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Abstract 

As critical dimensions shrink, line edge and width roughness (LER and LWR) become of 

increasing concern. Crucial to the goal of reducing LER is its accurate characterization. LER has 

traditionally been represented as a single rms value. More recently the use of power spectral 

density (PSD), height-height correlation (HHCF), and σ versus length plots has been proposed in 

order to extract the additional spatial descriptors of correlation length and roughness exponent. 

Here we perform a modeling-based noise-sensitivity study on the extraction of spatial descriptors 

from line-edge data as well as an experimental study of the robustness of these various 

descriptors using a large dataset of recent extreme-ultraviolet exposure data. The results show 

that in the presence of noise and in the large dataset limit, the PSD method provides higher 

accuracy in the extraction of the roughness exponent, whereas the HHCF method provides higher 

accuracy for the correlation length. On the other hand, when considering precision, the HHCF 

method is superior for both metrics. 
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Introduction 

Line edge and width roughness (LER and LWR), has become an issue of increasing concern 

as projection lithography techniques push to smaller and smaller feature sizes. This poses significant 

challenges to the development of photo-resist for next-generation lithography techniques such as 

193-nm immersion and extreme-ultraviolet (EUV) lithography. For example at the 32-nm DRAM 

half-pitch fabrication node, the International Technology Roadmap for Semiconductors [1] calls for a 

resist contribution to LWR of less than 1.7 nm, which in turn requires even finer characterization 

capabilities to develop such resists. Representation of the LER, however, as a single 3σ rms number 

may not be adequate to address the needs of the nano-electronics industry. To some extent this has 

been addressed by the ITRS by specifying the frequency range for the roughness, however, still more 

descriptive metrics may be required. Additional metrics could also prove beneficial for fundamental 

learning about resists. 

To address the potential problem of inadequate LER characterization, several additional 

metrics have been proposed [2-4]. Of particular interest are metrics that provide insight into the spatial 

frequency content of the roughness such as correlation length and roughness exponent. Various 

methods may be used to estimate these metrics including the characterization of the power spectral 

density (PSD) [5], the height-height correlation function (HHCF) [3], and the roughness versus length 

(SVL) plot [2]. It has been shown in the literature [6] that the height-height correlation function is the 

preferable method for estimating these parameters. This choice is due primarily to the high noise 

sensitivity of the PSD method. The HHCF method has also been analyzed from the perspective of 

sensitivity to image filtering parameters, with optimal settings based on selecting a filter size that 

renders metric extraction relatively insensitive to incremental changes in filter parameters [3]. The 

question of accuracy of spatial metric extraction in the presence of noise and noise-reduction 
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techniques has not been addressed. Here we present the results from a modeling based study of these 

questions. Moreover, a large set of experimental data is analyzed quantifying the precision of the 

various methods in a real world situation. Knowledge of this precision is crucial when trying to use a 

particular metric to compare different resists or process conditions. 

Metric extraction accuracy 

Before proceeding to the characterization of reproducibility on experimental data, we verify the 

accuracy of the extraction algorithms on ideal model data. Metric extraction is performed using 

fully automated algorithms using offline image analysis software. We note that detailed 

mathematical descriptions of the PSD, HHCF, and SVL functions used here and the extraction of 

spatial parameters such as correlation length and roughness exponents from these functions can 

readily be found in the literature. References in this area specifically dealing with resist LER 

include [2-4,6]. As is typically done in the literature, we assume the line-edge residuals to be 

well described in terms of self-affine fractal scaling. Following Refs. [3,7], we choose the fractal 

process to have an autocorrelation function Γ(x) defined as 

 Γ(x) = σ
2
exp[–(x/Lc)

2α
]       (1) 

where σ
2
 is the variance, Lc is the correlation length, and α is the roughness exponent. The self-

affine sequence is generated through spectral shaping methods [8] where the target 

autocorrelation function [Eq. (1)] is Fourier transformed to generate the target power spectrum, 

which in turn is used to shape the spectrum of a random number series. 

 Using this technique we generate line edges, each comprised of 1024 points with 2-nm 

sample spacing, and extract roughness exponent and correlation length metrics using the PSD, 

HHCF, and SVL methods, respectively. We note that the correlation length reported for the PSD 
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method is actually computed from the autocorrelation function (the Fourier transform of the 

PSD) using the equivalent top-hat metric [9]. Using this method allows the correlation length 

information to be used as a priori information in the extraction of roughness exponent from the 

PSD. We note that we have not attempted to use the SVL plot to extract correlation length data 

because long line lengths are required and the method provides limited accuracy. For improved 

statistics, a total of 216 line edges are generated and the relevant computed functions averaged 

over all line edges. The metrics are then extracted from the averaged PSD, HHCF, and SVL 

functions, respectively. We consider roughness exponents ranging from 0.1 to 0.9 at a correlation 

length of 25 nm [Figs. 1(a) and (b)], and a range of correlation lengths (15 to 50 nm) at a fixed 

roughness exponent of 0.5 [Figs. 1(c) and (d)].  

The results show that in terms of the performance being independent of roughness 

exponent, on average the HHCF method performs best, although all three method perform fairly 

well for roughness exponent values greater than 0.2. Considering instead the dependence on 

correlation length, we see that the PSD method slightly outperforms the HHCF method, 

especially in terms of the extraction of the correlation length. We note that the HHCF and SVL 

results in Fig. 1 differ slightly in the details from Ref. [6], however, the general conclusions 

regarding metric extraction accuracy are basically the same. These differences are presumably 

due to variations in the implementations of the metric extraction computations. 

Noise sensitivity 

Having verified the accuracy of the extraction algorithms on ideal model data, we now turn to 

characterizing the precision and accuracy of these various algorithms on in the presence of noise. 

Following Ref. [4], we assume noise in the measurement process to be represented as additive 

white Gaussian noise on the true edge position data. We can thus simply add Gaussian noise to 
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the ideal model edge data from above and observe its effect on metric extraction characteristics. 

 In all the noise studies below we choose to work with a rms roughness of 1 nm, a 

roughness exponent of 0.75, and a correlation length of 25 nm. We consider noise levels ranging 

from 0.1 to 0.9 nm rms. Figure 2 shows PSDs for the two extremes of the added Gaussian noise 

as well as the noise-free case. As is typically seen in experimental data, the plots with noise in 

Fig. 2 display an evident noise floor caused by the additive white Gaussian noise overriding the 

1/f behavior of the self-affine edge data at high frequencies. 

 Figure 3 shows the fractional error in the extracted roughness exponent (a) and the 

correlation length (b) as a function of noise magnitude. As above, the results are based on 

averaging over 216 line edges. In terms of accuracy in the presence of noise, we find the PSD 

method to be the best choice for the roughness exponent and the HHCF to be the best choice for 

the correlation length. The superior performance of the PSD method in the extraction of the 

roughness exponent is likely due to the natural noise reduction provided by PSD method, which 

relies on only a small segment of the frequency domain to determine the roughness exponent 

whereas the additive noise is white. Given that the power spectrum of the true edge is highly 

concentrated, such a filtering gain should also be applicable to the HHCF and SVL methods, as 

well as the extraction of the correlation length from the PSD (or more precisely, its Fourier 

transform). This can be done by lowpass filtering the line edge data keeping only those terms 

above the noise floor. This filtered line edge data can then be used to compute the HHCF, SVL, 

and autocorrelation functions. Doing so yields the results in Fig. 4 where we see much improved 

performance in roughness exponent extraction (a) for both the HHCF and SVL methods making 

them quite comparable to the PSD method in terms of total variation as a function of noise. This 

filtering technique is also seen to provide dramatic improvement in the correlation length [Fig. 
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4(b)] extraction using both the HHCF and PSD methods. The HHCF method still slightly 

outperforms the PSD method in terms of correlation length accuracy. 

 It is also important to consider precision as a function of noise. The results above are 

based on averaging over a total of 216 line edges; however in practice, this may not be readily 

feasible. To gauge the precision, we take the same 216 realization data sets described above and 

compute the roughness metrics for each edge individually. We then take the standard deviation 

of the computed metrics over the 216 samples (Fig. 5). The standard deviation for the roughness 

exponent [Fig. 5(a)] is measured relative to the averaged value over the 216 line edges. We see 

that both the HHCF and SVL methods outperform the PSD method in terms of precision for 

noise levels of 0.7 nm and below. The HHCF continues to perform well at even higher noise 

levels, whereas the SVL method degrades: on average the uncertainty on the roughness exponent 

computed from the PSD is 41%, whereas the uncertainty from the HHCF and SVL methods are 

only approximately 16% and 27%, respectively. For the correlation length, the standard 

deviation is reported as an absolute value in nm, where the nominal value for the correlation 

length is 25 nm. Again the HHCF, with an average standard deviation of 4.5 nm, performs much 

better than the PSD method having an average standard deviation of 11.9 nm. We also see the 

surprising result that the correlation length precision is nominally independent of noise level. We 

note that the precision data presented above was based on filtered line-edge data which was 

shown in Fig. 4 to improve the accuracy. It is also important to realize that the precision numbers 

presented here are based on the measurement of a single edge. If we assume the roughness on all 

edges to be uncorrelated, it is evident that averaging over multiple edges will improve the 

precision as sqrt(N) where N is the total number of edges averaged.  

Image noise modeling 
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In the noise modeling above, noise is only treated at the extracted line-edge level making it 

impossible to consider the effect of image-based filtering on accuracy and precision. To address 

this, we take model edge data and synthesize images to which we can add noise. The images are 

synthesized with subpixel edge position resolution by implementing smooth sigmoidal 

transitions from bright to dark at each edge. Figure 6 shows an example synthesized ideal image 

comprised of a series of lines with self-affine edges.  In this case the line pitch is 270 nm, the 

LER is 10 nm, the roughness exponent is 0.75, and the correlation length is 25 nm. The large 

LER value is used for illustrative purposes. 

 To verify the accuracy of both the synthesis of line images and edge extraction 

algorithms used to analyze the image data, we generate 8 independent images each comprised of 

6 independent lines, yielding a total of 96 edges. All the edges are generated with a roughness 

exponent of 0.75, a correlation length of 25 nm, and an LER of 3 nm. The pixel size in the 

generated image is 2 nm square and the image size 1024×1024. The image analysis is again 

performed using offline image analysis software. The line-edge PSD recovered from the 

synthesized image data is shown in Fig. 7 displaying good behavior throughout the entire 

frequency range. Considering the spatial metrics: the PSD method recovers a roughness 

exponent of 0.72 and a correlation length of the 29 nm and the HHCF method recovers a 

roughness exponent of 0.75 and a correlation length of 24 nm. The SVL method does not 

perform quite as well, yielding a roughness exponent of 0.62. 

Having verified the accuracy of the image synthesis and edge extraction algorithms, we 

next turn to studying the impact of image-based noise. Noise is now treated as additive Gaussian 

white noise on the image instead of on the edge data as in the previous section. Figure 8 shows a 

representative synthesized image with LER and additive Gaussian noise where the standard 
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deviation of the noise is 10% the full magnitude of the underlying synthesized image. Figure 9 

shows the corresponding PSD displaying noise floor behavior similar to that observed in the 

addition of edge noise (Fig. 2). Figure 10 shows the metrics recovered from the synthesized 

images as a function of added noise. The noise magnitude is defined as follows: a noise 

magnitude of 0.1 corresponds to the addition of Gaussian white noise with a standard deviation 

equal to 10% of the full magnitude of the noise-free lines. The off-line software finds the edge 

locations to sub-pixel accuracy by linear interpolation and determining where the interpolated 

edge crosses the threshold which is set to 50%. 

Figures 10(a) and 10(b) show the measurement results obtained without filtering the 

extracted line-edge data to depend strongly on the noise level. Alternatively filtering the line-

edge data [Figs. 10(c) and 10(d)] improves the situation and we see that for the case of 

correlation length, virtually no dependence on noise remains. As we saw in the case of the noise 

added directly to the line-edge data, the HHCF method performs better in terms of accuracy in 

the presence of noise for the extraction of the correlation length and the PSD performs better for 

the extraction of the roughness exponent in the presence of noise. 

Figure 11 shows precision values as a function of noise for the image-noise case. As seen 

for noise added directly to the line-edge data, the precision is superior for the HHCF and SVL 

methods compared to the PSD method. We also again see the correlation length precision results 

to be relatively independent of noise magnitude.  

Now defining the noise directly in image space it is also possible to consider the effect of 

image-space filtering on accuracy and precision. We begin by studying the effect of the filter 

alone (no image noise). As above, the roughness exponent of the model line edge is 0.75 and the 

correlation length 25 nm. Figures 12 and 13 show the results from a two-dimensional parametric 
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study considering the x and y filter sizes, where the lines are defined to run parallel to the y axis. 

For each filter setting a total of 96 line edges are analyzed as described above. The filter is 

Gaussian with a sigma equal to one third the total filter size in pixels for each axis independently. 

The Fig.12 results showing the error in the roughness exponent extraction demonstrate that 

filtering in the x direction has virtually no effect on the quality of the metric extraction, whereas 

filtering in the y direction considerably impacts the measurement accuracy. This trend is 

independent of the extraction method used, however, the PSD method is slightly more tolerant to 

the y filter size. Similar results are seen in Fig. 13 for the correlation length, however, in this case 

the HHCF method demonstrates less sensitivity to the y filter size. 

Having studied the impact of image-space filtering on metric extraction accuracy in the 

absence of noise, we next turn to the case with image noise. For the examples below we assume 

an image noise level of 0.05, (see definition above) corresponding to a noise floor approximately 

two orders of magnitude down from the PSD peak. This level is chosen because it corresponds 

well to the noise level observed in the experimental data discussed below. Figure 14 shows the 

extracted roughness exponent error. In all cases, image-space filtering shows beneficial effects in 

dealing with image noise. This benefit can be obtained with x filtering and thus is not simply a 

balancing of the noise-induced error with filter induced error as is the case for y filtering. Figure 

15 shows accuracy results for the extracted correlation length. Filtering in the x direction 

provides virtually no benefit for this term and filtering in the y direction is strongly detrimental. 

In Figs. 16 and 17 we show the precision results. For precision on the extracted 

roughness exponent (Fig. 16), all three methods benefit slightly from x filtering whereas y 

filtering significantly degrades the precision. The results are very similar for the extracted 

correlation length, however, in this case x filtering has virtually no effect. In summary, image-
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space filtering in the direction orthogonal to the lines is beneficial both in terms of accuracy and 

precision, whereas filtering in the direction of the lines has a negative impact. 

Finally we consider which of the two filtering techniques used above (line-edge data 

filtering and image-space filtering) is more effective. Figure 18 shows the metric extraction 

accuracy as a function of noise with image-space filtering alone [Figs. 18(a) and (b)] and 

combined with line-edge data filtering [Figs. 18(c) and (d)]. The image-space filter is 12×1 

pixels (orthogonal to lines) with a σ of 4. Comparing to the results in Fig. 10, we see that image-

space filtering alone is minimally effective compared to line-edge data filtering. The one 

exception is for the extraction of the roughness exponent using the PSD method where image-

space filtering seems to outperform line-edge data filtering. In general, the best results are 

achieved by combining the two methods. Combining the two methods is also beneficial for the 

precision as seen in Fig. 19. 

Experimental description 

Having verified the accuracy of the extraction algorithms on model data, we now turn to 

characterizing the precision of these various metric extraction algorithms on experimental EUV 

data. The exposures used were obtained on the EUV micro-exposure tool installed at Lawrence 

Berkeley National Laboratory. This synchrotron-based exposure tool [10] operates at a 

wavelength of 13.5 nm and has a numerical aperture of 0.3, providing for sub-30-nm resolution. 

The wafer was exposed with 100 identical die to provide the requisite data set. With a field size 

of only 200×600 µm at the wafer, these 100 die fit within an area smaller than 25 mm
2
. The 

benefit of using such a small area is that the process parameters (resist thickness, post application 

and exposure bakes, development, …) can be assumed to be stable over the complete data set. 

The features used in this study were all of 60-nm lines and spaces printed in a 125-nm thick layer 
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of Rohm and Haas MET-1K resist (XP 3454C). This feature size falls well within the resolution 

capabilities of MET-1K resist [10], further reinforcing the stability of the experimental data. 

Resist line images were collected using a Hitachi 4800 SEM and analyzed off line. 

For the purpose of this analysis, it is assumed that the true LER metrics of interest are 

constant over the entire dataset and all that is varying is the noise. Under this assumption, the 

metric extraction method providing the least variation over the dataset is assumed to be optimal 

in terms of precision and thus practical utility. We choose the analysis conditions to match those 

yielding the highest accuracy based on model data: image-space Gaussian filtering with a 12×1 

pixel size (orthogonal to lines) and a σ of 4 in addition to line-edge data filtering. 

 Figure 20 shows a representative SEM image from the dataset. The images are taken at a 

magnification of 150,000 capturing approximately 5 lines. Figure 21 shows the LER PSD 

averaged over the entire dataset (1030 edges). A significant noise floor is evident arising from 

metrology noise, which can be observed as typical SEM “snow” in Fig. 20. The metrics extracted 

from the 1030 edge dataset is shown in Table 1. Based on the findings above, we assume the 

filtered values (both image-space and edge data combined) to be the most accurate. Based on 

sensitivity to filtering, the PSD method appears to be superior for the extraction of the roughness 

exponent, whereas the HHCF is superior for correlation length. In practice this could be 

important since it indicates more latitude in the specifics of the filter settings and potentially 

more robustness in the presence of noise.  

 Next we consider precision for the experimental data. The precision is determined based 

on the variation of the extracted metrics from image to image. For each analyzed image all the 

line edges present in the image are averaged. The typical number of analyzed lines in each image 

is 5. Table 2 shows the results. The roughness exponent (α) precision is fractional relative to  the 
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corresponding average extracted value from Table 1 and the correlation length (Lc) is absolute in 

nm. As seen with the model data, the HHCF and SVL methods outperform the PSD method in 

precision, especially for the roughness exponent. With filtering, the PSD method shows a 

precision of only 28% when analyzing a single image for roughness exponent and 4.6 nm for the 

correlation length. The HHCF method on the other hand has 9% precision for the roughness 

exponent and 2.5 nm for the correlation length. 

Discussion 

A detailed study of the noise sensitivity and filtering effectiveness for various LER metrics has been 

performed. The results show that in the presence of noise and large dataset limit, the PSD method 

provides higher accuracy in the extraction of the roughness exponent, whereas the HHCF method 

provides higher accuracy for the correlation length. On the other hand, when considering precision, 

the HHCF method is superior for both metrics. 

 Both extracted line edge and image-based filtering was found to be beneficial for both 

accuracy and precision. The filtering also was found not to change the relative performance of the 

methods. While image-based filtering was found to be effective, it is crucial that it be limited to being 

applied in the direction orthogonal to the lines. Image-based filtering in the direction of the lines was 

detrimental to both accuracy and precision. In general, we found extracted line edge filtering (also 

referred to as post filtering) to be the more effective of the two methods, however, the best results are 

achieved by combining the two methods. Analysis of experimental data was also found to support the 

results based on modeling data. 

The authors are greatly indebted to Paul Denham, Brian Hoef, Gideon Jones, Jerrin Chiu, 

and Ken Goldberg for expert support with the exposure tool, and to the entire CXRO staff for 

enabling this research. The authors are also grateful to Kim Dean of SEMATECH for program 
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List of Figures 

Fig. 1.  Roughness exponent and correlation length extraction accuracy as a function of actual 

roughness exponent and correlation length using various data reduction methods. In (a) and (b) the 

actual correlation length is fixed at 25 nm while the roughness exponent is varied from 0.1 to 0.9. In 

(c) and (d) the actual roughness exponent is fixed at 0.5, while the correlation length is varied from 15 

to 50. 

Fig. 2. Computed PSD with Gaussian noise added to the residual line edge data. The plots 

shows PSDs for two extremes of the added noise as well as the noise-free case. As is typically seen in 

experimental data, the plots with noise display an evident noise floor caused by the additive white 

Gaussian noise overriding the 1/f behavior of the self-affine edge data at high frequencies. 

Fig. 3. Fractional error in the extracted roughness exponent (a) and absolute error in the 

extracted the correlation length (b) as a function of noise magnitude. The underlying data roughness 

exponent and correlation length are 0.75 and 25 nm, respectively. 

Fig. 4. Fractional error in the extracted roughness exponent (a) and absolute error in the 

extracted the correlation length (b) as a function of noise magnitude after filtering the residual line-

edge data to remove all frequencies beyond the noise floor. The underlying data roughness exponent 

and correlation length are 0.75 and 25 nm, respectively. 

Fig. 5. Fractional precision in the extracted roughness exponent (a) and absolute precision in 

the extracted the correlation length (b) as a function of noise magnitude. Same filtering as used in Fig. 

4 is used here. The underlying data roughness exponent and correlation length are 0.75 and 25 nm, 

respectively. 
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Fig. 6. Illustrative synthesized LER image comprised of a series of lines with self-affine edges 

with roughness exponent of 0.75, correlation length of 25 nm, and LER of 10 nm. The line pitch is 

270 nm. 

Fig. 7. LER PSD recovered upon analysis of 8 independent synthesized images. The images 

are generated to have a roughness exponent of 0.75, correlation length of 25 nm, and LER of 3 nm. 

Fig. 8. Representative synthesized image with LER and additive Gaussian noise where the 

standard deviation of the noise is 10% the full magnitude of the underlying synthesized image. The 

underlying data roughness exponent and correlation length are 0.75 and 25 nm, respectively. Again 

the LER is set to 3 nm. 

Fig. 9. LER PSD corresponding to the analysis of 8 independent synthesized images as shown 

in Fig. 8. PSD displays noise floor behavior similar to that observed in the addition of edge noise 

(Fig. 2).  

Fig. 10. Metric extraction accuracy as a function of added noise. The noise magnitude is 

defined as follows: a noise magnitude of 0.1 corresponds to the addition of Gaussian white noise with 

a standard deviation equal to 10% of the full magnitude of the noise-free lines. The underlying data 

roughness exponent and correlation length are 0.75 and 25 nm, respectively. (a) and (b) show the 

results without any filtering and (c) and (d) show the results after filtering the residual line-edge data 

to remove all frequencies beyond the noise floor. 

Fig. 11. Precision values as a function of noise for the image-noise case. (a) shows the 

fractional precision for the roughness exponent and (b) shows the absolute precision for the correlation 

length. As seen for noise added directly to the line-edge data, the precision is superior for the HHCF 

and SVL methods compared to the PSD method.  
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Fig. 12. Roughness exponent extraction accuracy as a function of image-space filtering. The 

processed synthesized images are noise free. The plotted data is fractional error relative to the 0.75 

underlying value for the roughness exponent. 

Fig. 13. Correlation length extraction accuracy as a function of image-space filtering. The 

processed synthesized images are noise free. The plotted data is the extracted correlation length which 

should be compared to the 25 nm underlying value for the correlation length. 

Fig. 14. Roughness exponent extraction accuracy as a function of image-space filtering. The 

processed synthesized images are noise free. The plotted data is fractional error relative to the 0.75 

underlying value for the roughness exponent. 

Fig. 15. Correlation length extraction accuracy as a function of image-space filtering. The 

processed synthesized images are noise free. The plotted data is the extracted correlation length which 

should be compared to the 25 nm underlying value for the correlation length. 

Fig. 16. Roughness exponent extraction precision as a function of image-space filtering. The 

processed synthesized images include additive Gaussian white noise with a standard deviation equal 

to 5% of the full magnitude of the noise-free lines. The plotted data is fractional precision relative to 

the average extracted value for the roughness exponent. 

Fig. 17. Correlation length extraction precision as a function of image-space filtering. The 

processed synthesized images include additive Gaussian white noise with a standard deviation equal 

to 5% of the full magnitude of the noise-free lines. The plotted data is absolute precision correlation 

length. 

Fig. 18. Comparison of the effectiveness of extracted line-edge data and image-space filtering. 

(a) and (b) show the roughness exponent and correlation length extraction accuracy as a function of 
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noise with image-space filtering alone whereas (c) and (d) show the results when combined with line-

edge data filtering. The image-space filter is 12×1 pixels (orthogonal to lines) with a σ of 4. 

Fig. 19. Precision values as a function of noise for the image-noise case when both iamge-

space and line-edge data filtering are used. The image-space filter is 12×1 pixels (orthogonal to lines) 

with a σ of 4. (a) shows the fractional precision for the roughness exponent and (b) shows the absolute 

precision for the correlation length. 

Fig. 20. Representative SEM image from the experimental dataset. Images are of 60 nm lines 

and space in resist printed using a 0.3-NA EUV exposure tool. The images are taken at a 

magnification of 150,000.  

Fig. 21. LER PSD averaged over the entire experimental dataset (1030 edges). A significant 

noise floor is evident arising from metrology noise, which can be observed as typical SEM “snow” in 

Fig. 20. 
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List of Tables 

Table 1.  Metrics extracted from the 100 image (1030 edge) experimental dataset. Prefilt 

corresponds to image-space filtering and Postfilt to extracted line-edge data filtering. Filter setting 

values of 1 indicate the filter was used and values of 0 indicate that it was not. When used, the image-

space filter is 12×1 pixels (orthogonal to lines) with a σ of 4.  

Table 2. Single image metric extraction precision for the experimental dataset. The precision 

values for the roughness exponent are fractional relative to the 100-image averaged value and the 

correlation length precision values are absolute. 
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Filter Settings PSD HHCF SVL 

Prefilt Postfilt αααα    Lc (nm) αααα Lc (nm) αααα 

0 0 0.53 7.41 0.17 12.58 0.13 

0 1 0.53 25.05 0.46 20.96 0.45 

1 0 0.65 16.33 0.33 18.26 0.22 

1 1 0.65 28.39 0.52 22.14 0.51 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Naulleau, et al., Table 1 
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Filter Settings PSD HHCF SVL 

Prefilt Postfilt αααα Lc (nm) αααα Lc (nm) αααα 

0 0 0.56 3.02 0.23 1.44 0.22 

0 1 0.63 4.52 0.12 2.38 0.17 

1 0 0.29 4.20 0.13 2.11 0.20 

1 1 0.28 4.64 0.09 2.47 0.13 

 

 

 

 

 

 

 

Naulleau, et al., Table 2 




