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Abstract

Objective—Electrocorticography (ECoG)-based brain-computer interface (BCI) is a promising 

platform for controlling arm prostheses. To restore functional independence, an ECoG-based BCI 

must be able to control arm prostheses along at least six degrees-of-freedom (DOFs). Prior studies 

suggest that standard ECoG grids may be insufficient to decode multi-DOF arm movements. This 

study compared the ability of standard and high-density (HD) ECoG grids to decode the presence/

absence of six elementary arm movements and the type of movement performed.

Approach—Three subjects implanted with standard grids (4 mm diameter, 10 mm spacing) and 

three with HD grids (2 mm diameter, 4 mm spacing) had ECoG signals recorded while performing 

the following movements: (1) pincer grasp/release, (2) wrist flexion/extension, (3) pronation/

supination, (4) elbow flexion/extension, (5) shoulder internal/external rotation, and (6) shoulder 

forward flexion/extension. Data from the primary motor cortex were used to train a state decoder 
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to detect the presence/absence of movement, and a six-class decoder to distinguish between these 

movements.

Main Results—The average performances of the state decoders trained on HD ECoG data were 

superior (p = 3.05 × 10−5) to those of their standard grid counterparts across all combinations of 

the μ, β, low-γ, and high-γ frequency bands. The average best decoding error for HD grids was 

2.6%, compared to 8.5% of standard grids. The movement decoders trained on HD ECoG data 

were superior (p = 3.05 × 10−5) to those based on standard ECoG across all band combinations. 

The average best decoding errors of 11.9% and 33.1% were obtained for HD and standard grids, 

respectively. These improvements can be attributed to higher electrode density and signal quality 

of HD grids.

Significance—Commonly-used ECoG grids are inadequate for multi-DOF BCI arm prostheses. 

The significant decoding performance gains achieved by HD grids may eventually lead to 

independence-restoring BCI control of arm prosthesis.

1 Introduction

Electrocorticogram (ECoG) has been increasingly studied as a neuronal signal acquisition 

modality for brain-computer interface (BCI) applications. A large majority of ECoG-based 

BCI studies to date has focused on decoding the kinematic parameters of upper extremity 

movements, with the ultimate goal of interfacing these systems with upper extremity 

prostheses. Examples include decoding the trajectories of individual fingers [1, 2, 3], elbow 

and hand [4], as well as the onset and direction of reaching movements [5, 6]. However, 

reaching, grasping, and finger movements alone are insufficient for restoring independence 

to those with upper extremity paralysis due to conditions such as subcortical stroke or spinal 

cord injury (SCI). For example, the ability to perform daily activities such as grooming, 

dressing, toileting, bathing and bed/chair transferring is essential for achieving functional 

independence [7]. Analyses have shown that performing these tasks requires an arm 

prosthesis with at least six degrees of freedom (DOFs) [8]. In summary, the ability to decode 

arm movements beyond reaching and grasping is paramount for attaining meaningful, 

independence-restoring BCI upper extremity prosthesis control.

An ECoG-based BCI system capable of achieving six-DOF upper extremity prosthesis 

control must be able to determine when and where to move along individual DOFs. A bare-

minimum strategy to accomplish this goal is to design a decoding algorithm that can answer 

the following questions: 1. Is there a movement? 2. If so, which DOF(s) is (are) involved? 3. 

What is the movement direction (e.g. flexion or extension) of the DOF(s) involved? The 

authors’ preliminary studies suggest that correctly answering these questions may be 

difficult with signals from standard ECoG electrode grids. Namely, the ECoG signals most 

informative of six elementary arm movements were found to be confined to approximately 

three primary motor cortex (M1) electrodes [9]. This is not surprising, given the size of the 

arm motor representation area [10] and the relatively limited spatial resolution of standard 

ECoG grids, with a typical electrode diameter of 4 mm and an inter-electrode distance of 10 

mm. Consequently, movements, especially those with adjacent M1 representations, were 

classified with a significant degree of confusion [11]. For example, pincer grasp/release was 

often misclassified as wrist flexion/extension, and elbow flexion/extension as shoulder 
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flexion/extension. Based on these observations, it can be hypothesized that increasing the 

density of ECoG electrodes may yield signals that better resolve elementary upper extremity 

movements, which may lead to more accurate multi-DOF BCI control of arm prostheses.

Historically, ECoG grids of increased density have been developed to improve clinicians’ 

ability to localize epilepsy foci [12]. They were subsequently adopted for research purposes 

such as BCI applications, with the goal of improving BCI performances. For example, 

microwire ECoG grids (diameter: 40–75 μm, inter-electrode distance: 1 mm) have been used 

to study the encoding of finger movements in monkeys [13], as well as of wrist flexion/

extension and the direction of arm movements in humans [14, 15]. Similarly, high-density 

(HD) ECoG grids (diameter: 2 mm, inter-electrode distance: 4 mm) have been used to 

classify individual finger movements [16, 17], decode grasping force [18], and achieve 

three-dimensional (3D) control of an arm prosthesis end-effector [19].

To the best of the authors’ knowledge, there have been no formal, systematic comparisons 

between the decoding resolution of standard and HD ECoG grids for BCI applications. 

Therefore, the presumed advantage of HD grids in BCI applications remains mostly 

anecdotal [19]. In addition, with the exception of the authors’ preliminary studies [9, 11], 

there have not been any ECoG studies that examined the ability to decode movements at the 

six principal upper extremity DOFs. Motivated by this knowledge gap, the present study 

collected ECoG data underlying six elementary upper extremity movements from subjects 

implanted with standard or HD ECoG grids. Based on these data, decoders were designed to 

answer questions 1 and 2 above. The performances of the decoders trained on standard and 

HD signals were then characterized, compared and discussed.

2 Methods

2.1 Overview

Subjects with standard or HD grids implanted subdurally over M1 performed a series of six 

elementary upper extremity movements while their ECoG and arm trajectories were 

recorded. The signals were then separated into μ (8–13 Hz), β (13–30 Hz), low-γ (30–50 

Hz), and high-γ (80–160 Hz) frequency bands, and combined to obtain: 1. State decoder—a 

binary classifier with the goal of detecting the presence/absence of elementary arm 

movements; 2. Movement decoder—a six-class classifier to determine which elementary 

movement was performed. The decoding accuracy across four individual frequency bands 

and all possible band combinations was estimated using cross-validation. Based on these 

results, the ability to detect when and which elementary arm movements occurred was 

assessed for both standard and HD ECoG signals.

2.2 Data Collection

The study was approved by the Institutional Review Boards of the University of California, 

Irvine and the Rancho Los Amigos National Rehabilitation Center. Subjects were recruited 

from a patient population undergoing epilepsy surgery evaluation. They were subdurally 

implanted with either standard or HD electrode grids (Integra LifeSciences, Plainsboro, NJ). 

Standard grids consisted of arrays of 4-mm-diameter platinum electrodes, spaced 10 mm 

Wang et al. Page 3

J Neural Eng. Author manuscript; available in PMC 2019 May 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



apart. HD grids consisted of 2-mm-diameter platinum electrodes that were 4 mm apart. Only 

patients with grids covering the upper extremity M1 area were recruited for the study. Using 

a dedicated cable (Plastics One, Roanoke, VA), each ECoG signal was split at the headbox, 

with one copy used clinically and the other used for the present study. Up to 64 channels of 

ECoG data were recorded with a pair of linked NeXus-32 bioamplifiers (Mind Media, 

Roermond-Herten, The Netherlands). Electrodes with excessive noise were unplugged from 

the amplifier prior to recording. Signals were acquired in a common average reference mode 

at a rate of 2048 Hz. The bioamplifiers had a built-in low-pass filter with a roll-off frequency 

of 0.27 times the sampling rate (i.e. 553 Hz).

The subjects performed the following six elementary movements with the arm contralateral 

to their implant: 1. pincer grasp/release (PG), 2. wrist flexion/extension (W), 3. forearm 

pronation/supination (PS), 4. elbow flexion/extension (E), 5. shoulder internal/external 

rotation (SR), and 6. shoulder forward flexion/extension (SFE). The trajectories of PG and 

W movements were measured by a custom-made flexible electrogoniometer [20], and those 

of the remaining movements were measured by a gyroscope (Wii Motion Plus, Nintendo, 

Kyoto, Japan). These signals were acquired using an integrated microcontroller unit 

(Arduino, Smart Projects, Turin, Italy). The bioamplifier and microcontroller unit were 

synchronized using a common pulse train sent to both acquisition systems. For each DOF, 

subjects performed 4 sets of 25 continuous movement repetitions, with each set intervened 

by a 20–30 s rest (idling) period (see Fig. 1).

2.3 M1 Localization and Power Modulation Analysis

To ensure that the results are based on motor signals (as opposed sensory feedback), the 

primary focus of the study was decoding from M1 electrodes. For this purpose, the 

electrodes were first localized through co-registration of the magnetic resonance imaging 

(MRI) and computed tomography (CT) scans of the head using the technique described in 

[21]. Once the images were co-registered, M1 was anatomically defined as the area between 

the central and pre-central sulci, and electrodes overlying this area were identified. Since 

epilepsy may cause functional deviation from classical anatomy [22, 23], additional tests 

were performed to affirm that the anatomical M1 area was functionally involved in upper 

extremity movements. Specifically, for each movement type and each channel, a contrast 

index (CI) was first calculated as the difference in the high-γ band power during movement 

and idling periods (see below for details). The restriction of the CI to this band was 

motivated by the fact that the high-γ frequencies represent the main components of the 

cortical activity underlying arm movements [1, 24, 25, 26, 27, 28]. The anatomical M1 

channels were deemed functionally relevant if they satisfied the following condition:

CIM1 > CInon−M1 + 2σnon−M1 (1)

where CIM1 is the CI value of each anatomical M1 channel, and CInon−M1 and σnon-M1 are 

respectively the mean and standard deviation of the CI for non-M1 channels. The presence 

of one or more functionally-relevant M1 channels was used as a criterion to confirm the 

alignment of anatomical and functional M1 areas.
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To calculate the CI for each type of elementary movement, the ECoG and motion sensor 

data were first aligned using the synchronization pulse train (see Section 2.2). The epochs of 

ECoG signals underlying movement periods were then segmented into individual flexion 

and extension intervals. Similarly, the epochs of ECoG signals underlying idling periods 

were segmented into “intervals” with an average duration matching those of flexion and 

extension intervals. Subsequently, the instantaneous high-γ band power [9] was calculated 

as:

Pγ(t) = f x2(t) (2)

where x is the bandpass (80–160 Hz) ECoG signal at each channel and f(∙) is a 2.5 Hz low-

pass envelope filter. The instantaneous powers were then normalized [29], so that the median 

and median absolute deviation (MAD) of Pγ during idling periods were 0 and 1, 

respectively. The standardized powers were then time-averaged over the duration of flexion, 

extension and idling intervals. Finally, the CI was defined as the absolute value of the 

Welch’s t-statistic [30]:

Cl =
μM − μI

σM
2

nM
+

σI
2

nI

(3)

where μM and μI are respectively the standardized, time-averaged Pγ, averaged over 

movement and idling intervals, σ are their corresponding standard deviations, and nM and nI 

are the number of movement and idling intervals, respectively. Note that nM = nF + nE, 

where nF (nE) is the number of flexion (extension) intervals.

An additional analysis was performed to investigate the time courses of Pγ for the most 

functionally-relevant M1 channels, as well as the primary somatosensory cortex (S1) 

channels. Namely, for an electrode recording primarily motor signals, the build-up of Pγ is 

expected to precede that of a sensory electrode. Therefore, the onsets of the four movement 

periods (Fig. 1) were defined as the instances at which the movement velocity exceeded 5°/s, 

and the data across the four idle-to-move transition periods were aligned correspondingly. 

The M1 and S1 channels with the highest CI value were then identified, and their respective 

normalized Pγ were averaged over the four transition periods and compared.

2.4 Decoder Design and Testing

The ECoG epochs underlying both idling and movement were segmented into 750-ms-long 

non-overlapping trials, and each ECoG trial was transformed into the frequency domain 

using the Fast Fourier Transform (FFT). Each trial’s power spectral density (PSD) was then 

integrated over the μ, β, low-γ, and high-γ frequency bands. Note that these frequencies 

were selected because they are known to modulate with upper extremity movements [9, 26, 

31]. Finally, the disparity in power levels, especially between the μ and high-γ bands, was 

reduced by taking the logarithm of the integrated power spectral densities.
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2.4.1 State Decoder—The trials of spatio-spectral ECoG data underlying all six 

movement types were grouped into a single Move class. Similarly, the trials corresponding 

to idling epochs across all movement types were grouped into a single Idle class. Features 

were then extracted from these high-dimensional spatio-spectral data by using a combination 

of classwise principal component analysis (CPCA) [32] and approximate information 

discriminant analysis (AIDA) [33]. More specifically, one-dimensional (1D) spatio-spectral 

features were extracted by:

f = T AΦC(d) (4)

where f ∈ ℝ is the feature, d ∈ ℝBC×1 is a single-trial spatio-spectral ECoG matrix reshaped 

in a vector form (B-the number of frequency bands, C-the number of channels), ΦC : ℝBC×1 

→ ℝm×1 is a piecewise linear mapping from the data space into the m-dimensional CPCA-

subspace, and TA ∈ ℝ1×m is an AIDA transformation matrix. This approach, whose detailed 

description can be found in [32, 33], enhances class separability by maximizing an 

information-theoretic class separability criterion [34]. Its distinct characteristic is that it can 

handle high-dimensional data under small sample size conditions (data dimension > sample 

size), without resorting to simplifying assumptions [32]. In addition, the resulting features 

depend on data nonlinearly, yet the method retains the computational simplicity of linear 

feature extraction techniques.

In the second stage, a binary classifier was trained in the feature domain to distinguish 

between Idle and Move states. To this end, a Bayesian classifier was designed as follows:

f ⋆ ∈ 𝒮
i∘

wherei∘ = arg max
i = 1, 2

P 𝒮i f ⋆ (5)

with P 𝒮i | f ⋆  being the posterior probability of state 𝒮i (Idle: i = 1, Move: i = 2) given the 

observed feature f*. The posterior probabilities were calculated using the Bayes rule [35, p.

24], after assuming that the class-conditional distributions of features were Gaussian.

The accuracy of the feature extraction and classification models was then estimated by 

performing 10 runs of stratified 10-fold cross-validation [36] as follows:

1. The spatio-spectral dataset was randomly divided into 10 non-overlapping folds 

of equal size while preserving the relative frequencies of Idle and Move classes.

2. One of the folds was designated as test data and the remaining nine folds were 

combined into a single training dataset.

3. From the training set, the feature extraction transform (4) was estimated. The 

training data were transformed into the feature domain and the parameters of the 

classifier were estimated. The test data were transformed in the same manner, 

and their class labels were determined according to (5). The number of 

misclassified cases was logged.
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4. Steps 2 and 3 were repeated until all the folds were exhausted. The classification 

error was calculated as the total number of misclassified cases divided by the 

total number of test cases.

5. The above steps were repeated 10 times and the final classification error was 

evaluated as the average over 10 runs.

To investigate how individual frequency bands contributed to the decoder performance, the 

above procedure was repeated using each of the frequency bands individually, as well as all 

possible two-band and three-band combinations.

2.4.2 Movement Decoder—Similar to Section 2.4.1, the trials of spatio-spectral ECoG 

data underlying different movement types were grouped into six classes. Feature extraction 

maps were then found using CPCA [32] followed by AIDA [33], with the goal of 

maximizing class separability [34]. Formally, a model similar to (4) was adopted, albeit with 

a higher dimension of the feature space (3D vs. 1D). The increase in the feature space 

dimension is not surprising given the increase in the number of classes from two to six. 

According to the Bayesian decision theory [37, p.444], the optimal dimension of the feature 

space would be five (one less than the number of classes), though the extraction of Bayes-

optimal features would require infinite number of samples. For finitely sampled data, the 

feature space dimension may depart from the theoretical optimum. In addition, the 

performance of the classifiers described below did not improve substantially by increasing 

the dimension of feature space beyond three.

Subsequently, a six-class linear Bayesian classifier was trained in the 3D feature domain:

f ⋆ ∈ ℳi°wherei∘ = arg max
1 ≤ i ≤ 6

P ℳi f ⋆ (6)

and P ℳi | f ⋆  is the posterior probability of movement type ℳi (i = 1, 2, · · ·, 6), given the 

observed feature f*. These posterior probabilities were evaluated in a manner similar to 

Section 2.4.1. Likewise, the accuracy of the feature extraction and classification methods 

was estimated by performing 10 runs of stratified 10-fold cross-validation. Finally, the 

calculations were repeated using individual frequency bands and their combinations.

2.5 Control Analysis

To control for factors other than a grid density, the HD grids were spatially sub-sampled to 

mimic the electrode density of standard grids. Therefore, every other electrode row/column 

was removed from the HD grids, and the signals from the remaining M1 electrodes were 

used for analysis as described above. Note that this effectively created grids with electrodes 

8 mm apart, thus resembling standard grids with the 10 mm inter-electrode distance. Since 

spatial sub-sampling can be achieved by removing odd/even rows and odd/even columns, the 

decoding results corresponding to spatially sub-sampled HD grids were obtained by 

averaging over these four combinations. In addition, to account for a difference in the 

number of M1 electrodes for standard and HD grids, the decoding analysis was repeated 

while matching the number of standard and HD M1 electrodes. Finally, the whole-grid 
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decoding was performed with the goal of investigating the extent to which information 

outside of the anatomical M1 area contributed to the state and movement decoding.

3 Results

Six subjects undergoing epilepsy surgery evaluation provided their informed consent to 

participate in the study. Three subjects were implanted with standard grids and three were 

implanted with HD grids. Their demographic data, implantation area, and the type of grid 

are presented in Table 1. It should be noted that the implantation areas, grid types and the 

number of electrodes were determined by the clinical needs of individual patients, and were 

in no way influenced by the current study. Raw ECoG signals from each subject were 

inspected prior to analysis. With the exception of Subject 2, epileptiform activity was rare 

and sporadic throughout the study recordings. In Subject 2, epileptiform activity was 

observed in posterior-inferior parietal area every 3–5 s throughout the entire experiment 

(occurring evenly in idling and movement tasks). These signals were ultimately excluded 

from analysis as they were not in M1.

3.1 M1 Localization and Power Modulation Analysis

The electrodes were localized based on the MRI and CT scans of the head using the 

technique described in [21]. For Subjects 1 and 2, this was accomplished by co-registering 

the post-implantation CT and MRI scans. For Subjects 3, 5, and 6, post-implantation MRI 

scans were not available, therefore the pre-implantation MRI scans were used instead. For 

Subject 4, MRI was not performed due to the presence of MRI-incompatible metal in his 

body; thus the electrode localization was done based on the CT scan alone. The electrode 

locations in reference to the brain anatomy are shown in Fig. 2. Note that Subject 2 had left 

frontal porencephaly, likely caused by an intrauterine stroke.

The location of M1 was determined by first finding the superior frontal gyrus, followed by 

identification of the pre-central sulcus as the posterior border of the superior frontal gyrus. 

M1 was identified as the gyrus immediately posterior to the pre-central sulcus. Similarly, 

anatomical landmarks were used to identify the central sulcus. The locations of the pre-

central and central sulci were then manually traced out (Fig. 2), and M1 electrodes were 

demarcated. Subsequently, S1 was identified as the gyrus immediately posterior to the 

central sulcus. The breakdown of the number of M1 channels across subjects is shown in 

Table 2. Not surprisingly, the HD grids had a higher number of M1 electrodes (average: 

27.7) compared to the standard grids (average: 13.7). Based on the electrode density alone, 

this ratio is expected to exceed 4:1, however, HD grids were smaller, and so they covered 

proportionately smaller brain areas (Fig. 2).

For each channel and each movement type, the CI was calculated according to (3). 

Generally, the values of CI were elevated over the sensory-motor areas across all movement 

types and subjects. Note that this observation is consistent with a high-γ event-related 

synchronization [9], i.e. an increase in the γ band power elicited by movements, and its 

decrease caused by idling. Figs. 3 and 4 show representative CI maps for subjects with 

standard and HD grids, respectively. The remaining CI maps can be found in the Appendix 

(see Figs. A1–A4). The Appendix also provides an example of a movement-related power 
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modulation across multiple frequency bands (see Fig. A5). Note that the most salient 

features were event-related desynchronization in the μ and β bands, and event-related 

synchronization in the low-γ and high-γ bands.

Once the CIs were calculated, the criterion (1) was applied to identify functionally-relevant 

M1 channels, whose number varied across movement types, grid types, and subjects. The 

total number of functionally-relevant M1 channels, Nfr, is given in Table 2. Note that Nfr 

was on average higher in HD grids (8.7) than in standard grids (6.0). In addition, the average 

values of the contrast index, CI, were higher in HD grids, and this was true for both M1 and 

non-M1 areas. Also note that CI was the highest in functionally-relevant M1 channels, 

followed by M1 channels and non-M1 channels. In conclusion, these results confirmed a 

general alignment of the functional and anatomical M1 areas.

Finally, for M1 and S1 channels with the highest CI value, the time courses of Pγ were 

analyzed as described in Section 2.3. As can be seen from Fig. A6 (Appendix), the 

movement-modulated build-up of the high-γ power was faster in M1 than in the S1 

channels. This was true across all movement types and both grid types. In addition, the time 

courses of motor Pγ preceded those of their sensory counterparts by 86 ms and 38 ms for 

standard and HD grids, respectively (see Table A1 in the Appendix). Note that these values 

are within the physiologically plausible range of motor/sensory conduction times [38, 39]. In 

summary, this analysis indicated that M1 signals primarily encoded for motor intent, 

whereas those in S1 were primarily driven by sensory feedback.

3.2 State Decoder

3.2.1 Average Performances—The classification error of the state decoder (5) is 

presented in Fig. 5. While the results vary across subjects, grid types and frequency bands, 

the average classifier performance based on HD data, HD, was uniformly (across all band 

combinations) superior to its standard data counterpart, S. This was confirmed by 

performing a one-tailed sign test that suggested a significant difference between HD and S (p 
= 3.05 × 10−5). Upon averaging S and HD across all band combinations, it can be concluded 

that the use of HD grids reduced the decoding error from 13.5% to 7.3%, which corresponds 

to a relative error reduction of 46.7%.

3.2.2 Single-Band Performances—The minimum decoding errors across individual 

frequency bands (denoted by †) showed that no single band was superior. Namely, for 

standard grids, the most useful information was found in both β (Subjects 2 and 3) and high-

γ (Subject 1) bands. For HD grids, the high-γ (Subjects 4 and 5) and μ (Subject 6) bands 

were found to be the most useful. By averaging results over subjects, the β and high-γ bands 

were the most useful for standard and HD grids, respectively (see columns S and HD in Fig. 

5). Conversely, the low-γ band played the least significant role in both grid types.

3.2.3 Two-Band and Three-Band Combination Performances—In general, the 

decoding performance based on two-band or three-band combinations was higher if the 

combination included the high-γ band. For standard grids, including the high-γ band 

reduced the decoding error significantly (one-tailed rank-sum test, p = 3.27 × 10−2), with the 
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corresponding average errors of 13.3% and 11.5%. The performance gains were even more 

pronounced in HD grids, where the presence of the high-γ band reduced the average error 

from 9.3% to 3.2%. These differences were also statistically significant, as ascertained by a 

one-tailed rank-sum test (p = 1.08 × 10−5). On the other hand, the presence of the μ 
frequency band in any two-band or three-band combination tended to increase the average 

decoding error, but these differences were not statistically significant (p > 0.05). Similarly, 

the presence/absence of the β or low-γ band did not affect the decoding error in a 

statistically significant manner.

3.2.4 All-Band and Best Performances—The decoding error based on the 

combination of all four frequency bands coincided with the smalllest overall error (denoted 

by ‡) in Subjects 2, 3, and 5. Similarly, for Subjects 1, 4, and 6, the combination of all bands 

yielded errors that were very close to the overall minimum (within 1.5%). Note that for each 

subject, the best performances were always achieved in a band combination that contained 

the high-γ frequency band (see Fig. 5). By averaging the best overall performances across 

subjects, the decoding errors of 8.5% and 2.6% were obtained for standard and HD grids, 

respectively. Therefore, on average, the use of HD grids caused a 69.4% relative reduction in 

the minimum decoding error.

3.2.5 Control Analysis—The spatial sub-sampling of the HD grids resulted in a 

significant increase in the decoding error, HDsub, as ascertained by a one-tailed sign test (p = 

3.05 × 10−5). Averaging HDsub over all band combinations resulted in a decoding error of 

10.9%, which represents a relative increase of 51.4% with respect to the average HD error 

(7.2%). On the other hand, HDsub remained generally smaller than S, especially when using 

three-band or four-band combinations. However, these differences were not statistically 

significant (sign test, p = 5.92 × 10−2). In summary, upon spatial sub-sampling, the decoding 

errors of the HD grids were significantly increased and approached those of the standard 

grids.

Since HD and standard grids had on average ~28 and ~14 M1 electrodes, respectively (see 

Table 2), additional decoding analysis was performed to control for the discrepancy in 

channel count. Specifically, the HD channels were ranked by the absolute value of feature 

extraction coefficients (4), and a subset of the top Ns (Ns ≥ 14) channels was selected (such 

that their error was within a prespecified tolerance of the original error). An iterative search 

was then performed over 
Ns
14

 combinations until the decoding performance of these 14 

channels matched or exceeded that achieved with the full set of channels. The above 

procedure was performed using only the combination of all frequency bands. A comparison 

with the original decoding results (based on all M1 channels) is given in Table 3. As can be 

seen, the decoding errors based on the subset of 14 M1 channels were smaller than the 

original ones. Therefore, it can be concluded that the superior state decoding performance of 

HD grids was not caused by having more electrodes in M1.

To account for information outside of anatomical M1 areas, the state decoding analysis was 

repeated using all available electrodes (see Table 2). The results are presented in Fig. A7 in 
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the Appendix. Generally, the whole-grid decoding led to an improved performance across all 

band combinations (one-tailed sign test, p = 3.05 × 10−5 for Subjects 1, 2, 3 and 6, and p = 

4.88 × 10−4 for Subject 5). A notable exception was Subject 4, whose performance generally 

worsened, but the change was not statistically significant. Upon averaging over all frequency 

band combinations, the relative error changes of −37.8%, −13.8%, −15.2%, −6.3%, −25.0%, 

and −24.5%, were observed for Subjects 1–6, respectively. Similar results were obtained by 

comparing the best performances (minimum errors), where the whole-grid decoding led to 

relative error changes of −37.5%, −14.7%, −17.6%, +50.0%, −28.9%, and −26.5%, for 

Subjects 1–6, respectively. These results indicate that the inclusion of non-M1 areas 

generally improved the decoding results. This conclusion is consistent with Figs. 3 and 4 and 

Figs. A1–A4 (Appendix), which indicate that most of the additional information came from 

S1. More importantly, upon utilizing all available channels, the advantage of HD over 

standard grids was retained. For example, by comparing S and HD (Fig. A7), it that be 

concluded that the use of HD grids reduced the average decoding error from 10.7% to 5.9%. 

This constitutes a relative error reduction of 44.9%—an improvement comparable to M1 

decoding (cf. Section 3.2.1). Similarly, by averaging the best performances over subjects, 

HD grids reduced the decoding error from 6.6% to 2.0%. This represents a relative error 

reduction of 69.7%, and is in agreement with M1 decoding (cf. Section 3.2.4).

3.3 Movement Decoder

3.3.1 Average Performances—The classification error of the movement decoder (6), 

presented in Fig. 6, shows that the decoding performances based on HD data were nearly 

uniformly (across all subjects and band combinations) superior to their standard data 

counterparts. Consequently, the average performances HD were uniformly superior to S, as 

confirmed by a right-tail sign test (p = 3.05 × 10−5). By averaging HD and S over all band 

combinations, it was found that the use of HD grids reduced the decoding error from 42.2% 

to 23.7%, which represents a relative error reduction of 43.8%.

3.3.2 Single-Band Performances—For individual bands, the decoding errors tended 

to monotonically decrease from low to high frequencies, and this was observed in both grid 

types. This suggests that the amount of useful information increased going from the μ band 

to the high-γ band.

3.3.3 Two-Band and Three-Band Combination Performances—The decoding 

errors achieved with two-band or three-band combinations were consistent with the above 

observations. Namely, for standard grids, the presence of the high-γ band significantly 

improved the performance (one-tailed rank-sum test, p = 3.53 × 10−4), with the average 

decoding error reduced from 46.1% to 35.7%. Similar to the state decoder (Section 3.2.3), 

the performance gains were even more apparent for HD grids, where the average decoding 

errors with and without γ band were 13.9% and 30.2%, respectively. These improvements 

were also statistically significant, as demonstrated by a one-tailed rank-sum test (p = 4.37 × 

10−6). Conversely, the presence of the μ band resulted in an increase of the decoding error. 

This increase was not significant for standard grids and was significant for HD grids (one-

tailed rank-sum test p = 2.2 × 10−2), with the average error increased from 16.6% to 23.0%. 
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As was the case with the state decoding, the presence/absence of the β or low-γ band in any 

two-band or three-band combination did not significantly affect the performance.

3.3.4 All-Band and Best Performances—The minimum decoding errors (marked by 
‡) were achieved using the combination of β, low-γ and high-γ bands for Subjects 2, 3, and 

4, and the combination of all bands for Subjects 1, 5, and 6. Similar to the state decoder, the 

performances based on all frequency bands were generally within 1.5% of the best overall 

performances. By averaging the best overall performances over subjects, the minimum 

decoding errors of 33.1% and 11.9% were respectively obtained for standard and HD grids. 

This represents a relative error reduction of 64.0%.

3.3.5 Control Analysis—Control analysis showed that upon spatial sub-sampling, the 

performance of the movement decoder, HDsub, deteriorated uniformly across all frequency 

band combinations (one-tailed sign test p = 3.05 × 10−5). When averaged over all band 

combinations, HDsub yielded the decoding error of 40.1%, which represents a relative 

increase of 69.2% with respect to the average HD (23.7%). On the other hand, even though 

HDsub was generally smaller than S, especially for band combinations involving the high-γ 

frequency, these differences were not statistically significant (sign test, p = 15.09 × 10−2). In 

summary, spatial sub-sampling of the HD grids yielded decoding errors that approached 

those of the standard grids.

Additional analysis was performed to prove that the superior performance of the HD grids 

was not caused by them having a larger number of M1 channels. Following the procedure 

outlined in Section 3.2.5, a combinatorial search was performed to find a subset of 14 M1 

channels whose performance matched or exceeded the original HD performances. The 

results are presented in Table 4. Since the decoding errors based on the subset of 14 M1 

channels are smaller than those based on all M1 channels, it follows that HD grids did not 

outperform standard grids at the expense of having more M1 channels.

Analogous to Section 3.2.5, the movement decoding analysis was performed using all 

available electrodes. The results are presented in Fig. A8 in the Appendix. Similar to the 

state decoding, the use of the whole grid caused a significant decoding improvement across 

all band combinations (sign test, p = 3.05 × 10−5 for Subjects 1 and 2, and p = 3.70 × 10−3 

for Subjects 3, 4 and 6). For Subject 4, the improvement was not statistically significant. 

After averaging over all frequency band combinations, the relative decoding error changes of 

−42.4%, −33.8%, −8.5%, −32.4%, −11.0%, and −23.0%, were obtained for Subjects 1–6, 

respectively. Similar results were obtained by comparing the minimum errors (best 

performances), where the whole-grid decoding led to relative decoding error changes of 

−56.0%, −44.2%, −7.2%, −41.1%, +2.9%, and −37.5%, for Subjects 1–6, respectively. Thus, 

even though the inclusion of non-M1 areas generally reduced the decoding error, the 

advantage of HD over standard grids was preserved. This can be seen by comparing S and 

HD in Fig. A8, which demonstrates that HD grids reduced the average decoding error from 

29.8% to 18.4%. This represents a relative error reduction of 38.3%, and is somewhat 

inferior to the improvement observed in the M1 decoding (cf. Section 3.3.1). Likewise, by 

averaging the best performances over subjects, HD grids reduced the decoding error from 
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20.9% to 8.8%. This corresponds to a relative error reduction of 57.9%, and is slightly 

inferior to the error reduction seen in M1 (cf. Section 3.3.4). This discrepancy in the error 

reduction between M1 and whole-grid decoding could be explained by standard grids 

covering much larger brain areas (Fig. 2), and consequently benefiting more by including 

information outside of M1.

3.3.6 Confusion Matrices—A further insight into the decoding accuracy based on 

standard and HD ECoG signals can be obtained by analyzing the confusion matrices (see 

Fig. 7). For both grid types, shoulder flexion/extension was the movement decoded with the 

highest accuracy. On the other hand, the movements decoded with the lowest accuracy were 

pronation/supination for standard and wrist flexion/extension for HD grids. Generally, HD 

grids yielded a more uniform decoding accuracies ranging from to 78.0% to 96.5%, whereas 

those based on standard grids ranged between 36.6% and 77.9%. In addition, for both grid 

types, pincer grasp/release was rarely confused with either shoulder flexion/extension or 

shoulder rotation movements. Conversely, shoulder movements were rarely confused with 

pincer grasp/release. This is consistent with the classic somatotopic arrangement of M1, 

where the representations of finger and shoulder movements are respectively at the lateral 

and medial extremes of the M1 arm motor area [10]. Another observation consistent with the 

“motor homunculus” organization of M1 is that a pair of DOFs with adjacent representation 

areas tended to be more confused by the decoder. Examples include: wrist flexion/extension 

confused with either pronation/supination (both grid types) or pincer grasp/release (standard 

grid); pronation/supination confused with either wrist flexion/extension or elbow flexion/

extension (both grid types); elbow flexion/extension confused with shoulder rotation; and 

shoulder rotation confused with elbow flexion/extension.

4 Discussion

Power modulation analysis confirmed the general alignment of anatomical and functional 

motor cortices, suggesting that both standard and HD grids were properly placed over the 

intended M1 arm areas. This further suggests that the advantages of HD grids were likely 

due to their higher density rather than a more favorable placement. In addition, the higher CI 

values of the HD grids (cf. Table 2) indicate that their electrodes recorded signals of higher 

fidelity. This was presumably caused by the smaller electrode diameter of the HD grids (2 

mm vs. 4 mm), although other factors may have contributed. Finally, note that pronounced 

high-γ power modulation in S1 (Figs. 3 and 4, Figs. A1–A4) could be explained by sensory 

feedback such as proprioception. This was confirmed by performing the time-domain 

analysis of the high-γ power, which showed that S1 signals generally lagged behind their 

M1 counterparts, and that these latencies were within a physiologically plausible range 

(Section 3.1).

By comparing the average state decoding performances of standard and HD grids, it can be 

concluded that HD grids yielded a 46.7% relative error reduction (Section 3.2.1). An even 

higher performance gain was observed in terms of the peak decoding accuracy, where HD 

grids led to a relative error reduction of 69.4% (Section 3.2.4). Conversely, spatial sub-

sampling of the HD grids resulted in a significant reduction of the decoding accuracy, 

thereby yielding performances that were comparable, albeit superior, to those of standard 
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grids. While not statistically significant, the slight performance advantage of the spatially 

sub-sampled HD grids over their standard grid counterparts could be explained by their 

marginally smaller inter-electrode distance (8 mm vs. 10 mm). The higher signal fidelity of 

the HD electrodes (represented by higher CI values) could be another contributing factor. 

Control analysis also demonstrated that the decoding advantage of HD grids was likely 

caused by higher electrode density and signal fidelity, and not by having a larger number of 

M1 channels. In addition, the inclusion of all available electrodes reduced the decoding error 

for both grid types; however, the relative advantage of HD over standard grids was retained.

The advantage of the HD over standard grids was also observed in movement decoding. 

Namely, the HD grids yielded a 43.8% (64.0%) relative decrease in the average (minimum) 

decoding error, respectively. Upon spatial sub-sampling, the decoding errors increased while 

approaching those achieved with standard ECoG signals. Similar to the state decoder, the 

marginally higher decoding accuracy achieved with the spatially sub-sampled HD grids 

could be explained by factors such as smaller inter-electrode distance and higher signal 

fidelity. Control analysis also showed that the decoding performance of HD grids could be 

replicated by selecting a subset of 14 M1 channels, thus matching the average number of M1 

channels of standard grids. This, in turn, confirmed that the advantage of HD grids was due 

to higher electrode density and signal fidelity, and not due to featuring a larger number of 

M1 channels. Finally, the inclusion of non-M1 areas reduced the decoding error for both 

grid types. However, HD grids still outperformed standard grids by a significant margin.

The analysis of confusion matrices revealed that the HD grids yielded not only higher 

performances, but also more uniform decoding results across the movement types. In 

addition, for both grid types, movements were on average less confused by the classifier, if 

their cortical representations were on the opposite ends of the arm M1 area. Conversely, 

movements with adjacent cortical representation areas tended to get more easily confused. 

The fact that the high-γ band power was the most informative single feature for upper 

extremity movement classification is consistent with prior reports [24, 25, 27]. Unlike the μ 
and β bands, which are broadly distributed and spatially non-specific, the high-γ band is 

known to have a more spatially specific distribution [26]. Consequently, this band, 

particularly as detected by the HD grids, facilitated better distinction of different upper 

extremity movements.

As mentioned in Section 1, there have only been few prior reports concerned with the 

decoding of six elementary upper extremity movements from ECoG signals [9, 11]. 

Therefore, the results from Section 3.2 and Section 3.3 can only be indirectly compared to 

those reported in the literature (see Table 5). Since decoding was not restricted to M1 in 

many of these prior reports, the present study was characterized by the whole-grid decoding 

errors in order to make the comparison meaningful. Also note that prior results were often 

achieved with the decoder parameters optimized on a per subject or per task basis. 

Nevertheless, the decoding performances in the present study, especially those achieved with 

HD grids, compare favorably to those reported in prior studies.

While standard grids yielded decoding performances significantly above the chance level, 

these classification errors are too high for practical applications. Note that the combined 
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minimum error of their state (8.5%) and movement (33.1%) decoders is even higher 

(38.8%), which would translate into poor control of an upper extremity prosthesis and would 

likely frustrate the operator. Such a modest decoding resolution of standard grids is caused 

by a large overlap in the representation of the six movement types (cf. Figs. 3, A1 and A2). 

The >4-fold increase in electrode density and smaller electrode diameter of HD grids have 

contributed to a reduction of this overlap (cf. Figs. 4, A3 and A4). Consequently, the 

decoding accuracy achieved with HD grids was greatly improved, though the best 

misclassification rates were still non-negligible (2.6% for state and 11.9% for movement). 

These decoding errors could potentially be further reduced by utilizing functional MRI 

guidance for a more accurate grid placement, as recently demonstrated in [19]. Extraction of 

source-level features [42, 43], with the goal of further disentangling the representation of 

elementary upper extremity movements, may be another approach.

5 Conclusion

This article quantified the ability to decode the state and type of elementary arm movements 

based on standard and HD ECoG signals, for the purpose of operating a BCI upper 

extremity prosthesis. It was found that the performances of the state and movement decoders 

were far superior when signals from HD grids were used instead of their standard grid 

counterparts. Future work will focus on a further reduction of the decoding error, possibly 

by employing source-level features. It will also address the decoding of movement 

trajectories, or the direction of movements.
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Appendix

Figs. A1, A2, A3 and A4 show the distribution of the CI for Subjects 2, 3, 4 and 6, 

respectively. Note that Subjects 2 and 3 were implanted with standard grids, while Subjects 

4 and 5 had HD grids. For Subjects 1 and 5, see Figs. 3 and 4 in the main text.

Fig. A5 shows the spectrogram corresponding to pincer grasp/release of Subject 6. The 

ECoG signals were selected from channel 54, which was an M1 channel with the highest CI 

value for this movement type (see Fig. A4). The spectrogram was calculated by dividing the 

ECoG time series into 2-s-long windows with 95% overlap. Short-time Fourier Transform 

was performed on each window by running the FFT. The PSDs were then log-transformed. 

Finally, the spectrogram image was smoothed by a 2s×4Hz boxcar window to enhance the 

appearance.

The time courses of Pγ for the most salient M1 and S1 channels are shown in Fig. A6. As 

explained in Section 2.3, the traces were averaged over the four idle-to-move transition 

periods (see Fig. 1). For each type of movement, the results were also averaged over subjects 

in order to further reduce the noise. At the onset of movement, the values of Pγ from M1 

were higher than their S1 counterparts. This suggests a faster build-up of the high-γ power 

Wang et al. Page 15

J Neural Eng. Author manuscript; available in PMC 2019 May 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in M1 than in S1, which was corroborated by calculating the lead/lag times of Pγ for the 

most salient M1 and S1 channels. The lead/lag time with respect to the movement onset was 

defined as the time point at which the Pγ trace intersects the 3-MAD line. The exception was 

the shoulder rotation movement, for which there was no intersection between motor Pγ and 

the 3-MAD line. In this case, the lead/lag times were calculated as the instances of local 

minima to the left of the origin. The lead/lag times are summarized in Table A1. For 

standard grids, Pγ from the M1 electrodes tended to precede their S1 counterparts by ~86 

ms, whereas for HD grids, this difference was 38 ms. The smaller value for HD grids likely 

represents a more reliable estimate due to their superior signal-to-noise ratio, as seen in Fig. 

A6.

Fig. A7 is the equivalent of Fig. 5 (in main text), with decoding based on all available 

electrodes. Note that the inclusion of non-M1 areas (most notably S1) resulted in a 

significant reduction of the state decoding error.

Fig. A8 is the equivalent of Fig. 6 (in main text), with the results obtained by utilizing all 

available electrodes for decoding. Note that the inclusion of non-M1 areas resulted in a 

significant reduction of the movement decoding error.
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Figure A1: 
The CI map for different movement types for Subject 2 (standard grid). The CI was 

calculated according to (3).
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Figure A2: 
An equivalent figure for Subject 3 (standard grid).
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Figure A3: 
An equivalent figure for Subject 4 (HD grid).
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Figure A4: 
An equivalent figure for Subject 6 (HD grid).
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Figure A5: 
A spectrogram showing the power modulation in response to the idling and repetitive pincer 

grasp/release for Subject 6. The data correspond to channel 54, which was the most 

functionally-relevant M1 channel for this type of movement (see Fig. A4). The dashed 

horizontal lines mark the upper and lower bounds for the α, β, low-γ and high-γ frequency 

bands. The bottom plot shows the finger velocity trace obtained by differentiating 

electrogoniometry measurements.
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Figure A6: 
Time courses of Pγ for the most relevant M1 (motor) and S1 (sensory) channels for each 

type of elementary movement. The results represent averages across subjects with standard 

(Subjects 1–3) and HD (Subjects 4–6) grids. The 0-ms time point marks the onset of the 

movement, as determined from the motion sensor data (velocity>5°/s). Note that the 

initiation of movement is likely to happen earlier due the threshold-induced delay. The 

dashed horizontal lines represent the 0-median and 3-MAD levels.
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Figure A7: 
The state decoding error (%) using all available electrodes in the grid. Compare to Fig. 5 in 

the main text.
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Figure A8: 
The movement decoding error (%) using all available electrodes in the grid. Compare to Fig. 

6 in the main text.

Table A1:

The distribution of Pγ lead/lag times (in ms) with respect to the onset of movement for M1 

and S1 channels. The last column shows the time difference between M1 and S1 channels, 

with negative values indicating that motor signals precede sensory signals. The last rows 

give the median values over all movements for both grid types (S-standard, HD high-

density).

Grid Movement M1 S1 M1 - S1

S

PG −207 −114 −93

W −297 −122 −176

PS −99 37 −136

E −180 −100 −81

SR −252 −180 −71

SFE −132 −54 −78

Median −193.5 −107.0 −86.5

HD

PG −18 8 −26

W −117 −23 −94

PS −29 −64 35

E −82 −97 15

SR −157 −87 −70

SFE −150 −100 −50

Median −99.5 −75.5 −38.0
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Figure 1: 
The timeline of the experimental protocol for each type of elementary movement. Each 

movement period consisted of 25 movement repetitions, performed in a subject-paced 

manner.
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Figure 2: 
Grid placement for individual subjects. Subjects 1–3 were implanted with standard and 

Subjects 4–6 with HD grids (see Table 1). The blue circles represent individual electrodes, 

and those outlined in black were the ones which were recorded from. The large left frontal 

cavity in the brain of Subject 2 is due to porencephaly. Orientation legend: A-anterior, P-

posterior, S-superior, I-Inferior, L-left, R-right. The pre-central sulcus (cyan); the central 

sulcus (green).
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Figure 3: 
A representative CI map for all movement types for Subject 1 (standard grid). The red (blue) 

spots indicate a higher (lower) CI value, respectively. Note that higher CI values correspond 

to greater high-γ power differences between movement and idling periods (see (3)).
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Figure 4: 
An equivalent figure for Subject 5 (HD grid).
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Figure 5: 
The decoding error (in %) of the binary classifier (5). The error is color coded for 

convenience and is broken down by subjects and frequency band combinations († single-

band minimum, ‡ overall minimum). S and HD represent averages over subjects with 

standard and HD grids, respectively. HDsub are averages over subjects with HD grids upon 

spatial sub-sampling. Note that these results are based on M1 channels only and that the 

chance-level error is 50.0%.
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Figure 6: 
The decoding error (%) of the six-class classifier (6). The annotation is the same as in Fig. 5. 

The results are based on M1 channels only. The chance-level error is 83.3%.
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Figure 7: 
Confusion matrices averaged over subjects with standard grids (left) and HD grids (right). 

The element in the ith row and jth column represents the probability (%) that the movement 

ℳ j is decoded as ℳi while utilizing all frequency bands. The probability of correct 

classification is shown on the diagonal. The column-sum of the matrices is 100%.
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Table 1:

Subject demographics together with the side (R-right, L-left) and area of implantation, as well as the grid type 

(S-standard, HD-high density) and size.

Subject Age Gender Side Area Grid Size

1 27 F R Fronto-parietal S 6×8

2 22 M L Frontal
Parieto-temporal S 4×5

2×(2×6)

3 23 F L Frontal S 8×8

4 38 M R Fronto-parietal HD 8×8

5 26 M L Fronto-parietal HD 8×8

6 33 F R Fronto-parietal HD 8×8
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Table 2:

The spatial distribution of CIs. N is the total number of recording channels, NM1 is the total number of M1 

channels, and Nfr is the total number of functionally-relevant M1 channels. The CIs were calculated according 

to (3), and averaged over movement types and channels (non-M1, M1, and functionally-relevant M1).

Subject N NM1 Nfr CInon−M1 CIM1 CIfr
1 47 14 3 3.80 5.32 11.10

2 29 11 7 2.58 6.13 7.95

3 52 16 8 3.65 7.03 10.98

Average 42.7 13.7 6.0 3.34 6.16 10.01

4 58 26 5 19.05 22.14 32.55

5 57 31 7 12.24 14.70 19.68

6 60 26 14 7.07 13.22 16.15

Average 58.3 27.7 8.7 12.79 16.69 22.79
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Table 3:

The comparison of the decoding errors (%) based on all M1 channels and a subset of 14 channels for subjects 

with HD grids. The results were obtained using a combination of μ, β, low-γ and high-γ frequency bands.

Subject 4 5 6

All channels 0.8 3.8 4.5

14 channels 0.7 2.8 3.2
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Table 4:

The comparison of the decoding errors (%) based on all M1 channels and a subset of 14 channels for subjects 

with HD grids. The results were obtained using the combination μ, β, low-γ and high-γ frequency bands.

Subject 4 5 6

All channels 5.9 10.2 20.0

14 channels 5.4 8.4 18.0
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Table 5:

Comparison of the present study with other ECoG-based decoding studies. The columns specify the decoding 

task, grid type, the number of subjects (n), the average number of electrodes used (N), chance-level error (%), 

and the minimum decoding error (%).

Study Task Grid n N Chance Error

[40] finger movement S 6 64 80.0 23.0

[41] direction of arm movement depth 1 4 50.0 4.9

[41] behavioral state depth 1 4 75.0 24.0

[16] finger movement S/HD 2 1 50.0 11.1

[1] finger movement S 5 58 80.0 19.7

[17] finger movement HD 1 16 80.0 27.0

present movement state S 3 43 50.0 6.6

present movement state HD 3 58 50.0 2.0

present type of movement S 3 43 83.3 20.9

present type of movement HD 3 58 83.3 8.8
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