), we have

=O0(t — s).

Hu — G(") o () _ G(n) o F()
L(L0,T],Mn(B))

o(-,u) s o(-,u) Hu
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Therefore, overall we have

¢
/ AF;?)(Z, z+ @EZ?t o F(”)(z)) [b( ) () 4 G )0 FF(L?)(Z)] du

Lhs
/ D (=) [o(w)® + 6%, 0 (2] du+ Ot — 5)?).
which means that
FM(z) — / DF{™(z) |b(u)™ +G 0o FM(z )] du,

which proves (2).
(3) Observe that F'(z) = z2+®,,(2) = Z—i—fo $)+Go(.5(2)] ds on its domain, and hence

F,*(2) is a locally Lipschitz family of fully matricial functlons on |Jseoc1/2m2{Im(z) > 6}

Moreover, on this domain
(DF,,(2)™" = D(F,) " (Fu(2)).
Therefore, b + G,(z) is uniquely determined on this domain by

b(t) + Go.p)(2) = =D(F) " (F (2))[(0:F, ) (F,, (2)]

(here we rely on Remark [7.3.6). By analytic continuation, b(t) + Gy(.4)(2) is determined on
the entire upper half-plane, and hence b and ¢ are determined.

(4) We know from (1) that [’ G((Tr(biu)(z) du = D\, (2) — p15,(X)™. Thus, our earlier error
estimate ([7.26]) becomes

EJ’T(L'),'I.L) ( GS’Z:& ( )

C C
< 252 <HbHE(L1[O,T},B) + 3) (t —s)?

when Tm 2 > 2§ and § > C'/2(t — s)"/2. Putting this estimate into the proof of Lemma [7.4.4
will produce the estimate (3); we leave the details to the reader. O]

Proposition 7.4.7. Let (fit)ico,r) be a Lipschitz monotone subordination family, and con-
tinue all the notation from above.

(1) (Fy,)icpom s a locally Lipschitz family of fully matricial functions and
KE{P(2) = =DE () [b(t)" + Gyl (=)

(2) b and o are uniquely determined by this equation.
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(3) If ¢ : [0, T] = C is continuous with modulus of continuity wg, then

whenever Im z > 9.

T T
/0 Ggﬁ(.7t)(z)¢(t) dt —/0 G((TTE?J)(Z)qb(t) dtH

¢ C cT
<o (||b||L(L1[o,T],B) + 5) mesh(P) + —wy(mesh(P)),

20 o

Proof. (1) First, we show that (F), )i is a locally Lipschitz family of fully matricial
functions. Note that

pé?)(z) _ p(n)(z) — F( n) p(n)(z) )

s Hfs t s

= AFD(F(2), 2)[ED () - 2]

Hs,

— ARPERE) X+ G )
Now since Im z > ¢ and Im ZF,S")t(z) > 0, we have

HA Hs Nst(z>7Z)H# <1+ W'

Then plugging in our usual a priori bounds for p,,(X)™ and ng)t(z), we get

A C
|75 @l < (1+ P2 (ewpme + 5 ) -9

Thus, (F},)ejo,r] is a locally Lipschitz family.

Next, we prove the differential equation. Since (F}, )icpo,r] is a locally Lipschitz family, it
suffices to show that for each fixed z, and for all s <t in [0, 77,

F(z) — F(z / DF™(2) [b(u) + GY 1 (2)| du+o(t — 5).

The left hand side is equal to —AF™ (F{™ (2), 2) [us,t(X)(”)—l—ng)t (2)]. Tt follows from Lemma
[7.4.3 that

Tst / G 2)du+ O((t — 5)?),

so that
s Ms,

FM(2) = FM(2) = —AFM(F™ (2), 2) / [b(u)(”) + Gﬁf(‘?ﬁu)(z)] du+ O((t — 5)?)

- / t AFM(E™(2), 2) [b(u)(”) + Gg’g{u)(z)} du+ O((t — s)?).

S
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It is straightforward to check that AF." (F,Sl(z) z) = DF,EZ)(Z) + O(t — s) for all u € [s, t].
Then plugging this into our earlier equatlon shows that

R = FOG) = = [ DEDGE) [0 +650,(0)] du+0( - o))

which finishes the proof of the differential equation.

(2) Similar to the free case, note that (DF),(z))"" is a continuous function of ¢ for Im z
sufficiently large and hence b(t) + Go(.4) is uniquely determined by the differential equation.

(3) This follows from substituting the explicit estimate (7.28]) in the proof of Lemma
7.4.4]and computing all the errors explicitly. We leave the details to the reader. O]

Proposition 7.4.8. Let (p)iwcpom be a Lipschitz anti-monotone subordination family, and
continue all the notation from above.

(1) (Fu,)ico is a locally Lipschitz family of fully matricial functions and
QE(2) = =)™ + G (F(2)).

(2) b and o are uniquely determined by this equation.

(3) The same estimate as in Proposition[7.4.7 (3) holds.

Proof. (1) First, to show that (F), )1 is a locally Lipschitz family, suppose that s < ¢.
F{M(z) = FM(z) = F{™ o F\" >( ) — F"(2)

Ms
= — (X)W = G 0 F ().

Hence,

C
||F(n) F,EZ)(Z)H < (HbHc(Ll[o,T],B) + g) (t—s).

To check the differential equation, we use similar reasoning to the free and monotone
cases to justify the string of approximate equalities

F(E) — B (2) = —poa(X) = G 0 F (2
t
_ —/s [b(w)® + Gy 0 B0 ()] du+ O((1 — )
t
_ / b)) + G 0 FE(=)] du+O((1 — ).

(2) Recall that F,' maps {Imz > 26} into {Imz > 4} for § > CV/2T'/2. Moreover,
FY,ciom is a locally Lipschitz family on this domain; this follows by observing that for
1243 [ ’ ]
s <t,
Fl(2) = F,Nz) = (F,, —id) o F,'(2),

Mt Ms
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and then applying Lemma (4.8)) to F},, ,. Since F| #_tl is a locally Lipschitz family, the equation

b(t) + Gt (2) = [0:Fu ) (F,, ' (2))

Mt

makes sense and is true for z with Im z > 2§ > 2C"/?T"/? (again relying on Remark [7.3.6)).
This uniquely determines b and ¢ by analytic continuation as in the free case.

(3) This is the same as the monotone case. O
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CHAPTER 8

Results: Fock space realization of subordination
families

8.1 Introduction

In the last chapter, we showed that for any Lipschitz process (X):cp,m with independent
increments, the F-transforms Fl, satisfied a certain differential equation with respect to the
Cauchy-Stieltjes transforms G, where o is a distributional family of generalized laws. Our
goal in this chapter is to prove conversely that for every such o, there is a process with
independent increments that satisfies the equation.

It is possible to construct the transforms Fl, purely analytically by solving the differential
equation; see e.g. [Bau05, Theorem 5.5] and [Jek20) §5.3] for Loewner chains (the monotone
case) or [Will7, Corollary 5.2] for the free case. However, we will take a different approach
here. Starting with a distributional family of generalized laws o, we will directly construct
operators (X¢)cjo,r] whose F-transforms satisfy the differential equation (see Theorem .
These operators X; act on a certain C*-correspondence known as a Fock space.

While the term “Fock space” does not a have a precise definition, it refers to a direct
sum of tensor powers of some basic building block, possibly with a few tweaks unique to
a given situation. Besides being used in physics, Fock spaces provide a canonical way to
construct operators realizing a certain non-commutative law and prove facts about non-
commutative independence (see e.g. [Voi86]). In particular, they provide a canonical way
to construct Brownian motion and more generally Lévy processes for free, Boolean, and

monotone independence. Prior work on free, boolean, and monotone Fock spaces is listed in
Table Rl

We aim to generalize prior work from semigroups to subordination families. The Fock
space realization for monotone subordination families was given by the author in [Jek20, §6],

| boolean free (anti-)monotone
scalar-valued [Voi86] [GSS92] Mur97] [Lu97]
operator-valued | [PV13, §2] [Spe98, §4.7] [PV13] §3.2] [Jek20l §6]
[ABF13, §7]  [ABFI3, Rem. 7.7]

Table 8.1: References on boolean, free, and monotone Fock spaces.
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while the analogous realizations for free and Boolean subordination families can be deduced
easily from previously known results. We will present the constructions for the four types of
independence in parallel.

The basic building block for our Fock space is obtained directly from the distributional
family of generalized laws o by a version of the GNS construction.

Definition 8.1.1. Let B be a unital C*-algebra, and let o : B(Y') x L'[0,T] — B be a distri-
butional family of generalized laws. We construct a right Hilbert B-module |, o8B (Y)®q(.nBdt
as follows.

Let £ C L*[0,T] be the algebra of simple functions. Define a pre-inner product on

(i1eap(Y)®b, fo@pa(Y) @ by) = /0 J1() f2(0)bio(pr(Y) pa(Y), )b dt.

To check nonnegativity of this pre-inner product, suppose that ¢ = Z;”Zl fi®p;(Y)®b;.
Choose a measurable partition {Ej}}_, of [0,T] such that f;|g, = a;x € C. Then

(€, Q) = Z< ajapi(Y) @by, Y ajupi (V) @ bj> :
1 j=1

k=1 \j= fEk g

where the last inner product is the one coming from B(Y) ® , B and where /, 5.0 =
k
J o t)xe, (t)dt. We already showed in the proof of Theorem [2.6.6] that (-, ), o 1S nON-
k

negative. Thus, our pre-inner-product on £ ®g, B(Y) ®a, B is nonnegative. We define
| © B(Y) ®(.+) Bdt as a right Hilbert B-module to be the separation-completion with respect
to this pre-inner-product.

Lemma 8.1.2. Left multiplication by Y defines a bounded operator on f@ B(Y) @4 Bdt
with norm bounded by rad(o). Similarly, left multiplication by b € B defines a bounded oper-

ator on f@ B(Y)®q(.4) dt, making the latter a B-B correspondence. Moreover, for measurable
E C0,T] and for p(Y) € B{Y), we have

(. p(Y)eR) = [E o(p(Y). 1) dt,

where S = xp®1®1 in f@ B(Y) @41 Bdt.

Proof. Suppose that ( = Z;nzl fi ® pj(Y) ® b; in the algebraic tensor product. Choose a
partition { £y}t of [0, 7] such that f;|p, = ajr € C. Let G = >, a;xp;(Y) ®b;. Then we
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have

n

(YY) =) (Y6, Yy, o

2
d
< 1ra (/EkU) (G Gl gy, o

<rad(0)? ) (G, k) [, 0
h=1

= rad(0)*(C, ).

Hence, ||Y¢|| < rad(o)|[C]|, so multiplication by Y passes to a bounded operator on the
separation-completion. The same reasoning works for left multiplication by b € B. The
relation (£, p(Y)ép) = [, o(p(Y),t)dt is a direct computation. O

In the above construction of [ o B{Y) ®y(.1) Bdt, the “time coordinate” is not represented
in the B-B-correspondence structure or in the operator Y, only in the different vectors &g.
But another way that the time coordinate naturally appears is that there is an action of the
algebra £ of simple functions in L*°[0,7] on | o B{Y) ®y(.+) Bdt by left multiplication, and
in fact a left multiplication action by L*[0, T] as we will demonstrate in Lemma[8.2.6) below.
It will be useful for our purposes in this chapter and the next to better understand this left

L]0, T]-action and how it interacts with tensor products.

8.2 Normal L>(), u)-actions on C*-correspondences

Definition 8.2.1. Let A, B, and C be unital C*-algebras. Let H be an A-B-correspondence.
Then a left C-action on H is a unital x-homomorphism 7 : C — B(#H) such that m(c)a& =
ar(c)é for a € A and ¢ € C. We will henceforth write ¢£ rather than 7(c)€ when the meaning
is clear, similar to the notation used for correspondences.

Remark 8.2.2. Those readers familiar with C*-algebra theory will note that this is equivalent
to an (A ®mpaxC)-B-correspondence structure on H, where A ® ., C is the maximal C*-tensor
product.

Definition 8.2.3. Let H be an A-B-correspondence, and let (€2, 1) be a finite measure space
(which implicitly includes a choice of o-algebra). A left L>°(€2, u)-action on H is said to be
normal if for any sequence f,, € L*>(£2, p) such that || fu]lc < 1 and f,, — f in measure, we
have f,& — f¢ for each £ € H.

Remark 8.2.4. In the case B = C, this definition is equivalent to the *-homomorphism
L>(9Q, ) — B(H) being continuous in the strong operator topology on the unit ball, which
is the standard definition of “normal” in the theory of von Neumann algebras.
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Normal left L>°(€2, u)-actions can be characterized more concretely in terms of projections
as follows.

Lemma 8.2.5. Let H be an A-B-correspondence, let (2, 1) be a finite measure space with
the associated o-algebra F. Let £ be an algebra of sets that generates F as a o-algebra.
Suppose that for each E € &, there is a projection Pg in B(H) that commutes with the left
action of A, such that

(1) PE+PQ\E =1,
(2) PE1PE2 = PElﬂE2 fOT El,EQ S g

(8) For every & € H and every € > 0, there exists 6 > 0 such that for all E € &, if n(F) < 0,
then | Pré|| < e.

Then there is a unique normal left L>°(Q, p)-action m on H such that w(xg) = Pg for all
E € . Conversely, if m is a normal L*°(Q2, p)-action on H, then Pg = w(xg) satisfies (1)
- (8) above. Furthermore, for (3) to hold for all &, it suffices that it holds on a set of vectors
whose span is dense in H.

Proof. First, assume we have a family of projections {Pg}gree satisfying (1) - (3). The
conditions (1) and (2) imply that

Pg, + Pg, :1+PE1PE2_(1_PE1)(1_PE2)
= 1 + PElﬂEQ - PQ\Elpﬂ\EQ
= 1 - PQ\(ElLJEQ) + PE1ﬂE2 = PE1UE2 _I_ PElﬂEQ'

In particular, it follows that if Ey, ..., £, are disjoint, then Pg,y..up, = Pg, + -+ Pg,.
Note also that (3) implies that if u(E) = 0, then Pr = 0, and in particular P, = 0.

Let £ C L*>(Q, u) be the algebra of functions generated by {xg}res, which we may
think of as “step functions” relative to the algebra of sets £. Note that £ is the same as
the vector span of {xg}gee since E is closed under intersections. We can define a linear
map 7 : L — B(H) by 7(37_, ajxE;) = > i, a;jPs; when the Ej’s are disjoint measurable
sets. Indeed, the output is independent of the choice of decomposition for the step function
because we showed that the projections are additive under disjoint unions. Moreover, the
output is unchanged if we modify F; by a null set. The additivity relation also implies

linearity of . Since Pg, Pp, = Pg,ng, and Pgp = P}, we see that 7 is *-homomorphism.
It is also clear that [|7(f)|| < [|f]|; indeed, of f = Z?Zl axp, with the Ej’s dis-
joint with positive measure, then the projections Ppg; have orthogonal ranges, and hence
k
1351 @i P, || < max; |a;| = || f]]-
Next, we claim that for each £ and € > 0, there exist ¢ > 0 and 6 > 0 such that if f1, fo € £

with [[f1]| <1 and [|fof| <1 and if u({|fi = fo| > €'}) <0, then [|7(f1)§ — x(f2)¢] < e To
prove this, fix £ and e. Let ¢ be chosen small enough that €[|£]| < ¢/2. By condition (4),
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there exists d such that u(F) < § implies | Pgé|| < €¢/4. Now suppose that f; and f, satisfy
£l <1and || fo| <1 and p({|fi — fo| > €}) < 6. Let E = {|fi — fo| > €'}. Then we have

|7(f1)€ = 7(f2)¢ll = I7[(fr — fo)xelél| + |7[(fr — f2) (1 — xe)]
< |fs = LllIPe€ll + [[(fr = f2)(1 = xe)[£]

<2 7+€lel <e

This proves our claim. Since £ is dense in L*(£2, 1) with respect to convergence in mea-
sure, the claim implies that there is a unique extension of 7 to a normal *-homomorphism
L>(Q, ) — B(H). Moreover, since m(f) commutes with the left action of A for each f € L,
the same is true for f € L>(Q, u).

To prove the converse claim, suppose that 7 is a normal left L>°(Q2, u) action on H. If
Pr = m(xg), then the relations (1) and (2) are immediate from the corresponding algebraic
relations in L>°(Q, p). If we assume for contradiction that (3) does not hold, then there
exists & and € > 0 and a sequence of sets E,, € £ with u(E,) — 0 but || Pg,&|| > €. But then
Xg, — 0 in measure, so that contradicts normality.

Finally, we prove the last claim that to verify (3), it suffices to test a set of vectors whose
span is dense in H. Let S be the set of vectors £ such that the condition described in (3)
holds. It is straightforward to check that S is closed under addition and scalar multiplication.
It remains to check that S is a closed set. Let £ € S and pick € > 0. There exists ( € S
with ||€ — (|| < €/2. There also exists § > 0 such that u(E) < § implies that || Pg(|| < €/2
and hence || Pg¢|| < [|Pp(§ — Ol + (| Pec]l < e a

The first application is to construct a normal left L>°[0, T]-action on the C*-correspondences
from distributional families of generalized laws.

Lemma 8.2.6. Let o : B(Y)x L'[0,T] — B be a distributional family of generalized laws. Let
A be the C*-algebra generated by B and Y acting by left multiplication on [ B{Y) Q4. Bdt,
so that the latter is an A-B-correspondence. The left multiplication action of the algebra L of
simple functions upon £ Qg B(Y) Qag B extends to a unique normal left L>[0,T]-action on
[ BY) @1y Bdt, where [0,T] is equipped with the Borel o-algebra and Lebesgue measure.
Moreover, letting £ =1® 1® 1, we have for p(Y) € B(Y) and E C [0,T] Borel that

/E o(p(Y). £) dt = (€. p(Y)xiE) = (€. p(xsY)E).

and if p(Y) € B(Y )o, then this also equals ({,p(xgY)E).

Proof. Suppose that ¢ € £ ®a5 B(Y) ®ag B, and let E C [0,7] be Borel. Then ( =
XEeG + Xjo,r\eC. Moreover, one can check that xg( and xq\gC are orthogonal with respect
to the inner product defined by o. Thus, [[xgC|| < ||¢|| and |[xo\gC¢||. This shows that
the operator Pg given by multiplication by yg is a well-defined operator on the separation-
completion. Also, it is immediate to check that P}, = Pp = P2 and P + Porpe =1 and
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Pg, Pg, = Pg,np, from evaluating the operators on elements of £ ®gy B(Y') ®a1, B. In other
words, the projections { P} satisfy (1) and (2) of Lemma [8.2.5] They also clearly commute
with the left action of A.

Now we check (3) on a set of vectors whose span is dense, namely on simple tensors
(= f@pY)®bwhere p(Y) =byYby...Yb is a monomial. Let E C [0,7] be Borel. Then
we have

(Pe¢, Pe() = /b*d(p(Y)*p(Y),t)be(t)lf(t)lgdt < ||b|!2||bo|!2~-IIbkllzrad(U)k/EIf(t)|2dt'

It is well known that for each f € L?[0,T], for any € > 0, there exists § > 0 such that
|E| < ¢ implies [, |f|* < e. This implies that (3) holds for the vector ¢. Therefore, by
Lemma [8.2.5] the left multiplication action by simple functions extends to a unique normal
left L>[0, T']-action.

The formula [, o(p(Y),t)dt = (£,p(Y)xg€) is immediate from Lemma since x g is
a projection and commutes with p(Y'). Also, p(Y)xr = p(xgY)x for the same reason, and
if p(Y') € B(Y)o, then p(xgY)xe = p(x£Y). O

Normal L>(€, u)-actions behave very nicely under tensor products, which will be useful
for our construction of the Fock space, especially in the (anti-)monotone case.

Lemma 8.2.7. Let Ay, ..., A be unital C*-algebras, let (1, 1), .., (e, pux) be finite
measure spaces, and for j =1, ..., n, let H; be an A;_1-A;-correspondence with a normal
left L>(2;, pj)-action. Then the Ag-Ay-correspondence H := H1® 4, - - @, Hy has a unique
normal left L°(2q X -+ X Qp, p1 @ « -+ ® g )-action satisfying

(i@ @) - @&) =L@ frb. (8.1)
for fj € L>®(Q, ;) and & € Hj forj=1,... k.

Proof. To simplify notation, let us only consider the case k = 2. The proof of the general
case is the same, or alternatively the general case can be deduced from the £ = 2 case by
induction; we leave the details as an exercise.

Let £ be the algebra of sets generated by the rectangles F' x G where F' C ; and G C €
are measurable. We want to define projections Pg for F € £ as in the previous lemma. Fix
E. We can choose partitions FY, ..., Fi, and Gy, ..., G, for €} and ), respectively such that
FE is a disjoint union of rectangles of the form F; x G;. Since xp,, ..., X, are projections
on H; with orthogonal ranges, we have H; = @le X H1 as Ap-Aj-correspondences, and
similarly Ho = @ﬁzl Xa; M2, which implies

Hi @a, Ho = EB(XFﬁLll) ®.4, (Xa;Ha)-

i’j
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We define Pp,q, to be the projection on the (7,j) summand, and define Py to be the sum
of the Pp,xq,’s over (i,j) such that F; x G; € E. One can check that the projection Pg
thus constructed is independent of the choice of partition and only depends on F, and thus
notation we just used for Pg and Pp,xq, is consistent.

One can also check that the relations (1) and (2) of Lemma are satisfied for F € £.
Of course, the idea for (2) is to choose a partition that works for two sets E; and FEj
simultaneously and then write everything in terms of the minimal projections associated to
this partition. We leave the details to the reader.

Now we check condition (3) of Lemma for (Q, 1) = (1 X Qg, 1 ® pi2). As shown in
that lemma, it suffices to check it for £ in a set whose span is dense, and thus we may restrict
our attention to simple tensors £ = & ® & with [|§;]| < 1. Fix € > 0. By applying Lemma
8.2.5| (3) to each H; and H,y, we see that there exist d;,02 > 0 such that for measurable
F C Qq and G C Qy, we have

€ €
—, G)<dy = ||P, < —.

7 p2(G) < 09 | Padall NG

Let E € € with pu(E) < 0102. For wy € Qy, let 42 = {w; € ) : (w1, ws) € E}, and then we
have

m(F) <6 = ||Pp&ll <

W(E) = / i1 (E2) djia(3).

Since this is less than §,d,, we have by the Markov inequality that

910
,UQ({LUQ : ,LL1(Ew2) Z 51}) < % = 52.
1
Let G = {wq : p1(E“?) > 61} Since E € &, the map wy — E“? takes only finitely many
values, so there exists a partition of Q2 \ G into measurable sets G, ..., Gy and there exist

measurable sets I}, ..., Fj in € such that
\ (1 ®G) = |_| F; % Gy,

and by definition of G, we have ui(F;) < d5. Then we have

k
Pp(é1® &) = PePoec(6 ® &) + ) Prec, (1 © &)

i=1

k
= Pp(§1 ® xga) + ZXszl ® Xai&e-

i=1

Note that the terms on the right hand side are mutually orthogonal, hence we will apply the
Pythagorean identity. The first term can be estimated by Lemma [2.3.2] as

IPs(& ® xa&a) | < ll&2 @ xotall < allixaéell < 5
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since 2(G) < dy. Furthermore, we have

<XF7,'£1 @ XG'¢£27 XFiél ® XGi£2> < ||XF1‘£1||2<XG1'€27 XGi€2>
2

E <XG¢§27 XGi£2> :

Hence, we have

[\

2

k
<Z XF &1 ® Xa 2, Z Xr &1 ® Xa; §2> % z:: XGi&2 Xai&2) = 5 (Xaa\abes Xaa\6€2),

so that
€

7

® Xxa:&2

\/—”X92\G€2|| = \/—||§2

And overall,

b ’ 2 ¢
ZXFi&@XGifz <5+5:€2

=1

1Pe(6 @ xa&)lI” < 116 @ xaal* +

Thus, we have checked (3) of Lemma for £ =& ®&,.

Therefore, there exists a normal left L>(), u)-action © with w(yg) = Pg for E € €. It
is easy to check that 7 satisfies

T(f1 ® f2)(& ® &) = [1&1 ® f2by

when f; and f5 are simple functions. This extends to all f; and fs by taking limits with
respect to convergence in measure (where we also rely on Lemma to take the limit on
the right hand side). The normal L> (€2, u)-action satisfying 7( f1® f2)(§1®&) = f1&1® f2€s is
unique because this relation determines 7(xg) for E € £, which in turn uniquely determines
7 by Lemma [8.2.5] O

8.3 The Fock space

Let H be a B-B-correspondence with a normal L>°[0, T]-action. We define

Emono(k;T> = {(tl, ce ,tk) S [O,T]k >t > > tk}
EmonOT(kaT) = {(tlv SR 7tk) € [OvT]k <ty <o < tk}.
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Then we define the Fock spaces
fbool(f]_o =B © H

ffree(H>:B@@ﬁ®B"'®B7‘£
k=1

~
k

Fmono(H> =B @ X Emono (k,T) [Z'[ Xp - QB ?—é]

-~

k=1 X

FmonoT(H) =B® @XEmonoT(n,T)[?{ KB -+ QB 7'[1]
k=1 e

Here the multiplication by x g, 7) for the monotone and anti-monotone cases is performed
through the normal L>([0,T]*)-action on H®5* defined by Lemma ; it is easy to check
that the image of multiplication by x g, kr) on H¥5* is a B-B-correspondence, and in fact
a direct summand of the whole tensor product.

To simplify notation in the future, we will write
B, k=0,
H@Bk: H@B"@B%; n>0

n

as a B-B-correspondence. Then we also define

0, 7], k=1
Froo(k,T) =
bool ) {@, kE>1
Egee(k, T) = [0,T]".

Thus, the definition of the Fock spaces can be written more compactly as

Find = @XEind(k,T)H®Bn7

k=0

where we make the convention that xg, o7 = 1. Furthermore, for each type of inde-
pendence, we can define an operator P,q on Fge as the direct sum of the operators of
multiplication by xg, 0,1 on Heyuk for & > 0. Then we have

~Find - Pind [»F free]-

ind(

8.3.1 Creation and annihilation operators

For ¢ € H, we define the creation operator liq(¢) on Fing by

lina(Q)[0] = XEyaa,m)¢ for be B
lind () (X Bua (b, 1) (1 ® - ® )] = X B (b1, [ R G ® - - ® G,
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and the annihilation operator iq(¢)* will be its adjoint. In order to verify that £,q(() is
well-defined, bounded, and adjointable, it is easiest to start with the free case because the
X Ea(n,7) terms equal 1. If we take 1 and 7’ in the k-fold algebraic tensor product of H, then
we have

<£free(C)777 gfree(é)n/> = <777 <C7 C>77/>

In fact, the same holds for n and 7’ in the algebraic direct sum of the k-fold algebraic
tensor products of H; note that the separation-completion of this “algebraic Fock space”
is canonically isomorphic to Fee. This implies that ||lgee(C)n]l < |[C]/[7]], so that lgee(C)
passes to a well-defined bounded operator on Fpeo(H). Next, we claim that that fp.e.(C) is
adjointable with

liree(C)"0 =0 for b € B.
liree(Q)[G1® - @G =((, 1) R GB® - @ (e

A direct computation shows that if we define the operator fg...(¢)* on the algebraic direct
sum of algebraic tensor products by the above formula (with a slight abuse of notation),
then

<£free(C)*nv 77/> = <777 gfree(C)n>'

But since [[€iee(C)*nll = sup{[[(€uee(C)"n, )| = [l < 1}, we see that |[fxee(C)™nll <
1 €ecee (O)||1|7]|, hence lgee(C)* passes to a well-defined bounded operator on the separation-

completion, and it is the adjoint of gee(C).

Now for the other types of independence, using the identification Finq(H) = Pind[Frree(H)],
we define

eind(g) = Pindgfree(C)Pinda
and one can verify that £;,4({)[(1 ® - -+ ® (k] has the formula we asserted at the beginning.
(Also, the relation lgee(() = Preeliree(C)Pree holds vacuously in the free case as well.) It
follows that ¢,q(¢) is bounded and adjointable with adjoint given by Piaftreec(C)* Pina-

8.3.2 Multiplication operators of the first kind

Let us denote
L0, T NBH)={2€ B(H) : 2f( = fz( for ( € H, [ € L*=[0,T]},

that is, the commutant in B(H) of the L*[0, T]-action on H. For z € L*[0,T) N B(H),
we define the multliplication operator miq(z) on Fna(H) as follows. Note that H is a
B(H)-B-correspondence by definition. Hence, if k > 1, then H®®F has the structure of a
B(H)-B-correspondence. We define mgeq(2) to be the operator on Fre(H) obtained as the
direct sum of the left multiplication by z on H®5* for k > 1 and the zero operator for k = 0,
that is,

Moo (T)b = 0 for b € B
Mpree (1[G @ @G =TGR L+ @ (.
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Then we define mjyq(2) = PinaMpee(2) Pina for each of the other types of independence.

We claim that mj,q is a *-homomorphism L>*[0,7] N B(H) — B(Fina(H)) (and this is
the reason that we restricted to operators that commute with the L>°[0, 7] action). First,
note that z commutes with the L>°([0, T]*)-action on H®5*. This is because z commutes
with the action of xg when ' = F; x --- X E}), hence for general F in the algebra of sets
generated by rectangles. Then by an approximation argument, it commutes with the action
of all L>°([0, T*) functions. In particular, it commutes with x g, (k1> and therefore, Mpee(2)
commutes with P,4. Therefore, for two such operators z; and zy, we have

[PnaMeree (21) Pind) [ PndMeree (22) Pind] = PindMiree(21)Miree(22) Pnd = PnaMiree(2122) P,

since Mg, is clearly a s-homomorphism.

However, we remark that the restriction to L*°[0,7] N B(H) is only really necessary in
the (anti-)monotone case; in the free and boolean cases, m is a *-homomorphism on all of

B(H).

8.3.3 Multiplication operators of the second kind

The last type of operator we will define requires more casework. The purpose of these
operators in our main theorem concerning processes with independent increments (Theorem

below) will be to model the “drift” term b(t) in the expression b(t) + Go(. 1) (2).

A bounded linear functional 8 : L>[0,T| — B is said to be normal if whenever (f,,)nen
is a bounded sequence in L*[0,7T] and f, — f in measure, we have S[f,] — B[f]. If B is a
normal bounded linear functional, then we define a multiplication operator ni,q(3) on Fing
as follows for each of the four types of independence.

Let £ be the vector 1 in B C Fj,q, and let P be the projection onto B¢.

(1) We define ny,o01(3) := B[1] P, that is, npeei(5) is left multiplication by S[1] on the direct
summand B and zero on the direct summand H of Fiool-

(2) We define ngeo(5) to be left multiplication by 5[1], defined using the B-B-correspondence
structure.

(3) We define nyono(f) as follows. Let ¢(t) = Bxp,r]. Because § is normal, the function
¢ : [0, T] — B is continuous. Then define z, € B(H) by

n—1
2l = Z (T /1) Xy /(4 1)T/m)C -

J=0

Because of the continuity of ¢, one can show that z, converges in operator norm to an
operator z. Now z,, and hence z are in L>[0,7] N B(#). Therefore, the multiplication
operator m(z) is defined as in the previous subsection. Then we set

r'lmono(/B) = ﬁ[l]Pf + mmOHO(z)'

137



(4) The definition of Nyenot is the same as the monotone case except that we use ¢(t) =
ﬁ[X[O,t]] instead of B[X[t7T]].

One rationale for the multiplication operators of the second kind is the following relation
between these multiplication operators and the creation and annihilation operators.

Lemma 8.3.1. Let H be a B-B-correspondence, let ind € {bool, free, mono, mono 1}, and let
Fina(H) be the Fock space constructed above. Let (1,(y € H. The map L*[0,T] — B given
by Bf] = (1, fC2) is normal, and we have

find(ﬁ)*find(@) = ﬂind(ﬁ)-

Proof of the boolean case. Note that if b € B C Fio01(H), we have

gbool(gl)*gbool(CQ)b = gbool(Cl>*[C2b] = <C17 C2>b = nbool(ﬁ)b-

Meanwhile, if ¢ € H C Froo1(H), we have

gbool(gl)*gbool(CZ)C =0= nbool(ﬁ)- [

Proof of the free case. It is a direct computation that for n € Fpeo(H),

Efree(gl)*gfree(g2)n = <<17 C2>777

and indeed the case of this identity where (; = (5 can be gleaned from our discussion of the
creation and annihilation operators earlier. This proves the claim since nge.(f) is exactly
multiplication by ((1, (o). O

Proof of the (anti-)monotone case. First, consider the case of a vector b from the direct
summand B C Fono(H). Since xg,...a,r) = 1, we have in this case that

gmono(§1>*€mono<<2)b = gmono(gl)*[c2b] = <C17 <2>b = nmono(ﬁ)b-

Next, consider the action of £y0n0(C1) lmoeno(¢2) on vectors in the k direct summand
XEmono(k,T)H®Bk for k > 1. It is clear that f;,0n0(¢2) maps the kth summand into the (k+1)th
and £ieno(¢1)* maps the (k + 1)th into the kth. Therefore, to check that €ion0(C1)* lmono(C2)
agrees With Myono(8) O X gy (k) HEEF, it suffices to show that for n1,m2 € Xy (b OB,
we have

{(Cnono(C1)M15 Lmono (€2)12) = (115 Manono (B)12)-

Let us continue to view Fono(H) as a subspace of Fpeo(H). Recalling the definitions of
Crnono(€;) and Nyeno(3), we can rewrite the equation we want to prove as

<XEmono(k+1,T) (1 ®@m], X Emono (k+1,T) [C2 ® m2]) = (N1, Mumono (2)72), (8.2)
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where z is the operator constructed in the definition of nyen0(3). Now let F, C [0, T]**! be
the set

F, = U G(O)T/n, ((0) + )T /n) x - x [§(kK)T/n, (i(k) + 1)T/n),

n—1>5(0)>>j(k)>0

which is an approximation of Fyono(k + 1,7) by a untion of rectangles. Note that F,, 2O
Ernono(k + 1,T) (up to null sets) and |F,, \ Emono(k + 1,7)| — 0. Since the action of
L>=([0, T)*1) on H®5* is normal, we have

Jim (xp, [G @ m]s xe[G @ mal) = (XBono (+1,1) [ @ s X Brono (k1,1 [C2 @ 772]).
Meanwhile, the right hand side of (8.2)) can be expressed as
<7717 mmono(z)n2> = nh—>nc}o<7717 mmono(zn)n2>7

where z, is as in the definition of Ny, (3), because we already know that z, — z in operator
norm, hence Myono(2n) — Mmono(2) in operator norm. Therefore, to prove (8.2)), it suffices
to prove the “approximate version”

<XFn [Cl X nl]a XF, [C? X 772]) = <771a mmono(zn)n2>
= (1M1, Maree (2n) X Bmono (k,7)712)
= <7717 mfree(zn>772>7 (83)

where the last inequality follows because we assumed that 75 € x Emono(k,T)H@Bk~ Let us start
with the right hand side. Letting ¢ be as in the definition of nyen(3). Recall that the
definition of z, was that for ( € H, we have

n—1
2l =Y 6GT/m)Xpyr/m 11/ €
§=0
n—1
=Y BIXyr/m X/ G417/
j=0
n—1

= Z(Cu X7 /n,1182) X [T /n, (4+1)T/n] G -
=0

Let I; = [jT/n,(j +1)T/n) for j =0,...,n — 1. Therefore, we have

n—

1
Mree(20) 72 = Z«:I; X/ 62) X1, © 1ne.
=0

<
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Since 7, is in the image of xg,,... (k1) and Fp, D Enono(k, T), we have xp,12 = 2. Thus,

n—1
Miree (2n)72 = (C1, X[jT/n,T]@)[XIj ® 1]xF, 2
§=0
n—1
= (C1, X[jT/n,T]@)[XIj ® 1] Z [iju) Q- ® ij(lw]n?
j=0 n—1>j(1)>>34(k)>0
= Z <C1> X[j(l)T/n,T]C2>[XIj<1) Q- XIj(k)]772v

n—1>(1)>-->j(k)>0

where the last equality follows because only the terms where j = j(1) will survive when we
multiply X(jr/n,(j+1)7/n @ 1 by X1, ® -+ @ X1,,,- Then we express [7(1)T/n,T] as the union
of Iy over j(0) = j(1),...,n — 1. Thus, we get

mfree(zn)n2 = Z <Cl7 XIj(O)C2>[XIj(1) - ® le(k)]%,
n—1>5(0)>5(1)>->5(k)>0
so that
<7717 mfree(zn)n2> = Z <7717 <C17 ij(o) C2>[X1j(1) K- XIj(k)]n2>
B 12(0)> (1) >(k) >0
- Z <C1 X m, [XIj(()) X le(l) PSRNy ij(k)][cl X 772]>

n—1>j(0)>j(1)>-->j(k)>0
= (G ® N1, X7, [ @ n2])
= (XF, [ @ M), XF, [C2 ® m2]),

which establishes (8.3) and hence completes the proof of the monotone case. The anti-
monotone case of course is completely symmetrical. O]

8.3.4 General time intervals

Of course, instead of using the time interval [0, 7], we could have used an arbitrary interval
[a,b]. The sets Ei,q(k,T) would then be replaced with

[a,b], k=1,
Evool(k,a,b) = {@) Lo
Egee(k,a,b) = [a, )"
Frnono(k,a,b) = {(t1,...,tx) € la, b]’C Tt >ty > > 1)
Enonot(kya,b) = {(t1, ..., t) € [a,b]F 1ty <ty < -+ <t}

All the definitions and results about generalize easily from [0, T] to [a, b] with the appropriate
changes in notation.
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8.4 Independence on the Fock space

We will next explain how the operators on the Fock space naturally give rise to processes
with independent increments. The end goal of the section is the following result.

Proposition 8.4.1. Let H be a B-B-correspondence with a normal L0, T]-action, and
let ind € {bool, free, mono,monot}. For 0 < s <t < T, let As; be the C*-subalgebra of
B(Fina(H)) generated by

{Eind(C) : C S Ha X[s,t]C = C}
U{mina(a) : a € B(H),a = X[saX[s, }
U{nind(ﬁ) : ﬁ : LOO[OaT] — B normal, ﬁ = X[s,t]ﬁ}-

Then for every 0 =ty < t; < --- < ty = T, the subalgebras Ay ¢y, ..., Aty 1y ar€
ind-independent in (Fina(H), Ee).

While this proposition can be verified by hand in several ways, we believe the most natural
and straightforward method is to show that the Fock space itself is isomorphic to the inde-
pendent product of the individual B-B-correspondences associated to subintervals of [0, 77,
and to verify that this isomorphism respects the creation, annihilation, and multiplication
operators in a natural sense. That is the content of the theorem below. Here, if H and K
are correspondences and 7' : H — K is adjointable, then we denote Ad(T) : B(H) — B(K)
by Ad(T)(S) = TST*.

Theorem 8.4.2. With the notation of Proposition let0=t) <ty <---<ty=T.
Then there is a B-B-correspondence isomorphism

(Pind,to ..... 13 : *ind[(]:ind(X[tmtl]H)v 51)7 ... (EHd(X[tN_l,tN]H)v X[to,tl}fN)] — (End(H)a 5)7

where X, +,)H is viewed as B-B-correspondence with an L™ [ti—1,tj]-action, and &; is the
vacuum vector in End(X[tj,l,tj]H)- Furthermore, let ijsy @ XsqH — H be the canonical
inclusion map, and let

Pind,j - B(«End(X[tj,l,tj]H)) — B (*ind[(}_ind(X[to,tl]%),fl)a cee («End(X[tN,l,tN]%)7X[to,tl]fN)])

be the x-homomorphism given by the definition of independence. Then the following diagrams
commute:

Utj_1.t5]

X[t]‘—l,t]‘]H > H

leind leind
Ad

(Pind,tg,...,t 5y )OPind, j
B(End(X[tj_l,tj]H» —_— B(‘End(H>>7
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and
Ad(ige;_.e5))

B(X[tj_l,tj]%) ” B(H)

lmind lmind

Ad(‘bin R t )Opin 7
B(End(X[tj_l,tj]H» dO_N)d@(‘End(H>>7

and
(it _q.51)

La(L®[t;1, 1], B) s Lo(L[0,T], B)

lﬂind J/nind

Ad(Pind,tg,....t 5y )OPind,j
\

B(‘End(X[tj—htj]H)) 7 B('Flnd(H»?

where L,(L*[a,b],B) denotes the space of bounded normal maps from L>®[a,b] to B, and
(/L.[tjflytj])*ﬁ is th’e map f — ﬁ[fhtjfl,tﬂ]'

This theorem immediately implies Proposition [8.4.1} Indeed, the theorem shows that if
¢ € H with xp,_, ;)¢ = ¢, then the creation operator £inq(¢) on Finq(H) is equivalent via
the isomorphism ®inq+,.. ¢, to the image under pinq ; of the corresponding creation operator

77777

B-B-correspondence. By the same token, the multiplication operators of the first and second
kind associated to objects “supported in [t;_1,t;]” correspond under Ad(®inas,, . 1y) " tO
operators in the image of piq ;. Thus, we have

Ad(@inaty,) Aoy, € Pinas (B Fina ey, M) )

But we know from Theorem that the images of pinq; are independent, hence also the
algebras Ay, ;. are also independent. It remains to prove Theorem , which we will do
in cases.

8.4.1 The boolean case

In the boolean case, the isomorphism ®peel s, ¢, i Obtained as follows:

N N
Fiool(H) = BEOH 2 BED D xit, 1ty H = BED ED Fooot(Xpt,1.tH)°.

j=1 j=1
since ]:bool(X[tj,l,tj}H)o = Xit;_1.t;] ", and the right-hand side is exactly the boolean product
B-B-correspondence.

Suppose ¢ € Xi;_,.,)H. The creation operator fpoe1(¢) on Frool(X[t,_1,;)H) maps bE;
to (b € X[i,_,.¢;)" and annihilates x,_,.;)H. NOW phoolj(fboot(¢)) annihilates the spaces
«Fbool(X[tk,l,tk}H> for k 7é ja and it apphes gbool(C) on Bg@fbool(X[tjfl,tj]H)o = Fbool(X[tj,l,tj]H>'
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Thus, ppeor;(£(¢)) maps b€ to ¢bin xp,_,+,)H € H. But under the isomorphim ®pooyy,... ¢y
this corresponds exactly to the action of gbool(l[t] 1t51C) on Fre(H).

Supppose a € B(xp,_,t,)H). The multiplication operator myee1(a) on Fool(X(t,_1.¢,)H)
applies a on xy;,_, +;H and zero on B¢;. Thus, Plt;_1.t;] @pplies a on the subspace x(¢;_, ;) H and
zero on B¢ and X[y, _, )M for k # j. This is the same as the operator myeo(Ad(if;_, (1) (a).

Suppose § € Lo(L>[0,T], B) with X1, 1,8 = 8. Then tyoo(8) = B[1]Pe on Frool(X(t;_, 4,1 H)-
It is straightforward to show that pbool,j(ng) = FP¢ and pyool; is a B-B-bimodule map.
Thus, phool j(Mbooi(@)) is B[1] P, which is the equivalent by the isomorphism ®peo1¢,.. ¢y tO
(i[tj_l,tj])*ﬁ[l]Pg = ﬂbool((i[tj_l,tj])*ﬁ)-

8.4.2 The free case

In the free case, the isomorphism P, ¢, i obtained as follows. Note that

>t1\7
N ®Rpk
Fual) = €D (@H)
k>0 7j=1
= @ @ [t 15t J1]H OB (X[tjkflvtjk]H)'
E>0 g1,k

The string (or sequence) of indices jj ...jr may have some consecutive repeated indices.
But this string can always be uniquely expressed as k; occurrences of an index i;, then ks
occurrences of an index iy, so forth up to k,, occurrences of 7,,, where each k, > 1 and where
i1 # iy # ... # iy (or in other words 4y .. .14,, is alternating). Thus, we have

Firee(H @ @ @ X[tzl 1:tiy ] H) Gk RYCRRRRYE (X[tim*latim]%)(gskm

m>0 41 ... Fim k1, .km>1

=P D (GB(X[MH,@JH)@BM) e (@(X[timl,timf“)wm)

m>0417...Aim  \k1>1 b >1

= @ @ ffree(X[tirhtil])O KB QB ffree(x[tiNfl’tiN])o’

m>041%... Eim

which is exactly the free-product B-B-correspondence obtained from Fpee(Xito,1:]H),
-Ffree(X[tN,l,tN]H)'

Suppose ¢ € Xjt,_,t;)H. The creation operator lgec(¢) on Frool(Xt,_y.¢,)H) Will tensor
a given input vector in one of the direct summands xy,_, t]]’H@”‘k with ¢ on the left. To
determine the action of ppee ;j(free(¢)) on the free product B-B-correspondence, consider a
vector in one of the direct summands

j—1,

(X[til,l,til]'H)Q@Bkl Rp - g (X[ ]'H) @pkm

’Lm 17 im
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If 7, = j, then this is contained in the direct summand

Ffree(X[tjfl,tj}H)o ®B ‘Ffree(X[thlytiQ]H)o ®B o ®B ‘Fﬁ”ee(X[tim*htim]H)
g ffree(X[tjfl,tj]H) ®B ‘Ffree(x[tiQ,l,t,LQ]H)o ®B e ®B ffree(X[tim71’tim}H).

If 4; # j, it is contained in the direct summand

‘Ffree(x[til—lvtil],}—l)o Xp - OB ffree(X[tim_l,tim}rH)
g ffree(X[tj_l,tj]%) ®B Ffree(X[til_l,til]H)o ®B e ®B ffree(X[tim_htim}H).

But in either case, py,_,+,)(£iec(¢)) will still tensor the input vector with ¢ on the left,
mapping it into

X[tjfl,tj]H ®B (X[tilfl,til]H)(gBkl ®B e ®B (X[timfl,tim]H>®Bkm'

The creation operator lee( (i, ,t;1)+C) on Fiee(H) works out to exactly the same thing.

For a € B(xj,_,+,H), the multiplication operator pgee ;j(Mgee(a)) will multiply a vector
in

(X[tirhtil}H)@Bkl ®p - Qp (X[tim,l,t )®Bkm

by a on the left if i; = j and by zero if i1 # j, and this is the same thing as mgee(Ad (i, 1;1)(€))-
Finally, for 8 € L,(L>[t;_1,t;],B), the operators pgee,j(Nree(B)) and ngee((if;_,.¢,1)+3) both
work out to multiplication by $[1] € B on the entire space Fiee(H).

im]

8.4.3 The (anti-)monotone case

In the monotone case, the isomorphism ®gee ...+, 1s obtained as follows. For the sake of
space, let us abbreviate Eyono(k,T) as E(k,T) and Epeno(k, a,b) as E(k,a,b) throughout
this subsection. Recall that

Ffree(H> = @ XE(k,T) [H®Bk]'

k>0

The points {to,...,ty}* partition [0,7]* into the rectangles [t;, _1,¢;,] X -+ X [tj,—1,1;,] for
Ji, -+ gk € {1,..., N} (we ignore boundary issues since the boundaries of the rectangles
have measure zero). Intersecting with E(k,T") yields a partition of E(k,T') into smaller sets.
But [t;,—1,tj,] X -+ X [tj.—1,t;,] only intersects E(k,T) nontrivially if j; > jo, > --- > jj. In
this case, we can express ji ... Jr as k; occurrences of i1, ko occurrences of 75, and so forth
up to k,, occurrences of i,,, where iy > 179 > --- > 1,,. Then

E(k,T)N ([til_l,til]kl X e X [tim_htim]km) = E(ky,tiy—1,ti,) X -+ X E(kp, ti, —1,ti,,)-
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Thus, we have

mono @ @ @ XE (k,tiy 1t 21)7—[@5761] - QB [XE(km, b e H@Bkm]

m>011>>tm k1,....km>1

= @ @ Fmono(X[til_l,til])o ®B T ®B meHO(X[tiN—htiN])oa

m>0 1. 2im
where we have used the identification

XEB(kjti; 1t H®Bkj = X Bk ti; 1.t )(X[t -t ]H)®Bkl-
But the right-hand side above is exactly the monotone product B-B-correspondence obtained
from fmono(X[to,tﬂH)y sy FIHOHO(X[tN_l,tN]H)'

Suppose ¢ € Xj,_,,t;/H. Consider applying the operator pmono,;(fmoeno(¢)) to a vector in

[XE(klvtnthil)H@Bkl] B - OB [XE(km,tim,l,tim)/H@Bkm].

If m =0 orif j > 41, then it will tensor ¢ on the left. If j = 41, then it will tensor ¢ on
the left to obtain a vector in Xy, , 1H @5 [XE(k.¢,_ htj)’}-t@skl] tensored with the rest of the
spaces above, and next it will multiply by x gk, +1, to1y) acting on the left-most tensorands
Xitj—1.t;) " @B [XBEk1,t;1.1)) yH®sM]. Finally, if j < i1, then pmonoj(fmono(¢)) Will evaluate to
zero on the input vector.

Then one can check that Emono(itjfhtj@ will do the exact same thing. Indeed, letting
k = ki + ---+ k,,, this operator will tensor the input vector with C and then multiply by
XE(k+1,1)- Now the input vector was “supported in” E(ki,t;,_1,t;,) X -+ X E(km, ti,—1, i),
and after we tensor with ¢, the resulting vector is “supported in” [t;_1, ] X E(ky,ti,_1,t;,) X

- X Bk, ti,,—1,1i,,). Hence, if j > iy, then multiplying by X g1,y does nothing; if j = iy,
then it just amounts to multiplying by Xg( +1,t;_,,) in the first k; + 1 tensorands; and if
7 < 11, then it will kill the vector.

The argument for the multiplication operators Muyono(a) for a € B(x(,_, ¢,;H) is no harder
than in the free case, and we leave the details to the reader. On the other hand, the
consideration of Ny () is more involved for the monotone case.

Let B € Lo(L™[tj_1,t;]), let ¢(t) = Blxpy,) for t € [t;_1,t;], and let 2 be as in the
definition of nyeno(3) (intuitively, 2 is the operator of “left multiplication by ¢” on Xy, , +H).
Recall that Nyono () = B[1]Pr + Mmono(2). Meanwhile, denote

B, te[0,t;],
U(t) = (i1, BIxen] = { ¢(4), ¢ € [ti-1, 4],
0, telt;,T),

j—1,by

and let w be the operator of “left multiplication by ¢” on H. Consider the action of the two
0Perators Pmono,j (Mmono()) and Nmeno((4,_,¢;)«) on an input vector v from

[XE(kl’til—l’til)H®Bkl] ®p -8 [XE(km,tim—l,tim)H®Bkm]7
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viewed both as a vector in the monotone product space and in Frono(H) by a slight abuse
of notation.

e Suppose m = 1, that is, v € BE. Then puono,;j(Mmono(B)) and Mumono((ir,_, ¢, )+3) Will
both multiply v by g[1].

e Suppose j > 1. Then pmono,; (Mmono(2))v = 0 and pmono,; (FP)v = v. Thus,
pmono,j(nmono(ﬁ))v - 5[1]'0

Meanwhile, fyono((7t;_,.1,)«8)v = B[1]v because v [t 1 i) = B].

e Suppose j = i;. Then

pmono,j(nmono<6))v = Pmono,j (mmono(z))v - mmono(w>v - nmono((itj_l,tj)*ﬁ)va

since v represents multiplication by ¢ and w represents multiplication by ), which
restricts to ¢ on the interval [t;_i,;].

e Suppose j < i1. Then pmono,j(Mmono(5))v = 0 by the nature of pyono ;. Meanwhile, note
that gz5|[0,tj} = 0 and hence Nmeno((,_, 1, )+5)V = Mmeno(w)v = 0.

8.5 Construction of processes

Now we describe the construction of the process with independent increments.

Let ind € {bool, free, mono, mono 1}. Let b € L(L'[0,T], B) and let o : L*[0,T]x B{Y') —
B be a distributional family of generalized laws. Let H be a B-B-correspondence with a
normal L>°[0,T]-action, and let ( € H and Y € B(#H) N L*>°[0,T) such that

[E c(F(Y), ) dt = (¢, F(Y)xu0):

we know that such an H, ¢, and Y exist by Lemma [8.2.6,

Note that b : L'[0,T] — B restricts to a linear map L*°[0,7] — B which is normal.
Moreover, for E C [0,7] Borel, we may define xgb : L'[0,T] — B by [(xsb)(t)f(t)dt =
J o) [xef](t)dt. Clearly also xpgb restricts to a normal linear map L*°[0,7] — B. Hence,
Nina(x£d) is well defined.

For 0 < s <t <T, we define self-adjoint operators X; on Fina(H) by

Xs,t = nind(X[s,t]b> + gind(X[s,t]C) + gind(X[s,t}C)* + mind(X[s,t}Y)' (84)

Note that for s <t < u, we have X, + X;, = X;,, by linearity of ninq, lina, and miuq.
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Theorem 8.5.1. Let ind € {bool, free, mono, mono {}, let b € L(L'[0,T],B), and let o be
a distributional family of generalized laws on [0,T]. Let H, ¢, and Y be as above, let X,
be given by , and set Xy = Xoz. Then (Xi)icpr is a process with ind-independent
increments satisfying Xo = 0 and

—[b(t) + Go(.p(2)], boolean case,
O Fx. (2) = —DFx,(2)[b(t) + Go(.1)(Fx,(2))], free case,
A —DFx,(2)[b(t) + Gor.0)(2)], monotone case,
—[b(t) + Go.1y(Fx,(2))], anti-monotone case.

Proof. Note that X; — Xy = X,;. It follows from Proposition that for 0 =ty < t; <

- < ty, the operators Xy ;,, ..., Xiy ,+y are ind-independent. Thus, if y; is the law of
X, then (fi¢)ejo,r] is an ind-subordination family. More precisely, fis Bing ftsy = pte, where
fsy is the law of X ;.

Furthermore, we claim that it is a Lipschitz subordination family. The mean

(X)) = (6, X,6) = (€. mna(xpB)E) = / b(s) ds.

Since b € L(L0,T],B), we know that fo ) ds is Lipschitz in t. Moreover, a direct com-
putation shows that

Var(pe) [1] = (€, £(x10,0¢) ¢ (x10,0¢)§) = ({5 X(0.4€) :/0 o(1,s)ds.

Since o(1,) is in L(L'[0,T7], B), the right-hand side is Lipschitz in .

It follows from the results of that the F-transforms satisfy the differential equations
with respect to some distributional family of generalized laws 7. We must show that 7 = o.
As in §7.4] let 7, be the generalized law given by

F™(2) = 2 — pe (X)W — GM) ().

Hs,t Ts,t

Recall that @ is characterized by

G(ff)a(.,t) (2) =G (2) + o(|t — s]) for every z.

Therefore, to check that o = @, it suffices to show that

G (2) = G(f’})a (yar?) o[t = s]) for every =. (8.5)

From the proof of Theorem {4.5.3] recall that if ) = 1 — P, then the generalized law
7.+ 1s the distribution of the operator QX .() with respect to the vector QX,.£. Now
QX 1€ = lina(X[s,1¢)€ = ( since the three terms in X, ; other than fi,q(X[s() disappear when
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we apply them to ¢ and then project onto {£€}*. And of course, ||x(s.C|| = || [} o(1,t) dt[|'/? =
O([t — s]'/?).

Meanwhile,

QXs,tQ = Qmind(X[s,t]Y)Q + Qnind( X[s, t]ﬁ)Q + Qgind(X[s,t]C)Q + Qgind(X[s,t]C)*Q
= QMina(X(s.)Y)Q + 0+ O(Jt — s|'/?),

where the error estimate holds with respect to the operator norm. It follows that if Im z >
€ > 0, then

(z = QXM ™ = (2 — QM minal(xs.g V)™ QM) L + O(Jt — 5]'/?),

using the standard resolvent-identity trick, where the error estimate depends implicitly upon
e. Hence, letting QX S(f?é’ (n) = Xs,6 (") be the vector in the n x n matrix amplification of
Fina(H), then we have

GSZ),&(Z) = <X[s,t]C(n), (z—Q ")X Q( )) S7t]c(n)>
= <X[S,t]C(n)7 (z — Q( )m(X[S,ﬂ ) Q(n)>71X[S,t]C(n)> +O(|t — 5|1/2HX[s,t}C(n)H2)
= (X" (2 = QM ming (X V)™ Q™) X ¢ + O(lt = 5.
Now Q(n)mind<x[s’tly)(n)Q(n) maps the subspace H(™ C Fiq(H)™ into itself, and the re-

striction of Q(")mind(x[&t]Y)(”)Q(") to H™ is exactly X[s,t]y(n)- And the vector x(s4¢ ) is in
the subspace H™ C Finq(H)™. Thus,

(Xis0C™, (2 — Q™ mina(x(s.9Y) ™ Q™) ¢™) = (x(5.9¢™, (2 = X0 Y ™) " xs.0¢™)
_ (n)
o Gf; o(-t) dt<z)'

Thus, we have demonstrated (8.5) and finished the proof. n

Remark 8.5.2. In the theorem, we only constructed processes with independent increments
where Xy = 0 and hence py = d9. However, we can arrange an arbitrary initial condition p
as follows. Let X, be an operator on a B-B-correspondence K with B-central unit vector ¢
which realizes the law pg. Let X, be the operator on the Fock space Fina(#) as above. Let
(G,n) be the independent product of (K, () and (Fina(H),&). Then the operators pina1(Xo)+
Pind2(Xo4) for t € [0, T] are a process with independent increments which satisfy the evolution
equations , such that the distribution of pina,1(Xo) is fo-
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CHAPTER 9

Examples and applications 1

9.1 Convolution semigroups and Bercovici-Pata bijections

In the previous two chapters, we studied Lipschitz subordination families of B-valued laws
with respect to boolean, free, monotone, and anti-monotone independence. An important
special case is a convolution semigroup, which has received a lot of attention in the literature

(see Tables and [8.1]).

9.1.1 Differentiation for semigroups

For ind € {bool, free, mono, mono 1}, we say that (1):c(0,+o0) is an ind-convolution semigroup
if ps Bing tr = psie- A few preliminary observations about these semigroups:

e In this situation, (s )cjo,77 is a Lipschitz subordination family for any 7" > 0; indeed,
we can take ps; = pu—s for t > s, and then ps Bing s+ = e Moreover, the mean
and variance of u, are given by u(X) = tp(X) and Var(u,) = t Var(u,), which are
automatically Lipschitz in .

e Note that (u:)icp,r) is a monotone convolution semigroup if and only if it is an anti-
monotone convolution semigroup.

Since semigroups are Lipschitz subordination families, Theorems and apply
in the situation of convolution semigroups. In fact, because of the extra symmetry of the
semigroup setup, we can conclude that F),, is differentiable in ¢ in the pointwise sense (and
even smooth). It is instructive to see how these results can be deduced from our more
general theory, even though the case of semigroups could be handled alternatively with-
out using distributional differentiation or the complicated Fock spaces coming from normal
L>[0,T] actions (see especially [PV13] and [AW16]). The statement and proof given here
are essentially from [Jek20) §5.4].

Theorem 9.1.1. Let (/Lt>te[07+oo) be an ind-convolution semigroup. Then there exists a
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unique self-adjoint by € B and B-valued generalized law o such that

—[bo + Go, (2)], boolean case,
O F,(2) = —DF,,(2)[bo + Go(Fx,(2))], free case, (0.1)
' —DF,,(2)[bo + Goy(2)], monotone case,
—[bo + Goy (Fu.(2))], anti-monotone case.

The differentiation with respect to t occurs pointwise with respect to the norm on M, (B).
Moreover, F,,, is a C* function of t, and for all k,{ € Ny,

HAFF,, (20, z1)[wi, ..y wi) = AROFFL) (20, - - 2k) [wr, - - o wy). (9.2)

Proof. Fix T > 0. By Theorem [7.4.1} there exists b € L(L'[0,T],B) self-adjoint and a
distributional farnlly of generalized laws o satisfying the differential equation. Letting by =
p1(X), we have fo s)ds = thy for all t € [0 T], and thus the distribution b is given by the

constant function by in the sense that fo s)p(s)ds = (foT ®)by for all ¢ € L0, T].
Similarly, we claim that o is given by a generalized law oy which is independent of t.

Recall that in §7.4] we constructed o as the limit over partitions P of distributional families
of generalized laws op, which were given by

N
1
op(p(Y),t) = Z ﬁﬁj,l,tj (P(Y))X1t;1.)(2),
=1 ”
where P = {to,t1,...,ty} and 7y, is given by F), (2) = z — ps(X) — G, ,. Note that

Tst = Ti—s for s < t, where 7, corresponds to p, in the same way. In particular, letting
Py ={0,T/N,2T/N,..., T}, we have

N

O"pN(‘, t) = TTT/N.

By Lemma[7.4.4] for f € B(Y') and ¢ € L'[0,T], we have

T T
[ ot nowa = i [ om0 = ([ oto)a) Lot
0 — Jo N—oo
This implies that (IN/T') 77,y converges in moments to some generalized law o (since rad(7;/n)
is uniformly bounded) and that [, o(-,t) = ([ 6(t) dt)ay. Therefore, we have found
a self-adjoint by € B and generalized law ao satlsfymg the desired differential equation in a
distributional sense. It follows from Theorem that b and o, and hence by and oy, are
uniquely determined by (g4)¢cpo,r)- In particular, this implies that by and o are independent

of T.

Next, we claim the differential equation holds in a pointwise sense, not merely a dis-
tributional sense. To prove this, note that the distribution 0,F),, () is actually given by
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a pointwise-defined and continuous function of ¢, because b + GG, is independent of ¢ and
DF,, (%) and F,,(z) are locally Lipschitz in t. Therefore, F},, is the antiderivative with re-
spect to t in the distributional sense of a distribution which is a continuous function ¢, and
so by the well-known argument to prove the fundamental theorem of calculus, we see that
F,, is continuously differentiable with respect to ¢. Since this holds for ¢t € [0,7] and T is
arbitrary, it holds for ¢ € [0, +00).

Next, one can show by induction on ¢ that F}, is a C* function of ¢ and holds for
all k& (we will not need to induct on k, however). We already showed above that F),(z) is
C' in t. The equality of mixed partials holds because A*F,, (2o, ..., z1)[w1, ..., wy] is
given as a matrix block of the evaluation of F},, on a certain upper triangular matrix. For
the induction step from ¢ to ¢ + 1, one differentiates ¢ times with respect to ¢ (which
makes sense by the induction hypothesis), and thus expresses 8f+1F 4, in terms of lower-order
t-derivatives of F,, and the spacial derivatives A*F),, to show that F},, is C**! in ¢ (we leave
the details of this computation to the reader). And it follows that A*F,, is also C*™! in
t. O

9.1.2 Fock space construction for semigroups

Conversely, using Theorem one can show that for every (b, 09), there exists a corre-
sponding semigroup (fit):ejo,+o0) for each type of independence modeled by operators on the
corresponding Fock space. This Fock space turns out to be much simpler to construct in the
case of a semigroup; see the references listed in Table [8.1]

In Lemma [8.1.2 for each distributional family of generalized laws o on [0,7], we con-
structed a B-B-correspondence | o8B (Y) ®o(.1) Bdt as the separation-completion of £ ®qq
B(Y) ®a, B with respect to a certain inner product, where £ is the algebra of simple func-
tions in L>°[0,T]. But if o(-,t) = 0¢(-), then the inner product reduces to

([reapi(Y)®b, fi @pa(Y) @ ba) = (f1, f2) r2p011(P1(Y) @ b1, p2(Y) ® b2>B(Y)®JOBa

and hence
/ B(Y) @y Belt = L2[0,T] @c (B(Y) ®, B),
®

where the B-B-bimodule structure is the one inherited from B(Y) ®, B. Moreover, the
L0, T]-action on this B-B-correspondence from Lemma is the standard L°[0,T7-
action on L?[0, T tensored with identity. Letting Ho = B(Y) ®,, B and H = L*[0,T| @¢ Ho,
it is straightforward to check that

HEER = (120, T])%F @c HE* 22 L2([0, T]F) ®c M.

Moreover, the L*°([0, T]*)-action on H®5* from Lemma is exactly the canonical L ([0, T')%)-
action on L?([0, T]¥)-action tensored with the identity on "
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Therefore, recalling the notation Einq(k,T') defined in §8.3) we have that
Find(H) = B & @D L*(Ena(k, T)) ®c H5™".
k>1

Let ¢ be the vector 1 ® 1 ® 1 in K, which we can express as 1 ® (y, where (, = 1 ® 1 in
Ko. Let Y be the operator on H given by the GNS construction, which we can express as
the identity on L?[0, 7] tensor the multiplication operator Yy on Hy. Recall that the process
with independent increments was given by

Xs,t = ﬁind(X[s,t} bo) + find(X[s,t}C) + gind(X[s,t]C)* + mind(X[s,t}Y)- (9-3)
Here each of the operators has a simpler form in the setting where by and oq are independent

of ¢

e The operator £ina(X(s1¢) maps L?(Bia(k, T))@cHy " into L2 (Eia(k+1,T))@cH#* !
by sending f ® i (where f € L*(Eia(k,T)) and 1 € H*") to (x5 @ f)l&
(Co®@m).

e [ts adjoint can be described in a similar way.

Eina(k4+1,T) ®

e The multiplication my,a(x(sqY) acts on L*(Ea(k, T)) ®c ”H,Sz’gk by multiplying by X(s 4
in the first coordinate on L?*(FEiq(k,T)) and multiplying by Yj in the first coordinate
on HE*.

e The operator n(x(s,qbo) is given by left multiplication by (¢ —s)by P in the boolean case
and (t—s)bp in the free case. For the monotone case, it is (¢t —s)by P plus multiplication
by the function ¢(u)by on the direct summands k£ > 1 in the Fock space, where ¢(u) =

f X[s,4) (v) dv. The anti-monotone case is the similar with ¢(u fo Xis, (V) dv.

We claim that the law p,; of the operator X ; only depends on ¢ —s. In light of Theorem
, the law of X, is the same as the law of a creation-plus-annihilation-plus-multiplication
operator on the Fock space over the subinterval [s,t] rather than the entire interval [0, 7.
But the Fock space over the subinterval [s,t] is clearly isomorphic to the Fock space over
the subinterval [0, ¢ — s] by a time translation, which also respects the creation, annihilation,
and multiplication operators in a canonical way.

In fact, the Fock space can easily be extended to the time interval [0, +00) rather than
[0,T]. We did not address this in the general case in the last chapter simply to minimize the
amount of technical explanation needed. But for the setting with by and oy constant, it is
clear that if Ei,q(k,00) = Upw Eina(k, T), then the Fock space on [0, 00) should be

B & P L*(Ba(k, 00)) @c Hy®".
k>1

The creation, annihilation, and multiplication operators in (9.3) make perfect sense on this
larger space. Letting p; be the law of Xy, we have that (j);>0 is a convolution semigroup
for the appropriate type of independence.
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9.1.3 Bercovici-Pata bijections

The classification of semigroups leads to the following result. This is a summary of the
outcome of a lot of prior work (see the references in [7.1)).

Theorem 9.1.2. For each ind € {bool, free, mono, mono 1}, there is a bijective correspon-
dence between convolution semigroups (tu)icjor) and pairs (bo, 0q), where by € B is self-
adjoint and oy 1s a B-valued generalized law. In particular, the convolution semigroups for
free, boolean, and monotone independence exist in bijection with each other.

Proof. Fix a type of independence. By the previous theorem, we have an injective map
that sends a semigroup (fi¢):cjo,00) to the corresponding pair (by, o) satisfying the differen-
tial equation. This map is also surjective because the Fock space construction produces a
semigroup (fit)iejo,00) for each pair (by, og). O

The bijection between semigroups and pairs (bg, 0¢) is a version of the Lévy-Hincin for-
mula, while the bijections between the semigroups for different types of independence are
called Bercovici-Pata bijections because of their relationship with the work of Bercovici and
Pata [BP99] (see §1.3). However, let us reiterate that [BP99] not only proved bijections
between semigroups (which could easily be deduced from the Lévy-Hincin formulas), but
also showed much deeper bijections between limit theorems for classical, free, and boolean
independence, which we will not handle here.

In the scalar-valued setting, the Bercovici-Pata bijections work without any assumptions
of bounded support or finite moments (although in general, we cannot express things in
terms of a finite measure o as we have done here). For the B-valued setting, hardly any-
thing is known about the case of measures with “unbounded support.” However, under the
assumption of bounded support, the Bercovici-Pata bijections between free, boolean, and
monotone convolution semigroups were studied both for multivariable distributions and B-
valued distributions by the papers listed in Table [7.1] Theorem thus summarizes the
state of the art for B-valued semigroups indexed by ¢t € [0,00). However, we should also
mention that in the free and boolean cases, we can take convolution powers of a distribution
indexed by completely positive maps rather than real numbers; see [ABF13].

The results of the previous two chapters amount to a generalization of Theorem to
Lipschitz subordination families rather than semigroups. For instance, for the time interval
[0, 7], we can state the result as follows. This follows from Theorems [7.4.1] and [8.5.1| by the
same argument as above.

Theorem 9.1.3. For each of the four types of independence studied here, the differential
equations define a bijection between Lipschitz subordination families (ju)icpo,r) with
pe = 6o and pairs (b, o) whereb € L(L'[0,T), B) is self-adjoint and o is a distributional family
of B-valued generalized laws on [0,T]. In particular, the Lipschitz subordination families for
the four types of independence are in bijection with each other.
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boolean free (anti-)monotone

scalar-valued [SWO7, Thm. 3.4].  [VDN92, §3.5] [Mur01]
best scalar-valued [AS1S] [CGOS] [ASWI9]
operator-valued [BPV13, §2.1] [Voi95, Thm. 8.4]  [BPV13] §2.3]

[Speds, §4.2]  [HSI4, Thm. 3.6]

Table 9.1: References on non-commutative central theorems.

9.2 The central limit theorem

The central limit theorem of classical probability states that Xi, ..., Xy are independent
and identically distributed with mean zero and variance 1, and if Sy = (X;+---+Xy)/V'N,
then the law of Sy approaches the standard normal distribution as N — oo. There is also
a central limit theorem for each of the types of independence studied here. We list the
references in Table [9.1] for the reader’s convenience; the second row lists the sharpest known
estimates for the scalar-valued setting.

9.2.1 The Bernoulli, semicircle, and arcsine laws

Which laws play the role of limiting distribution for the boolean, free, and monotone central
limit theorems? In hindsight, the Bercovici-Pata bijection provides a clear heuristic. The
normal distributions of mean zero and variance ¢ form a classical convolution semigroup which
corresponds in the classical version of the Lévy-Hinc¢in formula to the pair (b, 0g) = (0, dp),
and it is modeled on a symmetric Fock space.

Thus, our candidates for the central limit laws for boolean, free, and (anti-)monotone
independence are as follows:

e In the boolean case, we take (by,00) = (0,dp), and then by Proposition this
produces the boolean convolution semigroup of laws V001, satisfying K, ., ,(2) = t/z,
which amounts to Voo = %(5_751/2 + 0,1/2). This is the Bernoulli law of mean zero and
variance t.

e In the free case, by Proposition we get @, (2) = t/z, which amounts to

—1 - . . . . . . .
F, (2) = z+t/z. Inverting the function and then applying the Stieltjes inversion

formula, we get
1
free () = 5= VA = 22 1y o2 .

This is the semicircle law of mean zero and variance t.

e In the (anti-)monotone case, by Proposition [7.4.8) the F-transforms should satisfy the
differential equation

atFLm(mo,t (Z) = —FVmono,t (Z)_l .
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This is an ODE so it clearly has a unique solution for z in the upper half-plane, and
one can directly check that F,,_ .. .(2) = V22 — 2t is the solution. By Stieltjes inversion
we get

1
deonoi('r) = mhxkﬂ dz.

This is the arcsine law of mean zero and variance t, so named because the cumulative
distribution function is 1/2 4 (1/7) arcsin(z/v/2) on [—v/2,v/2].

We will not dwell on the details of these computations since they have been explained
long ago in the references in Table[9.1] but move on immediately to the most general setting.
In the B-valued setting, the variance of a law p is not a scalar, but rather a completely
positive map Var(u) : B — B given by Var(u)[b] = u[(X — u(X))b(X — u(X))].

Definition 9.2.1. For each ind € {bool, free, mono, mono t}, each b € B, and each n : B —
B, we define vipqy, as follows. Let 7 : B(Y) — B be given by 7(p(Y)) = n(p(0)), which is
a B-valued generalized law. Consider the ind-convolution semigroup corresponding to (b, 7)
in the Lévy-Hincin formula, and then let v4,q5, be the law at t = 1 in this semigroup. We
call Vinap., the B-valued Bernoulli (resp. semicircle, arcsine) law of mean b and variance n
in the boolean (resp. free, monotone) case.

Proposition 9.2.2.

(1) For each ind € {bool, free, mono, monot}, the laws (Vingt.iy)tcio,c0) form a convolution
Semigroup.

(2) If X ~ Vinap,y and ¢ € R, then cX ~ Vg cp.c2y-
(3) In the free and boolean cases, we have Ving p, n Bind Vind,bone = Vind,by+bs.ns -

(4) rad(Vinap,y) < 2[00 + o]
Proof. (1) Fix b and 7 and let (jt):c(0,00) be the semigroup given by (b,7). We claim that
[t = Vindby- Lhis is because we can reparametrize time to map the interval [0,¢] to the
interval [0,1]. This results in rescaling the time derivative in (9.1) by a factor of ¢, which
is equivalent to multiplying b and 7 by t. Therefore, (Vinatoim)icio,00) = (Ht)tc0,00) 1S
convolution semigroup.

(2) Let (Xi)tejo,0) be a process with independent increments satisfying Xy ~ vind .-
Then we have F.y,(z) = cF,(cz), and hence if F, satisfies the differential equation (9.1))
with b+ 7(z71), then F.x, satisfies it with cb + cij((cz)™!) = cb + An(z71).

(3) In the boolean case the K-transform of vhoorp, is b+ n(z71) and in the free case
the ®-transform of Vgeep, is b+ n(z71), and the K-transform or ®-transform respectively is
additive under convolution.

(4) The central limit law is realized on the Fock space by fina(x[0,10) + fina(X[0,11¢) +
lina(X[0,11€)"; where ((, €) = n(1). Then observe that |[nina(x(o.0)[| < [[b] and [|€ina(xo€)[| <
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HC” because gind(X[O,l]C) is a Compression of gfree(X[O,l}g) and ‘gfree(X[O,l}C)*gfree (X[O,I]C) = <C7 C>
]

Remark 9.2.3. However, in the monotone case, we do not have in general that u>v = v > p,
so there is no reason to expect the relation (3) to hold for general by, 1y, bo, and ns.

9.2.2 Central limit theorem via spatial coupling

The proof of the central limit theorem that we present here is based on “coupling” two
different non-commutative laws together on the same Hilbert space rather than by computing
moments or studying the analytic transforms. The results of this section are based on [JL.19,
§8.2] and [Jek20l, §7], which was the first time such a coupling proof was presented as far as
we know.

We will prove the following version of the central limit theorem. We provide this simple
statement immediately as a goal of the section for the sake of exposition, although as we
will explain later, the method of proof also yields more refined versions of the theorem. For
a scalar ¢, we denote dil.(x) the law given by dil.(1)(f(X)) = pu(f(cX)). Thus, for instance,
if X1, ..., Xy are i.i.d., then the law of (X; + --- + Xy)/N2 is the N'/2 dilation of the
N-fold convolution power of the law of X;.

Theorem 9.2.4. Letind € {bool, free, mono, mono t}. Let u be a B-valued non-commutative
law with mean 0 and variance 1. Let Vinao, be the law defined in the previous subsection.
Then

||M0mk(dilN_1/2(,uBai“dN)) — Momy (Vind,0.) || < 2N*1/2(rad(u)k + rad(umd’om)k).

Definition 9.2.5. Let o7 and 03 be B-valued generalized laws with 01|z = 09|g. A spatial
coupling of o1 and oy is a tuple (H, £, X1, Xs), where H is a B-B correspondence, £ is a vector
in H and X; and X, are self-adjoint operators with distributions o, and o, with respect to
the vector £. We define

deoup (01, 09) 1= inf{||X1 — Xo|l : (H,&, X1, Xs) a spatial coupling of o7, 02}.

Note that 01(1) = 02(1) is a necessary condition because o;(b) = (&, b¢).

We do not claim that dgoyp, is a metric. To check the triangle inequality one would have to
be able to “glue together” a spatial coupling of o; and o5 and a spatial coupling of o9 and o3.
(One could try to take an independent product amalgamated over the subalgebra generated
by B and the operator X, for oy, but this runs into problems because the expectation might
not be faithful as a B-valued state, and because of the lack of orthogonal complements in
C*-correspondences.) Despite possibly not being a metric, deonp as we will see relates nicely
to independent products and allows for an easy and direct proof of the central limit theorem
(for measures with “bounded support”) with explicit estimates on moments.
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Lemma 9.2.6. Let oy and oy be B-valued generalized laws with o1|g = 03|s. Then
Moy (il 172 (sex)) — Moty ()| < SB[ @n(D)2 + N2 rad ()" rad ().
Proof. Let (H,&, X1, X2) be a spatial coupling of o; and o9. Then
Momy, () [wo, . . ., wi] = oj(weX;wy ... Xjwg) = (€, woX,wy ... Xjwik).
Now

<£, w0X1w1 e Xlwké) — <€, ’ll)oXQU)l .. Xka§>

k
S ZH<§, U}()Xl Ce ’LUZ',1<X1 — Xg)wiXQ Ce U}k>H
k
<Y lwia Xa - web || Xy — Xof[[[wiXs . wid]|
- k
<Xy = X Y llo(wi Xy - wiywiy . Xywo) ||V |0 (wi X .. o Xawg) ||

<[| X1 = Xal[[Jwoll - ||wk||2||01 (N2 rad (1) oa(1)[]2 rad(o2)"
<[ X1 = Xofl[Jwoll ... ||wk||||01( )|[k max(rad (o), rad(e2)) .

This proves the desired bound on || Momy(o;) — Momy(03)||. But since any coupling on H
automatically produces a coupling on the matrix amplification H (™, the same estimate holds
with o; replaced by 0](-"). Thus, our moment estimate holds for the completely bounded norm
of Momy(01) — Momy(02). O

Observation 9.2.7. We have deoup(dil.(07),dil.(02)) = cdeoup(01, 02).

Lemma 9.2.8. Let puy and ps be two non-commutative laws with the same mean and vari-
ance, and let (b;,0;) correspond to pi; as in Theorem (so by = by and o1|p = 09|B).
Then

dooup (11, 112) < deoup(01,02).

Proof. Let (K, (,Y1,Y2) be a coupling of 01 and o2. Then define H = B¢ @ K and define X
by

Xj(c€ ® k) = (bje+ (¢, K))E & (Cc+ Yjk).
for ¢ € B and k € K as in the proof of Theorem [£.5.3] Then we have X; ~ p; and
[ X1 = Xof| = [IV1 — Ya|. u
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Lemma 9.2.9. Let i be a B-valued law with mean b and variance n, and let (b, o) correspond
to p as in Theorem[[.5.5. Then

dcoup(ﬂw Vbool,b,n) S dcoup(aa ﬁ) S rad(a),
where [(p(Y)) = n(p(0)).

Proof. Let K = B(Y)®, Band ( =1® 1 € K. Then (K, (,Y,0) is a spatial coupling of o
and 7). S0 deoup(0, 1) < ||Y]| = rad(o). The inequality deoup (1t Yboolby) < deoup(o, 1) follows

from Lemma [9.2.8 O]
Lemma 9.2.10. Fiz ind € {bool, free, mono, monot}. Let uy, ..., pun and vy, ..., vy be
B-valued laws such that for each j, the laws p; and v; have the same mean and variance,
and let p and v be the ind-convolutions of py, ..., uny and vy, ..., vy respectively.

Let (b, 05) and (b, 7;) correspond to p; and v; respectively as in Theorem[{.5.3, and let
(b,0) and (b, T) correspond to u and v. Then we have

Aeoup (t, V) < deoup(0, 7) < j:rrllaxN deoup (0, T5).

Proof. The inequality deoup(it, V) < deoup(o, 7) follows from the previous lemma.

To prove the second inequality, let (K;, (;, Y}, Y]) be a spatial coupling of (0j,7;). Let
H; = BE; @ Ky, and let (H;, &, X;, X) be the coupling of p; and v; as in the proof of the
previous lemma. Then let (H, £) be the independent product of (H1,&1), ..., (Hn,&En). Note
that

N N
X = Zpind,j(Xj)a X' = Zpind,j(X]/')
j=1 J=1

are a coupling of pand v. Let Q = 1—F; € B(H), and let K = QH = HSBE. Let Y = QXQ
and V' = QX'Q, and let ¢ be the sum from j = 1 to Nof the vectors (; € K; = Hj C H.
Then (K, (, Y|k, Y’|x) form a coupling of o and 7 as is clear from the proof of Theorem [4.5.3]

Also, we have
n

N
Y = Zpind,j(y})a V' = Z Pinaj(Y7)-
=1

J=1

Since (Y; — Y/)¢; = 0 for each j, we have by Lemma m that

VYl < - —YI.
IY =Yl < max ||Y; - Y|

-----

Since Y and Y}’ represented an arbitrary spatial coupling of o; and 7;, we have

dcoup(aa 7_) < _max dCOUP (Uj’ Tj)' o
j=1,...N
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Proof of Theorem[9.2.4]. Let pu have mean zero and variance 1 and let o correspond to p as

in Theorem By Lemma (9.2.9) deoup(o,7) < rad(o).

Let puy = p&ma and vy = nggigfn. By Lemma [9.2.10}

dcoup(UNa vy) < ,HllaXN dcoup(0> n) <rad(o) <rad(u).
j=1,...,

Hence, by Observation [9.2.
dcoup<dﬂN71/2 (uN), dﬂN71/2 (VN)) S N71/2 rad(,u).
So by Lemma [9.2.6]

HMomk(dilel/z ([LN)) - Momk(dﬂNq/z (VN))”
< k|ln(1)|| max(rad(dil y-1/2 (py)), rad(dil y—1/2 (v ))) " rad(p).

However, by (6.1),

N 1/2

> (1)

Jj=1

rad(py) < 2 + ‘HllaXNrad(a) = 2NV2||n(1)||V2 + rad(o),

and so
vad(dily 12 () < 2n(D)Y2 + N-V2 rad(e) < 2n(1)V2 + N2 rad ).
By the same reasoning, since rad(7) = 0, we have
rad(dily-1/2(vy)) < 2[|n(1)["2.
Therefore,
[[Momy, (dily-1/2 (1)) — Momy(dily-1/2 (vw)) |
< KW1MY + N2 xad()" rad ().

We can apply the same reasoning with p replaced by p' = vinao,, and pfy = (u/)ma?,

But note that dily-12(tly) = #t = Vinao, and rad(vinao,) < 2[7(1)]|Y/? by Lemma [9.2.2|
Therefore, we get

HMomk(yind’Om) — Momk(dﬂNﬂ/a (I/N>) H

< k(D) A (L11M2) " @lln(1)]12)
< 2k{ln(V) (D] 2ln (VI + N~/ rad(1))" ™ rad(p).

Therefore, by the triangle inequality,

| Momy(dil -2 () = Mo (Vina,0.)[| < 3k[n(D) (2n(D]"/2 + N~/ rad ()" rad(p).
0
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9.2.3 Central limit theorem for general mean and variance

There are several ways in which we can generalize Theorem [9.2.4] using the same proof.
First, we do not have to consider only convolutions of the same law. Rather, since Lemma
does not require the y;’s to be equal, we may compare dily—1/2(pt1 Bina - - - Bina tn)
with ving,0,, whenever the y;’s all have mean zero and variance 7). In this situation, the term
rad(u) in Theorem is simply replaced by max; rad(s;).

In the free and boolean cases, we do not have to assume that the variances are the same
either. If ;1; has variance 7;, then we can compare dily-1/2(p1 Bing - - - Bina ptv) with

dﬂN*l/?(Vind,O,m Bing - - - Bing Vind,O,nN) = Vind,0,(1/N) 3 n; -

Here the term 7 in Theorem is indeed replaced by (1/N)>_.n;, as one can check by
examining the application of (6.1]) in the proof.

In the (anti-)monotone case, this breaks down because dily-1/2(Vind,0, &+ B> Vind, 0,y )
may not be the operator-valued arcsine law itself. However, we could view this law as
a sort of “generalized B-valued arcsine law.” It can be modeled on a Fock space on the
time interval [0, 1] corresponding to the distributional family of generalized laws o(-,t) =
> X(G-1/Ngw) (DT

Moreover, one can handle the case of nonzero mean as well. In the boolean and free
cases, we can subtract off the mean from any operator and thus express the CLT in terms of
the mean zero case. More precisely, in the boolean case, one should subtract off P times the
mean, but in the free case one should subtract off the mean itself (as a left multiplication
operator with respect to the left B-module structure of the underlying correspondence).
However, in the monotone case, one runs into the same issue that vmono b, B> Vmono,be,ns 15
not necessarily Vmono,b, +ba,m+ne- Actually, this fails even in the scalar-valued setting with the
same variance and different means, as we encourage the reader to verify on their own. The
best solution seems to be expand our notion of what is considered a valid central limit law
to include “generalized arcsine laws” of the form

Vmono,br,m P " B> Vmono,by i -

Then one can apply the same proof strategy as Theorem [0.2.4] except that the estimates on
the radius of the laws will be different and not as sharp. We leave the details as an exercise.

9.2.4 Central limit theorem for general test functions

We can also generalize the central limit theorem by considering other types of test functions
rather than more general collections of laws. Theorem [9.2.4] merely states a bound on the
difference in kth moments for py = dil N—1/2(ILLEHindN ) and Vina,0,- This implies a bound for
UN(f) = Vind,0,n(f) for a non-commutative polynomial f by writing it as a sum of monomials,
but this bound may not be sharp for general f. Furthermore, we may want to consider f in
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some completion of polynomials, such as fully matricial functions in some ball around the
origin, or even a non-commutative C* function.

In §3.6] we saw that f(X) € B(X) can be interpreted as a fully matricial function of the
variable X as X ranges over any given C*-algebra A C B. Moreover, given X; and X, € A,
we have

f(X1) = F(Xa) = Af(Xy, X5)[Xy — X5,

A version of non-commutative C! functions, and in fact more generally non-commutative
C* functions, on [—R, R] can be defined by taking the supremum of A*f(X;, X,) over all
self-adjoint X; and X, bounded by R. Specifically, define

1A flI7 =
sup{[|A*f(Xo, ..., Xi)|l4 : A C B a C*-algebra, X, ... X}, € A self-adjoint, | X;|| < R}.

(The collection of probability spaces is not a set. However, we can rephrase the definition by
taking the supremum over all possible joint laws of Xj, ..., X;. The space of joint laws is a
set because it consists of functions from a formal polynomial algebra into B.) We can then
define C* (B, R) to be the completion of the non-commutative polynomials with respect to
the norm

k
1f les.sm = D I1A Il
5=0

It is clear that for B-valued laws p and v with rad(u) < R and rad(r) < R and for a
non-commutative polynomial f, we have

12 (F (X)) = p2(f(X] < [1AF[[Rdeonp (01, 72),

since if (H, &, X1, X») are a spatial coupling of 11 and ps, then we can use f(X;) — f(X3) =
Af(Xy, X)[X1 —X,] and applying the definition of | Af||}, with A = B(H). This inequality
will automatically extend to f in the completion C* (B, R).

Hence, for instance, suppose i1, ..., gy have mean zero and variance n and p =

.....

1(f (X)) = Vina.on(F(XDI < 2[[AF R rad(p),

and this holds for all f € C.(B, R). The same method can be applied for different variances
and different means with all the considerations we discussed before.

But the question remains of how to compute or estimate || f|lcx (37 when f is a non-
commutative polynomial or more generally some power series. Of course, it is not hard to
find upper bounds when f is a monomial. Moreover, in the case B = C, we can consider
applying a smooth function ¢ : R — R to self-adjoint operators. Methods for estimating the
non-commutative derivatives for ¢ will be explained in

161



At present, we will conclude with central limit estimates for the Cauchy-Stieltjes trans-
form and (in the scalar-valued case) the Fourier transform of laws obtained by iterated
convolution.

Proposition 9.2.11. Let uy, ..., uy and vy, ..., vy be B-valued non-commutative laws
such that 11;(X) = v;(X) and Var(u;) = Var(v;) for each j. Let

H = dilN_1/2 (/ll Eﬂind te EIlE]ind /vLN)
V= dﬂN—l/Q (1/1 Hing - - - Bina VN)

Let R be any common upper bound for rad(u;) and rad(v;) and rad(p) and rad(v). Suppose
that z € M, (B) with either Tmz > ¢ or ||z7Y|| < 1/(R +¢€). Then we have

2R
1Gu(2) = G2l < s
IFu(z) = B2 < 2R”]VV§§§Z>M||

1Gu(2) = Gu(2)]| < 2R”]VV§§§53[11||

Proof. If o1 and oy are B-valued generalized laws with o1|s = o3| and rad(c) < R and
rad(¢’) < R, then we claim that

Gy, (2) — Go, (2)|| < Hale(zl)ndcoup(a, o) (9.4)

whenever Im z > € or more generally when ||z7!|| < 1/(R+¢). To prove this, let (H, &, Y7, Ys)
be a spatial coupling of o7 and g5. Note that for Im 2z bounded below by some constant, we
have

Go (2) = Goy(2) = (£, [(z = Y1) ' = (2 = Y2) 1JE)
= ((z* = Y1), (Y1 — Yo) (2 — Ya) ).

Now there is an isometric B-B-bimodule map from B(Y) ®,, B to H sending 1 ® 1 to &,
and therefore, the cyclic subspace of H generated by B(Y;) acting on ¢ on the left and B
acting on the right is isomorphic to B(Y) ®,, B. Hence, z — (z — Y;)"'¢ extends to be
analytic whenever z —Y is invertible on B(Y') ®,, B. In particular, when [[z7!|| < 1/(R+¢)
or Im z > ¢, then we have by analytic continuation that

1Go,(2) = Go, (2)]| <]

(" = V)TV = Yall[| (= = Ya) ¢
MP

Y1 — Yal|.

Since the coupling was arbitrary and since (€,&) = 01(1), we obtain (9.4)).
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Now to prove the first estimate on G, — G, let A be the N ~1/2 dilation of the convolution
of the Bernoulli distributions Vbool,b;y; With the same mean and variance as p;. Then by
Lemmas|9.2.9and|9.2.10, we have deoup (i1, A) < N™Y2R. Hence, |G, (2)—Ga(2)|| < R/N/?e2
whenever Im 2z > € or [[z7!|| < 1/(R+ € by (0.4). The same estimate applies to ||G,(z) —
G(z)]|, and so we conclude the proof by the triangle inequality.

For the second estimate, let p, o, and 7 be the generalized laws that correspond to A, p,
and v under Theorem [£.5.3] Since p and A have the same mean, we have

Fu(2) = F(2) = —Gol2) + G, ().
We also have deoup(0, p) < N™Y2R by Lemma . Thus, using (9.4)), we get ||G,(z) —
G,(2)|| < R||Var(u)[1]||/N2e? for Im 2z > € or ||z < 1/(R + e).
For the third estimate, observe that
Gu(2) = Gu(2) = Gu(2)(F,(2) = Fu(2))Gu(2).

Then apply the previous estimate with the fact that ||G,(2)| < 1/e and |G, (2)|| < 1/e for
Imz>ceor|z7Y <1/(R+e). O

Proposition 9.2.12. Let p and v be compactly supported probability measures on the real
line. Let Fu and Fv denote their Fourier transforms, so that for instance Fu(t) = fR X ().
Then

[ Fu(t) — Frt)] < 2m[t|deoup (1, V).

In particular, if p and v are the N='/2 of the convolution of p1, ..., un and vi, ..., Uy

respectively, and if R is an upper bound for the radii of p; and v;, then

4r R|t
IFu(t) — Fu(t)] < Nl/\z |

Proof. The second claim follows from the first by the same reasoning as we have used before
throughout the section. To prove the first claim, note that if (#,£, X,Y) is a coupling of u
and v, then ‘ ‘
Fult) = Fu(t) = (€. (7 — 7)),

Thus, it suffices to show that || X — e2™iY|| < 2xt]|| X — Y.

Let us give a short argument here for this fact, although we will revisit the argument in
greater generality in §18.1] Since X and Y are arbitrary bounded self-adjoint operators, we
can reduce by rescaling to the claim that ||e'X — || < [|X — Y||. For n € N, observe that

eiX_eiY _ Z[ein/nei(n—j)Y/n_ei(j—l)X/nei(n—j—l-l)Y/n] _ Z ei(j—l)X/n[eiX/n_eiY/n]ei(n—j)Y/n'

=1 j=1
Hence, since eU=DX/" and e*("=9)Y/" are unitary, we have
%¢ Y iX/n iY/n
le —e™ || < mfle ™ — e
But looking at the power series expansions of e*/™ and e™¥/", we see that n(e'X/™ — /") —

i(X —Y) in operator norm as n — oo, and hence [[e* — || < [|X — Y. O
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9.3 Spatial coupling for subordination families

9.3.1 General estimates

The same coupling techniques that we used for central limit sums can also be used for
processes with independent increments. The intuition is that X; represents the “sum” of
the family of random variables (X;)o<s<:, and the Fock space can also be thought of the
“independent product of a family of correspondences indexed by t € [0,7].” We will not
attempt to make this intuition precise here, but rather proceed using the formalism of normal
L*>[0,T] actions from §8.2 The analogue of Definition for distributional families of

generalized laws is as follows.

Definition 9.3.1. Let 01,09 : B(Y) ®a L'[0,7] — B be distributional families of gener-
alized laws with o1|pg, r10,7) = O2|Bo.,rij0r]- A spatial coupling of oy and oy is a tuple
(H,Y1,Ys,(), where H is a B-B correspondence with a normal L*>[0, 7] action, Y; and Y5
are operators in B(#H) that commute with the L>[0,T] action, and  is a vector in H such
that such that for j = 1,2, for every Borel set F and p € B(Y),

(€, p(Y;)xeé) = /EUj(p(Y),t) dt.

We define
dcoup(ala 0-2) = lnf{“Yl - YV2|| : (Ha YL Yév C) a Spatia1 Coupling of o1, 02} :

Suppose we have a spatial coupling (H, Y7, Y, () of distributional families o7 and o5 as
above. Let by, by € L(LY0,T],B). Then for 0 < s <t < T, define operators Xs(}t) and Xi?
on Fina(H) by

X( t) = Nind (X[s,t]b]) + gind(X[s,t}C) + gind(X[Syt]C)* + mind<X[svt]}/}>7

as in Theorem [8.5.11 Then it is clear that
1 2
I - x8

S Hnind(X[s,t}(bl - b2)|| + Hmind(X[s,t](Yi - }/2»“
< (= 9)[lbr = boll 11107y, + 1YL — Y-

Given our earlier results Theorems [7.4.1] and [8.5.], this implies the following estimate.

Proposition 9.3.2. Let ind € {bool, free, mono, monot}. Let o1 and oo be families of
distributional geneml@zed laws on [0,T] with o] B LA[0,T] = = 09| B®dlg Lio,], and let by, by €

L(LY0,T),B). Let ,ust be the B-valued law of the operator ijt defined above, so that, in

particular, (ué})te[Qﬂ is the Lipschitz ind-subordination family corresponding to o; under
Theorem [8.5.1. Then we have

2
eoup (18012 ) < (8 = 9)Ibr = ball110.1.8) + deou (71, 02)
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As a consequence, we can obtain estimates for E[f(X S(lt))] — Flf(X 5115))] for various func-

tions f using the same reasoning as in On the other hand, E[f(XS})] —E[f(Xs(lt))] could
have been estimated analytically by studying the differential equations for the F-transforms
of pgt); for instance, see [Jek20|, §7] for a comparison of the two techniques for estimating
the difference between Fuglt) and FM@) in the monotone case. The advantage of the coupling

s,t

technique are that it givéé us fairly sharp estimates, and we do not have to do any more
work to prove them at this point. We are merely collecting on our investment in Fock space
models in §§

Remark 9.3.3. Definition assumes that [, o1(-,t)dt and [, 0o(-,t) are the same for

every Borel set F/, which is equivalent to MSQ and ug) in Proposition [9.3.2| having the same

variance for every s,t. In order to study the case where the variances do not agree, we
could use spatial couplings of o1 and o9 which use two different vectors ¢; and (, for the two
families of generalized laws.

Remark 9.3.4. Due to the general B-valued setting, we have defined deoup (01, 02) abstractly
using normal L>°[0, T'] actions on B-B-correspondences. However, under certain assumptions,
the distributional families of generalized laws and the coupling distance can be understood
using more standard measure-theoretic techniques.

For example, suppose that B is finite-dimensional. Then using Lebesgue differentiation
theory, every distributional family of laws o; will be given by a family of generalized laws
(0;(-st))co,r) that is defined pointwise for almost every ¢, such that ¢t — o;(p(Y),t) is
measurable for every p. Thus, fOT B(Y') ®q,(.1) Bdt will be an honest direct integral of B-B-
correspondences.

Moreover, suppose that #H is a direct integral of B-B-correspondences (Hi)icpo,r). If
(Yt(j ))te[o,T} is a measurable family of operators on H, for each j and ((;):cpo,7] is a measurable
family of vectors such that (M, Y, v,®, (¢) is a coupling of oy (+,t) and oy(+,t) for almost
every t € [0,7], then the direct integrals Y; = fOT Y9 dt and ¢ = fOT (; dt furnish a spatial

coupling of the distributional families o7 and o9 in the sense of Definition [9.3.1]

9.3.2 The example of Loewner chains driven by a function

To bring Theorem and Proposition down to earth, let us consider an explicit
complex-analytic application to Loewner chains in the upper half-plane driven by a function.
Consider B = C, so that in particular a B-B-correspondence reduces to a Hilbert space, and
a B-valued law reduces to a compactly supported measure on R.

Let ¢ : [0, 7] — R be a bounded measurable function. Then the chordal Loewner equation
with driving function 1 is the equation
F(2)
3,5Ft(z) = —

z—P(t)
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for a family of functions F; : H, — H. This is a special case of the monotone version of
(7.1) where b(t) = 0, and where the distributional family ¢ is given by

U('a t) = 51/)(t)7

or more explicitly

/O (D)o (p(Y). 1) dt = / (Op((t)) dt for v € L'[0,T,

and hence G, 4)(2) = 1/(z — 9¥(t)).

The Fock space construction used in Theorem [8.5.1| can be evaluated in the following
way. Note that % = L?[0, T| has a normal action of L>[0,T] given by multiplication. If ( is
the vector 1 and Y is the operator of multiplication by ), then

(€ p(V)xel) = /

E

p((8)) dt = / o(p(YV), 1) dt

E
for every polynomial p and Borel set E. Thus, Y realizes the distributional family o.

The k-fold tensor product of L2[0,T] over C is L*([0,7]%). When we multiply by the
indicator function x g, k1), we obtain simply L?(Emoeno(k, T')), and thus

.Fmono(H> - (Cg S @ L2(Em0no(k’ T))
k>1

The process with monotone independent increments given by o is then
Xs,t = gmono(X[s,t]) + gmono(X[s,ﬂy’< + m(YX[s,t])

Here £(x[sq) maps L2(Buono(k, T)) into L2(Emono(k +1,7)) by f = (X(s. ® )| Bmono (k+1.7);
and m(Y") acts on L?(Epono(k, T')) by multiplying by ¢ x(s4 of the first coordinate. Theorem
says that the solution F; of the Loewner equation is given by

1

A (€, (z— Xo)'€),

or Fy = F,,,, where p,; is the spectral measure associated to X,; and §.
The coupling estimate Proposition leads to the following result in this setting.

Proposition 9.3.5. Let ¢; and o € L*[0,T], and let ,u,gl) and ,u,@ be the probability
measures such that FH(]‘) solves the chordal Loewner equation with driving function ;. Then
t

2
dcoup (Mgl),ug )> S ||¢1 - ,QZ}QHL‘X’[O,T]
and hence the Fourier transforms satisfy
1 2
Fut (1) = Fu® ()] < 2t (|1 = Yol eio -
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Proof. Let 0;(-,t) = 0y,1)- Note that the multiplication operators by t; and v, on L?[0,T]
are a coupling of o1 and o5. As explained in Proposition[9.3.2] this leads to a pair of operators

Xs(,]t) = gmono(X[s,t]) + gmono(X[s,t])* + m(¢j))

on the Hilbert space
F =CED P L*(Brono(k, 7)),

k>1

where v; is shorthand for the operator of multiplication by ; on L?[0,T]. Now /J,Ej ) is

the spectral distribution of Xéft) with respect to &, and we have HXs(lt) — XS(?H < ||ty —

V|| eeo,r)- The proves the desired estimate on dmup(uil), u§2)), and the estimate on the

Fourier transforms follows from Proposition [9.2.12 O]
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Part II

Real evolution equations
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CHAPTER 10

Introduction 11

Now we begin the second part of the thesis, which deals with random matrices and the
tracial W*-algebras which describe their large-n limit. It is based on [Jek19], with some of
the supporting results from the the earlier paper [Jek18]. We caution that the second part
of the thesis uses largely different notation from the first part (see §10.2)).

10.1 Motivation

Free probability initiated a fruitful exchange between random matrix theory and operator
algebras. In many situations, the large-n behavior of tuples of n x n random matrices
(X 1(n), o ,Xé")) can be described by non-commutative random variables Xi, ..., X; which
are operators in a tracial W*-algebra. Conversely, many properties of non-commutative
random variables (and the W*-algebras that they generate) are easier to understand when
they can be simulated by finite-dimensional random matrix models. For instance, Voiculescu
used free entropy, defined in terms of matricial microstates, to prove the absence of Cartan
subalgebras in free group W*-algebras L(F,;) [Voi96]; similar techniques were used to give
sufficient conditions for a von Neumann algebra to be non-prime and non-Gamma (a conve-
nient list of results and references can be found in [CN19]). Further applications of random
matrices to the properties of C*- and W*-algebras can be found for instance in [HT05] and
[GS09, §4].

Free Gibbs laws are a prototypical example of the connection between random matrices
and W*-algebras. Free Gibbs laws describe the large-n behavior of self-adjoint tuples of
random matrices X™ = (X 1("), . ,Xé")) given by a probability measure ;™ of the form

n 1 —n2v() (g
W) = e e

where z € M,,(C)2 is a self-adjoint tuple, dz denotes Lebesgue measure, V™ : M, (C)4 — R
is a function (known as a potential) chosen so that e="*Y™ @) is integrable. Here V™ (z) could

be given by V™ (z) = 7,(p(x1,...,24)), where 7, = (1/n) Tr and p is a non-commutative
polynomial; for instance, taking

n 1 —
VO (z) = 53 e
j=1
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produces the Gaussian unitary ensemble (GUE). Under certain assumptions on V(™ (e.g.
convexity and good asymptotic behavior as n — 00), there will be non-commutative random
variables Xy, ..., X, in a tracial W*-algebra (M, 7) such that

npx™, ,Xc(ln))) — 7(p(X1,...,Xy)) in probability

for every non-commutative polynomial p; see [GM0G, Theorems 3.3 and 3.4], [DGS16], Propo-
sition 50 and Theorem 51|, [JekI8| Theorem 4.3], and §15.1] The random matrix models
satisfy the relation, derived from integration by parts, that

E[r(Va, VIO (XM )p(X™))] = Elr @ 7 (D, p(X™))],

where ijV(”) is a normalized gradient with respect to the coordinates of x; and Dy,
denotes the free difference quotient of Voiculescu. Hence, if the V(s have a large-n limit
described by a suitable “function” V' (see below), then the non-commutative tuple X =
(X1,...,Xy) satisfies

7(Va, V(X)p(X)) = 7 @ 7(Dx;p(X));

see [GMOG6, §2.2 - 2.3] and §16.2] The non-commutative law of a tuple X satisfying such an
equation is known as a free Gibbs law for V.

Given sufficient assumptions on V(™ (for instance, Assumption , many of the
classical quantities associated to X ™ will converge in the large-n limit to their free coun-
terparts, besides obviously the convergence of the non-commutative moments 7, (p(X™)).
For instance, the normalized classical entropy will converge to the microstates free entropy
(see [Voi93) §2], [GS09, Theorem 5.1], [Jek18| §5.2], and §16.1)), and the normalized classical
Fisher information will converge to the free Fisher information (see §16.2). The monotone
transport maps of Guionnet and Shlyakhtenko are well-approximated by classical transport
maps for the random matrix models [GS14, Theorem 4.7]. The solutions of classical SDE
associated to the random matrix models approximate the solutions of free SDE; see for in-
stance [BCGO3|, [GS09, §2], [Dabl17, §4]. For further examples of free probability describing
the large-n limit of random matrix theory, see [Bia97, DHK13, [Kem16, [Kem17].

10.2 Notation and background on tracial W*-algebras

10.2.1 Tracial W*-algebras

Since we do not need or want to get entangled in the definitions of weak and strong operator
topology, the theory of general von Neumann algebras, and so forth, we will take as our
definition the following characterization of tracial W*-algebras; see [AP17hl §7].

A tracial W*-algebra is pair (M, 1), where M is a unital C*-algebra and 7: M — C is
a state such that:

(1) 7 is tracial, that is, 7(zy) = 7(yz) for all z,y € M.
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(2) 7 is faithful, that is, 7(z*x) = 0 if and only if z = 0.

(3) The closed unit ball of M is complete with respect to the norm ||z||, = 7(z*z)"/2.

Given a tracial W*-algebra (M, 7), we denote by L*(M, 1) (or L*(M) when 7 is clear
from context) the completion of M with respect to ||-||2. This is a Hilbert space with respect
to the inner product given by (x,y)s = 7(z*y) when z, y € M. Then M acts by left
multiplication on L?*(M, 7) because this is an example of the GNS construction (see .

But using the fact that 7 is tracial, we can also see that ||zyl||s < ||z]|2]|¥||c0, and hence there
is also a right multiplication action of M on L*(M).

Because of the faithfulness of 7, M may be regarded as a subset of L?(M, 7). Although
it is helpful when developing the general theory to use different notation for elements of M
and elements of L?(M), it would be unnecessary and distracting to do so in our situation.
Thus, we will be content to write for instance z € M or z € L*(M), or to write zy or yz
for the left and right multiplication actions when z € M and y € L*(M). Similarly, we will
not hesitate to write 7(x) = (z,1)y for z € L*(M). The following fact is well known (see
[AP17h, §7]).

Proposition 10.2.1. Let (M, 1) be a tracial W*-algebra. For x € L*(M), let us write
[£]loo = sup{7(y"x2) : y, 2 € M, [[yll2, [[2]]2 < 1}

Then x € M if and only if | x| < 00, and in that case, x|« equals the operator norm of
x.

More generally, for z = (21, ..., 24) € L*(M)?, we will write
p 1/2
[2]l2 = <Z||Zjﬂg>
j=1

I2lloc = max [lz|oc.

and

It is well known that the map M — M given by x — z* extends to a conjugate-linear
isometry of L?(M). Thus, we will denote by L?(M)g, elements of L?(M) with z* = z, and
we denote by Ms, the self-adjoint elements of M. It follows from Proposition that
L*(M)ga N M = M,,. Since T is a trace, we also have 7(xy) € R whenever z,y € L*(M),,
and hence L?(M), is a real Hilbert space with respect to (-, -)s.

By an isomorphism of tracial W*-algebras, we mean a trace-preserving s-isomorphism.
Similarly, an inclusion or embedding of tracial W*-algebras is a trace-preserving x-homomorphism
(N, 7n) = (M, 7) (which is necessarily injective due to the faithfulness of 7). In that case,
we say that A is a W*-subalgebra of (M, 7).
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If 2 = (x1,...,24) is a d-tuple from (M, ), we denote by W*(z) the W*-subalgebra
generated by . We can evaluate W*(z) by taking the [|-||o-closure of the *-algebra generated
by x, and then restricting to the elements that are bounded in |[|-||.-

If N is a W*-subalgebra of (M, 7), then we denote by Ej the orthogonal projec-
tion L2*(M) — L*(N). Using Proposition [10.2.1} we see that Ey maps M into N with
I1EN (7)o < ||#]|co- Moreover, Ex|y = id and Ey is an N-N-bimodule map. In other
words, Ey is an N -valued expectation in the sense of §2.5]

10.2.2 Non-commutative laws

We denote by C(X7, ..., Xy) the x-algebra of non-commutative polynomials in d self-adjoint
indeterminates. A tracial non-commutative law is a linear map A : C(X;,..., X,,,) — C
satisfying

A) Unitality: A\(1) = 1.

(A)
(B) Positivity: A(p*p) > 0 for all p € C(Xy,..., Xy).

(C) Traciality: AM(pq) = A(gp) for all p,q € C(X7, ..., Xy).
(D)

D) Exponential boundedness: |X(z;) ... xzixy)| < R* for some constant R.

The set of non-commutative laws that satisfy (D) for a fixed value of R is denoted ¥, g, and
it is equipped with the topology of pointwise convergence on C(X7,..., X,). Likewise, the
space of all laws, equipped with the topology of pointwise convergence, will be denoted by
DIFA

Proposition 10.2.2. If © = (z1,...,1x4) is a tuple of self-adjoint elements of (M, ), then
the linear functional Ax by A\:(p) = 7(p(x)). Conversely, every non-commutative law can be
realized in this way through the GNS construction.

Proof. First, we proceed as in Theorem [2.6.6] except that we define the power series ring
in several variables instead of a single variable. We thus obtain a realization of A by a self-
adjoint tuple (1, ...,2z4) in a C*-algebra A on a Hilbert space L?()\) with a state 7 given by
the vector £ = 1. Because A is tracial, it follows that 7 is tracial on A. Using traciality, we
check that A acts on L?(\) by right multiplication and from this, we check that the vector
¢ is separating for A, so that 7 is faithful. Then let M be defined as the set of x € L?()\)
such that ||z]/s. < co. The fact that (M, 7) is a tracial W*-algebra is proved similarly to
Proposition [10.2.1 O

Definition 10.2.3. Given self-adjoint d-tuples z and y, we say that x ~ y in non-commutative
law if A\, = \,. Also, we say that z™ converges to x in non-commutative law if A\ ) — A,

(Here z, y, and (™ each come from some tracial W*-algebra, but not necessarily the same

one.)
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Definition 10.2.4. Given a tracial W*-algebra (M, 7) and a set S C M, we denote by
W*(S) the smallest W*-algebra of M containing S. This is equivalently the set of elements
of M that are in the [|-||o-closure of non-commutative polynomials in the elements of S and
their adjoints.

Lemma 10.2.5. We have x ~ y if and only if there exists a tracial W*-isomorphism « :
W*(z) = W*(y) with ¢(z;) =y, for each j.

Proof. Suppose that A, = A,. Then for any non-commutative polynomials p and ¢, we have
7(p(z)*q(x)) = 7(p(y)*q(y)). Therefore, there is a unitary transformation o : L*(W*(x)) —
L?*(W*(y)) sending p(z) to p(y) for every non-commutative polynomial p. Using Proposition
[10.2.1] we conclude that « restricts to a ||-||-isometry W*(z) — W*(y). Since a respects
adjoints and multiplication of non-commutative polynomials, it follows from standard ap-
proximation arguments that « is a x-homomorphism everywhere.

Conversely, if a : W*(z) — W*(y) is an isomorphism with a(x) = y, then we have
a(p(x)) = p(y) for any non-commutative polynomial p, and hence 7(p(z)) = 7(p(y))- O

10.2.3 Free independence and free products

Free independence of W*-subalgebras is defined as in §5.2]

Definition 10.2.6. If (M, 7) is a tracial W*-algebra, then we say that W*-subalgebras M,
..., My are freely independent if whenever ay, ..., ay € M with a; € M, and 7(a;) = 0,
we have 7(aj...a;) = 0. We say that two tuples = and y are freely independent if W*(x)
and W*(y) are freely independent.

Given tracial W*-algebras (M, ), ..., (My, Tn), we construct the free product as fol-
lows. Let (H;,&;) = (L*(M;),1), and let (H, £) be the free product Hilbert space constructed
in (with B = C). Let p; : B(H;) — B(H) be the corresponding inclusion.

Lemma 10.2.7. The vector state T given by £ is tracial on the algebra A generated by
pl(Ml); RN PN(MN)

Proof. We must show that 7(xy) = 7(yz) for all z,y € A. By linearity, it suffices to
consider the case where z and y have the form ay, ..., a; with a; € p;;)(M,(;). In fact, by
transitivity, it suffices to show that

T(ay...ax) = T(agay .. .ax_1)

whenever a; € p;(j)(Ai¢)). We proceed by induction on k. We can write each a; as a scalar
multiple of the identity plus something of trace zero, so by linearity, it suffices to consider
when each a; is one of those two cases.

If some a; is a scalar multiple of the identity, we can remove it from the string and
apply the induction hypothesis. So assume that each a; has trace zero. Furthermore, if
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i(j) =14(j + 1) for some j with 1 < j < k—2, then we can combine a; and a;;; into a single
term and use the induction hypothesis, so assume that the consecutive indices are distinct
except possibly for the last two.

If k=2 andi(1) =4(2), then the claim follows from traciality of 7;1). In any other case,
we claim that both sides are zero. If i(k — 1) # i(k), then the left-hand side is zero by free
independence. On the other hand, if £ > 2 and i(k — 1) = i(k), then by free independence,

T(ay...ar) =7(ay...ap_o(ag—1ax — T(ar—1ax)) + 7(ay ... ap_o)7(ax_1ax) = 0.

The argument for the right-hand side is similar except that the terms aia; play the role of
ak—10. ]

Since 7 is tracial on A, (A, T) generates a tracial W*-algebra (M, 7). We define the free
product of (My,71), ..., (Mn,7n) to be (M, 7). Note that p; defines a tracial W*-inclusion
Mj — M.

10.2.4 Notation for matrix algebras

We denote by 7, the normalized trace (1/n)Tr on M, (C). Then (M, (C),r,) is a tracial
W+-algebra. In particular, we use the notation ||z, ||*]|~, and A, as defined above when
x is an d-tuple of matrices. The notation [|-||z and ||-||e Will never be used for the L? or L*
norms of functions on matrices, but if we write an LP norm it will be denoted by ||| .

Now M, (C)% is a real inner-product space with respect to (-,-)o. It has (real) di-
mension dn?, and hence can be identified isometrically with R%’. For a smooth function
u: M,(C)L — R, we denote by Vu and Hu the gradient and Hessian with respect to such
an isometric identification. (See for further explanation.) Note that this inner product
(-, )2 differs by a factor of 1/n from the inner product (z, y), = Tr(z*y) which many authors
use in random matrix theory. Moreover, since diagonal entries of a self-adjoint matrix are
real, and the off-diagonal entries are in complex-conjugate pairs, we are not using entrywise
coordinates to identify M, (C)% with R or compute derivatives (even after taking account
of the renormalization from Tr to 7,).

10.3 Summary of main results

The second part of the thesis will further develop the connection between classical and free
probability for convex free Gibbs laws by studying conditional expectation (§15)), conditional
entropy and Fisher information (, and conditional transport (§17)).

We consider a sequence of random matrix tuples (X™, Y ™) = (x\" . X L(i?), ™o Yd(:))
given by a uniformly convex and semi-concave sequence of potentials V(™ such that the nor-

malized gradient VV (™ is asymptotically approximable by trace polynomials (a notion of
good asymptotic behavior as n — oo defined in §13.5). Then the following results hold:
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(1)

(2)

The non-commutative moments 7, (p(X ™, Y ™)) converge almost surely to 7(p(X,Y))
for some tuple (X, Y') of non-commutative random variables in a tracial W*-algebra. See

Theorem [15.1.51

The classical conditional expectation E[f™ (X ™y ™)]y ()] hehaves asymptotically like
the non-commutative conditional expectation Ey-«y)[f(X,Y)] where f comes from an
appropriate non-commutative function space and f™ : M, (C)&+e — M, (C) is a se-
quence of functions that satisfy some mild growth bounds at co and “behave like f in
the large-n limit” in the sense of §13.5 See Theorem [15.1.7]

The classical conditional entropy n=2h(X™|Y ™) +d; logn converges to the conditional
free entropy x*(X : W*(Y)). This is a similar to a conditional version of x = x*. See

Theorem [16.4.11

There exists a function f(X,Y) such that (f(X,Y),Y) ~ (Z,Y) in non-commutative
law, where Z is a free semicircular m-tuple freely independent of Y, and this function
also arises from functions f™ such that (f™(X® Y®) y™) ~ (2 Y™) where
Z™ is an independent Gaussian d-tuple. This is the conditional version of transport to
the Gaussian/semicircular law. See Theorems [17.1.1) and [17.1.4]

This transport map also witnesses the conditional entropy-cost inequality for the law of
X relative to semicircular conditioned on Y.

This transport map furnishes an isomorphism W*(X,Y) =2 W*(S|Y) = W*(S)« W*(Y),
which shows that W*(Y') is freely complemented in W*(X,Y).

Actually, a second application of transport shows that W*(Y') is isomorphic to the W*-
algebra generated by a semicircular n-tuple, or in other words L(Fy, ). So altogether
there is an isomorphism W*(X,Y) — L(Fg4,14,) that maps W*(Y) to the canonical copy
of L(Fy,) inside L(Fy, y4,).

Furthermore, the results about transport can be iterated to produce a “lower-triangular
transport” as shown in Theorems [17.1.8] and [17.1.9 and discussed further in §10.6] This is
analogous to the classical results on triangular transport of measure such as [BKMO05].

In the rest of the introduction, we will motivate and explain the main results in more

detail. It will become clear in the course of the argument that our main results and their
proofs are tightly interrelated.

10.4 Main results on conditional expectation

Consider a tuple
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of random self-adjoint matrices given by a probability density (1/ [ eV e VI @) qg dy.
We assume that V(™ is uniformly convex and semi-concave and that the normalized gradient
VV ™ is asymptotically approximable by trace polynomials (a certain notion of good asymp-
totic behavior as n — oo, explained below). The precise hypotheses are listed in Assumption
[15.1.1] We show in Theorem that in this case, there exists an (d; + dy)-tuple (X,Y)
of non-commutative random variables such that 7,,(p(X,Y)) — 7(p(X,Y)) almost surely.

Our first main result (Theorem says roughly that the classical conditional ex-
pectation given Y well approximates the W*-algebraic conditional expectation By vy :
WH(X,Y) — W*(Y). This is motivated in general by the importance of conditional ex-
pectation in free probability, e.g. its relationship to free independence with amalgamation
and to free score functions. See [BCGO3), §4] for a study of the large n limits of conditional
expectations related to matrix SDE. The relationship between classical and free conditional
expectation also has implications for the study of relative matricial microstate spaces, such

as the “external averaging property” introduced in the upcoming joint work with Hayes,
Nelson, and Sinclair [HINT19).

Applications of conditional expectation within this paper include our results on free
Fisher information and entropy (see Theorem [16.4.1]), as well as our proof that Assumption

15.1.1]is preserved under marginals (see Proposition [15.1.8)).

The statement and proof of Theorem rely on a notion of asymptotic approximation
for functions on M,,(C)%, explained in . We define a class of non-commutative functions
Cir.app (R, [|-]|2) as a certain Fréchet space completion of trace polynomials, such that if f €
Cirapp(R*, []]l2) and X1, ..., X, are self-adjoint elements in a Connes-embeddable tracial
W+-algebra (M, 7), then f(Xi,..., Xy ) is a well-defined element of L*(M). In particular,
every f € Ciyapp(R*, ||-|]2) can be evaluated on a tuple of self-adjoint matrices. Now if

f0 My (C)E — M, (C), we say that f ~ f if for every R > 0,

lim  sup [|f"(z) ~ f(a)[|, =0,
=0 pe M, (C)2
lzllcc <R

Moreover, if such an f exists, then we say that f is asymptotically approzimable by trace
polynomials.

Consider the random matrices (X™, Y™) and non-commutative random variables (X, Y")
as above, and suppose that f™ : My (C)4+d — M, (C) satisfies ) ~ f € Oty app(R*@1H82) |]|5)
and satisfies some reasonable growth bounds at co. Then we show that E[f™ (X ™y )|y ()]
is given by a function g™ (Y ™) such that ¢ ~ g € Cirapp(R*, ||-||2), and moreover
Ew-o)[[(X,Y)] = g(Y).

A curious feature of this result is that the function ¢ is defined for all self-adjoint ds-
tuples of non-commutative random variables, not only for the specific do-tuple Y that we
are concerned with. Similarly, the claim that g™ ~» ¢ describes the asymptotic behavior
of g™ (y) for all y € M,(C)%, even though the distribution of the random matrix Y ®V)

sa’
is highly concentrated as N — oo on much smaller sets, namely the “matricial microstate

176



spaces” consisting of tuples y € M, (C)% with non-commutative moments close to those of

Y (see §16.1). Thus, the statement we prove about the functions g™ is stronger than an
asymptotic result about L? approximation such as [GS14, Theorem 4.7].

10.5 Main results on entropy

Voiculescu defined two types of free entropy (see [Voi94], [Voi98a)], [Voi02bh]). The first, called
X(X), measures the asymptotic volume of matricial microstate spaces, which is closely related
to the classical entropy of the random matrix models (see §16.1). The second, called x*(X),
is defined in terms of free Fisher information, which has to do with how the distribution of X
interacts with differentiation and is analogous to the classical Fisher information (see .
Either one should heuristically be the large-n limit of the classical entropy of random matrix
models, but there were many technical obstacles to proving this (see [Voi02b]). The inequality
X < x* is known in general thanks to [BCGO3|. However, even for non-commutative laws
as well-behaved and explicit as free Gibbs laws given by uniformly convex and semi-concave
potentials, the equality of x and x* when d > 1 was not proved until Dabrowski’s paper
[Dab17], and the problem is still open for non-convex Gibbs laws.

In [Jek18], we gave a proof of this equality in the uniformly convex and semi-concave
case based on the asymptotic analysis of functions and PDE related to the random matrix
models which had some parallels to the SDE techniques of [Dabl17]. Here, as in [Jek19], we
will use similar techniques for the conditional setting. We will show (Theorem that
for a random tuple of matrices (X ™, Y ™) given by a sequence of convex potentials as above,
the classical conditional entropy n=2h(X ™ |Y ™) +d; logn converges to the conditional free
entropy x*(X : W*(Y)).

In particular, in the non-conditional setting when ds = 0 (so there is no Y'), this argument
implies that x(X) = x*(X) (see Corollary [16.4.2), because x(X) is evaluated as the lim sup
of normalized classical entropies (Proposition . In fact, the proof here is shorter than
those of [Dab17] and [Jek1§].

In the conditional setting, we focus only on the non-microstates entropy (defined using
Fisher information). It is not yet resolved in the literature what the correct definition of
conditional microstates free entropy should be. In light of §I16.1], the conditional classical
entropy for the random matrix models seems to be a reasonable substitute for microstates
entropy. In the setting where V(™ is uniformly convex, both the overall distribution and the
conditional distribution of X given Y™ exhibit concentration of measure, and hence we
expect the large-n limit of classical conditional entropy to agree with any plausible definition
of conditional microstates entropy.
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10.6 Main results on transport

A transport map from a probability measure p and to another probability measure v is a
function f such that f.u = v. In probabilistic language, if X ~ p and Y ~ v are random
variables, then f,u = v means that f(X) ~ Y in distribution. The theory of transport (and
in particular optimal transport) has numerous and significant applications in the classical
setting. For instance, if we have a function f such that f(X) ~ Y and we can numerically
simulate the random variable X, then we can also simulate Y.

In the non-commutative world, transport is even more significant. As remarked in [GS14]
§1.1], there is no known analogue of a probability density in free probability. However, the
existence of transport maps that would express our given random variables as functions of a
free semicircular family (for instance) would serve a similar purpose to a density, namely to
provide a fairly explicit and analytically tractable model for a large class of non-commutative
laws.

Moreover, in contrast to the classical setting, the very existence of transport maps is a
nontrivial condition. Being able to express a non-commutative tuple Y as a function of an-
other non-commutative tuple X implies that W*(Y) embeds into W*(X), and if in addition
this transport map is invertible, then W*(Y) =2 W*(X). In the classical setting, any two
diffuse (non-atomic) standard Borel probability spaces are isomorphic. On the other hand,
there are many non-isomorphic diffuse tracial W*-algebras, even after restricting our atten-
tion to factors (those which cannot be decomposed as direct sums, or equivalently have trivial
center); see [McDG9]. Moreover, Ozawa [Oza04] showed that there is no separable tracial
factor that contains an isomorphic copy of each of the others. Thus, there are many instances
where it is not even possible to transport one given non-commutative law to another.

The papers [GS09] and [DGS16] showed the existence of monotone transport maps be-
tween certain free Gibbs laws given by convex potentials and the law of a free semicircular
family, and thus concluded that each of the corresponding W*-algebras was isomorphic to
a free group factor L(F,). In particular, this result applies to the g-Gaussian variables for
sufficiently small g. These transport techniques have been extended to type I1I von Neumann
algebras [Nellbal, to planar algebras [Nell5b], and to interpolated free group factors [HN18].

We will focus on “conditional transport” in the tracial setting. Our first main result
about transport is contained in Theorems [17.1.1)and [17.1.4} Let (X, Y ™) be an (d; +dy)-
tuple of random matrices arising from a sequence of convex potentials satisfying Assumption
[15.1.0] Let (X,Y) be an (di + ds)-tuple of non-commutative self-adjoint variables realizing
the limiting free Gibbs law. Then we construct functions F™ : M, (C)h+dz — My (C)%
such that (F)(X®™ y ™) y®) ~ (Z™ y®™) in distribution, where Z™ is a GUE d;-
tuple independent of Y. We think of this as a conditional transport, which transports the
law of X ™ to the law of Z(™ conditioned on Y ™).

Moreover, we show that the transport maps satisfy F™ ~ F € Ci; app(R*@H2) || ||5) 2
In the large-n limit, we obtain (F(X,Y),Y) ~ (Z,Y) in non-commutative law, where Z is a
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free semicircular d;-tuple freely independent of Y. In particular, this means that W*(X,Y") =
W*(Z,Y) = W*(Z)«W*(Y') (where % denotes free product). In other words, W*(Y) is freely
complemented in W*(X,Y).

By iterating this result, we can show that if X = (Xj,...,Xy) is a tuple of non-
commutative random variables given by a convex free Gibbs law as above, then there is an
isomorphism W*(X) — W*(Z) such that W*(X,..., X}) is mapped onto W*(Z, ..., Zy)
for each k =1, ..., d. In other words, there is a “lower-triangular transport.” See Theorems
[17.1.8/and [17.1.9] This is a (partial) free analogue of the classical result [BKMO05, Corollary
3.10].

This result implies in particular that W*(X;) is a maximal abelian subalgebra and in
fact maximal amenable (since the subalgebra W*(S7) is known to be maximal amenable
thanks to Popa [Pop83]), and the same holds for each W*(X;) by symmetry. For context
on maximal amenable subalgebras, see for instance [Pop83|, [BC15l, BHIS]. More generally,
any von Neumann algebraic property of the sequence of inclusions W*(X;) C W*( X, X5) C
co- CWH(X, ..., Xy) will behave the same way as in the case of free semicirculars, that is,
for the standard inclusions L(Z) C L(IFy) C --- C L(F,).

We will show in Theorem that if Z is a free semicircular family and p is a polyno-
mial, then for § sufficiently small, the non-commutative d-tuple X = (Z; 4+ dp1(Z), ..., Zq+
dpa(Z)) is given by a free Gibbs law coming from random matrix models satisfying our as-
sumptions, and hence X can be triangularly transported back to Z, and hence the sequence
of tracial W* inclusions coming from X is isomorphic to that coming from Z. This produces
an abundance of new examples of non-commutative random variables X which behave the
same as a free semicircular family from the von Neumann algebraic standpoint.

The triangular transport maps also relate naturally to the free Talagrand inequality. Let
X be a non-commutative d-tuple realizing the limiting free Gibbs law for random matrix
models as above, and denote by F' the triangular transport map from the law of X to the
law of a free semicircular family Z in our construction, so that F'(X) ~ Z. Then F witnesses
the Talagrand entropy-cost inequality relative to the semicircular law, that is,

1F(X) = X5 < | XI5 + dlog 27 — 2x"(X),
where the left-hand side is twice the entropy relative to semicircular (see Theorem [17.1.9)).

This is not surprising because it was already known in the classical case that the Tala-
grand inequality can be witnessed by some triangular transport [BKMO5, Corollary 3.10].
Moreover, our construction of the transport maps is a direct application of the same method
that Otto and Villani used to prove the Talagrand entropy-cost inequality under the assump-
tion of the log-Sobolev inequality [OV00, §4]; see also . Thus, our main new contribution
is to study the large-n limit of the transport maps using asymptotic approximation by trace
polynomials and some explicit dimension-independent Lipschitz estimates. Specifically, we
show that F' is ||-||o-Lipschitz, and we estimate ||F'(X) — X || in terms of the constants ¢
and C specifying the uniform convexity and semi-concavity of V(™. These estimates will go
to zero as ¢, C' — 1.
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Unfortunately, the maps constructed here are not optimal triangular transport maps with
respect to the L?-Wasserstein distance, since Otto and Villani’s proof of [OV00, Theorem
1] uses a diffusion-semigroup interpolation between the two measures, not the displacement
interpolation from optimal transport theory. In that sense, the results of this paper do not
fully prove an analogue of [BKMO5, Corollary 3.10]. Even in the work of Guionnet and
Shlyakhtenko [GS09], which constructed monotone transport maps in the free setting, the
question of whether these maps furnish an optimal coupling between X and S inside a tracial
von Neumann algebra was left unresolved. Future research should study optimal transport
in the free setting, and determine whether the classical optimal transport (or more generally
optimal triangular transport) maps for the random matrix models converge in the large-n
limit in the sense of this paper (or perhaps only in some weaker sense).

10.7 Overview of the second part

The second part of the thesis is organized as follows.

In §11] we review some relatively standard background concerning log-concave measures
on R?, particularly those given as e~V for some uniformly convex function V. After some
elementary estimates for semi-convex and semi-concave functions V' and the associated mea-
sures, we review the log-Sobolev inequality, Herbst’s concentration inequality, and their
consequences for random matrix models.

In we review background on classical entropy and Fisher information. We include an
exposition of Otto and Villani’s proof that the log-Sobolev inequality implies the Talagrand
inequality [OV00]. This chapter serves as motivation and technical support for our results
about non-commutative entropy and transport in and respectively.

In we define a space Ciyapp(R*?, ||]|2) of “functions of d non-commuting real vari-
ables from a tracial W*-algebra.” Functions in C app(R*?, ||-||2) are suitable for describing
the large-n limit of certain sequences of functions f™ on M, (C)¢. This is the technical
framework that will be used to state and prove most of our main results. The role of in
the second part of the thesis is loosely analogous to the role of §3|in the first part; §3|explores

“non-commutative complex analysis” while explores “non-commutative real analysis.”

Because the space Ci;app(R*, [|+]|2) is not yet standard in random matrix theory, we
describe two other characterizations of this space to build motivation and intuition — first, we
show that it consists of continuous sections of a certain vector bundle over the space of non-
commutative laws (§13.6]), and second, we show that it consists of quantifier-free definable
functions in d variables in the sense of model theory (§13.7). These characterizations are not
used in the proof of the main results, but are included because of their inherent interest.

In §14] we develop further technical tools to prove our main results. First, we explain how
to compute the gradient and Laplacian of trace polynomials. This leads into an analysis of the
standard heat semigroup (almost known as convolution with the Gaussian measure) for func-
tions on M, (C)Z in the large-n limit. Finally, we study ODE for functions Ciy app(R*%, ||-||2)
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d

d are asymptotic to some function Ci; app(R*?, ||-]|2)

and for sequences of functions on M,,(C)
in the large-n limit.

In we prove our first main result (Theorem . As consequences, we show that
the random matrix models associated to a sequence of potentials V(™ satisfying Assump-
tion converge in the large-n limit to some non-commutative law (Theorem [15.1.5)).
Furthermore, if (X Y () is a random matrix tuple given by such a potential, we show in
Theoremthat (roughly speaking) the large-n limit of classical conditional expectations
given Y™ behaves in the large-n limit like the W*-algebraic conditional expectation.

In 16}, we study the microstates free entropy, free Fisher information, and non-microstates
free entropy. We state sufficient conditions for the microstates free entropy x(X) to be given
as the large-n limit of classical entropies of n x n random matrix models (Proposition ,
and for the free Fisher information to given as the large-n limit of classical Fisher informa-
tion (Proposition [16.2.4). We conclude with the main result that y(X) = x*(X) whenever
X arises as the large-n limit of matrix models as in Assumption We also show that
the large-n limit of classical conditional entropy for such matrix models is described by the
conditional version of x*.

In 17, we apply Otto and Villani’s transport construction to the random matrix models
satisfying Assumption The result is collection of maps F™ transporting ™ to the
Gaussian measure, which behave well in the large-n limit (Theorem and thus pro-
duce an isomorphism of tracial W*-algebras (Theorem . By iterating our conditional
transport results, we obtain a lower-triangular transport map (Theorems|17.1.8/and [17.1.9)).

In , we discuss two types of examples of potentials V(™ to which our results in
- apply, both of a perturbative nature. First, we show that a potential V) which is a
small perturbation of the potential (1/2)]|z||3 on an operator norm ball can be extended to
potential satisfying Assumption [15.1.1] allowing us to apply our previous results. Next, we
show that if Z is a free semicircular family, and f is a tuple of self-adjoint non-commutative
polynomials, then Z + ¢ f(Z) has random matrix models satisfying Assumption for
sufficiently small §; hence in particular, it can be triangularly transported to another free
semicircular family.

181



CHAPTER 11

Background: Log-concave measures

The random matrix distributions studied in this work are log-concave measures on the finite-
dimensional inner product space M, (C)Z, which is isometrically isomorphic to R This
chapter will review some background on convex functions and log-concave measures on R¢,
including the log-Sobolev and Braskamp-Lieb inequalities. The goal is to aid readers who
are interested in the von Neumann algebraic results of this paper, but less familiar with
the tools from classical analysis. The results that we state for R? will clearly extend to

any finite-dimensional inner product space, and we will explicitly state their application to
M, (C)¢ with free probabilistic normalizations in .

11.1 Semi-convex and semi-concave Functions

Although we restrict our attention to R? for the moment, we use the notation (-,-) and |||
for the dot product and norm because we are thinking about the application of these results
to arbitrary finite-dimensional real inner product spaces.

Definition 11.1.1. Let A : R? — R? be a self-adjoint linear transformation, and let u :
R? — R be a function. We say that Hu > A if u(x) — £ (Az, z) is a convex function, and we
say that Hu < A if u(z) — :(Az, z) is a concave function.

Definition 11.1.2. We say that u is semi-conver if Hu > cl for some ¢ € R and semi-
concave if Hu < C1T for some C € R.

Lemma 11.1.3. Let £(A,B) = {u: A < Hu < B}. Then u is closed under translation,
averaging with respect to probability measures, and pointwise limits. Hence, in particular, if
w is a probability measure, u € E(A, B) and pxu(z) == [u(zx +y)du(y) is finite for all x,
then pxu € E(A, B).

Proof. First, one can show that convex functions are closed under all these operations.
Indeed, convexity is given by the conditions

u (Z*q’%’) <> tiu(zy),
p =1

whenever t; > 0 and Z?Zl t; = 1. This is a family of linear inequalities on the values of u
pointwise, hence is preserved by pointwise limits and averaging. The family of inequalities is
also translation invariant. The convolution property follows from translation and averaging.
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Next, to extend this characterization to £(A, B), we first observe that
(A(x — x0),x — x0) = (Az,x) — 2(Ax, x0) + (Axg, T0).

Since x — (A(x — z0),z — zo) and & — (Az,z) differ by an affine function, convexity of
u(z) — (1/2)(Ax, z) is equivalent to convexity of u(x) — (1/2)(A(z — o), x — xp). With this
computation in mind, it is clear that functions with Hu > A are closed under all the asserted
operations, and the holds for Hu < B by symmetrical reasoning. O]

Lemma 11.1.4. Let u : R* = R. The following are equivalent:
(1) A< Hu< B.

(2) For each o € RY, there exists yo € RY such that
1 1
§<A(x —x9),x — xo) < u(z) —u(r) — (Yo, — x0) < 5(3(;1: — Ip), T — Xo)
for all x € RY.
(3) w is continuously differentiable and
(A(x — x0),x — x0)2 < (Vu(z) — Vu(xg),x — x0)2 < (B(x — x0), & — X0)2
for all x,zy € RY, where Vu(x) is the gradient of u.
Moreover, in this case, we have |[Vu(z) — Vu(zo)|| < max(|| A, || B)||z — xol|-
Proof. 1t is well known that u is convex if and only if for each g, there exists y such that
u(z) — u(zo) > (Yo, — o) for all z.

To show (1) = (2), we apply this characterization to u(x) — (1/2)(A(x — xy),z — o) at
the point x( to find a vector yy with

£ (Ale — w0), = — ) < ul) — ulao) — (o, x — o).

Similarly, there is a vector y; with

(A(z — xg), x — x0).

N —

u(z) — u(wo) = (Y1, — o) <
Subtracting these inequalities shows that
1
(1 0, — 20) < 3 (& — w0, (A= B — )y <0
Substituting z = xo + (y1 — o) shows that y; = yo, and hence (2) holds.
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Conversely, if (2) holds, then the characterization of convvex function by supporting
hyperplanes, in the reverse direction, implies that A < Hu < B.

(3) = (2). Since u is continuously differentiable,

u(z) —u(zg) = /o (Vu(te 4+ (1 — t)xg), x — xo) dt,
hence

u(z) — u(xg) — (Vu(zg), x — xo) = /0 (Vu(tr + (1 —t)zo) — Vu(zg), r — x0) dt

(B[(tz + (1 — t)xg) — x|,z — mo) dt

IN

I
S— S—

1
t(B(x — xg),x — zo) dt

(B(x — x0),x — xq),

N —

which proves the upper bound of (2), and the lower bound is symmetrical.

(2) = (3). Let px be a smooth probability density supported in B(0,1/k). Now (2)
clearly implies continuity of u. Hence, have uy, — u pointwise as k — oo, and uy; is smooth
by basic facts about convolution. Because of the previous lemma, uy, satisfies (1) and hence
(2). Being smooth, uy has the Taylor expansion

ug(x) = ug(zo) + (Vug(zo), z — xo) + %<$ — o, Hu(zo)(z — 20)) + o(||x — x0||?),

where Vuy is the gradient and Huy, is the Hessian of uy (which we view as a linear trans-
formation). Comparing this with the expansion (2) at the point zp, we can deduce that
Yo = Vug(zg) and A < Hug(zg) < B. This holds for every zp, and hence the inequality
A < Huy, < B is true in the pointwise sense (not merely in the sense of Definition .

Recall that Huy, is the differential of Vu,, and so

1
Vug(x) — Vug(xg) = / Hug(tx + (1 — t)zo)(x — x0) dt.
0
Now A < Huy(tx + (1 — t)zo) < B implies that ||Huy(tx + (1 — t)zo)|| < max(||A][], || B]]),
and hence ||Vug(z) — Vug(zo)|| < max(||A|], || B||)||x — xo||. Moreover, since A < Huy, < B
pointwise,
1
(Vug(z) — Vug(zo), z — x0) < / (Hug(tx 4+ (1 — t)zo) (x — x0), 2 — x0) dt
0
1
< [(B - a)z— )
0
= (B(z — ), x — xo),
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and the analogous lower bound holds with A instead of B.

So (3) holds for ug; to show that it holds for u, we want to apply the Arzela-Ascoli
theorem to (Vug)ken. Clearly, (Vug)ren is equicontinuous because Vuy is max(||Al|, || B]|)-
Lipschitz. To get pointwise boundedness, we substitute x = g + y in (2) for some vector y
and obtain

[(Vur(wo), y)| < Jur(zo +y) — ur(zo)| + max (Al | B])[lylI*,

and the right hand side is clearly bounded as k — oco. So by Arzela-Ascoli, we may assume
without loss of generality that Vu, converges as k — oo locally uniformly to some continuous
function f. It is easy to check that f must be the gradient of u and hence u is continuously
differentiable and Vu, — Vu. Since (3) holds for wy, it must also hold for w. O

Lemma 11.1.5. Suppose that 0 < Hu < A for some self-adjoint linear transformation A.
Then u is differentiable and we have

(Vu(z) = Vu(wo),y)| < (Alx — 20), & — o) *(Ay, Ay)'/2,
so that in particular, ||Vu(z) — Vu(zo)|| < || A||l|x — zoll-

Proof. Differentiability follows from the previous lemma. Also, as in the proof of (3) —
(2) of the previous lemma, it suffices to prove the claim in the case where u is smooth. But
in this case

(Vu(z) — Vu(zo), y)
(Hu(tz + (1 — t)xo)(z — o), y) dt

1(Hu(t$ + (1 —t)xo)(z — x0),x — x0>1/2(Hu(t:c + (1 —t)xo)y, y>1/2 dt

1
(A(x — 20), — w0) > (Ay, y)/? dt

<

<

— — —

= (A(x — x0), 2 — $0>1/2<Ay, y)l/Q. O

Lemma 11.1.6. Suppose that u : R — R with Hu > cI for some ¢ > 0. Then u achieves
a global minimum at a unique point xgy, and moreover,

c
u(w) — u(zo) 2 Sl — wol
Proof. Since Hu > cl, there exists a vector yg such that

() = u(0) > (yo, 2) + 3 all*.
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The function on the right-hand side is bounded below, hence so is u. Let 6 = infu(z), and
choose a sequence xj, such that u(zy) — d§ as k — oco. By convexity of u(z) — (¢/2)||z||?, we
T+ T 2 < 1

have
T+ T & ¢ _ ¢
u (—J 5 ) —3 5 5 <u(:z;j) §||$]H2 + u(zk) §||xk|’2) :

We substitute u((z; + z5)/2) > 0 and rearrange using the parallelogram identity to obtain

c
2l = wil|” < (u(zz) = 0) + (u(xy) = 0),
which implies that (zx)gen is Cauchy and hence converges to some . Then u(zg) = 0, so

xo is a global minimizer.

Next, we apply convexity of the function u(x)—(¢/2)||z—x¢|* for the convex combination
tr + (1 — t)xq to conclude that for ¢ € (0, 1),

C C
u(@o) = Fll(tw + (1 =)o) —woll* < wlw + (1 = t)ao) — Sll(tw + (1 =)o) — o’
C
<t (u(@) = llo = 2ol?) + (1 = Ju(zo),
which implies
C
tu(wo) < ¢ (u(@) = Sllo = 2ol?) + 2z = o

Dividing by t and sending ¢ — 07, we obtain the desired estimate u(x) — u(xg) > (¢/2)||z —
7o|?, which also implies uniqueness of the minimizer. O

11.2 Basic lemmas on log-concave measures

Definition 11.2.1. A probability measure ;. on R? is said to be log-concave if it has a density
p with respect to Lebesgue measure such that log p is a concave function R — [—o0, +00).

Definition 11.2.2. If V : R — R and e~" is integrable, then we can define a probability

measure [ by

1 —Vi(x

We say that p is the measure associated to the potential V.

Conversely, if © has density p > 0, then p is the measure associated to V := —logp.
Since we included the normalizing factor 1/ [e~V, the measure, u is unchanged if we add a
constant to the function V', and p only determines V' up to an additive constant. Nonetheless,
by a slight abuse of terminology, we will often call V' the potential associated to p.

Observation 11.2.3. If [e™" is finite and p is the measure associated to V, then p is
log-concave if and only if V' is convex.

186



Observation 11.2.4. If HV > ¢l for some ¢ > 0, then [e™" < oo and hence there is a
log-concave probability measure p associated to V.

Proof. By Lemma [11.1.6) V' achieves a global minimum at some xg, and V(z) > V(xo) +
(¢/2)||x — mo]|2. Tt is well known that e~(¢/2le==0l* ig integrable, and hence e~V is integrable.
[

We will often use the following integration-by-parts formula.

Lemma 11.2.5. Let V : R? — R with cI < HV < C1I for some 0 < ¢ < C, and let ju be the
associated measure. Let f : RY — R? be a C* function satisfying

1f(2)]| < Kef2lel
V| < Kol

for some constants K, Ko, K{, K}. Then

[V f@) dute) = [ V) duta),
where both the integrals are well-defined (i.e. the functions are integrable).

Proof. By Lemma [11.1.4] V is continuously differentiable, and VV is C-Lipschitz. As in the
previous lemma, note that du(z) = (1/ [ e V)e V@ dz and e~V < e=V@o)e—(e/2)lz—zoll”
where g is the minimizer of V. Now (VV, f) and VT f both grow polynomially, so it is easy
to check these functions times e™" are integrable.

To check the formula, observe that
Vilfe V= (VT —(VV,V[)e V.

Thus, by the divergence theorem, for a ball R, we have

/ (VIf—(VV, eV = / (x, f(x))e_v(x) do(z),
B(0,R)

9B(0,R)

where ¢ is the (d — 1)-dimensional surface measure. As in the previous observation, e=V® <
e~ V@) g—ellz=0l*/2 where x4 is the minimizer of V. Thus, our bounds on f are sufficient to
guarantee that

lim (VIf—(VV, eV = / (VIf—(VV, eV,

and
lim (z, f(x))e V@ do(z) = 0.

R—=o0 JaB(0,R)
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Therefore,
[ = @vImer <o
This is what we wanted to prove since du(z) = (1/ [ e )e™"® dz. [

Corollary 11.2.6. Let V : R? — R satisfy cI < HV < CI for some scalars 0 < ¢ < C. Let
i be the probability measure associated to the potential V', and let X be a random variable
whose distribution is p. Then

(1) E[VV(X)] =0,

(2) E(VV(X),X) =d,

(3) de < E||DV(X)|* < dC,

(4) d/C < E|X — E(X)|; < d/e,

(5) IEX)|* < EIIX[1* < 2d/c+ (1/)[[VV(0)]]*.

Proof. (1) Apply the previous lemma with f(z) = y for some vector y € R? to obtain
E(VV(X),y) = Viy = 0. This holds for all y, hence E[VV(X)] = 0.

(2) Use the previous lemma with f(x) = z and V' f = d.

(3) Let py be a smooth probability measure supported in B(0,1/k) and let Vi, =V * py.
Since V} is smooth satisfies the assumptions of the previous lemma,

E(VV(X),VVi(X)) = E[AVL(X)].

But ¢ < HV,, < C, and hence dec < E[AV,(X)] < dC. Tt is straightforward to check that
E(VV(X),VVi(X)) = E|VV(X)|]* as k — oc.

(4) Observe that by Lemma
cE|X — E(X)|* < E(VV(X) - VV(E(X)),X — E(X)) < CE|X — B(X)]|.

We can evaluate the middle term above as

E(VV(X)-VV(E(X)),X — E(X))
=(VV(X),X) - (F[VV(X)],X)+ E(VV(E(X)),X — E(X)) =d+0+0,
and thus rearranging the inequality finishes the proof.
(5) Tt follows from Holder’s inequality that ||E(X)|* < E||X||>. Now observe that

—_

E|X|? < ~E(VV(X) - VV(0), X)

=%+ %E(VV(O), X).

QL O
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Then we use the arithmetic-geometric mean inequality to conclude that

1
E(VV(0), X) = E{(cY2VV(0), M2 X) < S IVV O+ gE||X||2.

Hence,
BIXI? < & 4+ S IV + 3 BIX P
“c 23 2 ’
which rearranges to the desired inequality. O]

Lemma 11.2.7. Let X be a random variable in R, let G : R — R* be Lipschitz, and let
|G||Lip denote its Lipschitz semi-norm. Then

IG(2) = BGXD < |G, (e = B, + (BIX — E(X)[5)'?) -
Proof. Note that
|G (z) — E(GX))|| < |Gl Elle — X,
<Gl (lz = B + EIIX = E(X)]],)
<Gl (e = BGO + (BIX = E(X)[3)'?) - -

Corollary 11.2.8. Let V satisfy cI < HV < CI for some 0 < ¢ < C, and let p be the
associated measure. Let G : RY — RF be Lipschitz. Then

1 3d'/?
6@~ [ < 161 (1ol+ Hvvion+ 257)
Proof. Using the previous lemma,
6~ [ Gan] < 1ctus (12 = BCOI + (B1X = BCOP),

But by Corollary [11.2.6| (5) and the triangle inequality,

2d 1 YEooar? 1
0l < (24 ZIvvoR) <25+ ol

and by Corollary [11.2.6] (4),

1/2
(ElX - B2 < L =

= cl/2”

Corollary 11.2.9. Let V : R? — R satisfy cI < HV < CI for some 0 < ¢ < C, let ju be the
corresponding measure, and let X be a random variable with distribution p. Then

1/2
vV <C (Hx _ X, + d—) |

c1/2

Proof. We apply Lemma [11.2.7/to DV (X). Also, DV is C-Lipschitz by Lemma [11.1.4] By
Lemma [11.2.6) E(DV (X)) = 0 and E||X — E(X)|3 < d/c. O
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11.3 Transformations of log-concave measures

Log-concave measures are closed under affine changes of variables, independent joins, and
marginals. As we will see, the first two claims are straightforward, but the third relies on
substantial work of Prékopa and Leindler and Brascamp and Lieb.

Lemma 11.3.1. Let i be a probability measure associated to a potential V : RY — R with
[eV <oco. Let T : R? — R? be an invertible linear transformation. Then Tyu is given by
the potential V =V o T, and we have VV = (T-1)*VV o T~ L.

(1) If HV > A for some self-adjoint linear transformation A, then HV > (T~1)*AT !,
(2) If HV < B for some self-adjoint linear transformation B, then HV < (T~")*BT~'.

Proof. For any nonnegative function f, we have

[ 1w = [ srndu = 1 [ frne

Using the change of variables formula for integration,
/f(T:U)eV(”) dr = /f(y)eV(le)] det T dy

/e‘v(m) dx = /e_V(T_ly)| det T~ dy.

Thus,

/ Fly) d(Tp)(y) = felv / fly)e" W dy

since the two terms | det 71| cancel. This is true for all f, hence T,y is given by V.

For (1), the composition of a convex function with a linear function is convex, so if V() —
(1/2)(Ax, z) is convex, then so is V (y)—(1/2)(AT 1y, T y) = V(y)—(1/2){(T~1)* AT 1y, y).
Claim (2) is symmetrical. O

Observation 11.3.2. Let V; : R%" — R and Vi : R® — R such that fe_ i < 400 and let
w; be the probability measure given by the potential V; for j = 1,2. Then py ® ug on R4+
is the measure given by the potential V(x1,x2) = V(z1) + V(z2). Hence, VV (x1,22) =
(VVi(x1), VVia(xe)) and HV (x1,x9) = HVi(21) ® HVa(x2). Moreover,

(1) If HV; > A; for each j, then HV > Ay & As.
(2) If HV; < Bj for each j, then HV < By & Bs.
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Prékopa and Leindler [Pre71], Lei72, [Pre73] showed that if p is a log-concave measure on
R%+42 then so is the marginal v given by (m;).u, where m; : R%1792 is the projection onto
the first d coordinates. This result was sharpened by Brascamp and Lieb in [BL76]. We
summarize the setup and result of [BL76, Thm. 4.3] in our notation as follows.

Theorem 11.3.3. Let ;i be the probability measure on R given by a potential V : R? —
R. Then the marginal py of i on the first dy coordinates is the measure given by the potential

Vi(z1) = —log /]Rd eV Em2) gy,
2

which is a map RM — [—o00,00). Let A and B be positive definite linear transformations of
R4+ ritten in block form as

Al A Bi1 B
o= () 5= (5 52)
where A; j and B; ; have size d; X d;.
(1) If HV > A, then Vi is finite everywhere and HV, > Ay — A172A2_’§A2’1
(2) If HV < B, then HVy < By — B12B;3Bs .

The formula for V; holds because the marginal density should be given by

—Vi(z1) 1
€ o —V(ml,mg)
[evi = Jev /e dz,.
Since V] is only determined up to an additive constant, we can normalize it so that [ eV =
[eV

e .

The differences in notation between our statement and [BL76, Thm. 4.3] are as follows.
The variables (z1,22) in our statement are denoted (z,y) in [BL76]. The matrices A1,
Ajo, Azq, and Ay in our claim (1) are denoted as A, B, B*, C' in [BL76]. The matrix
Aia —ALQAQ_’%AQJ is also known as the Schur complement A/As 5, and this matrix is denoted
by D in [BL76]. The function e~V (122 in our statement is F(x,3)®(z,y) and e~"1() s
G(z)e @D,

The hard part of the theorem is claim (1), which [BL76] prove from the Brunn-Minkowski
inequality. Claim (2) is easier because it can be proved by applying Holder’s inequality to
appropriate functions.

As in the case of the other two types of transformations, let’s record what happens to
VV when we take a marginal.

Lemma 11.3.4. With the setup of Theorem suppose that A < HV < B. Then

_ [V V(21 29)eV @122 dy
Vim) = T e Viras da, '
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In other words, if (X1, X2) is a random variable with the distribution p, then VVi(Xy) is
giwen by the conditional expectation

VVAi(X)) = E[V,,V(X1, X5)|X1).

Sketch of proof. By Lemma [11.1.4], VV is Lipschitz, hence grows polynomially. Because
HV > A and A is positive definite, e~ decays fast enough that we can justify differentiating
under the integral sign:

v[e—\ﬁ(m)] -V |:/ 6—V(z1,x2) d372:|
= —/VmV(xl,xg)e_V(ml’m) dxs.
So VV} = —Vlog(e™"1) = —V[e="1]/e="1, which produces the asserted formula since

e Vi@ — /e_v(zl’“) dxs.

Furthermore, it is clear that e~V (#1:%2) dz, is the conditional distribution of X, given X; = z,
so that the integral formula for VV] describes a conditional expectation. O]

11.4 Log-Sobolev inequality and concentration

The measures p given by a potential V' with HV > cI for some ¢ > 0 exhibit concentration
of measure in high dimensions. This means that if X is a random variable chosen according
to the measure and f is a Lipschitz function, then f(X) is close to E[f(X)] with high
probability, if d is large. This is a consequence of the log-Sobolev inequality, which was
introduced by Gross [Gro7h]. For further information, see also [AGZ09, §2.3.3 and 4.4.2]
and [BLOO].

Definition 11.4.1. We say that a measure p on RY satisfies the log-Sobolev inequality with
constant c if for all C! functions f,

oS > :
[ £ g s JERT (11.1)

The following theorem is due to Bakry and Emery [BES5]. Proofs can also be found in
[BLO0, §3] and [AGZ09, §4.4.2].

Theorem 11.4.2. Suppose that u is the measure associated to a potential V : R? — R with
HV > cI for some ¢ > 0. Then pu satisfies the log-Sobolev inequality with constant c.

One use of the log-Sobolev inequality is that it implies concentration of measure, which
can be formulated more precisely as follows.
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Definition 11.4.3. We say that a measure p on RY satisfies Herbst’s concentration inequality
with constant c if for all Lipschitz functions f : R? — R and ¢ > 0, we have E|f(X)| < +o0
and

P(F(X) = BIf(X)] = 6) < /27l (11.2)

where X is a random variable distributed according to pu.

Note that by symmetry this implies
P(|f(X) = E[f(X)]| > 6) < 2e~/*V/ L. (11.3)

Similarly, for complex-valued functions, we can apply the inequality to the real and imaginary
parts with ¢ replaced by 6/+/2 and thus obtain

P(IF(X) = BIF(X))| 2 6) < de=*/ 111, (11.4)

The next theorem was originally proved in an unpublished letter of Herbst. A proof can
be found in [AGZ09, Lemma 2.3.3].

Theorem 11.4.4. If p satisfies the log-Sobolev inequality with constant c, then it satisfies
Herbst’s concentration inequality with constant c.

11.5 Application to random matrices

We will apply the above results to M, (C)% rather than R?. We equip M,(C)% with the
inner product

<IE, y>2 = Z Tn<xjyj)v

where x;,y; are the coordinates of =,y in M, (C) and 7, is the normalized trace (1/n) Tr.
Since 7, (7;y;) is real, we see that M, (C)% is a real inner product space of dimension dn?.
Therefore, any choice of an orthonormal basis yields a linear isometry from M, (C)% to
R, For u : M,(C)4 — R, we can define the gradient Vu(z) € M,(C)% and the Hessian
Hu(z) : M,(C)% — M,(C)% by means of this isometry with R%”’  and the gradient and
Hessian are independent of the particular choice of isometry. Or equivalently, if u is a C?
function, the gradient and Hessian are the vector and linear transformation satisfying

u(z) = u(xo) + (Vu(xo), z — zo)2 + (Hu(wo)(z — 20), 2 — 20)2 + o( ||z — z0l[3).

d

¢ as the push-forward of Lebesgue measure

Similarly, we define Lebesgue measure on M,,(C)
by a linear isometry R%” — M, (C)?

sa’

We will consider measures of the form du(z) = (1/ [ e V) V(@) dz where dx denoted
the Lebesgue measure described above and V : M, (C)% — R is a given potential. The

sa
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normalizing factor of n? (which is the same as the dimension of M, (C)) is the right one
because it makes all the theorems about the large-n limit work out correctly, as we will see
later.

All the previous results in this chapter can be applied to such random matrix models.
For example, if we assume that ¢/ < HV < C1, then in the previous results we substitute
n?V for V, n?VV for VV, n?HV for HV, dn? for d, cn? for ¢, Cn? for C, and so forth. So
for instance, in Lemma [11.2.5] we would get

[V @, @) uw) = 2 [ V@) duta),

and in Corollary [11.2.6, we would get

and hence

Of particular interest are the log-Sobolev and concentration inequalities for random ma-
trix tuples. Such concentration inequalities were first used in the random matrix context
by Guionnet and Zeitouni [GZ00] in their proof of the convergence of empirical spectral
distributions.

Corollary 11.5.1. Suppose that V : M,(C)% — R satisfies HV > cI for some ¢ > 0, and
let u be the probability measure on M,(C)L given by the potential V. Then u satisfies the
log-Sobolev inequality and Herbst’s concentration inequality with constant n’c.

One application of the concentration inequality is the following a priori tail bound for the
operator norms of random matrices, which will be used throughout the paper for truncation
arguments (see e.g. the proofs of Theorems |15.1.5/and [15.1.7)).

Lemma 11.5.2. Suppose that u is a probability measure on M, (C)¢ satisfying Herbst’s

concentration inequality with constant en?, and X is a random variable with distribution u.
Let f: M,(C)% — M,(C) be Lipschitz with respect to ||-||,. Then we have

P(IF(X) = B (Xl 2 21 11y (©+)) < €772 (11.5)
where © is a universal constant (independent of n and c).

Proof. First, observe that ||z||e < n'/2||z||y for z € M, (C)?,. In particular, g(z) = || f(z) —
E[f(X)]|lso is n'/?|| f||Lip-Lipschitz with respect to ||-||2, and thus

P(g(X) > Blg(X)] +6) < e~ /2l

194



which implies after a change of variables for ¢ that
P(g(X) > Blg(X)] + 2| fluipd) < e/,
Therefore, it suffices to show that for some constant ©, we have

Elg(X)] = Bl f(X) = E[f(X)]ll] < O] flluip. (11.6)

We may assume without loss of generality that f is self-adjoint since in the general case,
f=Q/2)(f+ f*)+i(1/2i)(f — f*), and each of the terms on the right-hand side is Lipschitz.
Thus, the self-adjoint case would imply the non-self-adjoint case at the cost of doubling the
constant ©. Now to prove self-adjoint case, we use an “e-net argument” that is well-known
in random matrix theory (see [Taol2, §2.3.1]). Fix n. Let {n;}7_, be a maximal collection
of unit vectors in C™ such that ||n; —n;|| > 1/3 for all i # j. Since this collection is maximal,
for every unit vector 7, there exists some n; with ||n — ;|| < 1/3. Now if a € M,,(C)s,, then
there is a unit vector with |||l = [(n,an)|. We may then choose n; with |n —n;| < 1/3

lalloe = {n, an)]
|

(g, ang)| + [(nj, a(n — n;))2| + [{n — n;, an)|

1 1
< I(ns>am)| + 5o + gllalle,

so that
Jall., < 3max (. an) |

Note that the balls {B(n;,1/6)};_, in C" are disjoint and contained in B(0,7/6). Hence, we
can estimate the number of vectors by

|B(0,7/6)]  _on
T 1B01/6) =

Let K = || f||Lip- For a matrix a € M, (C)s, we have
i, amy)| < llall o < 02 [lall,.
This implies that = — (n;, f(x)n;) is Kn'/2-Lipschitz with respect to ||-||, and hence
P (It (£0) = BIFCODm,)| = §) < 2670820
Since ||al|, < 3 max;(n;,an;), we have
P(IF(X) = B[Ol > 38) < 2Je7 52

S 2. 72ne—cn52/2K2.
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Thus, for any ty > 0, we have

Ef(X) = E[f(X)]ll] = /Ooo P([F(X) = E[f(X)]llc = ) dt

to 0
< / 1dt + / 9 . 72ne—ent?/18K* 1y
0

to

< to +/ 9. 72ni€—cnt2/18K2 dt
to to

2
=1+ 2- 7271 9K efcnt8/18K2.
cnty

Now substitute ¢y = 6¢~ /2K (log 7)'/? and obtain (11.6) with

3
— 6(1 VR S —
© =06(log7)"/* + (log 7)1/2
(In fact, for a fixed n, we may use ©,, = 6(log 7)*/2+3/n(log 7)/2 in the self-adjoint case.) [

Corollary 11.5.3. Let p and X be as in the previous lemma. Then for any constant K,

E [GK“X”OO1||X||N>\|E(X)||oo+c*1/2@] < d\/%eK2/2nce|E(X)”oo+c1/2@'
Proof. Applying the previous lemma with f(z) = z;, we obtain
P(|IX; — B(X))||loo > ¢ V(O +d)) < /2,
By the triangle inequality and union bound,
P(| X0 = [ B(X)|loc + ¢ (O +8)) < de™ /2,

Let M = ||E(X)]||o + ¢~'/20. By the layer-cake decomposition,
Bty or] = d [ ORI 2 M+
< deEM /Oo eKte—nct2/2 dt
0

_ deKM+K2/2nC /Oo e—nc(t—K/nc)2/2 dt
0
< deKM+K2/2nc/ e—nct2/2 dt
R
27 KM+K?/nc
nc
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One perhaps surprising application of Lemma [11.5.2] is the following, which shows that
||-||2-Lipschitz unitarily equivariant functions are ||| bounded on ||-||s-balls.

Lemma 11.5.4. Let f : M, (C)L — M, (C) be Lipschitz with respect to ||-||» and equivariant
under unitary conjugation (that is, f(uxiu*,... uxqu®) = uf(xy,...,xq)u* for unitaries u).
Let o € R. Then

1f () = 7(f (@)oo < 2V2d"20)| f iy max||z; — ;1|eo,
where © is the universal constant from the previous lemma.

The proof of the lemma relies on the fact that Herbst’s concentration inequality holds
for the Haar measure on the special unitary group SU(n). First, recall that SU(n) is a
Riemannian manifold. The tangent space to SU(n) at a point u can be isometrically mapped
onto the self-adjoint n X n matrices of trace zero as follows. An element x € M, (C)s, of trace
zero corresponds to the element of the tangent space given by path (t) = €' through the
point u, and using the eigenvalue decomposition, it is easy to see that det(e®) = e* (@) = 1.
Thus, we can equip SU(n) with the Riemannian metric induced by the inner product (-, ),
on M, (C)s,, or alternatively we can use the inner product associated to the unnormalized
trace which is (x,y), = Tr(zy) = n{x,y)s.

The log-Sobolev inequality makes sense for probability measures on a Riemannian mani-
fold; we only have to interpret the term |V f||? as the norm of the gradient of f with respect
to the Riemannian metric. Furthermore, Herbst’s concentration inequality makes sense for
an arbitrary metric space, using the Lipschitz seminorm of a function on the metric space
with respect to the distance function. On a Riemannian manifold, the log-Sobolev inequality
with constant ¢ implies Herbst’s concentration inequality with constant ¢, where in Herbst’s
concentration inequality we use the distance function given by the infimum of the length
of paths from one point to another, where path length is computed using the Riemannian
metric.

It follows from the Bakry-Emery criterion (on manifolds) that the Haar measure on the
special unitary group satisfies the log-Sobolev inequality with constant n/2 if we use the
Riemann metric coming from Tr; this result is due to Gromov and can be found in [AGZ09),
Theorem 4.4.7 and Appendix F.6] and [Mecl9, Theorem 5.16]. This implies that the Haar
measure satisfies the log-Sobolev inequality with constant n?/2 if we use the Riemannian
metric coming from 7,,. Hence, it satisfies Herbst’s concentration inequality with the same
constant.

Proof of Lemma[I1.5.4 Fix x € M,(C)%. Let U be a Haar random element of SU(n), and
let X = UzU* = (Uz U*,...,Uzxy,U*), which is a random d-tuple of self-adjoint matrices.
We want to apply the previous lemma, and hence we want to show that X satisfies Herbst’s
concentration inequality with a certain constant.

To this end, we will estimate the Lipschitz constant of the function ¢ : SU(n) — M, (C)4,
given by g(u) = uzu*. Let ||g||Lip be the Lipschitz norm of g with respect to the distance
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function from the Riemannian metric on the unitary group. Then ||g||Lip = sup,||Jg(u)],
where Jg(u) denote the Jacobian of g which maps the tangent space of SU(n) at u to the
tangent space of M, (C)d at g(u). Recall we identified the tangent space to SU(n) with
M,,(C)g,, and clearly the tangent space to M, (C)? can be identified with M,(C)¢ . Pick
a € M,(C)s, with trace zero. Then

itau) _ ita

_ * _—ta —
= 2| e uaute ™) = ifa, g(w)],

Jg(u)[a] g(e E

 dtli=o

where [a, g(u)] = ag(u) — g(u)a € M,(C)? is the commutator. But note that
e, uzjulle = |[la, u(z; — aj)u’lllz < 2f|allaflz; — a0

Thus,
J 1/2
lfe. gl = (Zm(z,uxju*m%) < 24" Jalls maxz; — oy o
j=1

Therefore, g is K-Lipschitz, where K = 2d'/? max;||z; — 7(2;) || co-

Because U satisfies Herbst’s concentration inequality with constant n?/2 and g is K-
Lipschitz, we know that X = g(U) satisfies Herbst’s concentration inequality with constant
n?/2K?. The reason for this is that whenever h : M, (C)4, — R is Lipschitz, h(X) = hog(U),
and h o ¢ is Lipschitz with constant ||hl|pip & .

Therefore, by the previous lemma

—né2/2

®

PIF(X) = B (X))l = VIK|fl1(0 +9)) <
But note that E[f(X)] = E[f(UzU*)] = E[U f(z)U*] = 7,,(f(z)). Moreover, since f(X) —
E}[lf(X)] =U(f(z) —7.(f(2)))U*, the random variable f(X)— E[f(X)] is actually constant.
Thus,

1F(X) = E[f (X))l < V2KO| fllLip = 2v2d"26) [|1ip max||z; — af|oo. m
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CHAPTER 12

Background: Entropy, Fisher’s information, and
transport

In this section, we review the entropy and Fisher’s information of probability measures on
R?, relative to Lebesgue measure and relative to Gaussian measure, as well as Talagrand’s
entropy-cost inequality. This background serves two main purposes in this paper. First,
it motivates Voiculescu’s two definitions of free entropy, paving the way for §16] Second,
as motivation for our results on transport and their proofs, we will summarize Otto and
Villani’s approach to Talagrand’s inequality.

12.1 Entropy and Fisher’s information

Definition 12.1.1. The (classical, continuous) entropy of a measure du(z) = p(x) dz on R?
is defined as

h(p) :=/ —plogp,

whenever the integral makes sense. If u does not have a density, then we set h(u) = —oc.

We will later use the following basic facts about the classical entropy, so for convenience
we provide a proof.

Lemma 12.1.2.  Assume that j1 is a probability measure on RY with density p and that
Jllzl? dp(z) < +oo.

(1) The positive part of —plog p has finite integral with respect to Lebesgue measure and
hence [ —plog p is well-defined in [—o0, +00).
(2) We have h(p) < (d/2)log2mrae, where a = [||z||?du(z)/d, and equality is achieved in

the case of a centered Gaussian with covariance matriz al.

(3) Suppose (ux)ren i a sequence of probability measures with density py. Suppose pr —
p pointwise almost everywhere and that [||z||* duy(z) — [||lz||*du(z) < oco. Then
lim sup, . h(ur) < h(s0):

(4) If v is a probability measure with finite second moments, then h(p*v) > h(u).
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Proof. (1) Let a = [||z]]*du(z)/d. Let g(z) = (2ma) =42~ I#1°/20 be the Gaussian measure
with covariance matrix a/ and let v be the corresponding Gaussian measure. Let p = p/g
be the density of u relative to the Gaussian. We write

—p(z)log p(x) = —p(x)log p(z) - g(w) — p(x)log g(x) - g(w)

= )08 (e)  g(e) + (el + §log2ma ) ).

The second term has a finite integral by assumption. The function —tlogt is bounded above
for t € R, and g(z) is a probability density; thus, the positive part of —plog g - ¢ has finite
integral. Hence, [ —plog p is well-defined in [—o00, 00).

(2) The function —tlogt is concave and its tangent line at ¢ = 0 is 1 — ¢ and hence
—tlogt <1 —t. Thus,

[ -ptogpar< [a-par—o,

SO

1
h(u) < / <%||az:||2 + g log 27ra> p(x)dx = g + g log 2ma = glog 2me.

In the case where 1 =+, we have p = 1 and hence [ —plogp = 0.

(3) Let v be the Gaussian measure with covariance matrix I, and ¢ be its density. Let
Pk = pr/g. As before,

- - 1 n
fwwzfﬂm%wm+/(ﬂmﬂamwﬁdw

By assumption, the second term converges to [(%[|z||? + % log2m) du as k — oo. Since the
function —tlogt is bounded above and 7 is a probability measure, the integral of the positive
part of —py log pi. converges to the corresponding quantity for p. For the negative part, we
can apply Fatou’s lemma. This yields lim sup,_, . h(ux) = h(p).

(4) We can assume without loss of generality that one of the measures, say p, has finite
entropy. Then o+ v has a density given almost everywhere by p(z) = [ p(x —y) dv(y). Since
—tlogt is concave, Jensen’s inequality implies that

—p(z)log p(x) > / —pl(x —y)log p(x — y) dv(y).

The right hand sideis [ [ —p(z—y)log p(z—y) dv(y)dx = [ [ —p(x—y)log p(x—y) dz dv(y) =
h(u), where the exchange of order is justified because we know that —plogp is integrable
since h(p) > —oo. Therefore, h(uxv) = [ —plogp > h(u). O

The classical Fisher information of a probability measure 1 on R? describes how the
entropy changes when p is convolved with a Gaussian. Suppose p is given by the smooth
density p > 0 on R?, and let , be the multivariable Gaussian measure on R¢ with covariance
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matrix ¢/, which has the density (27)#2e~14I°/2_ Then the density p, for pu = p*
evolves according to the heat equation 0,p; = (1/2)Ap;. Integration by parts shows that
() = (1/2) [NV pe/pellPdpe (which we justify in more detail below).

The Fisher information of p represents the derivative at time zero and it is defined as
Vp 2
z(n) = [|=F
p

The Fisher information is the L?(x) norm of the function —Vp(zx)/p(x), which is known as
the score function.

djt.

If X is a random variable with smooth density p, then the R%valued random variable
= = —Vp(X)/p(X) satisfies the integration-by-parts relation

W p(z) dz = / p(@)V () dr = EIVF(X)] for f € C2(RY),

(12.1)
or equivalently E[Z,f(X)] = E[0;f(X)] for each j. We remark that this equation also
implies E[(Z, f(X))] = E[V'f(X)], which we already saw in a special case in Lemma/|11.2.5|

In fact, the integration-by-parts relation E[= - f(X)] = E[V f(X)] makes sense even if
we do not assume that X has a smooth density. If X is an R?%valued random variable
on the probability space (2, P), we say that an R%valued random variable = € L?(Q, P)
is a score function for X if E[=- f(X)] = E[Vf(X)] and if each Z; is in the closure of
{f(X): f € CXR)} in L*(Q, P).

In other words, this means that = is a function of X (up to almost sure equivalence) and
satisfies the integration-by-parts relation. Since the integration-by-parts relation uniquely
determines the L*((2, P) inner product of Z; and f(X) for all f € C2°(R?), it follows that the
score function defined in this sense is unique (up to almost sure equivalence), and that it is
given by f(X) for some f that only depends on the law of X. Thus, we may unambiguously
define the Fisher information I(u) = E[|Z|?] if X ~ u and Z is a score function for X, and
Z(p) = oo if no score function exists.

E[Z-

The probabilistic viewpoint enables the use of conditional expectations to produce score
functions and estimate Fisher information. See [Voi98a, Proposition 3.7] for the free case.
This is also related to the conditional expectation formula Lemma that we discussed
for log-concave measures.

Lemma 12.1.3. Suppose that X and Y are independent R%-valued random variables with
X ~pandY ~v. If Z is a score function for X, then E[Z|X 4+ Y] is a score function for
X +Y. In particular,

T+ v) < min(Z(u), I(v)).

Proof. Because X and Y are independent, we have for g € C2°(R?xR?) that E[=,9(X,Y)] =
E[0x,9(X,Y)]. In particular, if f € C°(R?), then

EEf(X +Y)] = Elox, (f(X +Y))] = E[(0;/)(X +Y)].
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But E[=Z;|X + Y] is the orthogonal projection onto the closed span of {f(X +Y) : f €
C>(R%)} and hence

E[EE|X+Y|f(X+Y)]=E0;f(X+Y)].
So I * v) = E[|E[EIX + Y]] < E[|E]?) = Z(n). By symmetry, Z(u#v) < I(v). O

The entropy of a measure p can be recovered by integrating the Fisher information of
1 * ;. The following integral formula was the motivation for Voiculescu’s definition of non-
microstates free entropy x* (see §16|). We include the proof for the reader’s convenience. See
also [Bar96, Lemma 1] and for the free case, see [Voi98al, Proposition 7.6].

Lemma 12.1.4. Let i be a probability measure on R? with finite variance and with density
p, and let v be the Gaussian measure with covariance matriz t1. If a = (1/d) [|z|]* du(z),
then fort > 0,

d . (d
oo = Z(u*y) < min (;,I(u))- (12.2)
Moreover,
1 t
s 0) = hip) = 5 | Ty ds (12.3)
0
and
h(y—l/m T (e ds+ Liog2 (12.4)
wW=5 133 px) | ds + 5 log 2me. :

Proof. To prove , suppose t > 0 and let X and Y be random variables with the laws
w and ; respectively. The lower bound is trivial if Z(u * ;) = oo, so suppose that X + Y
has a score function =. Then the integration-by-parts relation and independence of Y from
= shows that E(=, X +Y) = d. Thus,

[EEX V)P @ d

E[IZ|I?] > = — ,
=T = E|X +Y]|? da+dt  a+t

The upper bound is trivial in the case where t = 0. If ¢ > 0, then by the previous lemma
Z(p* o) <min(Z(u),Z(y:)). Moreover, a direct computation shows that if ¥ ~ a,S”), then
the score function is (1/¢)Y and the Fisher information is d/t.

Next, to prove (12.3)), let p; := p * ;. Then p; has a smooth density p,. We claim that
if 0 <0 < t, then

I L [* [ IVps(2)]?
h(p) — h(ps) = —/ I(ps)ds = —/ /s— dx ds. (12.5)
' 2 Js 2 Js ps()
This will follow from integration by parts, but to give a complete justification, we first
introduce a smooth compactly supported “cutoff” function 1z : R? — R such that 0 <

g <1 and Yr(z) = 1 when ||z|| < R and ¢g(xz) = 0 when ||z|| > 2R. By taking 1) to be
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the rescaling by R of some fixed function, we can arrange that |[V¢g(x)||2 < C/R for some
constant C. Because Jsps = (1/2)Aps, we have

d 1
_t [_/¢Rps log ps:| = -3 /¢R ' (Aps log Ps + Aps)

IV ps 2
/@/J Ve " p” /V¢R Vs - (1 +logps),

This implies
_/¢Rptlogpt+/¢3p510gp5
1 t 1 t

We must now take the limit of each term as R — +oo. For the first term on the right hand
side, the monotone convergence theorem yields

t ¢
lim //¢R||Vps/ps||2dusd52/ Z(ps) ds.
5 5

R—+o00

The second term on the right hand side of can be estimated as follows. Note that
s = j* v and that v, has a density that is bounded uniformly for s € [d,¢] and x € R?.
Therefore, p, is uniformly bounded and hence log p is uniformly bounded above. To obtain
a lower bound on log ps, first note that there is a K > 0 such that

ple ol < K) = 1/2.

Now if z € R? and ||y|| < K, then ||z —y|| > ||z|| — K and hence ||z —y||* < ||z]]* - 2K]|z|| +
K? > 2||z||* + 2K?, where the last inequality follows because 2K ||z|| < (1/2)||z||* + 2K? by
the arithmetic geometric mean inequality. Therefore, letting Z be the normalizing constant
(2mt) =2 for +,, we have

1 )
pa(z) = _/e /20l g )

> _/ / A2 )
Iwl<K

> = Z e~ WO +K) gy (1))
lyll<K
_ 2 /¢
> € /6—<1/t>ux||2
-_ QZ Y

so that log p, > K'—(1/t)||x||? for some constant K’. In particular, combining our upper and
lower bounds, there is a constant o such that for sufficiently large x, we have |1 + log ps| <
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al|z||?. Recall that Vig(z) is supported when R < ||z|| < 2R and bounded by C'/R and
thus |Vyg(x)| < C/||z||. Altogether we have |Vig(1 + log ps)| < B]|z|| for some constant /3
when ||z is large enough. Thus, the second term on the right hand side of ((12.6)) is bounded
by

[ Jiwen-zo0+iogpatanas <6 [ [ el Voo dute) ds
5 5 Jlz|I>R
1 t
< = z||? Vos(z)/ps()||?) dps(z) ds.
<38 [ [ el = 190 @) d(e)

The right hand side is the tail of the convergent integral

| [l 1900/ @) duayds = [ (o +ds)+ T ds < +oc,

and therefore it goes to zero as R — 400 by the dominated convergence theorem.

As for the left hand side of ((12.6), we can apply the dominated convergence theorem
to — f Yrptlog pr and — f Yrpslog ps given our earlier estimate that pg is subquadratic for
each s. Thus, after taking R — oo in (|12.6]), we obtain (12.5]).

To complete the proof of (12.3]), we must take § N\, 0 in (12.5). We can take the limit of
the right hand side of (12.5)) by the monotone convergence theorem. For the left hand side

of (12.5)), Lemma [12.1.2f (3) implies that limsups o h(ps) < h(p) because ps — p almost
everywhere by Lebesgue differentiation theory. On the other hand, h(us) > h(x) by Lemma

12.1.2| (4), hence h(us) — h(u), so ((12.3)) is proved.

To prove ([12.4), we follow [Vo0i98a, Proposition 7.6]. First, suppose that h(u) > —oc.
Note that

h =3 | (1 = —zws)) ds — S1og(1 4+ 1)+ hiju).

If h(p) > —o0, then o L its)) ds is finite. In light of (12.2)), the integral from 1 to
0

T+s
oo is also finite and by the dominated convergence theorem

1 [/ d 1 [~/ d
lim = —T(ug) | ds = = —T(us) | ds.
tiriloz/o (1+s (”)) B 2/0 <1—|—3 (“)) °

It remains to understand the behavior of h(u) — (d/2)log(1+t). By Lemma|12.1.2 (4) and
(2),

d d d
h(pe) > h(v) = §log 2ret = §log 2me + §logt.

On the other hand, by Lemma (12.1.2] (2), since [||z]|? dp:(z) = d(a + t), we have

d d d
h(p) < B log2me(a +t) = B log 2me + B log(a + t).
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As t — oo, we have log(1 +t) — log(a +t) — 0 and log(1 +t) —logt — 0 and therefore
h(p) — Cglog(l +1t) — glog 2me = glog 2re.

Hence,

1 [ d d
h(/,b) = 5/0 <1—H —I<,u5)> dS + 5 log 277'6,

which is equivalent to the asserted formula ((12.4)). In the case where h(u) = —oo, we also
have fol (1%3 — I(,us)) ds = —oo by ((12.3)), but the integral from 1 to oo is finite as shown
above. So both sides of (12.4) are —oc. O

12.2 Relative entropy and Fisher information

Up to this point, we have discussed the entropy of measures on R? using the density with
respect to Lebesgue measure. But in fact, for any measure space (2, F, m), there is a notion
of entropy for measures on (2.

Definition 12.2.1. If x4 is a measure on ) with du(z) = p(z)dm(z), then we set

h(ullm) = / plog pdm,

and we define h(u||m) = —oo if there is no density. We call this the entropy of u relative to
m.

Thus, for instance,

(1) If Q is R? and m is Lebesgue measure, we obtain the continuous entropy discussed in
the last section.

(2) If © is discrete and m is counting measure, then we obtain the discrete entropy of a
probability mass function.

(3) In the case where m is counting measure, the entropy is nonnegative. To the contrary,
in the case where m is a probability measure, the entropy is always < 0 (this follows
from Jensen’s inequality).

In fact, many authors change the sign of h(ul|v) when v is a probability measure, in order
to make it nonnegative. However, we will allow the sign to remain negative for consistency,
because, for instance, we want to convert between Gaussian measure and Lebesgue measure
as our background measures without sign changes.

If the background measure space ) is R? and the measure m is given by a probability
density w, then there is a version of Fisher information just as in the case of Lebesgue
measure.
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Definition 12.2.2. Let m be a measure on R?, and let i be a measure whose density with
respect to m is p. Then we define the score function of u relative to m as —V(log p), and
the Fisher information as

T(ulm) = / |-V (log p)|P? dim.

Suppose that m is given by a C' and strictly positive density w. Then the score function
satisfies the integration-by-parts formula

[ -Stognsdu= [Vrdu+ [ £Vlogwydntor f e cxze)

the analogue of ((12.1)). This implies also that for f € C>°(R? R?),

[Vtogo). pran= [ Iitan
where
VL =Vf+(V(ogw), f),
which is formally the adjoint of V on L?*(w dz).

There is also an analogue of in the relative context. As these results play only a
heuristic role in this paper, the reader may assume in the following discussion that w and
p have as much smoothness and decay at co as needed, and we will not give the analytic
justifications for the statements.

Let A, = VIV be the Laplacian relative to w. Let p; evolve according to the heat
equation
Oipr = Awpy = Apy + (V(logw), Vpy)

(compare [OV00, eq. (34)]), and let u; be the measure dy; = p; w dx. Then

Oeh(pue]|m) = _at/pt(logpt)w
= — /(&pt log pr + pe(Oepe/ pr) )w
— / (Awpilog p + Ay pr)w
_ /(th, V(1 + log po))w

- / 1900/ el o1
— T(u|lm)
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(compare [OVO0, eq. (37)], but beware of the sign change in h). So h(ul|m) — h(p|m) =
f(f Z(ps||m) ds, from which we conclude that lim; o h(p]|m) exists and

() = [~ Zulm) = Jim B

It is often the case that lim; . A(u¢|/m) = 0; for instance, if m satisfies a log-Sobolev
inequality, then by Lemma below, —h(ulm) < const Z(u|/m), which goes to zero
because [~ Z( uth) dt < oo. And if we know that limy_ o h(p]|m) = 0, then we can
conclude that —h(ul/m) = [;° Z(uu|lm), which is the relative version of -

The following lemma is an information-theoretic interpretation of the log-Sobolev in-
equality (compare [OV00, eq. (5)] for instance).

Lemma 12.2.3. Let m be a probability measure on R?. Then m satisfies the log-Sobolev
inequality with constant ¢ > 0 if and only if

~ h{pllm) < 5 T(lm). (12.7

whenever du(z) = p(z)dm(x) for a C* density p.

Proof. ( =) By approximation arguments, we can reduce to the case where p > 0 every-
where and p is bounded above. Let f = ,/p. Then

/leogfde dm:/fQIngQdm:—h(,uHm).

By the log-Sobolev inequality, this is less than or equal to

2 2
2 J1wsEan =2 [19y5 dm
_ L 1/2))2
= o0 [I¥0/ 2 P i

]‘ 2

= — d
2C/HVp/pH pdm
1

= 5L (ullm).

For the converse direction, given f and e > 0, we substitute p = (e + f2)/ [(e + f?) dm into
(12.7) and get
fVf e+ f?

/ e+ f? e+ f? dm < 2/
J(e+ f?) dm f(e+f2)dm “c ) |le+ 2 [(e+ f2)dm
Then we cancel out the factors of 1/ [(e 4+ f?) dm on both sides and take € \, 0 to get

2 2 2
2log g <_/ °d <_/ >dm. O
[ o8 g dm < [ iwaPan <2 [19 s am

Remark 12.2.4. There is not a direct relative analogue of Lemma [12.1.3| as that relies on
translation invariance of Lebesgue measure.

dm.
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12.3 Transportation and Talagrand’s inequality

As in the previous section, let m be a probability measure on R? given by a density w,
let du(x) = p(x)dm(x) be another probability measure. Assume p and w have sufficient
smoothness and decay at oo, and let p; evolve by the heat equation for A,,.

In their proof of Talagrand’s inequality from the log-Sobolev inequality, Otto and Villani
[OV00Q] used the following observation from the theory of transport equations.

Lemma 12.3.1. Suppose that O;p; = Aypi for some w > 0. Let V; = —log p;. Assume that
V'V, is smooth in (z,t) and VV; is globally Lipschitz in x uniformly for t in any compact
time interval, and let Fs(x) evolve according to the ODE

0sFs 1 (x) = VVi(x), Fii(z) = .
Then (Fst)appr = fs-

Proof. The Lipschitz assumption guarantees that the solution to the ODE is well-defined
by the Picard-Lindelof theorem. It is a well known and easy fact in ODE theory that
Fyyo0F,, = Fs, and in particular sttl = F}s, 50 that I, is a C! diffeomorphism.

Recall that p; has density p,w with respect to Lebesgue measure. Hence, by the change
of variables formula for multiple integrals, the (Fy ;). = (F},)«pu has the density

(ptw) O Ft,s | det Jﬂ,s‘7

where JF; ; denotes the Jacobian linear transformation. When ¢ = s, this reduces to ps, and
hence to prove that (Fj;)*p: = ps, it suffices to show that (p,w) o Fy ;| det JF, 4| is constant
with respect to ¢.
To this end, we take the logarithm and then differentiate with respect to t. The logarithm
is
(log p) o Fis + (logw) o Fy s + log | det JF, . (12.8)

Using the chain rule, the time-derivative of the first term is

O(log pt) o Fy s + (V(log pt) o Fy s, OpF; )
0
— ;/)t oFys— (V(logp;) o Fy s, V(log p;) o Fy )
¢

_ Apt (V(logw), pr)

Pt
2
_ (Apt N (V(logw), V) B ||Vp2t|| ) o F,.
P Pt pt

The derivative of the second term in ([12.8)) is

o Fys+ [[V(log po)|* o Fis

(V(log w) 0 Fyv, ,F,) = —(V(logw), V(log pr)) o Fre = — W(log;")’ VP o g,
t
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This already cancels the middle term in our expression for the first term of . Now, for
the third term in , observe that Fy s = Fyict0F} s, sothat JF s = JFi e 0F, s+ JFy g,
hence

log |det JFyic 5| = log|det JFyies] © Fy s + log | det JF, 4.

Now let us differentiate in € at € = 0. Since F; 4(z) is smooth in (z,1),

Hp, N (Vp)(Vpr)*
> .
Pt Pt

d

de

d
EZOJFHE,t = J&

\Y
Firep = J(=V(logp)) = =J <ﬁ) =
e=0 Pt

Since Fy;.; evaluates to the identity function when € = 0, we see that det Fi ., > 0 for small
€, and moreover,
log |det JFyyes| = Trlog J Fypes,

where the logarithm is evaluated by analytic functional calculus, that is, using the power
series of log at 1. Differentiating at ¢ = 0 results in

H Vo) (Vp)* A Vi ||?
Tr (_ Pt i ( Pt)(2 pt) ) _ 2P i | P2t||
Pt Pt Pt Pt

)

which implies that

A 2
O¢log |det JF, 5| = <— Py Vel ) oFi.

2
Pt Pt

This completes evaluating the third term of ((12.8)). When we add the three terms together,

everything cancels, which proves that (Fy;).p = ps as desired. O

Remark 12.3.2. In Lemma [12.3.1] there is no reason that w has to be a probability density
on R?; it works for any smooth positive function. In particular, it applies when w = 1, which
is the case where m is Lebesgue measure.

Let us now explain how Otto and Villani used this construction of transport to prove
that the log-Sobolev inequality implies Talagrand’s inequality in [OV00, Thm. 1].

Definition 12.3.3. For two probability measures p and v on R?, we define the L? Wasser-
stein distance Wa(p, V) to be the infimum of | X — Y2 := (E||X — Y|?)"/? where X and
Y are random variables on the same probability space with X ~ pand Y ~ v.

Definition 12.3.4. We say that a probability measure m on R? satisfies Talagrand’s in-
equality with constant c if

2
Woa(p,m)* < ==h(pl|m)
for all probability measures m.

Theorem 12.3.5 ([OVQ0, Thm. 1]). Let m is given by a C? density w with H(logw) < KT
for some constant K, and suppose m has finite variance. If m satisfies the log-Sobolev
inequality with constant ¢, then it satisfies Talagrand’s inequality with constant c.
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Sketch of proof. Let’s only explain the case with some extra smoothness assumptions, since
the general case can be handled with approximation arguments. Assume w is smooth and
W is given by a smooth density p with respect to w. Let p; evolve according to the heat
equation as above and let u; be the corresponding measure. By regularity theory for PDE,
sufficient smoothness and decay conditions on w and p will guarantee that p; is smooth.

Let X be a random variable with distribution p, and let X; = F} o(X), so that X; ~ 1
by the previous lemma. Note that Fy,(X;) = X;. Now observe that for s <t,

HXt - AXSHL2 = ||E578<XS) - AXSHL2

t
= ‘ / V(log pu) © Fu,s(Xs) du

t
< [ IV log ) (X2 s

But note that
IV (log pu) (Xu) 72 = Z(pa|Im).

By the log-Sobolev inequality of Lemma [12.2.3] we get

T(p||m) d /2
Ty |lm)Y? < — — 2Ry Im).
(ftu|lm) ™= < G 7\ z (ftu|lm)

Therefore,

2 2
[ X = X[z < 4/ —Zh(ﬂsHm) - —Eh(uth).

As remarked in the last section, since m satisfies the log-Sobolev inequality, we have h(p||m) —
0 as t — oo since Z(ju||m) — 0. But this implies that (X;)i>e is Cauchy in L? as t — +o0.
So there exists some variable X, with X; — X in L?.

Now we claim that X, ~ m. Using the Csiszar-Kullback-Pinsker inequality (see Lemma

12.3.6| below),
1ot = Ul rm) </ —2h(pe||m).

So p; — 1 in LY(m). Thus, for any f € C>®°(R?), we have

t—+00

BU(X)) = lim B[O =t [ fpidm = [ fam.

Therefore, X, ~ m, and hence
2
Wa(pu,m) < [|Xo = Xoollz2 < 4/ = —h(u]m). O

Lemma 12.3.6 (Csiszdr-Kullback-Pinsker). Let m be a probability measure on RY and let

du = pdm. Then
10 = Ulrimy < 2¢/—h(plm)
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Proof. Because [ pdm =1, we have

/@(p—ndm:—/@l(p—l)dm,

1/2
o=ty =2 [ =pan<2([ a-ppam) .
p<1 p<1

Note that f(p) = plogp is convex with f’(1) = 1 and f”(p) = 1/p. Hence, for p < 1, we
have f”(p) > 1, so that

and hence

plogp > (p—1) + (p— 1)
Thus,

/pg(p —1)%dm < / [plogp — (p —1)]dm

p<1

< /[plogp— (p—1)]dm

:/plogpdm
= —h(ullm),

since plogp — (p — 1) > 0 by convexity and [(p — 1) dm = 0. O

12.4 Conditional entropy, Fisher’s information, and transport

All the concepts and results we discussed so far in the chapter have analogues in the condi-
tional setting. Suppose that m is a probability measure on R% % which has a disintegration

dm(xq,x2) = dmo(za|z1)dmy(xy)

where my(+|x1) is a Borel measure for each z; which depends Borel-measurably on z;. Given
a probability measure du = p dm, the density can be expressed as

p(r1,22) = pa(a]a1)pr(1),

where pi(x1) = [ p(x1,22) dma(aa|z1), which is finite almost everywhere. Then writing
log p(x1, x2) = log pa(x2|x1) + log p1(x1), we obtain the relation

- / plog pdm = — / or log py dimy— / ( / pa(@aler) log pa(aalz1) dm2<x2|asl>) pu(ar) dimy(z1).

In other words, if we let duy = p; dmy and dus(xs|x1) = pa(2|r1) dmo(za|z), then we have
olm) = o) + [ B (paClan) (o)) dpa(on)
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which is known as additivity of entropy under conditioning.

Furthermore, if for each x;, the measures ps(-|z1) and mo(-|z1) are given by densities
satisfying sufficient smoothness and decay conditions, then we can define measures pg(-|21)
for ¢ > 0 that evolve according to the heat equation with respect to the density of mg(-|x1).
We will then obtain for s < t,

[ (el lmsClo0) dus(e) = (e ma-for)) dus o)
= [ [ 2(mCielimatien) it du

or roughly speaking, conditional entropy is the integral of conditional Fisher information.

Let dpg(x1,x2) = dpgi(x2|r1)dps (). Lemma [12.3.1) adapts to the conditional set-
ting as follows. Let pa:(xa|z1) be the conditional density of uoq(-|x1). Let Voy(zy,xa) =
—log pa+(7|71). Then we can define F,; : R4+42 — R% by

aSFS,t(xlva) = vxz%,s(xla Fs,t(mlaxQ))a F;ﬁ,t(xlv'rQ) = T2.

In fact, letting Vi(z1,22) = —log pai(22|21) — log p1(z1) be minus the log-density of p,, we
have V,,Vai(21, 29) = V5, Vi(x1, 22), and thus the above ODE can be expressed purely in
terms of the overall density p; as

OsFs1(x1,22) = Vi, Vi(xr, Fs (21, 22)), F, (21, 22) = 9.

If we apply Lemma [12.3.1|to po,(-|21) for each x;, we see that the function Fj (x4, -) pushes
forward pig¢(-|z1) to pos(-|z1) for each ;. Therefore, when we consider the fibers all together,
the function (1, Fs4(z1, z2)) pushes forward p; to ps.

To frame the whole discussion in more probabilistic terms, let (X, Xa¢) ~ . Then
(X1, Fs (X1, Xo4)) ~ (X1, Xos). Thus, Fs; can be viewed as a transport from Xo; to X
conditioned on X;.

The above considerations naturally lead to conditional versions of the log-Sobolev and
Talagrand inequalities, as well as conditional score functions. But we will not discuss any of
these in detail except in the case where the measure m is Lebesgue measure or Gaussian.

For future reference, let us give the precise formulations of conditional entropy and Fisher
information when the background measure is Lebesgue measure.

Definition 12.4.1. Let (X, Y’) be arandom variable in R% %42, Suppose that the distribution
of (X,Y) has a disintegration as p(x|y) dz dv(y) for some probability measure v. Then we
define the conditional entropy

hX1Y) = [ plaly)log plaly) dodu(y)
If the law of (X,Y") does not admit such a disintegration, then we define h(X|Y) = —o0.
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Definition 12.4.2. If (X,Y) is a random variable in R%%9 then a d;-tuple = is a score
function for X given Y if for any f € C®°(R%%92) we have

EEf(X,Y)] = E[V.f(X,Y)].

If a score function for X given Y exists, then we define the conditional Fisher information
by
Z(X[Y) = =]z,

and otherwise the Fisher information is defined to be oc.
Lemma 12.4.3. Let Y be a random variable in R, and let X and Z be random variables

in R4 which are conditionally independent given Y. If Z is a score function for X givenY,
then E[E|X + Z,Y] is a score function for X + Z given Y.

The proof is the same as that of Lemma [12.1.3] so we leave it as an exercise. The next
lemma is the conditional version of Lemma [12.1.4]

Lemma 12.4.4. Let (X,Y) be a random variable in RU+% whose distribution disintegrates
as p(z|y) de dv(y), and such that a = (1/d,)E|| X||* < co. Let Z; be an independent Gaus-
sian RY -tuple with covariance matriz tI. Then

d . (d
<700+ 2)y) < min (%2 )

and

1 e dl dl
h(X]Y) == — (X + Z,|Y) | dt + —log2me.
)= [ (55 - 20+ 200) ) e+ G iog2ne

Proof. The first claim follows from the same argument as in Lemma [12.1.4}

To prove the second claim, recall that for ¢ > 0, the variable Z,/t is a score function for
Z; given Y can be defined by Z;/t. Therefore, by the previous lemma, the score function =;
for X + 7, given Y is E[Z,/t|X + Z,,Y]. This conditional expectation can be evaluated as
—V.log pi(x|y), where p;(z|y) evolves from p(z|y) according to the heat equation. Indeed,

[ (/80 — 2ly)e P12 g
[ ple = 2ly)e PPz

—V,log pi(zly) =

which is exactly the conditional expectation since the density of (X + Z;, Z;) given Y is
p(z — z, z)e”I71°/2t By fixing y and applying Lemma [12.1.4] we obtain

t
—/pt(xlw log pt(x]y) dl’+/p(x|y) log p(z|y) dm:/ /||Vxlogps(m,y)|!2d$d8-
0

By Lemma [12.1.2] the first integral is bounded below by h(Z;|Y) = h(Z;). Hence, if we
integrate with respect to y, the first term on the left-hand side is a bounded function of y

213



and the second term is bounded above by E[X?|Y]. Everything on the right-hand side is
nonnegative. Thus, we may integrate the above equation with respect to ¥ and obtain

WX + Z]Y) — h(X|Y) = /tz(x + 2V ds.

Then to derive the formula for A(X|Y) we use the same reasoning as in Lemma [12.1.4]
For instance, to control the asymptotic behavior of h(X + Z;|Y") as t — oo, we apply Lemma
12.1.2 to the conditional distribution of X + Z; given Y, which results in

h(Zy) = h(Z]Y) < WX + Z,|Y)
<E (% log QWBE[(XdzL Zt)QIY])
di, 2meE[(X + Z;)?]

< —=1
=7 0og d; )

where the last line follows from Jensen’s inequality and concavity of the logarithm function.
We leave the rest as an exercise. [

12.5 Entropy and transport relative to Gaussian measure

There is a special relationship between Lebesgue measure and Gaussian measure in this
whole story of entropy and transport. The entropy, Fisher information, heat evolution,
and transport functions associated to the Gaussian measure can all be obtained from those
associated to Lebesgue measure by a relatively simple change of variables, which will be used
in and which we will now explain.

Let 1 be a measure on R? with density p. Let ~, be the measure on R? with Gaussian
density (2mt)~#2e~11°/2t " Then the density of p with respect to Y174 is of course p(z) =
p(x)(gﬁ)dﬂedllac\l?/z

Let us denote the entropy with respect to the Gaussian measure as

hg(p) = h(pfly1)-

Furthermore, to prepare for the more probabilistic notation we will use in the paper, if X is
a random variable ~ p, we denote h(X) := h(p) and hy(X) := hy(p).
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Then we have

() = = [ plog
= —/p(a:)(27r)d/26‘”“2/2 log (p(x)(Qﬂ)d/Qe”’”'|2/2> (27_(_)—(1/26—”95“2/2 de
= _/P(z) log p(x) dx — / (@ + C§llog 27T> p(x) dz

1 d
= h(X) = 3 B||X|[* - 5 log 2.

Furthermore, the Fisher information with respect to Lebesgue measure and Gaussian mea-
sure are related as follows. Let

T,(X) =T, () = / IV5/5] .
and denote Z(X) := Z(u). Then

~Vlog p(a) = —=Vlog p(x) + V([|2]|*/2) = =V (log p(x)) — =

Hence,
7,(X) = / IV (log p(z)) + I du(z)

_ / IV (tog p(a))| dia(z) + 2 / (V(log p(x)), z) du(z) + / el du(z)
=I(X) —2d+ E| X|J?

where the middle term has been evaluated using integration by parts.

Now let p; evolve according to the flat heat equation d;p; = (1/2)Ap;, and let p; be the
corresponding measure. Recall that if X ~ p and if Z; ~ v is independent of X, then
X + Z; ~ . (Here we include a factor of 1/2 because it is convenient for the probabilistic
viewpoint. It does not matter for our present purpose how the Z,’s relate to each other for
different values of ¢, but one could for instance take them to be a Brownian motion.)

Now let fi; be the law of e ¥/2X 4+ /27| ~ e /2X + (1 —e*)Y/2Z,. Thus, the density
of fi; with respect to Lebesgue measure is

€td/2pet,1 (etﬂx),

and hence the density with respect to v is

fila) = 2l 22, (o).
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Then a direct computation shows that p; evolves according to the heat equation relative to
the Gaussian density, which is

0 (2) = 5 (AR(e) (&, Vo)) (12.9)

where we have observed that the gradient of the log-density of the Gaussian is z. The
normalizing factor of 1/2 comes from our choice to use (1/2)A in the flat heat equation,
which amounts to a reparametrization of time by a factor of 1/2. To check that holds,
observe that

d 1 1
Aypr(z) = (2m)2ellel?/2 (éetdmpet_l(et/%) + etd/2et§Apt(et/2x) + etd/2§et/2<x, Vpet_l(et/Qx)>) .

Meanwhile,
Vi) = (@m) e (el (2) + T2 ()

and

1, . 1 . .
5O (x) = o (2m)" 22 (de” 2 per 1 (€2 ()) + [l 76l 12 pry (! 22)

+ 2xel®P2 25 pu_y (e2)) + e”xHQ/QetApet1(et/2x)).

By comparing all the terms together, (12.9)) is verified. In short, the heat semigroup for
the Laplacian with respect to Gaussian measure is just a reparametrization of the flat heat
semigroup.

This reparametrization explains how the expressions for entropy in terms of Fisher’s
information for the Lebesgue and Gaussian measures are related. Recall that

d
hy(X) = h(X) = B[ X - £ log2n

1 [~/ d d
= — —I(X+Z — | X112+ =.

But we also know that

1 o
he(X) = —5/ Ty(e™?X 4 e7? Zu_y) du.
0

By substituting u = e¢®* — 1 in the integral and using the scaling behavior of score functions,
this expression for h,(X) can be shown to be equivalent to the first one. We leave the details
as an exercise.

216



The same change of variables relates the transport functions given by Lemma [12.3.1
for the Lebesgue measure and for the Gaussian measure. Indeed, let F§; be the transport
function that pushes forward p; to us, given by

1
ast,t(x) = —§V(10g ps) © Fs,t<x>7 Ft,t<x> = Z.

Let

Foi(x) = e ?F_ya_1(e%2).

Using our random variables X~and Z; again, we have F&t(e*t/QX + ejt/zZez_l) ~eS2X
e=%/2Z.._;, which shows that F,; pushes forward ji; to fi5. In fact, Fj; is exactly the same
transport function as constructed by Lemma [12.3.1| for the Gaussian measure, since

- 1 1
aSFSvt(I) = 56_8/2 : 68(_v(10g pes—l)) o 65—17et_1(et/2x> — 56_8/2F€s_17€t_1(6t/2x)
= (—=V(log ps)) © Fiy,
since
—Vlog ps(x) = —e*/*V(log pes 1) (e**x) — .

Furthermore, these lemmas adapt easily to the conditional setting.
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CHAPTER 13

Tools: Functions of non-commuting real variables

This chapter reviews the properties of the algebra TrP, of trace polynomials in d self-adjoint
variables. We then define a certain completion of TrPy, which we denote by Ciy app (R*?, ||-||2).
An element of Ci; app (R*, ||+]|2) represents a function f that can be evaluated on any tuple
x = (x1,...,24) of self-adjoint elements in a tracial W*-algebra such that \, is approximated
by the non-commutative laws of matrix tuples (or equivalently, such that W*(z) embeds
into the ultraproduct of the hyperfinite II; factor). The output f(x) will be an element of
L*(W*(z)), and amazingly every element of L*(W*(x)) can be realized in this fashion (see
Proposition . The functions from Ci, app(R*%, ||+||2) are closed under certain algebraic
and composition operations. Moreover, they are a natural tool to describe the large-n limit
of functions on M,,(C)%, which we will apply in the rest of the paper. This chapter is based

sa’

on [Jek19, §3] and also draws on [HIN19, §2].

13.1 The x-algebra of trace polynomials

Trace polynomials have been used by many previous authors. They were first studied from
an algebraic viewpoint since the give all the unitarily invariant polynomials over n x n
matrices for every n [Raz74, [Pro76l, [Ler76, [Raz87]. Their applications to non-commutative
probability, and in particular their relationship with matrix Brownian motion, have been
studied in [Rai97, [Sen08, [Ceb13|, DHK13, [Kem16, [Kem17, [DGST16].

Roughly speaking, we think of a trace polynomial as a function obtained by multiplying
non-commutative polynomials and traces of non-commutative polynomials. However, let us
first give a formal algebraic definition.

Definition 13.1.1. Let C(X1,..., X;) be the non-commutative polynomial algebra in in-
determinates Xy, ..., X4 We equip C(Xj,...,X;) with the unique x-algebra structure
such that X; = X7. Then C(Xj,..., Xy) has a vector space basis consisting of the non-
commutative monomials Xy ... X for & > 0 and i(1), ..., i(k) € {1,...,d}, and we call
k the degree of the monomial. We say that two degree-k mononomials Xy, ..., X;) and
X1y, -+ Xow) are cyclically equivalent if we have i'(j) = i(o(j)) for some permutation o
in the group generated by the cyclic permutation 1 — 2 — --- — k> 1.

Definition 13.1.2. We define TrPY as the commutative polynomial algebra in the inde-
terminates tr(p) for a non-commutative mononomials p € C(Xy,..., X,) of degree k > 1,
modulo the ideal generated by tr(p) — tr(q) for p and ¢ that are cyclically equivalent. We
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equip TrPY with the unique *-structure satisfying tr(p)* = tr(p*) for a monomial p, which is
well-defined because if p and ¢ are cyclically equivalent, then so are p* and ¢*.

Clearly, an equivalent definition would be as follows. Let P be a collection of non-
commutative monomials, one from each cyclic equivalence class. Then TrPY is isomorphic
to the commutative polynomial algebra in indeterminates (tr(p))yep.

Here tr is merely a formal symbol used as notation for the variables tr(p) generating the
TrPY. Although we initially only used the notation tr(p) when p is a monomial of degree at
least one, the map p — tr(p) extends to a unique linear map C(Xy,..., X, — TrPg such
that 1 — 1. For a general polynomial p, we denote the application of this map by tr(p).
Thus, tr(p + ¢) = tr(p) + tr(q) and tr(p*) = tr(p)* for general non-commutative polynomials
p and q.

Definition 13.1.3. TrP, is defined to be TrPY®C(X1, ..., X ), as a tensor product of *-
algebras. Furthermore, to simplify notation, we identify TrPY and C(X1, ..., X,) with the
subalgebra TrPy®1 and 1 ® C(X1, ..., X,) respectively. Thus, for instance, we may express
TrP, as the span of terms of the form tr(p;)...tr(p)po where ¢ > 0 and py, ..., p, are
non-commutative monomials of degree at least one, and pg is another non-commutative
monomial.

Definition 13.1.4. We equip TrPY and TrP, with gradings as follows. Let C(X1,. .., Xg)x
denote the span of the monomials of degree k, and let tr(C(Xy,..., Xy)x) denote their
images in TrPY. The Oth graded component of TrPYy is C. For k > 1, we define the kth
graded component of TrPY as

Y r(C(Xy, . Xk - (T X))

=1 ki,....ke>1:
ki1+-+ke=k

Similarly, TrP, is equipped with the tensor product grading from TrPY and C(X1, ..., X,),
which implies that the kth graded component is

k
Y w( X X)) - (T Xa)k )CUXL - Xk
0=1 ko>0;k1,....,kp>1:

ko+ki+-+ke=k

Note that the x-operation respects both these gradings. We refer to these gradings as the
(total) degree, and the degree of a trace polynomial is defined to be the highest graded
component in which this polynomial has a non-zero component.

Definition 13.1.5. We define the trace map TrP; — TrPY C TrPy as the unique linear map
T such that

T(tr(py) ... tr(pe)po) = tr(p1) . . . tr(pe) tr(po)

for monomials py, ..., p,. We also use the notation tr(f) = T'(f). Note that T" respects the
x-operation and the grading.
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Now let us define the evaluation of trace polynomials on matrix tuples and more generally
self-adjoint tuples from a W*-algebra. As an example, let x = (x1,...,24) be a d-tuple of
self-adjoint n x n matrices. If f = tr(p;)...tr(ps)po is an element of TrP,, then we define

f(@) = 7a(pr(2)) - - Tu(pe(2))po (@)

In other words, f(z) is defined by substituting xy, ..., x4 for the formal variables Xi, ...,
Xy and the matrix trace 7, for the formal symbol tr. If py, ..., py are monomials such that f
has total degree k, then f(tx) = t*f(z). Thus, x — f(x) can be expressed as a polynomial of
degree k in the matrix entries ((x;)ge:j=1,...,d;k, 0 =1,...,n). The general definition
of the evaluation map is as follows.

Definition 13.1.6. Let (M, 7) be a tracial W*-algebra, and let z = (z1,...,74) € MZ.
Then we define eviny,r) . : TrPg — M as the unique *-homomorphism satisfying

evum,re(p) = p(7)
ev e (tr(p)) = 7(p(2))1.

To see that this is well-defined, note that if p and ¢ are cyclically equivalent monomials,
then 7(p(z)) = 7(q(z)). Also, 7(p*(z)) = 7(p(z)). By the universal property of polynomial
algebras, there is a unique *-homomorphism TrPY — C such that tr(p) is mapped to 7(p(z)).
Similarly, there is a unique *-homomorphism C(Xj, ..., X;) — M sending X; to z;. Finally,
we can take the tensor product of these two maps to obtain a map TrPg ®C(Xy,...,Xq) —
CoM =M.

For the most part, we will use more compact (but less precise) notation and write

f(x) == evimn.(f) for f e TrPy.

The ambient W*-algebra M and its trace 7 are suppressed in the notation. It is clear that
f(z) only depends on z and the restriction of 7 to the algebra generated by x (which is
equivalent to the non-commutative law A;). Thus, the ambient trace does matter for the
definition of f(x) even though M itself is not important. Thus, the reader must bear in
mind that the notation f(x) implicitly assumes a particular law for x.

13.2 Construction of Ctr’app(R*d, 1-l2)

From an analytic viewpoint, we prefer to work with certain separation-completion of TrP,
called Ciy app(R*?, ||-]|2) (the rationale for this notation will be explained later). In [Jek1g|
§8.1] and [Jek19], we sketched several equivalent ways of defining these separation-completions.
Here we take a direct and elementary approach.

Definition 13.2.1. For f € TrP,, we define

11|z, = supsup{[levas,c)me(H)ll2 : # € Mu(C)S,, 2]l < R}

220



Definition 13.2.2. Define Ci, .,p(R*%, ||+||l2) to be the separation-completion of TrP,; with
respect to the family of seminorms (||-||2,r) r>o0-

The separation-completion is a standard construction in topological vector spaces, but
let us explain it in more detail. The separation-completion of TrP, is the set of equivalence
classes of sequences ( fx)ren that are Cauchy with respect to each of these seminorms, where
(fe)ken ~ (9x)ken if || fx — grll2.r — O for every R. The separation-completion has a vector
space structure and ||-||,z is defined on the separation-completion as the limit of || fx||2.r
over the Cauchy sequence (fx)ren-

There is a canonical map TrP; — Ciy app(R*, ||+||2) sending f to the constant sequence
(f)ken, and this map is linear and isometric with respect to ||-||2.z. It is true, but irrelevant
for our purposes, that this map is injective; this follows from [Pro76, Corollary 4.4].

Furthermore, Ci; app(R*, ||-|2) has a natural topology generated by the family of semi-
norms (||-||2,r)r>0. Since ||f||2,r is increasing in R, we can obtain the topology equivalently
by only using the seminorms associated to R € N. Since the topology is generated by a
countable family of seminorms, this makes Ct; .pp (R*9, [|-]|2) a Fréchet space; for background
on Fréchet spaces, see e.g. [Fol99, §5.4].

Finally, it is clear that the %-operation and trace map on TrP, pass to well-defined maps
on Ciyapp(R*%|||l2). This is because |7(z)| < ||z||2 and ||z*||2 = ||z||2 for an operator X in
a tracial W*-algebra, and hence |[tr(f)[l2zr < [[fllo.r = |f*]l2,r- Our goal is to extend the
evaluation maps ev ;. from TrPy to Ciyapp (R*, [|-]|2), whenever z is a self-adjoint d-tuple
that can be approximated in non-commutative law by matrix tuples.

Definition 13.2.3. We define

SR = [ J w12 € Mu(C), [lofle < R} C Sar.

sa’
neN

Remark 13.2.4. Tt is a standard fact in the theory of tracial von Neumann algebras that
A € ¥ if and only if W*(X) embeds (in a trace-preserving way) into the ultraproduct
IL,.., M,(C), and this occurs if and only if W*(X') embeds into the ultrapower R*, where R
is the hyperfinite II; factor. We will not pursue the ultraproduct viewpoint in this exposition,
but the reader may refer to [Capl0] for background, and [Jek19, §3] for explanation of these
function spaces in terms of ultraproducts.

Lemma 13.2.5. Suppose that x%) is a self-adjoint d-tuple from (M®) &)Y with |20, <
R, and suppose that = is a self-adjoint d-tuple from (M, T) with ||z|. < R. The following
are equivalent.

(1) ) converges in non-commutative law to x.
(2) f(z®) — f(x) for every f € TrPY.
(3) (f(@®), g(z®))2 = (f(2), 9(x))2 for all f,g € TrPy.
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Proof. (1) = (2). It suffices to prove the claim when f = tr(p;)...tr(p,) for monomials
P1, ..., pe. But convergence in law implies by definition that 7 (p;(z®)) — 7(p(z)) as
k — oo.

(2) = (3). By linearity, we may reduce to the case where

f=tr(p1)...tr(pe)po, g =tr(q1) ... tr(gm)qo-

If we evaluate f and g on a d-tuple X and take the inner product, that is the same as
evaluating the function

h = tr(py) . .. tr(pg) tr(pogo) tr(q1) - - - tr(gm).-

But h(z®) — h(x) by (2).
(3) = (1). If (3) holds, then for every non-commutative polynomial p, we have
7®) (p(x®))) = (1, p(x®))y — (1,p(x))s = 7(p(X)), so ) converges in law to z. O

Lemma 13.2.6. If f € TrPy, then

1 £ll2.0 = sup{[[f(#)]l2 : A € X3},

where the set on the right-hand side is shorthand for the set of || f(x)||2 for any tracial W*-
algebra (M, 1) and self-adjoint tuple x from M with A, € 3% (which in particular requires
that ||z]| < R).

Proof. The inequality < is easy because the law of any matrix tuple with ||z], < R is
included on the right-hand side. The inequality > holds because for any = on the right-hand
side, there is a sequence of matrix tuples that is bounded by R in ||-||« and converges in law
to @. [l

Lemma 13.2.7. Let x be a self-adjoint tuple from (M, 1) with A\, € S35 for some R >
0. Then the map evapr, @ TrPq — M extends uniquely to a continuous linear map
Cir.app(R*, [|]l2) = L*(M, 7). Moreover, the image is contained in L*(W*(z)). Also,

eVM,T,m(tr(f)) = T(eVM,T,m(f))v eVMmz(f*) = eVM,T,x(f)*'

Proof. If (fi)ken is Cauchy with respect to ||-||2 g, then by the previous corollary, evaq - . ( fx)
is Cauchy in L*(M, 7). Moreover, if two Cauchy sequences are equivalent, then the limits
in L*(M, 1) are equal.

If f € TrPy, then it is clear that f(z) is in the algebra generated by z. Thus, if f is
in the separation-completion, then f(x) is in the [-||o-closure of the algebra generated by z,
which is L?(W*(z)).

The last two equalities obviously hold for trace polynomials and hence hold for all func-
tions by approximation. O
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We will continue to abbreviate evay . (f) as f(x).

Lemma 13.2.8. Let %) and x be d-tuples from tracial W*-algebras (M®), 7)) and (M, 1)
respectively whose laws are in ¥3°,. The following are equivalent:

(1) ™) converges to x in non-commutative law.
(2) T®(f(x®)) — 7(f(x)) for every f € Cirapp (R |- l2)-
(3) 7O (F (20 g(9)) - 7(F (@) g(x)) for every f.g € Conupp(®, -[2).

Proof. (3) = (2) is trivial because we can substitute 1 as one of the functions. (2) =
(1) follows from Lemma [13.2.5| Finally, if (1) holds, then (3) holds by trace polynomi-
als by Lemma [13.2.5] and then (3) extends to all of Ci, upp(R*?, ||-]|2) by a straightforward

approximation argument. O

The notation Ci, app(R*%, ||+||l2) does not have a literal meaning, but rather it is based on
analogy with the commutative setting. By the Stone-Weierstrass theorem, any continuous
function on R? can be expressed as the limit of a sequence of polynomials p,, which converge
uniformly on [—R, R]? for every R. The norm ||-||s,z that we defined is loosely analogous to
taking the supremum of the values of polynomial over x € [—R, R]¢. Thus, the space that
we defined is something like a non-commutative analogue of C(R?). Thus, we write R*? to
evoke the idea of a “free product of d copies of R.”

We have added the term ||-||2 to the notation to emphasize that the norm being used for
the output f(X) is the |||z rather than ||-||... We have added the subscript tr to denote the
fact that we have taken the completion of trace polynomials rather than non-commutative
polynomials. We have written the subscript app because we restrict our attention to tuples
that can be approximated in law by matrix tuples, rather than all non-commutative laws.

Of course, the construction would still make perfect sense if we instead took the supremum
of ||f(z)]|2 over all d-tuples with ||z|s < R rather than only those approximable in non-
commutative law by matrices. However, in , we will use functions in Ciapp(R*?, ||-]|2)
to describe the large-n limit of sequences of functions on matrices, and thus we want f to
be uniquely determined by its evaluation on matrix tuples. It is also technically convenient
in a number of places that to define a function f it suffices to give the values on matrices,
but this is not essential.

13.3 Continuity properties and functional calculus

This section explores various continuity and boundedness properties of functions from the
space Cirapp(R*, ||-||2). Then we explain how the space Ci; app(R*L, ||-||2) subsumes the one-
variable functional calculus.
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Definition 13.3.1. For f € Ci;app(R*, [|-]|2), we define
1 flloo.re = supsup{||f(2)ll : @ € Mu(C)&}-

We say that f is ||-||« bounded on ||-||oc-balls if || f|lco,r < o0 for every R > 0. We say that
[ is globally ||-||co-bounded if supg|| fllco.r < o0

Definition 13.3.2. Let f € Ciyapp(R*, [|-]l2). We say that f is ||-||o-uniformly continuous
on the ||-||2-ball of radius R if for every e > 0, there exists a § > 0 such that for all n and all
.y € M, (C)g, with ||z[la, [lyll2 < R, if [lz — yll2 < 0, then [[f(2) = f(y)ll2 <e.

We say that f is ||-||2-uniformly continuous on ||-||2-balls if this holds for every R.

We make the same definitions with |[|-||s-balls replaced by ||-||-balls, where we only
replace |2, lyll2 < R with 2], [yl < .

Finally, we say globally ||-||a-uniformly continuous if the same §(€) works for every R.

Definition 13.3.3. A function f € Ciyapp(R*?, ||-||2) is said to be globally ||-||2-Lipschitz if
there is a constant K such that || f(z) — f(y)||2 < K||z — y]|» for all 2,y € M,(C)<, for all n,

and we write f f

Moreover, we define Lipschitz on ||-||s balls and Lipschitz on ||-||s-balls similarly to the

previous definition. We denote by || f||Lip,r the Lipschitz constant on the ||-||-ball of radius
R.

Lemma 13.3.4.

1 lsp = sup sup{

(1) Every f € TrPy is ||-||o-bounded and ||-||2-Lipschitz on operator norm balls.
(2) Every f € Cirapp(R*, ||-]l2) is ||||2-uniformly continuous on ||-||s-balls.

(3) If f € C’tr’app(R*d, I-l2) is ||-||2-Lipschitz on ||-||sc-balls, then f is ||-||co-bounded on ||| -
balls with
HfHR,oo S HfHZ,R + 2\/§d1/2@RHfHLip,R7

where © 1is the constant from Lemmal|11.5.2.

Proof. (1) By linearity, it suffices to consider the case where

[ =tr(p1) ... tr(pe)po,

where the p;’s are monomials. The ||-||o-boundedness is clear since each term is |||l
bounded. Then we note that for ||z||e, [|¥]l < R,

1f(2) = F)ll2 < HpoHoo,RZ!tr(Pj(x)) — tr(p; ()| [ JIler (o) oo,z

i#j

+ [lpo(x) = po(y)ll2 HHtr(pj)Hoo,R,
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so it suffices to prove that tr(p;) and po are ||-||2-Lipschitz on operator norm balls. But
1tr(p;i(2))1 — tr(ps(y) 1|2 < [[pi(z) — pi(y)]|2, so it suffices to show that any monomial p is
Lipschitz on an operator norm ball. We can write p(z) = z;, ...x;,, and then use the same
type of product argument as above to see that p is ¢R‘~'-Lipschitz on the operator norm
ball of radius R.

(2) By definition, every f € Ciy app(R*, [|+||2) is a limit of trace polynomials with respect
to the seminorms |[|-||2. g, and uniform continuity is preserved under uniform limits.

(3) Note that every f € TrP, and hence every f € Ciyapp(R*% ||+|l2) defines a unitarily
equivariant function on M, (C)% for every n. By Lemma [11.5.4) for any n and any x €
M,(C)4

sa?

1 () = 7l f (@) l|oe < 2v2d%0| flLip,r max||z;|oo.

Since |7,(f(X))| < ||fll2.r, we conclude that || f(X)|/s i ||:[|cc-bounded on the operator
norm ball of radius R with the asserted estimate.

Actually, Lemma/l1.5.4] as stated assumed that f was globally Lipschitz. However, as the
function UzU* used in the proof remains inside the ||-|[-ball of radius R when ||z|, < R,
the lemma could be sharpened to only use the Lipschitz norm on an R-ball. O]

The space Ciyapp(R*?, ||||2) subsumes the continuous functional calculus for self-adjoint
operators in the following sense.

Lemma 13.3.5. Let ¢ : R — C be continuous.

(1) There exists a unique f € Ciyapp(R*, ||-||2) such that f(z) = ¢(x) for every self-adjoint
matriz x. Moreover, this equality also holds if x is a d-tuple from a tracial W*-algebras
with A, € X35

(2) This f is ||| c-bounded on ||-||s-balls with
£ lloo.r = sup{l¢(t)| : ¢ € [-R, R}

et b e the Fourier transform At = e~ 2mits (g, + |t At 1S continuous an
3) L be the Fi R 2mits ds. If (1 [0) d
integrable, then f is globally ||-||2-Lipschitz and

[ flluip < 27r/R Ito(t)| dt.

Proof. First, suppose that ¢ is a polynomial and z is a self-adjoint matrix with ||z]|s. <
R. Then [|¢p(x)]|s < sup{|o(t)| : t € [-R, R]} by the spectral mapping theorem, so that
|6]loo,r < sup{|o(t)| : t € [-R, R]}. Actually, equality is achieved since a real number is a
1 x 1 matrix and thus participates in the supremum on the left-hand side.

If ¢ : R — C is continuous, then by the Stone-Weierstrass theorem, there is a sequence of
polynomials (¢ )ren such that ¢ — ¢ uniformly on [—R, R] for every R. Thus, by the claim
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we just proved, ¢y defines a Cauchy sequence with respect to ||| g0, Which must converge
to some element f € Ciyapp(R*?, ||-]|2). By straightforward limiting arguments, f(z) = ¢(x)
for self-adjoint d-tuples = with A\, € EZ?}; , and (1) and (2) hold for ¢ and f since they hold
for polynomials. Uniqueness in (1) holds because f is uniquely determined by its evaluation
on matrices.

We defer the proof of (3) to §18.1} see Remark [18.1.8] O

The previous lemma enables to perform “cut-off tricks,” which is one ingredient in the
following lemma. This lemma shows that the continuity and boundedness properties dis-
cussed above extend automatically from matrix tuples to tuples of self-adjoint operators.
The proof is more-or-less standard approximation arguments, but (2) is more subtle than it
might first appear.

Lemma 13.3.6. Let f € Ciypapp(R*,||+|2)-

(1) Suppose x is a self-adjoint d-tuple from a tracial W*-algebra (M, 1) and ||z|| < R. If
Az € 23?};1 for some Ry > R, then )\, € EZf’E.

(2) If 2% and x are self-adjoint d-tuples from (M® 1) and (M, 7) with A\yw, A € s
and ) converges in non-commutative law to , then

1)l < Tim inf]] £ ()] .

(3) If [ is ||||cc-bounded on the ||-||oo-ball of radius R, and if x is a self-adjoint tuple from
(M, 1) with A\, € X777, then
1 (@)oo < 1 flloc,R-

(4) Suppose that w : [0,00) — [0,00) is a modulus of continuity for f on the ||-||o-ball of
radius R, that is, w is an increasing continuous function with w(0) =0 and

1f(x) = f(W)lls < w(||z — yl2) for x,y € M,(C)% forn € N.

Then the same statement holds when x and y are self-adjoint tuples in (M, 1) with
A2y € 235312-

(5) The same claim as (4) holds except with the modulus of continuity on a ||-||2-ball. (How-
ever, x and y are still assumed to be d-tuples of bounded operators.)

Proof. (1) This fact is well-known, but we will give the proof for completeness anyway. Let
(™) en be a sequence of matrix tuples that converges in law to 2 such that ||2*)||,, is uni-
formly bounded by some R;. Let ¢ : R — R be a continuous function such ¢(t) = ¢ for |[t| < R
and |¢(t)| < R everywhere. Let y® be the tuple (¢(z\”),..., p(z)). Since |z®) | < R,
for all k, it is straightforward to check that y®) still converges in non-commutative law to
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x. The idea is that this is true when ¢ is a polynomial, and hence also true when ¢ is a
continuous function.

(2) By Lemma [13.2.8] for any non-commutative polynomials p and ¢, we have

7 (p(x®)* f (M) g (™)) = 7(q(a)p(a ™)) f(z ™))
— 7(q(2)p(z)" f(2))
= 7(p(z)" f(z)q(x)).
Note that
(™) f(2®)g(z®))] < (1 @®) | llpz®)[2llg( ™) -
This in the limit as k£ — oo, we have

7(p(2)* F(@)g(@)] < (tim inf] £z )]s ) [1p(2) alla() s

Since this holds for all p and ¢, it follows that f(z) agrees with a bounded operator on
L*(M) with || f(2)]lee < liminfy o f(2®)) oo

(3) follows from (2) by taking 2*) to be a sequence of matrix approximations as in (1).

(4) If A(zy) € E3%%, then there is a sequence of matrix tuples (), y®) also with ||-[|s
bounded by R that converge in non-commutative law to (x,y). By Lemma [13.2.8, we have
1z — y Wy = [lo = yllz and [[f(z®) = fy™)]|2 = [f(x) = f(y)]l2, hence the inequality
in (4) is satisfied.

(5) The argument is similar to (4). O

Remark 13.3.7. Suppose that f is [|||;-uniformly continuous on |[|-|[o-balls. Suppose that
(M, T) is a tracial W*-algebra which is embeddable into R¥. Then we can define f(x) for
r € L*(M, 1)L . Indeed, if 2(¥) is a sequence of tuples from M, converging to x in L*(M, 7)?,
then because f is uniformly continuous on ||-||o-balls, the sequence (f(z))xen is Cauchy and
hence converges in L*(M, 1), and we may call this limit f(z) since it is independent of the

choice of approximating sequence. Then claim (3) of the last lemma generalizes to tuples
from L?.

13.4 Composition and algebraic operations

Next, we want to consider composition and algebraic operations for functions in Cyy app(R*?, ||-[|2).
To start off, let us discuss composition of trace polynomials.

Definition 13.4.1. Let f = (fi,..., fm) € (TrPy)2. We define a map TrP,, — TrPy,
denoted g — g o f, as follows.

First, there is a unique map ®; : C(Xj,..., X;) — TrP, sending X; to f;(X). Then
by the universal property of polynomial algebras, there is a unique *-homomorphism Wy :
TrP?, — TrP, sending tr(p) to T(®;(p)) for every monomial p. Then we define the compo-
sition map g go f as V; ® ®y.
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The following is straightforward to verify.

Observation 13.4.2. Let f € (TvPy)™ and g € TrP,,. If x is a self-adjoint d-tuple from a
tracial W*-algebra (M, T), then (go f)(x) = g(f(z)).

Now we explain under what conditions we can perform composition for elements in the
separation-completion.

Proposition 13.4.3. Let f € Cipapp(R* ||-||2)™ and let g € Cip app(R*™, ||-||2). Suppose that
either

(A) [ is |||lc-bounded on ||-||-balls, or

(B) g is ||||2-uniformly continuous on ||-||2-balls.

Then there exists a unique function g o f € Cipapp(R*, ||-]|2) such that (g o f)(x) = g(f(x))
for all z € M, (C) for all n. Moreover, this equality also holds for self-adjoint d-tuples x
with A\, € Lar for some R (where in Case (B), g(f(x)) is defined by Remark .

Proof. Observe that to prove the first conclusion of the proposition for a particular function
g, it suffices to show that for every R > 0 and € > 0, there exists h € TrP,; such that
lg(f(z)) — h(x)|]2 < € for all z € M,(C)2 with ||z|s < R, for all n. Indeed, this claim
would imply by diagonalization that we can choose a sequence (hy)geny from TrP,; which is
Cauchy in ||-||2,r for every R with hi(x) — g(f(x)) for every matrix d-tuple x.

Case (A): Let A be the set of functions g such that the first conclusion of the lemma holds.
We claim that if g1, g2 € A and gz is ||-||cc-bounded on ||-||-balls, then g;g2 € A. In light of
the discussion above, fix R > 0 and € > 0. Note that g0 f is ||||oc-bounded on ||-||o-balls, so
let Ry > ||g2]|co.r- Since g1 € A, there exists hy € TrP, such that ||gi(f(z))—hi(z)|]2 < €/2R;
whenever z € M,(C)4¢, with ||z|| < R, for any n. Since hy is a trace polynomial, we have
|h1]|roe < 00. Let Ry > ||hi]|roo. Then there exist a trace polynomial hy such that
g2 (f(z)) — ho(z)]|2 < €/2Ry for ||z||oc < R. Therefore, overall, for ||z] < R,

191 (f (2))g2(f (x)) = ha(2)ha(2)]l2
(91(f(2)) = P (@) ga(f () ]l2 + [P0 (X)(92(f (%)) = ha())ll2
91(f(2)) = ha(@)lallg2(f ())llo0 + [1h1 (@) loollg2(f (x)) = ha(2)]l2

IA
|

P

_l’_

ES
|

Therefore, g1g, € A as desired.

Now A clearly contains the coordinate functions X;. So the above claim shows that A
contains all non-commutative monomials. Hence, by linearity it contains C(X1, ..., Xj).

Next, note that if g € A, then tr(g) € A. This implies that A contains the traces of non-
commutative monomials. Since tr(p) always evaluates to a scalar multiple of the identity
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matrix, it is ||-|| bounded on ||-||.-balls. Therefore, by our claim about multiplication
again, A contains tr(p;) ... tr(p¢)po for any non-commutative monomials py, ..., pe.

Therefore, A contains TrP,,. So it suffices to show that A is closed. Suppose that g, € A
and g — g. If R > 0, let Ry = || floo,r- Then ||gxo f —gjo fll2.r < |9k — 9jll2.r,, and hence
(gk © f)ren is Cauchy and thus converges to some function g o f.

Next, let B be the set of g such that the equality (g o f)(x) = g(f(z)) holds for d-tuples
from tracial W*-algebras with A\, € 2355 . The same approximation arguments that we used
for A also apply to B (relying on Lemma , which proves the second conclusion of the
proposition.

Case (B): Let (fx)ren be a sequence of trace polynomials converging to f, and assume
without loss of generality that fj, is self-adjoint (since we can replace it with (fi+ f;)/2. Then
g o fi is well-defined by Case (A). Let R > 0 and € > 0. Note that Ry := supy|| fx||2.r < o0.
Because ¢ is ||||o-uniformly continuous on the ||-||o-ball of radius Ry, there exists a § such
that ||z —yll2 < d and [|z||2, ||y||2 < Ry implies ||g(z) —g(y)||2 < €. Therefore, whenever || f; —
fell2.r, < 0, we have ||go f; —go fi|l2.r < €. Hence, (go fi.)ren is Cauchy in Ciy app(R*%, ||-]|2),
and one sees easily that the limiting function satisfies the desired conclusion. O

Corollary 13.4.4. Let f € Cipapp(R* || |2)7 be ||-|lco-bounded on ||-||so-balls. Let (x*)) and

x be a d-tuples from (M®) 78 and (M, 1) respectively with |2®]|, < R and ||z]| < R.
If 20 conwerges to = in law, then f(x™®)) converges to f(x) in law.

Proof. 1If g € Ciyapp(R*™, ||-||l2), then by the proposition, g o f € Ciapp(R*?, ||-]]2). So by
Lemma[13.2.8] 7 (go f(x®))) — 7(go f(z)). Thus, f(z®) converges to f(z) in law by the

same lemma. O

Remark 13.4.5. As corollaries to Proposition [13.4.3, we have the following properties:

(1) The set of functions in Ci; app(R*9, ||-]|2) which are [|-]|.-bounded on ||-||o-balls forms
an algebra. This is because if f; and f; are self-adjoint, then f;fo = g(f1, f2), where
9(X1,X2) = X1 X5. And general products can be expressed in terms of the products of
self-adjoint elements by decomposing into real and imaginary parts.

(2) If f, 9 € Cirapp(R*||+||2), then tr(fg) is a well-defined element of Cy; app (R*?, ||-]|2). This
is because the function tr(X;X3) is [|-|[o-uniformly continuous on ||-||o-balls.

(3) Tt is also true that if f; and fo € Cipapp(R*, [|-]|2) and if f3 is ||-||ee-bounded on ||||eo-
balls, then f; fs is well-defined. This does not follow immediately from the proposition.
However, it is true by the same argument that we used in Case (A) of the proof.

13.5 Asymptotic Approximation for Functions of Matrices

In this section, we explain how the elements of Ci; app(R*?, ||-||2) represent the large-n limit

of sequences of functions (f™),en on M, (C)% which are asymptotically approximable by
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trace polynomials, a certain notion of “good asymptotic behavior” from the viewpoint of
free probability.

Definition 13.5.1. Let f™ : My(C)4 — M,(C) for each n. We say that (f),cy is

asymptotically approzimable by trace polynomials if for every R > 0 and € > 0, there exists

f € TrP4 such that
limsup sup | f™(x)— f(z)||s <e

n—00  z€M,(C)d,
lello <R

Definition 13.5.2. Let f® : My(C)4 — M,(C) for each n, and let f € Ciyapp(R*%, ||||2)-
We say that (f™),cy is asymptotic to f, or f) ~s f, if for every R > 0,

limsup  sup Hf(")(:c) — f(2)]|, = 0.
N0 peMa(O)
Izl <R

Lemma 13.5.3. Let f™ : M, (C)¢ — M,(C) for each n. Then (f™),en is asymptotically
approzimable by trace polynomials if and only if there exists f € Ciyapp(R*,||+||2) such that

f s . Moreover, || fll2,r = hmn—)oo”f(n)ngf])% for each n.

For the proof, it will be convenient to use the following notation and observation.

Definition 13.5.4. If f : M,(C)% — M, (C) or if f € Cipapp(R*?, ||||2), then we write

IFIS% = sup [ f(@)].
xEMn((C)ga
|zl o <R
and
oZ,R = oo-
K sup || (@)
xeMﬂ(C)ga
Iz <R

Lemma 13.5.5. Let f € Ciyapp(R*, ||-||2). Then

: (n) _
T [ 715% = 1l

with [|z]|ec < R. For each n € N, let us write n = ¢q + r where 0 < r < ¢ using division.
Then let (™ = 299 & 0,, that is, a block diagonal matrix of ¢ copies of z then an r x r zero
block. For any non-commutative polynomial p, we have

ra(p(@™)) = L (),

n

Proof. Tt is clear that lim supn_>oo||f||gz){ < ||f|l2.r- For the reverse direction, let = € M,(C)Z,

which converges to 7,(p(x)) as n — oco. Hence, (™ converges to z in non-commutative law,

by Lemma [13.2.8, [ f(z™)[l2 = [[f(z)]l2, hence

1 £(@)ll> < tim in|| £115"

Since x and ¢ were arbitrary, ||f|2.r < lim infn_m|\f||gf})2 as desired. O
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Proof of Lemma[13.5.3. Suppose that (f™),cn is asymptotically approximable by trace
polynomials. For each k& € N, choose a trace polynomial f; such that

limsupr(”) — ka;nz <27k
n—00 ’
This implies that for j, k£ > R,
_ = lim ||f; — fil|"") < 279 4 27F
1y = Fillae = Y |17y — fll T < 279 + 2%

Thus, (fi.)ken is Cauchy in Cyp app(R*?, ||-|]2), and hence it converges to some f. Then observe

that (n) (n)
157 = Flla < 15 = Bl + 15 = Sello

and hence || f™) — f||§n1)% —0asn — 00,50 f™ ~s f.

Conversely, suppose that f™ ~» f. Then for every ¢ > 0 and R > 0, there is a trace
polynomial g such that || f — g|l2.r < €. Then

tim sup /) — gl < limmsup /) — F5 411 = gllae <.

so f™ is asymptotically approximable by trace polynomials as desired.

Finally, to show that || f[ls.z = lim, el f]|S"%, note that [|f]lor = lim, | fIS7% by
the previous lemma, but

AN = DN < I = FU5% — 0. O

Most of the results from the last two sections have asymptotic versions that are proved
in more or less the same way. Rather than prove them all exhaustively, we will focus on
those which will be used in our treatment of random matrix models.

Lemma 13.5.6. Let f™, g™ : M,(C)4 — M,(C) such that f™ ~ f € Ciapp(R* |-]l2)
and g™ ~ g € Ciapp(R* ||l2). Let 2™ € M,(C)L such that ||z < R and z(™

converges in non-commautative law to a self-adjoint d-tuple x from (M, 7). Then

lim 7, (f0(x™)7g™ (2™)) = 7(f(2)*g(x)).

n—oo

Proof. By Lemma
lim 7,,(f(z)*g(«™)) = 7(f(2)"g()).

n—oo

But note that by Cauchy-Schwarz and the triangle inequality

7a(FO @)™ () = 7 (£a) g(a™))
n CONBENI) n (n)
< 15 = Fllalle™ s + 9™ = glly pll flloe = 0. O
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Definition 13.5.7. Let f™ : M, (C)¢ — M,(C). We say that (fqu)N is ||-||2-uniformly
equicontinuous if there is exists a continuous increasing function w : [0,00) — [0, 00) with
w(0) = 0 (called a modulus of continuity) such that for every n and every z, y € M, (C)4

sa?
we have

£ () = W), < w (e = yll2) -

Lemma 13.5.8. Let (f™),en be ||-||o-uniformly equicontinuous and suppose that f™ ~
f € Cirapp (R, |||l2). Then f is ||-||2-uniformly continuous with respect to the same modulus
of continuity. In particular, if f™ is K-Lipschitz for every n, then f is also K-Lipschitz.

Proof. If x and y € My(C)% with [|z]/e, ||yllec < R, then by the same reasoning as in
Lemma there exist (™, y™ € M, (C)¢, with ||-||sc bounded by R such that (z(™y(™)
converges in non-commutative law (X,Y). By Lemma , | £ (™) — fO) ()|l —
1f (@) = g(@)]l2 and ||z — y™[ls = ||z — yllo. Hence, [|f(z) = f(y)ll2 S w(z —yl2). O

Remark 13.5.9. The previous definition and lemma also adapt for ||-||o-uniform equicontinuity
on ||-||2-balls or [|-||o balls.

Definition 13.5.10. Let f™ : M, (C)¢ — M,(C). We say that (f™),cn is uniformly

sa

|*||co-bounded on ||-||oo balls if supn||f(")||§§z>o < oo for each R > 0.

Lemma 13.5.11. Let (f™),en be uniformly ||-||oo-bounded on ||-||s-balls and suppose f) ~»
[ € Corapp(R*,[|-]|2). Then f is ||||co-bounded on ||-||«-balls with

. n) (™)

Proof. Let € My(C)% be bounded by R in [|-||oe. Choose (™ € M, (C)?, also bounded by
R that converges in non-commutative law to z. Proceeding as in the proof of Lemma [13.3.6
(2), we obtain

1)l < limint /@), < limmnf]| £ 0
n—oo ,

n—oo

Our random matrix results rely heavily on asymptotic approximation for composition of
functions. In the following, if f™ = (£, ..., f{"): M,(C)L — M, (C)™, then we say that

sa?

(f™),en is asymptotically approximable by trace polynomials, or respectively asymptotic
to f = (f1,- fm) € Crrapp(R*, ||-[2)™, if the corresponding statement holds for each of
the coordinate functions f](") and f;.

Proposition 13.5.12. Let f™ : M, (C)4, — M,(C) with f™ ~ f € Cirapp(R* ||-]l2)7,
let g™ : M, (C)™ — M, (C) with g™ ~ g € Chrapp(R*™, ||-|l2). Suppose that either

(A) (f™)nen is uniformly ||-||oo-bounded on ||-||wo-balls, or

(B) (§"))pen is ||-||2-uniformly equicontinuous on ||-||o-balls.
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Then g™ o f) ~s go f.

Proof. Case (A): Fix R > 0. By assumption, there exists R; > 0 such that ||f(”)||gz?R < Ry
for all n, and hence || f||«,r < R also by Lemma (13.5.11] Then

o 10— go < 1% ol 0.

By Lemma|13.3.4] (1), g is ||-||2-uniformly continuous on the ||-||-ball of radius Ry, so let w
be a modulus of continuity for f on this ball. Then

loo 7 ~go sl <w (15 = FIS3) = 0.

Therefore, ||g™ o f™ —go ng"}z — 0 as desired.

Case (B): Fix R > 0 and € > 0. Let h be a d-tuple of self-adjoint trace polynomials with
|h— fllo.r < €. Since || f™ — ng"])% — 0, there exists R; > 0 such that Hf(”)HgZé < R, for all
n and hence also

limsup|[ f® — Bl < e, hllar < Rite

n—oo

Let w be a modulus of continuity for (g(™),cn on the ||-||o-ball of radius of R; + ¢. Then

limsup”g(”) o fM — ¢ o hH;n})2 < limsupw <||f(") - hH;”}%) < wl(e)
n—o0

n—o0

lgof=gohlyr <w(lf = gllar) <wle).
Let Ry = ||h||r,c0, which is finite because h is a trace polynomial. Then

limsup||g™ o h — g o hljo,z < limsup| g™ — g|l2,r, = 0.

n—oo n—o0

Therefore, by the triangle inequality,

limsup|lg™ o f™ —go fllor < 2w(e).

n—oo

Since € and R were arbitrary, we are done. O]

Finally, asymptotically approximable sequences are closed under limits in an appropriate
sense.

Lemma 13.5.13. For k,n € N, let f,gn) : M,,(C)L — M,(C). Suppose that for each k, we

have f,g") ~ i € Ctr,app(R*d, I-ll2). Suppose further that JRE M, (C)¢ — M,(C) such that
for each R > 0,
(n)

=0.

lim lim supH f,§”) —
2.R

k—=oo pnsoo

Then fi converges in Ciyapp (R, ||-||2) to some f, and we have ™ ~~ f.
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Proof. Let
(n)

€r.p = lim sup”f,gn) — -

n—oo

By Lemma[13.5.3| and the triangle inequality

1f5 = fxl

or = lim || f; — fill % < €5r + err-
n—oo

Since ey — 0 as k — oo, it follows that (fi)rey is Cauchy in Ciapp(R*%, ||||2) and hence
converges to some f, and moreover ||fr — f|l2.r < €x.r. Note that

(n)

£ — f”z,R < |l f™ — g”}% + - kag,L])% + 1 f — fll2,r-

Hence,
. n (n
hmsupr( ) — f||21)2 < e+ 0+ € r = 26, R
n—00 ’
Taking k — oo, we obtain lim,, || f™ — f|la.r = 0, so that f®™ ~ f as desired. O

13.6  Ciapp(R*,[|+||l2) as a vector bundle

In this section, we continue the themes suggested by Remark This section is not
needed for any of the proofs of our main results. Rather, it is intended to bring conceptual
clarity to the definition of Ci; app(R*%, ||+[|2). Thus, our discussion will be more colloquial and
assume wider background knowledge.

We introduce the following temporary notation:

e We denote Hg = Cipapp(R*%, || ]]2).
e 7, will be the set of elements in C; app (R*?, ||-||2) that are ||-||-bounded on ||-||-balls.

e F? will denote the closure of TrPY in Cy opp(R*%, [|-]|2). We refer to F9 as the scalar-
valued part of Ci app(R*%||+||l2). Note that Fo C Fy.

In light of Remark we have the following properties.

e F,is a *-algebra and FJ is a x-subalgebra contained in the center.
e H, is a bimodule over Fy.

e There is a map (-,-)g : Hqg x Hg — FJ given by (f,g) ~ tr(f*g). This is map is
right- (and left-) F3-linear in the second coordinate and thus is an “FJ-valued inner
product.”

e The left and right actions of F; on H,4 are *-representations.
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e The map tr: Fy — F9 is an “Fy-valued trace.”

Proposition 13.6.1. For d > 2, the center of Fy is Fy.

Proof. Let f bein the center of F;. Note that the evaluation maps ev ;. are *-homomorphisms
Fa — W*(z) by Proposition [13.4.3] Thus, for every self-adjoint tuple = with A\, € ¥4 g, the
function f(z) is in the center of W*(z).

It is well known that for each n, the set of self-adjoint pairs (xy, z2) that generate M, (C)
as an algebra is generic. Hence, for generic x € M,(C)%, f(x) must be in the center of

M,,(C), which is C. Therefore, f(x) = tr(f(x)). By approximation, we have f(z) = tr(f(z))
for all z, and hence f € FJ. O

Remark 13.6.2. Alternatively, we could use the fact that factor traces are dense in X°%. That
proof does not depend on matrix approximation, and hence would work for the versions of
Fq and F§ over X4 rather than ng)}%’.

Proposition 13.6.3. F3 is isomorphic as a *-algebra to the projective limit of the algebras
C(X3R) over the system of restriction maps C(X3g ) — C(X3'R,) for Ri > R,.

Proof. By Lemma , f € FY and if 2 and z are d-tuples bounded in ||||s by R,
approximable in non-commutative law by matrices, such that z(®) converges in law to z,
then f(x®)) — f(x). In particular, f(z) only depends on the law of z, so there exists a
function ¢r(f) : ¥3%s — C such that f(x) = ¢r(f)(\;) whenever A, € ¥3°F. Moreover, this
¢r(f) is continuous. It is immediate that ¢r, (f)|s, ,, = Or,(f) for Ri > Ry.

Hence, we get a well-defined *-homomorphism from F? into the projective limit, sending
f to the element ¢ which is the projective limit of the maps ¢r associated f. This -
homomorphism is injective since f(x) = ¢r(\;). Note also that ||f|lre = H¢R||C(23?Rg). It
remains to prove surjectivity of our *-homomorphism.

We claim that if ¢ € C(X4r) and € > 0, then there exists f € TrPY with ||¢r(f) —
¢||C(23f’}{) < e. To prove this, note that A = {¢r(f) : f € TrP}} is a x-subalgebra of ¥4
that contains the function 1. Also, A separates points because if two laws A\; and A\, are
distinct, then by definition, there is a non-commutative polynomial p such that A\;(p) # Aa(p),
which means that ¢r(tr(p))(A1) # ¢r(tr(p))(A2). Thus, our claim follows from the Stone-
Weierstrass theorem.

Let (¢Yr)r>0 represent an element ¢ of the inductive limit. For & € N choose a trace
polynomial f, € TrPy such that [y — ¢(fi)llcsa, < 1/k. Then for each R > 0, the
sequence (¢r(fx))ken converges to ¢r. Hence, (fi)ren is Cauchy with respect to ||-||2,r and
hence f; converges to some f € FJ. O

Let 35" = Jpoo2a,r- Consider a vector bundle over ¥3°", where the fiber at each
point \ is the Hilbert space L*(\) obtained from the GNS construction. Each f € Hy thus
represents a section of this vector bundle, which assigns to a law A the element f(x)) € L*(\),
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where z, is the canonical tuple of operators on L*(\) given by the GNS construction. The
next proposition characterizes the sections that arise from H, as precisely the sections that
are continuous in a certain sense.

Proposition 13.6.4. Let F' be a map that assigns to each \ € Y4 g a vector F(\) € L*(\).
Then the following are equivalent:

(1) F(X) = f(xy) for some f € Hg.

(2) For every non-commutative polynomial p, the map X — ||p(Xy) — F(N\)||3 is continuous
on Xqr for every R > 0.

Proof. (1) = (2). It follows from Lemma|13.2.8|that if f € Hg4, then A — ||p(z)) — f(z2)||3
is continuous on 2335 for each R.

(2) = (1). It suffices to show that for each R > 0 and € > 0, there exists f € TrPy
such that || f(zx) — F(A)[|2 < e for all A € 377 Indeed, if we prove this claim, then we can
take a sequence of trace polynomials fj associated to ¢, — 0 and Ry — oo, then (fi)ren will
be Cauchy in |||z for each R > 0, and the limit f will satisfy (1).

So pick R > 0 and ¢ > 0. For each A € Xgg, since F(\) € L?*(\), there exists a
non-commutative polynomial py such that [[px(Xy) — F(\)]]2 < €/2. Because the map
= |Ipa(X,) — F (i)l is continuous on 337, the set

Un={p € Z3% ¢ Ipa(Xy) — F(p)ll2 < e}
is open and contains A. So (Un)xexarr is an open cover of the compact space X7

Therefore, there exists a finite cover (Uy,)%_; and a partition of unity (¢;)¥_, in C(33%)
subordinated to the cover (Uy, ) '_,. By the Stone-Weierstrass theorem, there exists for each
J a trace polynomial f; such that |6r(fj) —¥ll2,rllpA |2, < €/2k, where ¢p is the map from
FQ to C(34r) in the previous proposition.

Let f = 25:1 fipx;- Then p€ ¥37%,

1f () = F(p)ll2 = '(%)pxj (@) = &5 () F (1)

2

< ZII Fi(@u) = &5 ()pa; ()2 + ZII% ) = F(u))ll2

1

< lech (f) = WillecsnIpa, lo.p + Z«m(m
j=1

Jj=
L
2 2
where the inequality |[v;(u)(pa,) (@) — F(w))ll2 < (1) (e/2) follows because supp(v;)
U, .

J

C
O
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Remark 13.6.5. In a similar way, each element of F,; represents a section of the vector bundle
over X3P that assigns W*(A) to the point A\. The sections that arise from F, are precisely
those which are, for every R > 0, uniformly bounded in operator norm and continuous in
the sense of the previous proposition on ¥4 g.

The idea of the next proposition is that for any Ao € X3P and (y € L?()\g), there exists a
continuous section of the vector bundle A — L*(\) with F(Ag) = {p. Or in more pedestrian
terms, every element of L?*(W*(z)) can be realized as f(x) for some f € H,.

Proposition 13.6.6. Let x be a d-tuple of self-adjoint operators in a tracial W*-algebra and
let M = W*(z).

(1) For every z € L* (M), there exists f € Hg = Cirapp(R*, ||*||2) such that f(z) = 2.

(2) We can choose f to be globally ||-||2-bounded and ||-||2-uniformly continuous.

(3) In fact, we can choose f to be globally ||-||2-uniform limit of globally ||-||2-Lipschitz func-
tions which are globally ||-||-bounded.

(4) If z € M, we can choose f to also be globally ||-||oo-bounded by ||z|| while simultaneously
satisfying (3).

Proof. (1) Let R > ||z]|o. Let (px)ren be a sequence of non-commutative polynomials such
that py(z) — 2z in L*(M). By passing to a subsequence, we may assume without loss of
generality that ||pry1(z) — pr(2)|]2 < 27F. Let

U =N € X% : M(Pre1 — 2e)" (D1 — pr)) < (27%)%.

Because Uj, is open and contains )., by Urysohn’s lemma there exists ¢, € C(¥3%;) such
that 0 < ¢, < 1 and supp(¢x) C Uy and x(N;) = 1. By the Stone-Weierstrass theorem,
there exists fr € TrPY such that

lor(fi) = Urllogn IPrer — prllzr < 275

By shifting f, by an additive constant, we can arrange at the same time that fi(z) = 1.

By our choice of Uy, we have for every A € X77% that

9% (A) (Prs1(z2) — pr(za))]]2 < 277
Also,
1(We(A) = fr(@2) (Prar (22) = prza)) ]2 < 27%

Hence,

I fx - (Prsr — pi)llor < 277

Let h € CX(R,R) such that h(t) = t for |t| < ||z]|e and |h(t)] < R for all t € R.
For a self-adjoint d-tuple y = (v1,...,vaq), let us write h(y) := (h(y1),...,h(ya)). Then
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[fe(Pes1 — o)) © h € Chrapp(R*, ||-]]2) by Lemma [13.3.5( and Proposition [13.4.3, Also, for

every R’, we have

I[fe - (Prsr — i)l © Pllorr < \fx - (Prgr — pr)llor < 27F

because h maps into the ||-||-ball of radius R. Therefore, the series
fr=pioh+> [fi (e —pr)loh
k=1
converges in Ciyapp(R* ||-]]2). And note that

f(x) = pi(h(@)) + D _[fi - (1 — pi)] © h(z)

oo
k=1

I
"
B
_|_

WE

Je(@)(pri1(x) — ()

I
=
B
+
hE

(Prt1(z) — pe(z))

=
Il
—

Therefore, (1) is proved.

(2) follows immediately from (3). To prove (3), continuing with the notation from (1),
note that by Lemma[13.3.5] & is globally ||-||o-Lipschitz and [|-||sc-bounded. Also, fi - (prt1 —
px) is a trace polynomial, and hence it is ||-||o-Lipschitz and ||-||-bounded on the ||-||-ball
of radius R. Thus, [fx - (prr1 — pr)] o h is globally |[|-||o-Lipschitz and globally |||« bounded.
The same holds for p; o h. Thus, the terms in the series defining f are globally ||-||2-Lipschitz
and |[|-||s-bounded and the series converges ||-||2-uniformly everywhere as shown above.

(4) By polar decomposition, we can write z = uy where u is unitary and y is positive. Let
h € C*(R,R) be a function that maps [0, 1] onto [0, ||z]|~] in a strictly increasing fashion and
is globally bounded by ||z||, which is possible by standard bump function constructions.
By spectral theory, there exist self-adjoints z; and zy in M such that u = ¢**! and y = h(z)
(here 2z = (hfjo,) ™" (y))-

By (1), there exist fi, fo € Cirapp(R*?, ||-||2) such that z; = fi(z) and 2z = fo(x). We can
assume that fi and f, are self-adjoint (by replacing f; with (f; + f7)/2). By Lemma
(3), his ||||2-Lipschitz; also, ™ is globally ||-||o-Lipschitz (see Lemma([l8.1.4] and Corollary
18.1.7)). Thus, by Proposition (B), €/t - (ho f5) is well defined, and

@R fy(z)) = e h(z) = 2.

Now €'/t is bounded in ||-||» by 1 and h o f; is bounded in ||| by ||2]|so-
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Finally, by (3) we can choose sequences of self-adjoint, globally ||-||2-Lipschitz, globally

|| so-bounded functions fl(k) and fék) that converge uniformly |[|-||s to f; and f;. Then
e . (ho fQ(k)) is also globally ||-||2-Lipschitz and globally |||-bounded, and it converges

|- ||2-uniformly to €'/t - (ho fy). [

13.7 Model-theoretic viewpoint

Like the last section, this section is intended purely as motivation for studying the space
Cir.app (R, []-]|2), as well as making conceptual connections for future research. The goal is
to explain how the functions in Ci; app(R*%, ||+||2) has a natural interpretation in the model
theory of tracial von Neumann algebras introduced in [FHS13, [FHS14a, [FHS14b], namely
as certain quantifier-free definable functions.

For the sake of making the connection clearer, we will actually be looking at a variant
of this space. First of all, instead of using self-adjoint variables X, ..., X4, consider vari-
ables 71, ..., Z representing arbitrary bounded operators. Let C(Zy,...,Z4, Zf,..., Z})
be the universal x-algebra generated by d-variables; we call its elements non-commutative
x-polynomials. A non-commutative x-law is a linear map A : C{(Z1,..., Z4, Z7, ..., Zg*x) — C
which is unital, positive, exponentially bounded, and tracial. We denote the space of such
*-laws with exponential bound R by ¥j . Of course, the #-polynomials in the variables
Zy, ...Zq are equivalent to non-commutative polynomials in the 2d self-adjoint variables
Re(Z;) = (Z; + Z3)/2 and Im(Z;) = (Z; — Z5)/2i.

The algebra TrP) of trace *-polynomials is defined similarly to TrP,; except that the
non-commutative polynomials both inside and outside the trace symbol are now taken from
C(Zy,...,Z4,Z5,...,Z%). Moreover, for each tuple z € M? where (M,7) is a tracial
W*-algebra, there is an evaluation s-homomorphism ev .. : TrP; — M sending p €
C(Z1,...,Zaq, Z5, ..., Z3) to p(z) and tr(p) to 7(p(z)).

Next, for f € TrP}, we define
I fll2.r = sup{ ||l f(2)|l2 : 2 € M ||z]loo < R, (M, T) tracial W*-algebra}.

In contrast to our previous discussion, we consider arbitrary tuples z rather than only matrix
tuples. This means that || f||2 r tests all ¥-laws in X} ,, not only those in 373" (meaning the
ones that can be approximated by matrices). We denote by Ci, ((R *iR)*?, ||-||o) the Fréchet
space obtained as the separation-completion of TrP}; with respect to the seminorms ||-||2,r
for R > 0.

Note that the evaluation map ev (., z extends to a well-defined map Ct, ((RxiR)*, ||-||2) —
L*(M, 1) for each (M,7) and Z € M?. In particular, for each f € Ci.((R * iR)*, ||-|2),

there is a well-defined function
M ME— L*(M,7): 2+ eVar:(f).

The space Ci,((R*iR)*? ||-||2) is the one we will interpret in the model-theoretic framework.
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Next, let us sketch the setup of continuous model theory, or model theory for metric
structures [BBHOS, BU10]. We will follow the treatment in [FHSI14a] which introduces
“domains of quantification” to obviate some of the technical annoyances related to sorts.

A language L consists of:

A set S whose elements are called sorts.

For each S € S, a privileged relation symbol dg (which will represent a metric) and a
set Dg whose elements are called domains of quantification for S.

A countably infinite set of variable symbols for each sort S.
A set of function symbols.

For each function symbol f, an assigned tuple (51, ...,S,) of sorts called the domain,
another sort S called the codomain. We call n the arity of f.

For each function symbol f with domain (51, ...,S,) and codomain S, and for every
D = (Dy,...,D,) € Dg, x --- x Dg,, there is an assigned D, € Dy (representing a
range bound), and assigned moduli of continuity w{;’l, e wé’n. (Here “modulus of

coninuity” means a continuous increasing, zero-preserving function [0, co) — [0, 00)).

A set of relation symbols.

For each relation symbol R, an assigned domain (S, ..., S,) as in the case of function
symbols.
For each relation symbol R and for every D = (Dy,...,D,) € Dg, x --- x Dg,, there

is an assigned N € [0, 00) and assigned moduli of continuity wfi ,, ..., wf .

Given a language £, an L-structure assigns an object to each symbol in L, called the
interpretation of that symbol, in the following manner:

Each sort S € S is assigned a metric space M(S), and the symbol dg is interpreted as
the metric on S.

Each domain of quantification D € Dg is assigned a subset M (D) C M (S), such that
M(D) is complete for each D, and M(S) = Jpep, M(D).

Each function symbol f with domain (Sj,...,S,) and codomain S is interpreted as a
function fM : M(S;) x -+ x M(S,) — M(S). Moreover, for each D = (Dy,...,D,) €
Dg, x - -+ X Dg,, the function fM maps M(D;)x---x M(D,,) into M(D]];). Finally, fM
restricted to Dy x --- x D, is uniformly continuous in the ith variable with modulus
of continuity of w]f)ﬂ..
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e Each relation symbol R with domain (Sy,...,S,) is interpreted as a function RM :
M(Sy) x --- x M(S,) — R. Moreover, for each D = (Dy,...,D,) € Dg, X --- X Dg,,
/M is bounded by N on M (D) x - -+ x M(D,) and uniformly continuous in the ith
argument with modulus of continuity of w, ;.

In particular, the language L. of tracial W*-algebra has the following symbols:

e A single sort S, representing the W*-algebra.

e Domains of quantification {D,,},en, representing the operator norm balls of radius
n € N.

e The metric symbol d, representing the metric induced by ||-[|2.

A binary function symbol +, representing addition.

A binary function symbol -, representing multiplication.

A unary function symbol *, representing the adjoint operation.

For each A € C, a unary function symbol, representing multiplication by A.

A function symbol 1 of arity 0, representing the identity element.

Two relation symbols Re tr and Im tr, representing the real and imaginary parts of the
trace.

Each function and relation symbol is assigned range bounds and moduli of continuity that one
would expect, e.g. multiplication is supposed to map D,, x D,, into D,,, with WDy, Dn),l(t) =
nt and WDy Dn)2 = M. A tracial W*-algebra represents a structure in Lr., where the
symbols have the interpretations explained above. (Although not every Lr,-structure comes
from a tracial W*-algebra, one can formulate axioms in the language such that any structure
satisfying these axioms comes from a tracial W*-algebra; see [FHS14al §3.2].)

Terms in a language L are expressions obtained by iteratively composing the function
symbols and variables. For example, if Z;, Z,, ... are variables in a sort S and f: Sx S5 — §
and g : S x S — S are function symbols, then f(g(Z1,Zs), Z1) is a term. Each term has
assigned range bounds and moduli of continuity in each variable which are the obvious ones
computed from those of the individual function symbols making up the composition. Any
term can be interpreted in an L-structure as a function. For example, in the language L, the
terms are expressions obtained from iterating scalar multiplication, addition, multiplication,
and the x-operation on variables and the unit symbol 1. If (M, 1) is a tracial W*-algebra,
then the interpretation of the term in M is a function represented by a x-polynomial.

Basic formulas in a language are obtained by evaluating relation symbols on terms. The
basic formulas have assigned range bounds and moduli of continuity similar to the function
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symbols. In an L-structure, a basic formula is interpreted as a real-valued function. In Ly,
a basic formula can take the form Imtr(f) or Imtr(f) where f is an expression obtained
by iterating the algebraic operations. Thus, when evaluated in a tracial W*-algebra, it
corresponds to the real or imaginary part of the trace of a non-commutative *-polynomial.

Formulas are obtained from basic formulas by iterating several operations. First, given
a formulas ¢y, ..., ¢, and F': R" — R continuous, F(¢1, ..., ¢,) is a formula. Second, if ¢
is a formula, D is a domain of quantification for some sort S, and x is a variable in S, then
inf,cp ¢ and sup,.p ¢ are formulas. Each formula has an interpretation in every L-structure
M, defined by induction on the complexity of the formula. If ¢ = F(¢1,...,¢,), then
M =F(pM, ..., ¢M). The operations supy.p, or infyep will only change the interpretation
of ¢ if ¢ has some occurrence of the variable X that is not already “bound” to some previous
quantifier sup or inf. In that case, we take the sup or inf of the formula as X (in each of its
“free” occurrences) ranges over M (D). All these formulas also have assigned range bounds
and moduli of continuity.

Our main concern at this point is the quantifier-free formulas, those obtained from the
basic formulas by applying continuous functions F' : R" — R without using the quantifiers
sup and inf. In the case of tracial W*-algebras, the real and imaginary parts of any trace
polynomial ¢ € TrPZ’O can be represented as a quantifier-free formula in the variable symbols
Z1, ..., Zg, since ¢ is obtained by adding and multiplying (which is, in particular, applying
continuous functions R” — R) the real and imaginary parts of traces of non-commutative
polynomials (which are basic formulas). Conversely, if we take F(tr(p1),...,tr(p,)), for
some F' : R" — R continuous, this is an element of Ci((R * iR)*? ||-||o) since F can be

approximated by polynomials uniformly on bounded subsets of R™.

Similar to the way that we took the completion of TrPg’*, in continuous model theory,

one often works with a completion of the space of formulas. Suppose that ¢y is a sequence
of formulas depending on free variables (Z;);cz with Z; € S; and that (bﬁ/‘ converges to some
function M’ — R, uniformly on [],.; M(D;) for each choice of domains of quantification
D; € Dg,, with the same rate of convergence for every M in a certain class of L-structures.
Then ¢ is said to be a definable relation over this class. Similarly, if the ¢;’s are quantifier-
free, then ¢ is a quantifier-free definable relation.

For instance, if a sequence of trace polynomials in TrPY* converges in ||-||o.z for every
R > 0, then the limiting object is a quantifier-free definable relation over the class of tracial
Wr-algebras. This leads to the following observation.

Observation 13.7.1. The scalar-valued part of Ci,(RxiR)*%, ||-||2) is equivalent to the space
of definable relations in variables Zy, ..., Zq over the class of tracial W*-algebras.

A definable relation ¢ is always equipped with moduli of continuity just like the formulas
are. One possible choice for the modulus of continuity on a domain D can be obtained by
looking at how close ¢, uniformly approximates ¢ on D and the modulus of continuity of ¢y
on this domain (the standard argument that uniform continuity is preserved under uniform
limits). In our particular case of quantifier-free formulas, this is just the statement that

242



any scalar-valued element of Ci,((R *iR)*%, ||-||2) is ||||2-uniformly continuous on ||-||«-balls,
which we proved in Lemma [13.3.4] (2).

Furthermore, it is a basic fact in continuous model theory that if a relation is definable
over one model M, then you can create a definable relation over a larger class C by modifying
the approximating sequence ¢ so that it converges everywhere. This is known as a forced
limit (see [BUL0, §3.2]). Our proof of Proposition (1) is a loose analogue of this
technique, except that it is done for operator-valued rather than scalar-valued functions.

The non-commutative law of a tuple (z1,...,24) in (M, 7) also has an interpretation in
model theory. It is equivalent information to knowing ¢ (21, . .., z4) for every quantifier-free
definable relation in the variables Zi,..., Z4. In model theory, this is called the quantifier-
free type of (21, ..., zq) in (M, 7). (The type would of course encode the values of all formulas
where 71, ..., Z; are the only free variables, which would involve looking at sup’s and inf’s
over some other variables.) It is well known in continuous model theory that definable
relations are equivalent to continuous functions on the type space. Similarly, the quantifier-
free definable relations are equivalent to continuous functions on the space of quantifier-free
types. But in our example of tracial W*-algebras, this is exactly the content of Proposition
13.6.3| (modulo replacing matrix-approximable laws with all laws).

Now that we have explained the scalar-valued part of Ci, (R *iR)*?, ||-||2) corresponds to
quantifier-free definable relations in variables Z;, ..., Z;, let us move on to relate Ci,((R *
iR)*® ||-||2) to quantifier-free definable functions.

Suppose that for each L-structure M in a certain class C, we are given a function fM :
M(Sy) X -+ x M(S,,) = M(S) (which has range bounds and uniform continuity properties
similar to the terms). Then we say that f is a definable function over the class C, if the
function ¢gM(X1,...,X,,,Y) = ds(fM(X1,...,X,),Y) is equal to ¢M for all (M, 1), for
some definable relation ¢ over C. Similarly, f is a quantifier-free definable function if this
occurs with ¢ a quantifier-free definable relation.

Proposition 13.7.2. For each tracial W*-algebra (M, 1), let fM7 1 M — M be a function
that is ||-||ec-bounded on ||-||so-balls. Then f*7 is a quantifier-free definable function over
the class of tracial W*-algebras if and only if f is given by a function in Cy((R*iR)*,||-||2).

Proof. Suppose that fM7 is a quantifier-free definable function, so that ||fM7(2) — yl|» is
given by a definable relation in the variables Z1, ..., Z; and Y evaluated at (z,y). It follows
from the composition properties of formulas that for each non-commutative *-polynomial p,
the function ||fM7(2) — p(2)]|2 is also a quantifier-free definable relation.

Now we claim that f7(z) is always in W*(2). Fix M and z, and let N' = W*(2).
Because || fM7(2) —p(2)]|2 is a quantifier-free definable relation, it only depends on the non-
commutative law of z, and hence || f*7(2) —p(2) 2 = |7 (2) — p(z) ||o- Since N' = W*(Z),
there is a sequence of non-commutative polynomials p, such that py(z) converges to fV7(2),
which implies that py(2) also converges to f*7(z), hence fM7(2) = fN7(2).

Next, ||fW )7 (2) —p(2)|» depends continuously on A, so by Proposition [13.6.4| (or more
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precisely its analogue for Ci.((R * iR)*?, ||-||2)), fWV (¥)7(Z) is given by g(z) for some fixed
g € Ci((R*iR)*, ||-||2). But we showed above that f*7(z) = fW'(4)7(2) for each z, hence
f7(2) = g(2).

Conversely, if f € Cy((R*iR)*, [|||2), then so is || f(Z) — Y||» by Proposition[13.4.3} and
hence it is a quantifier-free definable relation. n

There are several main points we wish to emphasize with these remarks on model theory.
First, although the space Ci,((R *iR)*¢,||-||2) has not been precisely discussed in prior work
in free probability, it is a natural object of study which model theorists have in some sense
already defined. Second, this is an example where the two different viewpoints (in this case,
model theory and “non-commutative real analysis”) converge on the same object, which
ought to inspire future collaboration on this topic.

Third, we stress that the functions considered in this paper are all quantifier-free, which
provides a heuristic reason for why their large-n behavior on M,,(C)<, is easy to understand.
In our treatment of the solutions to certain differential equations in and §15], we will
not use any PDE tools that require taking suprema and infima, but rather we will construct
the solutions iteratively using only “quantifier-free” operations. If we defined functions on
M, (C)2 using formulas with suprema and infima, then a priori there would be no way to
know that the large-n behavior of f™(z(™) only depends on the large-n behavior of the
non-commutative law A\, » . We would need to know the asymptotic behavior of the type of
™ in M, (C)Z , not merely the quantifier-free type, and this relates to deep questions about

sa’

the model theory of matrix algebras; see [FHS14al §6.4].
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CHAPTER 14

Tools: Basic constructions in differential equations

Our results in the next few chapters are based on the analysis of differential equations for
functions on M, (C)% in the large-n limit. In preparation, this chapter will describe how trace
polynomials behave under several basic operations in the theory of differential equations —
differentiation, the heat equation, and the solution of the ODE. First, we will explain how to
compute the Jacobian and Laplacian of trace polynomials. Next, we will show that the heat
semigroup (or equivalently convolution with the Gaussian measure) on M, (C)<, preserves
asymptotic approximability by trace polynomials. Finally, we will show that if a sequence
of vector fields is asymptotically approximable, then so is the sequence of flows generated by
these vector fields.

14.1 Differentiation of trace polynomials

In this section, we compute first and second derivatives for trace polynomials as functions
M,(C)¢, — M,(C). These computations are more or less contained in [Raid7], [Cebl3],
[DHK13, §3].

We preface this with an explanation of our notation and conventions regarding classical
derivatives of functions on M, (C)%. Recall that we equip M, (C)¢ with the inner product
(-,-)2 associated to the normalized trace, that is, (x,y)s = 2?21 Ta(77y;). If we restrict to
M, (C)Z, this becomes a real inner product. Thus, we can identify M, (C)<, isometrically
with R’ by choosing some orthonormal basis. Furthermore, since every z € M, (C) can be
uniquely written as z+iy for some self-adjoint = and y, we view M,,(C) as the complexification
of M,,(C)s,, and hence M, (C)?¢ as the complexification of M, (C)2 .
(1) If f: M,(C)L — R is differentiable, then V f(zo) is the unique vector in M, (C)2,

satisfying

f(@) = f(@o) = (z — 20,V f(20))2 + o[z — @o[[3).

(2) In accordance with standard convention for complex-valued functions, if f : M, (C)% —
C, then V f(zo) is the unique vector in M, (C)? satisfying the above relation. (Here we
took our inner product to be C-linear in the right argument, hence V f(Xj) is on the
right.)

(3) If f : M,(C)L — R is differentiable, then we denote by Jf(X,) the unique R-linear

sa
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transformation M, (C)% — M, (C) such that
f(@) = f(xo) = Jf(wo)lw — o] + o]z — wol[3)-

(4) If f: M,(C)¢, — M,(C)¢  then the divergence V'f is obtained by summing the direc-
tional derivative of (b, f)2 in direction b over b in some orthonormal basis B. We make
the same definition for f : M, (C)% — M,(C)¢ in accordance with standard conventions
for complex-valued functions. It is well known that this is independent of the choice of
orthonormal basis.

(5) Finally, the Laplacian Af of a function f : M,(C)% — C or a function M, (C)% —
M,,(C) is defined as the sum of the second directional derivatives in direction b over b in

some orthonormal basis B, and this is independent of the choice of orthonormal basis.

Similarly, we will use the notation V,_, Jx], Vi , A.. to denote the analogous differentiation
operators with respect to the jth matrix in the tuple x = (1,...,24). In other words, they
are the differential operators obtained by freezing x; for ¢ # j and viewing f as a function
of x; € M,(C)sa

As the algebra TrP; was defined in several stages, the computation of derivatives will
naturally proceed in stages as well, starting with non-commutative polynomials, then ex-
amining the trace of a non-commutative polynomial, and finally multiplying these terms
together.

The differentiation of non-commutative polynomials is described using the free difference
quotient operators of Voiculescu [Voi98a]. We will use the letter D rather than the original
symbol 0 for these difference quotients as we prefer to reserve the symbol 0 for its classical
meaning.

Definition 14.1.1. The free difference quotient Dy, : C(Xy,..., Xg) — C(Xy,..., Xy ®

C(X1,...,Xy) is the linear operator whose action on monomials is given by
D, [X( .. Z(g Z Xz(l) ik—1) @ Xiht1) - - - Xi(e)-
k:i(k)=

Definition 14.1.2. If A is an algebra, we then define the hash operation (A® A) x A — A
as the map given on simple tensors by (a ® b, ¢) — acb. The value of the hash operation on
a pair (w,c) € (A® A) x A is denoted w#c, so that for instance (a ® b)#c = acb.

Lemma 14.1.3. Let f € C(Xy,...,Xy) and let f™ be the restriction of f to a function

M, (C) — M, (C). For x,y € M,(C) , we have
d
Z DX f #%7
xjf(n ( )[ ] [ ]( )#yj for each j.
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Proof. Since both sides are linear in f, it suffices to check the claim when f is a monomial.
Suppose f(X) = X;q)... X;@. Then for t € R, we have

14

flx+ty) =iy .. iy +1 Z Ti(1) - - - Lik—1)Yi(k) Ti(k+1) - - - Ti(e) T O(t?)
k=1
¢

= f(x) +1 Z(xi(l) e Ti(h—1) © Ti(k1) - - - Ti(e)) FYi(k)
=1

We sort the terms in the sum based on the value of i(k) and thus obtain

¢
Jf ()[y] = Z(ﬂﬂi(l) e Ti(k—1) ® Ti(k+1) - - - Tie))F#Yich)
k=1
d
= Z Z Ti(1) - - - Tih—1) @ Ti(kg1) - - - Ti(e) | #Y;
3=1 (k)=j
d
= Z x, [ (2)#y;.
J=1
This proves the first formula, and the second one is equivalent to it. O

Next, the gradient of the function 7,,(f™) : M,(C)¢ — C when f € C(Xy,...,Xy) is
described in terms of Voiculescu’s cyclic derivatives.

Definition 14.1.4. If A is an algebra, we define the flipped multiplication map m : AQ A —
A by m(a ® b) = ba.

Definition 14.1.5. The jth cyclic derivative is the map D%, := moDx; : C(Xy,..., Xq) —
C(X1,. .., Xa).

Observation 14.1.6. If A is an algebra and 7 : A is a linear functional with T(ab) = 7(ba),
then for w e A® A and ¢ € A, we have T(w#c) = 7(m(w)c) = 7(cm(w)).

Proof. Check it when w is a simple tensor a ® b:
T[(a ® b)#c] = T(ach) = 7(bac) = T7[m(a ® b)a). O

Lemma 14.1.7. Let f € C(Xy,...,Xy) and let f™ be the restriction of f to a function
M, (C)e — C. Then



Proof. Let X,Y € M,(C)%. Then

d

d
T tZOTn(f(ﬂerty)) =T (E

atm)

t=0

= Z 7o (Dx, f(2)#y;)

d
= ZTn (y; - moDx, f(x))
j=1
= (Y, D°f(x))2.
This proves the first formula, and the second one is equivalent to it. O

Next, we turn our attention to the divergence of f™ when f € C(Xy,...,Xg)% To
compute this, we pick a convenient orthonormal basis B for M, (C)s,, given by

B={Vner,:1<k<n}U{v/n/2ere+ew):1<k<l<n}
U{v/n/2(iers —iepr : 1 <k <l <n}. (14.1)

Of course, we obtain an orthonormal basis for M, (C)% by using d copies of B. The conve-
nience of this basis lies in the following “magic lemma.”

Lemma 14.1.8. For x € M, (C), we have

1
= Z bxb = 7,(x)l.

beB

Proof. Let z;; be the (i, ) entry of z. If we sum (1/n?)(bxb) over the first portion of the

basis, we obtain
1 1
— E €L kLl = — E Lk, kCk k-
n n
k k

The second portion of the basis contributes

1 1
o E (ere+ eor)r(ere+ err) = o E (Torere + Toplrp + ThoCok + ThrCop),
k<t k<t
and the third portion contributes
1 . . . . 1
o™ E (iene — tepr) X (iege — ieor) = 9 E (—Teere + Toglr — ThpCok + Thrpeor)-
k<t k<t
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When we add the second and third parts, the terms involving off-diagonal entries of x cancel,
and thus we are left with

1
o E (Toperp + Trreop) = E Ty €k k-

k<t P,

Adding this to the contribution of the first part produces

% Z Typlpp = (% Z M,e) <Z 6k,k> = To(X)I. O
[, ¢

k
Lemma 14.1.9.

(1) Let f € C{(Xy,...,Xq) and let £ be its restriction to M,(C)%. Then

%Vljf(”)(x) = Tn @ To[Dx, f()].

(2) Let f € C(Xy,...,Xa)% and let f™ be its restriction to M, (C)%,. Then

d
=1

Proof. (2) clearly follows from (1). To prove (1),

1 1 d
ﬁvljf(n)(‘r) - ﬁ Z E <b7 f(n)(xla vy Lj—1, T + tb? Ljq1s .- ,l’d)>2
beB —1t=0
1
= L3 D, F@) )]

beB
The proof will be complete once we show that for w € M, (C) @ M, (C),
1
— D Tlb(w#b)] = 7, @ T (w).
beB

It suffices to check this when w is a simple tensor a; ® as, and in that case, we have by
Lemma [I4.1.8 that

% > Talb(w#b)] = % > Talbarh - ag] = 7 [7(a1)1 - ag) = 7 (a1) 7 (a2). O

Corollary 14.1.10. Let f € C(Xy,...,Xq) and let f™ be its restriction to M, (C) . Then

sa

1 o )
3B (@) = 7 © D, D, f ()] for cach j

d
%Arn(f(")(x) = ZTn ® 7a[Dx, Dk, f(2)].

Jj=1
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Proof. Recall that A = V'V and then combine Lemmas [14.1.7] and [14.1.9| O

Next, we will compute the Laplacian of a non-commutative polynomial p as a vector-
valued function. This will be done in terms of the map

D%, : C(Xy,..., Xa) = C(Xy,. .., Xg)°
given by
D%, := (Dx; ®id) 0 D, + (id ®Dx;) o Dx; .
This makes sense because Dx,®id and id ® Dy, are maps C(Xy, ..., Xq)®* = C(Xy, ..., X)®.
Actually,
(DXj & ld) o DXj = (ld ®DXj) o DXj-

To see this, consider the action of both operators on a monomial Xy ... X;). The operator
Dy, will pick a value of k with i(k) = j and replace X with a tensor sign (and sum up the
results over all such k). Then if we apply Dy, ® id, that means we pick an index k" in the
left tensorand and replace Xjy with a tensor sign. Thus, the overall result is to consider
two indices (k, k') with i(k) = i(k’) = j and k' < k and replace the kth and k’th terms with
tensor signs, and then sum the result over all k and £’. On the other hand, if we apply Dk,
and then id ®Dx;,, then the same thing occurs except that the second index &’ is to the right
of k instead of to the left. But if we switch the names of & and %', then that is the same as
(DXJ- X ld) @) DXj- ThUS,

D%, = 2(Dx, ®id) o Dx; = 2(id ®Dx;) o Dx;.
We need one more piece of notation.

Definition 14.1.11. Let A be an algebra and 7 a linear functional with 7(ab) = 7(ba).
Then we define the map 1 : A%?* — A by n(a ® b ® c) = 7(b)ac.

Lemma 14.1.12. Let f € C(X1,...,X,) and let f™ be its restriction to M,(C)2,. Then

38, fO ) = D (2] for cach 5

1 d
A=) nlD%, f()].
j=1

Proof. By linearity, we may assume that f(X) is a monomial X, ... X;). Let z € M, (C)?,
and b € B. Then
f(il:l, e ,LC]',I, LUj + tb, ijrl, . ,xd) = f(&l)
+1 Xy .. .:Ci(k_l)bxi(kﬂ) - Ti(e)

ki(k)=j

+ 2 Z Zy .. -xi(kfl)bxi(kJrl) .- -aji(lc’fl)bxi(kurl) e Ti(e)
bk k<K
i(k)=i(k")=j

+ O(t%).
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The coefficient of #? is this Taylor expansion is half the second derivative with respect to z;
in the direction of b. Therefore,

ijf Z Z Ty .. --Ti(kfl)bxi(kJrl) ce .zz:i(k/,l)bxi(k/ﬂ) < Tg(p)
beB  kk':k<k'
i(k)=i(k')=j
=2 Z Iy .. .xi(k,l)Tn(ﬂji(kJrl) c zi(k’fl))$i(k’+1) < Tg(p)
kK" k<K'
i(k)=i(k )=

= n[Dx, f ()],

where the second equality follows from Lemma [14.1.8| and the last equality follows from our
above discussion of how Dg(j is computed. This proves the first asserted formula and the
second follows from it. O

Now we have computed the Jacobian / gradient and the Laplacian for both a non-
commutative polynomial f and the trace of a non-commutative polynomial. Using these
formulas and the product rule for differentiation, we may compute these same first and
second derivatives for arbitrary trace polynomials. For simplicity, consider the scalar-valued
case first. Suppose

f=tr(p1) ... tr(pe)

where py, ..., pr € C(X1,..., X4). Then by the product rule, for z € M, (C)%, we have
¢
vx]f(n) (ZE) = Z z; Tn pk H Tn[pk’
k=1 k' £k
¢
= DS} Pl ( H TolDw (@
k=1 k'#k
Moreover,
iAXf(n)('CE):iZ x Tn pk’ HTn pk’
n2 J n2 - J o
1
= > (Ve s @)V, [m(zokz(x))]) [T 7o)
e ko ky ks k' Ak ks
_ZTn®Tn ka HTnpk/
k' £k
1 [¢] o
+ = > (D@D e <x>) [T 7o)
ke ko ki ks k' k1 ko

In the above computation, since 7,(py) is complex-valued, when we compute the “cross
terms” that pair two gradients together, we must make sure to use the complex-bilinear
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extension of the inner product on M,,(C)s,, which is (z,y) — 7,(zy), rather than the complex
inner product (-, -)s.

Remark 14.1.13. Unlike everything else we have computed so far, the normalized Laplacian
(1/n?)A of a trace polynomial does not have the same formula for every n. In the large-
n limit the “cross terms” from the product rule vanish and thus the Laplacian becomes a
derivation (meaning it satisfies the Leibniz product rule).

Next, suppose that g = tr(pg)...tr(p,)p where pg,...,ps,p € C(Xy,...,Xy). Letting
f=tr(po)...tr(pe) as above, the product rule tells us that

Jo, 9" (@) Y] = 70 (Va, f7 (2)y)p™ (X) + g™ (@) T, 0™ () [y].

We have computed V,, f™(z) above, and J,;p™ (2)[y] = Dx,p(z)#y by Lemma [14.1.3]
Similarly, by the product rule,

1 1 1 2
;ﬁAwﬁm@)ZE#U”N@ﬂm@%+ﬂm@hﬁﬁﬁm@)+ga%ﬁmuﬂvwﬂm@H

Like the scalar-valued case above, the (1/n?)A terms are independent of n, but the cross
terms are O(1/n?).

These formulas shows that the Laplacian of a trace polynomial is a trace polynomial,
and in fact, the Laplacian can be computed purely formally as an element of TrP,4. Let us
make this claim explicit.

Lemma 14.1.14. There exists a unique linear operator Dg(j . TrPY — TrP, satisfying

DS, [tr(p1) . ZD;( pr [ tr(ow). (14.2)

k' £k

Moreover, there exist unique linear operators LS. : TrPY — TrPY and ng(,n) : TrPY — TrPY
J J
for n € N such that

L% tr(pr) - Ztr@tr (Dx, DX, pr) H tr(pr). (14.3)
k' #k

and
1
0,(n 3
L tx() -] = L lr(pr) - o))+ S a(Dipe Dyme) [ o).

k1 ko k1 ks k' #k1 ko
(14.4)

Moreover, DO decreases the grading by 1, and L% cmd Lo)égn) decrease the grading by 2.
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Proof. First, let us show that if p and ¢ are monomials that are cyclically equivalent, then
f%jp =D%,q- Let o : {1,.... 0} — {1,....(} be the permutation with o(i) =i + 1 mod (.
e

9(X) = Ximqy) - - Xiom()
Then
D, p(X) = Z Xitk+1) - - X Xi(1) - - Z X@ ok (1 Xi(ok(e—1))-
kii(k)=j Kei(k)=j
and similarly,
DiaX) = Y Xigwimy - Xighime
k'i(om (K'))=j

The two sums are equivalent by the substitution & = o™ (k’). Thus, Dg,p is uniquely

determined by tr(p) when p is a monomial. Recall that a basis for TrPY is given by terms
of the form tr(p;)...tr(p,) where each p; is a monomial modulo cyclic equivalence. Hence,

there are unique linear operators DX , Lx;, and L ) that satisfy - -, and ( -
respectively when pq, ..., p; are monomials. But then the relations (14.2)), (14.3)), (14.4)
hold for general non-commutative polynomials p; by linearity. Finally, the claim about the
grading is clear by inspection of the definitions of D%, and Dy;. m

Lemma 14.1.15. There exists unique linear operators Lx, : TrPy — TrPy and Lg?])
TrPy — TrP4 for n € N such that for f € TrPY and p € C(X,. .., Xy),

Lx,(fp) = L&, () -p+ f -n oD%, p, (14.5)

where 1 denotes the map C(Xy, ..., X4)®* — TrPy given by

n(p1 ® p2 ® p3) = tr(p2)p1ps.

Similarly, for each n € N, there exists a unique linear operator Lg?j : TrPy — TrP4 such that

L) (fp) = L, (fp) + 5 Dx,p#D% (/). (14.6)
where # denotes the map C(X, ..., X5)®? x TrPy — TrPy given by
(Pl ® p2)#f = p1fpo
Moreover, the operators Lx, and L ) decrease the grading by 2. Moreover, we have
Ly, ey = L%, L |npg = LY. (14.7)

and
troLx, = Lx, otr (14.8)
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Proof. Recall that TrP,; was defined as the tensor product of TrP§ and C(X1, ..., X,). The

right-hand sides of ([14.5]) and ([14.6]) are bilinear in (f, p) and thus pass to well-defined maps
on the tensor product. The fact about the grading follows by inspection of all the definitions

leading up to this point. Next, (14.7)) follows from substituting p = 1 in ((14.5)) and ([14.6)).

Finally, to show ([14.8]), first consider the case where p is a non-commutative monomial
p(X) = Xiq) ... Xye). Then Lx;[tr(p)] = tr @ tr(Dx, o D%,p). Now

'Dg(jp = Z Xi(k—i—l) . .Xi(g)Xi(l) . ‘Xi(k—1)7
ki(k)=j

and hence

Dx; oDx,p= Z ( Z Xitkr1) - - Xi'—1) @ Tirr 11 - - - Xio) Xi(1) - - - Xi(h—1)
kii(k)=j (Ick’ik .
i(k")=j

+ Z Xikt1) - - - XiXi) - - Xiw—1) @ Xy - - -Xi(k1)> .
k' <k
i(K')=j
Thus, tr @ tr(Dx; o DX, p) can be expressed as
Z tr(XZ'(k+1) ce Xi(k’—l)) tr(XZ-(k/H) c. Xz(@)Xz(l) . Xl(k—l))
ke k'K >k
i(k)=i(k')=j
= Z tr [Xz(l) N Xi(k:—l) tr<Xi(k+1) e Xi(k’—l))Xi(k:’—‘,-l) e XZ(Z)}
kok' >k
i(k)=i(k')=j
. 1
=trono (idoDx,) o Dx,p = 3 trono D?cjp.
In a similar way, the second term can be expressed as (1/2) tr onopg(j p. Therefore, tr @ tr(Dx,o0
Dg,p) = tr(Lx;p), and this identity extends to all p € C(X,..., Xq) by linearity.
For the general case, let f € TrPY and let p € C(X1,..., X4). Then

L [ tr(p)] = L, f - tr(p) + £ - L [tr(p)]

(This follows directly from ([14.3)) in the case where f is a product of traces of non-commutative
polynomials.) Next, using the case of tr(p) we just proved,

Lx,[ftr(p)] = Lx, f - tr(p) + f - tr(Lx,p) = tr[Lx, f - p+ f - Lx,p] = tr(Lx,[fp]),

where the last equality follows from ({14.5]). [
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The next proposition follows immediately from our earlier discussion of the Laplacian of
a trace polynomial acting on M, (C)<%,. This proposition is one rationale for studying trace
polynomials rather than only non-commutative polynomials in asymptotic random matrix
theory. The Laplacian of a non-commutative polynomial (given in Lemma is not in
general a non-commutative polynomial, but rather a trace polynomial (and this is true even
in the large-n limit).
Proposition 14.1.16. Let f € TrP, and let f™) be the restriction of f to M,(C)%. Then

sa*

Mgy ™ () = (LY f)(2) for x € M,(C),

Moreover, Lg?j)f = Lx, [+ O(1/n?) coefficient-wise.

14.2 The heat semigroup

Proposition suggests that the heat semigroup q),ﬁ’” = td/2m? acting on trace poly-
nomials has a well-defined large-n limit. More generally, for trace polynomials in dy + ds
variables Xy, ..., X4, Y1, ..., Yy, we will study the heat semigroup with respect to X,
viewing Y as an auxiliary parameter. This is useful for our results on conditional expectation
in §I5] since Y represents the variables that we are conditioning on.

Let f € TrPg, 14, written as a function of X = (X3,..., Xy ) and Y = (Y,...,Yy,), let
Lxf= 2?1:1 Lx, f and Lg?)f = Z;.llzl Lg?j)f. Fix t € R. Let TrPy, 14, be the space of trace
polynomials of degree < k. Now Lx and Lg?) are linear transformations of TrP4 44, that
map TrPg, 4, % into TrPg4 44, k—2. In particular, since TrPg4 44, is finite-dimensional, the
operator T}, = exp((t/2) Lx|np,, ,,,,) is defined by analytic functional calculus. But clearly
Ty = T} for k' > k, hence the union of the graphs of the T}’s defines a linear

(n) o
operator e'x/2 on TrPg, ,4,. We define e'tx /2 1 TrPy 4, — TrPy, 44, similarly. (Here we
speak of linear operators in the purely algebraic sense.)

|TrPd1 +do,k

Lemma 14.2.1. For each n, the operators (etLg?)/?)teR on TrPy form a one-parameter group.

Moreover, for (z,y) € M,(C)4%% and f € TrPq, ya, and t > 0, we have

) = [ etz do o),

My, (C)sz}

where a,gn) is the normalized Gaussian measure

do™ (2) = (2mt/n2) 2 1213/2

Proof. The operators form a one parameter group on TrPy, 14, because this is true on each
of the subspaces TrP 4, 14, k-
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For the second claim, first observe by Proposition |14.1.16| that the function ft(n) on
M, (C)dL+d2 given by

n ()
1" (@, y) = 5 f(,y)
solves the heat equation

1

DO | =

The function
W)= [ ez dol)
Mp(C)sa

also solves the heat equation for t > 0 by well-known classical results. Thus, ft(") must
equal ggn) because the solution to the heat equation with initial data of polynomial growth
is unique.

Alternatively, since we are dealing with polynomials, we can show ft(n) = ggn) using purely

finite-dimensional linear algebra. Note that f™ = fé") is a classical polynomial of degree
< k with respect to the coordinates given by any orthonormal basis. It follows that gf") is
also a classical polynomial of degree < k; to see this, expand f(x + z,y) into a sum of
monomials in z, y, z and then integrate with respect to do\™ (z). Therefore, f™ and ¢\™ are
two solutions to the heat equation in the space of classical polynomials of degree < k, and
thus they must both be given by the exponential of the restriction of A/2n? to the space of
classical polynomials of degree < k. O

The probabilistic interpretation of the previous lemma is that if X and Y are random
matrix tuples, and Z™ is an independent Gaussian d;-tuple of matrices, then E[f(X™ +
Zm y )| x )y )] = [etLg?)ﬂf](X(”), Y (™). In order to state the analogous result for free
random variables in the large-n limit, let us first describe the non-commutative law that
plays the role of the Gaussian distribution.

Definition 14.2.2. We denote by o; the non-commutative law of a d-tuple (Z1,..., Zy) in a
tracial W*-algebra such that Z;, ..., Z; are freely independent and each Z; has the spectral
distribution (1/27t)v4t — 221, <9/2 dz With respect to 7.

This is well-defined by Lemmas[5.2.8 and [I0.2.7] Note that this implicitly depends on d,
but we have suppressed d in the notation.

Recall from E that the one-variable semicircle laws v; given by (1/2mt)v4t — 221, 9p/2 dx
form a semigroup under free convolution since the Voiculescu transform &,,(t) = t/z. It
follows that if Z = (Zy,...,Z4) ~ o5 and Z' = (Z,...,Z}) ~ o, are freely indepen-
dent, then Z + Z' ~ o4 Indeed, since Z; and Z; are freely independent, we have
Zi + Z]’» ~ vy B 1y, = veyy. Moreover, using the associativity properties of free indepen-
dence, Zy + 71, ..., Zq+ Z) are freely independent, hence Z + Z' ~ o4,4. It is also easy to
verify that if Z ~ o, then sZ ~ oy, for any s € R.
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The following Proposition is due to [Ceb13l Theorem 2.4] for trace polynomials, although
the special case of the trace of a non-commutative polynomial is more or less contained in
prior work.

Proposition 14.2.3. Let f € TrPy, 1a,, and let (X,Y) be a self-adjoint (dy + ds)-tuple from
a tracial W*-algebra M. Let Z be a freely independent di-tuple with the law o;. Then

B [f(X +122,Y)] = [ f)(X,Y).

Proof. We claim that for any g € TrP,,, we have

d

S1 A8 2,)9(0) = SrlLa ) gV (14.9)

First consider the case where f(z) is a non-commutative polynomial. We will compute using
the non-commutative Taylor expansion of f. Similar to the hash notation that we used
previously, if A is an algebra and w € A®3 and by, by € A, we will write w#(by, bs) to mean
the linear extension of the map (a3 ® as ® ag)# (b1, by) = a;bjasbaas. Observe that

d
FX+82Z2Y) = f(X,Y)+ 12> Dy f(X.Y)#Z,
j=1
d
+1t Y (Dx, ®id) o Dx f(X,Y)#(Z;, Z;) + O(t*?).

J3'=1

The proof is just to compute what happens for monomials, and the method should be clear
enough from our proofs in §14.1, Regarding the O(t'/2) terms, we claim that

7 ([Dx, (X, Y)425]9(Y)) =0,
It suffices to show that for any functions hy(X,Y) and ho(X,Y), we have
T(hi(X,Y)Z;ha(X,Y)) = 0.
But this follows from freeness since
T(h(X,Y)Zha(X,Y)) = T([hl (X,Y) = 7(hi (X, Y))] Zi[ha(X, Y) — T(ha(X, Y))])
+ (i (X, Y))T<Zj ha(X,Y) — 7(ha(X, Y))])

+ T([hl(X, Y) —7(hi(X, Y))]Zj>7(h2(Xa Y))
= 7(h (X, Y)7(Z;)T(he( X, Y)),
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and 7(Z;) = 0. Then for the O(¢) terms, we claim that

r((Dx, @) 0 Dy (X, V)2, Z7) - 9(Y))
= (10 (Dx, ®id) 0 Dy F(X,Y) - (V) ) 7(Z,7y).
This follows from the fact that for any hqy, hs, and hg,
- (hl (X,Y)Z;ho(X,Y) Zyhs(X, Y)) = 1 (hao(X, V) (i (X, Y)hs (X, Y )T (Z,Z;).

This is another direct computation using free independence and the fact that 7(Z;) =
7(Z;) = 0. Next, because 7(Z;Zj) is 1 if j = j' and 0 otherwise, we have

T(f(X +t22,Y)) = 7(f(X,Y))
= tzd: 7’(77 o (Dx, ®id) o Dy, f(X, y)g(y)> +O(t%2)
1j:1
= §tLXf(X, Y).
Thus, holds in the case where f is a non-commutative polynomial.

Next, consider the case of tr(p) for a non-commutative polynomial p. By applying our
previous claim with ¢ = 1, we obtain

d 1 1
D1 (X +072,¥)) = L (L)X, 7)) = S Lx ()X, V).
t=0
Next, using the product rule for d/dt and ((14.3])
d 1
g [reX +H12Z) T (p(X + 12 7)] = SLxltr(pr) - tr(p)](X,Y),
=0

and thus by linearity for any h € TrPg4, 4,, we have

d

1
| hX+ tY22.Y) = S Lxh](X,Y).

t=0

Finally, suppose that f = hp where h € TrPY and p € C(z1,...,Z4,, Y1, .., Y4,). Then by
the product rule and ((14.5)),

yy MX + 22 Y)1(f(X +t2Z,Y)g(Y))

= LLH(X V)X,V )g(V) + Sh(X, V)7 (Il (X, V)g(v) )

= (1A )gr)).
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Therefore, (14.9)) holds in every case.

Next, we claim that

T(f(X +122,Y)g(Y)) = 7([e"*2f)(X,Y)g(Y)). (14.10)

Since ettx/2 is an invertible linear transformation on TrPg, it suffices to prove the claim with

e tx/2 f substituted for f, that is,
T([e P AX + 122,V )g(Y)) = 7(f(X,Y)g(Y)).
It suffices to show that right-hand side is a constant function of ¢ > 0. Consider
Ot t2) = 7([e” (X + 52, Y)g(Y).

The coefficients of e 1x/2 f are polynomials of ;. Moreover, any joint moment of (X, t;/zZ, Y)
is a polynomial function of t;/ ®. Since —t;/ °Z ~ t;/ 4 , this polynomial function remains the

same when we substitute —té/ ? for té/ ? and hence it contains only even powers of té/ ? which

makes it a polynomial in 5. So overall ¢(t1,ts) is a polynomial in (¢1,t5). Hence, we can
apply the chain rule and

Ou[p(t,1)] = O, B(t, 1) + O (2, 1).
Clearly,

1
Ond(tr ta) = —5r([Lxe 21X +1,°2,Y).

For 0,,, note that if Z is a copy of Z freely independent from (X,Y, Z), then té/QZ + €27 ~
(ty + €)Y/2Z and it is freely independent from (X,Y). Hence,

Ond(tn,ta) = L| (e AKX 1 (b2 + )22, Y)

de
a
de

(e B2 F(X +1,/°Z + €122,Y)

e=0
€=

0

1
= S7([Lxe™ " P A(X + Z,,,Y),

where the last equality follows from applying (14.9) to the function e=%2x/2f and the vari-
ables (X + t;/QZ, Y) and the free semicircular Z. Thus, 0y, ¢(t,t) + O, ¢(t,t) = 0, which
proves (|14.10)).

By the same token, for a (d; 4+ ds + di)-tuple (X,Y, X’) and f’ € Try, 14,+4,, We have
T(f'(X + 2, Y, X)g(Y, X)) = ([ 2 (X, Y, X" )g(Y, X')). (14.11)

There is a natural inclusion from the space of trace polynomials in a (d; + dy)-tuple of
variables (X,Y’) to the space of a trace polynomials in a (d; + dy + dy)-tuple (X,Y, X'),
and the restriction of the operator “Lx” on trace polynomials of (X, Y, X’) to the subspace
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of trace polynomials in (X,Y) is exactly the original operator Lx on trace polynomials of
(X,Y) (this is direct verification from the definitions). Hence, e!/x/2 on TrPy, 14,4, restricts
to e'x/2 on TrPg4, 4q,. Thus, if we substitute f/(X,Y, X’) = f(X,Y) in ([4.11)), we get

T(f(X + 2, Y)g(Y, X)) = 7(["*2 (X, Y)g(Y, X)] for g € TrPy, 14, -
However, there is nothing to prevent X’ from being equal to X and thus
T(f(X + Zi, Y)g(X,Y)) = ([ f1(X,Y)g(X,Y)] for g € TrPy, 1a, -

Therefore, [e!*X/2f](X,Y) is an element of W*(X,Y’) whose inner product with every non-
commutative polynomial g(X,Y') agrees with the inner product of f(X+7;,Y) with g(X,Y),
and by continuity this equality extends from polynomials g(X,Y") to elements of L*(W*(X,Y)).
This means by definition that Ew-xy)[f(X + Z;,Y)] = [eXx/2f](X,Y) as desired. O

The heat semigroup provides one proof of a well-known and fundamental fact in free
probability, which is closely related to Voiculescu’s asymptotic freeness theorem [Voio8b].

Lemma 14.2.4. Suppose that X™ is a random variable in M,(C)% such that

sa

lim sup|| X ™| < R in probability

n—oo

and Axw) converges in probability to Ax in Xg, g for some self-adjoint d-tuple from a tracial
W+-algebra. Let Z™ be an independent random variable on M, (C)% with the Gaussian

distribution ogn). Then )\(X(n)’zm)) converges in probability to \x z), where Z is da-tuple

with the free semicircular distribution Ay = oy, freely independent of X .

Proof. Let f € C(Xy,...,Xq,,Z1,...,Zq,). By Lemma [14.2.1
Er(f(X™, Z0) [ X0] = 7, ([ 2 £1(X ™, 0)).

(n) . . . .
Because e’z /2f converges coefficient-wise to e'*#/2f and Ayw — Ax in probability, we
have that in probability

Elr(f(X™, Z20))| XM = 7 ([ f1(X, Z)) = 7(Bw-»[f(X, 2)]) = 7(f(X, Z)).
Thus, to show convergence of /\( X, zm)y t0 A(x,7) in probability, it suffices to show that
T (F(X™, 2™ — El7,(f(X™, ZM))| X™] — 0 in probability. (14.12)

This is a technical argument whose main idea is to swap out f for a Lipschitz function and

then apply concentration of measure. Recall that o is given by the potential l|z]|3/2t and

hence by Corollary [11.5.1], it satisfies the log-Sobolev inequality with constant n?/2t, hence
by Lemma [11.5.2, we have

P (12" = 0]l = t2(0 +9)) < 72
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Thus, letting R, > max(R,t'/20), we have

lim sup||(X™, Z™)|| < R in probability.

n—oo

Let ¢ € C°(R) such that ¢(t) =t for |t| < R;. Then we have in probability that
Ta(f(X™, Z0) — 1, (f(9(X ™), 6(2))) = 0, (14.13)

since the two expressions are equal when ||(X (™, Z™)||, < R;. By Lemma|13.3.6, (v, z) —
tr(f(o(z), ¢(2)) is globally Lipschitz in ||-||o with some Lipschitz constant K. Therefore, by
Herbst’s concentration inequality,

P <1r<f<¢<X<">>, o(Z20)) = Blr(f(6(X™), p(Z™))|X ]| = 5‘X<">) < e,

and hence in probability
Tu(F(S(X M), 6(Z2))) = Elr(f(6(X™), 6(Z™)))|X™] — 0. (14.14)
Since f is a non-commutative polynomial and f(0,0) is a constant, we have
7 (F(X0), Z00)] < el X120

for some constants K; and K, and by the same token f(¢(X™), ¢(Z™)) is bounded by
some K7 since ¢ is bounded. Thus, by Corollary |11.5.3|applied to the Gaussian distribution,

E[L g sy T(f((X ™), Z0N) X D] = E[1 g0 s my T(f((X ™), 6(Z0)))| XM] — 0
in probability. Since ¢(Z™) = Z(™ when ||Z™||o, < Ry, this means that
E[r(f(e(X™), Z™))|X™] = Blr(f(6(X™),(Z")))|X"™] = 0 in probability. (14.15)
Finally, because || X ™|, is eventually < R; in probability,
Elr(f(p(X™), Z0N|XM] - Blr(f(X™, ZM))|X™] — 0 in probability. (14.16)

Combining (14.13]), (14.14]), (14.15]), and (14.16) proves (14.12) and hence completes the
proof. n

Our next goal is to show that (e!£x/2),5( extends to a semigroup (®;)i>0 on Ciyr app (R*?, ||-l2),

and that it describes the large-n limit of the heat semigroup (<1>§"’) on M,(C)% given by
Gaussian convolution.

Lemma 14.2.5. For each t > 0 there exists a continuous linear transformation ®; of
Ctr,app(R*(le“‘b), |ll2) such that ®,f = e*x/2f for f € TrPy. Moreover, ()0 is a semi-
group, and we have

19 fll2.r < 1 fll2,rr2e172; 19 flloo,r < ([ lloo, rs21r2-
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Proof. Suppose that f € TrPg 14,, and let (X,Y) be a self-adjoint (dy + dy)-tuple from
(M, 1) with Axy) € 23", . Let Z be a freely independent d;-tuple with law o;. Note
that ||Z]|o = 2t1/2.

We claim that A\xv,z) € X4, 1dytd,,ri2t1/2- Indeed choose a sequence of deterministic
tuples of n(k) x n(k) matrices (X®,Y®) converging to (X,Y) in non-commutative law.
Then proceeding as in the proof of Lemma[I3.5.5 we may modify them to get a sequence of
(XM Y ™) e M, (C)4+% converging in non-commutative law to (X,Y). Let Z(™ be random
Gaussian d;-tuple. Then by Lemma the non-commutative law of (X Y™ 7Z®)
converges in probability to that of (X,Y,Z), so that A\xyz) € Xy'p for some R. By
Proposition [14.2.3] we have

(6252 £1(X, V) = | B [FCX + 2Vl < [FCX + 2, 1)
Since \(x4zy) € Eyhg, and since | X + 7| < R+ 2t'/2 we have by Lemma [13.3.6] that

Ax+2y) € Egp£+2t1/2. Thus, by the same lemma,

IF (X + 2, )2 < 1 fllo,me2ere-

. . . app
Therefore, since A(xy) was arbitrary in ;7 z,

172 Fllo.p < (1 Fllz,ry2012-

This bound implies that e extends uniquely to a continuous linear operator ®; on
Cirapp(R*417%) 1|1-]l5), which still satisfies the same bounds. Finally, to show (®;)i>o is
a semigroup, we observe that ®,P, is a continuous linear operator satisfying ®,®,f =
eHILX/2 f when f is a trace polynomial, and hence ®,®, = ®, ;. n

th/2

Finally, we can show that the operation of convolution with Gaussian measure preserves
asymptotic approximability by trace polynomials [Jek18 Lemma 3.28]. This is one of the
main technical tools underlying our results in the rest of the thesis.

Lemma 14.2.6. For f : M, (C)4+d2 — M, (C), let us denote

B a,y) = [ £+ 2y) dof”(2)
whenever the integral is defined. Suppose there exist constants Ki and Ky such that
1F @,y < KyeR2ls bl for (2, ) € M, (C)4*% for al n.
If [~ f € Clnapp (RS |-2), then &) [0~ @ f.

Proof. Fix t > 0, R > 0, € > 0. Let © be the constant from Lemma [11.5.2] By Lemma
13.5.3, there is a trace polynomial ¢ such that

nli_{Eon(n) — g||§"1)a = |f = 9lly,gsp1r20 < €
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Clearly, |lg(z,y)|l2 < Kjef2Uzlletlyle) for some constant K. By Corollary [11.5.3]

] 1702+ 2, ) = 9o + 2,9) | do™ (2)
l|2]loo>t1/20©

2
< (K + K!)efelzletlylie) g /n_zng/metl/zQ

But ||2]lee < /20 and ||z, [|¥]|sc < R, We have

< / (K| + K{)GKQ(”m”OO"’”yHOO)GKQHZ”OO daﬁn)(z)
|z]loo >t1/20

£ @+ 2,9) = 9@+ 2, 9)ll2 < 1F™ = glS % /200

and hence

n n n n 2 2 /nc +1/2
1287 £ (2, ) = 87 g (. y)ll2 < 1S = gl e + (K + KpeHafay [ = elEmeete,

Therefore,
lim supl|®{" ) — < limsup|| f™ = gl|S) 120 < €
n—00 n—00 ’
Clearly, @gn)g ~ @, g since etLg?)/Zg — etlx/2g coefficient-wise. Since © can be taken > 2,

[Pef — Pegllor < |f — 9llorransz < <e

Because

[ F™ — @, f|57 < |08 £ — @V g || + @ g — Dig|l Sy + 1| Brg — |2, m,

we have
lim sup||@{") F) — @, f |57 < 2.
n—oo
Since R and € were arbitrary, <I>§"’ f) s @, f. n

14.3 ODE for non-commutative variables

Several times in our study of partial differential equations, we will use flows along vector
fields given by functions in Cyy app(R*?, ||-||2), and by asymptotically approximable sequences

of functions on M, (C)<, (see the proofs of Lemma [15.5.1| and Proposition [17.5.1).

Roughly speaking, given f € Ciyapp(R*?, || 2)2, and given H; € Ciypapp(R*||4||2)2, for
t € [0,T), we want to construct Fy € Ciyapp(R*?, ||]|2)4, satisfying

F() = f, atFt = Ht ©] Ft- (1417)
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Similarly, if we are given H™, f . M,(C)d — M,(C)% with H™ ~ H, and f0 ~ f,
then we want to show that the corresponding solutions Ft(") are asymptotic to Fj. It will
be convenient for the sake of brevity to list the assumptions that we make about the vector

field H;.

Assumption 14.3.1. We are given a function H; € Ciy upp(R*, [|+]|2)™ for each t € [0,7]
such that

(A) The mapping t — H; is a continuous function [0,7] = Cirapp(R*%, ||-]2)™ with respect
to the Fréchet topology on Ciyapp(R*%, ||+ [|2)™.

(B) There is a constant K such that ||H;||Li, < K for all ¢.

Remark 14.3.2. Condition (A) means more explicitly that ¢ — H, is continuous with respect
to the seminorm ||-||2 g for each R > 0. Since [0, 7] is compact, this upgrades automatically
to uniform continuity. Hence, (A) is equivalent to the statement that for every ¢ > 0 and
R > 0, there exists a ¢ > 0 such that for all s,t € [0, 7],

Is—t] <6 = |H, — Hljor < e

It should be no surprise that we will solve ([14.17) by Picard iteration. We first verify
that Assumption [14.3.1]is preserved under the composition and integration operations used
to define Picard iterates.

Lemma 14.3.3. Let H,; satisfy Assumption for some Lipschitz constant K and let
9 € Cirapp(R*||-[[2)™ be globally Lipschitz. Then

t
Gt —g—l—/ Hst
0

is well-defined by Riemann integration and (Gy)ico.1] also satisfies Assumption|14.5.1], except
with the Lipschitz constant KT + ||g||lLip- Moreover, we have in the Fréchet topology on

Cirapp(R*, [|-]|2) that
d

—G; = H,.
P ¢
Proof. First, consider the case ¢ = 0. The argument is completely standard, but we will
sketch it since one does not often need to integrate functions with values in abstract Fréchet
spaces. First, let wg : [0,00) — [0,00) be a modulus of continuity for ¢ — H; in ||-||2,r, so
that

[Hs = Hillo,r < wr(t).

For a partition P = {to,...,tx} of [0,], let mesh(P) = max; |t; — t;_1|. Define the right
Riemann sum

G'P - Z(ty - tj—l)th'



If Q is a refinement of P, then
|Gp — Gg| < twr(mesh(P));

the proof is to replace each G; for t € Q by Gy where t’ is the right endpoint of the interval
in P containing ¢, note |t — #'| < mesh(P), and then estimate with the definition of wg.

We can define G; to be the limit over all partitions P of [0, ¢] as mesh(P) — 0, since this
net is Cauchy with respect to ||-||2.z for each R, since lim; .o+ wgr(t) = 0. Moreover,

HGt - G’PHQ,R < twR(mesh(P)).

If s < t, then the same holds for G; — G using partitions of [s,¢]. In particular, if we use
the partition {s,t}, we obtain

|Gt — Gs — (t — s)Hy||o.r < (t — s)wr(t — s).
This implies also that
|Gt — Gs — (t — s)Hlla.r < 2(t — s)wr(t — s),

since |Hy — Hy| < wg(t — s). Overall, for any s, t,

— H; < 2wg(t — s),

2,R

Gy — Gy
t—s

which goes to zero as t — s — 0, and hence proves differentiability.
Now we check that G, satisfies Assumption [14.3.1

(A) The above argument shows that
|G = Glly g < (t = )| Hall2,r + 2wr(t = 5),
which goes to zero as t — s.

(B) Since the Riemann sums Gp for partitions of [0, ¢] converge to G; in ||-||2,r, the evaluation
of these Riemann sums on matrix tuples also converges to the evaluation of Gy on the
same matrix tuples. Hence, for XY € M, (C)4

GY(X) — Gy(Y) = /0 (HL(X) — H.(Y) ds,

so that ||Gy||Lip < Kt < KT, where K is the given bound on sup, || Hy||vip.-

Now if g # 0, we just add ¢ to the functions described above. The modulus of continuity of
t — G is unchanged by adding the constant g, and (B) is still true with Lipschitz constant
KT + ||g|Lip because we assumed g is Lipschitz. O
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Lemma 14.3.4. If (Hy)cjo,1) and (Gy)ieo.r) satisfy Assumption|14.3. 1) with d = m and with
Lipschitz constants K1 and Ky respectively, then (Hy o Gt)te[()ﬂ"] satisfies it with Lipschitz
constant K1 Ks.

Proof. Because we assumed that H; and G, are Lipschitz, H; o GG; is well-defined by Propo-
sition [13.4.3  And clearly, ||H; o GillLip < [[Hl|lLipl|Gtl|Lip, s0 (B) holds for H; o G; with
Lipschitz constant K Ks.

To check (A), note that
”Hs o Gs - Hs o Gt”2,R S KlHGs - GtHQ,R-

By Lemma [13.3.4] (3), we have
|Gilloe.r < IGellz,r + 2v/2d 2O R| G |-

Since t — G is continuous and [0, T is compact, ||G¢||2r is bounded by some constant Mg.
So letting Ry = Mz + 2v/2d"/?ORK,, we have

HHs oGy —H,o Gt||2,R < ||Hs - HtH2,R1-

Therefore,
|Hs o Gy — Hyo Gillo,r < Ki||Gs — Gillo.r + | Hs — Hillo,r,

which demonstrates (B). O

Proposition 14.3.5. Let (H;)ieo 1) satisfy Assumption|14.5.1, and let f € Ciyapp(R*, [|[]2)
be Lipschitz. Then there exists a unique (Fy)ico,r) such that

d
%Ft:HtOFt F():f

Moreover, (F})ico,r) satisfies Assumption |14.3.1)

Proof. We define the Picard iterates F}, inductively by
Fy = f7

t
Fg+1 = f —|—/ HS o Fs’gdS.
0

The previous two lemmas imply that (F};)icpr is well-defined and satisfies Assumption

M4.5.1

By the same token, (H;0g):c[o,1) satisfies Assumption(14.3.1, and hence Mp := SUP;¢[o.7] || Hyo
g||2,r is finite. Note that
1Fy = Frolly g < Mgt
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We have assumed || H¢||Lip is bounded by some constant K and hence

t
wwﬂ—ﬁumRs/umoﬂfemoﬂjﬂMMS
0

t
SK/MQ—@“MR
0

From here a straightforward induction on ¢ shows that for ¢ > 1,

MRKZ—ltE
14
because Kf(f Klst/00ds = K "1 /(0 4+ 1)!. Now because Y o K 's*/0! converges, we

[Fre = Fro-illyp <

know that (F})een converges to some Fy € Ciy app(R*, ||+||2)%,, and in fact
. o
KT
[ Fre — Filly p < MR Z —
J=t+1 J:

Since the convergence is uniform, it follows that ¢ — F; is continuous, and hence (F})ico,7]

satisfies (A) of Assumption [14.3.1}
To check (B), we claim that ||F} || < e®?|| f]|Lip for all ¢ and ¢. We proceed by induction.
The base case Fyy = f is trivial. For the induction step, for matrix tuples X and Y/,

[F o2 (X) = Frepa (YV)lly < [[F(X) = V)2 +/0 [Hs o Fyo(X) — Hy o Foy(Y)|2ds

< FX) = F)a— / K - 5| f|lusp ds

< fllep + (€ = D) flleip,
so that ||Fyei1|lLip < €% fllLip- Then it is easy to see that

1F i < lim inf[| Fy gl < e < e,
n—oo

hence (F})cjo,r) satisfies Assumption |14.3.1) with Lipschitz constant et

Because (F})icpo,r) satisfies Assumption |14.3.1} the integral fot H, o F,ds is well-defined.
Given our estimates for F} , — Fj, it is straighforward to check that

t t
f+ / H,o F,ds = f+ lim Hgo Fypds = lim Fy g1y = Fi.
0 L—o0 0 £—00

Because F; = f+ f(f H,o F,ds, it follows from Lemma |14.3.3that (F});co,m) solves the initial
value problem.

Finally, (F}):cp,m is unique, even if we do not assume it satisfies Assumption [14.3.1}
because for every n the restriction of F} to M, (C)<, is uniquely determined by the classical

existence and uniquenesss theory for ODE. O
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Now that we have developed the Picard-Lindelof theorem for Ci, .pp(R*, [|-]|2), let us
explain the “asymptotic approximation” version of these results. First, the version of As-
sumption [14.3.1} m 1| for a sequence of functions on M, (C)Z is as follows.

Assumption 14.3.6. We are given T > 0 and for each n € N a function H™ : M,(C)¢ —
M,,(C) such that

(A) For each ¢, the sequence (Ht(”))neN is asymptotically approximable by trace polynomials.

(B) There is some constant K such that ||H ||L1p < K for all n and t.

(C) For every R > 0 and for every € > 0, there exists 0 > 0, such that

(n)
< €.

|s —t] <d = sup
2,R

neN

H — B

Proposition 14.3.7. Let (Ht(n))te[O,T},neN satisfy Assumption |14.3.6( with m = d, and let
(f™),en be uniformly Lipschitz sequence of unitarily equivariant functions that is asymptot-
weally approrimable by trace polynomials.

(1) Leth( n) M"}ItEC'trappaRd || || )s

(2) For each n, there is a unique family of functions Ft(n) : M, (C)e, — M, (C)2 fort €[0,T]
satisfying

and f) ~~ f. Then (Hy)epo1 satisfies Assumption

a

d n n n n
40— B o 0, R =

(3) If (Fy)icpom is the solution for the family (Hy)icjor) and f given by Proposition
(n)
then F," ~~ F.

Proof. (1) The existence of H; follows from Lemma|13.5.3] and by the same lemma,
|H, = Hillo.r = lim [|H" — H" |25,

which shows that (H).cjor) satisfies Assumption [14.3.1 (A). Moreover, (B) follows since
| Ht|lLip < K by Lemma [13.5.8]

(2) The existence and uniqueness of the solution for each n follows the classical Picard-
Lindelof theorem. In fact, the explicit Picard iterates and estimates are exactly analogous
to the proof of Proposition [14.3.5| above.

(3). Fix R > 0. Using the integral equation for both F ) and F;,

F™ — E

V< f||zR+/HH —Ho R
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Note that )
|H o B = HE o By < KIFY — B

Now because F; is e'™|| f||Lip-Lipschitz, we have
1Floor < [|Fillo.r + 2v2d"*0e™™ || f|lLipR =: Ru.
Hence,
n (n) n n
HHS( )0 Fs—Hso FS||27R < HHs( ) — H8|’g,1)%1'

Let

M®™ = sup |H™ — H,||$%, .
s€[0,T7]

Using Assumption |[14.3.1| (A) and Assumption |14.3.6/ (B), the functions t — HHt(n) - HtHg%

are equicontinuous for n € N. These functions converge to zero pointwise since Ht(n) ~ Hy.
Therefore, they converge to zero uniformly and hence

lim M™ = 0.

n—oo

In the above integral formula,

|

It follows from the integral form of Gronwall’s inequality that

Ft(n) _ E

() (n) ' (n) (n)
D S Sl My [ KIE — E s
b 0

. (n) :
|E" =B < (15 = fllar+ M) e
Since || f™ — fllo.r — 0 and M™ — 0 as n — oo, we are done. O

Remark 14.3.8. In Proposition [14.3.7_one can show with a little more work that the family
(Ft(n))te[o,T],neN satisfies Assumption [14.3.6, One way to do this is to simply repeat the
arguments used to prove Lemma |14.3.3] Lemma [14.3.4] and Proposition [14.3.5]

In and we will want to study initial value problems of the form
OF" (,y) = H(F" (@, y),y) F"(w,y) = =. (14.18)
Thus, we present the previous result in the following form.

Corollary 14.3.9. Let H™ : M,(C)u+d+2 — M, (C)% satisfy Assumption |14.5.6. Let

Ft(n) be the solution to (14.18)). Then (Ft("))neN 15 asymptotically approximable by trace
polynomials for every n.
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Proof. Consider the vector fields in d; + ds variables given by

ﬁt(n)<x7 y) = (Ht('r? y>7 0)
EM (2,y) = (Fi(z,y), ).

Then Ft(n) solves the initial value problem

d - .
aF,}"’ = H,oF, B =id.

Moreover, [th(n) clearly satisfies Assumption |14.3.6 Therefore, by the previous proposition
(Ft(”))neN is asymptotically approximable by trace polynomials for each ¢, hence the same
holds for (F™),en. 0
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CHAPTER 15

Results: Conditional expectation for free Gibbs states

15.1 Main result and consequences

Our work concerns the large n behavior of random d-tuples of self-adjoint matrices. Recall
M, (C)4 denotes the space of d-tuples of n x n self-adjoint matrices with the inner product
(z,y) = D751 Tu(z;y;) where 7, is the normalized trace, which can be isometrically identified

with RI"*.

We consider a probability measure of the form
dp™ (z) = e V@) G,

where V™ : M, (C)L — R. Past work such as [GMO6, [GS09, [GST4, [DGS16] has focused on
the case where V™ (z) = 7, (p(x)) for some non-commutative polynomial p or more generally
a trace polynomial (or power series defined by trace polynomials). For multiple matrices,
the most progress has been made when V' is uniformly convex.

In the present work, our assumptions will be more flexible in some ways but more restric-
tive in others. Rather than assume that V(™ is a trace polynomial, we only assume VV ™
is asymptotically approximable by trace polynomials, or VV (™ ~s F. However, we will
assume not only uniform convexity, but also semi-concavity, as this is technically convenient
to get easy estimates. While the class of trace polynomials that satisfy global convexity and
semi-concavity is very restrictive, there are many functions whose gradient is approximated
by trace polynomials that still satisfy our assumptions.

Our standard assumptions are as follows:

Assumption 15.1.1. We are given 0 < ¢ < C and for each n a function V™ : M, (C)¢, — R
such that

1) HV™ > I, that is, V) (z) — Le|jz||3 is convex.

2) HV™ < CI, that is, V™ (x) — 1C||z||; is concave.

3) {VV ™}, ey is asymptotically approximable by trace polynomials.

(1)
(2)
(3)
(4) V™ is invariant under unitary conjugation, that is, V™ (uzu*) = V™ (z) for any unitary
u.
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We denote by p(™ the probability measure on M, (C)% associated to the potential nV ™).

The main technical result of the section is as follows:

Theorem 15.1.2. Let V™ : M, (C)h1+% — R be a sequence of functions satisfying As-
sumption |15.1.1,  Let (f™)nen be a sequence of functions M,(C)4+% — M, (C) that
is asymptotically approximable by trace polynomials and is uniformly Lipschitz, that is,
sup,, || £ ||Lip < +o00. Let

Syt f(”)( PV e g

fM y e n?V () dg

n

9" (y) =

Then (¢™),en is also asymptotically approzimable by trace polynomials in y and uniformly
Lipschitz with

lg™lls, < L+ C/OF]

Lip

Remark 15.1.3. The function ¢(™ is obtained from f(™ by taking a conditional expectation.
Indeed, let (X™, Y (™) be a random variable distributed according to the probability measure
p™ given by the potential n?V ™ where X takes values in M, (C)% and Y™ takes values
in M, (C)%. Then g™ (Y (™) = E[ f(Xx ™y m)|y ™).

Remark 15.1.4. We can take d; = 0 in the theorem, and then g™ will be a constant (a
function of 0 variables), and will also be scalar-valued (that is, a scalar multiple of the
identity matrix) because we assumed that p(™ is unitarily invariant. Then we interpret the
statement that ¢ is asymptotically approximable by trace polynomials to mean that the
limit as n — oo of ¢g(™ exists.

While the proof of Theorem [15.1.2] will occupy most of the chapter, let us first explain
special cases and consequences of the theorem. The first result is that these random matrix
models have a large-n limit in a suitable sense. The following is from [Jek18 Theorem 4.1],
and is comparable to earlier results such as [GS09, Theorem 4.4], [DGS16, Proposition 50
and Theorem 51], [Dabl17, Theorem 4.4].

Theorem 15.1.5. Let V™ and pu™ be as in Assumption [15.1.1. Let X™ be a random
variable distributed according to the law p™. Then Ay, converges almost surely to some
non-commutative law A, which can be represented as the non-commutative law of some self-
adjoint d-tuple X from a tracial von Neumann algebra (M,7). The convergence in the
large-n limit satisfies the following properties.

(1) Fiz R > || X||oc and let U be a neighborhood of Ax = X in Xgqp. Then

1
hmsup—logP(HX Moo < R and Axoy €U) <0

n—o0
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(2) We have
P (HX(n)Hoo Z RO +5) S de—cn52/27

where

92 1/2
Ro= (24 1vvol) oo,
where © 1is the universal constant from Lemma|11.5.2,

(8) Let f™ : M, (C)L — C be a sequence of functions such that f™ ~ f € Cirapp(R* ||-l2)
and
|f(n)(l’)| < KleKQHIHoo

for some constants Ky and Ky independent of n. Then

Tim B[/ (X™)] = £(X).
Remark 15.1.6. We call the limiting law A in this theorem the free Gibbs law associated to
(V(™),en. We remark that A only depends on the function f € Ciy app(R*?, ||-||2)%, such that
VV®™ «s f. This is automatic from the theorem by the following standard trick. Suppose
that V(™ and W™ are two sequences of potentials satisfying Assumption such that
VV® and VW™ are both asymptotic to f. Then the sequence VV), VIVE@ vV ©),
VIW®W, . .is also asymptotic to f, and hence by the theorem, the random matrix models
associated to this sequence converge in non-commutative law to some v almost surely. The
limiting non-commutative laws for the even terms and the odd terms of the sequence must
be the same, and hence the limiting non-commutative laws for V™ and W are the same.

Proof of Theorem (15.1.5. The idea is to combine Theorem [15.1.2 in the case dy = 0 with
Herbst’s concentration inequality (Corollary|11.5.1]) and the operator norm bounds in Corol-
lary [L1.5.3l However, it requires a series of steps to get to the exact statements claimed in
the theorem.

First, let us prove the operator norm bound (2). By Corollary [11.2.6]
92d 1/2
B < (24 1I9vooR)

However, because V(™ is invariant under unitary conjugation, F (X) is a d-tuple of scalar
multiples of the identity matrix. Therefore, ||E(X J(n) Moo = |1E(X J(") )||2. Hence,

IE(X")lo + 20 < Ry.
Now x + z; is 1-Lipschitz, and therefore by Lemma [11.5.2]

(n)
P (X

> Ry + 0_1/26> < e /2,

273



To obtain (2), we substitute ¢'/2§ for §, and then use a union bound to get an estimate for
1X || rather than | X"

Next, we turn our attention to the existence of the limit in (3). We claim that if f™ :
M,(C)4 — C is K-Lipschitz for all n and f™ ~~ f, then lim,, ., E[f"™(X®)] exists. This
is actually a special case of Theorem . Indeed, f™ can be viewed as a map into M, (C)
by identifying 1 € C with 1 € M,,(C), and as such it is asymptotically approximable by trace
polynomials. We apply the theorem with d; = d and dy = 0, and as we remarked earlier,
the meaning is that lim,_,, E[f™ (X™)] exists.

We claim that if £ is as in (3), then lim, ., E[f™(X™)] exists. It suffices to show
that for every e > 0, there is a constant L such that

lim sup ‘E[f(”)(X("))] —L| <e

n—o0

Let f € Ciapp(R*, ||||2) such that ™ ~s f. Let f be a globally ||-||o-Lipschitz element of
Crapp(R*, ||-]|2) such that [|f — f|l2,r, < €. For instance, as in the previous chapters, we
can choose f to be a trace polynomial composed with a smooth cut-off function (see Lemma

13.3.5/ and the proof of Proposition [13.6.6). We already know that L := lim,_., E[f(X™)]

exists. Thus, it suffices to show that

limsup E|f™(X®™) — f(XM)] <.

n—oo

[ [ g e+
llzllco <Ro llzllco<Ro llzllco <Ro

and the first term goes to zero, while the second term is bounded by €. Finally, observe that
|f™)(z) — f(x)| < Klefel#le for some constant K!. Thus, using Corollary [11.5.3

l[#]loo > Ro nc

Hence, limsup,, . |E[f™ (X )] — L| < € as desired, which shows the existence of the limit.

Clearly,

f=F] du,

Thus, we have shown that the limit in (3) always exists. In particular, for any non-
commutative polynomial p, lim,, ;o E[7,(p(X™))] exists. We define A : C{ty,...,ts) — R
by

Ap) := lim E[r,(p(X™))].

n—oo

Then )\( *p) > 0 since 7,(p(X™)*p(X™)) > 0. Similarly, we have A(pq) = A(gp) because
Tu(p(XM)g(X ™)) = 7,,(¢(X™)p(X ™). Finally, because

lim 7 (p) dp™ =0,

"0 oo >Ro
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we have |A(p)| < ||7(p)||r,- In particular, |A(t; ...t )] < RE. Therefore, by Proposition
[10.2.2] A can be realized as the law of a self-adjoint d-tuple X from a tracial W*-algebra
(M, ).

Now let us prove (1). Suppose R > [|X|l and U is a neighborhood of A in ¥4 .
Because the topology on ¥, r is generated by the functions A — A(p) for a non-commutative
polynomial p, there are non-commutative polynomials pq, ..., pr and some €, ..., € > 0
such that

k
A€ ﬂ{u p(py) — Apy)| <€} CU.

Hence,

k
P (X"l < Rand Ay €U) <Y P ([ X"l < Rand [Axm(p;) = Mps)| = ¢5) -

J=1

Our goal is to show that the left-hand side is bounded by e for some § > 0, and to prove
this, it suffices to establish such a bound for each term on the right hand side. That is, it
suffices to show that for every R > || X || and € > 0 and non-commutative polynomial p, we
have

1
lim sup — log P (HX(")HOO < R and |7,,(p(X™)) = A(p)| > €) <0.
n

n—oo

Since the probability will only increase if R is made larger, we may assume without loss of
generality that R > Ry. Let f € Cipapp(R*,||+|l2) be a globally ||-||o-Lipschitz function such
that f(z) = 7,,(p(z)) for ||z]|ec < R. Because R > Ry and |f — 7(p)| < K ef2I#l= for some
constants K| and K5, our earlier arguments show that

lim B[f™(X™)] = lim Elr,(p(X™))] = A(p).

n—o0 n—oo

Thus, for sufficiently large n, we have

B (X = Mp)| < 5

Meanwhile, by Herbst’s concentration inequality (see Definition |11.4.3[and Corollary [11.5.1]),
we have

P (IF(X®) = B (X®))| > £) < e,

Therefore, for sufficiently large n,

1 n n 1 e /16117112
5108 P (JIX"]loc < R and [ (p(X ™)) = Ap)| = €) < — logde™ /1ML

CTL2€2

— = < 0.
16[| f11Z
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This completes the proof of (1).

Next, let us prove almost sure convergence. Fix R > Ry. Let p be a non-commutative
polynomial and € > 0. Note that

P(Ira(p(X™)=A(p)| = €) < P(IX ]| > R)+P(|X™[|loc < R and |7, (p(X™)=A(p)| > €).

Using (2), the first term is bounded by e for some §; > 0 since R > Ry. Using (1), the
second term is bounded by e~"*% for some 85 > 0. This implies that

D PUma(X™)) = Ap)| = €) < +oo,

and hence 7,(p(X™) — X(p) almost surely by the Borel-Cantelli lemma. This holds for
every p and thus Ayxm) — A almost surely.

Finally, let us finish the proof of (3). Let f™ ~ f asin (3). Fix R > Ry. From the
foregoing argument, we have Ay — A = Ax almost surely, and also limsup,, || X ™| <
Ry almost surely. In this case, because f defines a continuous function on ¥, g, we have
f(X™) — f(X). Also, because SUD| ||| <R 1™ —f] = 0, we have f(™(X™) — f(X) almost
surely. Thus, 1 xm | <r f(XM) — f(X) almost surely and this function is uniformly

bounded (since f(™ is uniformly bounded for ||z||o < R because f™ ~ f). It follows from
dominated convergence that

Jim B [Lxme<rf™(X™)] = f(X).
However, using Corollary as above,
lim B [ xon s ™ (X)) = 0.
Therefore, (3) is proved. O

The next result is an extension of Theorem [15.1.2] by approximation arguments. The
idea of the proposition is that the classical conditional expectation behaves in the large-n
limit like a von Neumann algebraic conditional expectation.

Theorem 15.1.7. Let V™ : M, (C)L+%2 5 R be a sequence of functions satisfying Assump-
tion|15.1.1. Let (X™,Y ™) be a random variable distributed according to the corresponding
measure ™, and let (X,Y) be a tuple from a tracial W*-algebra (M, T) which realizes the
limiting free Gibbs law.

Let (f™),en be a sequence of functions M,(C)4a+d2 — M, (C) such that f™ ~ f €
Cir.app (R¥1FE) |.|l5) satisfies

Hf(n)(fl’,y)HQ < K efel@y)le
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Define g™ by
g(n)(y(n)) — E{f(ﬂ)()((n)’y(n))‘y(n)]'

Then g™ is asymptotic to some g € Ciyapp(R*®2, ||-||2), and we have
9(Y) = Ew-m[f (X, Y)],

where Ew-yy : L2 (W*(X,Y)) — L*(W*(Y)) denotes the orthogonal projection (which re-
stricts to the conditional expectation W*(X,Y) — W*(Y))). Hence, in particular,

1B X Y)Y |2 = | Bweor) [f (X, Y))o-

Proof. Fix R > 0 and ¢ > 0, and we will approximate ¢ on the operator norm ball
|ylle < R by some function from Ci; app(R*®, [|+]|2)-

Since the argument of course relies on truncation to operator norm balls, we begin b
deriving some operator norm bounds on hg.n)(Y(”)) = E[X J(n)|Y(”)]. By Theorem [15.1.2]

hg-n) (y) is a (14 C/c)-Lipschitz function of y. Moreover, because V(™ is invariant under uni-
n)

tary conjugation, we also know that hg. is equivariant under unitary conjugation. Therefore,

by Lemma [11.5.4], we have
115" (1) = (B ()00 < 2V2dM20(1 + C/c) max|ly; — 7(y;)loc;

where © is a universal constant. Next, because Tn(hg-n)(y)) is asymptotically approximable

by trace polynomials, there is some constant R; > 0 such that

sup sup |7 (RS ()] < Ry
" lylleo<R

Therefore, for ||yl < R,
1) ()]0 < Ry + 4V2dY?O(1 + C/e)R =: R,

Let us denote h™ = (A", ..., h{"), and then [[2™ (y)]|e0 < Ry for [|y[le < R.

Now let R3 = Ry + ¢~ Y/?0. By applying Corollary [11.5.3| to the conditional distribution
of X given Y, we see that for any constant Ko,

/2
/ efellzlleo d,u(")(x|y) <d 4 o3 /2net Ry 0,
l[z]loo>R3 nc

since [ ELX™ Y ][l = [0 (Y ™)l < R.
Recall that f( ~ f. We can construct some f such that || f — f||2.max( (R,R5) < € and such

that f is globally Lipschitz with respect to ||-||o. The way to obtain this f is to approximate
f by a trace polynomial, and then compose it with a compactly supported cut-off function

as in Lemma [13.3.9]
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Let g™ (y) = ff(x,y) dp™ (z|y). By Theorem [15.1.2, §™ is asymptotic to some § €
Cirapp(R* | ||||2). Now || f®™) (x,y)— f(z,9)|l2 < KjeX2lzle for some constant K. Therefore,
for [yl < R,

- 2T
1™ (@, y) = o, y)ll2 dp™ (aly) < Kjdy| —e"5/2metis — .
|z]|oo > R3 nc

Meanwhile, our choice of f implies that for sufficiently large n,

L ) = Fe i) <

Thus, overall for [|y]|« < R,

~(n n r n 27 nc 3
19" (y) — 3™ (¥)]l2 < /Ilf( Nz, y) — f2,y) |2 du'™ (z]y) < Kid\/ﬁelgﬂ s e

Hence,
limsup sup g™ (y) — g(y)|, <e
n—=00  |lyllo<R
since g™ ~~ §. Since R and e were arbitrary, this shows that ¢ is asymptotically approx-
imable by trace polynomials as desired.

Now let g™ ~~ g. It remains to show that g(Y) = Ew-o[f(X,Y)]. If Z € L2(W*(Y)),
then we can pick a function ¢ € Ci;app(R*2,||||2) such that Z = ¢(Y), and we can ar-
range that ¢ is globally ||-|[-bounded. Then the function y + 7,,(¢™ (y)é(y)) on M,,(C)%
is asymptotic to tr(g@) in Ci app(R*?2, ||-||2) as n — oo, and similarly, the function y
72 (fO) (2, 9)0(y)) on M, (C)Ea+4 is asymptotic to tr(fp(ma)) in Cipapp (R*@179) ||-||5), where
mo(z,y) = y. Therefore, by the previous lemma,

r(F(X,Y)H(Y)) = Tim Bl (/™ (X, Y ®)(y )]
= Tim Bl (9" ")y ™)

=7(g(Y)o(Y)).
Thus, 7(f(X,Y)Z) = 7(9(Y)Z) for all Z € L*(W*(Y)), hence ¢g(Y) = Ew-)[f(X,Y)]. O

A final consequence of Theorem [15.1.2] is that Assumption [15.1.1] is preserved under
taking marginals of the measure p(™.

Proposition 15.1.8. Let V(™ : M, (C)41+4 — R satisfy Assumption 1| for some 0 <
c < C. Define VW : M,(C)% — R by

- 1 n
Vi(y) = —_glog/e_”2v( @) gy,
n
Then V™ satisfies Assumption |15.1. 1| with the same constants ¢ and C'.
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Proof. The inequality ¢/ < HV™ < CI can be written in block matrix form as

CInzdl 0 (n) CInQd 0
< < !
( 0 c[n%) SHVES{ 07 CLeg )

Thus, by Theorem [11.3.3| (taking x; = y and x5 = x), we have
(cLyza, — (0)(cLzg,)H(0)) < HV™ < (Clyza, — (0)(Clzg,) 7 (0)).
Now [11.3.4] V\A/(”)(y) = [V,VW(z,y)du™(z|y). So by Theorem [15.1.2 (V‘A/(”))neN is

asymptotically approximable by trace polynomials. Finally, V(™ is invariant under unitary
conjugation because V™ is invariant under unitary conjugation. 0

15.2 Strategy

This section explains the heuristics behind the proof of Theorem [I5.1.2] We cannot hope
to analyze the integral formula for ¢ directly because this integral formula is heavily
dimension-dependent — for instance, all the integrals are in different dimensions and they
all have n? in the exponent. Instead, we will express the conditional expectation through
the action of a certain semigroup. Let us first consider the case where d, = 0, that is, where
we evaluate an expectation rather than a conditional expectation.

Let 1™ be a measure given by the potential n?V ™, where cI < HV™ < CI. Given a
function f™ : M, (C)% — M,(C), let f evolve according to the normalized heat equation
with respect to u™. If f™ were a scalar function, then the heat equation would be given

by
n 1 n 1 n n
atft( )= QnZAft( = §<vft( )7VL ( )>~ (15.1)

But of course, f™ is vector-valued, so we will express the equation as
m_ L A 1w gpm
Ofy = 2_7/L2Aft —gJf VYV, (15.2)

where J ft(") (x) is the Jacobian linear transformation of ft(") at the point . Then we denote
T f) = £ that is, T,™ is the heat semigroup associated to V™,
One can check using integration by parts (Lemma [11.2.5) that [ f; dp™ is independent

of t. Moreover, due to the uniform convexity of V(™ it turns out that || ft(n)||Lip — 0 as
t — oo, and thus f; converges to its expectation [ fdu™.

Remark 15.2.1. There is a dual viewpoint on this semigroup in terms of SDE rather than
PDE theory. Let S be a Brownian motion on M,,(C)% normalized so that E||S™||2 = d-t.

Let X™ be a solution of the SDE

n n 1 n
dX™ = ds™ — §Dv<">(X§ ) dt (15.3)
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with any given initial distribution. Then the law of Xt(n) will evolve toward the law ;™ ast —
+00. More precisely, the probability density of Xt(n) evolves according to the heat equation
with respect to u(™. Moreover, the solution to (15.1) is given by £ (z) = E[f™(X,)] where
Xo =x.

Similar to §12.4) we can study the conditional setting by applying the non-conditional
results fiberwise. Indeed, if V(™ is now a function of (z,y) and f™ : M, (C)4+% — M, (C),
then we can study the conditional diffusion equation

n 1 n 1 n n
Of" = 55 Al = S f VLV, (15.4)

where the differentiation occurs with respect to x, and y only plays the role of a parameter.
The conditional expectation of ft(")(X (M) Y(™) can be evaluated as the limit as ¢ — oo of
(Y ),

The point of using the heat equation associated to V™ is that it is dimension-independent.
The formula e~V has an n in the exponent, which is difficult to deal with directly in the
large-n limit. However, the equation is dimension-independent; the only occurrence of
n is in the expression (1/n?)A, but we saw in that this is the dimension-independent
normalization of the Laplacian on trace polynomials.

It is precisely for this reason that much of the previous work on free Gibbs laws relied on
this heat semigroup, though this was more often expressed from the SDE viewpoint rather
than the PDE viewpoint. We should also point out that this semigroup is the basis for
the standard proof of the log-Sobolev and Herbst concentration inequalities (see |[AGZ09,
§4.4.2]).

Our main technical contribution is to show that, roughly speaking, the conditional heat
semigroup associated to V™ preserves asymptotic approximation by polynomials. More pre-
cisely, let Tt(") denotes the conditional heat semigroup with respect to V™ (z,y), let (V™) oy
satisfy Assumption , and let f(™ : M, (C)4+e2 — M, (C) be uniformly Lipschitz and
asymptotically approximable by trace polynomials. Then Tt(n) ™) is asymptotically approx-
imable by trace polynomials.

In order to do this, we express 7\" in terms of two simpler semigroups. Let & be the
flat heat semigroup given by

and let U™ be the semigroup given by

DU ) = (VLW ), T,V ).

We already saw in Lemma (14.2.6| that @g”) preserves asymptotic approximation by trace

polynomials. Meanwhile, \IJE") can be expressed in terms of solving ODE, so it preserves

280



asymptotic approximation as well. But the semigroup Tt(n) can be obtained as

(n) _ 1 (n) gy () \k
T = ]}gf)lo((pt/kqjt/k)
with dimension-independent rates of convergence as k — oo. Thus, T, t(") also preserves
asymptotic approximation by trace polynomials.

This method of “blending” the two semigroups ®™ and U™ to obtain 7™ is moti-
vated by Trotter’s product formula which asserts that e!4+5) = limy,_,,, (e*4/*etB/*) for nice
enough self-adjoint operators A and B (see [Tro59], [Kat78|, [Sim79, pp. 4 - 6]). Actually,
rather than cutting [0,¢] into k& subintervals of equal length, we will consider an arbitrary
partition into k subintervals. Thus, we will proceed very much in the spirit of Riemann
integration (like for instance, the results in Part I). Our approach, if we were to translate it
into the SDE viewpoint, is comparable to using a discrete-time approximation to solve the
conditional version of the SDE (15.3).

15.3 Diffusion semigroup via Trotter’s formula

In this section, we begin the technical details of the proof of Theorem . Our first goal is
to carry out the “Trotter’s formula” construction of the semigroup Tt(n by blending (IDE”) and
\Ilgn). In particular, we will first prove that the approximations converge to some semigroup
7™, that this semigroup actually gives a solution to (15.1)), and that the limit as ¢t — oo
actually exists and evaluates expectations with respect to the measure ™. Furthermore,

all our estimates should be dimension-independent.

In order to simplify notation, we will freeze the variable y and only study functions of
r € M,(C)4,. Moreover, for the rest of the section, we will fix n, fix V' : M, (C)% — R with
cl < HV < C1T for some 0 < ¢ < C, and let o be the associated measure. Hence, there
will not be any more superscripts (n) until we return to study asymptotic approximation in
q15.5|

We will study the actions of the semigroups ®; and W, on Lipschitz functions f :
M,(C)L — M,(C). Here ||f||Lip denotes the Lipschitz seminorm with respect to [|-]|s on
M, (C)L and || f||r~ denotes

11|z = esssup{[[f(2)]l2 : = € Mi(C)}-

On the other hand, | f|l» denotes 7,(f*f)'/2, which is still a function of z; if we need to
refer to the L? norm with respect to a measure, we will explicitly write L? in the subscript.
Finally, since a Lipschitz function f is differentiable almost everywhere by Rademacher’s
theorem, we will denote by Jf the Jacobian linear transformation, by ||Jf]| its operator
norm, and by ||.Jf||=~ the essential supremum of ||/ f||, which is the same as the Lipschitz
seminorm of f.

We begin with the definition and basic properties of semigroups ®; and W,.
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Lemma 15.3. 1 Let CIth = [ flz+2) do!" ( ) where afn)(z) is the Gaussian measure on

M,(C)Z as in Then

(1) %4 fllLip < I/ lluip-
(2) 1 fllzee < (| fll e
(3) | ®uf — fllzee < dY272|| f|Lip-

Proof. (1) and (2) follow from the fact that ®,u is u convolved with a probability measure.
To prove (3), suppose || f||Lip < +00. Then

@, (2) Hz—H [+~ ) aoc)
< [15e+2) - @)l dol”2)
< Wl [ 2l dot” ().

2

Meanwhile,

[l dot®c) _(/ 14s)) ( [l ot ) —(d-1)”,

since z an d-tuple (zy,...,2) and [ 7,(27 datn (z) =t for each j. O
Lemma 15.3.2. Let W (z,t) be the solution to the ODE
1

oW (x,t) = —§VV(W(3:,15)), (15.5)

which exists for all t using the Picard-Lindelof theorem, and define
U f(x) = f(W(z,1)).

Then
(1) W (2, t) = W(y, t)ll2 < e[z = yll2.
(2) [IW(z,t) —zll2 < (t/2)[[VV ()2
(3) |(W(z,t) —a) = (W(y,t) =yl < (1 — e ) [Ja — y].

(4) |ef||Lip < e7Ct/2||f||Lip-
(5) |Weflloee < |[fllzee if f is continuous.

282



Proof. The convexity and semi-concavity assumptions on V' imply that VV is C-Lipschitz
(Lemma [11.1.4)) and therefore global existence of the solution follows from the Picard-
Lindelof Theorem.

(1) Let V(z) = V() — (¢/2)||z]|2. By Lemma[11.1.4]
(VV(x) = VV(y),z —y)s > cllz —yll5.
Now observe that
%IIW(% ) =Wy )3 = —(VV(W(x, 1)) = VV(W(y,1), W(z,t) = W(y,1))s
< —c||[W(z,t) = W(y, 1)]3,

and hence by Gronwall’s inequality, ||W(z,t) — W(y,t)||3 < e |W(z,0) — W(y,0)||3 =
ez — yll5.
(2) Note that
d
ZNW(z, 1) = allz = =(VV(W (2, 6), W (2, ) = z)s
< [IVV (@)W, 1) — ]2,

Meanwhile, ||W(x,t) — z|| is Lipschitz in ¢ and hence differentiable almost everywhere and
we have

d d
LW t) — 3 = 21W (. 0) — o W, 1) ~ o
Thus,
D \W ) - alla < VYV (@)
dt xZ, T2 > 2 Z)|2,

which proves (2).
(3) We observe that

0V (2. =) = W) =)l < 5 [ IDVOV(,9) = DYV (3. 9)a ds
<5 [IW@s) =Wl ds
<G [l ylaas
C

= S =)o~y

(4) follows from (1).

(5) is immediate because W, f is f precomposed with another function. O
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Let P = {to,...,tx} be some partition of [s,¢] with s = ¢y and ¢ = ¢;. Then we define

Ipf = Co—ti s Yty - - Pyt ‘Ijtl—tof-
We define mesh(P) := max{|t;—t;_1| : j = 1,...,k}. Our goalis to estimate ||Tp f—To f|| 1

when Q is a refinement of P. First, we observe the following lemma which follows from
inductive application of our earlier estimates for ®; and W,.

Lemma 15.3.3. Let P be a partition of [s,t|. Then

(1) | Tp fllLip < e =972 FlLip-
(2) | Tp fllze < [ fllLee-

The good behavior of Tp under refinement of P derives from the basic fact that ¢, and
U, “almost commute” when s and ¢ are small.

Lemma 15.3.4.
C
WD, f — W, fl| e < —d"?s'2(1— )| fllLip-
c

Proof. Thus, we want to estimate ¥, ®, —®,¥, and then control the propagation of the errors
through the applications of the other operators. Note that for a Lipschitz function f, we

have using Lemma (3) that
W2 f @) = 2@l < [IFOV(,t) +2) = FOV (o + 2,8) fodol® (2
< I lhin N0V (@.8) = 2) = (W 4 2,8) = (& + 2)) o do® ()
< i = ) [llalladof® ()
< Wl (0= ) (ds),

where the last inequality follows by the same reasoning as Lemma [15.3.1] (3). O]

Lemma 15.3.5. Let Q be a refinement of the partition P of the interval [s,t]. Then

Cd'?

[ Tpu — Toul|~ < (1 — e~ =2) mesh(P)"2| ||vip-

Proof. First, we will prove the following claim: Let Q = {to,...,t;}. Then

Cdl/Q
| Tpu — Toul| e <

Z (e—c(tj—s)/2 _ e—c(tjﬂ—s)) mesh(P)1/2||f||Lip-
Jit;€Q\P
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We proceed by induction on the cardinality of @ \ P. In the base case, |Q \ P| = 0, so
Q = P, and the claim is trivial.

For the inductive step, fix Q. Let ¢; be the least element of Q \ P and let

Ql - {t(b .o 7tj**1}7

QZ = {tj*—i-la s 7tk}a

Q' =0\ {tj:} = Q91U Q.
Thus,

TQf - TQ2 @t* '*-I-l_tj* Qtj* —tj*_l‘ljtj* _tj*—nglf

F* 1t \Ijtj

TQ’f - TQQ (ptjaq,l—tj*,lg’tj*+1—tj*71TQ1 f

Therefore,

TQf - TQ,f = TQQ (®tj*+l_tj* \Ijtj*+1—tj* (Ptj* —tj*ill:[jtj* —tj*71 - ¢tj*+1—tj*71\Ijtj*+1—tj*,1)TQ1f
= TQQ ®t jx 1 —ljx (‘Ijtj*+1,tj* ¢tj* —tyx 1 ®tj* —tix 1 \Ijtj*+1,tj* )\Ijtj* 7tj*71TQ1 f7

J

where we applied linearity and the semigroup properties of ® and ¥. Thus, by Lemma |15.3.3

(2) and Lemma [15.3.1] (2),
HTQf - TQ/fHLOO S H(\I]tj*_'_lftj* (I)tj*ft]-*_l - (Dtj*,tj*_l‘ljt_*+1,tj*)‘Ijtj*,tj*_nglfHLOO,

J

hence by Lemma [15.3.4

Cd1/2
|Tof —To fllLe <

hence by Lemma [15.3.2| (4) and Lemma [15.3.3] (2),

(1— e—c(tj*+l_tj*)/2)<tj* — tj*—1>1/2H\1jtj* _tj*_nglfHLip,

Cd'/? Ce(bors gt (bt et
ITof —To fllze < (1—e e(tyr 11 t]*)/Q)(tj* _ tj*_1)1/26 ety —tjx1)/2 g=cltj* 1 S)/ZHf”Lip
Cd1/2 —c(tjx—s —c(tjxL1—s
=t =92 — el =) (5 — b5 )V f i
1/2
< Cd (e—c(tj*—s)/Q . e—c(tj*+1—s)/2> meSh(P)1/2||f||Lip-
C

Meanwhile, by the inductive hypothesis,

1
ITof =Tpfll < ) =(e 972 —eml1=2)) mesh(P)?|| f | Lip;
jit;€Q\P ¢

this works because for each ¢; in Q" \ P, the next element in Q' is the same as the next
element in Q, since t;» was chosen to the be least element in P \ Q. Therefore, using the
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triangle inequality, we can bound ||[Tof — Tp f]| by

1/2
Cd (G_C(tj* —s)/2 _ e_C(tj*+1_8)/2) + Z (e_c(tj /2 _ e_c(tj“_s)) meSh(P)l/QHfHLip
c Jit;€Q\P
Cd'/?
— Z (emti=9)/2 _ o=<ltis1=9) mesh(P) V2| £ |Lip-
jit;€Q\P

This completes the inductive proof of our initial claim. Then the lemma follows because

Cd1/2
Do (eI e mesh(P) |
j‘t-EQ\P
_ Cdr
Z e mesh (P2 f i
Od1/2
= —— (1= ™) mesh(P)"?| fluip
by summation of telescoping series. O

Finally, we are ready to define the semigroup T;.

d

sa

Lemma 15.3.6. There exists a semigroup (T})¢>o acting on Lipschitz functions M, (C)
M, (C) such that

—

(1) 1T fllip < 2|1 fllvip-
(2) ITifllzee < (I fllzee-
(8) If P is a partition of [s,t], then

Cdl/Q

[ Tpf = Tiesf |l < (1 — e~ 7*)/2) mesh(P)"2[| f[| s

Proof. We define
T, f = 1 T
tf mesh1(17£1)—>0 f’
where the limit is taken over all partitions P of [0,¢]. This limit exists by Lemma [15.3.5
Moreover, since any partition can be translated along the real line by some distance s, it is
also clear that for s < t, we have T;_f = limyesn(p)—0 T f for partitions P of [s, t], and the
estimate (3) holds by letting mesh(Q) — 0 in Lemma [15.3.5l The claims (1) and (2) follow

immediately from Lemma [15.3.3]
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It remains to show that 7; is a semigroup. Let s,t > 0. Let P and Q be partitions of
[0, s] and [s, s + t] respectively. Then P U Q is a partition of [0, s + t] and Tpyou = ToTpu.
Moreover,

| ToTp f — TTs fll 1=
< |[(Te = T)Tp [l + I TH(Tp — T5) fll~

Cd1/2 Cd1/2

< SO (1 ) mesh(Q) e iy + (1 — &) mesh(P) | s
d1/2

< G (1 e 2 tmesh (P U Q)2 f e
C

On the other hand,

Cd1/2

ITruof = TopefllLe < (1 — e 2  mesh(P U Q)V2|fluip,

which implies

20d*/?

[TV f — TorefI| < (1 — e 72 mesh(P U Q"2 fluip,

and since P and Q were arbitrary, Ty, f = T, T, f as desired. n

Next, we must show that T;f solves the differential equation . As we have only
assumed that V is C! with Lipschitz first derivative, we cannot conclude that T} f is C?, so
we must be content with showing that T} f solves the equation in a weaker sense. While the
optimal results about the smoothness of T, f are irrelevant for our present goal, we know at
least that T} f is Lipschitz, and therefore by Rademacher’s theorem, T} f(x) is differentiable
(with respect to ) almost everywhere, and of course ||J(Tif)| e = ||Ttu|Lip-

Lemma 15.3.7. Let f be Lipschitz, and let fy = Tyf. Then for u € C®(My(C)2), the map
t — [ fiu is Lipschitz on [0,+00) and for almost every t,

d 1 1

foe—fi=Te=1)fi = (Tc = V) fy + (P Ve — U D) fy + (VP — 1) f;. (15.6)

Proof. Observe that

By Lemma [15.3.6| (3) applied to the partition {0, €} of the interval [0, €],

Cd'/? Cd'/?

ITefs = @V fill e < (1= e 2)e' 2| filluip < 2| felluip,
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since 1 — e~*/> < <. The second term of (15.6)) can be estimated by Lemma [15.3.4}

Cdl/? C'dl/?

[(PeWe — Wede) fo| Lo <

(1= )| follip < S 2| il

Since u is in L', the first two terms on the right-hand side of (15.6) will still be O(e*?) when
we pair them with v and integrate:

[ U= fu= [~ g us 0

Now we write

(WD — 1) f, = (W — 1)@ fy + (@ — 1) . (15.7)

To understand (¥, —1)®, f;, recall that ®. is convolution with the Gaussian measure with
variance €I /n?. So ®f; is smooth. Moreover, J(®.f;) = ®.(J f;). The first derivatives of the
Gaussian density are O(e~'/?) in L', and therefore the first derivatives of J(®.f,) = ®.(J f,)
are O(e™Y/2) in L.

Now observe that

(qje - 1)(I)eft(x) - q)eft(W(x7 6)) - (I)eft(x)
= J(@cfi)(x) - (W(z,€) — x) + O(e 2| W (z,€) — f3),

where in the last line we have used Taylor expansion of ®. f along with the fact that the second
derivatives are O(e*?) in L. Thus, the error estimate in this equation holds uniformly for
all z (though of course the estimates here depend on n). Next, by Lemma [15.3.2]

€
[W(z,e) —xl]2 < §||VV(SB)|I2
and

W(zx,e) —x = 1 /E VV(W(x,s))ds

= ——(—:VV ( /||W z, s —ac||2ds>

= —éeVV(x) + 0 (e|VV(2)])).
Thus, substituting this into our earlier equation,
1
(0. = D0.fi(0) = J@L)(2) |37V + OITVD))| + Ol 22TV ()]

— —%EJ(CDEft)(x)VV(x) +O(e2|VV (2)]|2),
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where again the implicit constants are independent of x. Since ||VV (z)||2 is bounded on any
compact set and u is compactly supported and in L', we get

/(\IfE —1)®fr-u= —%G/J((I)Eft) VYV - u+ O(¥?).

Now @, satisfies [(®.f)g = [(P.g)f for any functions f and g, and hence

/(qfe SN f = —%e/ T1) - B [uVV] + O(2).

/(Cbe - 1)ftu - /ft(q)e - 1)“
Therefore, overall,

[ = vfu= [, - g+ o)

=3¢ [ I50duvV] + [ 5@ Dut 0@,

If we divide by € and send e 0, then we get

_%/th.(uva#/ftAu,

because (@, — 1)u/e — (1/2n*)Au uniformly and & [uVV] — uVV uniformly as uVV is
Lipschitz (VV being Lipschitz on the support of «). Finally, it follows from integration by

parts that
/ftAUZ —/th-Vu,

since u is smooth and compactly supported (this uses a standard approximation argument
since f; is only differentiable almost everywhere with J f; in L>°). Therefore,

By the same token

1 1 1
ll\rl%z (frae — f2) = —§/th' (vaﬂLﬁV?i)-

Moreover, our error estimates only depend on the Lipschitz norm of f; (which is bounded
by the Lipschitz norm of f) on the L' norm of f; on the support of u. In other words, if we
denote h(t) = [ fyu, we have

h(t+€) — At 1 1
(1) = lim ( +Ei ():_g/th.(uvv+ﬁvu),

and the rate of convergence is independent of ¢. Now it is clear that

, 1
WO < Sl fillupl[wVV + (1/n%) Va1,
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which is a bounded function of . Hence, h(t+¢) —h(t) = O(e) uniformly for all ¢, which im-
plies that h is Lipschitz. Hence, h is differentiable almost everywhere and b’ = b/, whenever
h is differentiable. O

Lemma 15.3.8. Let pu be the measure given by the potential V. Then for Lipschitz f, we
have [Tif du = [ f dp.

Proof. Tt follows from the previous lemma that for any u € C°(M,,(C)2), we have

/(th—f)u:—%/ot (/st- (uVV—i—%Vu)) ds.

. . . . _m2 . .
Using standard approximation arguments, we can substitute u = e ®<V since it is smooth,

and this function and its first derivatives decay rapidly at oo since ¢l < H(®. V) < C1.
Therefore,

/(th ~ fu= —% /Ot (/ If, - (e*mevvv . V((DGV)e”%’CV)) ds.

H / Jfs (a*"%evvv - V(cbewe*“%év)

But

suinmw/ﬂvv—tuéwwbeﬁﬂv

< I lhanCe [ .

Here we used that ||(®. — 1)VV||z~ < Ce'/? since VV is C-Lipschitz. And we also observed
that ®.V > V by Jensen’s inequality because V is convex, and so e ™%V < ¢V,

2

Therefore,
H/Uﬁ—fk”%” sﬂmmﬂgﬂfeﬁv
2

Since T;f — f is Lipschitz, we know [(T}f — fle ™V is finite, and hence by dominated
convergence

/aﬁ—fw””=§$/uw—fw”%”=a

Thus, f(th)e*"QV =/ fe ™V so that JTif du = [ fdu as desired. O
Lemma 15.3.9. For a Lipschitz function f, we have Tof — [ fdu ast — +oo and in fact

15(w) - [ fan

., 1 3d'/?
< P iy (Nl + IV Ol + 257 )
9 & &

Proof. We apply Corollary [11.2.8| to the function 7} f and the potential n?V to obtain
3(n2d)1/2
th@)—/thdMQ ey )

Then all the factors of n cancel, and we substitute [Tifdu = [ fdp and |13 f|lLp, <
“P) f - O
€ Lip

1
< I3l (Jlell + 5 IV O+
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15.4 Conditional diffusion semigroup

In the last section, we gave an explicit iterative construction of the heat semigroup 7; asso-
ciated to a potential V(x). In this section, we consider a potential V(z,y) on M, (C)4+dz
with ¢/ < HV < (1, and we the conditional heat semigroup where the differentiation occurs
with respect to x, and y serves merely as a parameter. As in the last section, n and V' will
be fixed, and thus we will not write out any superscript (n).

Let p denote the measure associated to V', and let

1 v

Our main goal is to show that if f(z,y) is a Lipschitz function with values in M,,(C),
then T;f(x,y) is also Lipschitz in y, and then by taking ¢ — +o00, we will obtain that
[ f(x,y) du(xly) is Lipschitz in y.

It will be convenient to consider the Lipschitz seminorms of a function with respect to x
and y individually, and hence we introduce the notation

s = sup I ZLED v vt 0ty € du0ho 207}
x,y) — flx,y . . )
i = sp { LD ZIEN oy € a2}

Changing notation slightly from the last section, let
©ufl(e.) = [ S+ 2y) donf).

We also define W : M, (C)4+dz x [0, +00) — M, (C)L by

1
atw<xay7t) - _ivmva/v(xayvt)?y)? W('ray70) = Z.

As we mentioned before, W is well-defined by the Picard-Lindeltf theorem since VV is
C-Lipschitz by Lemma [11.1.4] Then we set

For a partition P = {{g,...,t} of the interval [s,t], we set
Tpf = th_tk—lqjtk_tkfl s q)h—to \Ptl—tof’

By freezing the variable y and using the results from the previous section, it is clear that ®,,
U,, and T; are semigroups acting on the space of functions with || f||ripax < 00. Moreover,
the results from the last section can be summarized as follows.
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Proposition 15.4.1. There exists a semigroup Ty acting on functions M, (C)&L+9 x M, (C)
with || f|Lip.de < +00 such that the following hold.

(1) If P is a partition of [s,t], then

Cdl/?
HTt—sf - TPfHLOO S

(1 — /%) mesh(P)"/2|| £ |ip.

(2) [Tif(x,y)du(zly) = [ f(x,y)du(zly) for all y.
(3) ITof (z,y) — [ flx,y) du(zly)llz < e fllup (2l + (/) VeV (0,9) |2 + 3dY2 /).

Proof. (1) follows from Lemma [15.3.6] (3). (2) follows from Lemma |15.3.8, (3) follows from
Lemma [15.3.91 O

Now we move on to estimate the Lipschitz seminorms of ®;, ¥,;, and T, with respect to
x and y.

Lemma 15.4.2. Let f: M, (C)4+% — M, (C) be Lipschitz. Then

(1) | D¢ f ||Lip.dz < ||f]|Lip.de
(2) 19+ f|Lip.ay < [ f|Lip.dy;
(3) 1Pefllree < fllzee-

Proof. These properties are immediate since ®; is convolution with a probability measure.
m

Lemma 15.4.3. Let Wy(z,y) = W(z,y,t). Then |WillLipa: < €% and |[WillLipay <
(C/c)(1 — e=/2). Therefore, if f: M,(C)a+d> — M, (C) is Lipschitz, we have

(1) 19ef Lipaz < €[ f ILip.da-

(2) 19ef Lipay < 1 lLip.ay + (C/e) (1 = €= 2)|| flLip,de,

(3) 1Weflle < (1 llze-

Proof. We begin by proving the claims about W;. Fix z, 2’ € M,,(C)% and y,y' € M, (C)%.
Define

o(t) = Wiz, y) — Wi, y/) I,
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Note that ¢ is locally Lipschitz in ¢ and hence absolutely continuous. Moreover, ¢(t)? is C!
with

A[o(t)? ] 200Wi(z,y) — OWi(2',y), Wi, y) — Wi(a',y'))s
(Vo V(Wilz,y),y) = Vo VW2 y), o), Wiz, y) — Wiz, y))2
—(V VWi, ), y) — V V(W@ ), y), Wi, y) — Wiz, y))2
—< VW@, ), y) = Vo V(W2 y),y), Wiz, y) — W2’ y))2
< —c|Wilz,y) — Wila, )l
+ IV V(Wi ) y) = Vo VW', y), 4 [ Wiz, y) — W@, y) Il
< —c|[ Wiz, y) = Wi, o) 15 + Clly — ¥/ [, Wi, v) = Wi, ),

Here we have employed the inequality (V,V (z,w) —V,V (2, w), 2 —2')s > ¢||z — 2|3 coming
from the uniform convexity of V' as well as the Cauchy-Schwarz inequality. This implies that

20'(1)p(t) = b (t)’] < —cp(t)” + Clly — y'l|d(t).

Thus, ¢/(t) < —(c/2)6(t) + (C/2)lly — /||, so that d;[e/?¢(t)] < (C/2)e™?|ly —y/||,. This
implies that

C
e“o(t) = 6(0) < —(e** = Dlly = ¥/l
But ¢(t) = [Wi(z,y) — Wi(2', )], and ¢(0) = ||z — 2'||,. Hence,

—c ¢ —c
Wil y) = Wula'y)l, < el = /[l + — (1= ™) ly = o/,

This proves both of our estimates for ||W||Lip.ar and ||Wi||Lip.ay at once.

(1) is immediate from our claim about W;, and indeed was already shown in Lemma
115.5.2

(2) Note that

1ef (2, y) = Uef (2,9l = 1 (Welz, ), y) = fF(Welz, ), 4) ],
< NfWilz, y),y) = FWilw, v), )y + 11F (Wil w), o) = F (Wil o),y
SN leipaylly = 9l + 11 llip e [V (2, w) = Wi, o),

c.
< lliipally = ¥/lls + = (0= ) Flliip aally = o/l
(3) is immediate, as in Lemma |15.3.2] O
Lemma 15.4.4. If f : M, (C)%+4 — M, (C) is Lipschitz, we have
(1) 1T f |Lipae < €|\ fl|Lip,da-
(2) | Tef uipay < f lLipay + (C/e)(1 = e2)[ f lLip.as,
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(3) T fllpee < N fllze-
The same holds for Tp whenever P is a partition of [0,].

Proof. First, consider the case of Tp. The estimates (1) and (3) follow from iterating our
estimates for ®; and ¥,, or from Lemma [15.3.6

To prove (2), let P = {to,...,tx}, and for each j, let P; = {to,...,t;}. We prove
the claim inductively for the partition P;. In the base case, we adopt the convention
that T, f = f, and hence the claim holds trivially. For the induction step, observe that
Tp, f =P, -4,Y.,—+,Tpf. Therefore, using the two previous lemmas, and the induction
hypothesis,

HijJrlfHLip,dy < H\Ijtj+1*th73ijLiP7dy (158>
C ot —ts
< ||T77jf||Lip,dy + ?(1 —e€ (tj+1 tg)/Q)HTijHLip,dw (15~9)
C et C —e(tsrn—t, et
: (||f||Lip,dy +—(l-e t'7/2)||f||Lind1’> +—(—e 171012~ 2| £ Lip.da
(15.10)
C —ct; 1/2
= || fllip,ay + Z(l — e A f || Lip,da- (15.11)

This completes (2).

Finally, the case of T; follows from the case of Tp by letting mesh(P) — 0 and using
Proposition [15.4.1] (1). O

Corollary 15.4.5. Let f : M, (C)&+42 — M, (C) be Lipschitz. Let g(y) = [ f(z,y) du(z|y).
Then g is Lipschitz with
||g||Lip <1+ C/c>||f||Lip'

Proof. By the previous lemma,
1T iy < 1 gy + = (1 — 2]
tJ llLip,dy = Lip,dy c Lip,dz
C
< sy + i

As t — oo, we have T, f(x,y) — g(y) by Proposition (15.4.1] (3). Hence, [[g|l;;, < (1 +
ClOf s O

15.5 Asymptotic approximation and convergence

Finally, we are ready to prove Theorem [15.1.2| To this end, fix V™ : M, (C)4a+42 — R such
that cI < HV™ < O for some 0 < ¢ < C and (VV™),cy is asymptotically approximable
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by trace polynomials. Let u(™ be the measure associated to the potential n?V (™. Let
1™ (z|y) be the conditional distribution associated to u(™.

Let Pt(n), Slf"), and Tt(n) be the semigroups acting on Lipschitz functions defined as in
§15.4 with respect to the potential V(™.

Lemma 15.5.1. With the notation above, suppose that f™ : M,(C)4+d — M, (C), that
™ s K-Lipschitz for every n, and that f™ is asymptotically approzimable by trace poly-
nomaials. Then

(1) (<I>§") ™), en is asymptotically approzimable by trace polynomials,
(2) (\Ilgn)f("))neN is asymptotically approximable by trace polynomials,

(3) (Tt(") ), cn is asymptotically approzimable by trace polynomials.

Proof. (1) We proved in Lemma [14.2.6| that @En) preserves asymptotic approximability by
trace polynomials.

(2) Recall that U 0 (z,y) = (W, (,y),y), where
n 1 n n n
oW (w,y) = =5 V.V (W (2, y).p). Wy (a,y) ==

Now V.V ™) (x,y) is C-Lipschitz in (, y), asymptotically approximable by trace polynomials,
and independent of ¢, and thus it satisfies Assumption [14.3.6] so by Proposition [14.3.7]
Wt(n) (x,y) is asymptotically approximable by trace polynomials (here we rely on Lemma
13.5.3| that asymptotic approximability is equivalent to being asymptotic to some element of

TrP,, . ,). Then because f (") is K-Lipschitz in (z,y), Proposition |13.5.12/implies asymptotic
approximability of f (Wt(n) (x,y),y).
(3) From inductive application of (1) and (2), we see that for any partition P of [0, ¢], the

sequence (T° 7(9") ™), cn is asymptotically approximable by trace polynomials, where of course
T7(>") is the operator defined in E for the potential V(™. But by Proposition [15.4.1| (1), as
mesh(P) — 0, we have Tgl) o — Tt(") f™ in L with a rate of convergence independent of

n since || f™||1;, < K for all n. Therefore, (Tt(") M), ey is asymptotically approximable by
trace polynomials by Lemma [13.5.13 O

Proof of Theorem[15.1.9. Let f : M, (C)h+e — M, (C) be K-Lipschitz and asymptoti-
cally approximable by trace polynomials. Let

g™(y) = / £ (2, y) du™ (z]y)

We showed in Corollary |15.4.5 that ¢(™ is Lipschitz with Hg( < (1+ C’/c)”f(”)

"
Lip Lip~
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Moreover, we know that (Tt(") f™),.en is asymptotically approximable by trace polynomi-

als in (z,y) by the previous lemma. And by Proposition|15.4.1|(3), we have Tt(n)f(”)(:c, y) —
g™ (y) as t — oo, with the error bounded by

. 1 3d'/? .
(Il + V2V 0.0 + 255 ) 17l

/2

Given that (VV),cy is asymptotically approximable by trace polynomials, HVIVHS%
is bounded as n — oo for each R > 0. This implies that the rate of convergence of
Tt(”)f(")(x,y) — g™ (z,y) as t — oo is uniform on ||(z,y)||,, < R and independent of
n. So by Lemma [13.5.13 ¢(™ is asymptotically approximable by trace polynomials of (z,y).
Yet g™ is independent of x, and so we may approximate g™ (y) by evaluating these trace
polynomials at (0,y), which reduces them to trace polynomials of y. O
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CHAPTER 16

Results: Free entropy and Fisher information

In this chapter, we show that free entropy theory describes the large-n limit of classical
entropy for random matrix models from potentials V™ satisfying Assumption [15.1.1 In
particular, we show that for non-commutative random variables in the large-n limit, the
microstates entropy x(X) agrees with non-microstates entropy x*(X), and this is the same
as the large-n limit of the classical entropy of the random matrix models. Moreover, if
(XM Y™ is a (d; + dy)-tuple of random self-adjoint matrices arising from such potentials
V™ then the conditional classical entropy h(X™|Y () converges to the conditional non-
microstates free entropy x * (X|Y).

16.1 Microstates free entropy

This section explains Voiculescu’s microstates free entropy x and yx and states sufficient
conditions for the microstates free entropies x and x to be evaluated as the limsup and
liminf of renormalized classical entropies of random matrix models.

Because there is no integral formula known for free entropy of multiple non-commuting
variables as in the classical case, Voiculescu defined the free analogue of entropy [Vo0i93| [Voi94]
using Boltzmann’s microstates viewpoint on entropy.

Definition 16.1.1. For U C X;, we define the microstate space

™Y = {z € My(C)22 : A, € U}
Fg)(u) ={r e Mx(C)2: N\, eU,||z|| < R}

The microstates free entropy of a non-commutative law A is defined as

1
Xr(A) := inf lim sup (—2 log vol Fg)(U) + dlog n)
n

USA pooo

X(A) = sup Xr(A).

Here vol denotes the Lebesgue measure with respect to some isometric identification of
M, (C)% with R, and U ranges over all open neighborhoods of A in ¥4. Similarly, we

sa
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define

1
X,(A) == inf liminf (ﬁ log vol I’g)(U) + dlog n)

— US55\ n—oo

X(A) = Sup Xr(A).

Similarly, for a self-adjoint d-tuple X from a tracial W*-algebra (M, 1), we write x(X) :=
X(A).

Remark 16.1.2. In Voiculescu’s original work [Voi94, Def. 2.1], the additive normalizing
constant would be (d/2)logn rather than dlogn. However, we have chosen a different
normalization of Lebesgue measure. Indeed, we identified M, (C)% isometrically with R%
using the inner product (x,y)2 = >, 7a(x;y;) rather than the inner product (z,y)n =
>~ Tr(zy;) = n{z, y)2. Heuristically, the normalizing constant can be checked by examining
the case of a Gaussian. Alternatively, it is clear from Theorem that the normalizing

constant is “correct.”

Remark 16.1.3. Note that & C V implies that

1 n . 1 n
lim sup (—2 log vol F%)(U) + dlog n) < limsup (—2 log vol F%)(V) + dlog n) .
Hence, to estimate the infimum over U (that is, yg(A)), we can always restrict our attention
to neighborhoods U contained inside some fixed V. The same holds for the lim inf variant of
entropy.

The next proposition states sufficient conditions for the renormalized classical entropies
of random matrix models to converge to the free entropy of a limiting non-commutative
law. It can be regarded as a precise version of Voiculescu’s heuristics for the microstates
free entropy in [Voi94]. Although our main focus in the dissertation is on the potentials

V(™ satisfying Assumption [15.1.1] we state the proposition in greater generality since it has
independent interest.

Proposition 16.1.4. Let V™ : M, (C)¢ — R be a potential with [ e™"*V™ < oo, let ™ be
the associated measure, and let X™ be a random variable chosen according to (™. Assume
the following.

(A) There is a non-commutative law \ such that Axw — A in probability.

(B) The sequence (V™),en is asymptotically approzimable by scalar-valued trace polynomi-
als.

(C) There exists Ry > 0 such that

lim (L+ [V (2)]) du™(z) = 0.

770 J|z]lso>Ro
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Then X can be realized as the law of non-commutative random variables X = (X1,...,X,,)
in a von Neumann algebra (M, ) with || X;|| < Ry. Moreover, we have

1
X(A) = Xr,(A\) = limsup <—2h(X(”)) + dlog n) (16.1)
n—00 n
1
B T 4 (n)
X(A) = XRO(/\) = hggg)lf (th(M )+ dlogn) . (16.2)

Proof. 1t follows from assumptions (A) and (C) that for every non-commutative polynomial
b,

lim 7u(p()) du™ () = A(p).

7790 Jl|z]leo <Ro

In particular, this implies that |[A(X;, ... X, )| < Rf for every iy, ..., i, and hence \ €
Yd,Rr,- The non-commutative A can be realized by operators in a von Neumann algebra by
Proposition [10.2.2

Now let us evaluate xr and x R for R > Ry. Recall that

d,u(”)(x) A0 e V@ dx, where Zm — /e‘"QV(n),

and therefore

h(p™) = n? / V™) (2) dp™ (z) 4 log 2™,

Assumption (C) implies that

lim V@ ()| dp™ (z) = 0 and lim p™(z : ||z > R) = 0.
n—oo

70zl >R
Therefore, if we let

n 1 n n _ n
du%)(as) = —1||xHoo§R€_n2V( '@) dz, where Zj(;i) = / eV

Zy lalloo <t

then as n — oo, we have
/ v du — / VO a0, log 2™ —log Z3 — 0,

and hence

1., 1.,
—sh(u™) = —5h(uf) = 0.

Fix ¢ > 0. By assumption (B), there is scalar-valued trace polynomial f such that
VP (2) — f(x)] < €/2 for ||7]l < R and for sufficiently large n. Now because the trace
polynomial f is continuous with respect to convergence in non-commutative moments, the set
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U={N: |N(f)—Af)| <e/2} is open in 3y g. Now suppose that V C U is a neighborhood
of A\. Note that

AW
lim M(")(r( )(V)) _

OEOW)N (s oo < RY =1,

where we have used that Z /Zl(%n) — 1 as shown above, that g™ (I'™(V)) — 1 by assump-
tion (A), and that p™(||z|l < R) — 1 by assumption (C). Moreover, by our choice of f
and U, we have

reTWWV) = VW) - A(f)| <e

Therefore,
220 (r o) = / eV @) gy
i v)
= ¢ ANFO@) yol T (1),
Thus,

log 2§ + log ufy (T (V) = log vl T (V) = n®(A(f) + O(e)).

Meanwhile, note that |f(z)| is bounded by some constant K whenever ||z|« < R (where K
is independent of n). Therefore,

/ VO dp) = / VO dul) + / VO dul)
r{m ) i (ve)

[ A+ [ Al + 00
ry (V) Ik’ (Vo)
= A(f) (F(”)(V)) L O() +0 (K o (rﬁg’ (VC)>> .

Altogether,

1 w1
—h(u) Z/V( Yy + —log Zy g

() (12 (TR 0)) = 1) + % 1ogvolr<”>(V)
+0(0)+0 (K (T90))) = 5 logn (T ().

Now we apply the fact that ,u(")(F( )(V)) — 1 to obtain

R(12) — log vol T (V)‘ — 0(e).

) 1
lim sup —
n2
n—00
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In light of Remark [16.1.3] because this holds for all sufficiently small neighborhoods ¥V C U
with the error O(e) only depending on U, we have

1 n
xr(\) = limsup (ﬁh(u%)) + dlog n) + O(e)

n—oo

1
= lim sup (—Qh(,u(")) + dlog n) + O(e).

n—00 n

Next, we take ¢ — 0 and obtain yg(\) = limsup,_,. (n"2logh(u™) + (d/2)logn) for
R > Ry. Now x(A) = supg xr(A) and xgr(\) is an increasing function of R. Since our claim
about xgr(A) holds for sufficiently large R, it also holds for x(\), so (16.1) is proved. The

proof of ([16.2]) is identical. ]

Corollary 16.1.5. If V" satisfies Assumption|15.1.1 and ™ is the corresponding measure,
then (16.1)) and (16.2)) hold.

Proof. Since V™ is only determined by x(™ up to an additive constant, assume without loss
of generality that V(™ (0) = 0. Let us verify the hypotheses of the previous proposition.

(A) Weshowed in Theorem|15.1.5/that Ay ) converges almost surely to some non-commutative
law A.

(B) Fix R > 0 and € > 0. We have assumed that (VV (), oy is asymptotically approximable
by trace polynomials, so there exists a self-adjoint trace polynomial d-tuple f such that

limsup sup ||VV(")(93) — f(x)”2 < <

n00 |allw<R R
Since V™ (0) = 0 by assumption, we have
1
V() :/ (VV(tz), x) dt.
0
We may define a scalar-valued trace polynomial g by

o) = [ X rlsta)e)dr

By the triangle inequality for integrals,
V(z) = g(x)] < }%HwHoo < e for [[z]le < R.

Hence, (V' ™), ey is asymptotically approximable by trace polynomials.
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(C) Since 0 < HV™ < CI and V™ (0) = 0, we have
(n) (n) (n) Gl
(VV(z), 2)2 < VI(x) < (VVI(0), 2) + o |23

Because (VV(”))neN is asymptotically approximable by trace polynomials, we have in
particular that sup, ||VV (0)||2 < co. Meanwhile, since HV™ > cI, we know that p(™
satisfies the log-Sobolev inequality with constant n?c, and hence by Corollary ,
there is some Ry > 0 such that

lim eflizllee gy (M (2) = 0,

1770 S|zl oo > Ro

Combined with our bound on V™(z), this easily implies (C).

16.2 Free Fisher information

In this section, we explain Voiculescu’s free Fisher information, and we state sufficient con-
ditions for classical Fisher information for random matrix models to converge to free Fisher
information in the large-n limit.

Voiculescu’s definition of free Fisher information [Voi98al is motivated by the integration-
by-parts characterization of the score function in classical probability (12.1)). Suppose that
X ™ is a random d-tuple of self-adjoint matrices with distribution

dp™ (z) = e V@ gy,

If V(™ is C!, then the score function is given by 2™ = n?VV™(X). If we apply the
integration-by-parts relation E(Z™ . f(X)) = E[VIf(X)] to a tuple of self-adjoint non-
commutative polynomials p = (p1,...,ps) and use Lemma [14.1.9) then we obtain

E(VV™(X),p(X))2 = E(n*E,p(X))2 = ) _ Elra @ 7(Dx,p;(X ™), (16.3)

Jj=1

Of course, this is only justified under sufficient assumptions of finite moments; see for instance
Lemma [11.2.5, Since we may choose all the p;’s to be zero except for one of them, we can
equivalently write this relation as

E(n"*Z;,p(X))2 = E[r ® 70(Dx,p(X))]

for all j, where = = (Z4,...,Z4). Moreover, if this holds for self-adjoint polynomials, then
it holds for all polynomials by linearity. Voiculescu therefore made the following definitions.
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Definition 16.2.1 ([Voi98al §3]). Let X = (X3,...,X,) be a tuple of self-adjoint random
variables in a tracial von Neumann algebra (M, 7) and assume that M is generated by X as
a von Neumann algebra. We say that £ = (&,...,&) € L3 (M, 7)Y, is a free score function
for X if

r(&p(X)) = 7 © T(Dx,p(X)) (16.4

for every non-commutative polynomial p and every j.

Note that the free score function, if it exists, is unique. This is because a vector in
L?(M, 1) is uniquely determined by its inner product with vectors in a dense subspace, such
as the non-commutative polynomials in X.

Definition 16.2.2. If a free score function exists, we say that X (or equivalently the law of
X) then we define the free Fisher information ®*(X) := ||£|l5 = 32, 7(&§7). If there is no free
score function, then we set ®*(X) = oo.

We might expect free Fisher information to be the limit of renormalized classical Fisher
information of random matrix models, since under sufficient assumptions E|VV ™ (X )2
should converge to || f(X)|2 if VV™ ~s f. Actually, we will prove this more generally in
the conditional setting.

The conditional versions of classical and free Fisher information are a straightforward
generalization of the definition we have already given. Compare the classical case of condi-
tional score functions defined in Definition [12.4.2]

Definition 16.2.3. If (X,Y) is a (d; +dz)-tuple of non-commutative random variables from
(M, 1) with M = W*(X,Y), then £ € L2 (M, 7)% is a free score function for X given Y if
for every j and every non-commutative polynomial p in d; + ds variables, we have

T(§p(X,Y)) = 7@ 7[Dx; p(X;, Yj)].
If a free score function for X given Y exists, then we define the free Fisher information by
*(X|Y) = €],
and otherwise the free Fisher information is defined to be oo.

The following proposition gives sufficient conditions for the classical conditional Fisher
information to converge to the free conditional Fisher information. This is a version of
[Jek18, Proposition 5.10].

Proposition 16.2.4. Let V™ : M, (C)a+% — R be a C' potential with [ e V" < oo, let
™ be the associated measure, and let (X™ Y™ be a random variable with distribution
p™. Let (X,Y) be a self-adjoint (dy + dy)-tuple in a tracial W*-algebra (M, 7). Assume the
following.
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(A) A(xm ymy = Ax,y) in probability.
(B) The sequence (V,V ™), cn is asymptotically approzimable by trace polynomials.

(C) For some Ry > 0, we have

lim (L + V.V (2, y)lI3) du™ (2, y) = 0.

770 Jl(z,y) lloo>Ro

Let V,V® ~s f € Oty app(R¥HE) 1L|[))0 0 Then f(X,Y) is the free score function for X
gwen Y, and we have

1
lim —Z(X™|Y™) & &*(X|Y) < occ.

n—oo n4

Proof. The idea of the proof is that the classical integration-by-parts relation involving
V.V (XM Yy (™) Jeads to the free integration-by-parts relation involving f(X,Y) in the
large-n limit. However, as we have not assumed that ;™ has finite moments, we must justify
this more carefully.
First, note that since V,V ™ is asymptotically approximable by trace polynomials, we
have
sup  sup  ||[V.V™, < 0.

n |[(zy)llo<Ro

Together with (C), this implies that

[ IV B @) < o

for sufficiently large n.

As in Proposition [16.1.4] we have [|(X,Y)|l« < Ry. Consider a self-adjoint tuple of non-
commutative polynomials p = (p1,...,pq ). Let ¥ € CP(R,R) satisfy ¢(t) =t for |t| <R,
and consider the function

g(l‘,y) = p(@[}(l‘l), s 777/}(md1)7¢(y1)7 s aqu}(ydz))‘

Then ¢ is globally [|-||o-Lipschitz and bounded in operator norm. Moreover, g is a C*
function on M, (C)2 for each n. This follows from results that we will prove later in ;
specifically, Propositions|18.1.5|and[18.1.6{imply that ¢ defines a smooth function M,,(C)s, —
M,,(C)g,. Using integration by parts, for any R > 0

1
/ (Vo V", g)adp™ = — / Vigdu™
ll(z,y)l|l2<R = Jl(zy)ll2<R

1 1 2V () (2
e [ (oo R drytey)
z|l2=
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where og denotes surface measure on the sphere. Since g is bounded, we have
/] ), x/R)a| ’"QVW”’ ) dx dy < oo,
and hence there is a sequence Ry tending to co such that

lim (g(z,y), x/R)se ™V @) dop (z,y) =0.

k=20 J|z|l,=Ry

Since g and Vg are bounded functions for a fixed n and [(1 + ||V,V™|13) du™ < oo, we
have by Cauchy-Schwarz that

/!VV Yol dut® < oo, /\Vgldu ~,

and hence by dominated convergence

lim (VL V™ g)o| dut™ = / (V. V™, gy du™
) 2R ) l2<Re

k—o0

and
lim Vigdu™ —>/V gdp™

k=00 S| (@) ll2< Ra

/(vv :—/Vng,u

Using (C) and Cauchy-Schwarz,

Therefore, overall,

lim (VoV ™ gy du™ = 0.
170 J|(2,9) |0 > Ro
Hence,
lim [ (V,V® g)ydp™ = lim (V V™ Yo dp™
oo 1% J)|(29)l|oo < Ro

= (f(X,Y),p(X,Y))a,

where the last line follows because V,V ™ ~ f and )\( X ym) = A(x,y) in probability (the
argument is similar to those used in the proof of Theorem |15.1.7]). Similarly, we claim that

lim Vigdu () — 0.

"7 JI(y)lloo > Ro
This follows from (C) and the fact that (1/n2)|V'g| is bounded uniformly bounded. More
precisely, g is K-Lipschitz for some K independent of n, hence ||J,.g|| < K, where J,g is the
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Jacobian linear transformation. But (1/n2)|Vig| = (1/n2)| Tr(J,9)| < (1/n?)(din?)||J.g| <
d1 K. Thus, we have

n— 00 n n—00 n

1
lim —/ngdu = lim —/VTpdu
dy

— i (n)
Jm Z / 7o ® [ Dx,pl dpe

7j=1
d1
=30 riDxp(X.Y))
j=1

where we have used that g = p when ||(z,9)|l« < R, and in the last line we have used the
convergence in non-commutative law in probability again. Therefore, we have

Z f] (X,Y) p] (X,Y)) :T®T[ijpj(XvY)]'

Therefore, f(X,Y) is the free score function for X given Y.

By construction of Cy; app (R*41F%) ||-||5), we have f(X,Y) € L2(M, 7). Hence, ®*(X|Y) =
1 £(X,Y)||2 < oo. Finally, since V,V ™ ~ f we have |V, V|2 ~ || f||2. Using assumption
(C) and convergence of A(x(m ym) 10 A(x)y) in probability again,

lim (XY = lim / V.70 dpu

n—00 n n—o00
= lim V.V dp™
n—oo
@)l <Ro
= [[f(X,Y)]3 = o*(X]Y). O

Corollary 16.2.5. The conclusions of the previous proposition hold for the random matrix
models coming from any sequence of potentials (V™) e satisfying Assumption |15.1.1]

Proof. We check the assumptions of the proposition.
(A) follows from Theorem [15.1.5]

(B) is part of Assumption |15.1.1}

(C) Note that sup,||V.V™(0)|s < co because (VV™),cy is asymptotically approximable
by trace polynomials. Also, VV (™ is C-Lipschitz by Lemma since 0 < HV™ <
C. Thus, we have ||V, V™ (z,y)||2 < K(1 + ||z||2 + ||y||2) for some constant K. Hence,
(C) follows from Corollary [11.5.3)| O
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16.3 Free score functions and non-microstates free entropy

In this section, we explain further properties of the conditional free Fisher information and
Voiculescu’s non-microstates free entropy x*(X|Y’). Voiculescu [Voi98al] defined the non-
microstates free entropy x* by integrating the free Fisher information in analogy with the
formula ((12.4]) (see Definition below). As in the classical case, to show convergence of
this integral formula, we need the conditional free version of Lemma which is due to
[Voi98a, Remark 3.2(a)].

Lemma 16.3.1. Let Y be a ds-tuple of self-adjoint variables in (M, 7), and let X and Y
be dy-tuples of self-adjoint variables from M. Suppose that X and Y are free with amalga-
mation over W*(Y'), or in other words, W*(X,Y) and W*(Z,Y") are free with respect to the
conditional expectation Ey«yy: M — W*(Y). If £ is a free score function for X given Y,
then Ew«(x+zy) 18 a free score function for X + Z given Y.

Proof. We claim that for any non-commutative polynomial g(x,y, z), we have
T(&9(X,Y, 2)) =7 @ 7[0,,9(X, Y, Z)].

Taking this claim for granted for the moment, note that for a non-commutative polynomial
g(x,y), we have 0, [g(x + 2,y)] = 0p,;9(x + z,) and hence

79X +2,Y)) =17 ®7[0,,9(X + Z,Y)].
The inner product does not change if we replace &; by its expectation onto W*(X + Z,Y),

hence Ew«(x1zy)[£] is a free score function for X + Z given Y.

The claim is well-known in free probability, but let us recall the proof for the sake of
completeness. Let B = W*(Y'). Note that any non-commutative polynomial in (X, Y, Z) can
be expressed as a polynomial in (X, Z) with coefficients in B. The differentiation operator
with respect to z; produces a well-defined map Dx,.s : B(X,Z) — B(X,Z) ® B(X, Z).
Moreover, since elements of B can be approximated in L? norm by polynomials in Y, we
have

7(§G(X) = 7 ® 7[Dx,;.8G(X)]
for any G € B(X). To accomplish our goal, the claim we want to prove is that
T(ng(X, Z)) =7 T[DXj:BG(X, Z)]

for any G € B(X, Z). As in the proof of the free case of Lemma[5.2.8| B(X, Z) is spanned by
elements of B and alternating products of terms from B(X) and B(Z) with expectation zero
onto B, so it suffices to consider G(X, Z) of this form. If G(X,Z) € B or is an element in
B(X) with expectation zero, then G(X, Z) is already in B({X), so there is nothing to prove.

Thus, it suffices to consider such alternating products with at least one element from
B(Z) with expectation zero onto B. Any such product can be written

G(X,Z) = Go(X)H\(Z2)G(X) ... Ho(Z)Gr(X), (16.5)
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where k > 1 and where Eg[H;(Z)] = 0 for all j and Eg[G;(X)] = 0 for all j except possibly
the endpoints 0 and k. Note that

Eg[[Go(X) — Ep[Go(X)||H1(Z)G1(X) ... Hy(Z)[Gr(X) — Ep[Gx(X)]]] = 0,
which after some computation implies that
Ep [Go(X)H1(Z)G1(X) ... Hi(Z)Gr(X)] = 0,

hence
T (Go(X)H1(Z2)G1(X) ... Hi(2)Gi(X)) = 0.

By the same token, since &; is in the L%-closure of B(X), we have
7 (§Go(X)H (2)G1(X) ... H(Z2)Gr(X)) = 0.
On the other hand, note that

0,,G(X, Z)
(Go(X)H\(Z) ... Gi_1(2)Hi(2)) B, Gi(X) (Hisr(Z)Gipa (X) ... Hy(Z)Gr(X)).

=0

(16.6)

We can write 0,,G;(X) as a sum of simple tensors in B(X). This turns into a sum of
simple tensors, where each side of the tensor sign has a string of the form . Either the
left side or the right side of each term has to have at least one element from B(Z), which
implies that 7 ® 7 will evaluate to zero on the tensor product. Thus, in this case,

r(§G(X, 2) =0 = 7 © 7(0,, (X, 2). =

We also record another well-known observation in free probability.

Lemma 16.3.2. Let (X,Y) be a non-commutative (dy + da)-tuple from (M, ), and suppose
that Z is a ds-tuple free from (X,Y). Then Z is free from X with amalgamation over W*(Y').

Proof. Let B =W*(Y). To demonstrate freeness, it suffices to show that
Ep|Go(X)Hi(Z2)G1(X) ... Hy(Z)Gr(Z)] = 0
whenever k£ > 1, G4(X) € B(X) for 0 < i < k with Eg[Gi(X)] = 0 for 0 < i < k,

and H;,(Z) € B(Z) with Eg[H;(Z)] = 0 for 1 < i < k. By definition of the conditional
expectation, this reduces to showing that for b € B, we have

T1Go(X)Hy(2)G1(X) ... Ho(Z)G(Z2)b] = 0.
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But b can be absorbed into G(Z), so we can assume without loss of generality that b = 1.

Now B(Z) is spanned by alternating strings of the form by fi(Z,(1))b1 - .. fe(Z.))be where
7(fj(Z,j))) = 0 for 1 < j < ¢ and 7(b;) = 0 for 0 < j < £. In the case ¢ = 0, these are
elements of B, while if / > 0, they are orthogonal to B since Z is free from B. Thus, the
elements of B(Z) with expectation zero onto B are spanned by such strings with ¢ > 1.
Hence, we can assume that each H;(Z) has the form

Hi(Z) = biofin(Zui1))bin - - - fiet)(Zutieiy) )i

with the conditions described above. Plugging in this choice of H;(Z) and regrouping terms
produces a string composed out of terms like

(1) b, for 0 < j < (i) and 1 <i <Kk,
(2) fi,j(Zi,L(i,j)> fOI' 1 Sj S g(l) and 1 S 7 S ]{Z,
(3) bio(i)Gi(X)big1,p for 0 < i < k, or Go(X )by or by gx)Gr(X) in the endpoint cases.

Note that that 7(b; ;)G (X)bit1,0) = 0since Eg[G;(X)] = 0. Thus, all the terms in the string
have trace zero except the endpoint terms, and also the terms alternate between W*(X,Y)
and W*(Z), and hence the whole string has expectation zero. O

Using the previous two lemmas, we can obtain the following.

Lemma 16.3.3. Let (X,Y) be a self-adjoint (dy + da)-tuple from (M, 1), and let Z; be a
freely independent d;-tuple with non-commutative law oy. Let a = || X||3/dy. Then

dy
a—+t

< O X + Z|Y) < min (%,I(XD/)) :

Proof. The proof is much the same as for the classical case ((12.2)). For the lower bound, note
that if & is a free score function for X + Z; given Y, then

di = (&, X + Z.); < G151 X + Z3 = (X + Z,|Y)(dra + dit).

For the upper bound, note that X and Z; are freely independent with amalgamation over
W*(Y). If = is a free score function for X given Y, then by the previous lemma, =, =
E[Z|X + Z;,Y], so that ®*(X + Z;]Y) < ® % (X]|Y'). Moreover, one can check that Z;/t is
a free score function for Z; given Y (for instance, this follows from Proposition since
Zt(n) /t is a score function for the Gaussian random matrix tuple with distribution ;" which
converges in non-commutative law to the Gaussian by applying Lemma with d; = 0).
Thus, Z; = E[Z;/t| X + Z;,Y]. O

309



Definition 16.3.4 ([Voi98al, Definition 7.1]). Let (X,Y") be a (d; + ds)-tuple from a tracial
W-algebra (M, 7). The non-microstates free entropy of X given Y is defined as

1 d

> d
(A) == — — (X + Z4|Y —log 2
=g [ (T - vers i) + Flogne

where Z, is a free semicircular d;-tuple with non-commutative law o;, freely independent of

(X,Y).

Remark 16.3.5. It follows from the previous lemma that the positive part of the integrand
d/(14t)—P*(X + Z;]Y) is integrable, and hence the integral defining x*(X|Y) is well-defined
in [—00,00); the argument is the same as in Lemma [12.1.4]

Remark 16.3.6. Voiculescu’s original notation in [Voi98al, §7] was ®*(X : W*(Y')) and x*(X :
W*(Y)) rather than x*(X|Y), since the definition of the free score function can be rephrased
so as to depend only on W*(Y") rather than Y. The idea is to use W*(Y')-valued polynomials
as we did in the proof of Lemma [16.3.1] However, we prefer to write x*(X|Y) instead by
analogy with the classical case, using the vertical bar to denote “conditioning.” This avoids

potential confusion with the notation x(X :Y') for microstates entropy of X “in the presence
of Y used in [Voi96, §1].

16.4 Convergence to conditional free entropy

Our main new result of the chapter shows that if (X™, Y () is a random matrix (d; +
dy)-tuple coming from potentials V™ as in Assumption [15.1.1, then the large-n limit of
h(X™|Y ™) is described by x*(X|Y). As a corollary, when dy = 0, we obtain that x(X) =
X" (X))

Theorem 16.4.1. Let V™ . M,(C)a+dz — R satisfy Assumption |15.1.1) for some 0 <
c< O, let (XM, Y™) be a random variable distributed according to the associated measure
1™ let Z™ be an independent di-tuple with the Gaussian distribution o\™. Let (X,Y) be

a self-adjoint (dy + dy)-tuple from a tracial W*-algebra realizing the limiting free Gibbs law
as in Theorem|15.1.5. Then for every t > 0, we have

lim (X0 ZMYy ™) = o*(X + Z,|Y). (16.7)

and .
lim (—2h(X<”> + 7MY ™) 4 dy log n> = X"(X + Z|Y). (16.8)

n—00 n

sa
associated random matriz d-tuple and let X be a non-commutative d-tuple realizing the free

Gibbs law as in Theorem [15.1.09. Then we have

X(X) = x(X) = x"(X).

Corollary 16.4.2. Let V(™ : M,(C)¢ — R satisfy Assumption |15.1.1. Let X™ be the
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Proof. By Proposition [16.1.4 and Corollary [16.1.5|imply that x(X) and x(X) can be evalu-
ated respectively as the limsup and lim inf of the normalized classical entropy n=2h(X (")) +

dlogn. But by Theorem [16.4.1] the normalized classical entropy converges to x*(X). O]

In the proof of Theorem the greatest difficulty is to show that the potential Vt(")
associated to (X ) 4 Zt("),Y(")) still satisfies Assumption , and in particular that
(VVt("))neN is asymptotitcally approximable by trace polynomials. However, the results of
were designed for just this purpose.

Lemma 16.4.3. Let V™ : M, (C)h+% 5 R be a sequence of potentials satisfying Assump-
tion|15.1.1| with cI < HV™ < CI, and let i™ be the corresponding measure. Let

n 1 2y () (p—y n
Vi ag) = =z log [V dol ),

where Ut(n) is the GUE measure.

(1) Then (Vt(n))neN also satisfies Assumption |15.1.1) for constants ¢/(1 + ct) and C.

(2) More precisely, we have

c (n) C
— 1,2 L2g, < HV,W < ——1,2 Cl,2q4,.
[ o b @ Gy S BV S gtz © Cloa,
(8) Moreover,
2d;t 2

1/2
va;<“><x,y>—vv<n><x,y>H2so( 2||vxv<”><x,y>||§) . (169)

IL+ct (14 ct)

(4) Let (X,Y) be a non-commutative (dy + ds)-tuple realizing the limiting free Gibbs law for
(V("))neN as in Theorem and let Z; be a freely independent semicircular di-tuple

with law o;. Then the limiting free Gibbs law for V;(n) is described by (X + Z;,Y).

Proof. For z € M,(C)4 | let

sa’

n n 1
U (., 2) = V" (@, w) + 55,

and
Wt(") (r,y,2) = Ut(") (x — 2,y, 2).

Note that )
Vt(") = log/e_"2w(n)(x’y’z) dz + const(t,n).
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The probabilistic interpretation is as follows. Letting (X ™, Y ™) ~ (™ and Zt(") ~ a§”)
be an independent Gaussian tuple, the potential Ut(n) gives the law of (X™ Yy (™), Zt(")), and
the potential W™ gives the law of (X™ + Z™ Y™ 7z™): by taking the marginal on the
first d; + do, we obtain the law of (X () 4 Zt("), Y(”)), which corresponds to the potential
Vt(n)-

(1), (2) Note that

cl 0 0 cl 0 0
0 ¢ 0 |<HU™M<|0 I 0 |,
0 0 I 0 0 I

where the block decomposition is given by dividing the rows and columns in to blocks of
sizes n%dy, n?dsy, and n%d;. Then Wt(n) = Ut(n) o T, where

I 0 I I 0 —I
T=101 0], T'=10 1 0
00 I 00 I

with respect to the same block decomposition. It follows from Lemma [11.3.1] that

cd 0 —cl cd 0 —C1T
0 ¢l 0 <HW™ < | 0 el 0
—I 0 (tt+oI ~CI 0 (t'+O)I

Hence, Theorem (11.3.3 V;(n) satisfies

((c/(lJOrct))] COI) < Hy < ((O/(lg(]t))] C(*)I)’

where we have used the Schur complement computation

(5 &)= (&)@ sant o= (7 T )

(e oy,

and the same with ¢ replaced by C'. This proves the asserted claims about the convex-
ity /concavity of Vt(n).

Observe that
VW (@,y,2) = (VaV O (@ = 2,9), VV O (@ = 29), 2 = VoV (@ = 2,9)),

which is asymptotically approximable by trace polynomials because VV (™ is. Hence, Wt(n)

satisfies Assumption [15.1.1} Therefore, by Proposition [15.1.8| V\/;(n) is asymptotically ap-
proximable by trace polynomials.
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(3) To prove ([16.9)), let us denote

1

2
o) e n Wt(iU,y,Z) d
f e—M*We M (2.2)

dl/t(n)(z\:v, y) = 2,

so that
Vw0 = [ VW 2) dr eley) = [TV 2y) el )
Therefore,
|7V ) - VO], < [IFV©O @ = 20) - TV )| o el
<C [llelladv(zlo,y)

since VV (™ is C- Llpschltz But recall that H,W;(z,y,2) > (t~' + ¢)I. Therefore, applying
Corollary [11.2.6] m to v (z|z,y), we obtain

[t Gl < ([0 zxw)2

2d 1 S\ 2
< (t_l T + (t_l )2||v2Wt(‘ray70)“2>

2dt 2\
~(a mraplvyel)

which combined with our previous estimate finishes the proof of ((16.9)).
(4) By Theorem [15.1.5] we know )‘(X<n>+z§">,Y<n))

commutative law, and we only have to show that it agrees with the non-commutative law of
(X + Z;,Y). This follows from Lemma [14.2.4] O

converges almost surely to some non-

Proof of Theorem[16.4.1 To prove ((16.7)), let Vt(n) be the potential given by Lemma |16.4.3)

which corresponds to (X™ + Zt("), Y ™). By the lemma, Vt(”) satisfies Assumption [15.1.1|
Hence, by Proposition [16.2.4] and Corollary [16.2.5] we have

1
lim —Z(X™ + ZM|)y ™) = o*(X + Z,|Y).

n—oo ’]’],4

To prove (|16.8]), we begin with the formula for classical entropy in Lemma [12.4.4] which
states that

2
h(X(”)]Y(”)):%/(flft (XM 4 ZWy ™ ))
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Hence,

1 1 [ din? d
—h(XM]y ™) 4 = / L)t
n2( | )+2 o \l+n2 1+t
1 [ [ dyn? 1 d;
- - — —T(X®™ £ 2Oy ™y gt + L og 2re.
2/0 (1+n2t L X+ 2 V) ) di oy log 2me

But note that

1 oo d1n2 dl ) dl a 1 1 d1 ,
2 - dt = lim = - =~ logn? = d; logn.
2/0 (1+n2t 1—|—t> aggo 2 /0 1/n2_|_t 14¢ 92 ogn 1iogn

Moreover, by a change of variables,

1 oo d1n2 1 1 oo dl 1
- — —T(X™ 4+ 2Dy ™)) q = = / — —T(X™ 4+ ZM )y ™) at.
/0 (Hn% ST+ 2 [Y) i (X 4+ Z7[Y™)

2 2 14+t nt

Hence,

1 1 (> d 1 d
il (n)y(n) i - (n) (n) 1y (n) il
th(X [Y'"™) + dylogn = 2/0 1 n4I(X + 2,7 |Y'"™) dt + 5 log 2re.
By (16.7), nZ(X™ + Zt(")|Y(")) — ®(X + Z;|Y). In order to exchange the limit and
integration, we use the dominated convergence theorem together with the bounds of Lemma
12.4.40 Let a™ = (1/d;)E||X™]|2 which converges to || X ||2 and hence is uniformly bounded.
By Lemma [12.4.4]

i’ < Z(X™ 4+ ZM |y ™) < min dn” T(X™ |y ™)
a™ /n? + (t/n?) — t - t/n?’ ’

and hence

1 n n n : dl 1 n n
< ﬁz()d )+ ZM|y ™) < min (7, EI(X< Ny ¢ >)) .

al®) +¢

Since Z(X ™Y ™) is bounded as n — oo, this estimate is sufficient to apply the dominated
convergence theorem and exchange the limit with integration. By the definition of x(X|Y),
this yields

lim (A(X™[Y™) +d;logn) = x*(X|Y).

n—oo
But since (X™ + Zt("),Y(”)) satisfies the hypotheses just as well as (X, Y ™) we get
(16.8). O

Remark 16.4.4. In [Jek18, §7], we did not use the conditional expectation method to prove
VVt(n) is asymptotically approximable by trace polynomials, but rather we analyzed the

evolution of VVt(n) directly using PDE semigroups. The proof given in [Jek19] and here for
convergence of entropy is thus considerably shorter.
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CHAPTER 17

Results: Conditional transport to Gaussian

17.1 Main result and consequences

Let V(™ : M, (C)L+d2 gatisfy Assumption and let (X™ Y ™) be the corresponding
random variable. Let Z(™ be an independent Gaussian tuple in M, (C)%. In this section,
we will construct Lipschitz functions F™ such that (F™(X™ Yy ™) ym) ~ (zM y®)
and F™ is asymptotically approximable by trace polynomials. The inverse function will be
obtained by the same construction and this will lead to an isomorphism of von Neumann
algebras for the non-commutative random variables in the large-n limit.

The construction of F™ follows the same strategy as used by Otto and Villani [OVQ0]
(see Lemma and Theorem above), but in the conditional setting (see §12.4)).
Specifically, for each y, we take as our initial measure (u in Theorem the conditional
distribution of X given Y™ = y, and as our target measure (m in Theorem the
Gaussian distribution at(”). Unsurprisingly in light of Theorem , the resulting transport
functions F™ produce a coupling between (X™,Y ™) and (Z™,Y () that witnesses the
conditional Talagrand inequality with respect to Gaussian measure, and in the large-n limit
this produces W*-algebraic transport that witnesses the conditional free Talagrand inequality
with respect to the law of a free semicircular family.

The main result of the section is as follows. Here we denote by A" (XY ™) the
conditional entropy of X given Y™ relative to the Gaussian measure a§"). One can
compute as in , after taking account of the normalization of Uﬁn), that
dyn? 27

5 logﬁ.

n? 2
h(n)(X(n)‘y(n)) — h(X(n)‘y(n)) — ?EHX(TL)HQ —

g

Theorem 17.1.1. Let V™ (z,y) be a sequence of potentials on M, (C)L+d2 satisfying As-
sumption for some 0 < ¢ < C, and let ™ and (X™,Y™) be the corresponding
probability measures and random variables. Let ZWN) be an independent GUE d;-tuple. Let
mi(x,y) = x and mo(x,y) = y. Then there exist functions F™, G™ : M, (C)ha+dz — M, (C)%
such that the following hold.

(1) (F™ 715) 0 (GM™ 1) = id = (G™, 1) o (F™, 7).

(2) We have (F™ (XM Y0 Y)Y ~ (20 Y0 and (G (20, Yy ™) Yy ) ~ (X0 y ()
n law.
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(3) (F™)pen and (G™),en are asymptotically approzimable by trace polynomials.

(4) F™ and G™ witness the conditional Talagrand inequality with respect to Gaussian mea-
sure, that is,

n n n n n n n n 2 n n n
[FOX®, Y 0) = XOJ, = |60 (20,7 0) = 20, < S (XY ),

(5) We have
max (HF(") — 71 || Lip, HG(”) — 7r1HLip) < (max(C, 1/0)3 — 1) max(C, 1/0)1/2.

Remark 17.1.2. Of course, as explained in §12.3] the existence of transport holds in much
greater generality in the classical setting. The difficulty of our result is to control the
asymptotic behavior as n — oco. The explicit form of the heat semigroup with respect
to the Gaussian measure makes this task much easier. To get asymptotic approximability by
trace polynomials (see Proposition , we rely on Lemma , which in turn depends
on our earlier results about conditional expectation.

Remark 17.1.3. The transport constructed here is usually not optimal. Indeed, Otto and
Villani’s heat semigroup method rarely produces the optimal transport maps, even in the
non-conditional setting. The interpolation between the two measures is given by diffusion

rather than the displacement interpolation from optimal transport theory.
Similar to §15] we will postpone the proof of the main theorem until after explaining
some of its consequences. First, the following theorem is obtained from Theorem [17.1.1] in

the large-n limit.

Theorem 17.1.4. Continue with the same setup and notation from the previous theorem.
Let (X,Y) be a tuple of non-commutative random variables given by the limiting free Gibbs
law X of V™, and let Z be a freely independent free semicircular di-tuple. Let F() ~s F
and G™ ~~ G. Then the following hold.

(1) (F,m) o (G,m) =id = (G, ms) o (F, ).
(2) We have (F(X,Y),Y) ~ (Z,Y) and (G(Z,Y),Y) ~ (X,Y) in non-commutative law.

(3) There is a unique tracial W*-isomorphism o : W*(X,Y) — W*(Z,Y) = W*(Z)«W*(Y)
such that o(X) = G(Z,Y) and a(Y) =Y.

(4) F and G witness the conditional free Talagrand inequality with respect to the law of a
free semicircular family, that is,

IF(X,Y) = X|3=[IG(Z,Y) - Z|3 < 2]x;(X|Y)],
where

. 1 d
Xg(XTY) = o+ (X[Y) = S| X5 — 5 log 2.
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(5) We have
max (|| F — 7y ||Lip, |G — 71 |Lip) < (max(C,1/¢)® — 1) max(C, 1/¢)"/?,
and consequently

|F(X,Y) = Xl = [G(Z.Y) = Z]lac < O(max(C, 1/¢)* ~ 1) max(C, 1/c) + max [(X,)].

where © 1is the universal constant from Lemma|11.5.2,

Remark 17.1.5. Claim (3) implies that the subalgebra W*(Y') is freely complemented in
W*(X,Y), that is, the larger algebra is the free product of W*(Y") with some other subalge-
bra.

Remark 17.1.6. Regarding (4), we remark that the free Talagrand inequality for self-adjoint
tuples was studied in greater generality in [HUO6] and [Dabl10, §3.3]. Although we restricted
ourselves to the case where the target measure is Gaussian/semicircular, our goal in this
paper was not merely to estimate the Wasserstein distance using some coupling, but rather
to exhibit a coupling that arises from a transport map (and in fact a Lipschitz transport
map).

Remark 17.1.7. Regarding (5), the exact constants are probably not optimal, and the precise
form of the estimate is not important for our purposes. However, in formulating and proving
our results, we took care to ensure that the constants approach zero as ¢,C — 1. Thus,
if V" (z,y) is a small perturbation of the quadratic potential (1/2)(||z||2 + [|¥||3), then the
transport function F'(x,y) is close to x in Lipschitz norm, and F(X,Y’) is close to X in
operator norm. This perturbative setting was studied first in the literature, for instance in
[GMO06] and [GS14], and we will discuss it further in §18]

Proof. (1) Because (F™, m,) and (G™, ;) are ||-||o-Lipschitz, Proposition [13.5.12] implies
that
(F(n), 7T2) 9] (G(n),ﬂ'g) ~ (F, 7T2) @) (G,Tl'g),

and hence (F,my) o (G, m5) = id, and the same holds in the reverse direction.

(2) First, note that because (F,m) and (G, ) are||-||o-Lipschitz, F(X,Y) and G(X, Z)
are tuples of bounded operators by Lemma|l3.3.4|(3). Let u be a ||-||o-Lipschitz scalar-valued
function from the space Ciyapp(RE92, [|+]|2). Then u o (F™ my) ~ uo (F,m). Hence, by
Theorem [15.1.5),

WF(X,Y),Y) = lim Bu(F™(XM y™) vy = lim Bu(Z™,Y™) = u(Z,Y).

n—o0 n—oo

The last equality follows because the potential for (Z™,Y ™) satisfies Assumption [15.1.1}
indeed, the potential for Y™ satisfies this assumption by Proposition [15.1.8] and the poten-
tial for (Z(™,Y ™) is the sum of this potential in y and the quadratic potential in z. And
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the non-commutative law of (Z™ Y ™) converges in probability to that of (Z,Y) by the

same reasoning as in Lemma [16.4.3| (4).

Therefore, u(F(X,Y),Y) = u(Z,Y) for globally ||-||o-Lipschitz functions u in Ciy app (R*@1F42)|-]|5).
In particular, it holds for a trace polynomial composed with a smooth cut-off function, so
that A(p(x,v),v) = A(zy). The argument for (G(X,7), Z) is symmetrical.

(3) Since (G(Z,Y),Y) ~ (X,Y), it follows from Lemma [10.2.5, that there is an iso-
morphism a : W*(X,Y) — W*(G(Z,Y),Y) sending X to G(Z,Y) and Y to Y. But
Z = F(G(Z,Y),Y) since (F,m3) o (G,m) = id (using Proposition [I3.4.3), hence Z €
W*(G(Z,Y),Y), so W(G(Z,Y),Y) = W*(Z,Y). Since Z and Y are freely independent,
W*(Z,Y') is isomorphic to the tracial W*-free product W*(Z) « W*(Y'). Finally, it is clear
that the isomorphism is unique once the values on the generators are specified.

(4) This follows from taking the large-n limit of the relation (4) from Theorem [17.1.1]
Indeed, by Theorem [15.1.5] we have

n—o0
and the analogous statement holds for ||G(Z, X) — Z||2. Similarly, by Theorem [16.4.1
L ) xmy o )y ) Lpixm)?_ @
—shg? (XY) = MXYT) 4 dylogn — 5E||X I, — - log 2

1 d
= (XIY) = S IX = S log 2
= (X[Y).

(5) The estimate on the Lipschitz norms follows by taking the large-n limit of claim (5)
from Theorem [17.1.1} For the operator norm bound, note that the first two terms of the
equation are equivalent that in light of the isomorphism «. Then using Lemma [11.5.2] we
have that

lim sup | F5(X®, Y ) = X7, (F (X, ¥0) 4 7, (X7)| < e 2OUF = il

n—oo

in probability. Then because of Lemma |13.3.6| (2),

IF(X,Y) = X; +7(X;)|, < 2O\ F — mi|uip-

[
since 7(F;(X,Y)) = 7(Z;) = 0. Then we plug in our estimate for ||F — 7 ||, and simplify
using ¢ /2 < max(C, 1/c)"/2. O

The next two theorems concerning “triangular transport” are obtained by iterating The-
orems [17.1.1] and [I7.1.4] In the classical setting, a triangular transport between two proba-
bility measures p and v on R? is a function f such that f,; = v and f; only depends on 1,
... xy for each k, or in other words

f(xy, . 2a) = (filw), fa(zr, 22), - oo fa(Tn, - oo a)),
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similar to a lower-triangular linear transform. Triangular transport was studied in [BKMO05],

and in fact, the authors proved the existence of optimal triangular transport (see especially
Corollary 3.10).

Triangular transport can be obtained by iterating conditional transport. Roughly speak-
ing, given random variables (Xi,...,Xy) ~ p and (Y7,...,Yy) ~ v, we first transport X,
to Y7, then transport X5 to Y5 conditioned on X, then transport X3 to Y3 conditioned
on X; and X5, and so on. Under some conditions, the Talagrand inequality can even be
witnessed by triangular transport as also noted in [BKMO5|]. For instance, if the conditional
distribution of Y} given Y7, ..., Y,_; is sufficiently regular and satisﬁes the conditional log-
Sobolev inequality for each k then using the ideas sketched in §12.4] we can construct a
conditional transport of Xy to Y} such that || Fy(X) — X3, is bounded by the entropy of
X}, relative to the law of Y}, conditioned on X, ..., X;_;. Then by additivity of entropy
under conditioning,

1F(X) = XL = ZHF = Xz < 2 (ulv)l

We will carry out these ideas in detall in the random matrix setting where 1™ is a convex
Gibbs law and the target measure is a§ and thus obtain the following result.

Theorem 17 1.8. Let V(™ : M, (C)? — R satisfy Assumption mfor some 0 < ¢ < C,
and let ™ be the correspondmg measure and X™ the corresponding random variable. Let
Z™ be a Gaussian d-tuple. There exist functions F™ G™ : M, (C)% — M, (C)¢, such that
the following hold.

(1) F™ and G™ are inverses of each other.

(2) FO (2. zg) = (F™(21), F{™ (21, 22), . .. ,chn)(xl, ..., xq)) for some functions F™,
e Fdn), and a similar expression holds for G™.

(8) FO(XM)Y) ~ 20 gnd GM(ZM) ~ X0
(4) (F™),en and (G™),en are asymptotically approzimable by trace polynomials.
(5) F ™) and G™ witness the Talagrand inequality relative to the Gaussian measure, that is,

20

[P (x ™) — X 2 < ﬁ‘h

Iz

— | (z™) - Z(”)”; m (x|,

g

(6) We have
|F™ —id||Lp < dV/*(max(C,1/¢)® — 1) max(C, 1/c)"/?,

and ||G™ —id||p;p 4s bounded by some constant depending only on max(C,1/c) and d,
which goes to zero as max(C,1/c) — 1.
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Proof. For each k=1,...,d, let Vk(") be the potential corresponding to the marginal law of
(Xl(n), o ,X,i")), given by the formula in Proposition . By that proposition, (Vk("))neN
satisfies Assumption [15.1.1] with the same constants ¢ and C'. Thus, we can Theorem [I7.1.1
for X,En) conditioned on Xln), e X,@l to find a function F,En) (x1,...,xx) such that

(X{’”, X R (X{”), . ,X;@l)) ~ (X{”), XM Z,S‘)) .

Then set
F(n)(I) = (Fl(n)(l'l), F2(n)(l‘1, ZL‘Q), PN ,chn)<l'1, ce ,l‘d)> .

The inverse function G is slightly more complicated to express. Let G,(:) be the function
(n

obtained from Theorem|17.1.1{to transport Z ,g") to X, ) conditioned on X 1("), X ,5@1. Then
define

Gz, .. xq) = (an)(azl), Hén)(xl,xg), . ,Hc(ln)(xl, . ,:L‘d)> :
where the H ,in)’s are defined by induction on £ to satisfy
ngn)<x1, e ,Ik) = G]in) (Hl(n)<l’1), e ,H,gi)l(xl, e ,xk,l), l’k> .

Let us check that the claims of the theorem hold.
(1) By construction and a bit of computation, F’ (") and G™ are inverses of each other.
(2) holds by construction.
(3) Denote ;™ := F™(X™ ..., X"} and write 2™ = z™ ...z We will check
by backwards induction on k that
(X{”),...,X,i”),y,jj)l,...yj”)) ~ (X{”),...,X,ﬁ”),z,@l,...,zc(l")) .

The base case k = d is trivial. For the induction step, suppose the claim holds for k. Since
Yk(”) is a function X l(n), o, X ,gn), the claim for k£ implies that

(X0, XY YY) ~ (X 2 )

But then note that Z,Sjr)l, ey Zc(ln) are independent of the X;n)’s and the Y;-(")’s and Z,gn).

So using our choice of F ,gn), we have
(n) (n) 1 () r(n) () (n) (n) ) 0 (n)
(X0 XY 2 200) (X X, 20,20 2

This completes the induction and shows that F™(X™) ~ Z(™ as desired. Since G is the
inverse of F(™ this also implies that G (Z(™) ~ X,

(4) Theorem [17.1.1| guarantees that Fk(n) and G,(Cn) are asymptotically approximable by
trace polynomials and uniformly ||-||o-Lipschitz. Since F™ and G™ are obtained from
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these functions by iterated composition, they are also asymptotically approximable by trace
polynomials and uniformly ||-||2-Lipschitz.

(5) Note that the second term in (5) is equivalent to the first because F(™(Z(M) ~ X
and F™ is the inverse of G™.

To prove the inequality, recall that Theorem [17.1.1| guarantees that

2
|Fm e, xi) - x

2 n n n n
L S S eI

Since F; k(") defines the k-th coordinate function of F™ we have

d

[P0 = X2, = S| A, LX) - X R
k=1

But by additivity of entropy under conditioning,

d
n G X = Do X,
k=1
and hence (5) holds.

(6) Let m(x1,...,24) = 2. Then by decomposing F™ coordinate-wise and applying

Theorem [17.1.1] (5),

< d(max(C,1/c)* —1)*max(C,1/c),

d
2
™ _qll? (n) _
I ld”Lip = ZHFk Fk‘ Lip
k=1
and thus we have the desired estimate for ||[F™ — id||;,. The construction of G™ is more
complicated than that of F(™ but nonetheless since ||G§€n) — k|| Lip is bounded by a constant

that goes to zero as max(C,1/c) — 1, one inductively obtains similar bounds for || H, ,g") -
k| |Lip and can thus estimate ||G™ — id| L. O

The final result is the W*-algebraic version of Theorem [17.1.8] which we obtain in the
large-n limit. The arguments to deduce Theorem from Theorem [I7.1.§ are exactly the
same as those used to deduce Theorem from Theorem [17.1.1] so we leave the details
of the proof to the reader.

Theorem 17.1.9. Continue the notation of Theorem |17.1.8 Let X be a d-tuple of non-
commutative random variables realizing the free Gibbs law which is the large-n limit of (™,

and let Z be a free semicircular d-tuple. Let F,G € Ciy app(R*%, ||+|l2)%, be the functions such
that F™ ~s F and G™ ~ G. Then the following hold.
(1) F and G are inverses of each other.
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(2) F(z1,...,2q) = (Fi(x1), Fa(x1,22), ..., Fa(z1,...,24)), where Fj € Cipapp(R*, [|*]|2)sas
and a similar expression holds for G.

(3) F(X)~Z and G(Z) ~ X in non-commutative law.

(4) There is a unique isomorphism o : W*(X) — W*(Z) such that o(F (X)) = Z. Moreover,
for each k=1,...,d, we have

d(W*(Xy,...,Xg) =W*(Zy, ..., Z).
(5) F and G witness the free Talagrand inequality relative to the law of a free semicircular
family, that is,
IF(X) = XI5 = 1G(2) = ZI5 < 2l (X)] = [xo(X)].
(6) We have
| F —id||Lip < d*(max(C,1/¢)® — 1) max(C, 1/c)"/?,

and |G —id||Lip is bounded by some constant depending only on max(C, 1/c) and d, which
goes to zero as max(C,1/c) — 1.

(7) We have

1F(X) = Xl o = 1G(2) = Z|lw < ©(max(C,1/c)* — 1) max(C, 1/c) + max [7(X;)],

where © 1is the universal constant from Lemma|11.5.2,

Remark 17.1.10. (4) of Theorem [17.1.9| can be stated as saying that the two sequences of
W=*-algebra inclusions

W*(X;) CWH (X, Xo) C--- CTWH(Xy, ..., Xy)

and
W*(Z,) CW*(Z1,2,) C--- CW(Zy,..., Za).

are isomorphic. This second sequence of inclusions is of course isomorphic to
L(Fy) C L(Fy) C -+ C L(Fa),

where IF; is the free group on j generators and the inclusion F; — I, is the standard one
which sends the first j generators to the first j generators. In particular, all von Neumann
algebraic properties of the sequence of inclusions coming from (Xj,..., X,) are the same as
the sequence of inclusions for the free group von Neumann algebras.
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17.2 Strategy

We will employ Lemma as in Otto and Villani’s argument, while also using the explicit
form that the transport takes when the background measure is Gaussian or Lebesgue (see
. Our end goal is to study the transport maps with Gaussian as the target measure, but
we will perform part of the argument using the transport functions for Lebesgue measure,
which are computationally more tractable and are related to the Gaussian transport functions
by a change of variables.

Consider a sequence of potentials V™ : M, (C)%+% — R satisfying Assumption [15.1.1]
and let ) be the corresponding probability measure and (X ™, Y ™) the associated random
variable. Let Z" an independent dy-tuple with the Gaussian distribution o™, let X™ =

X™ 4+ 7™ and let 1™ be the law of (X{™, V™). Recall that the density p{™ of u{" evolves
according the normalized flat heat equation conditioned on Y that is,

N 1
apt™ (x,y) = ﬁAwﬁ”)(l’,y)-

(Of course, ,015”) can be obtained from the standard flat heat evolution with respect to A,

rather than (1/2n?)A, by slowing down time by a factor of 2n%.) Let V™ be the potential
given by

1 n n
Vi ag) ==z log [V,

so that Vt(n) (x,y) equals —# log p§”) (z,y) up to an additive constant and VO(”) =y,
Define a function Fs(,?) : M, (C)4tdz — M, (C)L by solving the ODE

n ]' n n

By Lemma [12.3.1] with Lebesgue measure as the background measure, Fi;(-,y) pushes
forward the conditional distribution of Xt(n) given Y™ = 4 to the conditional distribu-
tion of X™ given Y™ = y for any s, > 0. Thus, the function (F(n)

s,t

) given by
(x,y) — (Fs(?) (x,y),y) satisfies (FS(;L), ﬂz)*ﬂgn) = 1™ per the discussion on conditional trans-

port in §12.4] Note also that for s,¢,u € [0, 00), we have
F(FS) (2,9),9) = FO (2, p),

which follows from the existence and uniqueness theory of ODE.

Remark 17.2.1. To verify that the hypotheses of Lemma are satisfied for p,ﬁ’"‘), note that
pi”) is C* in (z,t) for t > 0 by the standard theory of the heat equation. Moreover, Lemma
implies that ¢/(1 + ct) < H,V,"™ < C/(1+ Ct) and hence V, V™ is C/(1 + Ct)-
Lipschitz by Lemma [11.1.4, The claim (FS(Z), 7T2>*/,Ll(5n) = ,ugn) for s or t equal to zero will be
justified later by a limiting argument.
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Using the change of variables explained in §12.5| we can obtain the transport functions as-
sociated the heat equation with respect to Gaussian measure rather than Lebesgue measure.
Let /i be the law of (e*t/zXéle, Y ™), and let

Vi (a,y) = Vi, (),
)

(n)

which is the potential corresponding to f,"’. The density of /i, with respect to the Gaussian

measure is then o
~ _ 2 _ 2_ 2
pr(x,y) =e" (Ve (@)= (/225721

which evolves according to the normalized heat equation for Gaussian measure with respect

to x conditioned on y:

. 1 . 1 .
Oipe(,y) = Z—HQAI,Ot(fﬂ,y) - 5(?6, Vii(x))s.
Then let . .

FiY(w,y) = e PE | L ((e2,y),

so that (Fﬁf?,@)*ug’” — ™ for s, > 0. Moreover, ]3’3(?) satisfies

- 1 ~ . 1 ~
(n) _ (n) (n) _ ~ (n)
O (@) = —5 (VI —m) (FY (,9)) = =35 (Valog i) (P (@y)) . (17.2)
We also have by s,t,u € [0,00) that

s S,u

The details of these computations were explained in §12.5 except without the normalizing
factor of 1/n? in the Laplacian, and we leave the necessary modifications as an exercise.

To prove Theorem [17.1.1] we will show that F. S(?) has a limit as s or t — oo. Since [i; is

the law of (X\™, VM) := (e /2X®) 4e~t/270) [y ()~ (et/2X M) 4 (1= t)1/2 7y (),
it is natural to denote by i, the law of (an),Y(”)). Then we will extend the equality
(F ("))* pi") = 4" to s and t in [0, 00]. Then the functions F™ and G™ in the theorem will

s,t

be given by F(™ = chg)o and G = Fo(zl

To carry out this construction, we require finer control over the functions F 5(72) than in
Otto and Villani’s proof of the Talagrand inequality (Theorem |12.3.5)). In fact, we will give

explicit estimates for the Lipschitz norms of Vth(n)(x, y) and F,}’(x,y), which then trans-

)

late into estimates for FS(? . From there, we will prove explicit and dimension-independent

estimates for the rates of convergence of F, 5(7;) as s or t goes to oo (rather than using the
softer L? estimates in our proof sketch of Theorem .

After controlling the behavior of FS(?) as s or t tends to oo, we turn our attention to
the behavior as n — oo. To show that FS(?) (and hence ﬁ’s(?)) is asymptotically approx-
imable by trace polynomials, we use Proposition together with the fact that Vt(n) is
asymptotically approximable by trace polynomials by Lemma

324



17.3 Lipschitz estimates for conditional transport

As the first step in our proof of Theorem [I thls section proves the technlcal estlmate
Lemma [17.3.2f on the Lipschitz seminorm of . Our Lipschitz estimates for Fst depend

in turn upon the following technical estlmates for Vt (as, y) that come from the convexity
properties of V;(n) in Lemma [16.4.3[ together with Lemma [11.1.5

Lemma 17.3.1. We have
(VV(w,y) = 0V ) e - ),

2 C —C
Yt a e s a1

[ — —lllly = ¥l

<
T 1+Ct

and

<V$Vt(n) (z,y) — V.V, (), & — x’>2
C —-c

YI: — gremra eyt~ @y =yl (73)

> |z —
1+ct

Proof. First, note that

(Vi a,) = VO ) 2 )

= (VW @, y) =V @ ) a o) + (VY@ y) =y e —at)

(17.4)

2

By Lemma|11.1.4} the first term on the right-hand side of (17.4)) can be estimated by

c 9 <
1+ct 1+ Ct

To handle the second term on the right-hand side of ((17.4)), define

2
gl

|z — 2’| < (V.Vi"(2,y) — V.V (@ y), x — )

|x —z

(n) n
V. (2, y) = Vi (2,y) - [l Hmi

2

2(1 + ct)

Vi (a,y) = V() - u+cN'“

(")

By Lemma|16.4.3] V, ~ is convex and Kgn) is concave, and in particular

T C c
< H I, —c)l
0 V <1+Ct ]_—I—Ct> n2d, @ (O C) n2ds
C—-c

= I2 — ]2 .
AT O 1 o) e @ (€ = nza
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Note that

()1 .\ _ ()1 1y (n) (1 c )\ s .N_ €
V.V (@ y) = VL Vi (2 ) (Vth («',y) 1+Ct:r) (Vth («',y) 1+Ctx)
= VxVEn) (o, y) — V:L«V,En) (2", ).

Therefore,

(VK@) = VN ) =) = (VT ) = VT ) - ),

= <van)(x', y) — VVEH)(x’, y), (z — 2, O)>2.

Now we apply Lemma [11.1.5{ to V, with the matrix A = MC%%[’” ® (C — ¢)l, and
conclude that

(V7 @) = V), (= 2,0))

2

1/2 C—c ) 1/2
< o . 112 o
< ((C=aly-vI3) ((Hm)(lwux xuz)
C—

! /
< (1+Ct)1/2(1+ t)1/2|| —2|[lly = v-

Combining this estimate for the second term of (17.4) with our earlier estimate for the first
term completes the proof. O]

Lemma 17.3.2. We have

(1—&—()’5)1/2 >
n T=CON1/2 9 S = t
\ FPON <SG (17.5)
Lip,dx (1+ct)1/2 s < t.

and

1 1
(Cle=1)(1+Cs)"? ((1+Ct)1/2 B (1+05)1/2) o (17.6)

|72 <
" Lip,dy (C/c—1)(1 + cs)/? <(1+(§5)1/2 - (1+Clt)1/2> s=t

Proof. Fix t > 0 and (x,y) and (2/,y') in M, (C)%74 and define

¢(s) = | Fax(w,y) — Fou(z, o),
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Note that ¢ is locally Lipschitz, hence absolutely continuous. Also,
20(s5)¢'(s) = 9s[6(s)?]
= 2(0,F (w,y) = 0.5 (), B w,y) = FD (),

= <Vsz(”) (Fs,(fi)(fay),y) ~- v,V (Fs(fi)(l“’, y'), y’) JFOD (2,y) — FO(, y')>2

O n n 2
< e - e
¢—c (n) ) 1 ,
+ (1 + Ct)l/Q(l + Ct)l/Q‘ Fs,t (l’,y> - Fsi ((L‘ ,y) 2”y — y ||2
C 2 C — C ,
=176 e reaed@ly =yl

where in the last step we have applied Lemma [17.3.1 It follows that whenever ¢(s) > 0,

O h(s)+ €-c ly— |
° 2(1 4 C's)1/2(1 + cs)1/2 Y=Yl

e e )

On the other hand, since ¢(s) > 0, any point where ¢ is zero and ¢ is differentiable must be
a critical point, so when ¢(s) = 0 the estimate is vacuously true. This inequality implies

d 1 C—c ,

& 90| < srreaarl - vl
C(C —c¢)

= 2¢(1+ Cs)3/2

ly = 9/ll2,

where in the last line we have observed that (1 4 ¢s)'/2 > (¢/C)'?(1 4 Cs)'/? > (¢/C)(1 +
C's)"/2. Hence for s >t

1 1 C—-c 1 1 )
Gr o)~ g = ((1+Ct)1/2_(1+cs)1/2)||y_yH2'

Now we substitute ¢(s) = ‘ FS(?)(gg,y) — F;?) («,)| and é(t) = ||z — 2'||, and rearrange to
b ) 2
obtain
_1 (n) (n), 1 1
(1 +05)1/2‘ Iy (z,y) — Foy (', y') )

< ——lle =+ (e — g ) v
- ey 2T e\ T sy T

This proves the asserted estimates in the case where s > t. The argument for the case s <t
is similar. Here we use the lower bound rather than the upper bound in Lemma and
get

c C—-c

¢/(S) > MQS(S) - 2(1 + 05)1/2(1 +CS)1/2 ||y - y/”Q

327



so that

()| 2 gl — ¥
ds | (1 + cs)l/? 7= 2(1+ Cs)V/2(1 + cs) vl
C(C —c¢) ,
2 —m”y =Y,

Now we take s < ¢ and obtain

1
_ (n) m), 1 1
(1 +ct)1/2|| Il (1+ cs)1/2 Fop(xy) = Fi/ (2 y) )
N C—c 1 1 /
= ¢ (14 Cs)l/2 B (1+Ct)\/2 ly =I5,
which yields the desired estimates. 0

17.4 Transport in the large-t limit

In this section, we estimate the Lipschitz norms of the renormalized transport functions F, S(t),
and demonstrate convergence as s or t goes to 0 or oco. As the first step, we deduce from
Lemma [17.3.2| the following Lipschitz estimates on F| (t) which are uniform in s and ¢. Note
also that the coefficient of ||y — v'||, goes to zero as s,t — oo.

Lemma 17.4.1. We have

‘ FS(?) - < max(C,1/c)"/? (17.7)
Lip,dz
and
Hﬁgp < (Ofe = 1) max(C1/C) Pl — e (17.8)
In particular,
‘ FSF?Z) g < max(C,1/¢)"/2. (17.9)
ip

Proof. For the first estimate, for the case where s > t, direct substitution of ((17.2) into

(17.5)) of Lemma [17.3.2| shows that

C (O =)y (C+ (1= C)er)
Lip,dm - (14 C(et —1))1/2 (C+ (1=C)e )2

|75

The function C' + (1 — C')e™* is either increasing or decreasing for s € [0,00) and achieves
the values 1 and C at 0 and oo respectively, and hence is between min(1, C') and max(1, C).
Hence,

) max(1, C)/2

o RV N 1/2 1/2
Fgy Lipde = min(L, )12 max(C,1/C)"* < max(C,1/c)"~.
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The case where s < t follows by the same argument, this time using the bound max(c, 1/c) <
max(C, 1/c).

For the second estimate, we apply ((17.6). Note in (17.6)), in the case s < ¢, we may use
(1+cs)/2 < (1+ Cs)'? and thus in both cases s >t or s < t,

1
(1+ )1/2 (1 +C)2

[

F < (Cle—1)(1+Cs)'/?

Lip,dy

= (C/e—1)(1+ Cs)Y?

This implies that

|ED||  <e(efe- )+ e - 1)

Lip,dy

/et—l C J
o 214 Cupr ™

/t Ce” p
L2+ Clew — 1) Y

/t Ce" i

s 2min(1,C)3/2e3w/2 w
max(L,C)'V2C

< - _ S

<(Cle—1) min(1, C)3/2 | e |

< (C/ec—1)max(C, 1/0)3/2‘6—1&/2 . 675/2|.

= (Cfe—1)e 2 (1 + C(e* — 1))"/?

< (C/c—1)max(1,C)"?

where we have again applied min(1,C)e® <14 C(e® — 1) < max(1,C)e*
For the last estimate ((17.9)), observe that

EY

< |7

+ HFQ;)

Lip,dz Lip,dy

< max(C,1/¢)"? + (C/c — 1) max(C,1/C)3?|e™/? — /2|
< max(C,1/¢)*? + (max(C, 1/¢)? — 1) max(C, 1/c)*/?

= max(C,1/¢)7/2.

Lip

[
Lemma 17.4.2. Let m; denote the function m(x,y) = x. Then
) Fs(?) —m Lipds < %(max(C’, 1/c) — 1) max(C, 1/0)1/2|e_8 — e (17.10)
and
‘ Fg?) Y < (max(C,1/c)® — 1) max(C, 1/c)/?|e=%/2 — e7'/2|. (17.11)
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Proof. Let U (z,y) = Vi (z,y) — (1/2)||z||%. Then (17.2) says that
~(n 1 n —(n
ast(,t)(x7y) = §szs( ) (Fs(,t)(x7y)7y> .

Moreover, we have
ce’ - Ce®
- <« HwV(") < - -
l4+c(es—1) — T 14+C(ef—1)
We can bound H,Us above and below by subtracting 1 from both sides, which after some
computation reduces to

c—1 Cc—-1
S HIU(H) < - -
1+c(es—1) — T 14+C(er—1)
Therefore, we have —LI < H, U, < LI where
c—1 Cc-1
L:=max | — , .
l+c(es—1)" 14+ Cles —1)
We claim that L < L' := (max(C,1/c) — 1)e*. If the first term (1 — ¢)/(1 + ¢(e® — 1)) is
negative, then it is < L' automatically, but if it is positive, then ¢ < 1 and hence
1—-c 1—-c¢
<
I4+c(es—1) — c+c(es—1)
Similarly, if (C'—1)/(1+ C(e® — 1)) is negative, then it is < L’ automatically, but otherwise
C' > 1, and hence
C—-1 C-1
<
1+C(es—1) — 14 (es—1)

=(1/c—1)e™* < (max(C,1/c) — 1)e*.

= (C —1)e® < (max(C,1/c) —1)e".

But —L'T < H,U™ < I'T implies that V,U{™ is I/-Lipschitz in z. Therefore,

< %(maX(C, 1/e) = 1)e

Applying ((17.7) in the case where s > t, we get

Hence,

~ (1 ~(n 1 n ~ (n —(n
O @) ~0FF )|, = 5| VU R (9).0) = VU(ES @ w)

2

F8 (,y) = FP )|

2

(n () 1 1 —s /
O (@) = 0. F ()| < 5(max(C,1/0) = 1) max(C,1/0) 2o — o'l

EW(x,y) — F (2, y) — (x — )

r

< %(max(C’, 1/c) — 1) max(C, 1/0)1/2|6_S —e ||z — ',

2

< OE (2,y) — 0. (2, y) H , du
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which proves the desired estimate ([17.10)).
To check the second estimate (17.11)), first observe

1 max(s,t) 1 max(s,t) 1
5\6’8 —e = / 56’“ du < / 56’“/2 du = |e™*/? — 72|,

min(s,t) min(s,t)

Moreover, || F s(,t — 71 || Lip,dy = || ot ||L1p day- Therefore, using ) and ([L7.10)),

|

FS(Z) — M

Lip

< IES = milluipae + IES = milip.ay

< (max(C, 1/¢) — 1) max(C, 1 /0)1/2%ye—s — et 4 (Ce— 1) max(C, 1/C)H2|e=/2 — 112
< [(max(C,1/c) — 1) max(C, 1/¢)Y? + (max(C, 1/c)* — 1) max(C, 1/0)3/2} le=8/2 — 72|

= (max(C,1/c)® — 1) max(C, 1/0)1/2|e_s/2 — e_t/zl. O]

In the following proposition, we use the notation Var(X ™) for the total variance E|| X ™ —
E(XM)|3.

Proposition 17.4.3. The limits Fs(’f% = limy_ o Fst and F( = lim,_,o Fg) exist for
5,1 > 0. More precisely, let (X™,Y™) and be a pair of random varmbles with the laws p™.
Then

+ e_t/2(maX(C’, 1/6)3 _ 1) maX(C, l/C) (H(m7y — E ||2 d1 + Var Y(”)))1/2) (17.12)

F(e,y) = ()|, < max(C, 1/c>1/26*t/2HE<X>H2

and

~5(Z)(IE, y) — Féfi(:s, y)H < §(maX(C, 1/c) — 1) max(C, 1/0)1/26—5

<“/2||E<X<">>Hz + max(C, 1/0)2(|[(@ = 2 E(X ),y = By )]

—_

+ (e ' Var(X™) + (1 — e H)dy 4 Var(Y™ ))1/2)> (17.13)

The estimates of Lemmas [17.4.1] and [17.4.4 extend to the cases where s ort is infinite,
where we define Féo)oo(x y) = x. Moreover, the relation (Fs(,t)77T2) ™ = 5™ holds for all
s,t €0, 00]
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Proof. We first consider the case where s is fixed and ¢ — co. Note that by (17.7)),

|ES @y = FR @), = || FSD E @ - Ry, a719)
<|ED|  |ED @y -
> ‘ st || Lipazll bt (z,y) —x )

2

< max(C,1/c)"/? Ftsz)(:c,y) —x

By Lemma [17.4.2]

(1)

n —t/2 t'/2
Fpy—m < Lle7? — e/,

‘ Lip
where L = max(C,1/c)? — 1) max(C, 1/c)*/2. Then we apply Lemma [11.2.7] to the function
G (z,y) = Ft(’?,)(:p,y) — 2z and a random variable (Xf,n),Y(”)) which has law ;15”). Note

that (Xt(,"), Y (™) has mean (e~*/2E(X™), E(Y")) and variance e~* Var(X™) + (1 —e*)d, +
Var(Y ™). Moreover,

E[G(Xy", Y™ = BEIX{"] = E[X;"] = (e7"* — ") B(X™).

Thus, by Lemma [11.2.7],

Fay) —af| <l e P B ™),

+ (e_t/ Var(X(”))

+ Lje™t? — '/ (H(m — e "PE(XM), y — BE(Y™))
2

+(1—e)dy + Var(Y(”)))1/2). (17.15)

Plugging this into ([17.14]), we see that FS(TZ) is Cauchy in ¢t as ¢ — oo. Moreover, we ob-

tain the estimate (17.12) by taking ¢ — oo in (17.15) and multiplying by ‘ FS(?) <
» I Lip,dx
max(c, 1/c)'/2.

Now let us fix ¢ and consider when s and s approach co. The argument for this case is
similar but antisymmetrical. We estimate

FONES (), y) — B (0,y)

F(w,y) - FD @) = |

2

< ||pm () ‘
- ‘ shs T T Lipdell 5 (z,y) 2
1 N =(n
< 5 (max(C, 1/¢) = Dmax(C,1/e) e = ||| £ (@)
’ 2

where the last line follows from ((17.10)). Then by applying Lemma [11.2.7| to the function
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F S(ftl)(x, y) and the random variable (X, Y ™) together with (17.9), we obtain

P ()|, < e 2B,
+ max(C, 1/¢)"/? (H(:p — e "PEX™),y — E(Y™))|, + (e7" Var(X™)

+(1—ed; + Var(Y(”)))1/2>

P B

s't

This produces an estimate on ‘ which shows that F s(z) is Cauchy as s — oo,
2 ’

so that Fé: 1 is well-defined. The explicit bound on the rate of convergence follows fixing s
and t, combining the above estimates, and taking s' — ooc.

Finally, since we have established convergence of FS(?) as s or t approaches oo, a routine
argument with limits will extend the estimates of Lemmas [17.4.1) and [17.4.2, and the trans-
port relations, to the cases where s or ¢ is +oo. Similarly, because F S(?) depends continuously
on s and t with the explicit estimates given in the foregoing argument, a straightforward
approximation argument shows that the relation (F) s(jz),wz)*/lgn) = i extends to the case
where s or ¢ is zero. Of course, in working out the details of these limiting arguments, it is

also helpful to use the explicit Lipschitz estimates we have for F s(’? O

17.5 Transport in the large-n limit

Now we show that the maps F S(Ytl) and F 5(7;) constructed above are asymptotically approx-

imable by trace polynomials and finish the proof of Theorem [17.1.1]

Proposition 17.5.1. Continue with the setup from . For any s,t € [0,00], the se-

quences (F;(jz))neN and (FS(Z))%N are asymptotically approximable by trace polynomials.

Proof. Since FS(TZ) is defined by solving the ODE (17.1)), we will use Proposition [14.3.7
to show asymptotic approximability by trace polynomials, and thus we should check that
Vth(n) (x,y) satisfies Assumption (14.3.6]

(1) We already know from Lemma [16.4.3| that (Vth("))neN is asymptotically approximable
by trace polynomials.

(2) By Lemma [16.4.3] we have 0 < HV," < CI, and hence V,V," is C-Lipschitz for all ¢.

(3) Finally, to estimate the modulus of continuity of VmV;(n) with respect to ¢, fix s < t.
We can then apply (16.9) with the initial potential VS(") and time step ¢t — s. Since
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¢/(1+es) < HV™ < O, we get
|9V () = VI )|
2d,(t — s) (t —s)? " , 1/2
<
=¢ <1 s oy s g Sl sy 1w ELNARICE AL

(2t —s) (1 +es) | (t—s)P(L+es)? 2\
—o (PN, Lo T vl

< Cv2dy(t —s)(1+cs) + Ot — s)(1 + cs)HV‘/;”)(x,y)”Q.

But using the same estimate for times 0 and s and using the triangle inequality again
HVV;(”) (x, y)H2 < HVV(")(I, y)”2 + C/2dys + C'SHVV(")(x, y)”2
Thus,

| VW ) - V@)

< CV/2dy(t — s)(1+cs) + C2(t — s)(1 + cs) ( 2dys + (1 + CS)HVV(")(I',Z/)Hz) :

Since (VV(”))neN is asymptotically approximable by trace polynomials, it is in particular
uniformly bounded in ||-|]2 on operator norm balls. Hence, we have an estimate for
HVVt(n) - V‘/s(n)”z that goes to zero uniformly on operator norm balls as ¢ — s — 0, as
long as s and ¢ remain in some given compact time interval.

Since Assumption [14.3.6| holds, Proposition [14.3.7| implies that (F (;L))neN is asymptotically

s

approximable by trace polynomials for any s,¢ € [0,00). This in turn implies that (FS(;))”GN
is asymptotically approximable by trace polynomials for any s,¢ € [0,00), since F x) only
differs from F| S(?) by rescaling. Finally, we can extend the conclusion to the cases where s or
t is oo by taking limits, relying on Lemma [13.5.13| and Proposition [17.4.3] O

Proof of Theorem[17.1.1] Define F" = Fo(:)o and G = Féf}l By Proposition [17.4.3]
(F™) 7y) pushes forward jig = 11 to fise, which is the law of (Zf"), Y ™). Meanwhile, (G, )
does the reverse, and it is the inverse function of (F(™ 7). Hence, (1) and (2) of the theorem

hold.

(3) follows from Proposition [17.5.1

(4) Let p; be the density corresponding to V; as in §17.20 Note that 2, satisfies the
equation

- 1. . 1 ~
5t[Pn2t] = §Axpn2t - §(n2$> V pn2t)2,
(n)

which is exactly the heat equation relative to the measure o, ’. It follows the maps Fsﬂf
constructed by (17.2) are the same maps used in Otto and Villani’s proof of the Talagrand
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inequality (see the proof of Theorem|12.3.5)). Although V(™ might not satisfy the smoothness
hypotheses of the theorem, certainly p;(-|y) is smooth because it is the solution to the heat
equation. Hence, if we apply that result to the conditional density of X + Zt(n)

and then integrate with respect to y, we obtain for ¢ > 0 that

given Y (™

~ 2 ~
[P & ey - x| < nzhy( XMy,

This is because o™ satisfies the log-Sobolev inequality with constant n?. By limiting argu-
ments as in Lemma [12.1.4] (for instance, using the conversion between entropy relative to
Gaussian and Lebesuge measure together with Lemma [12.1.2)), we can obtain

lim A (XY ™) = p (XM |y @),

t—o00

Therefore, in the limit,

2 ~ (n n
< = ShPX MY ),

HF i) - X 2= n?Y

Moreover, using the push-forward and composition relations for Fy;, we have

|

which completes the proof of (4).
(5) follows from Lemma |17.4.2} O

Remark 17.5.2. Of course, we can apply the same reasoning to ﬁ’s(g) that we did to F™ and
G™ in the proof of Theorem [17.1.4] (5). Let X, Y, and Z; be the non-commutative random
variables from Theorem [17.1.4] let X, = e /2X + ¢~ /2Z.._,, let FS(?) ~ Fy ;. Then

A

0,00

(Z(n)7y(n)) A

)

o, L2

- HX(H) _F ”)O(X(n)’y(n)))

Fs,t<Xsa Y) ~ (Xt, Y)

Moreover,
2 N .
, S 2DG(XY) = xg (X [V,

and

< O(max(C,1/c)® — 1) max(C,1/c) + |7(X;) — 7(X,)|
O(max(C,1/¢)® — 1) max(C, 1/c) + |7(X)(e~? — e=*/?)|.

335



CHAPTER 18

Examples and applications 11

In this chapter, we describe some examples to which our previous results apply. In particular,
we show that our triangular transport result Theorem applies to free Gibbs laws
obtained from perturbations of a quadratic potential on an operator-norm ball, as well as
perturbations of a semicircular family by transport. These results are not intended to be
as general as possible, but rather as concrete illustrations of the applicability of the general
theory we have developed thus far.

18.1 Functional calculus and the free difference quotient

In order to perform operator-norm cut-off tricks for our applications in this chapter, we must
consider application of a smooth functions ¢ to self-adjoint operators, and get some control
over their non-commutative derivatives. We also have several claims about functional calcu-
lus with smooth functions that we did not justify earlier in the text. In Lemma (3),
we claimed that the |[|-||o-Lipschitz norm of ¢ can be estimated using the Fourier transform
, and in the proof of Proposition , we claimed that if ¢ € C°(R), then ¢ defines a
C* function M,,(C)s, — M,,(C)ga.

These claims come from a more general theory of how Voiculescu’s free difference quo-
tients can be extended to smooth functions, and how they can be estimated in a tensor norm
by using the Fourier transform. The work of Peller and Aleksandrov [Pel06, [AP10b, [AP10al,
AP17al has developed sharp estimates and shown how Besov spaces of functions R — R are
the correct spaces for this purpose. However, we will settle for giving a “baby version” that
can be explained in a self-contained way without introducing too many new definitions, yet
is still sufficiently powerful for our applications.

18.1.1 Setup of Ck (R)

Let D : C[X] — C[X]| ® C[X]| be Voiculescu’s free difference quotient in one variable (see

§14.1). Let us define for £,
D : C[X]®" — C[x]®*+D
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k
D= Z id®0-D @D @ id®"9)

J=1

so that DF maps C[X] into C[X]®*+1. We also define a multiplication operation C[X]®*+1) x
C[X]PEH) - CLX]H+HD by

(fo®@ - @f)(90®  ®g)=fQ @ fre1® figo® g1 ® -+ @ g

Lemma 18.1.1. The operator D satisfies the Leibniz product rule in the sense that for
f € C[X1®¢+) and g € C[X]2HY | we have

D(fg)=Df-g+ f-Dy.
Proof. First, consider the case where k = ¢ = 0. Then we have to show that
DX X" = D[X™X" + X"D[X"].
This is a direct computation using the fact that
DIX" =) X @X"7
=0

Now we prove the claim for general k and /. It suffices to check it for simple tensors
f=fo® - ®frand g=go® - ® gsp. Now

k
Df:Zfo@"'®fj_1®ij®fj+1®"‘®fka
j=0

and ,
Dg=Y 0@ ®gj-1@Dgi®gjs1 @ ® gi.
=0
Meanwhile,
k-1
Dlfgl=> fo® @ f1@Dfi® f1® @ fug
=0
+ /@ @1 @D[frg] g1 ® - @ ge
¢
+ngo®"'®gjfl®D9j®gj+1®"‘®gk-
=0
Substituting D[frg0] = Dfx - go + fr - Dgo completes the argument. O
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We want to define C* (R) as a certain Fréchet-space completion of non-commutative
polynomials. The question is how to measure the norm of D*p over |z| < R. To do this,
we use the projective tensor product C(|—R, R])@C defined as follows. For f in the algebraic
tensor product, we define the norm as

N N
| f]| = inf {anj,lncmm) M fiklleqerry  f =D fa® @ fj,k} -
Jj=1 j=1

Then C([—R, R])&)k is the completion of the algebraic tensor product with respect to this
norm.

Definition 18.1.2. We define C*,(R) as the completion of C[X] with respect to the family
of seminorms

{HDjp||c([fR,R])®(j+1) 1j=0,...,k R >0}

Similarly, C22(R) is defined using the same family of seminorms but for j € Ny.

Note that D* extends to a well-defined map C* (R) — C([—R, R])®U+Y for cach j < k.
We also observe that there is a well-defined multiplication map

C([=R, R)®* 1) x O([-R, R)®™Y — O([=R, R))2*++D),
defined similarly as in the polynomial case, and it satisfies

HfQHC([_R,R])e@(kHH) < HfHC([—R7R])®(k+1)HgHC([_RJ{])@(ZJrl)'
Now the following lemma describes the behavior of multiplication on C*,(R).

Lemma 18.1.3. There is a unique multiplication operation C* (R) x Ck (R) extending the
multiplication on polynomials, and we have

k!
D*|fq] = DM f . DMy,
o= > DD
k1,k2:k1+ko=k
Proof. First, one checks the asserted formula in the case of polynomials. This is a standard
induction argument that is identical to the one used in one-variable calculus. This formula

implies that

k!
||Dk[fg]HC([_R,RD@»(MU < Z M||Dk1f||c([fR,R])®(k1+1) “Dk?ch([fR,RD@(sz)'
k1,k2:k1+ko=k

This implies that the multiplication operation extends to the completion C* (R) and the
asserted bounds also hold in the completion. O]
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18.1.2 C*(R) estimates through the Fourier transform

Lemma 18.1.4. For each t € R, the power series (X ) = e*™X = 3> (1/m!)(2mitX)™
converges in C22(R), and we have

||Dk¢t||c([_R7R])®(k+1) S |27Tt|k fO’f' all ]C, R,t

Proof. Because D satisfies the Leibniz rule, we have

k!
k1,....ke>0
ki4-+ke=k

Now D[X] = 1® 1 and D?[X]| = 0, so that the only terms that contribute to the sum are
those where k; = 0 or 1. Choosing the integers ki, ..., k, that sum up to k is equivalent to
choosing a subset of {1,..., ¢} of cardinality k, and the number of terms is ¢ choose k. Each

term can be bounded by R 1% since IDIXe_rryee = 1 and [ X|[c(-r,r) = R. Thus,
we have

¢!
kx4 i~k
HD [X] HC’[ RRB(+) R (k) for k < ¢,
and it is zero if k£ > £. This implies that for every k,
. m m 1 m m— s
5 |27rt| | D*X Neoqerasen < E —)!|27rt| R™F < |2t |Fel2mtR,

We also have ||¢||c(—r.r) < 1, and so we may write

”Dkwt HC([*R,R])@(IH—I) S ‘27Tt|k€|27rt|Rk,

To finish the proof, note that ¢, = @/)f/n for each n € N. Thus, we have

k!
D] = ) mpkl¢t/n---9k"¢t/n-

Hence,

||Dk[wt] ||C([—R,R})®<k+1) S Z H |27Tt/n|kje‘2ﬁt|Rk /n

k>0 =1
k:1+ +kn=k
_ k |27t|Rk/n 1 k!
n b B> ]{31. c k’g.
L1yeee n,o
k1++kn:k
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Now

O
| |
0 ki!l... k!

kit tkn=k

is the kth power series coefficient in (e')" = €™ computed using the Cauchy product of power
series, and hence the sum evaluates to n*/k!. Hence,

”Dk 4] HC([—R,R])@@(HU < ‘27Tt]ke|2”|Rk/”.

But since n was arbitrary, we can take n — oo on the right hand side, which completes the
proof of the asserted inequality. O

We use the following normalization of the Fourier transform:
o0 = [ o) ds
R

Proposition 18.1.5. Let ¢ : R — C such that ¢ is continuous with J(1+ ]t|k)|($(t)| dt < 0.
Then there exists a function f € C.(R) such that the projection of f onto C([—R, R]) agrees
with ¢ for all R, and we have

P A I

Proof. Let 1;(X) = e**X in C* (R). Note that t — 1), is a continuous function R — C* (R)

because . = b and || DF (. — Dlle-paypasn = O(€). Therefore, t — S(t)y is
continuous, and hence the Riemann integral

M o~
far = / oty

is well-defined in C*_ (R). Moreover,

M M
LI —— NGO s dt < (2 / 10 .

By the same token, if M’ > M, then

”Dka - Dka'HC([fthD@(k-&-l) < (27T)k/ ]tk¢(t)] dt.

M<[t|<M

This shows that (fy) is Cauchy as M — oo, and hence converges to some f in C* (R). The
projection of f onto C(|—R, R]) is given by

fs) = / S(t)(s) dt = ¢(s) for s € [-R, R,
R
using the Fourier inversion formula. O
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18.1.3 Application of C* (R) to functional calculus

Let z € M,,(C)s, with ||z]|oc < R. Then we define the evaluation map
C([=R, R)*HD = M, (C)**D : f s f(a)

by
(fo® - ® fi)(x) = folz) @ @ fir(x).

This map is well-defined for the following reasons. First, f;(x) is defined by functional
calculus. By the spectral theorem, || f;(2)||oc < ||fjllc(—r,r). This implies that

||f($)||Mn((c)®(k+1) < ||f||C([_R7R])®(’€+1)7

for a simple tensor, and hence for every element in the algebraic tensor product, and thus the
map extends to the completion. Here M, (C)®*+1 denotes the projective tensor product;
since M,,(C)s, is finite-dimensional, this just amounts to a certain choice of norm on the
algebraic tensor product.

Moreover, we define the hash operation
# 1 M, (C)®** ) x M, (C)* — M, (C)

by
20 @ @ zk#H W1, - Yk) = 20Y121 - - - Y2k

In particular, for every f € CK(R) and z € M,(C)s and vy, ..., yp in M,(C)g,, the
expression DF f(z)#(y1, . .., yx) is well-defined in M,,(C). Moreover, we have

1D f (@)W, - ) oo < MNP Fllogpmyposn yillso - 193]l (18.1)

Proposition 18.1.6. Suppose that f € C*(R). Let f™ : M, (C)sa — M,(C) be the eval-
uation of f on a matriz through functional calculus. For y € M, (C)sa, let 0, denote the
directional derivative in direction y. Then f™ is a C* function and

ayl...a ZDJ )7"'7y0'(j)>7

UGS

where S; is the permutation group on {1,...,7}.

Proof. First, consider the case where f is a monomial f(X) = X™. Then similar to our
previous computations,

1 . , , i i
D) = Y pix]L.DRX]= Y XP@.-@ X
J1yeesdm€{0,1} 10,y >0
Ji+tim=j io+-+ig=m—k
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where the last equality follows from some elementary combinatorics. Thus, for matrices x
and y;,

1 ; i i i
ﬁ ZDJf(:c)#(yl,...,yj) = Z Z Y1) . Yoy T

’ UGS]' UGS]' 10 5eees 1, >0
io+--+ig=m—Fk

On the other hand, 9,, .. .8yjf(”) is the ¢;...t; term in the Taylor expansion of f™(z +
tiyh + - - - + t;y;) in the variables (¢, ...,¢;) since this function is polynomial in (¢1,...,%;).
Expanding out (x + t1y; + - - - + t;y;)™, we see that the ¢, ...¢; term is exactly

E E YT Yok,
O’GS]' 20,00y i >0
0+ +ig=m—~k

which proves the asserted formula. It follows by linearity that this holds for all polynomials
p € C[X].

Finally, suppose f € C* (R) and (py)ren is a sequence of polynomials converging to f in
Ch (R). Then because of (18.1)), we see that 9y, ... d,, p,(cn) converge uniformly on || X || < R

for each R and each yi, ..., yr. Therefore, £ has continuous directional derivatives up to
order k, and thus is a C* function. O

Corollary 18.1.7. Let f € CL (R), and let f™ be the evaluation of f on n x n self-adjoint
matrices. Then

T (2)[y] = Df(x)#y. (18.2)

Moreover,
1F " (@) = F @)z S IDFllepmyzele = 2'llz for 1], 2]l < R. (18.3)
Similarly, if f™ € C2.(R), then
17 £ (@) [y] = T f™ @) ylll2 < 1D Flloommyesllyllscllz—2'llz for lzlloe, 2"l < R. (18.4)

Proof. The claim (18.2) follows because .J ™ (x)[y] is the directional derivative in direction
®

y. Next, note that for g = gy ® g1 € C([—R, R])®? and ||z|| < R, we have
lg(@)#yll2 < llgo(@) eV ll2llg1(2) o < Nlgollc—rmp lgrlle-r.rpllyll2;
which implies by definition of the projective tensor product norm that for all g € C([—R, R])@,
lg(@)#yllz < ll9llc_rrye=llvll2-

When we apply this to ¢ = Df, we obtain that the operator norm of Jf™(z) as a map
(M (Csas [[[|2) = (Mn(C), || ||z is bounded by [ Df || g g2 for [[#]lec < R. Since this ball

is convex, a uniform estimate on the Jacobian is equivalent to a Lipschitz estimate, which

proves ((18.3)).
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Finally, to prove ((18.4]), we apply the same argument to the function Df(z)#y instead
of f(x). The relevant inequality in this case is that for ||z« < R,

1D £ (@)# (Y, 2)ll2 < 1D Fll o p,myas 19l 2112 O
(-R.R))

Remark 18.1.8. In particular, suppose that ¢ : R — C with (1 + |t|)$(t} continuous and
integrable. Then using Proposition [18.1.5| and Corollary [18.1.7], we obtain

le(x) = ¢(2)]2 < QW/R to(t)]dt - [lx — |2,

for x,2" € M, (C)sa. Here we do not need to impose restrictions on ||z||o and ||2’||« because
Proposition [18.1.5| has a uniform estimate for all R. This proves Lemma [13.3.4] (3).

Remark 18.1.9. Besides ((18.1)) and the estimates in Corollary [18.1.7, we more generally have
the following inequality. Let (M, 7) be a tracial W*-algebra. Let ||z||, = 7((z*z)*/?)"/* for
a > 1. Then if z € Mg, with ||z|]| < R and if y, ..., yx € M, then

1D f(@)# (- - ) o < D" Fll e rmpzn 91 llaa - - 193l

whenever o, ag, ..., € [1,00] with 1/a = 1/ag + --- + 1/cy. This follows from the non-
commutative Holder’s inequality; see for instance [Sim05, Theorem 1.15 and 2.8], [da 18],
Theorems 2.4 - 2.6], [PX03], §2].

Remark 18.1.10. This theory of non-commutative differential calculus is closely related to
the differentiation of fully matricial functions in §3]

Remark 18.1.11. Future work should study a theory of “trace C* functions” in variables X,
..., X4 that combines the ideas of this section with those of §I3and §14.1]

18.2 Perturbations of the quadratic potential on a ||-||,-ball

All our previous results used Assumption , which in particular supposes that HV ™ <
C1 everywhere. This restriction is inconvenient because one of the main motivating examples
is the case when V(™ is a trace polynomial. The only trace polynomials that satisfy c/ <
HV ™ < CT are of degree 2. Furthermore, since the random matrix tuples X ™ are almost
surely bounded in ||-||oc as 7 — oo, why should the potential V™ have to be globally defined?

This section will partially address these issues by studying random matrix models sup-
ported in a ||-||s-ball with a potential which is a perturbation of (1/2)||z||3. This is based
on [Jek18, §8].

Theorem 18.2.1. Let € > 0. Let
W {x € My(C)L : ||z]loo <2+ 26} = R

satisfy
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(A) W) is unitarily invariant.
(B) W is C' and VW™ s K-Lipschitz on {||z]|e < 2+ 2¢€}.
(C) IVW(0)]lo < M.

(D) VW™ s asymptotically approvimable by trace polynomials on the ||-||s-ball of radius
2 + 2¢, that is, there exists [ € Cipapp(R*,||-||2)2, with

sa

lim VW™ — £|§9,, = 0.
n—oo ’

For o >0, let
n 1 n
Vi () = 5 lllly + W™ (a),

let 1
(n)
S2+€€*n2V(5 @) d.fC,

i (z) =

ey Ll
Jietsorc®

and let X é") be a random matrixz tuple chosen according to uf;”). There exist constants A,

and Ay depending only on d such that whenever

min(e, €2)

O AT 20K + A

the following conclusions hold:

(1) There is a non-commutative law As such that the non-commutative law of X (gn) converges
to A almost surely.

(2) Let X; be a d-tuple of non-commutative random variables realizing the law \s. Then we
have

K(0X6) = XX = X (X9) = fim (5X(") + dlogn ).

n—oo \ N2

(8) Let Z be a free semicircular d-tuple with law o1. There exists a tracial W*-isomorphism

W*(Xs) = W*(Z) that maps W*(Xs1, ..., Xsi) to W (24, ..., Zy) foreveryk =1,....d.

Remark 18.2.2. Although we have not kept track of the constants A; and A, explicitly,
they can be mined from the proof. We did not try to optimize the constants, or even their
dependence on d, but we did work to optimize the nature of the dependence of § on e.

To prove Theorem |18.2.1] we will extend ‘/5(”) to a potential defined everywhere using
a cut-off argument. Specifically, we consider ¢ € C*°(R) with ¢(t) =t for |t| < 2+ € and
|6(t)| < 2+ 2€ everywhere, and set
- (n 1 .
Vi () = Sllel3 + 5w (g(x)).
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where ¢(z) = (¢(z1), ..., ¢(xq)) evaluated through functional calculus. This is now a poten-
tial defined everywhere, which is equal to ‘/5(") () when ||z]/o < 2+ €. We will show that

for the correct choice of ¢ and for § sufficiently small, ‘75(”) satisfies Assumption |15.1.1} and
hence the associated random variables X én) have a large-n limit described by a free Gibbs

law. Next, we will show that || X én) || is less than 2 + € with high probability provided that

0 is small enough. Since u((;n) is the truncation to the operator-norm ball of radius 2 + € of

the measure ﬂg”) given by ‘75("), the asymptotic behavior of ugn) is described by the same free

Gibbs law.

The first step is to choose a good cut-off function.

Lemma 18.2.3. For each € > 0, there exists ¢ € C°(R) such that

(1) 16] <2+ 2,

(2) ¢ <1,

(3) ¢(t) =t for [t <2+¢,

(4) 2 [ [to(t)| dt < Bi(2+ 26)1/2 12,
(5) (2m)? [ |26(1)| dt < Bye™,

where By and By are universal constants.

Proof. Let R = 2 + 2¢. Define the function

¢R<xt) = /0 (2X[7R,R](3) - X[72R72R]<3)) ds.

This is a piecewise linear function which is equal to zero outside [—2R,2R] and equal to
t on [—R, R]. Let p be a C* probability density supported in [—1, 1] with mean zero, let
pe(t) = e tp(e71t). Then define ¢ = v x p..

(1) Note that |pg| < R = 2+ 2¢, hence |¢| = |r * pe| < 2+ 2e.

(2) Note that || < 1, hence |¢| = |¢ * pe| < 1.

2)
(3) Now p. has mean zero and is supported in [—¢, €], while ¥ (t) = t for |t| < 2 + 2e.
Thus, ¢(t) =t for [t| <2 +e.

(4) Using standard facts about Fourier transforms (see e.g. [Fol99, §8 - 9]),

Yk * pe VrPe|| < ||UR

2 [ 13(0)]dt =130 =

|

=A< 7] e = el oo

But note that ||[¢%||z2 = (4R)Y? = 2RY/? and by scaling ||pc||z2 = ¢ V/?||p1||z2. Thus, we can
take Bl = 2||p1||L2
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(5) A direct computation shows that
— — 1
2mityp(t) = Yi(t) = 2_t(2 sin 2w Rt — sin4dw Rt),
7T
and hence e
|(27it)*R(t)| = |2sin 27 Rt — sin 4w Rt| < 3.

Therefore,
(2r)? / 20(0)] dt = (27)? / PIROA)] dt < 317l = 3¢ A 1.

where the last inequality follows from scaling properties. Thus, (5) holds with By = 3||p1|| 1.
0

Lemma 18.2.4. Fiz € > 0, let W™ be as in Theorem |18.2.1, and let ¢ be as in Lemma
18.2.8 Define W™ (z) = W (¢(x), ..., ¢(x)).

(1) (VW(”))neN 15 asymptotically approrimable by trace polynomials.

(2) INW® ||, < € YCL (24 2€) K + CoM] for some constants Cy and Cy which only depend
on d.

(3) |Tn(szW(”)(a:))] <(242¢)K + M.

Proof. (1) Note that the composition T makes sense because |¢| < 2 + 2¢, which implies
that [|¢(2)]|e < 2+ 2¢ for & € M,,(C)s, by the spectral mapping theorem.

Because of our estimates on gg from Lemma [18.2.3, we can apply Proposition [18.1.6| to
see that ¢ defines an element of C2 (R) (which we continue to denote by ¢ as an abuse of

notation).
Let z € M,(C)¢ with [[z]ec < R and let y € M,(C)sx. Let us denote ¢(z) =

Sa

(¢(x1),...,¢(xq)). By the chain rule and ((18.2)), we have

d ~
5, W(n)<xlu o 7'1"]' + tyv 'rj-‘rl? ce de) = <VxJW(n) (¢(x))7 D¢(x])#y>2

dt],—
= [V, W) (2) (Do ) ).

Now D¢ is an element of C([~R, R])®C([—R, R]) for each R, and we claim that D¢ is
invariant under the tensor flip f ® ¢ — g ® f. By density, it suffices to check this when ¢
is a polynomial, and by linearity, it suffices to check it when ¢ is a monomial. However, we
computed this in the proof of Proposition and it is clearly flip-invariant. Because of
flip-invariance and traciality,

7 | Ve, WO @) (Do () #9) | = 7Dl V., W (0(2) .
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Since this holds for all y,
Vo, W (@) = D (a))# V2, W (6(2)).

Now fix R > 0. By definition of C2.(R), there is a sequence of polynomials p; such
that Dp, — D¢ in C([—R, R))®C([—R, R]). Since ||¢||c(-r,r) < 2+ 2¢, by making a small
adjustment by scaling, we may assume that ||py|lc(-r,r) < 2 + 2¢. Now

Dy () #W ™ (¢(x))

is asymptotically approximable by trace polynomials as n — oo using a variant of Proposition
13.5.12 Indeed, (VW ™), cy is asymptotically approximable on the ||-||s-ball of radius 2+ 2e,
and ¢ and py map the ||-||o-ball of radius R into the [|-||-ball of radius 2 + 2¢, so the
argument of Proposition shows that (VW™ o ¢),.e is asymptotically approximable.
By applying Dpy,(z;)# just amounts to multiplying by polynomials of ; on the left and right
and taking linear combinations, which will obviously preserve asymptotic approximability.

Therefore, for each k, the sequence Dpy(x;,2;)#W ™ (¢(z)) is asymptotically approx-
imable by trace polynomials as n — co. Next, note that for z € M, (C)% with ||z < R,

1Py, ) #W ™ (6(2)) = Doy, w)# W™ ((2))
< | Dpr. — D¢HC([7R,R])®C([7R,R})’lW(n)(¢(x))”2'
Because Dpy, converges to D¢ in C([—R, R])®C([—R, R]), we know Dpy(z;, 2;)#W ™ (p(x))
converges to Dp(x;,z;)#W ™ (¢(x)) as k — oo uniformly on the operator norm ball with

the rate of convergence independent of n. Thus, by Lemma [13.5.13 (VW Npen is asymp-
totically approximable by trace polynomials.

(2) Let us write for shorthand
D(x)#VW " (6()) = (DS(a1)#Va, W (0(2)), .. Dh(wa) # Vo, W ((2))).

Fix R, and let ||z|/c, |20 < R. Then we write

Do(z)#VW " (¢(x)) — D (2 ) # VIV (4(a'))
= (Do(x) — Dp(a"))#VW ™ (¢(2)) + Dp(a)# (VWM ((2)) — VIV (p(a'))). (18.5)

To estimate the first term on the right hand side of (|18.5)), we apply (18.4)) to obtain that
[(Do(y) = Do) # Vo, W (0(2)) ||, < 1Dl sy |V, W (0(2)) oo 25 — o

By Proposition [18.1.5] and Lemma [18.2.3] (5),
ID26ll oy < (27) / 230) dt < 22
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for a universal constant By. By Lemma , since ijW(") is K-Lipschitz, we have
IV, W () = 7 (T, WO () e < 2V2020K (2 4 26) for [Jylloe < 2+ 2.
Furthermore,
70 (Ve WO W) < [V, WP W)]], < Kllylla + IV, WP (0) |2 < K (2 + 2¢) + M.

Therefore,

Ve, WO ()|l < (14 2v2dY20)(2 + 2€) K + M.
And therefore,

[(Dp(x) — Dp(")#VW ™ (p())],

1/2
= |(Dg(x5) — Dqﬁ(%}))#vij(")(cﬁ(x))Hz)

d 1/2
< (ZHD%\@([_RRD@Hvxjw<"><¢<x>>||zo||xj - :c;-u%)

[(1 + 2\/§d1/2@> (24 20K + M] lz — 2/

To estimate the second term on the right-hand side of (|18.5)), note that
1D #(Va, W (9(2)) =V, W ()
<Pl o poper | Ve, W (B(2)) = Vo, W (6(2)) |,
Moreover, by ((18.3)),
lo(x) = d()ll2 < 1Dl (g mpee € — 'l
Therefore, since |[VW ™ ||, < K, we have

Do) #(TW ™ (b(x)) = VW ()],
d 1/2
= (Z}}Dd)(x;)#(vm(”’<¢<:c>> - vzjw<"><¢<x’>>>||§>
< HID¢HC([7R,R})®2HVW(H)((b(SC» - VW(n)(¢(I/))||2

d 1/2
< D0l gy K (anb(xj) - ¢<x;->||%)
j=1

< ||D¢”é([,R7RD®2KHx - C(‘JH?
B2
< L2420 K|z — 2|2,
€
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where the last inequality follows from Lemma [18.2.3] (4).
Altogether, putting in the estimates for both terms of (|18.5)), we obtain

|D(2)# VIV (3(x)) — D (') #VIW ™ ((2)) |,
< % ([32 (1 + 2\/§d1/2@> + Bﬂ (24 20K + BQM> |z — 2’|,

which is a Lipschitz bound for VIW(®™ of the desired form.

(3) Let m : C([—R, R))®C([—R, R]) denote the flipped multiplication map (which is the
same as the usual multiplication map since C'([—R, R]) is commutative). Then we have

Tu(Va, W (@) = 7(D(a)) Vi, W (6(2))) = 70 (m(D) (25) Ve, W (1)) -

Now we claim that m(D¢)(z;) = ¢'(x;). This is true by direct computation when ¢ is a
monomial, hence by linearity when ¢ is a polynomial. As remarked earlier, the multiplication
map C([—R, R])®C([-R, R]) — C([~R, R]) is continuous. Thus, if (¢5)ren is a sequence of
polynomials converging to ¢ in C} (R), then ¢} — ¢’ uniformly on compact sets. Hence, the
equality m(D¢) = ¢ extends to all of C! (R). In particular,

(VW (@) = 7 (¢' () Ve, W™ () -

By Lemma [18.2.3, |¢'| < 1, so by the spectral mapping theorem, ||¢'(z;)[|cc < 1. On the
other hand, for ||y||o < 2+ 2¢, we have

Ve, WP W), < Kllyllz + ||V, WP(0)]], < (24 26) K + M.

Thus, by Cauchy-Schwarz, we get |7,,(VIW ™ (2))| < (2 + 2¢) K + M. O

Corollary 18.2.5. Let W™ and Cy and Cs be as in the previous lemma. If

€
C1(2+ 26) + Co M’

o<

then the potential V™ (z) = (1/2)||z||2 + W™ (2) satisfies Assumption |15.1. 1| with

(1-dieuz+ 20m + o)) 1 < 1 < (14 2iCuiz+ 20+ o) 1
€ €

_(n

Hence, letting Mg) be the measure on M,(C) given by the potential ‘75(”) and X(gn) be
the corresponding random variable, Theorem furnishes a d-tuple of self-adjoint non-
commutative random variables X5 such that X 5” converges in non-commutative law to Xs
almost surely.
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The next stage of the proof is to estimate || X\ ||, with high probability. Using Lemma
11.5.2} we could obtain an asymptotic bound of ¢=1/20, where ¢ = (1 — 2[Cy(2 + 2¢) K + Cy M)
is the lower bound on the Hessian. However, we want this © to be replaced by 2.

For this reason, we will use a sharper operator-norm bound than Lemma [11.5.2] (although
it is less general since it only estimates || X||o rather than || f(X)| . for arbitrary unitarily
equivariant and Lipschitz f). This estimate was shown in the proof of [GMOG, Theorem 3.4],

and it is based on a convex/log-concave correlation inequality due to Hargé [Har04, Theorem
1.1].

Theorem 18.2.6 ([Har04, Theorem 1.1]). Let V : R — R with HV > cI and let du(x) =
(1/ [eV)e V@ dx, and a be the mean a = [z du(z). Let v be the Gaussian measure
with density conste=<I=I°/2_ If f : RY — R is convez, then

[ - aduo < [ 1) draw).

Proposition 18.2.7 ([GM06]). Let V™ : M, (C)% — R with HV™ > cl, let u™ be the
associated measure, and let X™ be the associated random variable. Then

lim sup || X™ — B(X™)||, < 2¢71/2, (18.6)
n—oo
and
lim sup|| X™ — B(X™) | < 2¢7 Y2 almost surely. (18.7)
n—oo

Proof. Note that ||| is a convex function on M,,(C)s,. Therefore, by the previous theorem,

E|x™ - B, < B2

where Z™ is a Gaussian random matrix tuple with distribution o Therefore, to prove

the first claim, it suffices to show that

(n)
c 1

lim sup E”Z(") HOO < 2¢7Y2,

n—oo

This is a standard result in random matrix theory; see for instance the proof of [AGZ09,
Theorem 2.1.22]. For the second claim, we apply Herbst’s concentration inequality as in the
proof of Lemma [11.5.2] to conclude that

P (X" = B(X™)||_ > E||X™ — B(X™)||_ > 6) < e/,

This estimate together with (18.6|) implies (|18.7)) using a standard argument from probability
theory with the Borel-Cantelli lemma. [
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Lemma 18.2.8. Continue with the setup from Theorem [18.2.1, Lemma Lemma
and Corollary|18.2.5. Suppose that

€

5 .
S O2 120K 1 oM

Then

2
+ :
V1 =386 1C1(2+ 26)K + CyM]

lim sup ’ ‘ X (gn)

n—o0

<O[(2+ 2¢) K + M|

Proof. In light of Corollary [18.2.5] and ((18.7]), we have

2
<
’00 o \/1 — 56_1[01(2 + 26)K+ CQM]

lim supHXén) - E(X(g"))

n—o0

almost surely.

Thus, it suffices to show that

| B

| o2+ 20K + M)
We have from Corollary
0= B [VV(XM)] = B[ X+ svivim (X))
Therefore,
B X5 = <08 |V, W (X)] = 6B 0 7 |V, WM (X))

using unitary equivariance. But we showed in Lemma [18.2.4] (3) that |Tn(vaW(l‘))|
(2+2¢)K + M.

CIIA

Proof of Theorem [18.2.1. Continue with all the notation from above. Suppose that

€

)<
2
Using convexity, we have that
(1—t)""2 -1 §2<\/§—1)t§tforte 0,1/2].

Therefore,

2
V1 —38e1C1(2+26)K + Oy M|
<240 [(2+26)K + M+ 2¢C1(2+26)K + CM]] .

O[(2+2¢)K + M| +
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In order to guarantee that this is less than 2 + ¢, it suffices to choose

€ 62

5 _ .
S 220K+ M 1201 Ci(2 1 20K + GoM] (20, + )2+ 20K + (2C5 1 )M

Both our conditions on ¢ will be met if we guarantee that

min(e, €?)

5
S A2 20K + AM

where A; = 1+ max(1,2C}) and Ay = 1 + max(1,2C5); this claim is checked directly using
the cases e < 1 and € > 1.

Since ‘75(”) satisfies Assumption , Theoremimplies that X é") converges in non-
commutative law almost surely to some Xs5. We also have that almost surely lim sup,,_, . || Xs/oco <
2+ €. Note that ugn) is the truncation of (™ to the ||-||o-ball of radius 2 +e. Therefore, the
random variable X é") given by ,ugn) also converges almost surely in non-commutative law to

Xs, hence (1) of Theorem [18.2.1|is proved.
(2) It follows from Theorem [16.4.1] and Corollary [16.4.2| that

. |
X(X5) = x(X5) = x"(Xs) = nh_g)lo (Eh(Xé )) + dlogn) .

But we also have 1
lim — (h<;zgn>> . h(Xé’”) —0.

n—oo M

This follows from the truncation arguments done in the proof of Proposition [16.1.4] together
with the fact that limsup,,_, || X (gn loo < 2+ € almost surely. We leave the details to the
reader.

(3) This follows from Theorem [17.1.9| applied to f/é(n). O

Remark 18.2.9. Theorem can be generalized by replacing the starting potential (1/2)]z|3
with some other chosen V;™ (z) satisfying Assumption @ for some 0 < ¢ < C. Then ¢
has to be chosen small enough that §||VIW ™ ||, < ¢ in order to ensure that Vo(n) + W™ is
uniformly convex, while in the quadratic case we have studied, ¢ = 1.

18.3 Perturbations of a semicircular family by transport

Our next theorem is an application of triangular transport that can be stated in purely W*-
algebraic terms. It says that for a free semicircular family Z = (Z3, ..., Z4), the isomorphism
class of the sequence of inclusions

W*(Z,) CW*(Z1,7Z5) C--- CWZy,...,2Zy)

is stable under small polynomial perturbations of the generators 71, ..., Zy.
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Theorem 18.3.1. Let Z = (Zy,...,Zq) be a d-tuple of standard freely independent semi-
circulars, and let f = (f1,..., fa) be a d-tuple of self-adjoint non-commutative polynomials.
Then for sufficiently small §, there is an automorphism o of W*(Z1, ..., Zy) such that

O./(W*(Zl, .. ,Zk)) = W*(Zl + (Sfl(Z), .. .,Zk + 5fk(Z)) fO’f’ k= 1, PN ,d.

The idea of the proof is to construct random matrix models (id +dp)(Z) to which we
can apply Theorem [18.2.1} The canonical random matrix models for Z are those given by
the Gaussian measure doln) (z) = (2mn2)~@*/2e=m*I#13/2 4z After we truncate to a suitable
domain where id +dp is an invertible function, the push-forward by id +dp should have
density

1

We—n”id @) det J(id +6.f) " ()]

N (27Tn21)—dn2/2 exp (—n2 (%H(ld +6f) " H)|5 — % Trlog J(id +6f)_1(x))> .

We will first arrange that (id +dp)~! is given by a non-commutative power series in a certain
radius, and then we will compute the function in the exponent (and its derivatives) in terms
of free difference quotients and cyclic derivatives of (id +dp)~!, and thus show that it can be
approximated by trace polynomials.

We remark that the theorem and approach should work in much greater generality.
Like Theorem [I8.2.1] the semicirculars can be replaced by another non-commutative d-tuple
arising from random matrix models satisfying Assumption [15.1.1] Moreover, in principle
there is no need to restrict to power series, and we conjecture that the result is true for “trace
C? functions” with the range of values of § only depending on the first three derivatives.
However, the computation of the log of the Jacobian for trace C* functions (and even trace
polynomials) is more complicated and thus requires more preparation than we have time to
undertake here. Thus, we will be content for the present with power series methods.

Let P be the basis for TrP, consisting of functions of the form

p = tr(p1)...tr(pe)po,

where pq, ..., p, are monomials considered up to cyclic equivalence and pg is a monomial in
C(X1,...,Xa). Given a formal series of the form

f= Z a,p, where a, € C,
peEP

we define

1.f]

Str(d,R) — Z |ap|Rdeg(P)7

peEP
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where deg(p) is the total degree of p (the grading given in Definition |[13.1.4)). We define
Su(d, R) = {f : [|/f]

We also denote by S(R) the subspace consisting of power series in only the non-commutative
monomials, with no trace terms. We leave the verification of the next observation as an (easy)
exercise.

Sir(d,R) < OO}

Observation 18.3.2. Define addition, multiplication, and the x-operations for Si.(d, R) in
the same way as for TrP,. Then S, (d, R) is a Banach x-algebra and S(d, R) is a Banach
x-subalgebra. Also, ||tr(f)|s.@r) < ||f]

Sir(d,R) -

Composition of formal trace power series is defined just like the composition for trace
polynomials in Definition [13.4.1 The power series norms behave as follows under com-
position. The norm of a d-tuple ¢ = (g1,...,94) € Su(d, R)? is defined as follows. If
9j = D_pep Ap,jp; then we define

9|l s (a,m)? = m?XHQH Sue(d,R)-

Lemma 18.3.3.

(1) If f € Suld, R)™ and g € S(d, R)* with [|g
I.f]

(2) Suppose Ry < Ry and f € Su(d, Ri)™ and g, h € Su(d, R) with ||g||s,@rye < Ri and

Su(dR)t < Iy, then |f o g|8n(d,R) <

Sur(d,R1) -

|Plls(a,r) < Ri. Then
If foh| < 1 I¥d lg — 7|
(o] — (@) o '
g Str(d,R) — Rle 10g(R2/R1) Str(d,Rg) g Scr(d,R)d
Proof. (1) Let us write f = > 5 a,p, where a, is the vector (a,1,...,ap4,). Using Obser-

vation [18.3.2] we have for p € P that

SuldR) < R(feg(p).

1p(9)]

Thus,
1/ (9)]

de.
Su@r < Y _llap| RYE® = | £]

peEP

Six(d,Ry)-
(2) Given a monomial p(X) = X;q) ... X;u), we have
k
p(g) —p(h) = Z i1y - - - 9ii-1)(9i) — Pag) i1y - - - Py,
j=1

so that

19(9) — p(M) |senary < kRE g —

Sir(d,R)
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A similar argument applies to p = tr(p;) ... tr(pe)po, showing that

Ip(g) — p(h)|

An elementary computation shows that function tRY™' /R, = Ry 't(R;/Rs) is maximized
when ¢ = 1/log(Ry/R;), resulting in

sutar) < deg(p)RI®V g — Al

Sir(d,R)-

1 i <R1) < 1
R1 RQ Rle IOg(Rz/Rl) ’
Hence,

1/(9) = F(M)llsw(ar) < leapll deg(p) R\~ g — |

Str(d,R)
peEP
Rdeg h
Rlelog(RQ/R Z”%H 19 — hllsw(ar)
1
Frelog By i) M lsw@nnlle = Pllsuam: -

Now as the first step to proving Theorem [18.3.1] we give an easy perturbative inverse
function theorem for S, (d, R).

Lemma 18.3.4. Let Ry < Ry, and suppose that f € Si.(d, Ry)® with

/]
Then there exists g € Si(d, By)® with (id+f) o (id —g) = id and

Su(dRy)d < Min (Ry — Ry, Rielog(Ry/Ry)) .

91l see(a,m0)? < N1 fllSen(d,R0)e

Moreover, if fi, ..., fq are self-adjoint, then so are g1, ..., gq, and if fi, ..., fq are in
S(d, Ry)?, then gy, ..., gq are in S(d, Ry)%.

Proof. Consider the map ® : g — f o (id —g) defined for any formal trace power series g.
We claim that ® is a contraction mapping from {g : ||g||s, (a,r,)s < R2 — Ri} into itself. If
Hg’ Sir(d,R1)d S R2 - R17 then ||1d _g||S|t7‘(d7R1)d S Rl + (RQ - Rl) = RQ, and hence by Lemma
13.3.3 (1),

1/ o (id —g)]
Moreover, for g, h with ||g[s, () < R2 — Ry and ||A|
Lemma (18.3.3] (2) that

Su(dr)d < N fllsw(droye < Ra — Ry

Su(dr)d < Ry — Ry, we have by

||f0(1d—g)—f (1d h)lStr d,Ry)? 4 < Rlelog(Rg/Rl) g

Sir(d,R1)%>
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and we assumed that | f||s,.(a,r,) < Rielog(Ra/Ry), hence ® is a contraction mapping.

Thus, by the Banach fixed-point theorem, there is a unique g with ||g|s,,(,r,)s < B2 — R
and g = f o (id —g). Since g = f o (id —g), we get || f||s,.@r)e < |flls(a,Rr0)- Being a fixed
point means that id =id—g + f o (id —g) = (id+f) o (id —g).

Finally, the claim about self-adjointness follows because ® restricts to a mapping on
self-adjoint power series g, since self-adjoints are closed under composition. O]

A fairly standard argument, similar to the one for Lemmal[18.3.3](2), allows us to estimate
the norms of various derivatives associated to the power series. It will be convenient for us
to treat the non-commutative polynomial part and the trace part separately. If f is a
power series of non-commutative monomials (with no trace part), then we define Dy, f as
the termwise application of the difference quotient operator Dx;, which takes values in the
tensor product of two copies of the non-commutative formal power series ring. Similarly, if
f € 8(d, R)?, then let
Dlel Ddel
Df = : :
Dx,fa --- Dx,fa

Lemma 18.3.5. Let Ry < Ry. If f € S(d, Ry), then Df may be viewed as an element of
the projective tensor product My(C)®S(d, R1)®S(d, Ry) (where M,,(C) is equipped with the
operator norm), and we have

d
D
|| f“Mn ®S(d R1)®$(d R1) R1€10g(R2/R1) ”f”S(d,RQ)d

Proof. Let us write f; = > _pap;p. Then let a, = (ap1,...,ap4), so that f =3 5 ap.

Let ape;r- denote the matrix in M, (C) with a, in the jth column and zeroes in the other

1/2
columns, and note Hape}Hoo = |la,|| = (Z] |ap7j]2> < >_;lap |- Then

D(ayp) = ) ® Dx,p.

IIM&

Therefore,
d

||D<app)||Md(<C)®5(d,R1)®5(d,Rl) < ||apH ZHDij||S(d,R1)®S(d,R1)‘
j=1

A straightforward computation shows that for a monomial p,

d

de, 1
S 1D, 0l s rnzsn < deg(p) BRI
7j=1
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As we argued above,

1
de Rdeg(p)fl < Rdeg(p)'
B(P) = Rielog(Ry/Ry) *

Thus,

1 deg(
ZHD app ||M,1 ®S dR1)®$(dR1 Rlelog(RQ/Rl ZZ |apJ|R g(p

pEP peP j=1

Rlelog Zl‘f]HS dRQ)

This shows that the series expansion for D f converges absolutely in My(C)®S(d, R,)®S(d, Ry),
and hence D f makes sense as an element of that space, and the asserted estimate holds. [l

Next, let S{.(d, R) denote the subspace of S, (d, R) consisting of power series in terms of
the form tr(py) ... tr(p,) with no non-commutative polynomial terms. Let DY : Sg(d, R) —
Si:(d, R) the operator defined in (14.2), extended from trace polynomials to trace power
series in the obvious way. Let DU f := (D% o Dg(d f). The following lemma is proved in
much the same way as the previous one, so we leave the details as an exercise.

Lemma 18.3.6. If Ry < Ry and if f € SX.(d, Ry), then D°f € Si.(d, Ry)? with

ID°f|

/]

1
Sur(dF)? = R 1elog(Ry/Ry) SialdRz):

If f e Su(d,R) and x € M,(C)* with ||z|. < R, then the evaluation f(z) is defined
because the series Y 5 app(x) converges absolutely in [|-[|. Note that for p € P and
[2llcc < By, [lylloe < Ry, we have

Ip(z) = p(y)||oo < deg(p)RIEP ||z = ylloe
Ip(z) = p(y)]2 < deg(p) RIFP |z — y]l,,

by the typical telescoping sum argument for products. This easily implies the following
lemma, whose proof we leave as an exercise.

Lemma 18.3.7. Suppose Ry < Ry and f € S.(d,R)? and z,y € M,(C)? with ||||c,
|Ylloe < Ry. Then

1

I1£) = F @l € frogomrg gy M a2 = vl
d

15) = Wl < gz I lsuamdle = il
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Now we are ready for the main proof. In fact, we will prove a more refined version of the
theorem. Clearly, Theorem follows from Theorem because if f is a polynomial,
then || f||s(a,2+6¢) s finite and hence |0 f|| 54,2462 can be made arbitrarily small by choosing
0 small enough.

Theorem 18.3.8. Let Z = (Zy,...,7Z4) be a standard free semicircular family, and let
f €8(d,2+6¢)? be a d-tuple of self-adjoint power series. If I ls(a,2+6e)e is sufficiently small
(depending on € and d), then there is an automorphism o of W*(Zy, ..., Zy) such that

Oé(W*(Zl, Cey Zk)) = W*(Zl + 6f1(Z), ey Zk + (ka(Z)) fO’f‘ k= 1, c. ,d.
Proof. For j =1, ..., 6, let R; = 2+ je. Let ng)(Rj) denote the ball of radius R; in

|/l in M,(C)Z. Note that log(R;11/R;) is increasing in j, and hence can be bounded by
log(Re/Rs5). Assume that

R
|.f|l.s(a,Re)? < min (e Ryelog Ri)

By Lemma [18.3.7] we have

| | T
I64£)(0) = (a0 > (1= oo S ) ol for el ol < R

Since Ry < Rj, we have ||f||3(d Rre)? < Rselog(Rs/Rs), hence the above equation implies that
id +f is injective on B (R5)

Next, by Lemma [18.3.4 m, there is a self-adjoint tuple g € S(d, Rs)? satisfying (id +f) o
(id—g) = id and

Rg
Iolsarys < Wlsans < (e Raclos 2 ).

But note that [/id —gl|s(4, g, < R4 + ¢ = Rs, and hence id —g maps B (R4) into B (R5)
and thus the image (id +f)(B% (Rs)) contains BL(R).

Let Z™ be a random variable in M, (C)?, with probability distribution given by
1

—n?||z||2/2
3 55 € =112/ dZ,
1||z|\o<,<Rse n?ll=ll2/2

fIIZHooSR5

that is, the truncation of a Gaussian random matrix d-tuple to B (R;5). Since Rs > 2,
we know that a Gaussian random matrix d-tuple has norm eventually less than R5 almost
surely as n — oo. Thus, the measure of B™(R;) under the Gaussian distribution tends to
1 as n — oco. So the random variable Z(™ with the truncated distribution still converges in
non-commutative law almost surely to a free semicircular family, and lim,,_,o||Z™]| = 2
almost surely.
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Let £ and g™ denote the evaluation of fand g on M,(C)2. Let Y™ = (id +f)(Z™).
Since id 4+ f™ is 1nJectlve on B (R5) and the inverse function is given by id —g, the proba-
bility distribution of Y™ is computed by change of variables as

1 e ly=9 W32 det J(id —g™) (y)| dy.

Siolocrs € 1N5/2 Lyetarom @ )
Zlloo S 115

By Corollary [13.4.40 Y™ converges in non-commutative law almost surely to (id +f)(Z).
Moreover, since limsup,, . [|Z™ || < 2 almost surely, we have limsup,, .. [|Y ™|l < 2+

1 flls(@.re)e < 24€ = Ry almost surely. This implies that P(Y ") € Bég)(Rl)) — lasn — 0.

Let X be a random variable whose probability distribution is the truncation of the
distribution of Y™ to ng)(Rl). That is, X has the probability distribution

Ay cpye 19 @I82) dot J(id —g™) ()| de,

where A™ is the normalizing constant to make this a probability measure. From the preced-
ing claims about Y™ it follows that X converges in non-commutative law to Z almost
surely. We want to apply Theorem m to X and thus obtain triangular transport for
Z. The density of X(™ can be described as e ™ v @) where

1 1 o
V() = Sllz = g (2)II3 — — log | det J(id —g™) (x)],

so we have to estimate the Lipschitz norm of V(V ™ (z) — (1/2)|z]|2).

Let us consider the log-determinant term first. By Lemma [14.1.3] (or rather its general-
ization to power series),

Tg'" (2)[y] = Dyg(x)#y,
where Dg(z)#y is given by

(Dg(x)#y); = ZDng(m)#yj-

It is easy to show that for ||z|/. < R,

|79 ()] < 1Dl 11, (018504, 5 @5 R5)-
And by Lemma [18.3.5| and Lemma [18.3.4] we have

d d
D ~ ~ < < .
|| gHMd(C)®S(d,R4)®S(d,R4) = Rye log(R5/R4) ||g||5(d,R5)d = R4€10g(R5/R4) ||f||$(d,R6)d

We are allowed to make || f||s(4 rq)¢ is small as we wish depending on € and d. Thus, we may
assume that the right-hand side is less than or equal to 1 — 1/e. In particular, this implies
it is strictly less than 1, which implies convergence of the power series

log(I — Jg™ (x Z —Jg™ (z
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It is well known (and easy to demonstrate using the Jordan canonical form) that since
g™ (2)| < 1, we have det(I — Jg™(z)) > 0 and

logdet(I — Jg'™(x)) = Trlog(I — Jg™ (z)).
Let us equip My(C)®S(d, Ry)®S(d, Ry) with the “hash multiplication” operation
(A1 ® fi®g1)#(A2 @ f2® g2) = A1 A2 ® fif2 ® gagi-
Since
(A1 ® f1 ® g1)#(A2 @ f2 ® 92) ||l a1y (0)85(0,Ra)BS (4, Ra)
< [ Allmuo 1 f1lls@ro |91l s@ro | A2l ara | 2l st ro | 92l s (@, R4

the universal property of projective tensor products implies that hash multiplication extends
to a well-defined map

[My(C)RS(d, Ry)®S(d, Ry)] X [My(C)RS(d, Ry)RS(d, Ry)] — My(C)RS(d, Ry)®S(d, Ry),
with

I F\# P || vyopzsarazsary < 1P vgozsarossar) 12l ac)zsar)dsr)-

In particular,

log, (I —Dyg) = Z

k=1

(Dg)**

=

converges in My(C)®S(d, Ry)®S(d, Ry) when 1Dl sty ()35, R0)ES(0 Ry < 1, and we have

[log 4 (1 — Dg)||Md((C)®S(d,R4)®$(d,R4) < —log <1 - ||D'g||Md(c)®8(dvR4)®‘S(dvR4)>
< eHDg“Md(C)®S(d,R4)<§>S(d,R4)’
because —log(1 —t) < et for t € [0,1 — 1/e], and we have arranged that
HDQHMd(C)®5(d,R4)®5(d,R4) <1-1/e.
Of course, for an n X n matrix tuple z with ||z|. < R4, we have
log(I = Jg"" (x))[y] = log4 (I — Dg)#y.

To compute the trace of this matrix, let B be the orthonormal basis for M, (C)s, given by
([4.1)). Let us view log(I — Jg™(x)) as a d x d block matrix, each block being a linear
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transformation M,,(C)s, — M, (C)s, and denote the (4,7) block by log(I — Jg™(z)); ;.
Then using Lemma [14.1.8| as in the proof of Lemma [14.1.9] we obtain

3 Trlog(1 — Jg (@) = 30 3" (blos(T — Jo(2)),,)[E])

j=1 beB

_ % S5 ra(blog(I — Dg), () #b)

j=1 beB
— Z Tn @ Tallog(I — Dg); ()]
= Z tr @ tr[log(! — Dg);;l(z)

= [Tr®tr @ trllog(I — Dg)]|(x).

Here Dg;; stands for the (j,j) entry of Dg, viewed as a d x d matrix with entries in
S(d, Ry)®S8(d, Ry). Moreover, tr stands for the map S(d, Ry) — S%(d, Ry) that applies tr to
each monomial p in the power series. Finally, we define Tr @ tr @ tr : My(C)®S(d, Ry)®S(d, Ry) —
Sgr(d, R4) by

Trotretr](A® f®g) = Tr(A) tr(f) tr(g).

The upshot is that (1/n2) Trlog(I — Jg™(z)) is given by the evaluation on n x n matrices

of the power series
h:=Tr®tr®tr[log(I — Dg)] € Sp.(d, Ry).

Furthermore, it is straightforward to check that

15

89(d,Ra) S dHlog#(I - Dg)}|Md(<C)®3(d,R4)®S(d,R4)’

and due to our previous estimates, this is bounded by a constant (depending on d and ¢)
times || f||s(q,rs) (assuming that || f||s(,re) is sufficiently small).

Letting 2™ be the evaluation of h on n x n matrix tuples, we have
(n) L2 (n) Lo 2 — pm
Vi (a) = 5llzllz = (2, g™ (2))2 + Sllg™ (2)llz — B (2).

Let .
W= —(id, g)2 + §Ilg||§ — h € 8)(d, Ry),

and let W be its evaluation on matrices. Then ||g||s,r,) and ||A]| 80 (d,Rs) are controlled
by a constant times || f{|s(4,r,), hence so is [|[W{|so 4 g,)- Note that VW™ (z) = D'W(z) for
x € M,(C)4, with |lz[| < Ry. By Lemma [18.3.6| || D°W ||s,.(4,rs)e is bounded by a constant
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times ||W||s,.(a,ry)- Finally, by Lemma|18.3.7, the Lipschitz norm of VW™ with respect to
|-[]2 on ng)(Rg) is controlled by a constant times ||[D°W|

Ser(d,Rs)d-

By choosing || f||s(,rs) small enough, we can make VW (0) and the Lipschitz norm
of VIW( small enough that Theorem can be applied with 6 = 1. This yields an
isomorphism

a:WZ) = WZ+ f(2)).
with the desired triangular property. But since Z = (id —g)(id +f)(Z), we see that W*(Z +
f(2)) = W*(2). O
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