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ABSTRACT OF THE DISSERTATION

Charge and Spin Transport in Topologically Non-trivial Solid States

by

Gen Yin

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, December 2015

Dr. Roger K. Lake, Chairperson

Interfacial coupling between the top and the bottom surface states in thin-film

3-dimensional (3D) topological insulators (TIs) destroys the momentum-spin (k-s) locking

chirality, and thus prohibits the good transport properties of TI surface states. Our the-

oretical investigations in 3D TI thin films show that this effect only occurs near the band

gaps due to the spin mismatch between the opposing surfaces. By tuning the position of

the Fermi level, interfacial tunneling and in-plane semi-classical transport present unique

signatures due to this mismatch. These results indicate the possibility to restore the bulk

transport properties of 3D TIs in the case of thin films.

As a real-space non-trivial topological order in solid states, the skyrmion phase in

B20 compounds or heavy metal interfaces is considered as a strong candidate to implement

next generation storage units or spintronic devices. Using coherent transport modeling, we

demonstrate that a ‘topological spin Hall effect’ (TSHE) can be achieved in some circum-

stances due to individual magnetic skyrmions. In order to evaluate the device application

possibilities, a topological charge analysis is carried out to identify and quantify the topo-

logical protection in each skyrmion. Based on this analysis, an on-wafer solution to individ-

ually create magnetic skyrmions is proposed. The feasibility and stability of the proposal

is numerically evaluated by solving Landau-Lifshitz-Gilbert (LLG) equation.

vii



Besides the physics that governs the operations in electronic or spintronic devices,

the requirement of signal integrity gives rise to another fundamental limit to enhance the

performance of next-generation devices. System designers have proposed many solutions

to overcome this limit, such as differential signaling or multi-port passive networks. Char-

acterization of these designs calls for reliable algorithms to remove the effects of access

structures: the de-embedding techniques. Taking impedance mismatch as a perturbation

quantity, we establish a simplified model of uniform multi-conductor transmission lines. A

novel multi-port de-embedding technique is proposed theoretically and tested experimen-

tally.
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Chapter 1

Introduction

In the past decade, one of the most exciting developments in solid state physics is

the recognition of topologically non-trivial phenomena. In early 1980s, the study of quantum

Hall (QH) effects revealed that the exceptionally accurate integer values of QH conductivity

are induced by the topological order of quantum Hall states [5]. Roughly 30 years later,

physicists began to realize that spin-orbit coupling in solid states could intrinsically intro-

duce a similar effect to the Bloch states of electron bands [6–10]. This intrinsic topological

order can introduce QH states without external magnetic fields [11]. In magnetic materials

where the time-reversal symmetry is broken, this leads to quantum anomalous Hall (QAH)

effect [12]. In non-magnetic materials where the time-reversal symmetry is preserved, the

quantum spin Hall (QSH) effect becomes possible [6, 8].

The intrinsic topological order in solid states is described by a Chern number, an

integer introduced by Shiing-Shen Chern in the 1940s [13]. In a QH state, this integer counts

how many times the directional solid angle of k-space Bloch states wrap a unit sphere in

Hilbert space. Due to a band inversion induced by strong spin-orbit couplings, the Chern

number of each type of spin can be an integer, which leads to a QSH effect [6]. The QSH

state is a metallic surface state around a gapped, insulating bulk. Materials supporting

these QSH states are thus referred to as ‘topological insulators’ (TIs) [14].
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TIs are of particular interest not only in terms of fundamental physics, but also

in device applications. Due to the protection of the topological order, the surface state

in a TI is robust against small perturbations such as surface disorders or impurities. The

structure of 3D TIs is a stack of 2D atomic layers, coupling to each other primarily through

the van der Waals force [15]. This makes it possible to produce smooth surfaces with large

areas, such that heterostructures with ultra-high quality is accessible. The dispersion of the

surface state is a Dirac cone, in which the group velocity is roughly one percent of the speed

of light [16]. The spin polarization and the momentum of a surface state are intrinsicly

locked: any transport of charge automatically carries a spin current [17, 18]. These good

properties have raised significant research interests to develop low dissipative electronic and

spintronics devices. In Chapter 2 and 3, quantum and semi-classical carrier transport in

thin-film TIs are investigated systematically.

Other than the k-space topological order observed in TIs, similar topological order

also exists in real-space: magnetic skyrmions. A magnetic skyrmion is a circular, bubble-

like spin texture, in which the central spin is anti-parallel to the spins outside, and the spins

in between rotate smoothly from the outside to the center [19]. In spin space, this texture

follows the model of a topological soliton, which was originally introduced by Tony Skyrme

as a hypothetical particle in nuclear physics [20, 21]. Magnetic skyrmions are stabilized by

an asymmetric exchange coupling, the Dzyaloshinskii-Moriya (DM) interaction [22]. This

interaction exists when inversion symmetry is broken by the lattice structure (usually B20

compounds) [19] or interfacing with materials of strong spin-orbit couplings [23]. Competing

with the symmetric Heisenberg exchange, the asymmetric DM interaction rotates the local

spins away from their neighbors, leading to a helical ground state. When an external

magnetic field is applied, the increase in the Zeeman coupling breaks the strips in a helical

phase, leading to a collective phase change to a skyrmion lattice, in which the bubble-like

skyrmions form a 2-dimensional dense packing lattice [24].

The topological order in a magnetic skyrmion can also be described by Chern

number. The manifold of the real-space spin is homotopy equivalent to a unit sphere

2



in spin space, which introduces a topological charge of 1 or -1 to each skyrmion. Due to

this topological order, when spin polarized carriers pass through the texture, they capture a

Berry phase, which can be considerred as an emergent magnetic field of a flux quantum. This

leads to a topological Hall (TH) effect [25], which has been experimentally demonstrated

in many materials [26–31]. The topological order also protects the texture from pinning

impurities, making skyrmions several orders of magnitudes more mobile than topologically

trivial magnetic textures [32,33]. The topological charge provides extra stability to the spin

texture, making it possible to implement skyrmion data bits of several nanometers [34].

Due to these good properties, the technology to precisely and effectively manipulate each

individual skyrmion has become a hot research topic in spintronics, which is the focus of

Chapter 4 and 5 in this dissertation.

The difficulty to enhance device performances in the framework of current tech-

nology is not only induced by the device physics that fundamentally governs the operation

mechanisms, but also lies in the operation frequency. Although modern developments in

solid state physics, especially the discovery of the non-trivial topological order, have pro-

vided many strong candidates for device applications beyond Moore’s law, another issue,

signal integrity, fundamentally limits the performance of electronic devices at the system

level [35]. In high-speed systems, signals beyond 10 GHz radiate electromagnetic waves to

the environment, which can cause severe cross-talk and amplitude loss issues [36]. Many

techniques have been developed to enhance the RF performance for high-speed systems

such as differential signaling and multi-conductor transceiver solutions [37]. In these de-

velopments, accurate experimental characterization of multi-port system is important. The

effects of access structures such as vias or contact pads should be removed, or de-embedded,

from the measurement results [38,39]. Although the procedure to achieve this is rather stan-

dard in two-port device measurements, the on-wafer de-embedding technique for multi-port

devices is not [40, 41]. In Chapter 6, a new way to de-embed passive multi-port devices

is introduced. This method is established based on an impedance perturbation theory of

multi-conductor transmission lines.
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Chapter 2

Tunneling spectroscopy of chiral

states in ultra-thin topological

insulators

2.1 Introduction

Topological insulators (TIs) constitute a new class of quantum materials with bulk

insulating band gaps and gap-less Dirac-cone edge or surface states. The surface states are

protected against time-reversal-invariant perturbations such as non-magnetic impurities,

defects, and reconstruction [8, 9]. Unlike the regular quantum Hall effect, electrons in a

TI form topologically protected helical surface states due to the effective magnetic field

generated by strong spin-orbit coupling, rather than external magnetic fields [6]. The

unique spin environment in this material introduces the possibility of observing exotic quasi-

particles such as magnetic monopoles [17,42] and Majorana fermions [43,44]. In a low-energy

surface state, each momentum state, k, is uniquely coupled to a spin, s. Thus, charge

transport along the surface yields a polarized spin current, i.e. states with opposite spin

counter-propagate at a given surface. This has led to an interest in spintronic applications
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of surface transport in TIs [17,18,45,46]. Recent angle-resolved photoemission spectroscopy

(ARPES), scanning tunneling spectroscopy (STS) and theoretical studies indicate that the

surface states of the three dimensional (3D) TIs such as Bi2Se3 , Bi2Te3 and Sb2Te3 exhibit

a single Dirac cone dispersion [16,47–51].

One of the challenges to observe the surface transport in the topologically pro-

tected states is to reduce the bulk contribution to the total conductivity. This has been

demonstrated through the use of complex materials [52,53] or surface/bulk doping [53–55].

An effective method to increase the surface contribution is to synthesize TI thin films [56–58]

or nanoribbons [59] that have a greater surface-to-volume ratio. Recent experimental trans-

port studies successfully demonstrate a significant contribution of the surface conductivity

on 3D TI thin films [60,61].

Surface states of 3D TIs have been demonstrated to have a depth of ∼ 3 nm [15,62].

As a result, hybridization of the surface states occurs when the film thickness is on the or-

der of ∼ 6 nm. For such thin films, surface carriers can tunnel through the bulk bandgap

to the opposite surface of the thin film [63, 64]. However, the top and the bottom sur-

face states of a TI have opposite k-s chiralities, which severely restricts the inter-surface

tunneling probability. The tunneling is governed by the usual rules of energy, momentum,

and spin conservation. As a result, the surface-to-surface tunneling can only be between

states at the same energy ε with the same momentum k and spin s. These selection rules

combined with the momentum-spin locking of opposite chiralities on opposite surfaces give

rise to unique temperature and Fermi-level dependencies of the tunneling conductivity and

a unique tunneling-current response to a bias applied between the two surfaces. Thus, tun-

neling spectroscopy provides several unique signatures of the opposite chiralities of opposing

surface states of topological insulators. In this chapter, we theoretically demonstrate and

analyse the above dependencies.
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2.2 Method and Calculation Details

To observe tunneling between opposite surface states, the surface states should

not be perturbed in the vicinity of the tunneling region. One way to accomplish this is to

physically separate the contact regions from the tunneling region as shown schematically

in Fig. 2.1a. Electrons injected into a mixture of bulk and surface states in the vicinity

of the contacts will adiabatically decay into a surface state in the vicinity of the tunneling

region. In practice, the films of topological insulators are terraced with thicker and thinner

regions [65]. The actual placement and geometry of the contacts may vary and depend on

the particular film. The structure shown in Fig. 2.1a could have mirror symmetry with

injection from both the left and the right, or it could have a wrap-around top contact or

a wrap-around tunneling region as shown in Fig. 1b. The back-side contact could also be

physically removed from the tunneling region, not necessarily underneath the top contact,

or the back contact could be the entire bottom surface of the film that is weakly coupled to

the vacuum chuck of the probe station. The large area could compensate for the low specific

contact resistivity. The calculations of transmission and current in this chapter assume a

symmetric structure such as Fig. 2.1a with mirror symmetry or Fig. 2.1b such that the

tunneling transmission of a |k〉 state is independent of the angle.

Surface states propagate across both the surfaces and the edges of a topological

insulator slab which leads to two current channels, (a) inter-surface tunneling and (b) sur-

face current flowing across the perpendicular edges. To observe the inter-surface tunneling

current, channel (b) should be removed by gapping the surface state away form the contact

and tunneling region. This can be achieved by magnetic doping that breaks the local time

reversal symmetry [66]. A single magnetic impurity opens a local band gap up to ∼ 60 meV

within a range of ∼ 8 nm around the impurity. This local band gap suppresses channel (b),

allowing the tunneling current of channel (a) to be observed.

To analyze the surface-to-surface tunneling, we focus on the dynamics governing

the inter-surface tunneling that are independent of the particular arrangement of the con-
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Tunneling region

Bottom
contact

Top contact
(b)

(a)

Magnetic impurity doped 
surface and edges

Figure 2.1:
(Color online) (a) Schematic illustrating the separation of the top contact and the tunneling
region to avoid perturbing the surface state in the tunneling region. The structure in (a)
could have mirror symmetry or it could have a wrap-around contact or a wrap-around
tunnel region as shown in (b). (b) Symmetric implementation of (a) with a wrap-around
tunnel region. Magnetic doping of the surface and edges prevents leakage around the edges
from the top surface to the bottom surface. The bottom contact could be the vacuum chuck
of the probe station. The high specific contact resistance of the weakly coupled back-side
contact could be compensated by its large area.

tacts. The 4×4 k ·p Hamiltonian for 3D TIs [16] serves as the starting point for the model.

To include the effects of finite thickness and a spatially dependent potential drop between

the top and bottom surfaces, the k · p Hamiltonian is discretized along the z-axis with a

grid spacing of 3Å using a finite difference technique [67]. A potential difference between

the two surfaces is modeled by adding an extra term, U(zi), to the diagonal elements of the

discretized Hamiltonian where zi indicates the points of the discretization grid.

Fig. 2.2a and the white lines in Fig. 2.2c show the band structure resulting from

the discretized k · p Hamiltonian for a 6 nm thin film at equal potential. A Dirac cone is

formed at Γ, representing the dispersion of the degenerate top and bottom surface states.

The bulk states have a band gap of ∼ 0.4 eV, and they split into several sub-bands due

to quantum confinement. The inter-surface coupling opens a band gap of ∼ 3.5 meV at

the tip of the Dirac cones. A linear potential drop between the two surfaces generates a

Rashba-like splitting in the band structure (Fig. 2.2b and Fig. 2.2d), which is consistent

with recent simulation results and ARPES experiments [45,54,56].
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Figure 2.2:
(Color online) Dispersion of a 6 nm TI thin film and the corresponding inter-surface trans-
mission spectrum plotted on a logarithmic scale. (a) Dispersion close to the Dirac point
when the surfaces are at equal potential (U = 0) such that the top and bottom Dirac cones
align. (b) Dispersion close to the Dirac point with an inter-surface potential difference of
U = 80 meV giving an effective Rashba-like splitting. For both cases, a small 3.5 meV band
gap is opened due to the surface-surface coupling. (c) Transmission spectrum for the equal-
potential case. The white lines indicate the corresponding band structure. (d) Transmission
spectrum and the corresponding Rashba-like split dispersion when U = 80 meV

The surface-surface tunneling is modeled with a NEGF approach [68]. A symmetric

bias Va is applied to the top and the bottom electrodes, and it drops linearly through

the bulk. The bias Va splits the top (T ) and the bottom (B) electrochemical potentials

such that µT,B = εF ± eVa
2 , where εF is the Fermi level at equilibrium. There can also

exist a built-in potential Ubi due to different environments of the top and bottom surfaces.

Thus, the total surface-surface potential difference is U = Ubi − qVa. Carrier injection

from surface eigenstates is modeled with self-energy terms obtained from two semi-infinite

surface Green’s functions. The self-energies provide a finite lifetime of τ = 0.2 ps that gives

an energy broadening of 3.0 meV. This broadening is equal to the energy splitting of the

top and bottom surface states resulting from the finite coupling through the bulk. Details

of the model and numerical implementation are provided in the appendices.
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2.3 Results and Discussions

2.3.1 Tunneling Selection Rule

The transmission coefficient T (ε,k) describes the probability of an electron in state

|k〉 on the top surface tunneling to state |k〉 on the bottom surface. In the absence of a finite

lifetime, the tunneling of state |k〉 would occur at a discrete energy ε. In the presence of a

finite lifetime, the tunneling of a state |k〉 occurs over a range of energies Γ0 corresponding

to the energy broadening.

A logarithmic plot of the transmission of a 6 nm slab at ky = 0 is illustrated in Fig.

2.2c and Fig. 2.2d for two different cases of applied bias. Fig. 2.2c shows the transmission

when the slab is at equal potential (U = 0) such that the Dirac cones of the top and

bottom surfaces are aligned. The maximum transmission in Fig. 2.2c occurs at Γ, while the

transmission along the other points on the dispersion are significantly suppressed by a factor

of ∼ 103 to ∼ 104. We will see that the total, integrated, surface-surface tunneling when

the bands are perfectly aligned is a minimum rather than a maximum. Fig. 2.2d shows

the transmission with a potential difference of U = 80 meV, which creates a Rashba-like

splitting. The Rashba-like splitting results in maximum transmission at the intersection of

the two Dirac cones. The maximum transmission coefficient is larger than the other points

along the dispersion by a factor of ∼ 103.

The suppression of the transmission away from Γ in Fig. 2.2c originates from the

opposite spin-momentum locking of the top and bottom surfaces. 3D TI thin films have 180◦

rotational symmetry, so the spin-momentum locked chiralities of the top and the bottom

surfaces are opposite to each other. For a given k at the same energy, the two opposite

surface states have opposite spins. For the equal-potential condition when the potential is

uniform across the slab, the dispersion of the top (Fig. 2.3a) and the bottom (Fig. 2.3b)

surfaces align perfectly with each other (Fig. 2.3c). Therefore, energy and momentum can

be conserved in a tunneling event for every state of the top and bottom surfaces. However,
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Figure 2.3:
(Color online) Schematic of band alignments illustrating the quantum number selection
rules. The blue bands with the down arrows indicate negative spin states, while the red
bands with the up arrows correspond to positive spin states. The gray region in between
represents the bulk material. (a) and (b) illustrate the alignment of the surface Dirac cones
when the two surfaces are at the same potential, U = 0. (c) Overlay of the top and bottom
surface bands when U = 0. The cones are slightly offset to demonstrate the mismatch of
spin for each k and ε except at k = 0. Energy, momentum, and spin can only be conserved
at k = 0. (d) and (e) show the shifted top and bottom surface states when the surface-
surface potential is nonzero. (f) Overlay of (d) and (e) in which the intersection of the Dirac
cones is indicated by the dashed line. The intersection of the two Dirac cones forms a circle
in the kx − ky plane. Energy, momentum, and spin are only conserved on this circle. The
small bandgap of a few meV resulting from the intersurface coupling is not shown.
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the spin for each ε, k state of the top surface is antiparallel to the spin of the same state on

the bottom surface. Energy, momentum, and spin can only be conserved at Γ. Thus, when

the two surfaces are at equal potential, the antiparallel spins resulting from the opposite

chiralities of the top and bottom surfaces suppress tunneling except at Γ.

When a potential difference exists across the slab, the top and bottom surface

bands are offset from each other as shown in Fig. 2.3d and Fig. 2.3e. The hole dispersion

of the top surface intersects with the electron dispersion of the bottom surface. The inter-

section between the two dispersions moves away from Γ, as illustrated in Fig. 2.3f. Thus,

the transmission spectrum in Fig. 2.2d shows two bright spots corresponding to the points

of intersection. In the kx-ky plane, the band intersection forms a circle. At every point on

the circle, the spins of the top (hole) and bottom (electron) states align. At these points

of intersection, the bands from the top and bottom surfaces couple and split resulting in a

small gap in the spectrum. The circle of intersection is then split into two circles at the top

and bottom edges of the small band gap. For thinner films, this spitting causes the energy

splitting of the transmission peaks seen in Fig. 2.4.

2.3.2 Tunneling Transmission Spectrum

The conservation rules governing the inter-surface tunneling result in a total inte-

grated transmission spectrum T (ε) that is energy selective. To understand the behavior of

the tunneling current, we calculate T (ε) by integrating T (ε,k) over the 2D Brillouin zone.

Fig. 2.4a shows the plot of T (ε) at the equal potential condition (U = 0) for different film

thicknesses. The reference energy is chosen at the surface valence band edge, εV , of the 6.0

nm thin film. The peaks in T (ε) illustrated in Fig. 2.4a are due to the matching k and

s which occur only at the band edges. The peak-to-peak distance is the surface band gap

opened by the inter-surface coupling. Since the band gap decreases with a decrease of the

coupling, the two peaks in T (ε) move towards each other as the film thickness increases.
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Figure 2.4:
Total, integrated transmission spectrum T (ε). (a) Thickness dependence of T (ε) on a loga-
rithmic scale in the absence of bias (U = 0). The energy reference is set at the band edge
(εV ) of the 6.0 nm thin film. (b) The effect of bias on the transmission of the 6.0 nm film.
The potential of the top surface is raised by U/2 and the potential of the bottom surface is
lowered by U/2.

Due to the broadening caused by the self-energy terms, the two transmission peaks merge

together for the two thicknesses greater than 6.0 nm.

In the Rashba-like split case, the peak height of the total transmission spectrum

is determined by surface-surface potential difference U . Fig. 2.4b shows the transmission

change in response to the surface-surface potential for the 6.0 nm thin film. In this plot, a

modification in U from 0 to 50 meV increases the transmission peak height by a factor of

∼ 10. As discussed above, the tunneling conservation rules generate transmission maxima

at the band edges of the intersecting Dirac cones. The circumference of the intersecting

circles formed at the band edges determine the transmission peak height in the integration

over k. An increase in U enlarges the circumference of the intersecting circles, which leads to

the increase in the transmission peak height. According to Fig. 2.2b, although the surface-

surface coupling opens a finite band gap, the low-energy dispersion of the Dirac cones away

from the band edges is not significantly altered. Thus, for small U , the circumference of

the intersecting circle increases almost linearly with an increase in U , which explains the

linear-like relation between the peak height in T (ε) and the potential difference U .
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Figure 2.5:
(Color online) Temperature response from 1.8 K to 77 K of the tunneling conductance for
different alignments of εF as shown in the legend of (a) for three film thicknesses of (a)
6.0 nm, (b) 7.5 nm, and (c) 9.0 nm. (d) The effect of a surface-surface potential difference
of U = 30 meV on the temperature dependence of the tunneling conductance is compared
with the U = 0 case for the 6.0 nm film. The dotted curves are the same as in (a) with
U = 0. The solid curves are with U = 30 meV.

2.3.3 Temperature and Fermi-Level Dependence of the Tunneling Con-

ductance

Since the surface-surface tunneling transmission spectrum is strongly peaked in

energy due to the selection rules, the tunneling conductance G can be significantly modified

by the position of the Fermi level and the temperature. First, the equal potential case is

considered. Figs. 2.5a-c illustrate the thermal response of the tunneling conductance for

different positions of the Fermi level, εF , for three different film thicknesses.

At low temperature, a 30meV downward shift of εF from εV into the valence

band moves the thermal window away from the transmission peaks. Thus, the tunneling

conductance is reduced by ∼ 104 due to this εF modification. When εF is away from

εV , an increase in temperature populates more states around εF to contribute to the total

conductance. As the thermal broadening starts to include the peaks in the transmission

spectrum, a considerable conductance increase occurs. As a result, as demonstrated in Fig.
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2.5, a larger shift of εF requires higher temperature to turn ‘on’ this conductance increase.

Overall, when the Fermi level is away from the band edge, the temperature dependence of

the tunneling conductance is positive. On the other hand, when the Fermi level is at the

band edge, εF = εV , the transmission peak is always at the center of the thermal broadening.

Thus, a higher temperature broadens the Fermi function occupying more states away from

the band edges that are not allowed to tunnel and reducing the occupation of states at the

band edges that are allowed to tunnel. Thus, the temperature dependence of the tunneling

conductance is negative. As a result, for a TI thin film, scanning εF through the Dirac

point flips the sign of the temperature dependence of the tunneling conductance. Modifying

the thickness of the thin film simply reduces the magnitude of the tunneling conductance,

leaving the trends of the temperature and Fermi-level dependencies unchanged. This unique

thermal/Fermi-level response is a signature of the chiralities of the topological surface states

and the rotational symmetry of the thin film.

The unique trends of the thermal response of the tunneling conductance are not

significantly affected by a Rashba-like splitting generated by a non-zero surface-surface

potential difference U . Fig. 2.5d compares the thermal response for the two cases of U = 0

and U = 30meV in a 6.0 nm TI thin film. As shown in Fig. 2.4b, an increase in U

enlarges the intersecting circles of the top and bottom Dirac cones, leading to an increase in

the transmission peaks. Thus, the tunneling conductance is increased by the increase in U

when the transmission peaks start to be included in the thermal window. As a result, in the

case of εF 6= εV , the increase in U leads to a faster increase in conductance with temperature

as illustrated in Fig. 2.5d. When εF = εV , the transmission peaks are always included in

the thermal window. Thus, the increase in conductance resulting from U = 30meV appears

as a vertical shift of the U = 0 thermal response curve. Comparing the solid lines and the

dashed lines in Fig. 2.5d, although the Rashba-like splitting modifies the absolute value of

the tunneling conductance, the unique trend of the thermal response does not change with

the increase in U . Hence the trends in the temperature and Fermi-level dependencies of the

tunneling are robust to asymmetries in the surface-surface potential.
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Figure 2.6:
(Color online) Current voltage response of the tunneling current at 77 K with a built-in,
inter-surface potential difference of Ubi = 60meV. The number beside each I-V curve indi-
cates the peak-to-valley current ratio. (a) Current-voltage response when the equilibrium
Fermi level is aligned at the valence band edge, εF = εV , for 4 different film thicknesses as
shown in the legend. (b) Current-voltage response of the 6.0 nm thin film for three different
alignments of the equilibrium Fermi levels, εF , as shown in the legend. (c) An illustration
of the Dirac cone alignments for three different biases: Va = 0, qVa = Ubi, and qVa > Ubi.
The top Dirac cone is denoted by the red color, while the bottom one is denoted by blue.

2.3.4 Nonlinear Current Response

The tunneling-current response to a finite bias applied between the two surfaces

also shows unique signatures of the chiral nature of the two surface states. When a built-in

potential difference exists between the two surfaces such that one surface is n-type and the

other one is p-type, the slab can then be viewed as a p-n heterojunction with a tunneling

barrier in between the p and the n regions. Aligning the Fermi level at the valence band

edge, εF = εV , a forward bias Va results in a tunneling current. Fig. 2.6a illustrates the

current-voltage (I-V) response for different film thicknesses when Ubi = 60 meV.

With an increase in the applied bias, the absolute value of the surface-surface po-

tential difference is first reduced from Ubi to zero, and then starts to increase. During this

process, there are two factors that determine the total current: (a) the opening of the bias

window between the top and bottom surface Fermi levels, ∆εF = qVa, and (b) the change
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in the transmission peak height. At small bias, the increase in Va reduces U , which almost

linearly reduces the transmission peak height as shown in Fig. 2.4b. Initially, the current

response is dominated by ∆εF = qVa, so that the current turns ‘on’ and increases as the ap-

plied bias increases up to about 30 mV. After that point the decreasing transmission driven

by the applied bias dominates the current response, the current decreases, and negative

differential resistance (NDR) is observed. When qVa = Ubi so that the top and bottom sur-

face states are at the same potential, the tunneling current reaches a minimum due to the

anti-parallel spins of the top and bottom surface Dirac cones. From this minimum state,

a further increase in Va increases the absolute surface-surface potential difference which

increases the transmission peak height and increases the current. Fig. 2.6c illustrates the

Dirac cone alignment at Va = 0, qVa = Ubi, and qVa > Ubi. The intersecting circle that

occurs at the valence band edge is denoted by the white dashed line.

The peak-to-valley current ratio (PVCR) varies with the thickness of the thin film.

The numbers underneath each current peak in Fig. 2.6a give the value of the PVCR for

that film thicknes. At 77 K, the largest PVCR of 6.3 occurs in the 7.5 nm film. As the

film thickness decreases, below 7.5 nm, the minimum current increases slightly faster than

the maximum current resulting in decreasing PVCR. For the thinnest film of 4.5 nm, the

bandgap is 14 meV. Initially, the Fermi levels are at the valence band edge. An applied bias

symmetrically splits the Fermi levels such that at the peak current, one Fermi level is 15

meV below the valence band edge and the other Fermi level is 15 meV above the valence

band edge, i.e. at the conduction band edge. Thus, the energy window between the two

Fermi levels encompasses the bandgap. Furthermore, the majority of the conduction band

transmission spectrum lies above the highest Fermi level. Thus, at peak current, as the

film thickness decreases, the increasing bandgap takes up a larger fraction of the energy

window between the two Fermi levels, and the conduction band is pushed above the highest

Fermi level. This reduces the rate of increase of the peak current. At the current minimum,

the Fermi levels are split by 60 meV and thus encompass the majority of the weight of the
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transmission spectrum for all thicknesses considered, so that the valley current continues to

increase as the total integrated weight of the transmission spectrum.

The reduction of the PVCR as the thickness is increased from 7.5 nm to 9 nm

results from the closer proximity of the the surface Dirac point to the bulk conduction

band edge. The bulk bands are shifted up in energy as a result of quantum confinement.

The energy separation of the surface Dirac point (or surface valence band edge for the two

thinnest films) and the bulk conduction band edge for film thicknesses of 4.5 nm, 6.0 nm, 7.5

nm, and 9.0 nm are 150 meV, 95 meV, 73 meV, and 63 meV, respectively. The transmission

begins to rise about half way between the surface Dirac point and the bulk conduction band

edge. This earlier ‘turn-on’ in the transmission, which is clearly seen for the 9 nm film in

Fig. 2.4a, increases the valley current with respect to the peak current.

Since the transmission peaks occur only at the band edges, the overall tunneling

current and the NDR feature are sensitive to the position of the Fermi level. Fig. 2.6b

shows the change in the I-V response due to a p-type shift of εF in a 7.5 nm TI thin film.

Shifting εF by 60 meV reduces the PVCR from 6.3 to 1.4. This shift of εF suppresses the

tunneling current by 102 ∼ 104, and the corresponding NDR feature diminishes with it.
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Chapter 3

Coulomb impurity scattering in

topological insulator thin films

3.1 Introduction

Topological insulators (TI) form a new class of quantum materials with an in-

sulating band gap in the bulk and Dirac-cone surface states. Unlike normal materials,

the surface states of TI materials are robust against disorder, inhomogeneities and against

time-reversal-invariant perturbations. [9,49,65,69] A combination of the high velocity of the

Dirac-cone surface states and their topological protection against back-scattering make TI

materials appealing from the perspective of charge transport. 3D TIs such as Bi2Te3 and

Bi2Se3 have demonstrated surface state mobilities on the order of ∼ 104 cm2V−1s−1. [55,70]

When the thickness of a 3D TI thin film is reduced to several quintuple layers (QLs), the

high mobility is suppressed to 102 ∼ 103 cm2V−1s−1. [61, 71, 72] The suppression of the

mobility in the low-temperature transport measurements has been attributed to the strong

scattering from the the p-type dopants that are required to move the Fermi level (εF ) close

to the Dirac point [60,72,73] and charged surface adsorbates. [71] Prior theoretical studies

focused on the effect of inhomogeneities on the transport of TI surface states on a single

surface. [74, 75]
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The surface states of 3D TI thin films couple and hybridize the opposite spins of

the top and the bottom surface states. [1, 15, 62] A topological phase transition occurs, a

surface band gap is opened as illustrated in Fig. 3.1(a), the surface band-edge group velocity

decreases, and the original momentum-spin (k-s) relation that prohibits back-scattering of

surface states is broken. [63] This last effect is illustrated in Fig. 3.1(c). These effects

might further explain the reduction in the carrier mobility in TI thin films compared to the

expected value of bulk surface states.

3.2 Boltzmann Transport Formalism

The question we seek to answer is to what extent the topological phase transition

introduced by the inter-surface coupling affects the in-plane mobility of the TI surface

states. To address this issue, we calculate the mobility of the coupled surface states on a TI

thin film, and we explore the effects of several different externally controlled variables such

as the Rashba-like splitting of the bands under interlayer bias illustrated in Fig. 3.1(b),

temperature, and Fermi level.
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Figure 3.1:
(Color online) (a) A schematic plot of the E−kx dispersion of the degenerate gapped surface
states with opposite k-s chiralities. Solid lines are from the top surface and dashed lines
are from the bottom surface. In and out of the page spin is indicated by the arrows and
color. εC and εV correspond to the conduction and valence band edges of the gapped cones.
(b) The ε − kx dispersion in the presence of a potential drop between the top and bottom
surfaces. A Rashba-like splitting occurs. The linestyle and color scheme are the same as
in (a). Processes ‘1’ and ‘2’ correspond to the intra-surface and inter-surface processes
shown in (c). The band edges are now rings in k-space illustrated by the black dotted ring
of diameter k0. (c) The top and bottom equal-energy surface states in k-space and real
space corresponding to (a). The k space iso-energy rings are offset for visualization. Intra-
surface, back-scattering process ‘1’ is prohibited by the opposite spins of the ±kx states.
Inter-surface, back-scattering process ‘2’ is allowed since the spins of the ±kx states are
aligned. (d) Band gap of a Bi2Se3 given by the discretized k ·p model at different quintuple
layer thicknesses.

The low-energy band-structure can be described by a 4× 4 k ·p Hamiltonian with

4 basis states |χα〉 corresponding to the spin up and spin down Bi and Se pz orbitals. [9].

We discretize in real space the kz component of this Hamiltonian into N sites, so that each
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on-site block is a 4 × 4 matrix. Eigenstates |k, p〉 are linear combinations of the 4 basis

orbitals on the N sites, 〈r|k, p〉 = eik·r√
A

∑N
i=1

∑4
α=1 c

p
α,i(k)〈r|χα,i〉 where α is the orbital

index, i is the site index, and p is the band index. The band index runs over the 4 bands

shown in Figs. 3.1(a,b) corresponding the top and bottom gapped Dirac cones of the top

and bottom surfaces. Details of the discretization of this model can be found elsewhere. [1]

A typical band structure of a TI thin film is shown in Fig. 3.1(a). Hybridization

of the top and bottom surface states generates a small band gap at the Dirac point. The

gap decreases with increasing film thickness as shown in Fig. 3.1(d), and it is negligible

beyond 6 quintuple layers.

In a thick film, opposite surfaces states have opposite k-s chiralities where s is the

spin of state |k〉. With decreasing film thickness, the opposite surface wave functions of

the same momentum hybridize and mix their opposite spins, resulting in a non-zero sz spin

component. The magnitude of sz is a measure of the strength of the inter-surface coupling

which is shown in Fig. 3.2(a) as a function of energy. The maximum inter-surface coupling

occurs at the gapped Dirac point, and it decreases for energies away from the band edges.

This trend agrees with prior results given by both ab inito calculations [45] and analytical

models. [62, 63]

To quantitatively determine the mobility in TI thin films, a four-band semi-

classical calculation is carried out. For a screened Coulomb scattering center at layer j,

the Hamiltonian matrix element between states |k, p〉 and |k′,p′〉 is written as

Hj
k′,p′,k,p = 1

A

N∑
i

4∑
α=1

cp
′∗
i,α(k′)cpi,α(k) q

2
e

2κ
e−
√
q2

0+β2|z|√
q2

0 + β2
, (3.1)

where qe is the single-electron charge, κ = 100ε0 is the static dielectric constant [76], β =

|k−k′|, and z = |i−j|∆ is the vertical distance between site i and the layer of the Coulomb

scattering center j. The discretization length ∆ = 0.3 nm. Eq. (3.1) results from the 2D

Fourier transform of the screened Coulomb potential q
2e−q0r

4πκr . The inverse screening length
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q0 is given by q0 = 2πq2
e

κ
dρ
dεF

, where ρ is the 2-dimensional (2D) charge density, and εF is the

Fermi energy. [77]

The group-velocity scattering rate due to each impurity on layer j is

Sk′,p′,k,p = 2π
~
|Hj

k′,p′,k,p|
2 ·
∣∣∣∣∣1− vp′(k′) · vp(k)

[vp(k)]2

∣∣∣∣∣ δ(ε′ − ε), (3.2)

where vp(k) and vp′(k′) are the initial and final 2D group velocities. The correspond-

ing group-velocity relaxation time is given by summing over the impurities and the final

states to obtain 1
τp(k) =

∑
j ANj

∑
k′,p′ Sk′,p′,k,p where Nj denotes the impurity density on

layer j. Following the estimates given by previous experimental investigations, [71, 72] we

fix the Coulomb impurity density at 1013 cm−2. To calculate the carrier mobility, an en-

semble average of the group velocity driven by an external electric field is calculated at

finite temperature, 〈vx〉 =
∑

k,α v
p
x(k)fpA(k)∑

k,i f
p
0 (k) , where fpA(k) is the asymmetric component of the

non-equilibrium distribution function for band p. From a relaxation time approximation,

fpA(k) = −τi(k) qeEx~
∂fp0 (k)
∂k cos θ where Ex is the electric field along the transport direction

and θ denotes the direction of k with respect to the kx axis. The mobility is defined as

µ = 〈vx〉 /Ex.
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Figure 3.2:
(Color online) (a) The sz component of a surface state as a function of energy for different
film thicknesses. (b) Mobility as a function of film thickness at different temperatures
with εF = εV . (c) Group velocity as a function of energy for different film thicknesses.
(d) Normalized, angle resolved scattering rate for an initial state with velocity in the x
direction. The film thickness is 4QL. (e) The increase in mobility due to the shift of εF into
the valence band at different temperatures.

3.3 Results and Discussions

The mobilities calculated for different film thicknesses are shown in Fig. 3.2(b)

for three different temperatures. The Fermi level εF is aligned with the valence band edge,

εV . The mobility decreases by an order of magnitude as the film thickness decreases from

9 quintuple layers (QLs) to 2QLs.

The inter-surface hybridization resulting from the inter-surface coupling reduces

the mobility for many reasons. Once a band gap is formed, the near band-edge group
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velocity decreases as shown in Fig. 3.2(c). Another factor that decreases the mobility is

the increased sz component of the spin in the states |k, p〉.

On the top surface of a thick TI, the surface state can be written as a plane-wave

times a spinor. For a non-magnetic scattering mechanism, the matrix element squared of the

scattering potential between two states in the same band is |Hk′,k|2 = |〈k′|H|k〉|2|〈s′|s〉|2 =

|〈k′|H|k〉|2
(
1− cos θk′,k

)
where θk′,k is the angle between k′ and k. For a bulk surface state,

elastic, intra-surface backscattering is prohibited by the matrix element of the spinors.

In the case of thin films, mixing of opposite surface states introduces an sz com-

ponent to the spin so that |〈s′|s〉|2 6=
(
1− cos θk′,k

)
and backscattering events are no longer

prohibited. Fig. 3.2(d) demonstrates the normalized, angle-resolved scattering rate for an

initial state along kx in a 4 QL film. Backscattering is significant for states close to εV

where the inter-surface coupling gives sz ≈ 1 as shown in Fig. 3.2(a).
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Figure 3.3:
(Color online) The effect of 3 different intersurface potentials in a 4 QL film at T = 10 K
on (a) the mobility versus Fermi energy, (b) the group velocity versus energy, and (c) the
relaxation time versus energy.

There are several ways to increase the mobility of the thin film. One way is to

increase the temperature in the low-temperature transport regime where the Coulomb scat-

tering dominates. The mobility increases by almost an order of magnitude when the tem-

perature increases from 10K to 50K as shown in Fig. 3.2(b). A similar trend was observed

in a transport measurement in a 6 nm Bi2Se3 thin film. [61] The increase in temperature
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broadens the transport thermal window, so that higher energy states contribute to the car-

rier transport. Since inter-surface coupling decreases away from the gapped Dirac point,

states away from the band edge have a higher group velocity and better back-scattering

protection due to the smaller sz component of the spin. As shown in Fig. 3.2(d), the back-

scattering protection is almost restored for the states 15meV away from εV in a 4QL thin

film. For the same reasons, shifting εF away from the band edges increases the mobility as

shown in Fig. 3.2(e).

Another reason for this mobility increase for energies away from the band edges

is the nature of the Coulomb scattering mechanism. Since the carrier concentration of

a 2D thin film is significantly smaller than that of the bulk, screening is weak. Using

the bare Coulomb potential, the scattering rate given by Eq. 3.2 can be simplified to

S̃k′,k = 2π
~

q4
e

4A2κ2β2 Ik′,k (1− cos θ) δ (ε− ε′) where Ik′,k = |
∑N
i

∑4
α=1 c

p′∗
i,α(k′)cpi,α(k)|2 is the

overlap integral. For states close to the band edge, the two degenerate bands from oppisite

surfaces have large but opposite sz components, and, as a result, the inter-band overlap

integral is close to zero. Thus, inter-surface scattering processes are neglected. States

close to the band edge on the same surface have large and aligned sz components, so that

Ik′,k ≈ 1. For low-energy, intra-surface scattering, the group-velocity relaxation time can

be calculated analytically as 1
τ̃(k) = AN

∑
k′ S̃k′,k = Nq4

e
8~2κ2kv where N is the total surface

density of the Coulomb scattering centers. The relaxation time is proportional to the group

velocity, v, and the radius of the contour of equal energy, k. Thus, as εF moves away from

the band edge, kv at the Fermi level increases, so that states with greater relaxation times

are included in the transport thermal window. Since µ is proportional to τ , increasing the

kv product increases the mobility at low temperatures.
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Figure 3.4:
(Color online) (a) The sz component of a surface state as a function of energy for different
interlayer potentials. (b) Normalized, angle resolved scattering rate for an initial state with
velocity in the x direction for two different interlayer potentials. The film thickness is 4 QL,
εF = εV − 5 meV, and T = 10 K.

The mobility is further enhanced by a vertical potential drop (U) through the thin

film which creates a Rashba-like splitting of the bands as shown in Fig. 3.1(b). Experimen-

tally, this can be achieved by creating different electrostatic environments on each surface

such as applying a strongly coupled substrate or using gating mechanisms. [78] The vertical

potential drop leads to a structural inversion asymmetry (SIA) that can restore the topo-

logically nontrivial surface states in a TI thin film. [62–64] As demonstrated in Fig. 3.3(a),

for a 4QL TI thin film, a vertical potential drop of 0.1V enhances the mobility by up to an

order of magnitude when εF is close to the valence band edge. The reduced inter-surface

coupling is evident in the reduced sz component of the spin close to the Rashba-split band

edges shown in Fig. 3.4(a). The suppressed sz component restores the back-scattering

protection. As demonstrated in Fig. 3.4(b), back-scattering is suppressed for states 5meV

away from εV when a vertical potential drop of 0.1V is applied.

Besides the reduced inter-surface coupling, another reason for the mobility increase

given by the Rashba-like splitting is the change in the band structure. As illustrated in Fig.

3.1(b), the surface-to-surface potential drop creates a valence band edge that is a ring in
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k-space. The band edge forms a circle of radius k0 that increases with U . The increase

in kv linearly increases the relaxation time. Although the band-edge group velocity is

almost unchanged due to the Rashba-splitting as shown in Fig. 3.3(b), the relaxation

time increases by almost an order of magnitude when the potential drop increases from

0 to 0.1V as demonstrated in Fig. 3.3(c). The corresponding mobility is enhanced from

∼ 103 cm2V−1s−1 to ∼ 104 cm2V−1s−1.
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Chapter 4

Topological spin Hall effect

resulting from magnetic skyrmions

4.1 Introduction

Transverse spin accumulation in semiconductors due to extrinsic spin-orbit scat-

tering was first predicted by Dyakonov and Perel [79,80]. Strong spin-orbit coupling (SOC)

of the disorder scatters different spins in opposite directions leading to a non-zero transverse

spin current perpendicular to the charged current. Evidences of the predicted asymmetric

scattering of different spins was later abserved in optical [81] and photovoltaic [82] experi-

ments. Hirsch named this phenomenon the ‘spin Hall effect’ (SHE) and proposed that the

chargeless transverse spin current can be transferred back to a Hall voltage using an inverse

SHE measurement [83]. Later theoretical studies predicted an intrinsic contribution to the

SHE in the presence of SOC due to the topological property of the Bloch states at the Fermi

surface [33, 84–86]. Direct observations of the SHE have been experimentally achieved in

semiconductors using Kerr rotation microscopy [87,88].

In magnetic materials due to SOC, extrinsic or intrinsic mechanisms can lead

to a non-linear contribution to classical Hall signal [89–91]. The non-linearity which is

proportional to the magnetization is a result of the transverse accumulation of itinerant
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majority spins resulting in the anomalous Hall effect (AHE) [12]. Similar to the SHE, the

AHE can result from an intrinsic or extrinsic mechanism. The intrinsic contribution to the

AHE is related to the Berry curvature within the Fermi surface, which is determined by the

topological nature of the Bloch bands [91,92].

The momentum-space topological origin of the intrinsic AHE is the same to that of

the intrinsic SHE. Similarly, the real-space topology of a magnetic system can also induce a

Hall effect [93]. An electron hopping through magnetic sites with particular chiral textures

acquires a Berry phase and thus experiences an emergent gauge field during transport [94].

The emergent gauge field generates a Hall voltage that does not originate from SOC, which

is usually referred to as the ‘topological Hall effect’ (THE) [27]. Recently, a skyrmion

lattice, a topologically non-trivial chiral spin texture, has been observed in helical magnets

with a Dzyaloshinskii-Moriya (DM) interaction [31,95,96]. These materials provide robust

samples where the THE has been detected, and the measured Hall signal is a signature of

the skyrmion phase in many B20 magnetic compounds [26,30,97,98].

In the adiabatic limit, each electron spin passing through a single skyrmion has its

spin aligned with the direction of spatial magnetization of the skyrmion which generates an

emergent gauge field of up to one flux quantum [96]. This flux quantum confined in the area

of a single skyrmion gives a gigantic effective field, that makes the THE a possible detection

method for skyrmions. Moreover, the direction of the local magnetic field generated by this

emergent gauge field is opposite for parallel and antiparallel spin, which deflects them in op-

posite directions. This might separate the spin current from the charge current, generating

an unconventional topological spin Hall effect (TSHE) which does not originate from band

topology. Motivated by these possibilities, in this chapter we theoretically investigate the

THE and the TSHE resulting from a single magnetic skyrmion. The TSHE phenomenon

discovered here can be explained in terms of a general physical picture that would apply

equally well to a skyrmion lattice.
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Figure 4.1:
(color online) The geometry of a 31 × 31 tight-binding cross bar. The arrows denote the
in-plane component of the magnetization texture of a single skyrmion. The color plot
demonstrates the Sz component. The four terminals are numbered clock-wise.

4.2 Methods

Due to the lack of periodicity, we apply the non-equilibrium Green’s function

method (NEGF) to simulate the coherent transport of itinerant spins traversing a single

magnetic skyrmion [99]. The tight-binding electron Hamiltonian we employ is,

He = −JH
∑
i

c†iσici · Si − t
∑
〈i,j〉

(
c†icj + h.c.

)
, (4.1)

where σi is the spin of itinerant electrons, JH is the Hunds’ rule coupling, t is the nearest

neighbor hopping, and Si is the local magnetization. It has been previously discussed

that the external magnetic field does not contribute much to the Hall effect, therefore we

neglect its effect on the electron by taking the hopping parameter to be real [12]. Thus,

the Hall signal observed in the following calculations is purely from the emergent gauge

field of the skyrmion. The spin texture {Si} contains a single skyrmion located at the

center of a 4-terminal cross bar (as shown in Fig. 4.1). This texture is fully damped
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using the Landau-Lifshitz-Gilbert (LLG) equation with the magnetic Hamiltonian HS =

−J
∑
〈i,j〉 Si ·Sj−D

∑
〈i,j〉 r̂i,j ·Si×Sj−

∑
i h0 ·Si. Here J is the nearest neighbor exchange

coupling, D is the DM interaction and h0 is the external magnetic field perpendicular to

the cross-bar plane. For simplicity we choose D = J = hz0. Periodic magnetic boundaries

are applied at the terminals in order to mimic the semi-infinite ferromagnetic leads. Other

boundaries along the cross bar are taken as magnetic open boundaries, which gives large

in-plane magnetization components at the edges. These boundary conditions have been

applied to simulate helimagnetic ribbons [32]. The skyrmion at the center is generated by

manually creating a unity topological charge and then relaxing the spin texture until the

magnetic energy is stable. Details of the magnetic dynamical simulations can be found in

Ref. [100].

For the electron transport calculation, semi-infinite boundary conditions for elec-

tron states are applied to the four terminals of the cross bar. Each terminal is assumed

to be a thermal bath of carriers with chemical potential µm. The semi-infinite electrodes

are included by adding self-energy terms, Σm = t†gRmt, to the terminal blocks of He,

where gRm is the surface Green’s function of terminal m. The retarded Green’s function

of the device region bounded by the terminals is given by GR = [εI−He −
∑
m Σm]−1.

In the linear response limit, the zero-temperature terminal currents, Im, are given by

Im = (e/h)
∑
n Tm,nδµn. δµn denotes the chemical potential shift due to an applied bias

in terminal n, (δµn = µn − εF ). Tm,n = Tr
[
ΓmGR

mnΓnGA
mn

]
(m 6= n) is the transmis-

sion coefficient between terminal m and n, where GA
mn = GR†

mn, and Γm = i
(
Σm −Σ†m

)
.

At steady state, the charge current is conserved such that Tmm = −
∑
n6=m Tmn. A Sym-

metric bias is applied between terminals 1 and 3, δµ1 = −δµ3 = δµ = 0.1JH. Enforcing

I2 = I4 = 0 in the Hall effect measurement, the transverse Hall voltage can be solved as
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δµ2 = δµ (P −Q) / (P +Q) and δµ4 = δµ (R− S) / (R+ S), where



P = T21T41 + T21T42 + T21T43 + T24T41

Q = T23T41 + T23T42 + T23T43 + T24T43

R = T42T21 + T21T41 + T23T41 + T24T41

S = T42T23 + T21T43 + T23T43 + T24T43

. (4.2)

Thus, the topological Hall angle can be evaluated as tan θTH = EH/Ex = (µ2−µ4)/(µ1−µ3).

Once δµm and Im are obtained, then the total terminal spin current, ISαm (α =

x, y, z), is evaluated from ISαm = ~
2Tr [σαIneqm ] , where σα = I ⊗σα is the extended Pauli ma-

trix and Ineqm is the terminal current operator Ineqm = i
2π~

[
δGn

mΣ†m −ΣmδGn
m+GR

mδΣin
m − δΣin

mGA
m

]
,

δGn
m =

∑
n GR

m,nΓn,nGA
n,mδµn, and δΣin

m = Γm (εF ) δµm. The intensity of the TSHE is de-

scribed by the spin Hall angle, a renormalized ratio between the transverse spin current and

the longitudinal charged current

θTSH =
(2e
~

)
σSzxy
σxx

=
(2e
~

)
Isz42
I13

, (4.3)

where I13 = I1 − I3, and ISz42 = ISz4 − I
Sz
2 .

4.3 Results and Discussions

First, we study the THE and TSHE for the case of pure spin injection. By setting

t = 0.2JH, the tight-binding band-width is smaller than the spin splitting given by JH.

Therefore no matter where the the Fermi level lies, the electron injection does not mix

different spins. The θTH and θTSH for different positions of εF are shown in Fig. 4.2(a) and

(b), respectively. The corresponding surface density of states (DOS) that determines the

type of current injection at terminal 1 is shown in Fig. 4.2(c). When the surface DOS is

zero, the Fermi surface lies in the spin gap, and injection is absent, so that both θTH and
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Figure 4.2:
(color online) THE and TSHE for the case of pure spin injection (t = 0.2JH). The (a) Hall
angle θTH and the (b) spin Hall angle θTSH are shown as a function of εF . The surface
density of states at terminal 1 is shown in (c). The four scenarios of different carrier-type
and spin compositions are illustrated in (d).
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θTSH are suppressed to zero. As εF passes through the bands, pure spin injection gives a

Hall angle up to ±0.2 indicating the expected THE. The corresponding value of θTSH is

within ±0.005. At εF = ±JH, both θTH and θTSH change sign.

The sign change of the Hall angles can be explained by the spin and carrier-type

composition of the injection from the ferromagnetic contacts. For each transport channel, a

one-dimensional tight-binding chain gives a negative cosine electron band dispersion, which

has a sign change of the effective mass at the band center. The effective mass (m∗) is positive

at the bottom band-edge, and becomes negative at the top. When an up-spin electron with

positive m∗ is injected from terminal 1, it is scattered to the “right” due to the effect of

the emergent gauge field generated by the skyrmion. This is denoted as scenario (I) in Fig.

4.2(d). Alternately when m∗ < 0, an up-spin electron injected from terminal 1 is equivalent

to a down-spin hole injected from terminal 3. Since the spin scattering due to the skyrmion

is anti-symmetric, the down-spin hole is scattered to its “left” as denoted by scenario (II).

In a multi-channel scenario due to the transverse confinement, the tight-binding band splits

into several sub-bands. Thus, the number of the electron bands and the hole bands crossing

the Fermi level changes at different positions of εF . As εF moves from the bottom band-edge

to the band-center, the number of electron bands crossing εF decreases, while the number

of hole bands increases as depicted in Fig. 4.2(c). Right at the band-center, the electrons

and holes are equal, indicating an equal contribution from both scenarios (I) and (II), which

leads to a cancellation of both θTH and θTSH. Further increasing εF , scenario (II) starts

to dominate such that θTH and θTSH change sign. Similar arguments can be applied to

scenario (III) and (IV) for the down-spin case (see Fig. 4.2(d)).

Semiclassically, the relative strength of THE to the TSHE can understood as a

cancellation of the transverse electric field due to charge accumulation at contacts (2) and

(4) with the gauge field of the skyrmion. In all these pure-spin injection scenarios, the spin

current is carried by charge which leads to a transverse accumulation of charge resulting in

a Hall voltage and hence a THE. Since the transverse electric field cancels the Lorentz force

given by the emergent gauge field of the skyrmion, a continuous spin current is suppressed at

34



Figure 4.3:
(color online) THE and TSHE in the case of mixed spin injection (t = 1.5JH). (a) and (b)
demonstrate the values of θTH and θTSH for different positions of εF . The red dashed lines
correspond to the case where the central skyrmion is removed. (c) is a plot of the surface
DOS at terminal 1.

the steady state, making the TSHE insignificant. However, an order-of-magnitude increase

in θTSH can be achieved in the case of mixed spin injection which we discuss next.

To simulate mixed spin injection, the hopping term is increased to t = 1.5JH

such that the injection band-widths of each spin are enlarged and overlap in some range

of εF . The calculated values of the θTH and θTSH are shown in Fig. 4.3, along with the

corresponding results in the absence of a skyrmion for comparison. For energies in the

range of −4.5JH < εF < −JH and JH < εF < 4.5JH, θTH vanishes to ∼ 0, whereas

θTSH increases by approximately an order of magnitude compared to the case of pure-spin

injection. Additionally, in the energy range −JH < εF < JH, the Hall angle corresponding

to the THE θH is finite and roughly same order as that in the case of pure-spin injection.

To explain the presence of the TSHE, we again refer to the four scenarios shown in

Fig. 4.2(d). Within −4.5JH < εF < −JH, the transport is dominated by scenario (I)+(III)

35



as shown in Fig. 4.3(c). In this case, both the spin-up and spin-down electrons are injected

from terminal 1. Due to the presence of a skyrmion there exists a topological Hall effect

which produces a transverse electrical field, ETH. At steady state, the zero-current condition

at terminals 2 and 4 requires eETH = −F ↑ and eETH = −F ↓ satisfied simultaneously. Due

to the chirality of the skyrmion, the emergent field experienced by the up spin is opposite

to that experienced by the down spin, which generates opposite emergent Lorentz forces on

the two types of spins (F ↑= −F ↓). Therefore, the zero-current condition in the transverse

direction cannot be satisfied unless ETH = 0. Although imbalanced spin injection occurs

due to the ferromagnetic electrodes, the THE must be suppressed in steady state as long as

the transport is dominated by the same type of carrier. Since there is no electrostatic field

to balance the emergent Lorentz force, a continuous chargeless spin current is established.

Similar explanations [(II)+(IV)] can be applied for JH < εF < 4.5JH.

When the transport is dominated by two different types of carriers with the same

spin, the TSHE is suppressed, and the THE voltage becomes finite. In our calculations,

this occurs when εF is within [−JH, JH], and the transport is dominated by the scenarios

(II)+(III). In this case the down-spin electrons and holes are injected from terminals 1

and 3, respectively. The electrons and holes are scattered in opposite directions and then

accumulate at terminals 2 and 4, respectively. Since the same spin is assigned to opposite

charges, a non-zero ETH develops at terminals (2) and (4) resulting in a finite THE with a

vanishing TSHE.

To further demonstrate the differences between the THE and the TSHE, we show

the vector map of the spin current density JSz (r) and the corresponding color map of

the charge accumulation in Fig. 4.4. The spin texture and the terminal numbering are

the same as in Fig. 4.1. For the THE case shown in Fig. 4.4(a), εF = −0.05JH and the

transport is dominated by scenario (II)+(III). There is a net drop in the transverse chemical

potential between leads 2 and 4. The JSz vectors circulate symmetrically on either side of

the skyrmion, generating no significant total transverse spin current. This corresponds to

the case where θTH ≈ −0.2 and θTSH ≈ 0. For the TSHE case shown in [Fig. 4.4(b)], the
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transport is dominated by scenario (I)+(III). The equal-potential contour of δµ (r) = 0 cuts

all the way across the vertical bar indicating little charge imbalance between leads 2 and 4.

In transverse leads 2 and 4 there is a net spin current directed from lead 2 to lead 4 giving

a negative θTSH ≈ −0.05.

Figure 4.4:
(color online) Vector map of ~JSz (arrow plot) and the effective chemical potential distri-
bution (color map) for (a) the THE and (b) the TSHE. A longitudinal applied bias of
δµ1 = −δµ3 = 0.1JH is applied. For the THE (a), the spin current symmetrically circulates
on either side of the the skyrmion resulting in no net transverse spin current. The electron
and hole accumulation induces an imbalanced transverse potential distribution. For the
TSHE (b), the transverse chemical potential distribution is symmetric, and a charge-less
spin current is established in the transverse direction.

The TSHE discussed here is of similar magnitude as the SHE in broadly used Pt

thin films [101]. However, the physical mechanism giving rise to the TSHE is fundamentally
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different from the one leading to the spin Hall effect in strong spin orbit coupled systems.

In such systems, the spin Hall effect results from the topological property of the Bloch

bands in momentum space. In contrast the TSHE results from the topological property of

the skyrmion spin texture in real space. The real-space topology exerts opposite emergent

Lorentz forces on different spins, which can induce the TSHE.
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Chapter 5

Topological charge analysis of

ultra-fast skyrmion creation due to

spin transfer torques (STTs)

5.1 Introduction

Magnetic skyrmions are topologically protected spin textures in which the local

moments on a two dimensional lattice point in all directions with a topologically nontrivial

mapping to the unit sphere [19, 102]. Physically, each skyrmion is a circular spin texture

in which the spins on the periphery are polarized vertically, the central spin is polarized

in the opposite direction, and, in between, the spins smoothly transition between the two

opposite polarizations. A swirling transition, which is effectively a circle of double Bloch-

type domain wall, gives a Bloch-type skyrmion. This type of skyrmion was first discovered

in the temperature-magnetic field (T-H) phase diagram of B20 magnets [24,31,95]. In these

materials, the atomic structure of the lattice breaks the inversion symmetry, inducing an

asymmetric Dzyaloshinsky-Moriya (DM) exchange interaction [22, 103]. The competition

between the DM exchange and the symmetric Heisenberg exchange stabilizes the skyrmion
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phase in these materials. A Neel-type skyrmion, on the other hand, is a wrapped double

Neel-wall. Such a skyrmion is stabilized by an interfacial DM interaction, which is originated

from the broken interfacial inversion symmetry. This type of DM interaction is usually

observed at the interface between a magnetic thin film and a layer of heavy metal with

strong spin-orbit coupling (SOC). For both types of skyrmions, the radius, ranging from

about 3 nm to 100 nm [24, 31, 95, 104], is determined by the ratio of the strengths of the

DM interaction and the Heisenberg interaction [105].

Skyrmion lattices and isolated skyrmions in both bulk and thin films have been

observed by neutron scattering [95, 106], Lorentz transmission electron microscopy [24, 30,

31, 107, 108], and spin-resolved scanning tunneling microscopy (STM) [109]. Current can

drive skyrmion spin textures with a current density 4-5 orders of magnitude lower than

that required to move conventional magnetic domain walls [25, 96, 108, 110]. This suggests

promising spintronic applications exploiting the topological spin texture as the state variable

[23,32,111].

A two-dimensional skyrmion lattice may be formed under a uniform magnetic

field [31, 95], however, the switching of isolated, individual skyrmions is far more challeng-

ing. The single skyrmion switching was first experimentally demonstrated by injecting

spin-polarized current from an STM tip into ultra-thin Pd/Fe/Ir(111) films at 4.2 K [112].

Other schemes of single skyrmion switchings, such as using a sharp notch [32], a circulat-

ing current [113], thermal excitations [114] and spin-orbit torques (SOTs) [111] have been

proposed. Spintronic applications call for on-wafer solutions to precisely control the po-

sition and the time of skyrmion switchings with good reliability. This is rather difficult

because each switching event corresponds to a topological transition, which has to break

the protection given by the topological order. This process has to overcome the topological

protection barrier, which is both energetically unfavorable and difficult to manipulate. In

this chapter, we theoretically investigate the topological transition of the microscopic spin

texture during a dynamical skyrmion creation process. This picture provides insight into

the critical condition to create isolated skyrmions and a quantitative understanding in the
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Figure 5.1:
(color online) The critical condition of a topological transition. (a), Triangulated square
lattice. S1, S2 and S3 follow a counter-clockwise order on each triangle grid. (b), exp

(
iΩ
2

)
on the complex plane. The branch cut is denoted by the red line on the negative real axis.
(c), A typical spin configuration at the moment of a topological transition. It only occurs
when S3 crosses the geodesic S′1S′2 (red arc). S′1 and S′2 are the point reflection images of
S1 and S2 about the sphere center.

topological barrier. Based on this picture, we propose that controlled skyrmion creation can

be realized by the spin transfer torques (STTs) induced from a magnetic electrode. Such a

geometry and creation mechanism is applicable to both of the Bloch-type and the Neel-type

skyrmions, and is potentially compatible with the standard metal process used in silicon

integrated circuits.

5.2 Topological transition analysis

The critical condition of the topological transition is determined by the topological

charge evolution during a spin dynamical process. A skyrmion is distinguished from a

ferromagnet or other trivial state by the topological charge Q, which is a non-vanishing

integer [21, 115]. Each skyrmion contributes ±1 to the total topological charge. Usually

Q = 1
4π
∫
d2rS · (∂xS× ∂yS) is employed, but it is well defined only in the continuum limit

where all the spins are almost parallel to their neighbors [115]. In this limit, magnetic

dynamical processes can only distort the geometry of the spin texture, but cannot change
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the wrapping number in the spin space. Thus, the topological charge above is conserved,

and can not capture the precise time evolution of the topological transition.

Here we employ the lattice version of the topological charge that provides a mi-

croscopic picture of the spin evolution and reveals the microscopic criteria for a topological

transition to occur during any dynamical process. This version of Q was first introduced

by Berg et al. [116], which is defined on a square lattice mesh illustrated in Fig. 5.1 (a).

The calculation of Q starts by triangulating the entire lattice and then counting the solid

angles Ω4 for each triangle 4(S1,S2,S3) determined by

exp(iΩ42 ) = ρ−1[1 + S1 · S2 + S2 · S3 + S3 · S1 + iS1 · (S2 × S3)], (5.1)

where −2π < Ω < 2π and ρ = [2(1 +S1 ·S2)(1 +S2 ·S3)(1 +S3 ·S1)]1/2 is the normalization

factor [116]. The lattice version of the topological charge Q is then given by summing over

all of the triangles.

Q = 1
4π
∑
4

Ω4 (5.2)

From this definition, the directional solid angle Ω4 ranges from −2π to 2π so that the

negative real axis of the complex plane in Eq. (5.1) is a branch cut. The exponential

eiΩ4/2 lies on the branch cut in the complex plane when S1 · (S2 × S3) = 0, and 1 + S1 ·

S2 + S2 · S3 + S3 · S1 < 0. Ω4 is 2π immediately above, and −2π immediately below, the

branch cut. Any dynamical process causing eiΩ4/2 to cross the branch cut is accompanied

by a change in the topological charge of ±1 as shown in Fig. 5.1 (b). To trigger an event

crossing the branch cut, the dynamical process must drive three spins S1, S2, S3 in one

particular triangle coplanar from the condition S1 · (S2 × S3) = 0. The other condition

1 + S1 · S2 + S2 · S3 + S3 · S1 < 0 leads to the inequality (S1 − S2) · (S3 − S2) > 0, so that

∠S1S2S3 is an acute angle, and the same holds true for permutations of the three indices

1, 2, and 3. Consequently, three spins must point ‘away’ from each other at the branch cut.
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For fixed S1 and S2, S3 must lie on the arc S1′S2′ as shown in Fig. 5.1 (c). This coplanar

but highly non-collinear critical state must be achieved during skyrmion switching events.

Based on this switching criteria, the energy barrier protecting the topological

charge is identified, and can thus be quantified. The full spin Hamiltonian of a magnetic

helix is given by

H =
∑
〈i,j〉

[−JSi · Sj +HDM
i,j ]− µ0

∑
Si ·BOst, (5.3)

where 
HDM
i,j = Dr̂ij · (S× Sj) (Bloch type)

HDM
i,j = D (ẑ× r̂ij) · (Si × Sj) (Neel type)

.

The two terms in the square bracket are the Heisenberg and DM interactions, respectively,

and the last term is the Zeeman coupling. In the case of the co-planner configuration, the

DM interaction of either type does not contribute to the total energy. Thus, at the moment

of switching, the energy density given by the three spins involved in the topological transition

is

∆ε = J

(
1− S1 · S2

2 − S2 · S3
2

)
(5.4)

+BOst ·
(1

2 −
S1 + S2 + S3

6

)
. (5.5)

Since the spins at the transition are highly non-collinear, the Zeeman coupling is much

weaker compared to the exchange contribution, and the second term in Eq.5.4 is thus

neglected. From the topological transition requirement, 1 + S1 · S2 + S2 · S3 + S3 · S1 < 0,

it can be obtained that −J(S1 · S2 + S2 · S3) > J(1 + S3 · S1) ≥ 0. Thus, ∆ε > J has to be

satisfied. The maximum value of ∆ε occurs when S2 is anti-aligned with both S1 and S3,

such that J < ∆ε < 2J . In different switching processes, the actual value of this barrier

varies within this range, determined by the exact spin configurations at the moment of the

transition. Since this criteria comes from the generic topological charge analysis, it applies

for both the Bloch-type and the Neel-type skyrmions.
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5.3 SST induced switching

Spin transfer torques (STT) induced by pure spin currents or spin polarized

charged currents have been proposed to be a promising mechanism to switch nano-magnets

in spintronic integrated circuits [117,118]. Here we propose to switch skyrmions in 2D thin

films using the STT induced by the spin polarized current from a magnetic electrode. The

device setup is schematically shown in Fig. 5.2 (a). A charged current is injected vertically

from a hard magnetic nanopillar, and the spin of the current is thus polarized along the

magnetization. A spin-less copper layer is deposited between the helimagnetic layer and

the magnetic electrode to decouple the inter-layer exchange. The sandwich structure is

on the top of a back contact layer which serves as the drain of the electron current. In

order to quantitatively evaluate the required condition and to estimate the feasibility of

this switching mechanism, dynamical simulations of the spin system based on the Landau-

Lifshitz-Gilbert (LLG) equation are performed. The equation of motion is given by

Ṡ = −γS×Heff + αS× Ṡ + τ STT (5.6)

where γ = g/~ is the gyromagnetic ratio and α is the Gilbert damping coefficient. Heff

is the effective field given by Heff = −∂H/∂S. A fourth order Runge-Kutta algorithm

is employed to integrate this first order differential equation. In this simulation, material

parameters of FeGe are applied, such that J = aA0 and D = a2D0, where a = 2.3 nm

is the choice of the mesh grid size, A0 = 5.33meVÅ−1 is the exchange stiffness and D0 =

0.305meVÅ−2 is the DM interaction density. These parameters are chosen for a 50×50 mesh

of square lattice, where the helical state period matches with the experimental observation

λ = 2πa/ arctan
(
D/
√

2J
)

= 70nm. Ms = 105 Am−1 is the saturation magnetization, and

t is the film thickness. The external Oersted field, BOst, includes the applied background

field and the Oersted field given by the injected current. The STT term is written as
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Figure 5.2:
(color online) (a) The sandwich structure of the proposed skyrmion creation scheme. θ is the
angle between the injected spin, σ, and the z axis. (b), (c) and (d) are the snap shots several
picoseconds around the moment of the topological transition in a Bloch-type helimagnet
thin film. (e) demonstrates the spin trajectories of the local topological transition. The red
and blue arrows denote the configuration before and after the transition, respectively. A
co-planner and non-collinear configuration is achieved exactly at the birth moment of the
skyrmion (white arrows).
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τSTT = −j γ~p
2eMst

[S× (S× σ)], where p = 0.4 is the polarization rate, j is the current

density and σ is the injected spin orientation.

The LLG simulation demonstrates the possibility to create a skyrmion from a ferro-

magnetic (FM) state, using the STT induced spin dynamics. Starting from a ferromagnetic

(FM) initial state, a DC vertical current is turned on at t = 0, and the topological charge

evolution is monitored during the spin dynamical processes afterwards. A background field

is applied along the ẑ direction, perpendicular to the thin film, such that the energy of

a FM state matches the energy of a single skyrmion. After the current is turned on, the

STT and the Oersted field drive the spins into the x-y plane near the electrode, forming a

pack of spin wave. Since spins at the boundary of this pack diviates from the outside FM

configuration, the DM interaction starts to increase. This drives the spin texture to form

a bubble-like domain, in which the center spins present negative z components, while the

spins at the periphery give large in-plane components. The bubble-like domain then con-

tinues to enlarge, and start to wrap into a circular domain wall with a singularity. Around

the singularity the spins gradually develop into an anti-parallel configuration, which then

generate a quick, drastic dynamical process that creates a topological charge of −1. Snap

shots of the spin texture several picoseconds around the transition critical moment are ex-

tracted from the simulation, as presented in Fig. 5.2. The spin trajectories corresponding

to the local topological transition is shown in Fig. 5.2 (e), which follows the co-planner and

non-collinear configuration discussed in the previous section.

The critical current density to trigger the skyrmion creation event is evaluated

through a series of LLG simulations. Starting from a low enough current density, the initial

excitations damp away very fast, such that no topological charge can be created. The

creation of skyrmions occurs when the current density overcomes a critical value, jC . The

phase diagram of jC as a function of the spin polarization angle, θ, and the electrode radius,

R, is demonstrated in Fig. 5.2. R varies from 11.5 nm to 25.3 nm, while the polarization

of the injected current is modified from −ẑ to the x-y plane (90◦ < θ < 180◦). In this
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Figure 5.3:
The phase diagram of jC for the Bloch-type (a) and the Neel-type (b) skyrmions.

calculation, both the Neel-type and the Bloch-type skyrmion creations are examined using

the same set of parameters. Despite the differences in the spin dynamical details, the phase

diagrams for the two types of skyrmions are quite similar. The minimum current density

occurs at θ ∼ 110◦, where the polarization is close to the in-plane case. For both skyrmion

types, the jC is roughly at the level of 108 A/cm2, which is similar to the critical switching

current density due to spin orbit torques estimated by previous numerical estimations.

This value also matches the experimental observations in the Fe/Ir interface. Increasing

the radius of the electrode can decrease the current density by several factors, but cannot

bring orders-of-magnitude improvements. Although this level of current density is accessible

in some cases in experiments, the jC is two orders of magnitudes larger than the current

density regularly applied in integrated circuits.

The difficulty of the skyrmion switching originates from the critical configuration

required by the topological transition. The energy landscapes several picoseconds around

the moment of the switching are demonstrated in Fig. 5.4 (a)-(c). Exactly at the transition

moment, energy is highly concentrated at switching position, where the energy density

overcomes the minimum topological energy barrier, J . For both the Neel-type and the

Bloch-type skyrmion switching, the maximum energy density evolves through time, which
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Figure 5.4:
The energy landscape of the topological transition. (a), (b) and (c) illustrate the energy
density distribution of a Bloch-type skyrmion creation process. These plots correspond to
the snap shots given in Fig. 5.2 (b), (c) and (d). (d) demonstrates the time evolution of
the energy density maximum value for both types of skyrmions. (e) illustrates the critical
configuration when a Neel-type skyrmion is created.
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is illustrated in Fig. 5.4(d). When the injected current density is 100Acm−2 below jC ,

the energy density cannot overcome the topological barrier, such that no skyrmion can be

created. Both of the two cases present similar line shapes of the energy evolution, despite

the significant differences in the dynamical details. In both cases, fast skyrmion switching

within ∼ 60 ps is achieved. The barrier height of the Neel type is a little larger than that

of the Bloch type, which is determined by the exact switching configuration. As shown in

Fig. 5.4(e), the spin alignment is more non-collinear compared to that given in Fig. 5.2

(e), contributing more exchange energy than that of the Bloch type. The difference in this

configuration comes from the swirling Oersted field induced by the vertical current. For

the Bloch-type skyrmions, the Oersted field helps the in-plane DM interaction form the

co-planner texture, while it does not assist the out-of-plane DM interaction in the Neel-

type skyrmions. As shown in the phase diagram, this difference in the barrier does not

significantly affect the switching current density.

5.4 Feasibility and reliability analysis

Although single skyrmion switchings are difficult due to the topological protection,

the required current density can be reduced by roughly an order of magnitude due to the

easy-plane type uni-axial anisotropy. This anisotropy is written in the Hamiltonian as

Hansi =
∑
iKV

(
Siz
)2 where K is the anisotropy energy density and V is the volume of each

local spin. This term is physically induced by a combination of the strained structural effects

at the interface and the demagnetization effects due to the aspect ratio. In a helimagnet,

it has been proposed that K is measured by K0, the effective stiffness of the conical phase

determined by material parameters (for FeGe, K0 = 1.7× 103 J/m3). Recent experimental

results indicate that the skyrmion phase in a FeGe thin film can be significantly extended

in the phase diagram, and the value of K/K0 reaches ∼ 1 when the thickness reduces to

5 nm. Larger values of anisotropy are expected if the thickness further decreases. Since the

anisotropy energetically prefers the in-plane configuration, it helps the spin transfer torque
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Figure 5.5:
(a) The reduction of jC at different values of K. (b) The evolution of Q at different
polarization angles. (c) The heat assisted skyrmion creation at finite temperatures. Each
point is an average over 400 different sampling runs.

to drive the spins to reach the co-plannar switching configuration. The required current

density can thus be reduced. Starting from the optimum situation in the phase diagram

(θ = 110◦, R = 25.3 nm), the value of K/K0 is modified from 1 to 5 in our calculation. As

shown in Fig. 5.5 (a), the easy-plane anisotropy reduces the switching current density from

∼ 108 A/cm2 to ∼ 4× 107 A/cm2 for both types of skyrmions.

The reliability and the dynamical details of the switching process significantly

depends on θ, the orientation of the spin polarization. It is well known that the STT

can generate an ’anti-damping’ effect during the precession of the local magnetic moment

when the injected spin is anti-parallel to the precession axis [119]. The anti-damping can

either induce a consistent oscillation or even the switching of a single-domain nanomagnet.

This is similar to the switching of a single skyrmion in our proposed scheme. In the case

of θ < 90◦, the excitations first induced by the torque damp away quickly, such that no
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topological transition can be detected with a reasonable current density. In the case of

90◦ < θ < 180◦, switching is always possible. Since the STT is given by S × (S× σ), the

maximum value of the torque at t = 0 occurs when θ = 90◦. The torque becomes zero

in the case of θ → 180◦, where the required current density reaches its maximum in the

phase diagram. In the case of a large θ, the dynamical effect continues after the skyrmion

is created, where the oscillation of the topological charge occurs. The time evolution of the

topological charge is presented in Fig. 5.5 (b), in which several different angles are examined

close to θ = 90◦ and θ = 180◦. Within 800 ps, topological charges (sometimes more than 1)

quickly switch on and off in the case of θ ∼ 180◦ due to the constant oscillations driven by

the STT. The outcome of the process is sensitive to the duration of the applied current and

the details of the geometry, which should be avoided for application purposes. Similar effects

are also observed in Fe/Ir thin films where a vertical current is injected from a vertically

polarized magnetic STM tip. On the other hand, the topological charge becomes stable

after the first creation in the case of the in-plane polarization. The switching can occur

in ∼ 60 ps, after which no further excitations can be initiated and the created skyrmion is

thus stabilized. Small changes in the angle does not strongly affect the switching outcome,

indicating the in-plane polarization suits better for device applications.

The stability of the proposed switching scheme is further examined at finite tem-

peratures. In order to include this effect, a stochastic field L is added onto the effective

field in Eq. 5.6 [120]. The dissipation-fluctuation relation 〈Lµ(r, t)Lν(r′, t′)〉 = ξδµνδrr′δtt′

is satisfied, where ξ = αkBT/γ, and T is the temperature. The average 〈 〉 is taken over the

realizations of the fluctuation field. The deterministic Heun scheme is employed to integrate

out this stochastic LLG equation. Below TC (270K in FeGe), the average switching current

density based on 400 sampling runs are obtained for both the Neel-type and the Bloch-type

skyrmions. The results are demonstrated in Fig. 5.5 (c). Although thermal fluctuations

randomize the local spins at each time step, the overall dynamical process of the skyrmion

creation is similar to that at the zero temperature. This demonstrates the stability of the

skyrmion creation scheme below TC . The average switching current density decreases due
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to the thermal fluctuations, indicating a negligible heat assisted switching effect. Above TC ,

although the switching current can be further reduced, the magnetic order start to vanish,

where random topological charges can be spontaneously excited by thermal fluctuations.

This should be avoided in the proposed switching scheme.
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Chapter 6

Impedance perturbation theory of

coupled transmission lines

6.1 Introduction

With the fast increase in the computation speed of modern electronic devices,

the data rate of high-speed systems has been increased to the level of ∼ 56Gb/s, where

the wave nature of the signal propagation in the interconnects has to be considered [35].

Derived from the Maxwell equations, transmission line models using lumped parameters

(RLGC: resistance-inductance-conductance-capacitance) capture the wave effects of signal

propagation, and have been widely applied to describe high-speed interconnects [121]. Al-

though the accuracy of these models cannot reach the level of finite-element simulations,

the lumped models are numerically more efficient and easy to implement in circuit simu-

lators such as SPICE or ASTAP. More importantly, they can usually provide important

insights in the physical nature of the signal propagation, which is exceptionally important

in qualitative estimations. Therefore, in the design of high-speed systems and the analysis

of signal integrity, the lumped model of transmission lines are widely used.

Although the complexity of the problem has been simplified by using the lumped

models, the relation between the lumped parameters and the network matrices is still com-
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plicated. Different effects such as delay, reflection, crosstalk and attenuation are usually

intricately implied within all the modeling parameters. To further understand the effects

of these parameters, neglecting the high-order perturbations given by small modifications

is usually useful. This kind of perturbation analysis has been carried out to describe the

inhomogeneous effects in transmission lines [122] and the inter-trace couplings in multi-

conductor transmission lines [123]. Motivated by the fact that transmission lines are often

closely matched to a reference impedance, in this chapter we take the impedance mismatch

as a small quantity, and propose a generic impedance perturbation theory based on the

lumped parameters. The propagation constants, S-parameters and T-parameters for both

the single-ended and coupled transmission lines are investigated at the impedance pertur-

bation limit.

This chapter is arranged as follows: in Sec. II, we introduce the formulation of the

perturbation theory for single-ended transmission lines. In Sec. III, the application of the

perturbation model in differential transmission lines is described in detail. The numerical

accuracy of the perturbation model is also evaluated. In Sec. IV, as another application

example, we evaluate the TRL de-embedding fluctuation by applying the perturbation

theory and the corresponding measurement verifications. We conclude our results in Sec.

V.

6.2 Formulations and calculation details

6.2.1 Impedance Perturbation Model for Single-ended Transmission Lines

The impedance perturbation theory starts with a closed form model for a lossy

single-mode transmission line. The ABCD matrix is given as follows:

ABCD =

 cosh(γl) Zc sinh(γl)
sinh(γl)
Zc

cosh(γl)

 , (6.1)
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where γ is the complex propagation constant, l is the distance between the reference planes

and Zc is the characteristic impedance. These parameters are determined by a causal RLGC

model for 2-port uniform transmission lines [36,124]. According to the conversion between

ABCD parameters and S-parameters [125], the scattering matrix of the transmission line

can be given as follows:

S =

 S11 S12

S21 S22

 , (6.2)

where 
S12 = S21 = 2

2 cosh(γl)+(Zc
Z0

+Z0
Zc

) sinh(γl)

S11 = S22 =
(Zc
Z0
−Z0
Zc

) sinh(γl)

2 cosh(γl)+(Zc
Z0

+Z0
Zc

) sinh(γl)

, (6.3)

and Z0 is the reference impedance (usually 50 Ω). Assuming the transmission line is close

to the perfect matching condition (Z0 ≈ Zc), we have

Z0
Zc

= 1− ξ (6.4)

where ξ is a dimensionless quantity close to zero that can be taken as a perturbation term.

In order to analytically investigate the effects of any small impedance mismatch, here we

calculate the first-order influence of ξ in the S-parameter matrix elements. Using the Taylor

series of 1
1−x = 1 + x+ x2 + x3 + · · · for |x| < 1, the return-loss and the insertion-loss can

be simplified as follows with ξ being kept to the first order:

S11 = (1 + ξ + ξ2 + · · · − 1 + ξ) sinh(γl)
2 cosh(γl) + (2 + ξ2 + · · · ) sinh(γl)

≈ ξ sinh(γl)
eγl

(6.5)

S12 = 2
2 cosh(γl) + (2 + ξ2 + · · · ) sinh(γl)

≈ e−γl, (6.6)
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such that

S =

 ξ sinh(γl)
eγl

e−γl

e−γl ξ sinh(γl)
eγl

 . (6.7)

Similarly, the T-parameters can be given from the ABCD matrix [125, 126]. According to

(6.1), the T-parameter matrix can be simplified by keeping ξ to the first order:

T =

 T11 T12

T21 T22

 ≈
 e−γl ξ sinh(γl)

−ξ sinh(γl) eγl

 . (6.8)

Note that the simplified parameters follow the following S-T conversion relation:


T11 = 1

S21
; T12 = S11

S21
;

T21 = −S22
S21

; T22 = S12S21−S11S22
S21

;
(6.9)

Observing (6.7) and (6.8), the impedance mismatch mainly affects the return-loss terms in

the S-parameter matrix, while insertion-loss is not affected by the first-order perturbation.

In the perfect matching situation, ξ → 0, and the return-loss terms in the S-parameters

reduce to zero. In the T-parameter matrix, the perturbation factor introduces small off-

diagonal elements. At the perfect matching limit, the T-parameter matrix becomes diago-

nal.

6.2.2 Impedance Renormalization in The T-parameter Matrix

S-parameters and T-parameters are defined with a given reference impedance, Z0.

Usually the reference impedance is taken as 50 Ω, but discrepancies in Z0 can occur for many

reasons such as a TRL de-embedding [40, 41] or multi-port system measurements [127]. In

the case of cascading sub-networks, the reference impedance of each sub-network requires to

be normalized to the same value. Methods to renormalize S-parameters have been proposed

and widely applied [127, 128]. Here, we use the first-order impedance perturbation theory

to analyze the effect of the impedance renormalization in the T-parameters.
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At the impedance perturbation limit, a reference impedance renormalization cor-

responds to a change in the mismatch factor, ξ. For the T-parameters, a non-zero ξ gives

small off-diagonal elements in the matrix. Now we try to diagonalize the T-parameter

matrix as follows:

T′ =

 λ− 0

0 λ+

 = D−1TD (6.10)

where λ± are the eigenvalues of T given by (6.8). According to (6.8), the eigenvalues can

be obtained analytically:

λ± = cosh (γl)± sinh (γl)
√

1 + ξ2 ≈ e±γl. (6.11)

Note that the estimation given in (6.11) is equal to the result given by (6.8) in the case of

perfect matching. The linear transformation matrix, D, is given as

D = C

 1 ξ
2

ξ
2 1

 (6.12)

where C is an artificial coefficient. Thus, given the complex propagation coefficient (γ)

of a uniform transmission line, the T-parameter matrix can be renormalized to different

’close-to-match’ reference impedance using the inverse linear transformation

T = DT′D−1. (6.13)

Since the characteristic impedance of a transmission line is usually frequency dependent,

the value of ξ and the transformation matrix, D, should also be frequency dependent.

However, for many applications in high-speed interconnects, most of the signal loss occurs

at high frequencies (f > 10GHz), where the frequency-dependent characteristic impedance

converges to a static value. Furthermore, the expressions of the perturbation model do not
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Figure 6.1: Port numbering for a typical differential pair used in high-speed systems.

change with the frequency dependency of the perturbation factor, ξ. Thus, in this chapter

we neglect the frequency dependency of ξ for simplicity.

6.3 Application #1: The perturbation model for differential

striplines.

6.3.1 Nodal and modal S(T)-parameters.

Previous discussions in the impedance perturbation theory are based on the single-

mode transmission lines. In this section we demonstrate the application of the perturbation

theory in the case of differential striplines. According to the generic theory [129], in multi-

conductor transmission lines, each fundamental mode propagates independently without

coupling to others. These fundamental modes form linearly independent subspaces, such

that each mode can be treated as if they were decoupled single-ended lines. The port

numbering of the differential stripline is illustrated in Fig. 6.1 with port 1 and port 2 as

the input. For such a network, there are two representations to describe the scattering

matrix: single-ended (nodal) and mixed-mode (modal). Single-ended representation treats

the coupled pair as a regular 4-port network, which directly follows the definition of the
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scattering matrix. The S-parameter of a 4-port differential pair can be written as

S =



 S11 S12

S21 S22


 S13 S14

S23 S24


 S31 S32

S41 S42


 S33 S34

S43 S44




=

 S11 S12

S21 S22

 , (6.14)

where Sj,k (j, k = 1, 2) are 2×2 sub-matrices. This S-parameter matrix inter-transfers with

its corresponding generalized transfer matrix, T, as

T =

 S12 − S11S−1
21 S22, S11S−1

21

−S−1
21 S22, S−1

21

 , (6.15)

S =

 T12T−1
22 , T11 −T12T−1

22 T21

T−1
22 −T−1

22 T21

 (6.16)

which is a generalization of the well-known 2-port-network S-T relation given in (6.9)

[41,125,130,131].

A mixed-mode S-parameter matrix, however, treats the 4-port network as two

independent propagation modes that are de-coupled from each other. In general, the two

independent modes are the c mode and the π mode [132]. If the two traces are identical,

these two modes reduce to an even mode and an odd mode, respectively. The nodal S-

parameters can be given as follows [37,131,133]:

Sn = MTSmM−1
T (6.17)
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where the transformation matrix is written as:

MT = 1√
2



−1 1 0 0

1 1 0 0

0 0 −1 1

0 0 1 1


. (6.18)

Applying the inverse transformation given by (6.17), the modal S-parameter matrix of a

differential transmission line is given as

Sm =



Se11 0 Se13 0

0 So22 0 So24

Se31 0 Se33 0

0 So42 0 So44


(6.19)

where the de-coupled fundamental modes can be written in 2× 2 matrices separately as

Sem =

 Se11 Se13

Se31 Se33

 (6.20)

and

Som =

 So22 So24

So42 So44

 . (6.21)

Applying the impedance perturbation theory in each mode, the total modal S-parameter

matrix is given as:

Sm ≈



ξe sinh(γel)
eγel

0 e−γel 0

0 ξo sinh(γol)
eγel

0 e−γol

e−γel 0 ξe sinh(γel)
eγol

0

0 e−γol 0 ξo sinh(γol)
eγol


(6.22)
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where
Z0
Zc,i

= 1− ξi, (6.23)

where i = e, o. The corresponding T-parameter matrix can be calculated using (6.15) as

Tm =



e−γel 0 ξe sinh(γel) 0

0 e−γol 0 ξo sinh(γol)

−ξe sinh(γel) 0 eγel 0

0 −ξo sinh(γol) 0 eγol


. (6.24)

Diagonalizing this matrix, we have:

T′m = D−1
m TDm, (6.25)

where

Dm =



Ce 0 Ce
ξe
2 0

0 Co 0 Co
ξo
2

Ce
ξe
2 0 Ce 0

0 Co
ξo
2 0 Co


, (6.26)

and Ce and Co are artificial coefficients. Similar to the single-ended case, the diagonalized

T-parameter matrix contains the information of the propagation constant:

T′m ≈ diag{e−γel, e−γol, eγel, eγol}, (6.27)

which corresponds to the perfect impedance matching situation in each mode. Due to the

intra-pair coupling, ξe 6= ξo, and it is required to renormalize the T-parameter matrix to a

designated reference impedance. This can be achieved by an inverse linear transformation

that is similar to the single-mode case as follows:

Tm = DmT′mD−1
m . (6.28)
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Figure 6.2:
The geometry parameters for a coupled pair of striplines. The parameters demonstrated in
the figure are used to determine the characteristic impedance.

6.3.2 Impedance Perturbation Analysis of The Propagation Constants

In this subsection, we apply the impedance perturbation theory to analyze the

propagation constant of each mode of a coupled pair of striplines. To quantitatively obtain

the perturbation factor, ξi, we first calculate the characteristic impedance, Zc,i, based on

the choice of material and the design geometry. This can be obtained by conformal mapping

[134]. The general impedance expressions for symmetrically coupled striplines are listed as

follows. 

Zc,i = 30π(b−t)
√
εr

(
W+

bCf
2π Ai

)
Ae = 1 + ln[1+tanh(θ)]

ln 2

Ao = 1 +
ln
[
1+ 1

tanh(θ)

]
ln 2

θ = πS
2b

Cf
(
t
b

)
= 2 ln

(
2b−t
b−t

)
− t

b ln
[
t(2b−t)
(b−t)2

]
(6.29)

The corresponding design parameters are demonstrated in Fig. 6.2.

The propagation constant is calculated using a causal transmission line model

[36,124], where the RLGC values are frequency dependent. For the purpose of completeness,

we list the important expressions in this model as follows. In mode i (i = e, o), we have

γi(ω) =
√(

R̂i + jωL̂i
) (
Ĝi + jωĈi

)
. The modified RLGC parameters are given as:


R̂i = Rdc +Rsurf

√
ω; Ĝi = ωKCi

L̂i = Li + Rsurf√
ω

; Ĉi = PCi

, (6.30)
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where Ci and Li are obtained from the static (high-frequency) characteristic impedance,

Zc,i [from (6.29)].

Ci =
√
µ0ε0εr
Zc,i

(6.31)

Li = Zc,i
√
µ0ε0εr. (6.32)

µ0 and ε0 are the permeability and permittivity of vacuum, and εr is relative permittivity

of the dielectric material. The metallic loss is introduced by R̂i, where Rdc = ρ
Wt is the DC

resistance per unit length determined by the resistance of the material (ρ) and the geometry

parameters (W , t). The frequency-dependent surface resistance Rsurf is introduced by the

skin effect.

Rsurf = Rdc ·Gp√
2πfsurf

(6.33)

where fsurf = 4ρ
t2πµ0

is the skin-effect onset frequency at small thickness limit (W � t) [135].

Gp in (6.33) is a factor that introduces the conductor loss contributed by the current in the

ground plane. The dielectric loss at high frequency is described by the frequency-dependent

Ĝi and Ĉi in (6.30), where

K = − ε′′r
εr

; P = ε′r
εr
, (6.34)

in which ε′r and ε′′r are the frequency-dependent parts of the dielectric constant:


ε′r (ω) = εr + A

2 ln
[
τ2

2 (1+ω2τ2
1 )

τ2
1 (1+ω2τ2

2 )

]
ε′′r (ω) = A [arctan (ωτ1)− arctan (ωτ2)] .

(6.35)

Here, A is the strength of the dielectric loss, and τ1,2 gives the starting and ending points of

the relaxation time distribution [136]. Table 6.1 lists all the parameters applied in our nu-

merical simulation. The values of these parameters do not correspond to a particular design,

but are randomly chosen based on empirical values for the purpose of our demonstration.

The frequency dependency of the propagation constant (dispersion) is a crucial

relation that determines the EM wave behavior of each fundamental mode of a coupled
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Table 6.1: Parameters for the toy models used in this chapter.
Parameters Value

εr 3.8
ε0 8.854× 10−12 F/m
µ0 4π × 10−7 H/m
A 0.019
τ1 1.6 ps
τ2 1.6ms
Gp 1.5
ρ 1.764× 10−8 Ωm

transmission line. Here, we analytically evaluate the effect of the impedance mismatch

perturbation, ξi, on the propagation constant of each fundamental mode: γi(ω) = αi(ω) +

jβi(ω). In general, the attenuation (α) and phase (β) constant of each mode is given as:

 α2
i − β2

i = R̂iĜi − ω2L̂iĈi

2αiβi = ω
(
L̂iR̂i + ĈiĜi

) . (6.36)

Considering R̂i and Ĝi as small quantities, one can get

β2
i ≈ ω2L̂iĈi (6.37)

Using the results given in (6.30), we have

βi ≈ ±ω
√
ε′r
c2

0
+ PCi

(
Rsurf√
ω

)
(6.38)

where c0 = 1/√µ0ε0 is the vacuum speed of light. Given (6.31) and (6.23), the even and odd

phase propagation constant splits due to the coupling:

βi = ±ω
√
ε′r
c2

0
+
P
√
εr

c0Z0

(
Rsurf√
ω

)
(1− ξi), (6.39)

where ξe 6= ξo due to the modal impedance splitting. Since the frequency (usually at MHz or

GHz) and the speed of light are in the denominator of the second term inside the square root,
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Figure 6.3:
Dispersion of EM wave for a coupled stripline. The design parameters are: W = 127µm,
S = 177.8µm, b = 395.224µm, t = 30.48µm.

the splitting given by the intra-pair coupling vanishes: βe ≈ βo ≈ ± ω
c0

√
ε′r. Further taking

the approximation to neglect the dielectric loss (A→ 0), the relation becomes: βi = ± ω
c0

√
εr,

which is the regular light propagation constant in lossless transparent materials. Since the

transmission line materials applied in high speed IC/systems are good conductors, Rsurf
c0

is

usually close to zero, such that neglecting the second term inside the square root is often a

good approximation. Fig. 6.3 (a) demonstrates the dispersion of the imaginary part of the

propagation constant, in which the splitting of each fundamental mode is not significant.

The approximation curve uses the relation βe = βo = ± ω
c0

√
ε′r, while the exact βi is obtained

from imaginary part of γi from the causal RLGC model.

To evaluate the attenuation of a coupled transmission line, solving (6.36), we have

α2 = RG− ω2LC

2
±1

2

√
(RG− ω2LC)2 + ω2 (LG+RC)2 (6.40)

α ≈ ±1
2 (LG+RC)

√
1
LC

. (6.41)
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Substituting (6.30) in (6.41), the attenuation of each mode is simplified as:

αi ≈ ±
[
|ε′′r |ω

2c0
√
ε′

+
√
ε′r
εr

√
ωRsurf +Rdc

2Z0
(1− ξi)

]
. (6.42)

As denoted in (6.42), the EM wave attenuation is contributed by two parts. The first

term is proportional to ω and the imaginary part of the complex dielectric constant, ε′′.

This part comes from the EM absorption of the dielectric material, which dominates the

attenuation at high frequencies. The second term, on the other hand, is proportional

to (
√
ωRsurf +Rdc) , which contains the information of the conductor loss and the skin

effect. Thus, the attenuation of the two modes splits due to the modal impedance splitting

(ξe 6= ξo), and the splitting is proportional to
√
ω. The comparison between the exact

attenuation and the result given by the perturbation model is presented in Fig. 6.3 (b).

6.3.3 Numerical Verification of the Differential Stripline Model Based on

the Perturbation Theory

To evaluate the validity of the impedance perturbation theory in the S-parameters,

we compare the exact uniform transmission line model given by (6.3) to the perturbation

model defined in (6.22). Without loss of generality, different levels of the impedance mis-

match are tested. As demonstrated in Fig. 6.4, when the impedance is ~35 Ω, the error of

the perturbation theory is within several dBs in the return-loss magnitude, while the errors

in the insertion-loss magnitude is less than 1 dB.

The oscillation features in the S-parameter magnitude can be explicitly explained

by the perturbation model. Keeping the perturbation correction in (6.23) to the second

order, we have

Si31 = Si42 = 2
2eγil + ξ2

i sinh(γil)
≈ e−γil − ξ2

i sinh(γil)
2e2γil

. (6.43)
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Figure 6.4:
Accuracy analysis of the perturbation theory. In this calculation, a coupled stripline is
simulated. The design parameters are: l = 50.8mm, S = 165.1µm, b = 395.224µm,
εr = 3.8 and t = 30.48µm. From (a) to (d), W is modified accordingly as W = 635µm,
W = 381µm, W = 254µm and W = 127µm. The corresponding impedance Zco and the
perturbation term ξo are included in the figures.
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Splitting the real and the imaginary parts of the propagation constant as γi (f) = αi (f) +

jβi (f), the insertion-loss for each mode can be simplified as

20 log10
∣∣Si31

∣∣ ≈ 10
ln(10)

{
ξ2
i

2e2α(f)il
cos [2lβi (f)]− ξ2

i
2

}
.

−20αi(f)l
ln(10)

(6.44)

Due to the linear-like relation between αi and f at high frequencies, the last term in (6.44)

gives a linear-like feature of the insertion-loss, which is reflected in the attenuation of the

EM wave propagation. The first term in (6.44), on the other hand, introduces the oscillation

feature whose amplitude exponentially decays with the attenuation, αi. Thus, the magni-

tude of this oscillation decreases with frequency (Fig. 6.4). The maxima of this oscillation

occur at βi = nπ/li (n = 0, 1, 2, · · · ). Given the phase velocity of the electromagnetic wave

in the material as vp = c0√
εr

= 2πf
βi

, where c0 is the speed of light in vacuum, the maxima

of the insertion-loss occur at fn = nc0
2li
√
εr

(n = 0, 1, 2, · · · ). Observing (6.44), the oscillating

feature of the insertion-loss magnitude is determined by ξi to the second order. Thus, this

oscillation is only important when severe mismatch occurs, which is usually avoided. As

demonstrated in Fig. 6.4 the accuracy of this approximation is within 1 dB for a mismatch

factor up to ξi = 0.3.

The return-loss given by the perturbation model, on the other hand, captures the

oscillation features of the exact model by the first-order perturbation. Here, we take dB of

the return-loss analytically as follows.

20 log10
∣∣Si11

∣∣ ≈ 10 ln
ξ2
i
4

ln(10)

+ 10
ln(10) ln

{
1− e−2αi(f)l2 cos [2lβi (f)] + e−4αi(f)l

} (6.45)

At low frequencies, αi → 0, and (6.45) is simplified as

20 log10

∣∣∣Si11

∣∣∣ ≈ 10 ln ξ2
i
4

ln (10) + 10
ln (10) ln {2− 2 cos [2lβi (f)]} . (6.46)
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The second term describes the oscillation of the return-loss at low frequency. When βi =

nπ/li (n = 0, 1, 2, · · · ), the return-loss approaches to −∞. The resonance frequency occurs

at fn = nc0
2li
√
εr
. At high frequencies (> 40GHz) where the dielectric loss gives significant

attenuation (αi → ∞), the second term in (6.45) reduces, and the return-loss oscillation

magnitude reduces as well.

20 log10 |τi (f)| ≈
20 ln |ξi|2
ln (10) , (6.47)

which is dominated by the impedance mismatch factor.

6.4 Application #2: The Impedance Perturbation in TRL

De-embedding

In order to characterize transmission line networks, S-parameter measurements

using vector network analyzers (VNAs) are usually applied. Conventionally, for a 2-port

VNA measurement result, one needs to follow the standard TRL (through, reflect, line)

calibration procedure to de-embed the device under test (DUT) from error boxes (usually

access/transition structures including contact pads and vias) [39,121,137,138]. The 2-port

TRL method is later generalized for the de-embedding of multimode networks [139]. The

detailed analytical derivations of this method is systematically reported recently [40,41,139].

Usually, for a 2-port network calibration, the TRL procedure requires multiple line standards

of quarter wavelengths to cover a wide band of frequencies [140]. A trade-off to reduce the

required number of the line standards is to use the characteristic impedance of the line

standard as the reference impedance [137]. In this case, the de-embedded results should

be renormalized to a designated unified reference impedance after the TRL procedure [40].

This renormalization takes the characteristic impedance of the line standard as an input,

which is usually calculated from numerical tools or closed form models. Thus, the accuracy

of the impedance interpretation becomes important. Although the values of the reference

impedances are usually carefully calculated, discrepancies between the real impedance and
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Figure 6.5:
A sketch of a typical differential pair calibration standards. The error boxes A and B are
supposed to have left-right mirror-image symmetry, while the DUT is supposed to have
mirror-image symmetry about the horizontal axis.

the interpreted values do exist. In order to evaluate the de-embedding sensitivity due to

these discrepancies, we perform an impedance perturbation analysis in the characteristic

impedances of the line standard.

6.4.1 Theoretical Perturbation Analysis

The layout of a multimode TRL de-embedding procedure is demonstrated in Fig.

6.5. Two error boxes A and B with mirror-image symmetry are access structures. In the

line standard, a uniform coupled transmission line of length l is connected between the error

boxes. Assuming a perfect mirror-image symmetry of the DUT along the horizontal axis, the

reflection calibration standard is not required. The in-depth discussions of the mathematical

proof of the multimode TRL calibration method can be found in reference [41].

The error boxes are cascaded with each measurement standard using the corre-

sponding T-parameter matrices as follows:
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
Mx = ANxB̄

Mt = AB

Ml = ANlB

(6.48)

where Mx, Mt and Ml are the known T-parameter matrices converted from the S-

parameters measured by the VNA measurements. Nl corresponds to the uniformly coupled

transmission line in the line standard, and NDUT
x is the unknown transfer matrix of the

DUT to be de-embedded.

In (6.48), B is defined as the reverse transfer matrix of B,

B = B̃−1 = PPB−1PP (6.49)

where

PP =

 0 I

I 0

 . (6.50)

The permutation transformation PP changes the direction of the corresponding T-parameter

matrix. Thus, when the mirror-image symmetry of the error boxes is satisfied, we have

A = B. Properties of operation Õ and O for an artificial 4× 4 matrix are listed as follows

(the corresponding proof can be found in reference [41]).



Ō = ˜̃O = O

Õ1O2 = Õ1Õ2

O1O2 = O2O1

Õ = O−1 = O−1

(6.51)

Assuming that each mode of the line standard is matched to their characteristic impedances,

the T-parameter matrix becomes a diagonal matrix: Nl = Ndiag
l as given in (6.27). In this

condition, the multi-mode TRL de-embedding solves the T-parameters of the DUT using
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the VNA measurement results as inputs:

Nx = fTRL (Mx,Mt,Ml)|Nl=Ndiag
l

. (6.52)

Now we add a small perturbation factor in the T-parameters of the line standard.

Nl =



e−γ
l
el 0 ξle sinh(γlel) 0

0 e−γ
l
ol 0 ξlo sinh(γlol)

−ξle sinh(γlel) 0 eγ
l
el 0

0 −ξlo sinh(γlol) 0 eγ
l
ol


. (6.53)

Since Nl is no longer diagonal, a diagonalization is required to meet the requirement of the

TRL procedure:

Nl = D−1NlD. (6.54)

where the transformation matrix, D, is given by (6.26). Note that D is invariant for the

permutation operation defined in (6.49) and (6.50):

D = D̃. (6.55)

Thus, the impedance perturbation of the line standard can be included using the linear

transformation given by D. In the thru standard, we have

Mt = Mt = AB = ADD−1B = ADD̃−1B (6.56)

= ADDB = ADBD = AB, (6.57)

where  A = AD

B = BD
. (6.58)
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A and B are defined as ’effective error boxes’ that include the impedance perturbations of

the line standard. Note that when identical error boxes (A = B) are assumed, effective

error boxes are also identical (A = B). In (6.56), properties listed in (6.51) and (6.55) are

used. Similarly,

Ml = Ml = ANlB = ADD−1NlDD−1B

= (AD)(D−1NlD)(BD) = ANlB (6.59)

and

Mx = Mx = ANxB

= (AD)(D−1NxD)(BD) = ANxB. (6.60)

Observing (6.56), (6.59) and (6.60), since Nl is diagonal, the TRL de-embedding can be

carried out:

Nx = fTRL (Mx,Mt,Ml) . (6.61)

Thus, the relation between the exact de-embedding result and the perturbed result is

Nx = DNxD−1. (6.62)

Comparing (6.62) to (6.28), the transformation is effectively a renormalization of the ref-

erence impedance in the de-embedded T-parameters based on the mismatch of the line

standard. Similar discussions can be found in reference [40]. The perturbation analysis

based on (6.62) can be applied to evaluate the accuracy of the de-embedded result given by

the reference-impedance mis-interpretation, if any, in the final renormalization procedure.

For example, if the DUT is a differential transmission line within the perturbation limit,
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the T-parameter matrix can be written as

Nx =



e−γ
x
e lx 0 ξxe sinh(γxe lx) 0

0 e−γ
x
o lx 0 ξxo sinh(γxo lx)

−ξxe sinh(γxe lx) 0 eγ
x
e lx 0

0 −ξxo sinh(γxo lx) 0 eγ
x
o lx


, (6.63)

where the propagation constant γxi and the mismatching factor ξix are calculated from the

TRL procedure fTRL. The renormalization matrix D can be given in the form of (6.26)

where ξle and ξlo are input values given by some numerical interpretation of the reference

line’s impedances. Thus, small errors in this numerical interpretation can be included as

ξli ± ∆. Given by the transformation in (6.62) and the S-T relation in (6.16), the final

S-parameters of the DUT can be given as

Si13 = Si31 ≈ e−γ
x
i lx +

(
ξli ±∆

)
ξxi sinh (γxi lx) (6.64)

and

Si11 = Si33 ≈
(ξli + ξxi ±∆) sinh(γTRLe lx)

exp (γTRLe lx) . (6.65)

Since the DUT is assumed to be at the near-matching limit, the de-embedding sensitivity

in the insertion-loss terms is a second-order small quantity, while the return-loss elements

are sensitive to the first order.

6.4.2 Experimental Verification

To verify the sensitivity interpretation given in (6.64) and (6.65), we design a

set of uniformly coupled striplines on a test board and carry out the TRL de-embedding

method. We use two different line standards in the TRL procedure and compare the two sets

of de-embedding results to evaluate the accuracy sensitivity due to the change in the line

standards. The device setup follows the design shown in Fig. 6.6. In this layout, the distance
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Figure 6.6:
(Color online) Schematic experimental setup and the details of the access structure. A
set of uniform differential transmission lines are applied as the through standard, the line
standard and the DUT. Two different line standards (#1 and #2) are applied to check the
de-embedding sensitivity.

between the ground planes is b = 398.78µm, and the copper foil thickness is t = 25.4µm.

The error boxes (access structures) of these measurements are identical: a pair of GSSG

200µm VNA probe pads connected to the stripline-layer by two symmetrical vias. In the

line standard #1, S = 127µm and W = 215.9µm, while parameters for the line standard

#2 is S = W = 127µm. These two line standards are of the same length (l = 76.2mm). The

dielectric material between the ground planes is Panasonic Megtron 6 whose static dielectric

constant is around 3.64 and the corresponding loss tangent is approximately 0.011 in the

interested frequency range. Utilizing these parameters in (6.29), by design, the characteristic

impedances for line standard #1 is Zce = 49.71 Ω, Zco = 38.23 Ω, while for the #2 line the

impedance values are Zce = 65.39 Ω, Zco = 46.87 Ω. The DUT is also designed as a uniformly

coupled stripline, whose geometry parameters are S = 225.552µm, W = 155.575µm and

l = 177.8mm.

The two sets of de-embedded S-parameters are compared in Fig. 6.7. The cor-

responding S-parameters of the DUT predicted by the RLGC model is also plotted in the

same figure for comparison. Due to the difference in the reference lines, the insertion-loss
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Figure 6.7:
Measurement results after the TRL procedure. The S-parameters of the DUT using refer-
ence line #1 and #2 are compared. (a) and (b) presents the insertion-loss terms for the
even mode and the odd mode, while the return-loss terms are given in (c) and (d). The
DUT S-parameters given by the frequency-dependent RLGC model are plotted in all sub
figures for comparison.
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terms (Si13) change by ∼ 0.2 dB, while the return-loss terms (Si11) change by 10 ∼ 20 dB.

This result follows the same trend given by (6.64) and (6.65). According to these two

equations, assuming the RLGC prediction is accurate (∆ = 0), the de-embedded result

should be equal to the predicted value when the line standard is perfectly matched (ξli = 0,

i = e, o). In the experimental setup, we designed reference line #1 to match its even mode,

while line #2 matches its odd mode. Thus, as demonstrated in Fig. 6.7 (a) and (c), the #1

de-embedding result matches the RLGC model better in the even mode. While in Fig. 6.7

(b) and (d), the results given by line #2 match better to the odd mode. The difference in

the TRL results comes from the different impedances in the two line standards. As pointed

out in reference [40], it is necessary to renormalize the results based on accurately calculated

impedances of the line standard.

The two sets of S-parameters after renormalization are demonstrated in Fig. 6.8.

Here we utilize the relation given by (6.62) to confirm the validity of the impedance pertur-

bation theory. If the renormalization is accurate, the de-embedded results given by line #1

and line #2 should converge to the RLGC model. The renormalized results are presented

in Fig. 6.8. Comparing it to Fig. 6.7, the discrepancies of the two de-embedding results

become smaller. Both of the two results approach closer to the exact RLGC model. The

insertion-loss errors are controlled within ∼ 0.1 dB, while the return-loss terms in the odd

mode present errors of ∼ 5 dB. These errors might come from the differences between the

actual impedances in the reference lines and the values given by the closed form model. An-

other origin for these errors might be the asymmetry of the error boxes due to the product

tolerances. To quantify the de-embedding errors, we apply the recently introduced point-

to-point “global difference measure (GDM)” [141, 142] to compare the measured results to

the RLGC model. The GDM of the return-loss is ∼ 0.3 while the insertion-loss is ∼ 0.02,

indicating the insertion-loss is an order of magnitude more accurate than the return-loss.

This agrees with the accuracy analysis given by (6.64) and (6.65).
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Figure 6.8:
Normalized de-embedded results. The S-parameter matrix elements given by two different
reference lines are compared after an impedance renormalization. (a) and (b) presents the
insertion-loss terms for the even mode and the odd mode. The return-loss terms are given
in (c) and (d).
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Chapter 7

Notes and derivations

7.1 Normalized effective field

The LLG equation is written as

Ṁ = −γ (M×Heff) + α

Ms
M× Ṁ (7.1)

where Ms is the saturation magnetization, M = Msm (r) is the spin texture field in units

of A/m, and γ is the gyromagnetic ratio. If the effective field is in the unit of Tesla, the

gyromagnetic ration is 28GHz/T. In numerical simulations, it is more convenient to use the

H field, where Heff = Beff/µ0. Thus, the gyromagnetic ratio should be 2.21×105 A·m−1s−1.

The definition of Heff is

Heff = − 1
µ0Ms

· dε
dm (7.2)

where ε is the free energy density of the spin texture.

ε = A (∇m)2 + fan − µ0Msm ·Ha (7.3)

where A is the exchange stiffness. The value is usually material determined. One can derive

this term from Heisenberg model. The relation between A and the Heisenberg exchange,
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J is determined by the atomic structure and the symmetry. For cubical lattice, A = J0
a0
,

where J0 is the exchange energy between nearest unit cells, and a0 is the lattice constant.

fan is the anisotropy energy density. Its form is determined by the type of

anisotropy taken into account. Usually there are two origins of this term: the lattice

structure and the shape aspect ratio. For simple cubic materials (B20 compounds), the

anisotropy from the lattice is usually very weak, which is thus neglected in Bloch-type

skyrmion simulations. For polycrystalline simulations, the anisotropy is mainly induced

from the shape. In devices with interfaces, the detail of the interface could give rise to

strain or proximity effects, which might induce extra anisotropy. This type of anisotropy is

difficult to predict theoretically. The shape anisotropy is induced from the demagnetization

field from the dipolar interactions. For a uniformly magnetized body its form is

fandmag = 1
2µ0M2 (α1Na + α2Nb + α3Nc) (7.4)

where

N =


Na 0 0

0 Nb 0

0 0 Nc

 (7.5)

is the demagnetization tensor determined by the shape of the body. αi is the axial cosine.

For an infinitely large thin film, Na = Nb = 0, while Nc = 1. Thus,

fan = 1
2µ0M

2
sm

2 cos2 θz = 1
2µ0M

2
sm2

z = 1
2Kum

2
z. (7.6)

From Eq. 7.2, Heff can be written as

Heff = 2A
µ0Ms

∇2m− Ku

µ0Ms
mz + Ha. (7.7)

In order to numerically solve the LLG equation, discretization of Heff is necessary.

In a 2D square grid, the magnetization on each site is mi,j , and the distance between
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neighboring sites is a. The effective field is thus written as

Hi,j
eff = 2A

µ0Ms

[mi+1,j − 2mi,j + mi−1,j
a2 + mi,j+1 − 2mi,j + mi,j−1

a2

]
−Kum

i,j
z

µ0Ms
+H i,j

a (7.8)

From Eq. 7.8, the LLG equation is written as

ṁ = −γ (m×Heff) + αm× ṁ (7.9)

and then

a2µ0Ms

2Aγ ṁ = m×
(

P− Kua
2

2A mz + Haa
2µ0Ms

2A

)
+ α

a2µ0Ms

2Aγ m× ṁ. (7.10)

where P = mi+1,j + mi−1,j + mi,j+1 + mi,j−1. Note that mi,j is removed because its

contribution is zero due to the cross product with itself. Define Si,j (t′) = mi,j (t), and

t = a2µ0Ms

2Aγ t′, the LLG equation can be simplified as

Ṡi,j = −Si,j × heff + αSi,j × Ṡi,j (7.11)

where Ṡi,j = dSi,j
dt′ and

heff = Si+1,j + Si−1,j + Si,j+1 + Si,j−1 − ξesSzi,j + ξaha (7.12)

which is implemented in the method SpinSystem.CalculateEffectiveField in the case of J =

1. The definition of a dimensionless physical second is given by

t = a2µ0Ms

2Aγ t′

to relate to the actual time in the unit of seconds. Real values of parameters can be included

by

ξes = Kua
2

2A
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and

ξa = Haa
2µ0Ms

2A

7.2 Slonczewski torque

Slonczewski torque is define as

τ̃ = γ~jP
2eMsµ0t

m× (σ ×m) (7.13)

where j is the vertically injected current density; P is the injected spin polarization; σ is

the injected dimensionless spin. Eq. 7.13 should be added to the right side of Eq. 7.9.

After renormalization, the dimensionless torque added to the right side of Eq. 7.11 should

be

τ = ~jPa2

4e2A
m× (σ ×m) = ξSTTm× (σ ×m) . (7.14)

Take FeGe thin film of 1nm for example, the Oersted field given by a vertical, cylindrical

electrode is given by

∮
C

B · dl = µ0I (7.15)

B · 2πR = µ0πR
2j. (7.16)

Thus, at the edge of the electrode, the ratio between the Oersted field and the torque

induced effective field is
ξSTT
ξa

= ~P
etRµ0Ms

. (7.17)

Using the parameters for FeGe thin film of 1nm (Ms = 105 Am−1, R = 5nm), this ratio

is 176.876, indicating the STT is two orders of magnitudes larger than the Oersted field

torque.
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7.3 Spin current

The total current operator at a terminal m is given as

{Im} = i

2π~
[
GnΣ†m −ΣmGn + Gr

mmΣin
m −Σin

mGa
mm

]
(7.18)

where

Gn = Gn
0 + δGn

Gn
0 =

∑
m

Amf0

δGn =
(
−∂f0
∂ε

)∑
m

Amδµm

and

Σin
m = Σin,0

m + δΣin
m

Σin
m =

∑
m

Γmf0

δΣin
m =

(
−∂f0
∂ε

)∑
m

Γmδµm

δµm = µm − εF , which comes from the linear response limit:

fm =
(
−∂f0
∂ε

)
(µm − εF ) + f0.

The current operator can be written as the sum of the non-equilibrium part and

the equilibrium part:

{Im} = {Ieqm + Ineqm }

where

{Ineqm } = i

2π~
[
δGnΣ†m −ΣmδGn + Gr

mmδΣin
m − δΣin

mGa
mm

]
.
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The non-equilibrium spin current at zero temperature is then given as

J s̃,neq
m = i

4πTr [~σIneqm (εF )]

where

σ̃ = Im×m ⊗ σ̂

is the extended Pauli matrix.

7.4 Spin transfer torque (STT)

Starting from

∂Gn

∂t
= i

2π~

{
δGnH−HδGn +

∑
m

[
δGnΣ†m −ΣmδGn + Gr

mmδΣin
mm −Ga

mmδΣin
mm

]}

∂ 〈σ̂〉
∂t

=
∑
m

Iσm + 〈τ̂〉

where

〈τ̂〉 = i

2π~Tr {σ̂ [δGnH−HδGn]} .

On each site, at linear response limit, all terms of H that do not contain spin are canceled.

Only HL
σS = −JHσ̂ · SL has a non-zero contribution:

〈τ̂L〉 = −iJH2π~ Tr
[
σ̂δGn

L

(
σ̂ · ~SL

)
− σ̂

(
σ̂ · ~SL

)
δGn

L

]

〈τxL〉 = −iJH2π~ Tr [δGn (σxSx + σySy + σzSz)σx − σx (σxSx + σySy + σzSz) δGn]

〈τxL〉 = −iJH2π~ Tr [δGn (−iσzSy + iσySz)− (iσzSy − iσySz) δGn]

〈τxL〉 = JH
2π~Tr [δGn (σySz − σzSy)− (σzSy − σySz) δGn]

〈τxL〉 = JH
π~

Tr [(σySz − σzSy) δGn]
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〈τxL〉 = 2JH
~

Tr (〈σy〉Sz − 〈σz〉Sy)

〈τ̂L〉 = 2JH
~
〈σ̂〉 × SL

where

〈σ̂〉 = 1
2πTr [σ̂δGn] .

Thus, the total spin current is not conserved. The torque felt by the itinerant spin is:

2JH 〈σ̂〉 × SL

whose unit is changed to
[
J
~

]
. J is the nearest neighbor exchange in the magnetic system.

The torque exerted on the magnetization is thus:

−2JH 〈σ̂〉 × SL

For LLG equation:

∂S
∂t

= −S×Heff + αS× ∂S
∂t

+ 2JHS× 〈σ〉

∂S
∂t

= −S×Heff + αS×
{
−S×Heff + αS× ∂S

∂t
+ 2JHS× 〈σ〉

}
+ 2JHS× 〈σ〉

∂S
∂t

= −S×Heff − αS× (S×Heff) + α2S×
(

S× ∂S
∂t

)
+ α2JHS× (S× 〈σ〉) + 2JHS× 〈σ〉

∂S
∂t

= −S×Heff − αS× (S×Heff)− α2∂S
∂t

+ α2JHS× (S× 〈σ〉) + 2JHS× 〈σ〉(
1 + α2

) ∂S
∂t

= −S× (Heff − 2JH 〈σ〉)− αS× [S× (Heff − 2JH 〈σ〉)]

∂S
∂t

= − 1
1 + α2 S×Heff −

α

1 + α2 S× (S×Heff)

where

Heff = Heff − 2JH 〈σ〉
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7.5 Coulomb Scattering

The screened Coulomb potential centered at the center of the universe is

v(r) = e2

4πεr .

Using the slow potential approximation, it becomes

v(r) = v(z,R).

For any periodic system with localized atomic orbitals, the basis set is χR
i (r). It is centered

at cite R, and i labels the atom number inside the unit cell located at R. If we have

orthonormal basis set, then

〈
χR
i |χR′

j

〉
= δijδ(R −R′).

A state in the periodic material is written as

|k, r〉 =
4N∑
i

ci(k)φi(k, r)

The Bloch basis is

φi =
∑
R
eik·R

∣∣∣χR
i

〉
= 1√

A

∫
R
eik·R

∣∣∣χR
i

〉
dR.

The matrix element of a Coulomb scattering source located at layer j is:

H
(j)
k′k = 1

A

4N∑
i

c∗i (k′)
∫

R′

〈
χR′
i

∣∣∣ e−ik′·R′v(z,R)
4N∑
j

cj(k)
∫
R

∣∣∣χR
j

〉
eik·RdR′dR.

Applying the orthonormal condition, one can have:
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H
(j)
k′k = 1

A

4N∑
i

c∗i (k′)ci(k)
∫

R
e−i(k

′−k)·Rv(z,R)dR = 1
A

4N∑
i

c∗i (k′)ci(k)e
2

2ε
e−
√
q2

0+β2|z|√
q2

0 + β2

where z = |Li − Lj |∆ and β = k′ − k. The total scattering rate is

1
τ

=
∑
j

ANj
2π
~
∑
k′
|H(j)

k′k|
2 ×

∣∣∣∣1− v(k′) · v(k)
v2(k)

∣∣∣∣× δ(ε′ − ε),
where ANj is the total number of scattering sorces at layer j.

δ(ε′ − ε) = δ(k′ − k1)
∂ε′

∂k′ |k1

+ δ(k′ − k2)
∂ε′

∂k′ |k2

= 2π[D(ε1)δ(k
′ − k1)
k1

+D(ε2)δ(k
′ − k2)
k2

].

1
τ(k) = 1

τ1
+ 1
τ2

1
τα

= 1
~
e4

4ε2
∫ 2π

0
{

∣∣∣∣∣∣
∑
j

Nj

4N∑
1
c∗i (kα)ci(k)e

−
√
q2

0+β2|z|√
q2

0 + β2

∣∣∣∣∣∣
2

D(εα)×
∣∣∣∣1− v(kα) · v(k)

v2(k)

∣∣∣∣}dθ
α = 1, 2, which labels the inter-band and intra-band scattering mechanisms.

7.6 Mobility

To calculate mobility µ, we start from Boltzmann equation at relaxation time

approximation.

f
(i)
A (k) = −τi(k)eEx

1
~
∂f0∂εi
∂εi∂k

cos θ

The mobility is given by:

µ = 〈vx〉
Ex

=
∑

k,i v
(i)
x (k)f (i)

A (k)

Ex
∑

k,i f
(i)
0 (k)

=
−e
∑
i

∫∞
0 kdkdθτi(k)∂f0

∂εi
(∂εi∂k )2 cos2 θ

2π~2∑
i

∫∞
0 kdkf0[εi(k)]
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Chapter 8

Conclusions

8.1 Interfacial and in-plane charge transport in 3D TI thin

films

Due to the selection rule of the interfacial coupling in 3D TI thin films, the verti-

cal tunneling current presents unique features. The momentum-spin locking of the surface

states and the opposite chirality of opposite surfaces cause the inter-surface tunneling trans-

mission spectrum to be strongly peaked at the band edges for both the intrinsic and the

Rashba-like split case. As a result, the low-bias tunnel conductance is a strong function

of temperature and Fermi level. A unique signature of the surface-state tunneling is that

the temperature dependence of the tunneling conductance changes sign as εF scans through

the band edges of the gapped Dirac cones. Tunneling transmission is a minimum when the

two opposite surfaces are at the same potential, and the Dirac cones of the two surfaces

are perfectly aligned. As the inter-surface potential increases, the tunneling transmission

increases. The potential dependence of the the transmission can give rise to a non-linear

current-voltage response. With a built-in Rashba-like splitting, forward biasing the surface-

surface p-n junction generates an I-V response showing negative differential resistance. The

temperature, Fermi-level, and bias dependencies of the inter-surface tunneling current in
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thin-film topological insulators show unique, identifying signatures of the surface states and

their opposite chiralities.

In the case of in-plane transport, the inter-surface coupling of TI thin films can re-

duce the surface state mobility by an order of magnitude in the low-temperature transport

regime where the carrier transport is dominated by Coulomb impurity scattering. Hy-

bridization of the surface states introduces a band gap and an sz component to the spin.

The presence of a band gap reduces the average group velocity, and the sz component of

the spin reduces the protection against large angle scattering. Increasing the temperature

or shifting the Fermi level away from the band edges can increase the mobility back to the

level of an isolated bulk surface state. An inter surface potential resulting in a Rashba-like

splitting reduces the inter-surface mixing and the associated sz component of the spin and

restores the protection against large angle scattering. The Rashba-like splitting also creates

a ring shaped band edge which increases the average momentum transfer required for a

backscattering event.

8.2 Topological spin Hall effect and STT induced single skyrmion

creation

The intrinsic spin Hall effect (SHE) originates from the topology of the Bloch

bands in momentum space. The duality between real space and momentum space calls for

a spin Hall effect induced from a real space topology in analogy to the topological Hall

effect (THE) of skyrmions. This work theoretically demonstrates the topological spin Hall

effect (TSHE) in which a pure transverse spin current is generated from a skyrmion spin

texture. The type of Hall effects that dominates the transport is determined by the type-

of-carrier and spin compositions of the Fermi surface. This work has also demonstrated

the critical spin texture of a locally triggered topological transition based on a topological

charge analysis. It is identified that the topological protection in each magnetic skyrmion

lies in the symmetric Heisenberg exchange energy. The required energy density to create a
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single skyrmion is estimated to be ∼ J/a2. Based on this analysis, a scheme is proposed to

individually create both of the Neel-type and the Bloch-type skyrmions in helimagnetic thin

films, utilizing the dynamical excitations induced by the STT from a vertically injected spin-

polarized current. The critical switching current density is ∼ 107 A/cm2, which decreases

with the easy-plane type uni-axial anisotropy and heating effects. The in-plane polarization

performs better than the out-of-plane case, providing an ultrafast switching rate (∼ 40 ps)

and reliable switching outcomes.

8.3 Impedance perturbation theory of multi-conductor trans-

mission lines

This work establishes an impedance perturbation theory to simplify the RLGC

model for single-ended and coupled uniform transmission lines. The S-parameters, T-

parameters and the propagation constants are directly constructed using an impedance

perturbation factor. Comparing to the exact model, the simplified model provides better

understanding in how the lumped parameters impact the transmission line performance.

Based on our simulations, when the mismatch is small (Z0± 15 Ω), the perturbation theory

captures the major properties of the exact model, and it explains the oscillating features in

the S-parameter magnitudes. In the case of uniformly coupled striplines, the perturbation

analysis reveals that the modal splitting of the propagation constant is caused by the split-

ting in the mismatch factor, ξe,o. In another application example, the perturbation theory

is utilized to evaluate the measurement accuracy of the TRL de-embedding method. This

result confirms that any small change in the impedance of the reference lines is effectively

an impedance renormalization. When the DUT is a differential stripline, it is further con-

firmed theoretically and experimentally that the de-embedded return-loss is sensitive to any

mis-interpretation of the line-standard impedance to the first order, while the error of the

insertion-loss is smaller than that of the return-loss by an order of magnitude.
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