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Abstract

Manifold representations of rotational/translational motion and conformational space of a ligand 

were previously shown to be effective for local energy optimization. In this paper we report the 

development of the Monte-Carlo energy minimization approach (MCM), which uses the same 

manifold representation. The approach was integrated into the docking pipeline developed for the 

current round of D3R experiment, and according to D3R assessment produced high accuracy 

poses for Cathepsin S ligands. Additionally, we have shown that (MD) refinement further 

improves docking quality. The code of the Monte-Carlo minimization is freely available at https://

bitbucket.org/abc-group/mcm-demo.
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Introduction

Manifold-based representations of rotational and translational degrees of freedom of a ligand 

with respect to its receptor were shown to be effective for local optimization of energy 

function [1]. Manifold is a topological space, which locally resembles Euclidean space 

around each point. Each point can be assigned a space of vectors (tangent space), which 

intuitively denote the possible directions on the manifold. The basic idea of the approach is 

to map the tangent space at a current point on a rotational manifold to the neighboring points 

using exponential map [2]. The map is used to locally transform SO(3) × R3 group product 

into R6 Euclidean space and treat energy as a six variable function. Thus, energy 

minimization can be done using any Euclidean gradient based function optimization 

algorithm, such as L-BFGS [3]. This results in unconstrained local optimization, which leads 

to efficient energy minimization algorithms [1, 4]. Such local straightening of space also 

provides insights into the geometry of protein association landscapes [5].

This manifold approach can be extended to fully flexible local optimization by adding 

internal degrees of freedom to the above framework. Flexible ligands and receptor amino 

acid sidechains can be represented as a forest graph structure, i.e., set of tree graphs. Each 

degree of freedom can be seen as an S1 manifold (circle) and again, using the concept of the 

exponential map, can be incorporated into the above manifold optimization approach by 

expanding R6 to R6+d, where d is a number of rotatable bonds in the molecule [4].

This representation can be used for medium-range Monte Carlo (MC) sampling, such as 

ligand pose optimization within the binding site. In this work we report implementation of 

such Monte Carlo minimization approach and its application to ligand pose prediction as a 

part of our docking pipeline in the latest round of D3R. In addition, we have studied effects 

of short MD refinement on the quality of the prediction.

In this round of D3R the docking part of the challenge consisted of pose prediction for 24 

Cathepsin S ligands. The experiment contained two stages. In the first stage (1A) the groups 

were required to predict the poses of the ligands without any additional information, in the 

next stage (1B) the organizers provided crystal structures of the complexes with ligands 

removed.

Cathepsin S system was previously well studied [6], hence multiple bound ligand structures 

were available in the PDB. To account for this, we have developed the following protocol. 

First, the ligand was aligned to the closest known bound ligand in the proposed binding site, 

then manifold MCM was performed and accepted poses were clustered. Additionally, for the 

stage 1B short MD simulations were run starting from the aligned poses and the results were 

added to the MCM output. Each conformation in the resulting set was minimized and 

reranked using Vina-based score [7] and 5 best poses were used for submission.

The designed protocol demonstrated good performance on a large number of targets. In this 

paper we describe our algorithm, evaluate its performance on the provided targets and 

demonstrate its effectiveness in small molecule docking. The code of the MCM approach is 

freely available at https://bitbucket.org/abc-group/mcm-demo.
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Methods

Implementation of the Manifold Monte Carlo sampling approach

Method overview—Here we provide a brief description of the methodology used for 

Monte Carlo based optimization of ligand docking poses. The early prototype of the 

protocol was tested in the previous D3R round [8]. The source code of the implementation is 

available at https://bitbucket.org/abc-group/mcm-demo.

The underlying assumption used in our modeling approach is that the changes in covalent 

bond-lengths and bond-angles can be neglected, and the molecule can be viewed as a set of 

rigid molecular clusters interconnected with rotatable bonds. Configurational state of any 

molecule can then be described in terms of 6 rigid body and d internal degrees of freedom, 

where d is the number of torsions associated with rotatable bonds. Implementation-wise, an 

aggregate of rigid and rotatable elements forming a molecule is represented as a torsion tree 

data structure [4] (see Fig. 1). In general, this type of representation is common for small 

molecule docking methods [7, 9].

One distinctive feature of our docking method is related to its ability to perform 

minimization of molecular poses in internal and rigid body manifold coordinates, as opposed 

to performing full-atomic minimization. This becomes possible due to the fact that the space 

of rigid body motions, SO(3) × R3, the space of internal torsional motions, Td = {S1 × S1 × 

… × S1}d times, and their direct product SO(3) × R3 × Td are all Riemannian manifolds, or 

locally Euclidean topological spaces, and thus energy minimization can be formulated 

directly on this space as a manifold optimization problem. We have previously shown that 

although the global geometry of this manifold is not trivial, the local Euclidean property 

allows to use conventional optimization techniques once suitable parametrization has been 

chosen, while smaller dimensionality provides a significant speed advantage over all-atom 

minimization approaches [1, 4].

Energy function—The method includes a variety of potential energy functions, including 

bonded (Ebond) and Van der Waals (Evdw) terms, analytical continuum electrostatics model 

(Eace) [10], knowledge-based hydrogen bonding (Ehbond). In D3R 2017, we also used a 

quadratic geometric restraint potential (Egeom) to constrain the positions of certain atoms 

(see MCM configuration below for details). The total interaction energy used for small 

molecule docking is computed as a linear combination of these individual terms:

E = wbond Ebond + wvdwEvdw + waceEace
+ whbondEhbond + wgeomEgeom

(1)

where wbond, wvdw, wace, whbond, wgeom denote the corresponding weights. All weights were 

kept equal with hydrogen bonding disabled, which was proved to be effective during our 

previous studies:
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wbond = wvdw = wace = wgeom = 1.0, whbond = 0.0,

Ebond includes standard bonded terms, such as bond, angle, dihedral and improper terms, 

Evdw is computed using linearized, repulsion with 1–4 interaction scaling factor and, Eace 

contains Coulomb interaction and a non-polar solvation term. Force field parameters were 

obtained from GAFF [11], Amber [12] and charges were assigned according to AM1-BCC 

protocol [13] using antechamber module.

MCM steps—When applied to ligand docking, the general Monte Carlo minimization 

protocol is performed as a series of consecutive steps, each composed of three stages (see 

Fig. 2). The first stage is perturbation of the ligand conformation. We currently use a 

simplistic move set consisting of random rigid body moves and random perturbations of all 

ligand torsions. The second stage is sliding: ligand is being slid into contact with the 

receptor along the line connecting the geometrical centers of the ligand and the binding site. 

In this stage, the direction of ligand sliding is towards the protein if there is not sufficient 

contact between receptor and ligand and away from the protein if ligand and receptor clash. 

The last stage is local energy minimization performed with a manifold-based optimization 

algorithm. The pose generated in these three stages is accepted or declined using the 

Metropolis criterion.

Challenge targets—Current D3R challenge included prediction of binding poses of 24 

small organic molecules in complex with Cathepsin S, a lysosomal cysteine protease which 

plays a role in degrading proteins into peptides for presentation [6] on major 

histocompatibility complex (MHC). In stage 1A the participants were provided with 2 

Cathepsin S crystal structures and 24 ligands in SMILES format. In stage 1B the D3R team 

released 24 complex structures with ligand removed, but everything else present, including 

crystal water. The objective in the both parts was to predict binding poses for each of the 24 

ligands, given provided receptor structures.

Protocol steps—For the two stages we used slightly different pose prediction protocols. 

Each protocol consisted of three steps: receptor and ligand preparation, pose prediction and 

ranking (see Fig. 3).

Molecule preparation

Receptor preparation—In stage 1A two representative receptors with bound SO4 and 

DMSO were provided by the organizers. Using BLAST [14], we identified 31 structures of 

Cathepsin S in the Protein Data Bank and manually examined them to eliminate those which 

did not contain any ligand or had a modified environment in proximity to the binding site. 

For each of the 24 targets in D3R 2017 we found the most structurally similar ligand among 

the remaining complex structures using RDkit [15] package, reducing the final receptor set 

to four co-crystal structures: 3iej, 3kwn, 3mpe, 3mpf. The purpose of this selection was to 

choose a receptor with the most appropriate interface sidechain conformations for each 

target, however, as the visual examination suggested, in all of the discovered Cathepsin 

structures interface sidechains remained relatively fixed. The most suitable co-crystal 
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structure (one of the four) was assigned to each target, which we will further denote as 

reference.

Ligand conformers generation—For each of the 24 targets 1000 conformations were 

generated from SMILES strings using RDkit. Each conformer was aligned to the 

corresponding bound ligand from the reference co-crystal structure using LIGSIFT [16] and 

the most similar conformation (according to LIGSIFT score) was used for further 

processing. Most of the target ligands had scaffold very similar to their assigned reference 

bound ligands. One of the common features among most of the molecules was a central 

single or double ring. Since most of the reference bound ligands shared the location of the 

ring(s) in the binding site, we realigned the ab initio conformations to best fit the rings and 

the general scaffold of the reference bound ligand.

Pose prediction methods

While the starting ligand conformations and scoring scheme remained the same for both 

stages, we used slightly different protocols for the docking step. In both stages for docking 

we used Monte-Carlo minimization algorithm using the starting conformation obtained in 

the ligand generation step. However, in stage 1B we supplemented it with MD simulations 

as an alternative docking method.

MCM configuration—For the 2017 D3R challenge, the pre-aligned ligand structures were 

used as starting points for the MCM algorithm. Rigid body translation steps of up to 0.1 Å, 

rotations of up to 5.7° and torsional perturbations up to 1.57 rad were used. Additionally, 

harmonic restraints were imposed on the central ring of a ligand to keep it in the binding 

pocket. While the sidechain packing is generally important for unbound docking [9], visual 

inspection of the template X-ray structures suggested, that the sidechain conformations in 

the binding site remained relatively stable given various ligands. Therefore, we disabled 

sidechain flexibility throughout the simulation. For each target, simulations of 2000–10,000 

steps were performed, the accepted poses were clustered using Butina clustering algorithm 

provided with RDkit with 2.0 Å RMSD threshold. Best-scoring poses (scored using MCM 

energy function from Eq. 1) in each cluster were retained for a final re-ranking step (see 

“Ranking”).

Molecular dynamics simulations—In the stage 1B, where crystal structures of 

Cathepsin S corresponding to each of the 24 ligands were provided, MD simulations were 

used as a second approach for pose prediction. The resulting MD poses were mixed with the 

MC predictions and the combined set was considered for scoring. Two different MD 

protocols were used.

MD protocol 1—A simple protocol was devised to accommodate the deadlines. A single 

structure coming from the MC protocol was used to carry out restrained simulations. 

Restraints were imposed based on the structure of the receptor and solvent molecules as 

given by the organization. Charge state was determined based on the ligand structure and 

charges for MD assigned through the antechamber module in Amber [12] using the AM1-

BCC protocol [13]. The system is solvated with a TIP3P [17] water box using tleap and a 5 
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Å buffer region between proteins and crystallographic waters and the edge of the box. The 

system was neutralized using Na+ or Cl− as needed [18, 19]. Ligand parameters come from 

the GAFF force field [11] and protein parameters from FF14SB [20].

The MD protocol included a multistage minimization and equilibration protocol described 

previously [21] for 2.05 ns. MD production runs were carried through 100 ns with at 2 fs 

timestep, at 298.15 K and 1 atm. Hard restraints (50 kcal/mol Å2) were applied to protein 

heavy atoms and crystallographic waters. Soft restraints (0.5 kcal/mol Å2) were used for the 

ligand. This keeps poses close to the docking conformation but allows a certain degree of 

relaxation. Finally, DBSCAN [22] is used to cluster each trajectory (distance cut-off of 1.5 

Å and population cut-off 20). The centroid of the most populated cluster of each target is 

extracted and used further for energy minimization.

MD protocol 2—Molecular dynamics simulations were performed using the 2017-4 GPU 

version of Desmond [23]. We used the OPL-SAA_2005 force field and SPC water in our 

simulations. Every simulation started with the standard Desmond relaxation protocol as 

defined in the Maestro GUI. The production runs were configured NPT using Nose–Hoover 

chain with a 1 ps relaxation time for thermostat (single temperature group), and Martyna–

Tobias–Klein barostat with 2 ps relaxation time and isotropic coupling. We utilized a RESPA 

integrator with Δt = 2.5 fs for bonded and near nonbonded interactions and Δt = 7.5 fs for far 

nonbonded interactions. The particle-mesh Ewald algorithm was used with periodic 

boundary conditions to compute long-range electrostatic interactions with the real space 

cutoff set to 9 Å for both electrostatic and van der Waals interactions. Water molecules were 

constrained with SHAKE. An aggregate of 1 μs production sampling was accomplished on 

each system by running 10 independent 100 ns simulations starting with different random 

initial velocities. The resulting trajectories were concatenated and subjected to clustering. A 

greedy clustering algorithm, which finds nearest neighbors within a certain radius, uses 

pairwise fitted interface root mean square deviation (RMSD) matrices as distance measures. 

The clustering radii were tailored to individual trajectory with respect to pairwise RMSD 

distribution, based on our previous experience [24]. The clustering radii we eventually 

applied ranged from 1.0 to 2.5 A. The top 10 cluster centers with the largest cluster 

populations were supplied as suggested models coming from these MD simulations and 

were further evaluated. Due to the time limits we ran simulations only for the first 8 targets.

Ranking—MCM and MD (in the stage 1B) conformations were combined into a single set 

and each was relaxed by our energy minimization protocol with fixed C-alpha atoms using 

L-BFGS algorithm. Both minimized and non-minimized conformations were ranked by 

affinity values produced by AutoDock Vina [7] (—score_only flag), which are computed 

using intermolecular energy terms only. Five poses with the best affinity scores were 

subsequently ranked by similarity to the pose of the native ligand using LIGSIFT scores.

Results and discussion

The results of our docking protocol for stages 1A and 1B are provided in Figs. 4 and 5. Our 

method demonstrates good performance for the majority of the targets, excluding several 

ligands, for which our submission did not contain low RMSD poses. Here we describe some 
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of the successfully predicted cases as well as those, for which low RMSD poses were not 

present in the final submission.

MCM

The Monte-Carlo protocol has corrected a large number of poses towards the native 

conformation in both of the stages, being however, more efficient in the stage 1A.

One successful example is target 16 from stage 1A (Fig. 4a). In the starting structure 

(magenta) piperidine group and the opposing isopropyl tail had orientation different from the 

native one (purple). MCM has fixed the starting conformation by placing the tails at the 

orientation close to the native one. Another case from the stage 1B is target 15 (Fig. 4c). It 

had improperly oriented phenyl tail, which was corrected by MC algorithm, which rotated it 

by about 180°.

However, there are three cases (targets 7, 9 and 14) where all submitted structures in both 

stages have relatively high RMSD due to a common cause. Target 9, for instance, shows in 

both A and B stages (Fig. 4b, d) 180° flip of nearly the whole (except 4-fluoropiperidine 

tail) ligand molecule (green) with respect to the native structure (purple). The reason is that 

the starting pose (magenta) as well as the reference bound ligand had a binding mode reverse 

to the native one and spring-like restraints used in the protocol prevent MC from placing the 

target into a near-native state, which would require a 180° rotation.

MD protocol 1

The MD protocol was designed to correct small issues with the structures. Mostly in terms 

of sidechain flexibility in the receptor and ligand reorientation. Hence, in Fig. 5b for most 

targets with an initial RMSD lower than 5 Å there is refinement (compare the grey lines to 

the blue and orange ones). The yellow bars represent the centroid of a cluster, a single 

structure to represent them all, and hence is often not the best we can pick up in the 

ensemble. Minimizing this structure results in further improvement—usually better, than just 

minimizing the starting pose. In the initial generation of the starting poses, the receptor is 

kept rigid. The ligand preparation step used to create the starting conformations results in 

overlap of atoms. These steric clashes are corrected with the minimization and equilibration 

protocol described in methods. Subsequence MD leads to refinement in some cases, the best 

case being target 3 (see Fig. 4e).

Due to the positional restraints, higher reorientation was not possible. Hence, we can see in 

Fig. 5 that whenever we start from a pose that is far away from the correct position we are 

never able to recover from the initial error (targets 7, 9 and 14). Figure 4f exemplifies this 

for target 7, where the docking site was correct for half of the ligand, but the other half was 

rotated roughly 180° with respect the right pose.

In future we plan to have a more flexible approach. Instead of placing cartesian restraints on 

the ligand position we will satisfy a subset of contacts found in the initial ligand/receptor 

conformation. This way the method has a chance to refine targets where the initial poses are 

only partially correct (targets 7, 9 and 14). We have had success with this approach outside 
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of the D3R competition, where we were not bound by stringent deadlines using the MELD 

approach [25, 26].

MD protocol 2

As described previously, we ran 100 ns simulations and generated representative structures 

with clustering. Such short MD simulations would not have allowed drastic transformation 

of conformations but would serve as refinement of the starting structures. The results (see 

Fig. 5, stage 1B) demonstrate the effects and limitations of such MD simulations. For 

instance, in target 7 (Fig. 4h) and target 8 (Fig. 4g), poses generated by MD refinement were 

ranked highly according to our scoring scheme and were included in the final submission. 

However, in target 7, none of the top ranked models had the correct binding mode as the 

native structure. It seems that the starting structure has rotated 180° away from the X-ray 

structure. Following MD refinement, the predicted models all ended in a similar binding 

mode as the starting structure (magenta), overlapping poorly with the correct pose (purple). 

On the other hand, MD simulations performed well with target 8. Figure 4g shows that the 

starting structure for MD (magenta) was in the same orientation as the crystal structure 

(purple). MD refinement reproduced the correct binding mode and also further adjusted the 

positioning of branches and the conformations of rings.

Summary

Overall, MCM performed well in stage 1A finding a lower RMSD pose in almost every case 

(Fig. 5a), with median of closest RMSD values 1.52 Å (Fig. 6). In stage 1B we were 

provided with receptor X-ray structures, which combined with using both MC and MD 

protocols further improved the accuracy of the models by 0.3–1.23 Å (median of closest 

RMSD values). MD simulations were designed in order to refine the ligand’s starting 

conformation, other than strongly perturb it, which resulted in overall improvement of the 

predicted set (Fig. 5b). For some cases in stage 1B, MC protocol requires some adjustments 

to account for the presence of water molecules.

Conclusion

In this work we report implementation of manifold MCM based approach and its application 

to the latest round of D3R Grand Challenge. Additionally, we have studied the effect of MD 

refinement on the submission accuracy. The designed protocol was placed among the top 

performers by median overall RMSD (closest among top 5 poses for each target) in the 

current challenge (see Fig. 6). For the majority of the targets our submission included many 

predictions below 2 A RMSD (1A: 17/24, 1B: 17/24). However, some targets (7, 9 and 14) 

had binding mode different from that of ligands in the reference co-crystal structures, 

leading to incorrect orientation of aligned starting poses. In future, we plan to improve our 

protocol by using a number of different starting poses, which could potentially allow to 

overcome this issue. MD protocols introduced some improvement, but the moves were 

localized, hence starting MD with multiple MC poses instead of running it in parallel could 

potentially improve the results as well. Additionally, the pose scoring can be improved [27, 

28], since in many cases our lowest RMSD pose was within top five models, rather than top 

1.
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The code of the manifold MCM is available at https://bitbucket.org/abc-group/mcm-demo.

Acknowledgements

This work was supported by Grants NIH R21 GM127952, NIH R01 GM12581301, NSF AF 1816314, NSF AF 
1645512 and RSF No 14-11-00877.

References

1. Mirzaei H et al. (2012) Rigid body energy minimization on manifolds for molecular docking. J 
Chem Theory Comput 8:4374–4380 [PubMed: 23382659] 

2. Hermann R, Differential Geometry (1980) Lie groups, and symmetric spaces (Sigurdur Helgason). 
SIAM Rev 22:524–526

3. Liu DC, Nocedal J (1989) On the limited memory BFGS method for large scale optimization. Math 
Program 45:503–528

4. Mirzaei H et al. (2015) Energy minimization on manifolds for docking flexible molecules. J Chem 
Theory Comput 11:1063–1076 [PubMed: 26478722] 

5. Kozakov D et al. (2014) Encounter complexes and dimensionality reduction in protein-protein 
association. Elife 3:e01370 [PubMed: 24714491] 

6. Wilkinson RDA, Williams R, Scott CJ, Burden RE (2015) Cathepsin S: therapeutic, diagnostic, and 
prognostic potential. Biol Chem 396:867–882 [PubMed: 25872877] 

7. Trott O, Olson AJ, Vina A (2009) Improving the speed and accuracy of docking with a new scoring 
function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461

8. Padhorny D et al. (2017) Protein–ligand docking using FFT based sampling: D3R case study. J 
Comput Aided Mol Des 32:225–230 [PubMed: 29101520] 

9. Meiler J, Baker D (2006) ROSETTALIGAND: protein-small molecule docking with full side-chain 
flexibility. Proteins 65:538–548 [PubMed: 16972285] 

10. Schaefer M, Karplus MA (1996) Comprehensive analytical treatment of continuum electrostatics. J 
Phys Chem 100:1578–1599

11. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA, Junmei Wang RM, Wolf JW, Caldwell 
PA, Kollman, Case DA (2005) Development and testing of a general amber force field. J Comput 
Chem (2004) 25(9):1157–1174

12. Case DA et al. (2016) AMBER 2016. University of California, California

13. Jakalian A, Bush BL, Jack DB, Bayly CI (2000) Fast, efficient generation of high-quality atomic 
charges. AM1-BCC model: I. Method. J Comput Chem 21:132–146

14. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J 
Mol Biol 215:403–410 [PubMed: 2231712] 

15. Landrum G, RDKit: Open-source cheminformatics. http://www.rdkit.org

16. Roy A, Skolnick J (2015) LIGSIFT: an open-source tool for ligand structural alignment and virtual 
screening. Bioinformatics 31:539–544 [PubMed: 25336501] 

17. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple 
potential functions for simulating liquid water. J Chem Phys 79:926–935

18. Joung IS, Cheatham TE III (2008) Determination of alkali and halide monovalent ion parameters 
for use in explicitly solvated biomolecular simulations. J Phys Chem B 112:9020–9041 [PubMed: 
18593145] 

19. Li P, Song LF, Merz KM Jr (2015) Systematic parameterization of monovalent ions employing the 
nonbonded model. J Chem Theory Comput 11:1645–1657 [PubMed: 26574374] 

20. Maier JA et al. (2015) ff14SB: improving the accuracy of protein side chain and backbone 
parameters from ff99SB. J Chem Theory Comput 11:3696–3713 [PubMed: 26574453] 

21. Hornak V, Okur A, Rizzo RC, Simmerling C (2006) HIV-1 protease flaps spontaneously open and 
reclose in molecular dynamics simulations. Proc Natl Acad Sci USA 103:915–920 [PubMed: 
16418268] 

Ignatov et al. Page 9

J Comput Aided Mol Des. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://bitbucket.org/abc-group/mcm-demo
http://www.rdkit.org


22. Ester M, Kriegel H-P, Sander J, Xu X et al. (1996) A density-based algorithm for discovering 
clusters in large spatial databases with noise. In Kdd 96:226–231

23. Bowers K. Scalable algorithms for molecular dynamics simulations on commodity clusters; ACM/
IEEE SC 2006 Conference (SC’06); 2006. 

24. Kozakov D, Clodfelter KH, Vajda S, Camacho CJ (2005) Optimal clustering for detecting near-
native conformations in protein docking. Biophys J 89:867–875 [PubMed: 15908573] 

25. Morrone JA et al. (2017) Molecular simulations identify binding poses and approximate affinities 
of stapled α-helical peptides to MDM2 and MDMX. J Chem Theory Comput 13:863–869 
[PubMed: 28042965] 

26. Morrone JA, Perez A, MacCallum J, Dill KA (2017) Computed binding of peptides to proteins 
with MELD-accelerated molecular dynamics. J Chem Theory Comput 13:870–876 [PubMed: 
28042966] 

27. Grudinin S, Kadukova M, Eisenbarth A, Marillet S, Cazals F (2016) Predicting binding poses and 
affinities for protein—ligand complexes in the 2015 D3R grand challenge using a physical model 
with a statistical parameter estimation. J Comput Aided Mol Des 30:791–804 [PubMed: 
27718029] 

28. Yan C, Grinter SZ, Merideth BR, Ma Z, Zou X (2016) Iterative knowledge-based scoring functions 
derived from rigid and flexible decoy structures: evaluation with the 2013 and 2014 CSAR 
benchmarks. J Chem Inf Model 56:1013–1021 [PubMed: 26389744] 

Ignatov et al. Page 10

J Comput Aided Mol Des. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Representation of a small molecule as a torsion tree. The ligand is decomposed into a set of 

rigid fragments interconnected by rotatable bonds, thus forming a torsion tree
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Fig. 2. 
The general scheme of the Monte Carlo minimization protocol. Each MCM simulation 

consists of a series of steps each divided into three stages. In the first stage (1), a trial ligand 

pose is generated using random rigid body and torsional perturbations. In the second stage 

(2), receptor and ligand are slid towards/away from each other to bring the molecules into 

contact or resolve severe clashes. In the third stage (3), the trial pose is refined using the 

local manifold-based minimization algorithm. The resulting binding conformation is 

accepted or declined based on the Metropolis criterion
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Fig. 3. 
Block-scheme of the protocol
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Fig. 4. 
Predictions for different targets. Starting ligand conformation—magenta, native 

conformation—purple, final prediction— green. Pairs of cases for each protocol contain an 

example of successful prediction and an example, where the protocol failed to find a near-

native conformation. (a—target 16, b—target 9): result of MCM, stage 1A. (c—target 15, d
—target 9): result of MCM, stage 1B. (e—target 3, f—target 7): result MD1, stage 1B. (g—

target 8, h—target 7): result MD2, stage 1B
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Fig. 5. 
RMSD of predicted poses for stages 1A and 1B. Stage 1B: If orange, yellow or green 

column is absent, it means that the corresponding method was not represented among the top 

five poses in the submission of the particular target
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Fig. 6. 
Submissions sorted by median of lowest RMSD values for each target (official results 

released by D3R organizers). The green arrow indicates our submission
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