
UC San Diego
UC San Diego Previously Published Works

Title
Genetic Factors and the Intestinal Microbiome Guide Development of Microbe-Based 
Therapies for Inflammatory Bowel Diseases

Permalink
https://escholarship.org/uc/item/8n56s7t0

Journal
Gastroenterology, 156(8)

ISSN
0016-5085

Authors
Cohen, Louis J
Cho, Judy H
Gevers, Dirk
et al.

Publication Date
2019-06-01

DOI
10.1053/j.gastro.2019.03.017
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8n56s7t0
https://escholarship.org/uc/item/8n56s7t0#author
https://escholarship.org
http://www.cdlib.org/


Genetic Factors and the Intestinal Microbiome Guide 
Development of Microbe-based Therapies for Inflammatory 
Bowel Diseases

Louis J. Cohen1,†, Judy H. Cho1,2, Dirk Gevers3, and Hiutung Chu4,†

1Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, 
New York, New York, 10029, USA.

2Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai; The 
Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, 
New York, New York, 10029, USA.

3Janssen Human Microbiome Institute, Janssen Research & Development, Cambridge, MA, 
02142, USA.

4Department of Pathology, University of California San Diego, La Jolla, California; Chiba 
University-UC San Diego Center for Mucosal Immunology, Allergy, and Vaccines (CU-UCSD 
cMAV), La Jolla, California, 92093, USA.

Abstract

The intestinal microbiota is a dynamic community of bacteria, fungi, and viruses that mediates 

mucosal homeostasis and physiology. Imbalances in the microbiome and aberrant immune 

responses to gut bacteria can disrupt homeostasis and are associated with inflammatory bowel 

diseases (IBD) in humans and colitis in mice. We review genetic variants associated with IBD and 

their effects on the intestinal microbiome, the immune response, and disease pathogenesis. The 

intestinal microbiome, which includes microbial antigens, adjuvants, and metabolic products, 

affects the development and function of the intestinal mucosa and inflammatory responses in the 

gut. Strategies to manipulate the microbiome might therefore be used in treatment of IBD. We 

review microbe-based therapies for IBD and the potential to engineer patients’ intestinal 

microbiota. We discuss how studies of patients with IBD and mouse models have advanced our 

understanding of the interactions between genetic factors and the gut microbiome, and challenges 

to development of microbe-based therapies for IBD.

Inflammatory bowel diseases (IBD) include Crohn’s disease (CD) and ulcerative colitis 

(UC)— chronic diseases that develop via complex interactions among genetic, immune, 

environmental, and microbial factors.1–3 Dysregulation of any components of this network 

†Correspondence: louis.cohen@mssm.edu (L.J.C.), hiuchu@ucsd.edu (H.C.). 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Conflicts of Interest: D.G. is employed by Janssen which has invested or licensed products from Vedanta, BiomX and Enterome.

HHS Public Access
Author manuscript
Gastroenterology. Author manuscript; available in PMC 2020 June 01.

Published in final edited form as:
Gastroenterology. 2019 June ; 156(8): 2174–2189. doi:10.1053/j.gastro.2019.03.017.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



can result in intestinal inflammation and IBD. Genetic studies identified regulators of this 

network that are altered in patients with IBD—many of these control the immune response 

to microbes.4, 5 Variants associated with risk for IBD have been identified in NOD2, 

ATG16L1, CARD9, and CLEC7A.6 Variants in genes that control immune detection of and 

response to microbes can perturb intestinal homeostasis and promote intestinal 

inflammation. It is important to distinguish factors that mediate the immune response to 

pathogens from factors that control the overall microbial ecology, which can also be affected 

by environmental factors (diet, medications, geography).7 However, as we study the 

mechanisms by which genetic variants associated with IBD affect responses to microbes, we 

might learn more about environmental factors that also do so, and identify new targets for 

diagnosis and treatment of IBD.

Studies from model systems have indicated that the gut microbiome can be modified to 

increase or reduce the severity of intestinal inflammation. The gut microbiome can be 

altered by introduction of microbes or their effectors, such as lipids, small molecules, 

proteins, or sugars. Over the last decade, interest in microbe-based therapies has increased 

due to the number and perceived safety of these therapies, as well as the potential to correct 

one of the causes of a disease, rather than the symptoms. Increased interest in these therapies 

is partly due to insights from studies of antibiotics, probiotics, and more recently fecal 

microbial transplantation (FMT), for IBD and other disorders.8 Strategies to correct the 

microbiome or its functions in patients with UC or CD have produced inconsistent results, 

although antibiotics were found to be effective in patients with pouchitis, with an excellent 

safety profile.9–11 FMT was found to reduce symptoms in some patients with UC, although 

outcomes varied. Further studies are required to optimize selection of donors, determine the 

ability of the donated microbiota to engraft, and determine whether FMT might be better as 

an induction or maintenance therapy.

Studies are also needed to determine how variants in genes whose products function in 

microbe sensing pathways (such as NOD2) would affect microbial therapies. We review 

interactions between IBD-associated gene variants and the microbiome, and strategies to 

therapeutically target specific microbiome functions.9, 12 The growth of microbe-based 

therapies presents new challenges to drug development and regulatory approval.

Genes That Regulate the Microbiome

Genes encode many proteins that microbes are exposed to, as well as the availability of 

nutrients and the level of the immune response to microbes.13–16 Genome-wide association 

studies of patients with IBD have identified variants in genes that affect the intestinal 

response to microbes (Figure 1).6, 17–25

Variants in NOD2

Variants in NOD2 were the first to be associated with risk of CD. NOD2 encodes an 

intracellular pattern recognition receptor, which interacts with peptidoglycan motifs of 

bacteria.26, 2728 NOD2 helps control pathogenic bacteria through hematopoietic and non-

hematopoietic cells. It was initially believed that individuals with some variants of NOD2 
were unable to efficiently clear bacterial pathogens, leading to IBD pathology.29 This 
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hypothesis is supported by the association in patient cohorts between gastrointestinal 

pathogens and IBD onset.30 However, it became apparent that NOD2 also mediates the 

immune response to non-pathogenic, commensal microbes. Patients with variants in NOD2 
have microbiomes that are distinct from individuals without these variants, characterized by 

increased abundance of Escherichia species and reduced Faecalibacterium species, though 

this pattern can also be independent of NOD2 variants.15, 31–33 Nod2−/− mice have intestinal 

dysbiosis, which increase their susceptibility to colitis, compared with wild-type mice.
32, 34–39 Researchers have identified commensal bacteria that are pathogenic in Nod2−/− 

mice (pathobionts), such as Bacteroides vulgatus. Mucosal barrier defects observed in 

Nod2−/− mice were linked to B vulgatus, including abnormalities in goblet cells, expression 

of inflammatory genes, and increased numbers of intraepithelial lymphocytes that express 

IFN gamma.37 Depletion of B vulgatus reversed the mucosal barrier defects in Nod2−/− 

mice, so targeted removal of organisms that exacerbate NOD2 signaling defects might 

restore intestinal barrier functions in patients with IBD.

Variants in ATG16L1 and autophagy

Several variants associated with risk of CD are in genes that regulate the autophagy pathway 

(such as ATG16L1, IGRM, and LRRK2). Autophagy has many functions, but one of its 

effects is to mediate lysosomal degradation and clearance of intracellular bacteria.18, 19, 40 

Several studies have demonstrated that NOD2 interacts with ATG16L1 and that expression 

of CD-associated variants disrupts association between these proteins, impairing bacterial 

clearance and antigen presentation.41, 42 The variant encoding the T300A substitution in 

ATG16L1 increases susceptibility of the gene product to caspase-3 cleavage and reduces its 

function.43 Similar to Nod2−/− mice, mice hypomorphic for ATG16L1 have microbiota-

dependent susceptibility to induction of colitis, as well as defects in toll-like receptor (TLR) 

signaling and production of antimicrobial peptides by Paneth cells. These abnormalities in 

TLR signaling and Paneth cell function have also been observed in patients with CD who are 

homozygous for the T300A substitution in ATG16L1.44, 45 In mice, disruption of the 

ATG16L1 gene affects CD4+ T cells, reducing numbers of intestinal Foxp3+ T-regulatory 

(Treg) cells and T-helper 2 (Th2) cell-mediated responses. These impaired T-cell functions 

contribute to disruption of the mucosal barrier, via loss of tolerance to intestinal antigens and 

increased production of IgG and IgA against commensal microbiota.46 Although many 

individuals carry IBD-associated variants in NOD2 and genes that regulate autophagy, only 

a small proportion develop IBD. Additional environmental factors and alterations to 

interactions between the intestinal epithelia and microbiota are therefore likely to be 

required for development of IBD.

Studies of mice and cells with deletion of ATG16L1 or NOD2 have found these proteins to 

mediate the effects of therapeutic microbes, by blocking immunomodulatory signals. For 

example, the common human commensal Bacteroides fragilis reduces colitis in mice by 

converting CD4+ T cells into Foxp3+ T-regulatory (Treg) cells that produce IL10.47, 48 This 

effect of B fragilis is lost when dendritic cells are defective in either NOD2 or ATG16L1 

signaling.49 Human immune cells that express ATG16L1 T300A do not induce Treg cell 

development upon exposure to B fragilis.
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Variants in CLEC7A and CARD9

Bacteria are the most well-defined microbes in the intestinal microbiota, but fungal 

communities are also altered in microbiomes of patients with IBD. This should not be 

surprising considering the associations between IBD and an aberrant immune response to 

fungal antigens, based on detection of antibodies to Saccharomyces cerevisiae.50 Similar to 

the intestinal bacterial communities in patients with IBD, the diversity of fungal microbiota 

is decreased and certain atypical phyla dominate, such Ascomycota and Basidiomycota.51 

Fungal members of the gut microbiota interact with pattern recognition receptors such as 

CLEC7A (also called DECTIN1), a glycoprotein expressed by cells in the innate immune 

system that recognizes a beta-1,3-linked and beta-1,6-linked glucans from fungi. A single-

nucleotide polymorphism in CLEC7A has been associated with IBD. Mice lacking 

DECTIN1 have increased susceptibility to colitis and an altered fungal community.52 

Interestingly, some variants in CLEC7A have been associated with medically refractory 

ulcerative colitis; no other IBD-associated variants have been associated with response to 

therapy.52

DECTIN1 signals through the adaptor protein caspase recruitment domain containing 

protein 9 (CARD9).23 Card9−/− mice also have an altered fungal community structure with 

increased susceptibility to dextran sodium sulfate (DSS)-induced colitis.53 The fungal 

dysbiosis that results from loss of CARD9 in mice is associated with loss of Th17 cells, 

consistent with the importance of these cells to controlling fungal infections. Patients with a 

homozygous mutation in CARD9 (rs10781499) have severe mucocutaneous candiadiasis.
53–5556 DECTIN1 signaling via CARD9 might alter the immune response through changes 

in pathways regulated by NFκB, JNK, and MAP kinase.54

CARD9 also has a role in response to bacteria through its interaction with NOD2.57 A study 

of Card9−/− mice reported alterations in fungal and bacterial communities, but colitis 

susceptibility was dependent only on the bacterial community. Variations in phenotypes of 

knockout mice reveals the complexities of microbiome functions; many potential 

confounding variables affect host microbial interactions. In Card9−/− mice, bacterial 

tryptophan metabolites were found to account for some of variations in phenotypes.58 

Bacterial tryptophan metabolites signal through human aryl hydrocarbon receptors (AHR), 

which are important for mucosal tolerance. Impaired microbial tryptophan metabolism in 

Card9−/− mice was associated with colitis susceptibility. Administration of Lactobacillus 
strains that metabolize tryptophan into AHR ligands was sufficient to reduce colitis in 

Card9−/− mice. Fecal samples from patients with CD or UC with IBD-associated 

polymorphisms in CARD9 lacked AHR ligands.

Human Leukocyte Antigens (HLAs)

HLA are encoded by genes in the major histocompatibility complex (MHC), among the 

most polymorphic in humans. Proteins encoded by the MHC locus mediate antigen 

presentation and coordination of the immune response. The diversity of HLAs allows the 

immune system to respond to a variety of pathogens, but certain polymorphisms increase 

risk for inappropriate responses to self-antigens.59 Variants in MHC class II genes have been 

associated with UC and CD and correlate with disease location.60 The heterozygosity of 
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variants in class II genes is lower in patients with UC.61 These variants might reduce 

recognition of antigens on commensal microbes.61 Studies of mice and patients with other 

MHC class II-associated diseases, including rheumatoid arthritis, celiac disease, and 

ankylosing spondylitis,62–6566–68 revealed a correlation between specific HLA alleles and 

distinct communities of microbes, which increase numbers of Th17 cells and intestinal 

permeability.69, 70 Studies of mice indicate that interactions between HLA polymorphisms 

and the intestinal microbiota are mediated by altered production of IgA and specific 

bacterial species, such as Bacteroides spp, which are sufficient to induce colitis.64, 71 Further 

research is needed into HLA variants and their associated microbial communities in patients 

with IBD.

Mucins

The intestinal mucus layer serves as another physical barrier that separates luminal microbes 

from the intestinal epithelium. The mucus layer comprises the glycoproteins MUC2, 

MUC5AC, MUC5B, and MUC6, which are secreted by goblet cells.72 Specific microbes 

degrade mucin glycoproteins, so microbial community structure corresponds with changes 

in mucin glycosylation. The diverse array of mucin glycans create a specific niche for 

specific intestinal bacteria that have evolved to bind these glycoproteins and use them as a 

carbon source. A disruption in the mucus barrier would therefore change bacterial ecology 

and deplete an important intestinal barrier function. In intestines of mice with colitis caused 

by administration of DSS or disruption of the Il10 gene, and in patients with UC, the mucus 

layer is thinner and highly penetrable to organisms that do not typically inhabit this niche.
73, 74 Patients with UC have aberrant expression of MUC5AC, MUC6, and MUC2.75, 7677, 78 

Mice with deletion of MUC2 have increased susceptibility to colitis.79–81 Although variants 

in mucin genes have not been associated with IBD, their altered expression patterns in 

intestinal tissues from patients with IBD indicate that their activity is important for 

maintenance of the microbiome and prevention of inflammation.

Other genetic variants

Genome-wide association studies have identified over 200 loci with significant associations 

with IBD, but only a minority of these loci can be mapped to the 1 or 2 most likely alleles.82 

These loci are generally enriched for protein-altering variants and proteins in cytokine 

pathways. For example, the IL23 signaling pathway includes IL23R, IL12B, TYK2, and 

JAK2. IL23 promotes development of Th17 cells, CD4+ T cells, Tc17 CD8+ T cells, and 

innate lymphoid cells, type 3. Agents that block IL12 and IL23 signaling have been 

approved by the Food and Drug Administration (FDA) for treatment of CD. However, 

cytokines produced by Th17 cells, including IL17 and IL22, protect against IBD.83, 84 In 

mice, IL17 prevents expansion of segmented filamentous bacteria (SFB), which promote 

colitis, via IL17 receptor (IL17R)-mediated epithelial cell signaling or by increasing 

neutrophil recruitment.85, 86 Some of the anti-inflammatory effects of IL22 are mediated by 

increased control of intestinal pathobionts and/or increased production of mucus.87, 88 

Although many treatments for IBD aim to control cytokine production, dietary and bacterial 

metabolites can be ligands for G-protein coupled receptors (GPCR), which often activate 

anti-inflammatory signaling pathways.89, 90 Variants in GPCR genes have been associated 
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with IBD. The GPCR GPR35 a receptor for the tryptophan intermediate kynurenic acid, 

which has been associated to IBD and primary sclerosing cholangitis.82, 89, 91

Interactions Between Genetic Variants and the Intestinal Microbiome

Altered interactions between the intestinal epithelium and the microbiota are an important 

step in IBD pathogenesis.92 These defective interactions might be corrected with microbes 

or microbial products. Many variants in genes associated with IBD affect responses of 

immune or intestinal cells to microbes, but do not affect the overall microbial ecology. 

However, we are currently able to assess only large changes in the overall microbiome, and 

we might miss changes in specific microbial populations or niches. We need to better 

understand interactions between genetic alterations and changes in specific populations of 

microbes. It is also important to conduct experiments with appropriate controls, because 

many factors can perturb the microbiome.93 The most powerful evidence for the 

mechanisms by which genetic variants alter the intestinal microbiome has come from studies 

of adoptive fecal transfer with littermate controls and careful analyses of knockout or 

knockdown mice, such as in the studies of NOD2.

Studies of mice have shown that alterations of the microbiota can promote colitis. Microbes 

interact with cell surface proteins, secreted metabolites, and other environmental substrates 

(Figure 2). It is not clear however, whether it is alterations in the microbes themselves or 

their effectors that promote development of IBD. Understanding how different intestinal 

microbes can cause different phenotypes of IBD could lead to development of microbe-

based therapies.

Germ-free and gnotobiotic mice

Studies of germ-free and gnotobiotic mice have increased our understanding of interactions 

between intestinal cells, microbes, and development of the immune system. Mice raised 

under germ-free conditions have alterations in gut-associated lymphoid tissue, plasma cells, 

T cells, responses to microbial peptides, the crypt–villus architecture, and the mucus barrier.
94, 95 Germ-free mice also have reduced expression of NOD2, indicating that its expression 

is regulated in response to microbes.34 Colonization of germ-free mice with a healthy 

microbiota restored intestinal homeostasis, although individual mucosal functions can be 

restored by organisms such as Lactobacillus plantarum or E coli Nissle 1917, which 

reactivates NOD2 signaling.34

Interestingly, infection with norovirus can restore most mucosal barrier abnormalities 

observed in germ-free mice.96 Experiments with germ-free and gnotobiotic mice established 

the role of the microbiota in development of colitis independent of genetic factors. In mice 

with T-cell transfer induced colitis, specific microbes promote development of colitis 

whereas others do not.97 Microbes can induce or reduce the severity of colitis in IL10-

knockout mice or in mice given DSS.98–100 So, individual populations of microbes can 

either promote or prevent intestinal inflammation, depending on genotype; in IL10 knockout 

mice, most bacteria elicit colitis. Microbe-based therapies might therefore be selected based 

on a patient’s genotype, but not be effective in the entire population of patients with IBD. 
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However, some microbiome therapies, such as those that increase mucosal barrier function, 

could have the widest applicability.

Interactions between microbes and intestinal cells

Intestinal microbes can alter the immune response. For example, commensal Clostridia 

strains promote accumulation of Foxp3+ Treg cells in the gut by inducing production of 

transforming growth factor beta and indoleamine 2,3-dioxygenase.101, 102 Treg cells 

downregulate inflammatory responses and mice colonized with specific species of Clostridia 

are resistant to induction of colitis.101 Although specific species of Clostridia can induce 

development of ROR0γt+ Treg cells, Clostridium ramosum also has this function.103, 104 

Studies of gnotobiotic mice identified specific immune-modulatory effects of individual 

species of commensal bacteria and showed that specific types of immune cells, such as Treg 

cells can be induced by a wide range of bacteria whereas others appear to require specific 

microbes.105 Some microbes activate populations of immune cells that promote intestinal 

inflammation, such as Th17 cells.106 SFB activate Th17 cells in intestines of mice; adherent 

invasive E coli (AIEC) and Bifidobacteria adolescentis induce mucosal and systemic 

populations of Th17 cells in the gut.107–109 Reduction of Th17 cell-inducing bacteria can 

reduce the severity of colitis in mice.

An organism does not have to change its abundance in the population to have significant 

effects. SFB, which increases development of Th17 cells, also promotes T-cell dependent 

production of IgA.110 Coating of microbes by IgA has been proposed as a marker of 

immune activation by that microbe; IgA-coated bacteria, including certain 

Enterobacteriaceae, induce colitis in mice and have been associated with CD-associated 

spondyloarthritis.108, 110, 111 As IBD-promoting pathobionts may be specific to a gene or an 

individual, understanding IgA responses to microbes might help prevent the emergence of 

pathobionts or help us target pathobionts in specific individuals. The immune response to a 

microbe is likely specific to its niche. Alcaligenes, Achromobacter, Bordetella, and 

Ochrobactrum spp. specifically colonize lymphoid tissues, where they interact with innate 

lymphoid cells and dendritic cells to modulate IL10 production and intestinal repair 

mechanisms.112 The bioactivity of a microbe might require certain environmental signals, 

such as dietary metabolites, which can induce production or activity of bacterial effectors, or 

serve as metabolic substrates. Some Alisepes, Clostridium, and Bilophila spp can decrease 

production of tumor necrosis factor (TNF) by immune cells only in the presence of a certain 

diet.113114

Specific species of Candida can cause colitis in mice; colonization can be inhibited by 

Bacteroides thetaiotamicron, which induce the production of antimicrobial peptide CRAMP.
115 Interactions among organisms might affect the efficacy of microbiota-based therapies. 

Helminths are not considered commensals, but were prevalent during human history and are 

believed to have functions that affect microbiome development.116 Certain helminths induce 

responses of Th2 cells and increase IL10 secretion.117–119 Although helminths probably 

regulate these immune responses to promote their own infection of a patient, their functions 

might benefit patients with IBD, which has been demonstrated in phase 2 and 3 studies. The 

observation that the same organism can be beneficial or detrimental, depending on the 
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patient or model, is not unique to helminths, but applies to many microbes. Viruses could 

have roles in IBD pathogenesis and norovirus is sufficient to restore mucosal barrier defects 

in germ-free mice, independent of microbiota.96, 120

Microbe effectors

Studies of model systems have identified organisms that induce specific cell responses, but 

these responses vary. Many complex factors mediate these interactions and we know little 

about the mechanisms by which bacteria alter the intestinal environment. Microbes interact 

with the intestinal epithelium or each other via secreted or cell-surface effectors. Identifying 

these effectors could help us learn more about the pathogenesis of IBD and lead to 

therapeutic strategies. Small molecules produced by microbes have tested for their 

therapeutic effects for decades.121 Studies are needed to identify the effectors produced by 

microbes that act on intestinal and immune cells.122

Short-chain fatty acids (SCFAs) reduce colitis, promote Treg-cell development, and 

downregulate of inflammatory signaling pathways.123, 124 Clostridia species produce 

SCFAs, which reach millimolar concentrations in the intestine and can activate GPCRs, 

inhibit histone deacetylases, and provide an energy source for colon epithelial cells.125–127 

Polyamines such as putrescine or spermidine are virulence factors but also enhance intestinal 

barrier functions including mucus secretion, T-cell differentiation, and production of IgA.
128–131 Bifidobacterium animalis increases polyamine levels, which correlates with 

decreased secretion of TNF and IL6 by myeloid cells.130 Interestingly, bacteria and human 

cells each produce polyamines, which might mediate some of their interactions.

Bacteria and human cells also each produce long-chain N-acyl signaling molecules that 

signal via specific GPCRs to regulate immunity, inflammation, and metabolism.90, 132 

Structural similarity between human and bacterial signaling molecules is likely to be 

common, because bacteria are also able to synthesize the neurotransmitter GABA and 

certain Bacteroides metabolize tryptophan to tryptamine, a precursor to serotonin.133–135 

Bacterial trypthophan metabolites are ligands for AHR, but the metabolism of tryptophan 

and other aromatic amino acids in Clostridia has been linked to intestinal barrier functions 

through the production of indoleproprionic acid.136 Bacterial metabolites of bile acids, such 

as the generation of taurine, might regulate inflammasome functions and increase microbial 

diversity.137

Bacteria interact through cell-surface effectors, including via secretion of outer membrane 

vesicles.138 Zwitterionic polysaccharide A (PSA), on the surface of B fragilis, regulates 

activity of Foxp3+ Treg cells in the gut.47 Administration of purified PSA, or B fragilis, is 

sufficient to activate intestinal Treg cells and reduce colitis in mice.48, 49, 139 

Lipopolysaccharide (LPS), probably the most well-studied bacterial cell surface molecule, 

has countless variations in structure. Specific types of LPS, such as penta-acylated LPS 

produced by certain Bacteroides, can inhibit immune responses, in contrast to hexa-acylated 

LPS from E coli, which stimulates the immune response.140 Interestingly, in a mouse model 

of diabetes, this LPS from E coli reduced autoimmunity and development of diabetes. 

Therefore, bacteria can have different effects in different model systems, so it is important to 

understand all the effects of a microbe before it is included in a therapeutic strategy. 
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Sphingolipids isolated from Bacteroides fragilis are similar to the human molecules and can 

regulate natural killer T cells.141

Challenges to Microbiome-based Therapeutics

Microbe-based therapeutic strategies can aim to alter the overall microbiome or its 

environment, introduce therapeutic microbes, or alter production of microbe effectors. Early 

studies focused on application of therapeutic microbes, despite the challenges of developing 

a drug that includes living organisms. Small-molecule development begins with basic 

research and discovery of bioactive molecules, followed by preclinical studies (formulation, 

toxicity, and pharmacokinetic analyses), followed by trials of safety and efficacy in patients. 

Development of microbe-based therapies has changed concepts of drug mechanisms, 

formulation, and monitoring, requiring new approaches for development and regulation 

(Figure 3). In 2012 the Center for Biologics Evaluation and Research issued guidelines to 

assist in therapeutic development of live organisms, which they classified as live 

biotherapeutic products (LBPs). LBPs are defined as biologic products that contain live 

organisms, such as bacteria, and that might be used in prevention, treatment, or cure of 

human diseases but are not vaccines. Development of prebiotics and bacterial effectors is 

likely to follow regular drug development pathways, but LBPs are the most pursued of the 

microbe-based therapies (Figure 3).

FDA Regulation

In 2012 the FDA published regulations for development of LBPs, which were updated in 

2016.142 It is important to distinguish LBPs from probiotics, which are organisms that have 

obtained the generally recognized as safe label and fall outside of this regulation. Trials of 

LBPs for treatment of diseases requires an investigational new drug (IND) application. An 

IND application can be waived for an LBP that is available in conventional foods or dietary 

supplements, in consultation with the FDA. FMTs were first performed without an IND 

because feces were considered to be widely available, but in 2012, regulation by the FDA 

changed— now an IND is required for studies of FMT in patients with IBD. However, use of 

FMT for recurrent C difficile infection (CDI) has discretionary regulation. The FDA does 

not require toxicity studies for trials of FMT, but it does require adequate characterization of 

microbe strains to be tested. Chemistry, manufacturing, and control data must include the 

historical context of the organism(s), the purity, and details about the presence of virulence 

factors, toxins or antibiotic resistance genes and the potential to spread these genes.

Whole-genome sequencing is performed for many LBPs to address these safety concerns. 

Genetically modified LBP require additional tests, to ensure the stability of genetic 

modifications. Antibiotic resistance genes may be present but require justification and are 

not acceptable for LBPs that could cause opportunistic infections. Phenotype-based 

antibiotic resistance testing for each LBP is required in addition to traditional toxicological 

profiling. Product release testing (the identity, viability, potency and purity of each LBP) is 

perhaps more important step, relative to small molecule therapies, because LBPs are a 

challenge to quantify and can change during production. Potency assays (such as colony-

forming units) should be used to calculate the dose or release of a predefined product when 
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mechanisms are well defined. Later stages of might require an assay that tests the agent’s 

mechanism, which might not be straightforward for a complex LBP. In addition, it is still not 

clear what level of evidence is needed to justify a specific selection of strains for an LBP. 

Regulations are likely to include standardization of these definitions among countries, 

because there is no equivalent definition of an LBP in the European Union, which has 

categorizations for therapeutic organisms not present in the United States.

Microbiota-based Therapeutics in Preclinical and Clinical Development

As the guiding framework for LBP has been clarified over last 6 years there has been an 

increase in companies developing discovery platforms and/or introducing candidate 

therapies into pre-clinical and clinical studies for the treatment of IBD (Table 1).

Modulators of the microbiome

The microbiome can be modified by improving mucosal barrier functions or depletion or 

enrichment of organisms linked with diseases, an increased or decreased immune response, 

or other outcomes. Zoenasa is a formulation of N-acetyl cysteine, phosphatidylcholine, and 

mesalamine that is believed to strengthen the mucosal barrier. Zoenasa has been formulated 

as a rectal gel or oral tablet and tested in a phase 2 study of patients with distal UC. Specific 

microbes or communities of microbes may be pathogens (pathobionts), and depletion of 

these microbes might be beneficial. A challenge to modulating the microbiome by depleting 

pathobionts is that these microbes may be specific to an individual based on their 

pathophysiology and/or genetics. Production of IgA in response to bacteria might be 

measured to identify specific pathobionts in individual patients.

Immuron is an oral immunotherapy (antigens, adjuvants, antibodies) designed to reduce or 

increase specific microbiota. IMM124E is an oral formulation of antibody against LPS and 

glycosphingolipid adjuvants that is preclinical studies but might be used to treat UC. BiomX 

directly targets pathobionts using bacteriophages and Eligo depletes bacteria by using 

CRISPR.143 The companies that are developing these agents have not revealed their specific 

target species, but Eligo has a platform to allow for an individualized assessment of potential 

pathobionts. Ecoactive has just entered phase 1 and 2 trials of patients with CD—it is an oral 

bacteriophage cocktail that depletes AIEC. AIEC is enriched by defects in NOD2 signaling 

in patients with CD.144 EB-8018 was designed to reduce AIEC by blocking fimH. EB-8018 

is entering phase 2 studies of patients with CD and was found to be safe in a phase 1 study. 

A diagnostic assay (IBD-210) has been designed to measure fimH in fecal samples, to 

identify patients likely to respond to EB-8018.

LBPs

Studies of patients and animal models have led to the discovery of many LBPs. LBP are 

being developed using a variety of formulations, including naturally derived communities, 

defined communities, individual organisms, and genetically modified organisms. SER287 is 

a naturally derived community and SER301 a defined community based on human cohort 

studies whereas VE202 was developed as a synthetic community in mice, based on a 

targeted increases in Treg cells.101 In contrast to community LBP, Thetanix is a single strain 
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of Bacteroides thetaiotamicron that is in a phase 1 trial of children with CD. B 
thetaiotamicron might have multiple mechanisms, including modulation of fungi, although 

there is also a negative association between B thetaiotamicron and infection with pathogenic 

strains of E coli.

The pleiotropic effects of LBP will warrant specific safety attention. A strain of Clostridium 
butyricum is in preclinical studies for IBD was found to be safe for treatment of CDI. C 
butyricum is believed to act specifically by increasing SCFAs, though other LBPs are also 

believed to increase SCFA.145 ImmuneBiotech has a narrow focus on a proprietary panel of 

lactobacilli, to which they assign immunomodulatory functions. Many lactobacilli carry 

generally recognized as safe designations, which will facilitate their approval process and 

are easy to manipulate in the laboratory for the development of genetically modified 

organisms. AG-014 is a lactobacillus engineered to produce a nanobody against TNF that is 

in phase 1 studies of patients with IBD.

Countries outside the United States, have an additional regulatory category, independent of 

dietary supplement and LBP, which is a food for special medical purposes. A food for 

special medical purposes is naturally found in the diet but can be marketed for the treatment 

of a disease. In Denmark, profermin is a food for special medical purposes—it is a 

combination of Lactobacillus plantarum, oats, and phosphatidylcholine. Each component of 

this pill has a separate effect as a prebiotic (oats), barrier modulator (phosphatidylcholine), 

and LBP (L plantarum) though it is unclear if there is interaction among components. 

Profermin is on the market and has been studied in small trials of patients with UC, in which 

it had moderate efficacy but without endoscopic endpoints.146, 147 Helminths, specifically 

Trichuris suis, showed efficacy in phase 2 studies of patients with CD but had limited 

efficacy in phase 3 studies.148–151

Microbe effectors

Microbe effectors have specific effects on cells and follow a traditional drug development 

strategy. Approval of microbial effectors by regulatory agencies might be straightforward, 

but there are few products in early stages of development, because we understand so little 

about them. EB110 is a microbe-derived metabolite identified in humans that has been 

associated with development of CD, via unknown mechanisms. SG-2–0776 is a microbe 

effector (protein) that promotes intestinal healing and is in preclinical studies for treatment 

of IBD. PSA has been one of the most extensively studied bacterial effectors and has a 

number of immune-regulatory properties.47, 152 However, IBD-associated variants in NOD2 
and ATG16L1 could mitigate the effect of PSA and be used to identify patients not likely to 

respond.49 PSA is in preclinical development and it is unclear whether clinical trials will 

compare effects in patients with different genotypes.

Formulation strategies

Formulation is an important challenge for microbiome-based therapies. Formulation aims 

for reproducible effects among individuals and delivery of viable organisms to their niche. 

Many LBPs in early-stage trials are administered daily, because it is likely that LBPs do not 

incorporate into the microbiome and expand. However, they might be given in intermittent 
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or even single doses, if our understanding of microbiome homeostasis improves, and we can 

more carefully select LBPs or use of adjuvants.

Companies have focused on formulations for better delivery an LBP to a niche. The Gemicel 

capsule was developed for colonic release of LBP, incorporating 2 separate pH dependent 

mechanisms. Aquashell is a pH-sensitive formulation for colonic delivery that incorporates a 

separate polysaccharide coating that is digested by colon microbes. Both formulation 

strategies have been used to encapsulate LBPs that are in trials of patients with IBD. 

Duocoat is optimized for duodenal release, using a pH-sensitive coat, and Phloral is 

optimized for colon release. Each of these encapsulation strategies necessitate specific 

attention to a strict anaerobic process that is unique for each LBP, because previous dietary 

probiotics (such as Lactobacillus or Bifidobacterium) were microaerophilic.153 Genetically 

modified organisms for treatment of IBD might be viewed as a type of formulation strategy 

to increase a therapeutic effect and mitigate variation. Genetic tools to manipulate human 

microbes are required. Synlogic programs internal circuits in E coli Nissle strains, to induce 

expression of effector genes in response to specific environmental signals. This technology 

is used to produce microbial effectors only in the correct environment. Synlogic has also 

developed chromosome markers for in vivo monitoring of LBPs, which will facilitate 

bioavailability studies.

Targeting interactions between intestinal cells and microbes

We have begun to identify cell signaling pathways that regulated by bacteria and might be 

therapeutically manipulated. SGM-1019 is a small molecule that affects the inflammasome, 

identified using a discovery platform. SGM-1019 has progressed through phase I studies and 

is being developed for treatment of IBD and non-alcoholic steatohepatitis, for which it is 

entering phase 2 studies.

Future Directions

Microbe-based therapies are becoming more diverse and effective as our understanding of 

the interactions between the microbiome and human cells increases. We have begun to better 

understand the effects of genetic and environmental factors on the microbiome and its 

products or effectors. Formulation strategies can be refined to address the primary challenge 

of diversity in the microbiomes among individuals and for treatment of specific diseases.

Additional challenges to development and use of microbe-based therapies involves issues 

regarding intellectual property. A full discussion of this topic is beyond the scope of this 

review, but one of the biggest problems is how to enforce patent laws for the composition of 

a natural product. LBPs that can be defined as natural products include isolated microbes or 

their effectors (such as metabolites or proteins). Natural products can be protected by 

method patents, which state their use for treatment of IBD, but these patents are not as easily 

enforced, which dissuades companies from developing these types of products. One strategy 

has been to genetically modify microbes or use them in combination with other microbes, as 

a genetically modified organism or a defined community that is not found in nature (not a 

natural product). Companies have obtained composition of matter patents for LBPs that are 

natural communities, so it will be important to see how these patents are enforced if these 
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products come to market. Patent law protection is critical for development of microbe-based 

therapies; it is likely that the legal framework will change as it has in the past.
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Figure 1. Genetic factors that affect the intestinal microbiome.
Variants genes that affect risk for IBD have been associated with alterations in the 

composition of the microbiome. Mutations in NOD2, ATG16L1, and LRRK2 reduce 

secretion of antimicrobial peptide (AMP) by Paneth cells. Variants in CLEC7A and CARD9 
have been associated with decreased abundance of Lactobacillus, possibly due to altered 

activities of dendritic cells and macrophages. Variants in NOD2 are associated with 

increased abundance of Escherichia species and Bacteroides vulgatus and reductions in 

Faecalibacterium species. Impaired ATG16L1 signaling has been associated with increased 

production of IgG and IgA against commensal microbiota, resulting in a loss of tolerance to 

intestinal microbes. Polymorphisms in MHC class II or HLA genes affect production of IgA 

in response to microbes. Defects in mucus production alter the intestinal microbiome and 
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increase susceptibility to colitis. Gene names in red have variants associated with CD and 

UC; gene names in orange have variants associated with only CD; and gene names in purple 

have variants associated with only UC.
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Figure 2. Effects of the Microbiome on Intestinal and Immune Cells.
The intestinal microbiome and its products modulate immune responses, via induction of 

dendritic cells (DCs) and lymphocytes (such as Th17 cells, Treg cells [Tregs in figure], and 

innate lymphoid cells (ILCs)), and cytokine production (IL10, IL22). Intestinal bacteria can 

also modulate immune signaling pathways, such as expression of NOD2, and epithelial 

repair. Specific microbes can increase susceptibility of mice to colitis.
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Figure 3. Challenges to Development of Therapeutic LBPs.
Compared with small molecules, LBPs have different challenges at each stage of drug 

development. Challenges are presented to drug discovery, preclinical studies, and clinical 

studies. A. In contrast to small molecules, which usually target a specific protein or class of 

feature of proteins, LBPs are identified based on their association with a disease phenotype 

in humans or mouse models. B. Small molecules require extensive toxicity studies, whereas 

LBPs are believed to be non-toxic but require assessments for virulence or antibiotic 

resistance. Preclinical studies of LBPs are not informative for bioavailability, but focus on 

viability or bioactivity, which can require specific encapsulation methods, adjuvants, or 

genetic modifications. C. Trials of LBPs require specific attention to adverse events related 

to transmission of the microbe, loss of its bioactivity, or off-target effects. Small molecules 

can also have off target effects, but these may be easier to predict, based on finding from 

preclinical studies. Early-phase studies of LPBs might be important for final formulation, 
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because bioavailability and potential mechanisms can be assessed based on findings from 

small groups of patients.
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