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Abstract

The ability to regulate emotions is key to goal attainment and wellbeing. Although much has 
been discovered about neurodevelopment and the acquisition of emotion regulation, very little of
this work has leveraged information encoded in whole-brain networks. Here we employed a 
network neuroscience framework to parse the neural underpinnings of emotion regulation skill 
acquisition, while accounting for age, in a sample of children and adolescents (N = 70, 34 
female, aged 8–17 years). Focusing on three key network metrics—network differentiation, 
modularity, and community number differences between active regulation and a passive 
emotional baseline—we found that the control network, the default mode network, and limbic 
network were each related to emotion regulation ability while controlling for age. Greater 
network differentiation in the control and limbic networks was related to better emotion 
regulation ability. With regards to network community structure (modularity and community), 
more communities and more crosstalk between modules (i.e., less modularity) in the control 
network were associated with better regulatory ability. By contrast, less crosstalk (i.e., more 
modularity) between modules in the default mode network was associated with better regulatory 
ability. Together, these findings highlight whole-brain connectome features that support the 
acquisition of emotion regulation in youth. 
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Introduction

Emotions promote adaptive behavior but can become detrimental if left unchecked
(Gross, 2015), underscoring the importance of emotion regulation. Emotion regulation 
acquisition is a protracted process that emerges across development, and is highly consequential 
for wellbeing (Calkins, 1994; Casey et al., 2008; Thompson et al., 2008). Over the past fifteen 
years, substantial efforts have been made to examine brain regions involved in the development 
of emotion regulation, with most work focusing on activation within, or dynamics between, the 
amygdala, ventromedial prefrontal cortex (vmPFC), and lateral prefrontal cortex (lPFC) (Ernst, 
Pine, & Hardin, 2006; Gee et al., 2014; Kim et al., 2013; McRae et al., 2012; Perino, Miernicki, 
& Telzer, 2016; Pitskel, Bolling, Kaiser, Crowley, & Pelphrey, 2011; Silvers et al., 2017). 
However, surprisingly little is known about the extent to which whole-brain networks—suites of 
brain regions that reliably activate in concert (e.g., default mode, control)—support the 
acquisition of emotion regulation skills. This omission is noteworthy given work in adults 
showing that many emotional, as well as non-emotional, processes and behaviors are supported 
by whole-brain networks (Gratton et al., 2018; Kleckner et al., 2017). Leveraging network 
neuroscience may help to fill at least two major gaps in our knowledge of emotion regulation 
neurodevelopment. First, this approach may improve our understanding of how correlated but 
distinct developmental phenomena such as chronological age and emotion regulation ability are 
represented in the brain. Second, neuroscientific theories of emotion regulation implicitly posit 
dynamic interactions between brain regions during active emotion regulation (Ochsner, Silvers, 
& Buhle, 2012), yet only recently have imaging studies of emotion regulation begun to explicitly
test this assumption (Zhang, Padmanabhan, Gross, & Menon, 2019). Doing so from a whole-
brain network perspective will provide more specific and precise evidence to be used in 
evaluating said theories.  

Network neuroscience is a promising approach for parsing distinct but related 
developmental phenomena (Richardson et al., 2018). The current study focused on two network 
properties that have been particularly important for understanding development in other domains 
and thus may be fruitful for pinpointing the neurodevelopment of emotion regulation ability. The
first property is network differentiation—the extent to which activity within a network is similar 
or distinct across task states, perhaps reflecting a network’s “specialization” for a given task.  
Examining network differentiation in combination with behavioral assessments of emotion 
regulation can help determine which networks become specialized to support skill development 
(i.e., improved emotion regulation ability). While some patterns of network differentiation may 
correspond with changes in specific skills, others that support more general aspects of 
development may show increased specialization with age rather than tracking with performance 
on a given task. For instance, prior research shows greater specialization among pain perception 
and mentalizing networks tracks with chronological age, but not skills related to representing 
others’ states (Richardson et al., 2018). Extrapolating to emotion regulation, this implies that 
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some networks might support domain-general development with chronological age (e.g., the 
default mode network), whereas others specifically support emotion regulation abilities (e.g., the 
salience network). 

The second property is network community structure—or, how brain networks are 
divided into sub-structures (“communities”, “modules”; Sporns, 2010; Yeo et al., 2011). In the 
context of emotion regulation, a network’s modules may support different emotion regulation 
sub-processes (e.g., working memory). We assessed network community structure here by 
examining the number of communities that emerged in a given network between task states as 
well as modularity, the strength of intra- versus inter-module connections. A network’s 
community structure (number of communities, modularity) and the suite of psychological 
processes it supports, might track differentially with age and ability, helping reveal the manner in
which domain-general maturation (chronological age) differs from growing expertise in a skill 
(ability). Given that other lines of research have successfully leveraged network differentiation 
and community structure metrics to build increasingly accurate models of brain function, 
cognitive skills, and development (Baum et al., 2017; Richardson et al., 2018; Sizemore et al., 
2018), it stands to reason that such an approach may also benefit the study of emotion regulation 
development.

In the present study, we used the three aforementioned metrics of network activity 
(network differentiation, number of communities, modularity) in conjunction with ridge 
regression to predict regulation ability in a sample of youth who completed an emotion 
regulation task during functional magnetic resonance imaging (fMRI) scanning. These three 
metrics were chosen because they have been consistently implicated in prior neuroimaging 
studies of social and cognitive development and have been previously used as indices of network
specialization (Baum et al., 2017; Richardson et al., 2018; Sizemore et al., 2018). Because our 
questions were exploratory in nature, our study was guided by open questions about how 
network properties relate to emotion regulation ability beyond chronological age. However, 
given prior neuroimaging work implicating prefrontal-subcortical circuitry in emotion regulation 
development (Casey, 2015; Silvers et al., 2017), we generally expected that limbic and prefrontal
control networks were particularly likely to explain differences in regulatory ability. 

Methods

Analytic Overview. In the current study, we scanned 70 children and adolescents with 
fMRI while they completed four runs of a cognitive reappraisal task that involved alternately 
regulating (regulate condition) and reacting naturally (emotional baseline condition) to a series of
negative and neutral images. Cognitive reappraisal—reframing a stimulus to alter its emotional 
impact—was our chosen form of emotion regulation study because it is widely-studied, is highly 
consequential for adjustment (e.g., Troy et al., 2010),  its abilities are known to improve with age
during childhood and adolescence (Gross, 1998; McRae et al., 2012; Silvers et al., 2012). 

The following procedure was conducted to derive the network metrics we would use for 
both aims articulated above. Following visual and statistical assessment of data quality and 
preprocessing, we prepared the data for analysis by extracting beta-series from each node (i.e., 
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ROI) across all networks defined by the Schaeffer 17 parcellation scheme (more information on 
parcellation selection below). Various metrics from each network were next calculated with the 
goal of using said metrics to build classifiers that could predict age and emotion regulation 
ability Correlations among each networks’ beta-series were performed and used, in conjunction 
with representational similarity analysis (RSA) and graph theory, to yield our metrics of network
activity. These metrics included network differentiation between task states (regulate v. 
emotional baseline; RSA based) and two measures of network community structure: 1) 
differences in the number of modules within a network between task states (regulate v. emotional
baseline), and 2) differences in modularity between task states (the degree of ‘crosstalk’ between 
modules for regulate v. emotional baseline). Notably, the number of modules and modularity are 
related but distinct—the former tells us how many ‘divisions of labor’ occur in a network and the
latter reflects how rigidly the network appears to follow such divisions. We reiterate here that our
inclusion of, and comparison to, a control conditional (a passive emotional baseline) is critical 
for making inferences about emotion regulation rather than broader emotional processes. 

Afterwards we submitted connectivity-based metrics from the top specifications to ridge 
regression analyses predicting age and emotion regulation ability. Modeling decisions 
comprising parcellation, edge defining threshold, and whether to detrend beta-series were 
decided by running a ridge regression model on each specification and selecting the specification 
that yielded the lowest RMSE. After selecting the appropriate specification, we performed 
inference over parameter estimates by building bootstrapped confidence intervals. Further details
follow. 

Participants. Participants for the current study were drawn from a larger sample of 
individuals enrolled in a longitudinal neuroimaging study about childhood maltreatment and 
affective neurodevelopment. Youth in the current analyses were selected from a non-maltreated 
community control group who were screened with the following exclusion criteria: childhood 
maltreatment/violence, presence of a developmental disorder (e.g., autism), psychotropic 
medication use, and IQ < 75. To qualify for inclusion in the current report, participants were 
required to have anatomical images free of abnormalities or artifacts, low levels of motion during
the scan (addressed below), and accompanying behavioral data from our scanning emotion 
regulation paradigm. Our final sample included 70 youth (34 female) ranging in age from 8.08 to
17.00 years (Mean age = 12.7). The study was conducted in a large, metropolitan area in the 
Pacific Northwest region of the United States. Youth and their parents provided written assent 
and consent, respectively, in accordance with the University of Washington’s Institutional 
Review Board. Participants were remunerated $75 after completion of the scan. Data and 
analysis code can be accessed on the Open Science Framework (osf.io/bfg3d).

Experimental Design

fMRI Emotion Regulation Paradigm. Participants completed a variation on a common 
and widely used emotion regulation task for youth while undergoing fMRI (Silvers, Shu, 
Hubbard, Weber, & Ochsner, 2015). Participants passively viewed or effortfully regulated 
emotional responses to a series of developmentally-appropriate negative and neutral images 
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(modeled after the International Affective Picture System (IAPS); Lang, Bradley, & Cuthbert, 
2008). Each trial began with an instructional cue (2s duration), ‘Look’ or ‘Far’. The former 
instructs participants to passively view a subsequent stimulus whereas the latter prompts 
participants to regulate it via a psychological distancing variant of cognitive reappraisal. 
Following the cue, participants viewed a neutral or aversive stimulus. Aversive stimuli were 
either paired with ‘Look’ or ‘Far’. Neutral images were always paired with the ‘Look’ cue; these 
images are not of interest to the current study and will not be discussed further. Stimuli were 
displayed for 6-10s (jittered). A 5-point Likert scale was presented thereafter to collect 
participants affective responses (4s). Lastly, a jittered ITI concluded each trial (1.5-6.5s). Prior to
scanning, participants were trained extensively by experimenters to ensure they understood the 
task and were comfortable completing it, and afterwards completed a practice run. Stimuli were 
purchased from a stock photography website (https://shutterstock.com) and were normalized in a
sample of youth (120, ages 6-16, 50% female) based on valence, arousal, and dominance. 
Stimuli and normed ratings are available online (osf.io/43hfq/). The most negatively rated 
images were selected for use in the current study. Participants completed four runs, each lasting 
approximately 220s (rungs ranged between 110-115 4D volumes). Each task condition (‘Look’-
Negative; ‘Far’-Negative; ‘Look’-Neutral) was presented 20 times over the four runs (5 per run).
The task was programmed and presented in E-Prime (Psychology Software Tools, Inc., 
http://www.pstnet.com). 

fMRI Data Acquisition. If participants were younger than 12 years of age or exhibited any
nervousness about scanning, they were taken to a mock MRI scanner in order to familiarize with 
them with scanning environment and to be trained on how to minimize head motion in the 
scanner. Additionally, in preparation for the scan, participants were packed into the head coil 
with an inflated, head-stabilizing pillow to restrict movement. 

Images were acquired at the University of Washington’s (Seattle) Integrated Brain 
Imaging Center on a 3T Phillips Achieva scanner. A 32-channel head coil was used in 
conjunction with parallel image acquisition. A T1-weighted, magnetization-prepared rapid 
acquisition gradient echo (MPRAGE) image was acquired for registration purposes 
(TR=2530ms, TE=1640-7040μs, 7º flip angle, 256 mm2 FOV, 176 slices, 1 mm3 isotropic 
voxels). Blood oxygenation level dependent (BOLD) signal during functional runs was recorded 
using a gradient-echo T2*-weighted echoplanar imaging (EPI) sequence. Thirty-two 3-mm thick 
slices were acquired parallel to the AC-PC line (TR=2000ms, TE=30ms, 90º flip angle, 256 x 
256 FOV, 64 x 64 matrix size). 

fMRI Data Pre-Processing. The FMRIB Software Library package (FSL, version 5.0.9; 
fsl.fmrib.ox.ac.uk) was used for pre-processing and later analysis. Prior to pre-processing, data 
were visually inspected for artifacts, anatomical abnormalities, and excessive head motion. Pre-
processing began by using the brain extraction tool (BET) to remove non-brain tissue from 
images and estimating the extent of participant head motion by using FSL Motion Outliers to 
record volumes that exceed a 0.9 mm framewise displacement (FD) threshold (Siegel et al., 
2014). Fortunately, head motion was minimal: The average number of volumes exceeding our 
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FD threshold per run, per participant was 3.014 (SD = 6.09, range = 0 - 30.75). Head motion as 
not appreciably correlated with age or emotion regulation ability scores (both rs < |.05|). 
Afterwards, we corrected for head motion by spatially realigning volumes using MCFLIRT and 
then hi-pass filtered the data (100s cutoff). We pre-whitened the data to correct for temporally 
autocorrelated residuals. 

Network Definition. We initially began with two prospective network parcellations to 
choose from: the Schaefer 7 network parcellation (100 ROIs) and the Schaefer 17 network 
parcellation (400 ROIs) (Schaefer et al., 2018). For both parcellations, spheres (4 mm radius) 
were drawn across all peaks in order to extract data necessary to compute connectivity (described
in the next section). A 4mm radius was used to minimize overlap between spheres. We made the 
decision to extract data from identically sized spheres to ensure that differential effects between 
networks were not driven by differences in volume. We ultimately selected the Schaefer 17 
parcellation based on evaluating fit statistics from several different possible models (see 
‘Statistical Analysis’ section). 

In addition to the networks in the Schaefer7 and Schaefer17 parcellations, we also 
included 32 ROIs from a ‘cognitive reappraisal network’ (CRN; Buhle et al., 2014). These ROIs 
are commonly observed when individuals engage in cognitive reappraisal, the emotion regulation
strategy employed here. Individual nodes of the CRN are available elsewhere (see supplement of
Guassi Moreira et al., 2019). We decided to include the CRN because it is the most relevant 
network to the emotion regulation task incorporated in the present study. Recent work in both 
adult and developmental samples suggests that task-specific information—and even activity from
task-specific networks—is privileged over domain-general information and thus may be 
informative when differentiating between task ability and chronological age (Brody et al., 2019; 
Greene, Gao, Scheinost, & Constable, 2018). Nodes in the CRN were identified using the same 
procedure described in Guassi Moreira, McLaughlin, & Silvers, 2019. 

Estimating Network Connectivity Metrics

Network Connectivity via Beta-Series. In order to obtain metrics of network-level 
activity, we first modeled the task data within-subjects using a Least Squares Single (Mumford et
al., 2014) design to yield a beta-series (Rissman et al., 2004). For each run within an individual 
subject, a fixed-effects GLM was created for each ‘Far’ (regulation of aversive stimuli) and 
‘Look’-Negative (passive observation of aversive stimuli) ‘target trial’. Thus, a separate GLM 
was created for each individual target trial. Each GLM consisted of a single-trial regressor which
modeled that GLM’s target trial, a nuisance regressor modeling all other events in the target 
trial’s condition, regressors for the other two conditions—each modeled as they normally would 
be in a standard univariate analysis. For example, the first ‘Far’-Negative trial for a participant 
would receive its own GLM wherein it was modeled in a single regressor; all other ‘Far’-
Negative trials were placed in a separate nuisance regressor while ‘Look’-Negative and ‘Look’-
Neutral trials modeled in their own respective regressors. Afterwards, a new GLM was created 
for the second ‘Far’-Negative trial, where it was the ‘target trial’ and modeled in a single-event 
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regressor and the first trial is now modeled in the separate nuisance regressor with other trials of 
that type. FSL’s extended motion parameters estimated from MCFLIRT (rotation+translation, 
derivatives, and squares of each) and additional volumes that exceeded our FD = 0.9 mm 
threshold were also added as regressors of non-interest to each first-level LSS GLM. 

Following estimation of the LSS GLMs, we used parameter estimates from each trial-
specific GLM to create linear contrast images comparing both trial types of interest (‘Far’-
Negative & ‘Look’-Negative), respectively, to baseline. We then extracted estimates of 
activation for both trial types across a series of ROIs nested within six different networks (see 
below). This yielded two t x p x n arrays (one for each task condition), where entries to each cell 
represent the average parameter estimate at the t-th trial for the p-th ROI in the n-th network. For
every network, beta-series amongst all its ROIs were correlated amongst each other (Spearman’s 
Rho), yielding two connectivity matrices (one for each trial type) per network. These matrices 
describe each network’s connectivity for a given task condition (i.e., connectivity matrix), and 
we refer to them as network connectivity profiles (See Figure 1 for an overview). 

Network Differentiation. The first feature of network activity we examined was network 
differentiation, or the distinctness between a network’s connectivity between two task states. We 
used representational similarity analysis to quantify the degree to which the ‘Far’-Negative and 
‘Look’-Negative conditions were distinct from each other in a given network (in terms of 
connectivity). 

Using Representational Similarity Analysis to Quantify Network Differentiation. The first
feature of network activity we chose to examine was differentiation. In order to estimate network
differentiation, we compared profiles of network connectivity when youth were engaging in 
emotion regulation versus when they were simply viewing emotional stimuli using 
representational similarity analysis (RSA) on our two task-specific connectivity matrices
(Kriegeskorte, 2008; Kriegeskorte et al., 2008). Traditionally, RSA is a form of multi-voxel 
pattern analysis that relies on the presumption that multi-voxel activation patterns reliably 
contain information about a specific stimulus (Etzel et al., 2013; Kriegeskorte et al., 2009). 
Comparison of two stimulus patterns (via correlation) in RSA can reveal the extent to which 
representations of stimuli encode unique or similar information. However, one is not bound to 
use RSA solely with multivariate patterns. In fact, RSA can be used to compare any two different
representations because information about pattern representations is ultimately abstracted away 
from the modality in which it was initially acquired and transformed forced into a common 
space. To this point, prior research has used RSA to compare voxelwise patterns in the brain to 
behavioral patterns (Parkinson et al., 2017), behavioral patterns to other behavioral patterns
(Brooks & Freeman, 2018; Stolier et al., 2018), and, most importantly for our purposes, 
representations of brain connectivity patterns (Lee et al., 2017). We built upon and extended 
these prior implementations of RSA for our purposes in comparing network connectivity states 
between task conditions. 
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For each network and task condition, a r x r connectivity matrix was constructed, where r
is the number of ROIs in the network. Representational similarity analyses involved vectorizing 
the off-diagonal elements of each task condition’s various connectivity matrices, Fisher 
transforming them (for variance stabilization), and then correlating the elements (Spearman). 
This yielded a scalar value that describes the extent to which a given network’s connectivity 
profile differs between task conditions (see Figure 1). An extreme high value indicates that the 
pattern of connectivity across the entire network remains consistent during ‘Far’-Negative 
(Regulate) and ‘Look’-Negative (Emotional Baseline) trials; An extreme low value 
(anticorrelation) indicates a differentiated connectivity profile between the two task states. 

Network Community Structure. The next feature of network activity we examined was 
community structure between task conditions (e.g., when regulating versus when passively 
viewing emotional stimuli) (Sporns, 2010). That is, we examined the number of communities 
within a network, or subclusters comprised of densely interconnected nodes within the network, 
as well as crosstalk (i.e., modularity) between communities.

Community Number Differences Between Network States. When examining community 
structure, we first quantified the number of communities within each network as a function of 
task condition. To achieve this, we used the aforementioned connectivity matrices to create 
undirected, weighted adjacency matrices. An adjacency matrix summarizes a graph—each row 
and column represent the ROIs (nodes) that comprise the network, while an entry into the off-
diagonal elements of the matrix denotes the presence or absence of a connection (edge) between 
two nodes. It is customary to set an edge defining threshold, a value at which all correlation 
estimates (e.g., correlation between two ROIs’ beta-series) at or falling below the threshold are 
set to zero, and all estimates above the threshold are set to 1 (unweighted edges) or left at their 
original value (unweighted edges) (Bolt, Nomi, Yeo, & Uddin, 2017). In our case, we used 
weighted edges. We varied the edge defining threshold as part of our model specification 
selection procedure (see Statistical Analysis section). 

We then estimated the number of communities in each task condition, for all networks, 
for all subjects using the R igraph package’s walktrap clustering algorithm (Csardi & Nepusz, 
2006; Pons & Latapy, 2005) in R (R Core Team, 2014). The walktrap clustering algorithm (Pons
& Latapy, 2005) estimates community structure in a graph using random walks—step-wise paces
from one node to another on a graph according to random chance. The algorithm operates on the 
principle that the probability of taking a walk (i.e., moving over) from one node to another 
depends on the number of shared connections between nodes. This ultimately means that walks 
are more likely to become ‘trapped’ inside a community than a non-community due to the dense 
interconnections between nodes that define community membership. The number of a given 
network’s communities across both task conditions were extracted from the graphs and 
differenced (‘Far’-Negative – ‘Look’-Negative), resulting in six metrics of community structure, 
one per network, per participant. A higher value on this metric indicates a greater number of 
observed communities within a network during emotion regulation, compared to passively 
viewing emotional stimuli.

9



Modularity Differences Between Network States. Our final network metric was the 
difference in modularity between task conditions for a given network. Building upon the concept 
of community structure, a graph is said to be highly modular if it exhibits relatively dense 
interconnections within its communities and relatively sparse connections between them. On the 
other hand, a graph that is low in modularity has nodes that have relatively equal connections 
within and between their communities. In other words, modularity can be thought to measure the
extent to which “cross-talk” exists between the communities within a network (i.e., a ratio 
between intra- versus inter-community ties). Modularity metrics across both task states in each 
network across all participants were obtained using the communities identified in the prior 
section. The same differencing was taken (‘Far’-Negative – ‘Look’-Negative) to obtain a metric 
of modularity differences between task conditions across each participant’s connectome. 
Notably, because our focus was on the degree to which information about development and 
emotion regulation ability is encoded across a set of brain networks, we opted to focus on within-
network modularity, rather than between-network modularity. 

Statistical Analysis

Selecting a Parcellation and Other Modeling Decisions. We were faced with a number of
different modeling decisions, including choosing a parcellation (Schaefer7 or Schaefer 17), an 
edge-defining threshold (ρ = 0.4, 0.5, 0.6), and whether to linearly detrend the beta-series via 
OLS regression (detrend, do not detrend). In order to do this, we estimated a model using all 
possible specifications (12 total) computed their associated root mean square error (RMSE) as a 
metric of prediction accuracy. The final model was estimated using specifications that yielded the
lowest RMSE. Notably, the RMSE was weighted by degrees of freedom to avoid bias towards 
models with more predictors. Both the Schaefer7 and Schaefer17 networks included CRN ROIs. 
Only RMSE was computed for each model in this process, as inference on the individual 
regression parameters for each model specification was not performed. We elected to use this 
method for model selection over nested cross-validation because nested cross-validation would 
have required us to iteratively subset our data into smaller sets whose sample size would have 
been inappropriate for cross-validation. 

Model Building Using Ridge Regression. We used ridge regression to estimate 
associations between network activity metrics and emotion regulation ability (controlling for 
age). Ridge regression was selected because (i) we had continuous dependent variables, and 
because ridge regression (ii) effectively estimates parameters in a model with many predictors, 
(iii) handles highly correlated predictor variables, and (iv) most importantly, is less susceptible to
overfitting and therefore has better out of sample predictive accuracy (McNeish, 2015; Murphy, 
2012). Ridge regression differs from traditional OLS regression in that its loss function contains 
an extra penalty term (Penalty bRidge = λΣbj

2). This has the effect of biasing, or shrinking, 
coefficients towards zero, especially those with inappropriately large magnitudes that drive 
overfitting. This added bias, introduced via what is known as l2 regularization, helps prevent 
overfitting by decreasing sample to sample variability in regression coefficients. This has the 
effect of producing more generalizable models while satisfying the traditional aim of helping 

10



make inferences about population parameters due to enhanced certainty in parameter estimates 
(i.e., narrower sampling distribution of coefficient estimates). 

Here we implemented ridge regression using the glmnet()function in R. Notably, ridge
regression requires a tuning parameter (λ) that controls the degree of regularization. In our case, 
we used the cv.glmnet()function, which finds the optimal λ value via cross-validation. To 
facilitate statistical inference, we computed 95% bootstrapped confidence intervals (percentile) 
around parameter estimates (5,000 bootstrapped iterations). Because the current study was 
exploratory in nature, we elected not to correct for multiple comparisons in order to minimize the
risk of a type II error. 

Results 

 Behavioral Results. Behavioral results from our emotion regulation task have been 
reported elsewhere (see Guassi Moreira et al., 2019), but we briefly recapitulate them here for 
convenience. Participants’ average negative affective ratings during the ‘Look’-Negative and 
‘Far’-Negative trials were 2.48 (SD = .562) and 1.95 (SD = .499), respectively. This difference 
was statistically significant (t(69) = 10.37, p < .001). Participants’ ability to engage in emotion 
regulation, quantified as the percent reduction in negative affect for the regulate condition 
relative to the emotional baseline condition, improved with age (r = 0.344, p<.01). 

Using network approaches to parse chronological age and emotion regulation ability

Model Selection. The specified model with the lowest RMSE used the Schaefer 17 
parcellation, an edge defining threshold of ρ = 0.4, and linearly detrended beta-series (via OLS). 
Model selection output is listed in Table 1.   

Predicting Emotion Regulation Ability. Ridge regression parameters and bootstrapped 
confidence intervals are listed in Table 2. When predicting emotion regulation ability from our 
network connectivity metrics, we found that network differentiation in Control Network 
(subnetwork C) and Limbic Network (subnetwork B) were each predictive of emotion regulation
ability such that greater differentiation between these networks’ connectivity profile during 
active regulation compared to emotional baseline was related to better emotion regulation ability.
Differences in network modularity during emotion regulation compared to emotional baseline 
were also related to emotion regulation ability. Specifically, greater modularity in Default Mode 
Network (subnetwork B) was associated with increased emotion regulation ability whereas the 
opposite was true for the Control Network (subnetwork C). Only community differences in 
Control Network (subnetwork B) were related to emotion regulation ability, such that more 
communities during regulation versus emotional baseline were associated with better emotion 
regulation ability. Notably, all of these effects were significant while statistically adjusting for all
terms in the model, including age. Age was directly associated with emotion regulation ability 
after statistically adjusting for all network terms. 

Given that multiple subnetworks of Control Network showed significant associations 
with emotion regulation ability, we decided to examine the correlation between Control Network
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subnetwork predictors. While the use of ridge regression theoretically obviates concerns about 
collinearity among predictors, it does not address the degree to which these subcomponents 
represent distinct entities. Fortunately, none of the Control Network subnetworks were highly 
correlated across the three metrics (differentiation rs: .26 - .40; modularity rs: -.07 - .26; 
community rs: .11 - .38), indicating that these subnetworks are related but distinct units, in the 
context of emotion regulation. 

Last, in order to determine the variance in ability that was uniquely predicted by the 
aforementioned network metrics as well as age, we calculated squared semi-partial correlations. 
Network metrics each uniquely accounted for between 4.49% and 9.84% of the variance in 
emotion regulation ability, while age uniquely accounted for 4.65% of the variance in emotion 
regulation ability (Table 3). Because these are squared semi-partial correlations, these estimates 
of variance accounted for reflect statistical adjustment of the other significant terms in the model.

Discussion

We set out to interrogate the neurodevelopment of emotion regulation using network 
neuroscience by parsing brain network features that contribute to correlated but distinct 
developmental processes (chronological age and acquisition of emotion regulation abilities). This
work builds upon past network neuroscience studies of development to better understand task-
specific aspects of maturation (Rudolph et al., 2017). We found that emotion regulation ability 
showed significant associations with whole-brain network metrics in the control network, default
mode network, and the limbic network. Generally, because greater network differentiation and 
modularity in these networks was associated with better regulation ability, it suggests these 
networks develop specialized features that lend themselves to better implementing emotion 
regulation. Importantly, these combined network properties explained a substantial amount of the
variance in emotion regulation ability over and above age. These findings have implications for 
our basic understanding of the neurodevelopment of emotion regulation, and how brain networks
may broadly change and interact across cognitive and emotional development.

In the present study, we were able to explain variance in emotion regulation ability using 
network activity metrics (cumulative variance explained by brain predictors after controlling for 
age = 36.17%), even after accounting for age (variance explained after controlling for brain 
predictors = 4.65%). These results suggest that task-based network activity encodes information 
about skill development associated with a given task rather than domain general features of 
development (i.e., age). We found that greater differentiation in the Control and Limbic 
Networks were associated with increased emotion regulation ability. These results are directly in 
line with what is posited by dominant neurobiological models of cognitive emotion regulation 
functions (Etkin, Büchel, & Gross, 2015; Ochsner et al., 2012). These models posit that bottom-
up affective signals generated in limbic regions are modulated by top-down cognitive processes 
in prefrontal cortical areas. Our data support this notion by showing that youths with better 
regulation skills show more differentiated patterns of connectivity in the Control and Limbic 
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Networks. That is, connectivity in these networks looks different when regulating than when 
passively experiencing emotions. 

We also found that differences in Default Mode and Control Network modularity were 
associated with regulation ability, albeit in different ways. Greater modularity in the Default 
Mode Network during regulation, relative to baseline, was related to better ability, whereas the 
opposite trend was found with Control Network. This is consistent with recent 
neurodevelopmental findings showing that increasing functional subdivision of the Default Mode
Network facilitated better mentalizing abilities on a theory of mind task (Richardson et al., 
2018), as well as clinical work linking enhanced cross-network connectivity and activity in the 
Default Mode Network with emotion regulation disorders such as Major Depression (Liu et al., 
2012; Sheline et al., 2009). Because cognitive reappraisal relies on higher order executive 
functions such as self-referential thought that are widely considered to be supported by Default 
Mode Network (Buckner & Carroll, 2007), it is possible that the anatomical substrates of the 
network segregate to support functional specialization. While the opposite trend with the Control
Network can appear initially contradictory, it is worth noting that evincing a greater number of 
network communities in Control Network (relative to baseline) were related with better 
regulatory ability. It is noteworthy that prior work found that increasing structural modularity of 
the Control Network is associated with increased cognitive skills across age (Baum et al., 2017). 
In tandem, these results suggest that greater functional subdivision in the Control Network (more
communities) is related to better regulatory ability, but only when functional modules are 
engaging in enough ‘cross-talk’ (less modularity). Thus, the Control Network best supports 
developing emotion regulation abilities when it is characterized by ready communication 
between specialized modules. Similar to the Default Mode Network findings, the specific 
subnetwork of the Control Network involved most consistently in our study was comprised of 
individual ROIs that have been implicated in visuospatial imagery and self-referential processing
(Cavanna & Trimble, 2006). These are two psychological processes that are heavily involved in 
the distancing variant of reappraisal we employed and further suggest functional specialization 
supports fine-tuning of the cognitive skills needed to engage in reappraisal. 

Overall, our findings speak to the nature of neurodevelopment. Specifically, they suggest 
that maturation is driven by changes in network states. Rather than viewing neural network 
development as monolithic, this perspective suggests that different psychological states – for 
example, regulating emotions versus not regulating emotions – elicit unique and discrete 
configurations of activity and connectivity within a single network (Shine, et al., 2019ab)., and 
that the differences between these states varies as a function of age and skill development. While 
some network dimensions may be more consequential for general maturation (and thus, are 
likely to correlate strongly with age), others are likely more impactful for shaping task-specific 
development (for example, those we observed here to be related to regulation ability). Our data 
preclude us from verifying this possibility, yet future work equipped with more data from a 
variety of different sources could successfully test this. 
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Our results highlight how studying whole-brain networks may inform contemporary 
neuroscientific models of emotion regulation. Current accounts of emotion regulation posit that 
individual differences in emotion regulation ability are driven by activity among a set of brain 
regions that comprise a dedicated network for a given regulatory strategy (Ochsner et al., 2012), 
while other research has only recently begun to consider the role of canonical whole-brain 
networks as meaningful biological units (Zhang et al., 2019). Although the notion of dedicated 
networks for emotion regulation strategy is enticing, our research fails to find support that a 
Cognitive Reappraisal Network is associated with individual differences in emotion regulation 
ability. This may be because the network itself does not constitute a meaningful biological entity,
despite prior evidence indicating otherwise, or because variability in both network activity and 
regulation ability were truncated from an otherwise full range in our sample (i.e., we only 
sampled a limited range of the population values of network activity metrics). Yet another 
possibility is that Cognitive Reappraisal Network activity during reappraisal may actually 
emerge as an extension or special form of another network (e.g., the Control Network) whose 
core activity might be more tightly linked with regulatory ability.  

Limitations and Future Directions. This study is accompanied by several limitations. 
First, although our sample size is fairly large for task-based pediatric neuroimaging, and is twice 
the median cell size of human fMRI studies (Poldrack et al., 2017), it is nevertheless somewhat 
small in comparison to other network neuroscience studies (e.g., Baum et al., 2017; DuPre & 
Spreng, 2017). Further, although cross-sectional research is an adequate starting point for 
characterizing the neurodevelopment of emotion regulation, future research would benefit from 
longitudinal data to examine how the trajectory of each network’s activity change across time 
and relate to changes in emotion regulation ability. Additionally, amid growing concerns about 
the reliability of computerized tasks intended to measure psychological processes and individual 
differences (Elliott et al., 2019; Enkavi et al., 2019), we note here that the behavioral and neural 
test-retest reliability of the emotion regulation task used here has not yet been established. A final
future direction involves testing whether the predictive properties of the networks studied here 
are relevant for other emotional states, or even across different types of emotion regulation (e.g., 
extinction learning; expressive suppression). Addressing these concerns under further empirical 
scrutiny will help lend further confidence in the take-away conclusions raised by our results. 

 In sum, this study is the first to our knowledge that examines how the developing brain 
supports the acquisition of emotion regulation, a central feature of lifespan mental health. These 
results are the first show how canonical whole-brain networks comprise the functional 
architecture of emotion regulation skill acquisition across youth. 
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Figure 1. Overview of network activity metrics estimation. 
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Note. ‘Far’ and ‘Look’ in the figure refer to the ‘Far’-Negative and ‘Look’-Negative trial types. 
A. Top panel (Network Connectivity via Beta-Series) depicts the beta-series estimated for each 
task condition (regulate (‘Far’-Negative), emotional baseline (‘Look’-Negative)), for the n-th 
network. Each column corresponds to the p-th ROI, each row to the t-th trial, and each entry is 
the average beta-value for a given ROI at a given trial. Beta-series for each subject served as the 
substrates for estimating our network activity metrics of interest, depicted in the bottom row of 
panels. The middle panel (Network Differentiation via RSA) depicts process of computing 
network differentiation. The two boxes represent connectivity profiles (matrices) for each 
condition for the nth network. Each entry to the matrix is the connectivity estimate between a 
given pair of ROIs. Unique off-diagonal elements were vectorized and then correlated 
(Spearman’s Rho) to yield a single, scalar value of network connectivity similarity. The bottom 
panel (Network Community Structure via Graph Theory) depicts graphs for each task condition 
for the n-th network; each node represents an ROI within a given network, whereas each edge is 
the connectivity between a pair of ROIs. This step allowed us to compute the number of network 
communities (i.e., number of modules/communities in each network) and modularity. B. The left
panel shows two illustrative diagrams of communities, or neighborhoods of highly 
interconnected nodes. The network with blue nodes has two communities while the network with
yellow nodes has just one. The right panel illustrates two networks that differ in terms of 
modularity, or the strength of cross-talk between different communities, represented by edges 
between communities. The network with blue nodes has greater modularity or less cross-talk 
because the connection between the two communities is weak (indicated by the dashed line), 
whereas the network with yellow nodes has less modularity or more cross-talk because the 
connection between the two communities is strong (indicated by two connections between 
neighborhoods, solid lines). Network connectivity matrices were thresholded to create adjacency 
matrices and subsequently graphs. Estimates of community structure and modularity were 
compared across both task conditions for each network. 
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Table 1. Model specifications and accompanying RMSE value from the model selection process

Specification (Parcellation, edge-defining threshold, detrending) RMSE Value
Schaefer17 – 0.4 – detrend 0.8267
Schaefer17 – 0.6 – detrend 0.8853

Schaefer17 – 0.4 – none 0.9299
Schaefer17 – 0.5 – none 0.9395
Schaefer17 – 0.6 – none 0.9455

Schaefer17 – 0.5 – detrend 1.1192
Schaefer7 – 0.4 – none 1.3176
Schaefer7 – 0.5 – none 1.3476
Schaefer7 – 0.6 – none 1.5665

Schaefer7 – 0.4 – detrend 1.6607
Schaefer7 – 0.6 – detrend 1.6607
Schaefer7 – 0.5 – detrend 1.6608

Note. Parcellations tested were the 100 ROI Schaefer7 and 400 ROI Schaefer17; edge-defining 
thresholds tested were at Spearman Rho values of 0.4, 0.5, and 0.6; ‘detrend’ refers to linear 
detrending of all ROI betaseries via OLS prior to analysis while ‘none’ indicates no detrending. 
‘RMSE’ refers to root mean square error, for which smaller values indicate better model fit; our 
calculation used degrees of freedom for a given model to calculate MSE instead of the overall N. 
Note that cross-validation, which was used to obtain these 
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Table 2. Ridge regression results predicting emotion regulation ability

Term Parameter
Estimate 95% CI Term

Paramete
r

Estimate
95% CI

sim CoNA -0.466 [-0.179, 0.079] mod SaVANA 1.088 [-0.015, 0.239]
sim CoNB 0.345 [-0.058, 0.195] mod SaVANB 0.003 [-0.127, 0.105]
sim CoNC -1.646 [-0.341, -0.036] mod SMNA 0.856 [-0.042, 0.186]
sim DMNA 0.215 [-0.089, 0.14] mod SMNB -0.121 [-0.151, 0.1]
sim DMNB -0.118 [-0.13, 0.144] mod TPN 0.462 [-0.069, 0.176]
sim DMNC 0.835 [-0.007, 0.254] mod VCN 0.111 [-0.096, 0.126]
sim DANA 0.117 [-0.112, 0.126] mod VPN -0.208 [-0.118, 0.109]
sim DANB -1.078 [-0.245, 0.015] mod CRN 0.389 [-0.073, 0.172]
sim LiNA -0.174 [-0.126, 0.117] com CoNA 0.481 [-0.11, 0.179]
sim LiNB -1.354 [-0.256, -0.022] com CoNB 1.528 [0.017, 0.239]

sim SaVANA -0.195 [-0.14, 0.097] com CoNC 0.443 [-0.114, 0.144]
sim SaVANB 0.041 [-0.111, 0.12] com DMNA 0.445 [-0.081, 0.192]
sim SMNA -0.284 [-0.135, 0.105] com DMNB -0.110 [-0.156, 0.116]
sim SMNB 0.220 [-0.093, 0.153] com DMNC -0.903 [-0.252, 0.038]
sim TPN -0.762 [-0.211, 0.051] com DANA 0.135 [-0.101, 0.159]
sim VCN -0.014 [-0.137, 0.129] com DANB 0.805 [-0.111, 0.177]
sim VPN 0.330 [-0.096, 0.127] com LiNA 0.365 [-0.083, 0.188]
sim CRN -0.734 [-0.222, 0.06] com LiNB 0.372 [-0.087, 0.173]

mod CoNA -0.739 [-0.179, 0.055] com SaVANA 0.564 [-0.104, 0.148]
mod CoNB 0.312 [-0.115, 0.131] com SaVANB 0.851 [-0.05, 0.211]
mod CoNC -1.597 [-0.333, -0.018] com SMNA -0.021 [-0.173, 0.084]
mod DMNA 0.462 [-0.075, 0.143] com SMNB 0.062 [-0.167, 0.119]
mod DMNB 1.971 [0.055, 0.305] com TPN 0.748 [-0.039, 0.227]
mod DMNC -0.429 [-0.157, 0.071] com VCN -0.914 [-0.227, 0.026]
mod DANA 0.381 [-0.066, 0.151] com VPN 0.868 [-0.027, 0.197]
mod DANB 0.163 [-0.112, 0.163] com CRN 0.465 [-0.076, 0.197]
mod LiNA -0.559 [-0.193, 0.087] AGE 1.922 [0.042, 0.301]
mod LiNB 0.310 [-0.115, 0.120] - - -

Note. ‘sim’ refers to network differentiation (obtained via RSA); ‘mod’ refers to differences in 
modularity (regulation – baseline); ‘com’ refers to differences in community structure, i.e., the 
number of communities (regulation – baseline). Greater differentiation is indicated by relatively 
lower similarity scores (i.e., higher similarity indicates that a network’s connectivity is less 
differentiated between task states). CoN refers to control network; DMN refers to default mode 
network; DAN refers to dorsal attention network; LiN refers to limbic network; SaVAN refers to
salience/ventral attention network; SMN refers to somatomotor network; TPN refers to temporal-
parietal network; VCN refers to visual center network; VPN refers to visual peripheral network; 
CRN refers to cognitive reappraisal network. Letters next to each network indicate subnetwork.  

25



95% confidence intervals reflect bootstrapped percentile intervals (5,000 bootstraps). Predictors 
whose 95% CI did not include zero, thus indicating statistical significance, are bolded. 

Table 3. Semi-partial correlations between select brain network metrics and emotion regulation 
ability

Predictor Squared Semi-Partial Correlation
Age 4.65%

Control Network differentiation 7.18%
Limbic Network differentiation 4.64%

Control Network modularity 4.49%
Default Mode Network modularity 9.84%

Control Network community number 5.37%
Note. Semi-partial correlations reflect unique variance that each predictor in the table explains in 
emotion regulation ability after partialling out shared variance with the other predictors. In other 
words, they are Pearson correlations between emotion regulation ability and the residuals of a 
given predictor by the others. They are reported here in a percent metric to facilitate 
interpretation of unique variance accounted for by each predictor.  
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