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Abstract

Non-Interactive Private Set Intersection From Functional Encryption

by

Saikumar Yadugiri

In a traditional public-key encryption scheme, users who possess the secret key learn

the entire message from the ciphertext whereas other users do not learn anything. With

the advent of cloud computing and the increasing demand for privacy-preserving tech-

nologies a more sophisticated tool that provides fine-grained access to data is required.

Functional encryption is one such tool which reveals the value of a function f acted upon

x i.e, f(x) for any user in the possession of the ciphertext corresponding to x and a secret

key skf associated with f .

Private Set Intersection is a cryptographic scheme that helps two parties, Alice and

Bob, to find the intersection of their input sets A and B while revealing nothing more than

A ∩ B to each other. Efficient and practical implementations of this scheme are already

in use in the industry in intra- and inter-organizational settings serving as a solution

to many problems ranging from private digital marketing to international data privacy

laws. However, most solutions are interactive and require both parties to be online and

repeat the entire procedure if any changes to either party’s sets are to be considered.

Eliminating this interactive nature of the problem is the key to overcoming inevitable

obstacles. However, the non-interactive version of this problem presents many obstacles

that require efficient utilization techniques from a multitude of cryptographic domains.

We pose the problem as a version of an message-hiding functional encryption scheme in

which the ciphertexts and the secret keys are associated with the two parties’ inputs.

Although several functional encryption schemes are present for general functions in
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various computational models, only a handful functional encryption schemes for special-

ized functions are present. The main contributions are two fold:

1. We construct an semi-adaptively secure collusion-resistant private-key functional

encryption scheme for set intersection. The encryption time and secret key gen-

eration time grow linearly with the maximum set size. Moreover, the sizes of

ciphertexts and secret-keys also grow linearly in the maximum set size.

2. We construct an adaptively secure bounded-collusion public-key functional encryp-

tion scheme for set intersection. The encryption time, secret key generation time,

ciphertext size, and secret-key size grow linearly with the query bound Q.

We also present possible avenues to pursue for further improvements to enhance the

security and efficiency of the aforementioned schemes.
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Chapter 1

Introduction

Functional encryption [SW05, O’N10, BSW11] is one of the foundational concepts in

the paradigm of computing on encrypted data. Functional encryption has also been

used as a useful abstraction in several theoretical and practical avenues including, but

not limited to, the construction of indistinguishability obfuscation [AJ15, BV18], suc-

cinct randomized encoding [AL18, GS18, AM18], watermarking schemes [GKM+19], deep

learning using semi-encrypted neural networks [RPB+19], and proving lower bounds in

differential privacy [KMUW18]. Functional encryption offers the excellent advantage of

non-interactivity over other cryptographic constructs such as secure computation which

typically entail interactive solutions.

Roughly speaking, a functional encryption scheme allows for the generation of special-

purpose functional secret keys associated with the functions f1, . . . , fQ such that anyone,

using these keys, can decrypt an encryption of x to recover the outputs f1(x), . . . , fQ(x),

and nothing else. Although feasibility results for functional encryption for general func-

tions exist [GVW12, AR17, CVW+18, AV19], these results possess large asymptotic com-

plexity making their usage for interesting and specialized functions impractical. A hand-

ful of avenues in specialized functions such as inner-product [ABCP15, BJK15, ALMT20,
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Introduction Chapter 1

ACF+18, AGRW17], quadratic functions [AGT22, AGT21, APS21], and predicated func-

tions [AGT21] have been studied for functional encryption. However, several interesting

and practical functions such as set intersection or functions utilized for machine learning

such as the mean square function or sigmoid function have not been explored very much

in the field of cryptography. Efficient functional encryption schemes for these function-

alities pave the way for the utilization of privacy-focused computation in a multitude of

domains.

Set Intersection. In this paper, we focus on the private set intersection problem where

two parties, each possessing one set wishes to compute the intersection of the sets without

revealing any other entries that are not included in the intersection. For instance, Alice

holds set S and Bob holds set T . Both Alice and Bob wish to learn S∩T . However, Alice

wants to hide the elements in S \S ∩T from Bob and vice-versa. Private set intersection

is known to be used in many practical scenarios such as mitigating privacy and legal

concerns in mobile private contact systems [KRS+19]. Consider the following example—

a large cybersecurity firm releases a set of compromised authentication details it found

in several attacks, dark web, etc. A large bank wishes to learn if any of its users are

part of this set and if so wants to warn them to change their login details immediately.

In this case, neither the bank nor the cybersecurity firm wants to reveal their data but

both of them want to learn the intersection of their sets. Similarly, two multi-national

conglomerates wish to find the users who use both of their services indicating a mutually

benificial data collection to both of them. Due to several data regulations present, neither

of the parties can divulge their dataset but can make use of privacy preserving techniques.

The private set intersection is one such technique that can find the common users without

leaking the identity of the users to the conglomerate whose service they do not use.

Private set intersection has been widely studied with different settings in the ap-

2



Introduction Chapter 1

plied cryptography domain with main approach being secure computation protocols

[TYG22, CGH+21, LRSZ21]. In the celebrated series of works, secure computation pro-

tocols including oblivious transfer [TYG22, CGH+21, GPR+21, PRTY20, CO18], hash-

ing schemes [CDG+21, LRSZ21, PRTY19, PSTY19, PSWW18, RR17, DCW13, PSZ14],

oblivious pseudo-random functions [CM20, KRTW19, KLS+17, FIPR05], etc, have been

used to develop several interactive private set intersection protocols. Furthermore, few

of these protocols even achieve linear communication complexity [TYG22, CGS21, JL09,

JL10, PSTY19] and scale excellently in the size of the input sets. However, these are in-

teractive protocols that require the servers of all the parties involved in the computation

to be online. This way, all the parties need to bear the communication, computation,

and server operational costs. Moreover, if there is a change to the sets of one of these

parties, the protocol needs to be executed from the beginning which is unconducive to

the other party.

Functional Encryption for Set Intersection. We construct a functional encryption

scheme that is non-interactive, linear in the query bound and low-degree polynomial in the

size of the input sets. To the best of our knowledge, this is the first functional encryption

scheme focused on set intersection functionality. In a functional encryption scheme for

set intersection, Alice encrypts the set S and queries the functional key generation oracle

for a functional key for the set T . When the decryption algorithm is executed using the

functional key associated with set T and the ciphertext associated with set S, it outputs

S ∩ T and nothing else.

Our Results. We provide both a private-key and public-key functional encryption

schemes for set intersection which work under different assumptions. In terms of the

security of our schemes, our private-key scheme is semi-adaptive simulation secure and

public-key scheme is adaptive-simulation secure and reveal nothing more than the inter-

3
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section of the sets S, T i.e, S∩T . For public-key functional encryption schem, this is the

highest level of security notion that can be satisfied. To be more precise, our private-key

functional encryption scheme is collusion-resistant under the assumption that the one-way

function exists. That is, for any polynomially-bounded adversary querying polynomially

many functional key queries for sets T1, . . . , TQ and ciphertexts for sets S1, . . . , SM , we di-

vulge only the information {S1∩T1, . . . , S1∩TQ}, . . . , {SM∩T1, . . . , SM∩TQ}. Our public-

key functional encryption scheme is bounded-collusion secure and assumes the existence

of public-key encryption schemes and the computational hardness of Decisional Diffie-

Hellman(DDH) problem. That is, for a prior given query bound Q, for any polynomially-

bounded adversary querying polynomially many functional key queries for sets T1, . . . , TQ

and ciphertexts for set S, we divulge only the information {S ∩ T1, . . . , S ∩ TQ}.

Motivation. Using a non-interactive functional encryption scheme, one of the parties

can encrypt and publish their encrypted sets to the world through a website and re-

main offline for further computation. From the security of functional encryption, this

ciphertext will be indistinguishable to any polynomially-bounded adversary. Any party

who wishes to compute the intersection of their set with the publisher’s set can acquire

the functional key associated with its set and run the decryption algorithm to learn the

intersection and nothing else. If there are any changes to the set, the party can acquire a

fresh functional key and proceed with its computation all the while the publisher remains

in an offline state. Any changes to the publisher’s set can also be published without the

involvement of the other party.

Furthermore, if any other party wishes to join the network, it need not require any

communication with the publisher. To understand this further, consider the example of

the cybersecurity firm which releases compromised authentication details. Everytime the

firm finds new entries, it can add them to its set and publish a fresh ciphertext. Any

4



Introduction Chapter 1

bank that wants to find the details of compromised to users, can acquire the functional

key associated with its user dataset and run the decryption algorithm to find the list

of its compromised users. This computation doesn’t reveal any information about the

compromised users to the cybersecurity firm as only bank possesses the output of the

decryption algorithm. Moreover, if any other bank wants to do the same, all it has to

do is to acquire a functional key for its user dataset all the while the cybersecurity firm’s

servers remain offline and oblivious.

The efficiency of our private-key funcional encryption scheme is linear in the sizes of

input sets and the running time of the choice of PRF. The asymptotic efficiency of our

public-key functional encryption scheme’s encryption time and ciphertext size is linear in

the query bound Q. In comparison with other public-key functional encryption schemes

for general circuits, our construction is low-degree polynomial in security parameter and

the sizes of input sets. For instance, consider the [AV19] construction which also provides

a functional encryption whose ciphertext size grows linear in the query bound. They

use a load balancing technique which transfers the exponent of the query bound to the

security parameter. Prior to this, the asymptotic complexity of the scheme is Q9 and

λ8 assuming the universal circuit is of size Θ(s log(s)) [ZYZL19]. This means the load

balancing doubles the exponent for the security parameter. In our public-key functional

encryption scheme, prior to the load balancing, we mainitain the size of the ciphertext

and the encryption time to be quadratic in the query bound which yields a scheme that

is low-order polynomial in the security parameter and the sizes of the input sets.

1.1 Permissions and Attributions

The contents of this dissertation are the result of a collaboration with Prof. Prab-

hanjan Ananth and Achintya Desai. It is reproduced with permission from both parties.
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Chapter 2

Technical Overview

In this section, we will give an overview of our techniques used to compute functional

encryption for set intersection problem. For private-key we discuss the nuances for con-

structing private-key functional encyption for set intersection assuming the existence of

one-way functions. For public-key functional encryption, we discuss the observations that

lead us to an efficient version of the functional encryption for set intersection starting

from one-key functional encryption for P/Poly.

2.1 Private-Key FE for SI

Under the assumption of existence of one-way functions, we construct the private-

key functional encryption for set intersection based on pseudo-random functions. In the

private-key setting, master secret key is used in the encryption as well as the secret key

generation algorithm which provides an edge over it’s public-key counterpart. We can

use the master secret key and the set element as input to the pseudo-random function

and compute an identical input-hiding value in the encryption and the functional-key

generation algorithm. This makes our private-key functional encryption scheme efficient

6
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and collusion-resistant. However, constructing a scheme based on this idea is non-trivial.

Unlike public-key functional encryption, we need to explicitly prove the security when

adversary queries multiple sets in the encryption phase. Firstly, the obvious construction,

that uses the master secret key as a key for the pseudo-random function, is correct but

not secure. It is easy to see why this construction is not secure as the encryption is

deterministic due to the determinism of pseudo-random functions which violates CPA

security.

To randomize the encryption, we use an additional pseudo-random function that takes

the output of the first pseudo-random function as a key and a random string as input

to output a pseudo-random value. This ensures that the pseudo-random value is not the

same for two distinct queries irrespective of the set element. We modify the rest of the

construction to hold the correctness. A brief summary of this construction is as follows:

Setup(1λ): Output symmetric-key MSK.

KeyGen(MSK, T = {t1, . . . , tµ}): Output skT =
((

t1,PRF1(MSK, t1)
)
, . . . ,

(
tµ,PRF1(

MSK, tµ)
))

.

Enc(MSK, S = {s1, . . . , sγ}):

- Sample ∀i ∈ [γ], ri
$←− {0, 1}p.

- Compute ∀i ∈ [γ], ki ← PRF1(MSK, si).

- Compute ∀i ∈ [γ], cti ← PRF2(ki, ri).

- Output CT as
((

r1, ct1

)
, . . . ,

(
rγ, ctγ

))
.

Dec(skT ,CT): Output the set

P = {tj|(tj, xj) ∈ skT ∧ ∃i ∈ [γ] : (ri, ei) ∈ CT ∧ ei = PRF2(xj, ri)}.

7
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The correctness of the above construction holds trivially. However, the construction

is only selectively-secure. In the definition of adaptive security, there are two phases

where the adversary queries the challenger for secret keys for sets. In the simulated

experiment, the simulator can respond to the adversary’s initial secret key query phase

and the challenge ciphertext phase. Specifically, for the sets which are common in the

initial secret key query phase and the challenge ciphertext phase, simulator replaces the

output of PRF1(MSK, .) and the sets queried only in the challenge ciphertext phase, the

output of PRF2(., .) with uniform random strings. Now, during the second secret key

query phase if the adversary queries a set element which is in common with the challenge

ciphertext phase, then the adversary can distinguish between simulator and an honest

challenge. In this case, the simulator needs to abort. As we replace the output of

the ciphertext query phase to a uniformly random string, the PRF1(msk, .) computation

cannot be reversed. This makes the construction selectively secure which is not desired.

To overcome this, we notice that the adversary may not even query the same set element

in both the challenge ciphertext phase and the second functional query phase. Hence, we

can make the simulator flip a fair coin during the challenge ciphertext phase to decide

between PRF1(MSK, .) and PRF2(., .) to replace with uniform random string. However,

the adversary can still distinguish between simulator and an honest challenge with non-

negligible probability.

This leads us to our final construction. Here, we inherit the idea of two PRFs from

the previous construction. However, we instantiate PRF1 twice with an old and a new

key. During the secret key generation algorithm, we output the PRF1 values for the

set elements with both the keys. In the encryption algorithm, we additionally perform

an exclusive-or of the ciphertext from previous construction with the output of PRF1

instantiated with new key. This pushes our construction to semi-adaptive security. This

is because the simulator can now simply replace the ciphertext with a uniform random

8
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string. If the same set element is queried during the second functional query phase, then,

the simulator samples another uniform random string to replace the PRF1 instantiated

with the old key and computes the rest of the values such that it preserves the relationship

between ciphertext and the two instantiations of PRF1. However, if the adversary queries

a set element in one of the challenge query phases which has not been queried as part of

any of the previous functional query phases and queries the same element again in the next

functional query phase, we cannot answer this using our construction. This is because

the adversary only receives the intersection information in the challenge query phase

which masks such a set element and hence, we can’t reproduce the same randomness.

The correctness and security analysis of this construction is present in chapter 6.

2.2 Public-Key FE for SI

The starting point for our public-key functional encryption for set intersection is the

public-key adaptively-secure bounded-key functional encryption scheme for P/Poly gen-

eral circuits([AV19]). This construction assumes the existence of public-key adaptively-

secure single-key functional encryption scheme for P/Poly general circuits [GVW12] and

a novel correlated garbling scheme for universal circuit. This is the first optimal con-

struction in terms of functionality, assumption, efficiency, and ciphertext size in bounded-

collusion functional encryption.

For our problem, it is sufficient that the circuit takes a PRF key as input and outputs

PRF values for all the elements in the functional query set. Due to the simplistic nature

of the circuit, using bounded-collusion functional encryption for P/Poly is expensive

and we can do better in terms of efficiency. The main bottleneck here is the correlated

garbling scheme although which is necessary for generalized circuits, presents a huge

computational constraint for our goal. Using this scheme, the theoretical asymptotic

9
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complexity for encryption time and ciphertext size is in the order of Q9 where Q is the

priori query bound. In our first attempt to overcome this, we replaced correlated garbling

with Shamir Secret Sharing. In our scheme, we instantiate N single-key adaptively-secure

functional encryption schemes from which n are chosen in the functional-key generation

algorithm. N and n are chosen in accordance with the small-pairwise intersection lemma

10.

Since n out of N shares are chosen uniformly at random, we need N shares of the

N · γ number of PRF(., .) values for the challenge set. The overview of this construction

is as follows:

Setup(1λ, 1Q, 1Lmax): Generate ∀i ∈ [N ], (pki,mski)←− 1FE.Setup(1λ).

Output MSK = (msk1, . . . ,mskN), PK = (pk1, . . . , pkN).

KeyGen(MSK, T = {t1, . . . , tµ}):

- Sample a random subset ∆T ⊂ [N ] of size n.

- Set T̂ ← ((1, t1), . . . , (µ, tµ)).

- Construct the function circuit c that takes (K, {xi,1, . . . , xi,γ}i∈[N ]) and outputs(
(PRF(K, t1), . . . ,PRF(K, tµ)) ,

(⊕
i∈∆T

xi,1, . . . ,
⊕

i∈∆T
xi,γ
))

.

- ∀u ∈ ∆T , compute sku ← 1FE.KeyGen(msku, c).

- Output skT = (T̂ ,∆T , {sku}u∈∆T
).

Enc(PK, S = {s1, . . . , sγ}):

- ∀u ∈ [N ], sample Ku
$←− {0, 1}λ.

- ∀u ∈ [N ], i ∈ [γ], compute PRF(Ku, si) and sample a degree-τ polynomial γu,i(.)

over a binary extension finite field of size m such that γu,i(0) = PRF(Ku, si).
10
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- For u ∈ [N ], i ∈ [γ], let SHk = {(γu,i(k), . . . , γu,i(k))}.

- ∀u ∈ [N ], ctu = 1FE.Enc(pku, (Ku, SHu)).

- Output CT = {ctu}u∈[N ].

Dec(skT ,CT):

- ∀d ∈ ∆T , ((wd,1, . . . , wd,µ), (xd,1, . . . , xd,γ))← 1FE.Dec(skd, ctd).

- ∀j ∈ [µ], Compute P̂j =
⊕

d∈∆T
wd,j.

- ∀ i ∈ [γ], similarly compute P ′

k using {xd,i}d∈∆T
as secret shares from Shamir’s

Secret Sharing Scheme.

- Construct the set P̄ =
{
j|∃i ∈ [γ], P̂j = P

′
i

}
.

- Output the set P =
{
tj|j ∈ P̄ , (j, tj) ∈ T̂

}
.

The correctness of this scheme follows intuitively. Like [AV19], this scheme is also

bounded-collusion adaptively-simulation secure. However, as we generate N2 · γ shares

during the encryption algorithm, the theoretical asymptotic efficiency is in the order of Q4

which is better but still impractical. Improvements involving the secret sharing scheme

such as packed secret sharing [FY92] also do not improve the efficiency asymptotically.

Now the bottleneck is secret sharing scheme. In order to eliminate secret sharing scheme,

we used public-key encryption scheme to encrypt theN ·γ pseudo-random function values.

In the circuit c, before computing the exclusive-OR of PRF(., .) values, we decrypt them.

The advantage here is that the encryption protects the PRF(., .) from being leaked to

the adversary and, the correctness of the public-key encryption scheme ensures that the

circuit evaluates to the correct values of the PRF(., .). This scheme looks to be secure,

however, a keen-eyed reader might have figured out that the lack of function-hiding

property makes the scheme insecure.
11
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A major observation in this scheme is that we do not require the PRF(., .) values

readily. We only need to be able to compare the PRF(., .) values corresponding to the set

elements. This takes us to our most efficient construction with the theoretical asymptotic

efficiency in the order of Q2, which is presented in chapter 7. In this final construction,

we use an inner product functional encryption scheme that outputs the inner product

between two vectors in the exponent of a group element. Therefore, if we construct a

vector containing all the PRF(., , ) values of a set element associated with different keys

K1, . . . , KN and a binary vector. We can obtain the sum of n out of N PRF(., .) values in

the exponent of a group generator. Since the PRF(., .) values of the set associated with

functional-key query are readily available in the functional key, we can always perform

a summation and raise it to the same group generator. Comparing these values in a

succinct fashion will yield the set intersection.

There are a few caveats to be considered for this scheme:

1. The inner product functional encryption limits the number of queries to the functional-

key generation algorithm with the length of the vector.

2. If the exponentiation operation cycles the group, there is a possibility that it might

produce a false positive which will yield an incorrect set intersection.

3. For our scheme to be adaptively-simulation secure, this inner product functional

encryption needs to be adaptively-simulation secure.

We handle these caveats by choosing the appropriate inner-product functional en-

cryption scheme and setting our parameters in the scheme appropriately in accordance

with small-pairwise intersection lemma. The correctness and security analysis of this

construction is detailed in the later chapter 7.

12



Chapter 3

Related Work

Functional encryption for general purpose functions [GVW12, AR17, CVW+18, AV19,

AS16, AM18, AMVY21, AKM+22, ACFQ22] have been well studied in the past decades.

This exciting line of research also produced several connections between functional en-

cryption and indistinguishability obfuscation [AJ15, BV18]. A majority of the work is

done in the circuit model of computation with constructions in NC1 [GVW12], P/Poly

[GVW12, AR17, CVW+18, AV19] circuit classes. The efficiency of these construc-

tions have also gradually improved from quartic orders [GVW12] in the priori query

bound to linear [AV19] with assumptions ranging from Learning with Errors(LWE)

[GVW12, AR17, CVW+18] to minimal cryptographic assumptions [AV19]. Other models

of computation such as turing machines have also seen constructions with varying security

definitions in the works of [AS16, AM18, AMVY21, AKM+22]. Collusion-resistant func-

tional encryption for the RAM computation model was recently constructed in [ACFQ22]

building on top of the single-key single-input functional encryption of [GHRW14].

On the other hand, private set intersection has seen major strides in the development

of special-purpose protocols. Many early protocols use Oblivious Polynomial Evaluation

similar to Shamir’s Secret Sharing schemes [CDSJ16, HN10, DSMRY09, KS05, FNP04]

13
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which yield high computational costs but low communication costs. PSI protocols using

Oblivious Transfer(OT) [TYG22, CGH+21, GPR+21, PRTY20, CO18] and primitives

based on OT such as OPRF functions [TYG22, CGS21, CM20, HFNO19, KRTW19,

PSTY19, KLS+17, DCT12, CT10, JL10, JL09, FIPR05] and typically exhibit linear

communication complexity. Protocols that use hashing schemes including cuckoo hash-

ing [CDG+21, PRTY19, PSTY19, PSWW18, PSZ18, PSSZ15, PSZ14] and bloom filters

[LRSZ21, RR17, DCW13, MBD12] have also yielded asymptotically linear constructions

for PSI. Other flavors of protocols utilize strong cryptographic tools such as homomorphic

encryption [JWP22, CTX20, GS19, CHLR18, CLR17], pairing-based public-key cryp-

tosystems [RA18], etc.

Functional encryption for specialized functions such as inner products [ABCP15,

BJK15, DDM16, ALS16, TAO16, ALMT20, TT20, ABG19, ACF+18, DOT18, AGRW17]

has also been studied extensively. Constructions in the single-input setting [ABCP15,

BJK15, DDM16, ALS16, TAO16, ALMT20, TT20] and the multi-input setting [ABG19,

ACF+18, DOT18, AGRW17] under various assumptions and security levels have been

developed in the past decade. Constructions for variations such as mixed-group in-

ner product functional encryption and predicated inner product functional encryption

[AGT21] have also been developed. Functional encryption for quadratic functions in the

multi-input and multi-client settings are seen in [AGT22, AGT21, APS21].
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Chapter 4

Preliminaries

We denote the security parameter by λ. The universe set, which is the set of all possible

values for the set elements is denoted by U . For practical purposes, we can consider

U = {0, 1}poly(λ). We denote the set of fist n positive integers by [n], i.e, [n] = {1, . . . , n}.

If D is a probability distribution that has an efficient sampler, x $←− D denotes the

process of sampling some x uniformly at random. The statistical distance between two

probability distributions D0 and D1 with support V is ϵ if:

∑
x∈V

∣∣∣Pr [x $←− D0

]
− Pr

[
x

$←− D1

]∣∣∣ ≤ 2ϵ

Two distributions D0 and D1 are said to be computationally indistinguishable if for

every probabilistic polynomial time (PPT) adversary A, there exists a negligible function

negl(·) such that: ∣∣∣∣∣ Pr
x

$←−D0

[0← A(x)]− Pr
x

$←−D1

[0← A(x)]

∣∣∣∣∣ ≤ negl(λ)

15



Chapter 5

Definitions

Our private-key functional encryption scheme for set intersection consists of these algo-

rithms:

• Setup
(
1λ, 1Lmax

)
: On input security parameter λ and maximum set size Lmax,

output the master secret key MSK.

• KeyGen(MSK, T ): On input master secret key MSK, and a set T ⊆ U , output the

functional key skT .

• Enc(MSK, S): On input master secret key MSK and input set S, output the cipher-

text CT.

• Dec(skT ,CT): On input functional key skT , and ciphertext CT, outputs set P .

Similarly, our public-key functional encryption for set intersection consists of these algo-

rithms:

• Setup
(
1λ, 1Q, 1Lmax

)
: On input security parameter λ and query bound Q, and

maximum set size Lmax for the scheme, output the master secret key MSK, and

master public key PK.
16
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• KeyGen(MSK, T ): On input master secret key MSK, and a set T ⊆ U , output the

functional key skT .

• Enc(PK, S): On input master public key PK and input set S, output the ciphertext

CT.

• Dec(skT ,CT): On input functional key skT , and ciphertext CT, outputs set P .

5.1 Correctness

Consider the input set S = {s1, . . . , sγ} ⊆ U of size γ and the functional set T =

{t1, . . . , tµ} ⊆ U of size µ. For the correctness of the private-key functional encryption

scheme for set intersection, we require the following:

Pr


T ∩ S = P :

MSK← Setup(1λ, 1Lmax);

skT ← KeyGen(MSK, T );

CT← Enc(MSK, S);

P ← Dec(skT ,CT)


≥ 1− negl(λ)

Similarly, for the correctness of public-key functional encryption scheme for set intersec-

tion, we require for every Q ≥ 1:

Pr


T ∩ S = P :

(MSK,PK)← Setup(1λ, 1Q, 1Lmax);

skT ← KeyGen(MSK, T );

CT← Enc(PK, S);

P ← Dec(skT ,CT)


≥ 1− negl(λ)

17
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5.2 Security for Private-Key FE for SI

We define two experiments Expt0(Real experiment) and Expt1(Ideal experiment). Expt0

is parameterized by a PPT adversary A and a real challenger Ch whereas Expt1 is pa-

rameterized by a PPT adversary A and a stateful simulator Sim. The description of the

experiments for M = poly(λ) challenge ciphertext queries is as follows:

Expt0PrivKeySI, A, Ch(1λ):

1. A outputs maximum set length Lmax .

2. Ch executes PrivKeySI.Setup(1λ, 1Lmax) to obtain secret key MSK.

3. A, with oracle access to PrivKeySI.KeyGen(MSK, ·), outputs the challenge sets S(1), . . . ,

S(M).

4. Ch outputs the corresponding challenge ciphertexts CT(1) ← PrivKeySI.Enc(MSK, S(1)),

. . ., CT(M) ← PrivKeySI.Enc(MSK, S(M)).

5. Output bit b.

Expt1PrivKeySI, A, Sim(1λ):

1. A outputs maximum set length Lmax.

2. A, with oracle access to Sim which generates simulated functional keys, outputs

challenge sets S(1), . . . , S(M).

• Let QSet be set of queries made by A to Sim.

• Construct the sets V (1), . . . , V (M) such that V (z) =
{
(T, T ∩ S(i)) | ∀ T ∈ QSet

}
where z ∈ [M ].

3. Sim takes input
{
1|S

(z)|, V (z)
}

where z ∈ [M ] and outputs the challenge ciphertexts

CT(z).
18
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4. Output bit b.

Definition 1 (Semi-Adaptive Security). A private-key functional encryption for set in-

tersection scheme PrivKeySI is semi-adaptively secure if for every sufficiently large

security parameter λ ∈ N, every PPT adversary A, there exists a PPT simulator Sim

such that the following holds:

∣∣Pr [0← Expt0PrivKeySI, A, Ch(1λ)
]
− Pr

[
0← Expt1PrivKeySI, A, Sim(1λ)

]∣∣ ≤ negl(λ)

5.3 Security for Public-Key FE for SI

We define two experiments Expt0(Real experiment) and Expt1(Ideal experiment). Expt0

is parameterized by a PPT adversary A and a real challenger Ch whereas Expt1 is pa-

rameterized by a PPT adversary A and a stateful simulator Sim. The description of the

experiments is as follows:

Expt0PubKeySI, A, Ch(1λ):

1. A outputs a query bound Q and maximum set length Lmax .

2. Ch executes PubKeySI.Setup(1λ, 1Q, 1Lmax) to obtain master public key-master se-

cret key pair (MSK,PK).

3. A, with oracle access to PubKeySI.KeyGen(MSK, ·), outputs challenge set S.

4. Ch outputs the challenge ciphertext CT← PubKeySI. Enc(PK, S)

5. A, with oracle access to PubKeySI.KeyGen(MSK, ·), outputs bit b.

6. If the number of calls to the oracle are greater than Q, output ⊥. Otherwise, output

b.
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Expt1PubKeySI, A, Sim(1λ):

1. A outputs a query bound Q and maximum set length Lmax.

2. Sim on input (1λ, 1Q, 1Lmax) outputs master public key PK.

3. A, with oracle access to Sim which generates simulated functional keys, outputs

challenge set S.

• Let QSet be set of queries made by A to Sim.

• Construct the set V such that V =
{
(T, T ∩ S) | ∀ T ∈ QSet

}
.

4. Sim takes input
{
1|S|, V

}
and outputs the challenge ciphertext CT.

5. A, with oracle access to Sim which generates simulated functional keys, outputs bit

b.

6. If the number of calls to the oracle are greater than Q, output ⊥. Otherwise, output

b.

Definition 2 (Adaptive Security). A public-key functional encryption for set intersection

scheme PubKeySI is adpatively secure if for every sufficiently large security parameter

λ ∈ N, every PPT adversary A, there exists a PPT simulator Sim such that the following

holds:

∣∣Pr [0← Expt0PubKeySI, A, Ch(1λ)
]
− Pr

[
0← Expt1PubKeySI, A, Sim(1λ)

]∣∣ ≤ negl(λ)

5.4 Inner Product Functional Encryption

In this paper, we are concerned with the public-key version of the Inner Product

Functional Encryption(ipFE), which is a functional encryption scheme defined using the
20
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following four algorithms:

• Setup
(
1λ, 1L

)
: On input security parameter λ and the maximum length of vectors

L, output the master secret key MSK and the public key PK.

• KeyGen (MSK, y) : On input master secret key MSK and a vector y such that |y| ≤ L,

output the functional key sky.

• Enc (PK, x) : On input public key PK and a vector x such that |x| ≤ L, output the

ciphertext CT.

• Dec (sky,CT) : On input functional key sky and ciphertext CT, output the value z.

5.4.1 Correctness

The ipFE scheme is said to be correct if the following expression holds for every λ and

L and some negligible function negl(·):

Pr


z = ⟨x, y⟩ :

(MSK,PK)← Setup(1λ, 1L);

sky ← KeyGen(MSK, y);

CT← Enc(PK, x);

z ← Dec(sky,CT)


≥ 1− negl(λ)

5.4.2 Security

We define two experiments as follows:

Expt0ipFE, A, Ch(1λ):

1. A outputs the maximum vector length L

2. Ch executes ipFE.Setup(1λ, 1L) to obtain public key-master secret key pair (MSK,PK)

3. A, with oracle access to ipFE.KeyGen(MSK, ·), outputs challenge vector x.
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4. Ch outputs the challenge ciphertext

CT← ipFE.Enc(PK, x)

5. A, with oracle access to ipFE.KeyGen(MSK, ·), outputs bit b.

Expt1ipFE, A, Sim(1λ):

1. A outputs the maximum vector length L

2. Sim on input (1λ, 1L) outputs master public key PK

3. A, with oracle access to Sim which generates simulated functional keys, outputs chal-

lenge vector x.

• Let QSet be set of queries made by A to Sim.

• Construct the set V such that V =
{(
y, ⟨x, y⟩

)
| ∀ y ∈ QSet

}
.

4. Sim takes input
{
1|x|, V

}
and outputs the challenge ciphertext CT.

5. A, with oracle access to Sim which generates simulated functional keys, outputs bit b.

Definition 3 (Adaptive Security). A public-key inner product functional encryption

scheme ipFE is adpatively secure if for every sufficiently large security parameter λ ∈ N,

every PPT adversary A, there exists a PPT simulator Sim such that the following holds:

∣∣Pr [0← Expt0ipFE, A, Ch(1λ)
]
− Pr

[
0← Expt1ipFE, A, Sim(1λ)

]∣∣ ≤ negl(λ)
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Private-Key FE for SI

In this section, we present the construction, correctness, efficiency, and security of our

private-key functional encryption scheme for set intersection.

6.1 Construction

Theorem 4. There exists a private-key semi-adaptively secure functional encryption for

set intersection scheme PrivKeySI under the assumption that one-way functions exist.

Proof: For the construction of PrivKeySI, we rely on two pseudorandom functions,

PRF1 : {0, 1}λ×{0, 1}l → {0, 1}m, PRF2 : {0, 1}m×{0, 1}λ → {0, 1}m. The first input to

PRF1(and PRF2) is the key and the second input is the string on which PRF1 (and PRF2)

needs to be evaluated upon. The detailed description of the construction is as follows:

Setup(1λ, 1Lmax): On input security parameter λ and the maximum set size Lmax, gen-

erate fk
$←− {0, 1}λ and rk

$←− {0, 1}λ. Lmax is implicitly provided to KeyGen and Enc.

Output MSK = (fk, rk).
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KeyGen(MSK, T = {t1, . . . , tµ}): On input master secret key MSK and the set T , µ ≤

Lmax, output the functional key as:

skT =

((
t1,PRF1(fk, t1),PRF1(rk, t1)

)
, . . . ,

(
tµ,PRF1(fk, tµ),PRF1(rk, tµ)

))
.

Enc(MSK, S = {s1, . . . , sγ}): We permute S before starting the procedure. On input the

master secret key MSK and the set S = {s1, ..., sγ}, γ ≤ Lmax,

- Parse MSK as (fk, rk).

- Sample ∀i ∈ [γ], ri
$←− {0, 1}λ.

- Compute ∀i ∈ [γ], ki ← PRF1(fk, si) and mki ← PRF1(rk, si).

- Compute ∀i ∈ [γ], cti ← PRF2(ki, ri)⊕mki.

- Output CT =
((

r1, ct1

)
, . . . ,

(
rγ, ctγ

))
.

Dec(skT ,CT): The deterministic decryption procedure takes the functional key associated

with the set T , skT , and the ciphertext CT as input,

- Parse the ciphertext as CT = (CT1, . . . ,CTγ) such that CTi = (ri, ei) where i ∈ [γ].

- Parse the secret key as skT = (tj, xj, yj)
µ
j=1.

- Compute set P =
{
tj |

(
tj, xj, yj

)
∈ skT ∧ ∃i ∈ [γ] : (ri, ei) ∈ CT ∧ ei =

PRF2

(
xj, ri

)
⊕ yj

}
.

- Output set P .
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6.2 Correctness

Consider two sets S = {s1, . . . , sγ} ⊆ U and T = {t1, . . . , tµ} ⊆ U such that |S| =

γ ≤ Lmax and |T | = µ ≤ Lmax and CT ← Enc(MSK, S) and skT ← KeyGen(MSK, T ). It

follows that:

skT =

((
t1,PRF1(fk, t1),PRF1(rk, t1)

)
, . . . ,

(
tµ,PRF1(fk, tµ),PRF1(rk, tµ)

))
CT =

((
r1,PRF2(PRF1(fk, s1), r1)⊕ PRF1(rk, s1)

)
, . . . ,(

rγ,PRF2(PRF1(fk, sγ), rγ)⊕ PRF1(rk, sγ)
))

We show that the output of Dec (skT ,CT) is T ∩ S with overwhelming probability.

Dec (skT ,CT) =
{
tj | (tj, xj, yj) ∈ skT ∧ ∃i ∈ [γ] : (ri, ei) ∈ CT ∧ ei = PRF2(xj, ri)⊕ yj

}
= {tj | (tj,PRF1(fk, tj),PRF1(rk, tj)) ∈ skT ∧ ∃i ∈ [γ] : (ri,PRF2(PRF1(fk, si), ri)) ∈ CT

∧ PRF2(PRF1(fk, si), ri)⊕ PRF1(rk, si) = PRF2(PRF1(fk, tj), ri)⊕ PRF1(rk, tj)}

As dictated by PRF security, the output distribution of the PRF evaluations is com-

putationally indistinguishable from the uniform distribution. The probability that the

two strings sampled uniformly at random are identical is negligible in the length of the

string. Hence, the probability that the output of PRF on different inputs, under the same

key, is identical is also negligible. Hence, with overwhelming probability we have

= {tj | (tj,PRF1(fk, tj),PRF1(rk, tj)) ∈ skT ∧ ∃i ∈ [γ] :
(
ri,PRF2(PRF1(fk, si), ri)⊕

PRF1(rk, sj)
)
∈ CT ∧ si = tj}

= T ∩ S.
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6.3 Efficiency

Assuming that the running times of PRF1 and PRF2 are polynomial in the security

parameter λ,

• Setup: We are generating two keys of size λ. Hence, we take O(λ) time and the

output size is O(λ).

• Enc: We use O(Lmax) evaluations of PRF2 and O(2 · Lmax) evaluations of PRF1

respectively. The size of the ciphertext generated by Enc algorithm is O(Lmax ·(m+

λ)).

• KeyGen: We invoke O(2 · Lmax) evaluations of PRF1. The size of the functional

keys generated by KeyGen algorithm is O(Lmax · (l + 2 ·m)).

• Dec: O(Lmax) instantiations of PRF2 and O(L2
max) pairwise comparisons occur in

this algorithm.

6.4 Security

We prove the semi-adaptive security of the PrivKeySI using a simulator which poses

as a challenger against the adversary in the ideal world experiment as mentioned in

5.2. While the real challenger always responds to the queries by the adversary using the

master secret key, MSK, the simulator on the other hand does not hold MSK. However,

the simulator generates responses which are indistinguishable from challenger’s responses

to any polynomial-time adversary. The simulator does so by sampling uniformly random

strings of appropriate length and substituting the outputs of PRF1 and PRF2 accordingly.

Moreover, the simulator can only access the lengths of the challenge ciphertexts and the

pairwise intersection of the challenge ciphertext set with every functional query set. Using

26



Private-Key FE for SI Chapter 6

the security of the pseudorandom functions PRF1 and PRF2, we describe the simulator

as follows:

Simulator

1. Sim receives maximum set length Lmax from A.

2. Let A make total Q queries throughout the experiment. For q ∈ [Q], let T (q) ={
t
(q)
1 , . . . , t

(q)
µq

}
be the set associated with q-th query and µq ≤ Lmax be the number

of set elements in T (q). Maintain a QSet across all the queries such that it should

contain the set elements and their corresponding query responses. Initially, the

QSet is empty.

For every query q ∈ [Q] and j ∈ [µq] do the following:

• If
(
t
(q)
j , ·, ·

)
∈ QSet then retrieve α(q)

j , β(q)
j from QSet.

• Otherwise, sample α(q)
j

$←− {0, 1}m, β(q)
j

$←− {0, 1}m and add
(
t
(q)
j , α

(q)
j , β

(q)
j

)
to

QSet.

Sim sends skT (q) =
((

t
(q)
1 , α

(q)
1 , β

(q)
1

)
, . . . ,(

t
(q)
µq , α

(q)
µq , β

(q)
µq

))
to A.

3. A outputs challenge sets as S(1), . . . , S(M) where S(z) =
{
s
(z)
1 , . . . , s

(z)
γz

}
, ∀z ∈ [M ]

and M = poly(λ).

4. For every challenge set S(z) of size γz ≤ Lmax, where z ∈ [M ], Sim takes{
1γz ,

{ (
T (1), S(z) ∩ T (1)

)
, . . . ,

(
T (Q), S(z) ∩ T (Q)

)}}
as input and executes the fol-

lowing steps to compute the ciphertext for S(z). For every set element s(z)i where

i ∈ [γz],

• Let
{
s
(z)
1 , . . . , s

(z)
ϕz

}
= S(z) ∩

(
T (1) ∪ . . . ∪ T (z)

)
.
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• For every i ∈ [ϕz], s
(z)
i ∈ QSet. Retrieve

(
s
(z)
i , αs

(z)
i , βs

(z)
i

)
from QSet. Sample

ρs
(z)
i

$←− {0, 1}λ and compute θs
(z)
i ← PRF2(α

s
(z)
i , ρs

(z)
i )⊕ βs

(z)
i .

• For i ∈ [γz − ϕz], sample ηs
(z)
i

$←− {0, 1}l, ρs
(z)
i

$←− {0, 1}λ, θs
(z)
i ,

$←− {0, 1}m.

• Generate a random permutation of
{
s
(z)
1 , . . . , s

(z)
γz ,

η
(z)
1 , . . . , η

(z)
γz

}
to obtain {ς(z)1 , . . . , ς

(z)
γ }.

Sim sends CT(z) =
((
ρς

(z)
1 , θς

(z)
1

)
, . . . ,

(
ρς

(z)
γz , θς

(z)
γz

))
to A.

5. A outputs bit b. Output bit b.

We show the computational indistinguishability between the real challenger and the

simulator using a series of hybrids as mentioned below.

Hyb0 : Same as Expt0 from 5.2. The hybrid consists of the following steps:

1. Ch receives maximum set length Lmax.

2. Ch generates master secret key MSK = (fk, rk) as fk
$←− {0, 1}λ and rk

$←− {0, 1}λ.

3. Let A make Q queries to Ch. For every query q ∈ [Q], challenger Ch computes the

secret key as follows: skT (q) =
((

t
(q)
1 ,PRF1

(
fk, t

(q)
1

)
,PRF1

(
rk, t

(q)
1

))
, . . . ,(

t
(q)
µq ,PRF1

(
fk, t

(q)
µq

)
,PRF1

(
rk, t

(q)
µq

)))
.

Send skT (q) to A.

4. Ch receives the challenge set queries as S(1), . . . , S(M), where S(z) =
{
s
(z)
1 , . . . , s

(z)
γz

}
∀z ∈ [M ], from A.

5. For every challenge ciphertext set S(z) of size γz ≤ Lmax, where z ∈ [M ], Ch does

the following :

• Sample ∀i ∈ [γz], r
(z)
i

$←− {0, 1}λ.

• Compute ∀i ∈ [γz], k
(z)
i ← PRF1(fk, s

(z)
i ) and mk(z)i ← PRF1(rk, s

(z)
i ).
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• Compute ∀i ∈ [γz], ct
(z)
i ← PRF2

(
k
(z)
i , r

(z)
i

)
⊕mk(z)i .

Ch sends CT(z) =
((
r
(z)
1 , ct

(z)
1

)
, . . . ,

(
r
(z)
γz , ct

(z)
γz

))
to A.

6. A outputs bit b. Output b.

Hyb1: In this hybrid, we replace all outputs of PRF1(fk, ·) with a uniformly random

string of appropriate length. The changes are marked in red. The hybrid consists of the

following steps:

1. Ch receives maximum set length Lmax.

2. Ch generates master secret key MSK = (fk, rk) as fk
$←− {0, 1}λ and rk

$←− {0, 1}λ.

3. Initialize QSet to empty set.

4. Let A make Q circuit queries to Ch. For every query q ∈ [Q], Ch computes the

secret key as follows:

• If
(
t
(q)
j , ·

)
∈ QSet then retrieve α(q)

j .

• Otherwise, sample α(q)
j

$←− {0, 1}m and add(
t
(q)
j , α

(q)
j

)
to QSet.

Ch sends skT (q) =
((

t
(q)
1 , α

(q)
1 ,PRF1

(
rk, t

(q)
1

))
, . . . ,

(
t
(q)
µq , α

(q)
µq ,PRF1

(
rk, t

(q)
µq

)))
to

A.

5. Ch receives the challenge set queries as S(1), . . . , S(M), where S(z) =
{
s
(z)
1 , . . . , s

(z)
γz

}
∀z ∈ [M ], from A.

6. For every challenge ciphertext set S(z) of size γz ≤ Lmax, where z ∈ [M ], Ch does

the following :

• Sample ∀i ∈ [γz], r
(z)
i

$←− {0, 1}λ.
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• ∀i ∈ [γz], if
(
s
(z)
i , ·

)
∈ QSet then retrieve αs

(z)
i and set k(z)i = αs

(z)
i . Otherwise,

compute k(z)i = αs
(z)
i where αs

(z)
i

$←− {0, 1}m. Add
(
s
(z)
i , αs

(z)
i

)
to QSet.

• Compute ∀i ∈ [γz], mk
(z)
i ← PRF1

(
rk, s

(z)
i

)
.

• Compute ∀i ∈ [γz], ct
(z)
i ← PRF2

(
k
(z)
i , r

(z)
i

)
⊕mk(z)i .

Ch sends CT(z) =
((
r
(z)
1 , ct

(z)
1

)
, . . . ,

(
r
(z)
γz , ct

(z)
γz

))
to A.

7. A outputs bit b. Output b.

Claim 5. Assuming the security of pseudorandom function PRF1, the output distributions

of the Hyb0 and Hyb1 are computationally indistinguishable.

Proof: If there were a PPT adversary A that can distinguish between Hyb0 and

Hyb1, that is,

∣∣Pr [0← AHyb0(1λ)
]
− Pr

[
0← AHyb1(1λ)

]∣∣ > negl (λ)

We can use A to construct a reduction B that can break the security of PRF1. In other

words, B can act as the challenger interacting withA and B can distinguish between oracle

access to PRF1(fk, ·) : {0, 1}l → {0, 1}m and a random function R(·) : {0, 1}l → {0, 1}m

with non-negligible probability. Formally,

|Pr[BPRF1(fk,·)(1λ) = 1]− Pr[BR(·)(1λ) = 1]| > negl(λ)

The description of B is as follows:
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Algorithm 1 BO (1λ)

1. For every query q by A where q ∈ [Q] and j ∈ [µq]: Receive t(q)j from adversary

A. Query oracle function with t
(q)
j to obtain α

(q)
j . Forward

(
t
(q)
j , α

(q)
j

)
to A as the

query response. Add
(
t
(q)
j , α

(q)
j

)
to QSet.

2. For every challenge ciphertext set query S(z) by A where z ∈ [M ]: If
(
s
(z)
i , ·

)
∈

QSet, retrieve αs
(z)
i from QSet. Otherwise, query the oracle function with

s
(z)
i , where i ∈ [γz] to obtain αs

(z)
i and sample r

(z)
i

$←− {0, 1}λ. Forward(
r
(z)
i ,PRF2

(
αs

(z)
i , r

(z)
i

)
⊕ PRF1

(
rk, s

(z)
i

))
to A as a query response.

3. Simulate any other steps same as in Hyb0.

4. A outputs the bit b. B outputs b.

If the oracle access given is a pseudorandom function then the A guesses Hybrid 0

with non-negligible probability. If the oracle access given is a random function then the

A guesses Hybrid 1 with non-negligible probability. This comes from the fact that A

has a non-negligible advantage in distinguishing between Hybrids 0 and 1. From the

construction of B, it follows that the advantage of B in breaking the PRF1 security is

same as the advantage of A which is non-negligible as per our assumption. However, from

pseudorandom function definition, we know that the advantage of any PPT adversary in

breaking PRF1 security is negligible. This contradicts our initial assumption which now

implies that no such adversary A exists. Hence, Hybrids 0 and 1 are computationally

indistinguishable.

Hyb2: In this hybrid, we replace all outputs of PRF1(rk, ·) with a uniformly random string

of appropriate length. The rest of the steps remain same as Hyb1:

1. Ch receives maximum set length Lmax.
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2. Ch generates master secret key MSK = (fk, rk) as fk
$←− {0, 1}λ and rk

$←− {0, 1}λ.

3. Initialize QSet to empty set.

4. Let A make Q circuit queries to Ch. For every query q ∈ [Q], Ch computes the

secret key as follows:

• If
(
t
(q)
j , ·, ·

)
∈ QSet then retrieve α(q)

j and β(q)
j .

• Otherwise, sample α(q)
j

$←− {0, 1}m, β(q)
j

$←− {0, 1}m and add
(
t
(q)
j , α

(q)
j , β

(q)
j

)
to

QSet.

Ch sends skT (q) =
((

t
(q)
1 , α

(q)
1 , β

(q)
1

)
, . . . ,

(
t
(q)
µq , α

(q)
µq , β

(q)
µq

))
to A.

5. Ch receives the challenge set queries as S(1), . . . , S(M), where S(z) = {s(z)1 , . . . , s
(z)
γz }

∀z ∈ [M ], from A.

6. For every challenge ciphertext set S(z) of size γz ≤ Lmax, where z ∈ [M ], Ch does

the following :

• Sample ∀i ∈ [γz], r
(z)
i

$←− {0, 1}λ.

• ∀i ∈ [γz], if
(
s
(z)
i , ·, ·

)
∈ QSet then retrieve αs

(z)
i , βs

(z)
i and set k(z)i = αs

(z)
i ,

mk
(z)
i = βs

(z)
i . Otherwise, compute k(z)i = αs

(z)
i , mk(z)i = βs

(z)
i where αs

(z)
i

$←−

{0, 1}m, βs
(z)
i

$←− {0, 1}m. Add
(
s
(z)
i , αs

(z)
i , βs

(z)
i

)
to QSet.

• Compute ∀i ∈ [γz], ct
(z)
i ← PRF2

(
k
(z)
i , r

(z)
i

)
⊕mk(z)i .

Ch sends CT(z) =
((
r
(z)
1 , ct

(z)
1 )
)
, . . . ,

(
r
(z)
γz , ct

(z)
γz

))
to A.

7. A outputs bit b. Output b.

Claim 6. Assuming the security of the pseudorandom function PRF2, the output distri-

butions of the Hyb1 and Hyb2 are computationally indistinguishable.
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Proof: If there were a PPT adversary A that can distinguish between Hyb1 and

Hyb2, that is,

∣∣Pr [0← AHyb1(1λ)
]
− Pr

[
0← AHyb2(1λ)

]∣∣ > negl (λ)

We can use A to construct a reduction B that can break the security of PRF1. In other

words, B can act as the challenger interacting withA and B can distinguish between oracle

access to PRF1(rk, ·) : {0, 1}l → {0, 1}m and a random function R(·) : {0, 1}l → {0, 1}m

with non-negligible probability. Formally,

|Pr[BPRF1(rk,·)(1λ) = 1]− Pr[BR(·)(1λ) = 1]| > negl(λ)

The description of B is as follows:

Algorithm 2 BO (1λ)

1. For every query q by A where q ∈ [Q] and j ∈ [µq]: Receive t(q)j from adversary

A. Sample α(q)
j

$←− {0, 1}m. Query oracle function with t(q)j to obtain β(q)
j . Forward(

t
(q)
j , α

(q)
j , β

(q)
j

)
to A as the query response. Add

(
t
(q)
j , α

(q)
j , β

(q)
j

)
to QSet.

2. For every challenge ciphertext set query S(z) by A where z ∈ [M ]: If
(
s
(z)
i , ·, ·

)
in

QSet, retrieve αs
(z)
i from QSet. Otherwise, sample r(z)i

$←− {0, 1}λ, αs
(z)
i

$←− {0, 1}m.

Query the oracle function with s
(z)
i where i ∈ [γz] to obtain βs

(z)
i . Forward(

r
(z)
i ,PRF2

(
αs

(z)
i , r

(z)
i

)
⊕ βs

(z)
i

)
to A as a query response. Add

(
s
(q)
i , αs

(q)
i , βs

(q)
i

)
to QSet.

3. Simulate any other steps same as in Hyb1.

4. A outputs the bit b. B outputs b.

If the oracle access given is a pseudorandom function then the A guesses Hybrid 1

with non-negligible probability. If the oracle access given is a random function then the
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A guesses Hybrid 2 with non-negligible probability. This comes from the fact that A

has a non-negligible advantage in distinguishing between Hybrids 1 and 2. From the

construction of B, it follows that the advantage of B in breaking the PRF1 security is

same as the advantage of A which is non-negligible as per our assumption. However, from

pseudorandom function definition, we know that the advantage of any PPT adversary in

breaking PRF1 security is negligible. This contradicts our initial assumption which now

implies that no such adversary A exists. Hence, Hybrids 1 and 2 are computationally

indistinguishable.

Hyb3: In this hybrid, we replace all outputs of PRF2 with a uniformly random string of

appropriate length. The rest of the steps remain same as Hyb2:

1. Ch receives maximum set length Lmax.

2. Ch generates master secret key MSK = (fk, rk) as fk
$←− {0, 1}λ and rk

$←− {0, 1}λ.

3. Initialize QSet to empty set.

4. Let A make Q circuit queries to Ch. For every query q ∈ [Q], Ch computes the

secret key as follows:

• If
(
t
(q)
j , ·, ·

)
∈ QSet then retrieve α(q)

j and β(q)
j .

• Otherwise, sample α(q)
j

$←− {0, 1}m, β(q)
j

$←− {0, 1}m and add
(
t
(q)
j , α

(q)
j , β

(q)
j

)
to

QSet.

Ch sends skT (q) =
((

t
(q)
1 , α

(q)
1 , β

(q)
1

)
, . . . ,

(
t
(q)
µq , α

(q)
µq , β

(q)
µq

))
to A.

5. Ch receives the challenge set queries as S(1), . . . , S(M), where S(z) = {s(z)1 , . . . , s
(z)
γz }

∀z ∈ [M ], from A.

6. For every challenge ciphertext set S(z) of size γz ≤ Lmax, where z ∈ [M ], Ch does

the following :
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• Sample ∀i ∈ [γz], r
(z)
i

$←− {0, 1}λ.

• ∀i ∈ [γz], if
(
s
(z)
i , ·, ·

)
∈ QSet then retrieve αs

(z)
i , βs

(z)
i and set k(z)i = αs

(z)
i ,

mk
(z)
i = βs

(z)

i . Compute ∀i ∈ [γz], ct
(z)
i ← PRF2

(
k
(z)
i , r

(z)
i

)
⊕mk(z)i .

• Otherwise, sample ct(z)i
$←− {0, 1}m.

Ch sends CT(z) =
((
r
(z)
1 , ct

(z)
1 )
)
, . . . ,

(
r
(z)
γz , ct

(z)
γz

))
to A.

7. A outputs bit b. Output b.

Claim 7. Assuming the security of the pseudorandom function PRF2, the output distri-

butions of the Hyb2 and Hyb3 are computationally indistinguishable.

Proof: If there were a PPT adversary A that can distinguish between Hyb2 and

Hyb3, that is,

∣∣Pr [0← AHyb2(1λ)
]
− Pr

[
0← AHyb3(1λ)

]∣∣ > negl (λ)

We can use A to construct a reduction B that can break the security of PRF1. In

other words, B can act as the challenger interacting withA and B can distinguish between

oracle access to PRF2(κ, ·) : {0, 1}λ → {0, 1}m, where κ $←− {0, 1}m and a random function

R(·) : {0, 1}λ → {0, 1}m with non-negligible probability. Formally,

|Pr[BPRF2(κ,·)(1λ) = 1]− Pr[BR(·)(1λ) = 1]| > negl(λ)

The description of B is as follows:
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Algorithm 3 BO (1λ)

1. For every query q by A where q ∈ [Q] and j ∈ [µq]: Receive t(q)j from adversary A.

Sample α(q)
j

$←− {0, 1}m and β
(q)
j

$←− {0, 1}m. Forward
(
t
(q)
j , α

(q)
j , β

(q)
j

)
to A as the

query response. Add
(
t
(q)
j , α

(q)
j , β

(q)
j

)
to QSet.

2. For every challenge ciphertext set query S(z) by A where z ∈ [M ]: Sample sample

r
(z)
i

$←− {0, 1}λ. If
(
s
(z)
i , ·, ·

)
in QSet, retrieve αs

(z)
i , βs

(z)
i from QSet and forward(

r
(z)
i ,PRF2

(
αs

(z)
i , r

(z)
i

)
⊕ βs

(z)
i

)
toA as query response. Otherwise, query the oracle

function with s(z)i where i ∈ [γz] to obtain ct(z)j . Forward
(
s
(z)
i , r

(z)
i , ct

(z)
i

)
to A as a

query response.

3. Simulate any other steps same as in Hybrid 2.

4. A outputs the bit b. B outputs b.

If the oracle access given is a pseudorandom function then the A guesses Hybrid 2

with non-negligible probability. If the oracle access given is a random function then the

A guesses Hybrid 3 with non-negligible probability. This comes from the fact that A

has a non-negligible advantage in distinguishing between Hybrids 2 and 3. From the

construction of B, it follows that the advantage of B in breaking the PRF2 security is

same as the advantage of A which is non-negligible as per our assumption. However, from

pseudorandom function definition, we know that the advantage of any PPT adversary in

breaking PRF2 security is negligible. This contradicts our initial assumption which now

implies that no such adversary A exists. Hence, Hybrids 2 and 3 are computationally

indistinguishable.

Hyb4: Same as Expt1 from 5.2.

Claim 8. The output distributions of the Hyb3 and Hyb4 are identical.
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Proof: By definition of Exp1, Hyb3 is same as Hyb4. The random permutation

doesn’t change the output distribution as we take the input to encryption as a random

permuted order.
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Chapter 7

Public-Key FE for SI

In this section, we present the construction, correctness, efficiency, and security of our

public-key functional encryption scheme for set intersection.

7.1 Construction

Theorem 9. There exists a public-key adaptively secure functional encryption for set

intersection scheme PubKeySI under the assumption that public key adaptively secure

1FE for P/Poly and public key adaptively simulation-based secure inner product functional

encryption scheme exist.

Proof: For the construction of PubKeySI, we rely on the pseudorandom function

PRF : {0, 1}λ × {0, 1}l → {0, 1}m, where l and m are appropriate polynomials in λ and

the inner-product functional encryption scheme ipFE. The ipFE scheme should satisfy the

following requirements:

1. ipFE scheme should be adaptively-simulation secure.

2. The Dec algorithm of the scheme should work in two phases. In the first phase,
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the output is calculated in the exponent i.e, g⟨x,y,⟩, where x and y are the input

vectors to the scheme. In the second phase, ⟨x, y⟩ is evaluated using polynomial

search which is feasible when the norms of x and y are within a certain range.

3. The aforementioned second phase should be independent of the second phase.

Instantiation: To instantiate an inner product functional encryption scheme that satisfies

the aforementioned properties, consider the scheme present in [ALMT20] which relies on

the DDH assumption. We edit the decryption algorithm so that it no longer takes the

master public key, pk as input. However, the decryption algorithm learns the master

public key pk as part of its evaluation. As the master public key is revealed to everyone,

this is a reasonable assumption.

Using parameters t = Θ(λ), n = Θ(t), and N = Θ(Q2n) in accordance with the

small-pairwise intersection lemma(10), the public key functional encryption scheme for

set intersection is described as follows:

Setup(1λ, 1Q, 1Lmax) : On input security parameter λ, query bound Q, and the maximum

set size Lmax, generate for every u ∈ [N ], (pku,msku) ← 1FE.Setup(1λ, 1ψ) and ∀ k ∈

[Lmax], (ipPKk, ipMSKk) ← ipFE.Setup(1m, 1N) where ψ is the size of the circuit used in

KeyGen and depends on Lmax and λ.

Output MSK =
(
ipMSK1, . . . , ipMSKLmax

,msk1, . . . ,mskN
)
, PK =

(
ipPK1, . . . , ipPKLmax

,

pk1, . . . , pkN
)
.

KeyGen(MSK, T ) : On input set T = {t1, . . . , tµ}, where µ ≤ Lmax,

- Parse MSK as
(
ipMSK1, . . . , ipMSKLmax

,msk1, . . . ,mskN
)
.

- Sample a random subset ∆T ⊂ [N ] of size n.

- Set T̂ = ((1, t1) , . . . , (µ, tµ))
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- Construct a functional circuit C that takes K ∈ {0, 1}λ as input and outputs

(PRF(K, t1), . . . ,PRF(K, tµ)).

- For every d ∈ ∆T , skd ← 1FE.KeyGen(mskd, C).

- For every k ∈ [Lmax], compute ipSKk ← ipFE.KeyGen
(
ipMSKk, e

∆T
)

where e∆T is

an indicator vector of length N such that e∆T
d = 1 if d ∈ ∆T and 0 otherwise.

- Output skT =
(
T̂ ,∆T , {ipSKk}k∈[Lmax], {skd}d∈∆T

)
.

Enc(PK, S) : On input set S = {s1, . . . , sγ}, where γ ≤ Lmax. We assume that S is given

in a random permuted order. If this is not true, we can permute them before ipFE.Enc

phase.

- Parse PK as
(
ipPK1, . . . , ipPKLmax

, pk1, . . . , pkN
)
.

- For every u ∈ [N ], sample Ku
$←− {0, 1}λ.

- For every i ∈ [γ], compute ipCTi ← ipFE.Enc(ipPKi, (PRF(K1, si), . . . ,PRF(KN , si))).

- For every u ∈ [N ], compute ctu ← 1FE.Enc(pku, Ku).

- Output CT =
(
{ctu}u∈[N ], {ipCTi}i∈[γ]

)
.

Dec(skT ,CT) :

- Parse skT as
(
T̂ ,∆T , {ipSKk}k∈[Lmax], {skd}d∈∆T

)
and CT as

(
{ctu}u∈[N ], {ipCTi}i∈[γ]

)
.

- For every d ∈ ∆T , compute (wd,1, . . . , wd,µ)← 1FE.Dec (skd, ctd).

- For every i ∈ [γ], compute xi ← ipFE.Dec(ipSKi, ipCTi) and set P ′
= {xi | ∀ i ∈

[γ]}.

- For every j ∈ [µ] compute P̂j = g
∑

d∈∆T
wd,j and set P̂ = {P̂j|∀ j ∈ [µ]}, where g is

obtained from the master public key of ipFE.
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- Construct P̄ =
{
j | ∀ i ∈ [γ], j ∈ [µ], ∃ P ′

i = P̂j

}
by pairwise comparision of group

elements.

- Output {tj | j ∈ P̄ , (j, tj) ∈ T̂}.

7.2 Correctness

We show that the public key FE scheme described above will output T ∩ S with

overwhelming probability. Consider the set associated with input as S of length γ and

the set associated with the function query fT as T of length µ such that fT (S) = T ∩ S.

We parse the ciphertext CT← Enc(PK, S) and the secret key skT ← KeyGen(MSK, T ) as

follows

skT =
(
T̂ ,∆T , {ipFE.KeyGen(ipMSK, e∆T )}k∈[Lmax], {1FE.KeyGen(mskd, c)}d∈∆T

)
CT =

(
{1FE.Enc(pku, Ku)}u∈[N ], {ipFE.Enc(ipPKi, (PRF(Ku, si))u∈[N ])}i∈[γ]

)
From the correctness of 1FE, we see that for every d ∈ ∆T , j ∈ [µ], wd,j = PRF(Kd, tj).

Hence, we have

P̂j = g
∑

d∈∆T
PRF(Kd,tj)

From the correctness of ipFE, we have

xj = g
∑

d∈∆T
PRF(Kd,sj)

=⇒ P̄ =
{
i | i ∈ [γ], j ∈ [µ], g

∑
d∈∆T

PRF(Kd,tj) = g
∑

d∈∆T
PRF(Kd,si)

}
From the security of PRF scheme, as with only negligible probability, the PRF evaluation
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of two values will be same, and from the correctness of hashing scheme, we have

P̄ = {j | i ∈ [γ], j ∈ [µ], tj = si}

Hence, the output of the Dec(skT ,CT) algorithm is T ∩S with overwhelming probability.

Next, we state and prove the small-pairwise intersection lemma which we will use in the

security proof of our scheme. Our version of small-pairwise intersection lemma follows a

similar overlay of [GVW12] version but optimizes the parameters by eliminating a factor

of Q2 from N .

Lemma 10 (Small-Pairwise Intersection). Let Q ∈ Z>0 be the query bound and λ be the

security parameter. Set t = Θ(λ), n = Θ(t), and N = Θ(Q2λ). For every q ∈ [Q], sample

∆q ⊂ [N ] of size n. The following holds with overwhelming probability in λ:

Pr

[∣∣∣∣∣ ⋃
q1 ̸=q2

∆q1 ∩∆q2

∣∣∣∣∣ ≤ t

]
≥ 1− 2−Θ(λ)

where the probability is taken over the randomness of ∆1, . . . ,∆Q.

Proof: For every q1, q2 let Xq1q2 be a random variable such that Xq1q2 = |∆q1 ∩∆q2|,

and X = Σq1 ̸=q2Xq1q2 . Let Xq1q2 = 0 for q1 = q2. From the linearity of expectation, we

have E[X] = Σq1 ̸=q2E [Xq1q2 ]. With a fixed q1, the maximum value |∆q1 ∩∆q2| can take

is |∆q1| = n. We are randomly choosing |∆q2| samples from [N ] and checking for success.

This forms a hypergeometric distribution as sets don’t have duplicate elements, hence it

can be thought of choosing without replacement, with number of trials and maximum

number of successes as n. Hence,

ϵ = E[X] = Σq1 ̸=q2E [Xq1q2 ]

=
Q(Q− 1)n2

N
(We consider duplicates too)
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Consider n random variables Xd for d ∈ [n], such that Xd = 1 if the d-th element of

∆q1 is present in ∆q1 ∩∆q2 . Then, we can invoke Chernoff’s bound as X = Σn
d=1Xd. By

setting t = cλ, n = kt = kcλ for some constants k, c ∈ R+, and N = kcQ(Q − 1)λ, we

have µ = ckλ = kt. For sufficently large k, any real σ ≥ 0:

Pr [X > (1 + σ)ϵ] < exp

(
−σ2ϵ

2 + σ

)
=⇒ Pr [X > t] < 2−Θ(λ)

=⇒ Pr

[∣∣∣∣∣ ⋃
q1 ̸=q2

∆q1 ∩∆q2

∣∣∣∣∣ ≤ t

]
= 1− Pr [X > t] ≥ 1− 2−Θ(λ)

7.3 Efficiency

In the FE for SI scheme, using N = Θ(Q2λ), n = Θ(λ), and t = Θ(λ) in accordance with

the small pair-wise intersection lemma,

• Setup: We invoke N instantiations of 1FE and Lmax instantiations of ipFE. The

output contains Lmax · (3N + 2) group elements and 4N · poly(λ, Lmax) public-key

encryption system keys.

• KeyGen: We perform n evaluations of 1FE.KeyGen algorithm and Lmax evaluations

of ipFE.KeyGen algorithm. We also sample a random subset of size n from [N ]. The

output contains 2Lmax group elements and n · poly(λ, Lmax) public-key encryption

system keys.

• Enc: We need at most N · Lmax PRF evaluations and at most Lmax executions of

ipFE.Enc. We also require N executions of 1FE.Enc. We also sample N random
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strings from {0, 1}λ. The output contains 4N ·ψ public-key encryption ciphertexts

and at most Lmax · (2N + 2) group elements.

• Dec: We perform n executions of 1FE.Dec algorithm and at most Lmax execu-

tions of ipFE.Dec. We also perform at most Lmax group exponentiations. It takes

O (|S| · |T |) time to find the set intersection using pairwise comparisons followed

by O(|S ∩ T |) time to generate the output.

7.4 Security

We prove the adaptive security of PubKeySI scheme using a simulator. Similar to

the operations of the simulator for PrivKeySI, simulator for PubKeySI poses as a chal-

lenger interacting with the adversary. The simulator does not posses the master secret

key generated by the setup and has to respond to adversary’s query such that any PPT

adversary cannot distinguish between the real challenger’s responses and simulator’s re-

sponses. Simulator for public-key encryption scheme simulates the three main compo-

nents namely, 1FE, ipFE and PRF. We use the simulators sim1FE and simipFE to simulate

the responses for 1FE and ipFE respectively. We sample uniform random strings to re-

place the output of PRF. Also, the simulator does not have direct access to the challenge

ciphertext queries. Instead, it has access to the length of the challenge ciphertext and

pairwise intersection of the challenger ciphertext query set and every functional query

set. Using the adaptive security of 1FE, ipFE, and the security of PRF, we describe the

simulator as follows:

Simulator

1. Sim receives the query bound Q and the maximum set size Lmax from A.

2. Sample Q sets as follows: for every q ∈ [Q], sample a uniformly random set ∆q ⊂
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[N ] of size n. Construct ∆Corr =
⋃
q1 ̸=q2(∆q1 ∩ ∆q2), where ∆Corr denotes the set

of corrupted instantiations. If |∆Corr| > t, abort and output ⊥.

3. For every u ∈ [N ], sample Ku
$←− {0, 1}λ uniformly at random.

4. Sim computes the master public key PK as follows: for every u ∈ [N ],

• If u ∈ ∆Corr: (pku,msku)← 1FE.Setup(1λ, 1ψ)

• Otherwise, pku ← sim
(u)
1FE.Setup(1

λ, 1ψ).

For every k ∈ [Lmax], (ipPKk, ipMSKk)← sim
(k)
ipFE (1

m, 1N). Sim sets PK = (ipPK, . . . ,

ipPKLmax
, pk1, . . . , pkN) and sends it to A.

5. Maintain a PSet and CSet across all functional key queries and challenge set queries

such that it contains the set elements corresponding query responses. Initially PSet

and CSet are empty.

6. A makes Q1 functional set queries T (1), . . . , T (Q1) to Sim. For every q ∈ [Q1], let

T (q) =
{
t
(q)
1 , . . . , t

(q)
µq

}
, and µq ≤ Lmax be the length of the q-th functional set. Sim

computes functional key for T (q) as follows:

• Set T̂ (q) ←
((

1, t
(q)
1

)
, . . . ,

(
µq, t

(q)
µq

))
.

• For every j ∈ [µq], d ∈ ∆q,

– If d ∈ ∆Corr ∩∆q, if
(
t
(q)
j , Kd, ·

)
̸∈ PSet: set ρ

t
(q)
j

d = PRF
(
Kd, t

(q)
j

)
.

– Otherwise if d ∈ ∆q\∆Corr, if
(
t
(q)
j , Kd, ·

)
̸∈ PSet: sample ρ

t
(q)
j

d

$←− {0, 1}m.

Add
(
t
(q)
j , Kd, ρ

t
(q)
j

d

)
to PSet.

• Create a functional circuit Cq that takes K ∈ {0, 1}λ as input and outputs(
PRF

(
K, t

(q)
1

)
, . . . , PRF

(
K, t

(q)
µq

))
.

• Construct an N length vector e∆q where e∆q

d = 1 if d ∈ ∆q and 0 otherwise.
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• For every k ∈ [Lmax], compute the simulated functional key for e∆q . That is

ipSK
(q)
k ← sim

(k)
ipFE (ipMSKk, e

∆q).

• For every d ∈ ∆q,

– If d ∈ ∆Corr ∩∆q: compute sk
(q)
d ← 1FE. KeyGen(mskd, Cq)

– Otherwise, if d ∈ ∆q \ ∆Corr: compute the functional secret key for Cq.

That is, sk(q)d ← sim
(d)
1FE(Cq).

Set skT (q) =

(
T̂q,∆q,

{
ipSK(q)

z

}
z∈[Lmax]

{
sk

(q)
d

}
d∈∆q

)
. Send skT (q) to A.

7. A submits the challenge set S = {s1, . . . , sγ}. Sim takes
{
1γ,
(
T (1), S ∩ T (1)

)
, . . . ,(

T (Q1), S ∩ T (Q1)
)}

as input and does the following:

• Let {s1, . . . , sϕ} = S ∩
(
T (1) ∪ . . . ∪ T (Q1)

)
• For every i ∈ [ϕ], u ∈ [N ], note that (si, Ku, ·) ∈ PSet. Retrieve (si, Ku, ρ

si
u )

from PSet.

• For every i ∈ [γ−ϕ], u ∈ [N ], add (ηi, Ku, ρ
ηi
u ) to PSet, where ηi

$←− {0, 1}l and

ρηiu
$←− {0, 1}m.

• Generate a random permutation of the set
{
s1, . . . , sϕ, η1, . . . , ηγ−ϕ

}
to get

{ς1, . . . , ςγ}.

• For every i ∈ [γ], let Vi =
{(
e∆q ,

〈
(ρςiu )u∈[N ] , e

∆q

〉
, ipSK

(q)
i

)
| ∀ q ∈ [Q1]

}
.

ipCTi ← sim
(z)
ipFE

(
ipPKi, ipMSKi,Vi,

{
1|ρ

ςi
1 |, . . . , 1|ρ

ςi
1 |
})

, where gi is obtained

from ipPKi. Store the state returned by the simulator separately in ipFE.sti.

• For every u ∈ [N ],

– If u ∈ ∆Corr: CTu ← 1FE.Enc (pku, Ku).

– Otherwise if u ̸∈ ∆Corr: for every q ∈ [Q1], let ŷ(q)u =

(
ρ
tq1
u , . . . , ρ

t
(q)
µq
u

)
and

Vu =
{
ŷ
(q)
u : ∀ q ∈ [Q1]

}
. Compute the simulated ciphertext

46



Public-Key FE for SI Chapter 7

CTu ← sim
(u)
1FE

(
1λ, Vu

)
.

Set CT = (CT1, . . . ,CTN , ipCT1, . . . , ipCTγ). Send CT to A.

8. A makes Q − Q1 functional set queries T (Q1+1), . . . , T (Q) to Sim. For every q ∈

{Q1+1, . . . , Q}, let T (q) =
{
t
(q)
1 , . . . , t

(q)
µq

}
, and µq ≤ Lmax be the length of the q-th

functional set. Sim takes
{
T (q), S ∩ T (q)

}
as input and computes functional key for

T (q) as follows:

• Set T̂ (q) ←
((

1, t
(q)
1

)
, . . . ,

(
µq, t

(q)
µq

))
.

• For every j ∈ [µq], d ∈ ∆q,

– If
(
t
(q)
j , ·, ·

)
∈ PSet, Retrieve

(
t
(q)
j , Kd, ρ

t
(q)
j

d

)
from PSet.

– Otherwise, if
(
t
(q)
j , ·, ·

)
̸∈ PSet and t(q)j ̸∈ S ∩ T (q),

∗ If d ∈ ∆Corr ∩∆q: set ρ
t
(q)
j

d = PRF
(
Kd, t

(q)
j

)
.

∗ Otherwise if d ∈ ∆q \∆Corr: sample ρ
t
(q)
j

d

$←− {0, 1}m.

Add
(
t
(q)
j , Kd, ρ

t
(q)
j

d

)
to PSet.

– Otherwise, if
(
t
(q)
j , ·, ·

)
̸∈ PSet and t(q)j ∈ S ∩ T (q),

∗ If
(
t
(q)
j , ·

)
∈ CSet, retrieve (χ,Kd, ρ

χ
d ).

∗ Otherwise, sample χ $←− {η1, . . . , ηγ−ϕ} such that (·, χ) ̸∈ CSet. Add(
t
(q)
j , χ

)
to CSet.

Select d∗ $←− ∆q\∆Corr and set ρ
t
(q)
j

d∗ =

( ∑
d∈∆q

ρχd −
∑

d∈∆q ,d ̸=d∗
PRF

(
Kd, t

(q)
j

))
mod p. For other d ∈ ∆q, d ̸= d∗, set ρ

t
(q)
j

d = PRF
(
Kd, t

(q)
j

)
.

• Create a functional circuit Cq that takes K ∈ {0, 1}λ as input and outputs(
PRF

(
K, t

(q)
1

)
, . . . , PRF

(
K, t

(q)
µq

))
.

• Construct an N length vector e∆q where e∆q

d = 1 if d ∈ ∆q and 0 otherwise.
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• For every i ∈ [γ], compute the simulated functional key for e∆q . That is

ipSK
(q)
i ← sim

(i)
ipFE

(
ipMSKi, e

∆q ,
〈
(ρςiu )u∈[N ] , e

∆q

〉
, ipFE.sti

)
.

• For every d ∈ ∆q,

– If d ∈ ∆Corr ∩∆q: compute sk
(q)
d ← 1FE. KeyGen(mskd, Cq)

– Otherwise, if d ∈ ∆q \ ∆Corr: compute the functional secret key for Cq.

That is, sk(q)d ← sim
(d)
1FE(Cq, ŷ

(q)
d ) where ŷ(q)d =

(
ρ
t
(q)
1
d , . . . , ρ

t
(q)
µq

d

)
.

Set skT (q) =

(
T̂ (q),∆q,

{
ipSK

(q)
j

}
j∈[Lmax]

{
sk

(q)
d

}
d∈∆q

)
. Send skT (q) to A.

9. A outputs b. Output b.

We show the computational indistinguishability between the real challenger and the

simulator using a series of hybrids as mentioned below.

Hyb0: Same as Expt0 from 5.3. This hybrid consists of the following steps:

1. Ch receives the query bound Q and the maximum set size Lmax from A.

2. Ch computes the master public key PK as follows: for every u ∈ [N ], Ch gen-

erates (pku,msku) ← 1FE. Setup(1λ, 1ψ). For every k ∈ [Lmax], Ch generates

(ipPKk, ipMSKk)← ipFE.Setup(1m, 1N). Ch sets PK = (ipPK, . . . , ipPKLmax
, pk1, . . . ,

pkN) and sends it to A.

3. A makes Q1 functional set queries T (1), . . . , T (Q1) to Ch. For every q ∈ [Q1], let

T (q) =
{
t
(q)
1 , . . . , t

(q)
µq

}
, and µq ≤ Lmax be the length of the q-th functional set. Ch

computes functional key for T (q) as follows:

• Set ˆT (q) ←
((

1, T
(q)
1

)
, . . . ,

(
µq, T

(q)
µq

))
.

• Sample ∆q ⊂ [N ] of size n uniformly at random.
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• Create a functional circuit Cq that takesK as input and outputs
(
PRF

(
K, t

(q)
1

)
,

. . . ,PRF
(
K, t

(q)

µ(q)

))
• Construct an N length vector e∆q where e∆q

d = 1 if d ∈ ∆q and 0 otherwise.

• For every k ∈ [Lmax], compute ipSK
(q)
k ← ipFE. KeyGen(ipMSKk, e

∆q).

• For every d ∈ ∆q, compute sk
(q)
d ← 1FE.KeyGen (mskd, Cq)

Set skT (q) =
(
T̂ (q),∆q, {ipSK(q)

k }k∈[Lmax]{sk
(q)
d }d∈∆q

)
. Send skT (q) to A.

4. A submits the challenge set S = {s1, . . . , sγ}. Ch does the following:

• For every u ∈ [N ], sample Ku
$←− {0, 1}λ uniformly at random.

• For every i ∈ [γ], compute ipCTi ← ipFE.Enc(ipPKi, (PRF(K1, si), . . . ,

PRF(KN , si))).

• For every u ∈ [N ],CTu ← 1FE.Enc (pku, Ku)

Set CT = (CT1, . . . ,CTN , ipCT1, . . . , ipCTγ). Send CT to A.

5. A makes Q − Q1 functional set queries T (Q1+1), . . . , T (Q) to Ch. For every q ∈

{Q1+1, . . . , Q}, let T (q) =
{
t
(q)
1 , . . . , t

(q)
µq

}
, and µq ≤ Lmax be the length of the q-th

functional set. Ch computes functional key for T (q) as follows:

• Set T̂ (q) ←
((

1, T
(q)
1

)
, . . . ,

(
µq, T

(q)
µq

))
.

• Sample ∆q ⊂ [N ] of size n uniformly at random.

• Create a functional circuit Cq that takesK as input and outputs
(
PRF

(
K, t

(q)
1

)
,

. . . ,PRF
(
K, t

(q)
µq

))
• Construct an N length vector e∆q where e∆q

d = 1 if d ∈ ∆q and 0 otherwise.

• For every i ∈ [γ], compute ipSK
(q)
i ← ipFE.KeyGen(ipMSKk, e

∆q).
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• For every d ∈ ∆q, compute sk
(q)
d ← 1FE.KeyGen(mskd, Cq)

Set skT (q) =

(
T̂ (q),∆q,

{
ipSK

(q)
i

}
i∈[γ]

{
sk

(q)
d

}
d∈∆q

)
. Send skT (q) to A.

6. A outputs b. Output b.

Hyb1: In this hybrid, we will sample ∆q uniformly at random in the beginning. The

changes are marked in red. The rest of the steps remain the same as Hyb0. The output

distribution will remain identical.

2. Sample Q sets as follows: for every q ∈ [Q], sample a uniformly random set ∆q ⊂

[N ] of size n.

Hyb2: We will find the corrupted instances of 1FE early in the experiment using |∆Corr| =

|∪q1 ̸=q2∆q1 ∩∆q2|. If |∆Corr > t, abort. The rest of the steps remain the same as Hyb0.

It follows from small-pairwise intersection lemma that the statistical distance between

Hyb1 and Hyb2 is negligible.

2. Sample Q sets as follows: for every q ∈ [Q], sample a uniformly random set ∆q ⊂

[N ] of size n. Construct ∆Corr =
⋃
q1 ̸=q2(∆q1 ∩ ∆q2). If |∆Corr| > t, abort and

output ⊥.

Hyb3,ℓ for ℓ ∈ [N ]: The first ℓ-1 non-corrupted instantiations of 1FE are simulated while

the rest of the steps remain as in Hyb2.

1. Ch receives the query bound Q and the maximum set size Lmax from A.

2. Sample Q sets as follows: for every q ∈ [Q], sample a uniformly random set ∆q ⊂

[N ] of size n. Construct ∆Corr =
⋃
q1 ̸=q2(∆q1 ∩ ∆q2). If |∆Corr| > t, abort and

output ⊥.

3. Ch computes the master public key PK as follows: for every u ∈ [N ],
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• If u ≥ ℓ or u ∈ ∆Corr: (pku,msku)← 1FE.

Setup(1λ, 1ψ)

• Otherwise, if u < ℓ and u ̸∈ ∆Corr, pku ← sim
(u)
1FE.Setup(1

λ, 1ψ).

Ch generates ∀k ∈ [Lmax](ipPKk, ipMSKk) ← ipFE. Setup(1m, 1N). Ch sets PK =

(ipPK, . . . , ipPKLmax
, pk1, . . . , pkN) and sends it to A.

4. A makes Q1 functional set queries T (1), . . . , T (Q1) to Ch. For every q ∈ [Q1], let

T (q) =
{
t
(q)
1 , . . . , t

(q)
µq

}
, and µq ≤ Lmax be the length of the q-th functional set. Ch

computes functional key for T (q) as follows:

• Set T̂ (q) ←
((

1, T
(q)
1

)
, . . . ,

(
µq, T

(q)
µq

))
.

• Create a functional circuit Cq that takesK as input and outputs
(
PRF

(
K, t

(q)
1

)
,

. . . ,PRF
(
K, t

(q)
µq

))
• Construct an N length vector e∆q where e∆q

d = 1 if d ∈ ∆q and 0 otherwise.

• For every k ∈ [Lmax], compute ipSK
(q)
k ← ipFE. KeyGen(ipMSKk, e

∆q).

• For every d ∈ ∆q,

– If d ∈ ∆Corr ∩∆q or d ≥ ℓ: compute sk
(q)
d ← 1FE.KeyGen(mskd, Cq)

– Otherwise, if d ∈ ∆q \∆Corr and d < ℓ: compute the functional secret key

for Cq. That is, sk(q)d ← sim
(i)
1FE(Cq).

Set skT (q) =

(
T̂ (q),∆q,

{
ipSK

(q)
k

}
k∈[Lmax]

{
sk

(q)
d

}
d∈∆q

)
. Send skT (q) to A.

5. A submits the challenge set S = {s1, . . . , sγ}. Ch does the following:

• For every u ∈ [N ], sample Ku
$←− {0, 1}λ uniformly at random.

• For every i ∈ [γ], compute ipCTi ← ipFE.Enc(ipPKi, (PRF(K1, si), . . . ,

PRF(KN , si))).
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• For every u ∈ [N ],

– If u ∈ ∆Corr or u ≥ ℓ: CTu ← 1FE.Enc (pku, Ku).

– Otherwise if u ̸∈ ∆Corr and u < ℓ: for every q ∈ [Q1], let ŷ(q)u = Cq(Ku)

and Vu =
{
ŷ
(q)
u | ∀ q ∈ [Q1]

}
. Compute the simulated ciphertext CTu ←

sim
(u)
1FE(1

λ, Vu).

Set CT = (CT1, . . . ,CTN , ipCT1, . . . , ipCTγ). Send CT to A.

6. A makes Q − Q1 functional set queries T (Q1+1), . . . , T (Q) to Ch. For every q ∈

{Q1+1, . . . , Q}, let T (q) =
{
t
(q)
1 , . . . , t

(q)
µq

}
, and µq ≤ Lmax be the length of the q-th

functional set. Ch computes functional key for T (q) as follows:

• Set ˆT (q) ←
((

1, T
(q)
1

)
, . . . ,

(
µq, T

(q)
µq

))
.

• Create a functional circuit Cq that takesK as input and outputs
(
PRF

(
K, t

(q)
1

)
,

. . . ,PRF
(
K, t

(q)
µq

))
• Construct an N length vector e∆q where e∆q

d = 1 if d ∈ ∆q and 0 otherwise.

• For every i ∈ [γ], compute ipSK
(q)
i ← ipFE.KeyGen

(
ipMSKi, e

∆q
)
.

• For every d ∈ ∆q,

– If d ∈ ∆Corr ∩∆q or d ≥ ℓ: compute sk
(q)
d ← 1FE.KeyGen(mskd, Cq)

– Otherwise, if d ∈ ∆q \∆Corr and i < ℓ: compute the functional secret key

for Cq. That is, sk(q)d ← sim
(d)
1FE(Cq, ŷ

(q)
d ) where ŷ(q)d = Cq(Kd).

Set skT (q) =

(
T̂ (q),∆q,

{
ipSK

(q)
i

}
i∈[γ]

{
sk

(q)
d

}
d∈∆q

)
. Send skT (q) to A.

7. A outputs b. Output b.

Claim 11. Assuming the security of 1FE, for every ℓ ∈ [N − 1], Hyb3,ℓ and Hyb3,ℓ+1 are

computationally indistinguishable.
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Proof: Note that Hyb2 and Hyb3,1 are identically distributed. If ℓ ∈ ∆Corr, we are

not simulating this instantiation. Hence, the output distribution of Hyb3,ℓ will be exactly

same as Hyb3,ℓ+1. WLOG, assume that ℓ ̸∈ ∆Corr i.e, ℓ-th instantiation is not corrupted

and is only queried once for secret key. Assuming that there exists an adversary A that

can distinguish the hybrids Hyb3,ℓ and Hyb3,ℓ+1, we will construct an adversary B that

can break the adaptively secure property of the ℓ-th instantiation of 1FE. More formally,

if A’s advantage is such that

∣∣Pr [0← AHyb3,ℓ(1λ)
]
− Pr

[
0← AHyb3,ℓ+1(1λ)

]∣∣ > negl(λ)

We will construct a polynomial time reduction B which distinguishes between oracle

access to the honest challenger Ch and a simulator sim1FE for the 1FE scheme. More

specifically, we will construct an adversary B whose advantage in distinguishing the real

and ideal experiments for 1FE is non-negligible.

∣∣∣Pr [0← BCh(1λ)
]
− Pr

[
0← Bsim

(ℓ)
1FE(1λ)

]∣∣∣ > negl(λ)

The description of B is as follows:

1. A sends Q, Lmax to B. B computes ψ based on Lmax and λ and sends s to oracle

O.

2. B computes N = Θ(Q2λ), t = Θ(λ), and n = Θ(t) such that t < n. It also computes

∆q ⊆ [N ] of size n for each q ∈ [Q] and ∆Corr = ∪q1 ̸=q2(∆q1 ∩ ∆q2). B aborts if

|∆Corr| > t and outputs ⊥.

3. B computes master public key as follows: for every u ∈ [N ]:

• If u ∈ ∆Corr or u > ℓ : (pku,msku)← 1FE.Setup (1λ, 1ψ).
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• Otherwise, if u = ℓ, set pku = output received from O.

• Otherwise, if u ̸∈ ∆Corr and u < ℓ : pku ← sim
(u)
1FE(1

λ, 1ψ).

For every k ∈ [Lmax], B computes (ipPKk, ipMSKk) ← ipFE.Setup(1m, 1N). B sets

PK←
(
ipPK1, . . . , ipPKLmax

, pk1, . . . , pkN
)

and sends it to A.

4. Let Q1 queries for functional secret keys be submitted. For every q ∈ [Q1], let

T (q) =
{
t
(q)
1 , . . . , t

(q)
µq

}
be the functional set associated with the query. B calculates

T̂ (q), the functional circuit Cq, and the N -length vector e∆q . For every k ∈ [Lmax],

compute ipSK
(q)
k ← ipFE.KeyGen

(
ipMSKk, e

∆q
)
. Then, for every d ∈ ∆Corr ∩∆q or

d > ℓ, B computes sk
(q)
d ← 1FE.KeyGen(mskd, Cq). Otherwise, if d ∈ ∆q \ ∆Corr

and d < ℓ, B computes sk
(q)
d ← sim

(d)
1FE(Cq). If d = ℓ, sk(q)d ← O(Cq). B sets

skT (q) ←

(
T̂ (q),∆q,

{
ipSK

(q)
k

}
k∈[Lmax]

{sk(q)d }d∈∆q

)
and sends it to A.

5. A submits the challenge set S = {s1, . . . , sγ}. For each u ∈ [N ], B samples Ku
$←−

{0, 1}λ. For every i ∈ [γ], compute ipCTi ← ipFE.Enc
(
ipPKi, (PRF(K1, si) , . . . ,

PRF (KN , si))
)
. For each u ∈ [N ], B does the following:

• If u ∈ ∆Corr or u > ℓ: CTu ← 1FE.Enc(pku, Ku).

• Otherwise, if u ̸∈ ∆Corr and u < ℓ: CTu ← sim
(u)
1FE(1

λ, Vu) where Vu ={
ŷ
(q)
u | ∀q ∈ [Q1]

}
and ŷ(q)u = Cq(Ku).

• Otherwise, if u = ℓ, set ctu ← O(Ku)

B sets CT = (CT1, . . . ,CTN , ipCT1, . . . , ipCTγ) and sends it to A.

6. Now Q − Q1 queries for functional secret keys will be queried. For every q ∈

{Q1+1, . . . , Q}, let T (q) =
{
t
(q)
1 , . . . , t

(q)
µq

}
be the functional set associated with the

query. B calculates T̂ (q), the functional circuit Cq, and the N -length vector e∆q .

For every i ∈ [γ], compute ipSKi ← ipFE.KeyGen
(
ipMSKi, e

∆q
)
. Then, for every
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d ∈ ∆Corr ∩∆q or d > ℓ, B computes sk
(q)
d ← 1FE.KeyGen(mskd, Cq). Otherwise, if

d ∈ ∆q \∆Corr and d < ℓ, B computes sk(q)d ← sim
(d)
1FE(Cq, ŷ

(q)
d ) where ŷ(q)d = Cq(Kd).

If d = ℓ, sk(q)d ← O(Cq). B sets skT (q) ←
(
T̂ (q),∆q,

{
ipSK

(q)
i

}
i∈[γ]

{
sk

(q)
d

}
d∈∆q

)
and

sends it to A.

7. A outputs the bit b. B outputs b.

As we can see, B runs in polynomial time in the parameters for Q, λ, Lmax as both Ch and

sim for 1FE (oracles) run in polynomial times too. If the oracle O is an honest challenger

for 1FE, B behaves like Hyb3,ℓ and if O is sim for 1FE, B behaves like Hyb3,ℓ+1. As A can

distinguish between them with non-negligible advantage and the abort probability for B

is negligible, we can see that B with non-negligible probability distinguished between an

honest challenger and simulator for 1FE. This contradicts our assumption for adaptively

secure 1FE. Hence, Hyb3,ℓ and Hyb3,ℓ+1 are computationally indistinguishable.

Hyb4,ℓ for ℓ ∈ [γ]: We will simulate the first ℓ − 1 ipFE instantiations while the rest are

generated honestly in this experiment.

1. Ch receives the query bound Q and the maximum set size Lmax from A.

2. Sample Q sets as follows: for every q ∈ [Q], sample a uniformly random set ∆q ⊂

[N ] of size n. Construct ∆Corr =
⋃
q1 ̸=q2(∆q1 ∩ ∆q2). If |∆Corr| > t, abort and

output ⊥.

3. Ch computes the master public key PK as follows: for every u ∈ [N ],

• If u ∈ ∆Corr: (pku,msku)← 1FE.Setup(1λ, 1ψ)

• Otherwise, if u ̸∈ ∆Corr, pku ← sim
(u)
1FE.Setup (1λ, 1ψ).

For every k ∈ [Lmax],

• If k ≥ ℓ: (ipPKk, ipMSKk)← ipFE.Setup(1m, 1N).
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• Otherwise if k < ℓ: (ipPKk, ipMSKk)← sim
(k)
ipFE (1m, 1N).

Ch sets PK = (ipPK, . . . , ipPKLmax
, pk1, . . . , pkN) and sends it to A.

4. A makes Q1 functional set queries T (1), . . . , T (Q1) to Ch. For every q ∈ [Q1], let

T (q) =
{
t
(q)
1 , . . . , t

(q)
µq

}
, and µq ≤ Lmax be the length of the q-th functional set. Ch

computes functional key for T (q) as follows:

• Set T̂ (q) ←
((

1, t
(q)
1

)
, . . . ,

(
µq, t

(q)
µq

))
.

• Create a functional circuit Cq that takesK as input and outputs
(
PRF

(
K, t

(q)
1

)
,

. . . ,PRF
(
K, t

(q)
µq

))
.

• Construct an N length vector e∆q where e∆q

d = 1 if d ∈ ∆q and 0 otherwise.

• For every k ∈ [Lmax],

– If k ≥ ℓ: compute ipSK
(q)
k ← ipFE.KeyGen

(
ipMSKk, e

∆q
)
.

– Otherwise, if k < ℓ: compute the simulated functional key for e∆q . That

is ipSK
(q)
k ← sim

(k)
ipFE

(
ipMSKk, e

∆q
)
.

• For every d ∈ ∆q,

– If d ∈ ∆Corr ∩∆q: compute sk
(q)
d ← 1FE. KeyGen(mskd, Cq)

– Otherwise, if d ∈ ∆q \ ∆Corr: compute the functional secret key for Cq.

That is, sk(q)d ← sim
(d)
1FE(Cq).

Set skT (q) =

(
T̂ (q),∆q,

{
ipSK

(q)
k

}
k∈[Lmax]

{
sk

(q)
d

}
d∈∆q

)
. Send skT (q) to A.

5. A submits the challenge set S = {s1, . . . , sγ}. Ch does the following:

• For every u ∈ [N ], sample Ku
$←− {0, 1}λ uniformly at random.

• For every i ∈ [γ],

– If i ≥ ℓ: compute ipCTi ← ipFE.Enc(ipPKi, (PRF(K1, si), . . . ,PRF(KN , si))).
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– Otherwise if i < ℓ: Let Vi =

{(
e∆q ,

〈
(PRF(Ku, si))u∈[N ] , e

∆q

〉
, ipSK

(q)
i

)
|

∀ q ∈ [Q1]

}
. ipCTi ← sim

(i)
ipFE

(
ipPKi, ipMSKi,Vi,

{
1|PRF(K1,si)|, . . . ,

1|PRF(KN ,si)|
})

. Store the state returned by the simulator separately in

ipFE.sti.

• For every u ∈ [N ],

– If u ∈ ∆Corr: CTu ← 1FE.Enc (pku, Ku).

– Otherwise if u ̸∈ ∆Corr: for every q ∈ [Q1], let ŷ
(q)
u = Cq(Ku) and

Vu =
{
y
(q)
u : ∀ q ∈ [Q1]

}
. Compute the simulated ciphertext CTu ←

sim
(u)
1FE(1

λ, Vu).

Set CT = (CT1, . . . ,CTN , ipCT1, . . . , ipCTγ). Send CT to A.

6. A makes Q − Q1 functional set queries T (Q1+1), . . . , T (Q) to Ch. For every q ∈

{Q1+1, . . . , Q}, let T (q) =
{
t
(q)
1 , . . . , t

(q)
µq

}
, and µq ≤ Lmax be the length of the q-th

functional set. Ch computes functional key for T (q) as follows:

• Set T̂ (q) ←
((

1, t
(q)
1

)
, . . . ,

(
µq, t

(q)
µq

))
.

• Create a functional circuit Cq that takesK as input and outputs
(
PRF

(
K, t

(q)
1

)
,

. . . ,PRF
(
K, t

(q)
µq

))
.

• Construct an N length vector e∆q where e∆q

d = 1 if d ∈ ∆q and 0 otherwise.

• For every i ∈ [γ],

– If i ≥ ℓ: compute ipSK
(q)
i ← ipFE.KeyGen (ipMSKi, e

∆q).

– Otherwise, if i < ℓ: compute the simulated functional key for e∆q . That

is ipSK
(q)
i ← sim

(i)
ipFE

(
ipMSKi, e

∆q ,
〈
(PRF(Ku, si))u∈[N ] , e

∆q

〉
, ipFE.sti

)
.

• For every d ∈ ∆q,
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– If d ∈ ∆Corr ∩∆q: compute sk
(q)
d ← 1FE. KeyGen(mskd, Cq)

– Otherwise, if d ∈ ∆q \ ∆Corr: compute the functional secret key for Cq.

That is, sk(q)d ← sim
(d)
1FE

(
Cq, ŷ

(q)
d

)
where ŷ(q)d = Cq(Kd).

Set skT (q) =

(
T̂ (q),∆q,

{
ipSK

(q)
i

}
i∈[γ]

{
sk

(q)
d

}
d∈∆q

)
. Send skT (q) to A.

7. A outputs b. Output b.

Claim 12. Assuming the security of 1FE, Hyb3,N and Hyb4,1 are computationally indis-

tinguishable.

Proof: As we are only simulating the N -th instantiation of 1FE, proof is similar to

claim 11.

Claim 13. Assuming the security of ipFE, for every ℓ ∈ [γ − 1], Hyb4,ℓ and Hyb4,ℓ+1 are

computationally indistinguishable.

Proof: Assuming that there exists an adversary A who can distinguish between

Hyb4,ℓ and Hyb4,ℓ+1, we will construct a hybrid that can break the adaptively secure

property of the ℓ-th instantiation of ipFE. More formally, if A’s advantage is such that

∣∣Pr [0← AHyb4,ℓ(1λ)
]
− Pr

[
0← AHyb4,ℓ+1(1λ)

]∣∣ > negl(λ)

We will construct a polynomial time reduction B which distinguishes between oracle

access to the honest challenger Ch and a simulator sim
(ℓ)
ipFE for the ipFE scheme. More

specifically, we will construct an adversary B whose advantage in distinguishing the real

and ideal experiments for ipFE is non-negligible.

∣∣∣Pr [0← BCh(1λ)
]
− Pr

[
0← Bsim

(ℓ)
ipFE(1λ)

]∣∣∣ > negl(λ)

The description of B is as follows:
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1. A sends Q, Lmax to B. B calculates m = poly(λ), t = Θ(λ), n = Θ(t), and N =

Θ(Q2t). B sends m,N to the oracle O.

2. B computes ∆q ⊆ [N ] of size n for each q ∈ [Q] and ∆Corr = ∪q1 ̸=q2∆q1 ∩ ∆q2 . B

aborts if |∆Corr| > t and outputs ⊥.

3. B computes master public key as follows: for every u ∈ [N ]:

• If u ∈ ∆Corr: (pku,msku)← 1FE.Setup(1λ, 1ψ).

• Otherwise, if u ̸∈ ∆Corr: pku ← sim
(u)
1FE(1

λ, 1ψ).

For every k ∈ [Lmax], B computes

• If k > ℓ: (ipPKk, ipMSKk)← ipFE.Setup(1m, 1N).

• Otherwise if k < ℓ: (ipPKk, ipMSKk)← sim
(k)
ipFE (1m, 1N).

• Otherwise if k = ℓ: Set ipPKk as value returned by O.

B sets PK←
(
ipPK1, . . . , ipPKLmax

, pk1, . . . , pkN
)

and sends it to A.

4. Let Q1 queries for functional secret keys be submitted. For every q ∈ [Q1], let

T (q) =
{
t
(q)
1 , . . . , t

(q)
µq

}
be the functional set associated with the query. B calculates

T̂ (q), the functional circuit Cq, and the N -length vector e∆q . For every k ∈ [Lmax],

if k > ℓ, compute ipSK
(q)
k ← ipFE.KeyGen

(
ipMSKk, e

∆q
)
. Otherwise if k < ℓ, com-

pute ipSK
(q)
k ← sim

(k)
ipFE

(
ipMSKz, e

∆q
)
. Otherwise, if k = ℓ, set ipSK

(q)
k = O(e∆q).

Then, for every d ∈ ∆Corr ∩ ∆q, B computes sk
(q)
d ← 1FE.KeyGen(mskd, Cq).

Otherwise, if d ∈ ∆q \ ∆Corr, B computes sk
(q)
d ← sim

(d)
1FE(Cq). B sets skT (q) ←(

T̂ (q),∆q,
{
ipSK

(q)
k

}
k∈[Lmax]

{
sk

(q)
d

}
d∈∆q

)
and sends it to A.

5. A submits the challenge set S = {s1, . . . , sγ}. For each u ∈ [N ], B samples Ku
$←−

{0, 1}λ. For every i ∈ [γ], compute
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• If i > ℓ: ipCTi ← ipFE.Enc
(
ipPKi,

(
PRF(K1, si), . . . ,PRF(KN , si)

))
• Otherwise if i < ℓ: ipCTi ← sim

(i)
ipFE(ipPKi, ipMSKi,Vi,

{
1|PRF(K1,si)|, . . . ,

1|PRF(KN ,si)|
}
) where Vi =

{(
e∆q ,

〈
(PRF(Ku, si))u∈[N ] , e

∆q

〉
, ipSK

(q)
i

)
| ∀q ∈

[Q1]
}

. Store the state in ipFE.sti.

• Otherwise if i = ℓ: Set ipCTi ← O
((

PRF(K1, si), . . . ,PRF(KN , si)
))

For each u ∈ [N ], B does the following:

• If u ∈ ∆Corr: CTu ← 1FE.Enc(pku, Ku).

• Otherwise, if u ̸∈ ∆Corr: CTu ← sim
(u)
1FE(1

λ, Vu) where Vu =
{
ŷ
(q)
u : ∀q ∈ [Q1]

}
and ŷ(q)u = Cq(Ku).

B sets CT = (CT1, . . . ,CTN , ipCT1, . . . , ipCTγ) and sends it to A.

6. Now Q−Q1 queries for functional secret keys will be queried. For every q ∈ {Q1+

1, . . . , Q}, let T (q) =
{
t
(q)
1 , . . . , t

(q)
µq

}
be the functional set associated with the query.

B calculates T̂ (q), the functional circuit Cq, and the N -length vector e∆q . For every

i ∈ [γ], if i > ℓ, compute ipSK
(q)
i ← ipFE.KeyGen

(
ipMSKi, e

∆q
)
. Otherwise if k < ℓ,

compute ipSK(q)
i ← sim

(i)
ipFE

(
ipMSKi, e

∆q ,
〈
(PRF(Ku, si))u∈[N ] , e

∆q

〉
, ipFE.sti

)
. Oth-

erwise, if i = ℓ, set ipSK
(q)
i = O(e∆q). Then, for every d ∈ ∆Corr ∩ ∆q, B com-

putes sk
(q)
d ← 1FE.KeyGen(mskd, Cq). Otherwise, if d ∈ ∆q \ ∆Corr, B computes

sk
(q)
d ← sim

(d)
1FE(Cq). B sets skT (q) ←

(
T̂ (q),∆q,

{
ipSK

(q)
i

}
i∈[γ]

{
sk

(q)
d

}
d∈∆q

)
and

sends it to A.

7. A outputs the bit b. B outputs b.

As we can see, B runs in polynomial time in the parameters for Q, λ, Lmax as all the

components used and the oracle O runs in polynomial time. If O is the honest challenger

for ipFE scheme, B’s output distributions is exactly Hyb4,ℓ and if O is a simulator for
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ipFE, B’s output distribution is same as Hyb4,ℓ+1. As A can distinguish between them

with non-negligible advantage and the abort probability for B is negligible, we can see

that B with non-negligible probability can distinguish between the honest challenger and

simulator for ipFE scheme. This contradicts the adaptive security of ipFE. Hence, Hyb4,ℓ

and Hyb4,ℓ+1 are computationally indistinguishable.

Hyb5,ℓ for ℓ ∈ [N ]: We will use random strings instead of PRF(Ku, ·) for u ≤ ℓ− 1.

1. Ch receives the query bound Q and the maximum set size Lmax from A.

2. Sample Q sets as follows: for every q ∈ [Q], sample a uniformly random set ∆q ⊂

[N ] of size n. Construct ∆Corr =
⋃
q1 ̸=q2(∆q1 ∩ ∆q2). If |∆Corr| > t, abort and

output ⊥.

3. For every u ∈ [N ], sample Ku
$←− {0, 1}λ uniformly at random.

4. Ch computes the master public key PK as follows: for every u ∈ [N ],

• If u ∈ ∆Corr: (pku,msku)← 1FE.Setup(1λ, 1ψ)

• Otherwise, if u ̸∈ ∆Corr, pku ← sim
(u)
1FE.Setup (1λ, 1ψ).

For every k ∈ [Lmax], (ipPKk, ipMSKk)← sim
(k)
ipFE (1m, 1N). Ch sets PK = (ipPK, . . . ,

ipPKLmax
, pk1, . . . , pkN) and sends it to A.

5. Maintain a PSet across all functional key queries and challenge set queries such

that it contains the set elements corresponding query responses. Initially PSet is

empty.

6. A makes Q1 functional set queries T (1), . . . , T (Q1) to Ch. For every q ∈ [Q1], let

T (q) =
{
t
(q)
1 , . . . , t

(q)
µq

}
, and µq ≤ Lmax be the length of the q-th functional set. Ch

computes functional key for T (q) as follows:
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• Set T̂ (q) ←
((

1, T (q)
)
, . . . ,

(
µq, T

(q)
µq

))
.

• For every j ∈ [µq], d ∈ ∆q,

– If d ∈ ∆Corr ∩ ∆q or d ≥ ℓ, if
(
t
(q)
j , Kd, ·

)
̸∈ PSet: add

(
t
(q)
j , Kd,

PRF
(
Kd, t

(q)
j

))
to PSet.

– Otherwise if d ∈ ∆q \ ∆Corr and d < ℓ, if
(
t
(q)
j , Kd, ·

)
̸∈ PSet: sample

ρ
t
(q)
j

d

$←− {0, 1}m and add
(
t
(q)
j , Kd, ρ

t
(q)
j

d

)
to PSet.

• Create a functional circuit Cq that takesK as input and outputs
(
PRF(K, t

(q)
1 ),

. . . ,PRF
(
K, t

(q)
µq

))
• Construct an N length vector e∆q where e∆q

d = 1 if d ∈ ∆q and 0 otherwise.

• For every k ∈ [Lmax], compute the simulated functional key for e∆q . That is

ipSK
(q)
k ← sim

(k)
ipFE

(
ipMSKk, e

∆q
)
.

• For every d ∈ ∆q,

– If d ∈ ∆Corr ∩∆q: compute sk
(q)
d ← 1FE. KeyGen(mskd, Cq)

– Otherwise, if d ∈ ∆q \ ∆Corr: compute the functional secret key for Cq.

That is, sk(q)d ← sim
(d)
1FE(Cq).

Set skT (q) =

(
T̂ (q),∆q,

{
ipSK

(q)
k

}
k∈[Lmax]

{
sk

(q)
d

}
d∈∆q

)
. Send skT (q) to A.

7. A submits the challenge set S = {s1, . . . , sγ}. Ch does the following:

• For every i ∈ [γ], u ∈ [N ],

– If u ∈ ∆Corr or u ≥ ℓ, if (si, Ku, ·) ̸∈ PSet: add (si, Ku,PRF(Ku, si)) to

PSet.

– Otherwise, if u ̸∈ ∆Corr and u < ℓ, if (si, Ku, ·) ̸∈ PSet: sample ρsiu
$←−

{0, 1}m and add (si, Ku, ρ
si
u ) to PSet.
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Retrieve (si, Ku, ρ
si
u )u∈[N ],i∈[γ] from PSet

• For every i ∈ [γ], let Vi =

{(
e∆q ,

〈
(ρsiu )u∈[N ] , e

∆q

〉
, ipSK

(q)
i

)
| ∀ q ∈ [Q1]

}
.

ipCTi ← sim
(i)
ipFE

(
ipPKi, ipMSKi,Vi,

{
1|ρ

si
1 |, . . . , 1|ρ

si
N |
})

. Store the state re-

turned by the simulator separately in ipFE.sti.

• For every u ∈ [N ],

– If u ∈ ∆Corr: CTu ← 1FE.Enc (pku, Ku).

– Otherwise if u ̸∈ ∆Corr: for every q ∈ [Q1], let ŷ(q)u =

(
ρ
t
(q)
1
u , . . . , ρ

t
(q)
µq
u

)
and Vu =

{
ŷ
(q)
u | ∀ q ∈ [Q1]

}
. Compute the simulated ciphertext CTu ←

sim
(u)
1FE(1

λ, Vu).

Set CT = (CT1, . . . ,CTN , ipCT1, . . . , ipCTγ). Send CT to A.

8. A makes Q − Q1 functional set queries T (Q1+1), . . . , T (Q) to Ch. For every q ∈

{Q1+1, . . . , Q}, let T (q) =
{
t
(q)
1 , . . . , t

(q)
µq

}
, and µq ≤ Lmax be the length of the q-th

functional set. Ch computes functional key for T (q) as follows:

• Set ˆT (q) ←
((

1, t
(q)
1

)
, . . . ,

(
µq, t

q
µq

))
.

• For every j ∈ [µq], d ∈ ∆q,

– If d ∈ ∆Corr ∩ ∆q or d ≥ ℓ, if
(
t
(q)
j , Kd, ·

)
̸∈ PSet: add

(
t
(q)
j , Kd,

PRF
(
Kd, t

(q)
j

))
to PSet.

– Otherwise if d ∈ ∆q \ ∆Corr and d < ℓ, if
(
t
(q)
j , Kd, ·

)
̸∈ PSet: sample

ρ
t
(q)
j

d

$←− {0, 1}m and add
(
t
(q)
j , Kd, ρ

t
(q)
j

d

)
to PSet.

• Create a functional circuit Cq that takesK as input and outputs
(
PRF

(
K, t

(q)
1

)
,

. . . ,PRF
(
K, t

(q)
µq

))
.

• Construct an N length vector e∆q where e∆q

d = 1 if d ∈ ∆q and 0 otherwise.
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• For every i ∈ [γ], compute the simulated functional key for e∆q . That is

ipSK
(q)
i ← sim

(i)
ipFE

(
ipMSKi, e

∆q ,
〈
(ρsiu )u∈[N ] , e

∆q

〉
, ipFE.sti

)
.

• For every d ∈ ∆q,

– If d ∈ ∆Corr ∩∆q: compute sk
(q)
d ← 1FE. KeyGen(mskd, Cq).

– Otherwise, if d ∈ ∆q \ ∆Corr: compute the functional secret key for Cq.

That is, sk(q)d ← sim
(d)
1FE

(
Cq, ŷ

(q)
d

)
where ŷ(q)d =

(
ρ
t
(q)
1
d , . . . , ρ

t
(q)
µq

d

)
.

Set skT (q) =

(
T̂ (q),∆q,

{
ipSK

(q)
i

}
i∈[γ]

{
sk

(q)
d

}
d∈∆q

)
. Send skT (q) to A.

9. A outputs b. Output b.

Claim 14. Assuming the security of ipFE, Hyb4,γ and Hyb5,1 are computationally indis-

tinguishable.

Proof: As the only difference is the early generation of PRF keys and initialization

of PSet to empty set, the remaining distribution follows the proof of claim 13.

Claim 15. Assuming the security of PRF scheme, for every ℓ ∈ [N − 1], Hyb5,ℓ and

Hyb5,ℓ+1 are computationally indistinguishable.

Proof: Note that if ℓ ∈ ∆Corr, we are not substituting PRF(Kℓ, ·). Hence, the

output distribution of Hyb5,ℓ will be exactly same as Hyb5,ℓ+1. WLOG, assume that

ℓ ̸∈ ∆Corr i.e, ℓ-th instantiation is not corrupted and is only queried once for functional

secret key. Assuming that there exists an adversary A that can distinguish the hybrids

Hyb5,ℓ and Hyb5,ℓ+1, we will construct a hybrid that distinguish between the oracles

PRF (Kℓ, ·) : {0, 1}λ×{0, 1}l → {0, 1}m and the random function R(·) : {0, 1}l → {0, 1}m

from the same domain to co-domain. More formally, if A’s advantage is such that

∣∣Pr [0← AHyb5,ℓ(1λ)
]
− Pr

[
0← AHyb5,ℓ+1(1λ)

]∣∣ > negl(λ)
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We will construct a polynomial time reduction B which distinguishes between oracle

access to PRF (Kℓ, ·) and a random function R(·). More specifically, we will construct an

adversary B whose advantage in distinguishing the output of the pseudorandom function

and a uniformly random function is non-negligible.

∣∣Pr [0← BPRF(Kℓ,·)(1λ)
]
− Pr

[
0← BR(·)(1λ)

]∣∣ > negl(λ)

The description of B is as follows:

1. A sends Q, Lmax to B.

2. B calculates t = Θ(λ), n = Θ(t), and N = Θ(Q2t). B computes ∆q ⊆ [N ] of size n

for each q ∈ [Q] and ∆Corr = ∪q1 ̸=q2∆q1 ∩∆q2 . B aborts if |∆Corr| > t and outputs

⊥.

3. For every u ∈ [N ], sample Ku
$←− {0, 1}λ.

4. B computes master public key as follows: for every u ∈ [N ], if u ∈ ∆Corr:

(pku,msku) ← 1FE.Setup(1λ, 1ψ). Otherwise, if u ̸∈ ∆Corr: pku ← sim
(u)
1FE(1

λ, 1ψ).

For every k ∈ [Lmax], B computes (ipPKk, ipMSKk) ← sim
(k)
ipFE(1

m, 1N). B sets

PK←
(
ipPK1, . . . , ipPKLmax

, pk1, . . . , pkN
)

and sends it to A.

5. B initializes PSet to empty.

6. Let Q1 queries for functional secret keys be submitted. For every q ∈ [Q1], let

T (q) =
{
t
(q)
1 , . . . , t

(q)
µq

}
be the functional set associated with the query. For every

j ∈ [µq], d ∈ ∆q,

• If d ∈ ∆Corr∩∆q or d > ℓ, if
(
t
(q)
j , Kd, ·

)
̸∈ PSet: add

(
t
(q)
j , Kd,PRF

(
Kd, t

(q)
j

))
to PSet.
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• Otherwise if d ∈ ∆q \∆Corr and d < ℓ, if (t(q)j , Kd, ·) ̸∈ PSet: sample ρ
t
(q)
j

d

$←−

{0, 1}m and add
(
t
(q)
j , Kd, ρ

t
(q)
j

d

)
to PSet.

• Otherwise if d = ℓ, if
(
t
(q)
j , Kd, ·

)
̸∈ PSet: set ρ

t
(q)
j

d ← O(t(q)j ) and add(
t
(q)
j , Kd, ρ

t
(q)
j

d

)
to PSet.

B calculates T̂ (q) and theN -length vector e∆q . B creates the functional Cq that takes

input K ∈ {0, 1}λ and outputs
(
PRF

(
K, t

(q)
1

)
, . . . ,PRF

(
K, t

(q)
µq

))
. For every k ∈

[Lmax], compute ipSK
(q)
k ← sim

(k)
ipFE(ipMSKk, e

∆q). Then, for every d ∈ ∆Corr∩∆q, B

computes sk(q)d ← 1FE.KeyGen(mskd, Cq). Otherwise, if d ∈ ∆q \∆Corr, B computes

sk
(q)
d ← sim

(d)
1FE(Cq). B sets skT (q) ←

(
T̂ (q),∆q,

{
ipSK

(q)
k

}
k∈[Lmax]

{
sk

(q)
d

}
d∈∆q

)
and

sends it to A.

7. A submits the challenge set S = {s1, . . . , sγ}. For every i ∈ [γ], u ∈ [N ],

• If u ∈ ∆Corr or u > ℓ, if (si, Ku, ·) ̸∈ PSet: add (si, Ku,PRF(Ku, si)) to PSet.

• Otherwise, if u ̸∈ ∆Corr and u < ℓ, if (si, Ku, ·) ̸∈ PSet: sample ρsiu
$←− {0, 1}m

and add (si, Ku, ρ
si
u ) to PSet.

• Otherwise if u = ℓ, if (si, Ku, ·) ̸∈ PSet: set ρsiu ← O(si) and add (si, Ku, ρ
si
u )

to PSet.

Retrieve (si, Ku, α
si
u )u∈[N ],i∈[γ]. For every i ∈ [γ], compute ipCTi ← sim

(i)
ipFE

(
ipPKi,

ipMSKi,Vi,
{
1|ρ

si
1 |, . . . , 1|ρ

si
N |
})

where Vi =
{(

e∆q ,
〈
(ρsiu )u∈[N ] , e

∆q

〉
, ipSK

(q)
i

) ∣∣∣ ∀q ∈
[Q1]

}
. Store the state in ipFE.sti. For each u ∈ [N ], B does the following:

if u ∈ ∆Corr: CTu ← 1FE.Enc(pku, Ku). Otherwise, if u ̸∈ ∆Corr: CTu ←

sim
(u)
1FE(1

λ, Vu) where Vu =
{
ŷ
(q)
u | ∀q ∈ [Q1]

}
and ŷ

(q)
u =

(
ρ
t
(q)
1
u , . . . , ρ

t
(q)
µq
u

)
. B sets

CT = (CT1, . . . ,CTN , ipCT1, . . . , ipCTγ) and sends it to A.
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8. Now Q − Q1 queries for functional secret keys will be queried. For every q ∈

{Q1 + 1, . . . , Q},let T (q) =
{
t
(q)
1 , . . . , t

(q)
µq

}
be the functional set associated with the

query. B calculates T̂ (q) and the N -length vector e∆q . For every j ∈ [µq], d ∈ ∆q,

• If d ∈ ∆Corr∩∆q or d > ℓ, if
(
t
(q)
j , Kd, ·

)
̸∈ PSet: add

(
t
(q)
j , Kd,PRF

(
Kd, t

(q)
j

))
to PSet.

• Otherwise if d ∈ ∆q \∆Corr and d < ℓ, if
(
t
(q)
j , Kd, ·

)
̸∈ PSet: sample ρ

t
(q)
j

d

$←−

{0, 1}m and add
(
t
(q)
j , Kd, ρ

t
(q)
j

d

)
to PSet.

• Otherwise if d = ℓ, if
(
t
(q)
j , Kd, ·

)
̸∈ PSet: set ρ

t
(q)
j

d ← O(t(q)j ) and add(
t
(q)
j , Kd, ρ

t
(q)
j

d

)
to PSet.

B creates the functional Cq that takes input K ∈ {0, 1}λ and outputs
(
PRF(K, t

(q)
1 ),

. . . ,PRF(K, t
(q)
µq )
)
. For every i ∈ [γ], compute ipSK

(q)
i ← sim

(i)
ipFE

(
ipMSKi, e

∆q ,

〈
(ρsiu )u∈[N ] , e

∆q

〉
, ipFE.sti

)
. Then, for every d ∈ ∆Corr ∩∆q, B computes sk

(q)
d ←

1FE.KeyGen(mskd, Cq). Otherwise, if d ∈ ∆q \ ∆Corr, B computes sk
(q)
d ← sim

(d)
1FE

(Cq, ŷ
(q)
d ) where ŷ

(q)
d =

(
ρ
t
(q)
1
d , . . . , ρ

t
(q)
µq

d

)
. B then computes skT (q) as

(
T̂ (q),∆q,{

ipSK
(q)
i

}
i∈[γ]

,
{
sk

(q)
d

}
d∈∆q

)
and sends it to A.

9. A outputs the bit b. B outputs b.

As we can see, B runs in polynomial time in the parameters for Q, λ, Lmax as both

PRF (Kℓ, ·) andR(·) run in polynomial times too. If the oracleO is PRF (Kℓ, ·) ,B behaves

like Hyb5,ℓ and if O is R(·),B behaves like Hyb5,ℓ+1. As A can distinguish between

them with non-negligible advantage and the abort probability for B is negligible, we can

see that B with non-negligible probability can distinguish between PRF (Kℓ, ·) and R(·)

oracles. This contradicts our assumption for secure PRF. Hence, Hyb5,ℓ and Hyb5,ℓ+1 are

computationally indistinguishable.
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Hyb6: Same as the simulated experiment.

Claim 16. Assuming the security of PRF scheme, Hyb5,N and Hyb6 are computationally

indistinguishable.

Proof: As we are substituting random strings for the PRF (KN , ·) oracle, the proof

is similar to claim 15. Moreover, the simulator is identically distributed to Hyb5,N .

7.5 Linearizing Encryption

The current output size and running time of the encryption algorithm is linear in N =

Θ(Q2λ). We can linear the size and time in the query bound Q using the load balancing

theorem, Theorem 4 from [AV19]. Thus, we get a bounded key functional encryption

scheme for set intersection whose output size and running time are O(Q ·poly(λ, Lmax)).
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Chapter 8

Further Optimizations

• We can trivially optimize the decryption algorithms in the private- and public-key

constructions by using an efficient hashing mechanism such as cuckoo hashing to

decrease the complexity from quadratic to amortized linear time.

• The semi-adaptive security for private-key functional encryption scheme is sub-

optimal. A desirable avenue that might lead to an adaptive collusion-resistant

functional encryption scheme for set intersection might involve random oracles.

This avenue is being pursued by us now.

• Although unbounded public-key functional encryption for general circuits imply in-

distinguishability obfuscation, for specific circuits such as the one we saw in chapter

7 is feasible. Research in this direction using bilinear maps is being pursued.

• One caveat in the public- and private-key schemes is that they are a two-party

scheme. Can multi-input functional encryption schemes for set intersection be

constructed from standard assumptions? If so, what are the security requirements?
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