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Abstract

Inelastic neutron scattering experiments have the po-
tential to provide morphological information of com-
plex, partially crystalline, non-equilibrium morpholo-
gies. Their interpretation, however, relies on well de-
fined models used to identify distinct contributions to
the spectra. Here we propose a method that allows
to directly compare INS to molecular dynamics sim-
ulations of semicrystalline/amorphous materials. We
illustrate the technique by analyzing spectra of a well-
studied conjugated polymer, poly(3-hexylthiophene-
2,5-diyl) (P3HT) and conclude that large-scale mor-
phologies, well beyond those accessible to ab initio
techniques, are required to better represent the data.

1 Introduction

Efficient and accurate computer simulations of com-
plex systems are the key to accelerating scientific dis-
covery in many fields of physics, chemistry, and biol-
ogy [1]. Molecular simulation has been used to pro-
vide structural and dynamical information on com-
plex systems such as biological proteins [2, 3], poly-
mers [4, 5, 6], lipid membranes [7], and metal-organic
frameworks [8, 9, 10]. The number of molecules nec-
essary to extract the observable quantity of interest
determines the type and accuracy of the simulation.
Relatively small systems consisting of a few molecules
of the order of 100-1000s of atoms are simulated using
density functional theory (DFT). While less accurate
than wavefunction-based methods, DFT is still ac-
curate enough to predict experimentally observable

phenomena. Larger systems (104 − 106 atoms) must
be simulated with classical, all-atom molecular dy-
namics (MD), or coarse-grained MD (106 − 108 ef-
fective atoms), which are less accurate than DFT
methods, but the significantly improved computa-
tional scaling allows better sampling of phase space
compensating for the accuracy reduction. The abil-
ity to predict macroscopic quantities using classical
forcefields depends on the quality of its empirical pa-
rameters, which must be validated against a variety
of experiments. In particular, the non-bonded pa-
rameters are parametrized from experimental densi-
ties, phase transition temperatures, solvation free en-
ergies, and heats of vaporization [11]. While fitting
parameters to a small number of macroscopic observ-
ables is useful, it would be more accurate to validate
against larger data sets, such as dynamical spectra,
to parametrize forcefields.

Obtaining information on the dynamics of atoms
within materials/fluids requires various forms of dy-
namical spectroscopy such as NMR, neutron scat-
tering methods, and infrared absorption/scattering
methods [12, 13]. In particular, inelastic neutron
scattering (INS) experiments provide valuable infor-
mation on the structure and dynamics of molecu-
lar systems such as polymers [4, 6], metal-organic
frameworks [10], molecular crystals [14, 15], and crys-
talline oxide materials [16]. Unlike optical meth-
ods such as FTIR and Raman, INS has no selec-
tion rules based on molecular symmetry; all overtones
are observable [17] increasing the density of informa-
tion in the spectra. Molecular simulations must be
used to interpret the spectra to fully understand all

1



the information present. For crystalline materials,
there is a robust method for simulating INS spectra
from DFT simulations [18, 19] by converting simu-
lated phonons into spectral features. In this paper,
we develop a technique for simulating INS spectra
for semicrystalline/amorphous materials, which rep-
resent the majority of organic materials. For these
material systems, the significant concentration of 1H
atoms means that coherent scattering signals are not
observed. For that reason, we only consider the con-
tribution of incoherent scattering signals.

Interpreting INS spectra for amor-
phous/semicrystalline materials requires simulation
techniques that can handle length scales large
enough to describe the structural disorder in the
material. Time scales probed by inelastic neutron
scattering depend on the experimental setup. Crys-
tal analyzer neutron spectrometers (such as VISION
and TOSCA) provide dynamical information over
an energy range of ∼ 10 − 5000 cm−1 [20], which
corresponds to time scales of ∼ 1 − 1000 fs. This
makes classical, all-atom MD the ideal simulation
technique for interpreting INS spectra because
typical time steps in MD are of the order of 1 fs.

Developing a method for computing the inelastic
neutron scattering function from time-ordered trajec-
tories is challenging because the underlying scattering
physics depend on quantum mechanical information
of the dynamics of the system. This is seen in the low-
temperature form of the scattering function, which is,

S(~q, ω) =
∑
n,i,j

σi
(~q · ~uij)2n

n!

exp

−∑
j

(~q · ~uij)2
 δ(ω − nωj) (1)

where ~q is the momentum transfer vector, ω is the fre-
quency of oscillation, σi is the neutron cross section
for atom i, ~uij is the quantum-mechanical ground
state displacement of mode j projected onto atom
i, and n is the quantum number of the nth excita-
tion. The exponential term in the scattering func-
tion is called the Debye-Waller factor. Eq 1 repre-
sents the probability that the neutron interacts with
atom i, transferring h̄~q momentum (~q is the differ-

ence between ~ki and ~kf in Figure 1), which excites
the vibrational state of the jth oscillator to the nth
overtone. Figure 1a demonstrates the physics of an
inelastic neutron scattering event represented by the
scattering function in eq 1: a neutron scatters off of
an anharmonic oscillator (which models the atomic
dynamics), transferring energy to the atom by ex-
citing one (or several) of its vibrational modes, and

exiting the sample toward the detector with a smaller
wavevector. The orientation of the molecule relative
to the direction of the incoming neutron is impor-
tant as most atoms in a molecular solid do not vi-
brate isotropically. Rotation of an anisotropic oscil-
lator changes the probabilities of excitation for all of
the modes. In specific orientations, some modes are
completely invisible to neutron scattering because the
direction of oscillation is perpendicular to the mo-
mentum transfer of the scattering event (an example
is shown in Figure 1b). This phenomenon is math-
ematically represented by the dot products between
~q and ~uij in eq 1. Therefore, we see that comput-
ing a scattering function requires computation of the
ground state displacement of mode j projected onto
atom i (~uij) and it’s corresponding frequency (ωj).

The most common method for computing these pa-
rameters uses DFT simulations combined with nor-
mal mode analysis [18]. The ~q dependence of the
scattering function is assumed to follow that of in-
verted geometry neutron spectrometers, such as VI-
SION [20], for which q2 ∝ ω [17]. The exact equa-
tions for q as a function of ω are determined by the
instrument setup (e.g. position and type of analyzer
crystals). It is also possible to use a classical forcefield
in place of a density functional to calculate the dy-
namical matrix required to obtain the phonon eigen-
vectors and frequencies, which allows the simulation
of phonons for systems larger than DFT can typically
handle (∼ 1000 atoms).

While normal mode analysis is quite useful for com-
paring DFT simulations to INS spectra, it becomes
unfeasible for large systems typically encountered in
MD simulations because of the computational re-
quirements for diagonalizing matrices the size of three
times the number of atoms in the simulation. To de-
crease the computational cost, previous studies com-
paring MD simulations to INS spectra have computed
the Fourier transform of the velocity autocorrela-
tion function (called the power spectrum). Recently,
there has been some research that uses autocorrela-
tion functions of MD simulations to obtain phonon
dispersion curves [21, 22]. These methods share a lot
theoretical similarities to our approach, but are lim-
ited to calculating dispersion curves for crystalline
systems, which are observed from angle-resolved co-
herent neutron spectra (e.g. from the SEQUOIA
spectrometer [23]). In addition to being more compu-
tationally expensive to simulate, most materials con-
tain hydrogen, which means INS experiments yield an
incoherent signal that does not have a well-defined
dispersion curve. To simulate the incoherent INS
spectra for heterogeneous materials involves calculat-
ing the the phonon density of states (pDOS) from
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the velocity autocorrelation function. The pDOS is
then projected onto specific atom types that strongly
scatter neutrons (typically 1H) and compared directly
to INS spectra [4]. This method leads to inaccu-
racies, as the pDOS is only part of the input into
the calculation of an INS spectrum from the scat-
tering function (eq 1). The pDOS does not contain
the Debye-Waller factor, the ~q dependence, and over-
tones, which means that the projected pDOS can only
be used in a qualitative comparison to INS data. The
inaccuracy of the pDOS method is demonstrated in
Figure 1c, which shows the energy profile of a clas-
sical trajectory of a harmonic oscillator thermostat-
ted to temperature T . Each classical mode (repre-
sented by an oscillator) would contribute to a peak
at the correct frequency, but the height of the peak
is proportional to T , which is not consistent with
eq 1. The formulation for computing INS spectra
from MD trajectories with the least number of ap-
proximations is in ref [17] (e.g. overtones, Debye-
Waller factor, and ~q dependence), but this method
still leads to inaccuracies due to the lack of frequency
dependence of the anisotropic vibrational disorder,
and quantum ground state atomic displacements. In
this manuscript, we present a method for computing
INS spectra from all-atom MD trajectories that is as
correct as the normal mode-based methods used in
conjunction with DFT simulations.

2 Theory

Energy resolved dynamics from MD simulations is
characterized by the power spectrum, which is the
Fourier transform of the velocity autocorrelation
function,

v2i (ω) = F {〈~vi(t) · ~vi(t+ τ)〉} (2)

in which vi is the velocity of atom i, F{...} repre-
sents a Fourier transform, and 〈...〉 represents the
time average. The power spectrum can be related
to the eigenvectors (normal modes) and eigenvalues.
To show this, we first expand the atomic velocities
into contributions from the normal modes,

~vi(t) =
∑
j

cij~νj(t) (3)

where νj is the velocity of mode j along the vibra-
tional mode coordinate, and cij is the unitary trans-
formation matrix between the atomic basis and the
vibrational basis. Even though it is possible to con-
struct the power spectrum from the phonon eigen-
vectors, it is not generally possible to reconstruct the

eigenvectors from the power spectrum because of po-
tential degeneracies in the eigenspectrum.

We are assuming a harmonic approximation, which
means that the velocity of the classical oscillators, ~νj ,
takes the form,

~νj(t) = ~Vj cos(ωjt+ δj) (4)

where ~Vj is the maximum velocity of mode j, ωj is the
frequency, and δj is the phase. This equation implies
that the power spectrum of ~vi using the expansion in
eq 3 reveals independent oscillators at different fre-
quencies,

v2i (ω) =
∑
j

|cij |2 V 2
j

4
δ(ω − ωj) (5)

in which |cij |2 is the probability that atom i partic-
ipates in mode j. The power spectrum cannot dif-
ferentiate between different modes at the same fre-
quency. This represents a potential problem in the
evaluation of strength of the vibrational eigenvectors
from the power spectrum, as the change in phase be-
tween any pair of oscillators (δj in eq 4) impacts the
observed peak height in the power spectrum. How-
ever, in eq 5 we are asserting that the oscillators are
uncorrelated, which is true if the simulation has at
least a weak thermostat (or weak anharmonicities)
that decorrelate the oscillators. Then the relative
phase differences between the oscillators average to
zero, and the observed peak heights of the power
spectrum are equal to the sum of each of the con-
tributing vibrational eigenvectors.

The accuracy of simulated phonons is assessed
through comparison to experimental INS spectra.
Low temperature INS spectra are well described by
the scattering function in eq 1 [17]. The quantum
mechanical displacements (~uij) are not directly ac-
cessible from the atomic power spectra in MD tra-
jectories, so we seek a connection. The magnitude
of the ground state displacement of a quantum har-
monic oscillator is given by,

u2ij(ωj) =
|cij |2h̄
2µjωj

(6)

where µj is the reduced mass of mode j [24]. Note
that every term in eq 6 is accessible from the atomic
power spectra, except µj . To find µj from informa-
tion in the power spectra, we use the equipartition
theorem:

kBT = µj〈ν2j 〉 = µj

V 2
j

2
(7)

Simple rearrangement of eqs. (5) to (7) provides a
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Figure 1: (a,b) Schematic depicting neutron scattering off a prolate anisotropic oscillator (oval wireframe
object) in two different orientations demonstrating how molecular orientation changes the available scattering
processes. In (a) the momentum transfer is directed solely along the short axis of the oscillator, creating
vibrationally excitations along that axis. In (b) the oscillator is rotated such that the momentum transfer is
directed along the long axis of the oscillator, which has smaller spacing between energy levels. (c) Potential
energy surface for a harmonic oscillator. The quantum mechanical levels are represented by grey dashed
lines, and the rough red line represents a trajectory of a classical simulation.

relationship for u2ij as a function of the power spec-
trum:

u2i (ω) =
h̄v2i (ω)

ωkBT
(8)

where we have implicitly summed over all degenerate
modes at a given frequency, ω, to remove the depen-
dence on the j index. Essentially, the knowledge of
the effective maximum velocity of modes at frequency
ω provides the curvature of the potential energy sur-
face shown in Figure 1c, which is directly related to
the ground state displacement of a quantum mechani-
cal object acting on the same potential energy surface
(assuming the harmonic approximation holds).

The units of eq 8 are not the same as eq 6 as v2i (ω)
has units of m2/s instead of m2/s2 because of the
action of the Fourier transform. The correct units are
recovered with an integral over ω. Thus, eq 8 contains
both ui,j and the delta function from the scattering
law (eq 1) because the delta function, δ(ω − ωj) has
units of ω−1. This formulation of u2i (ω) can be used
in the scattering law under the assumption that all
the oscillators have an isotropic displacement from
their equilibrium positions, which is generally untrue.
Thus, the scattering rate into a particular solid angle
depends on the momentum scattering vector, ~q, in
eq 1.

For inverted geometry spectrometers, such as VI-
SION at ORNL or TOSCA at ISIS, the magnitude
of the momentum scattering vector changes with en-
ergy transfer, meaning the instruments are not well-
equipped for independently probing the ~q dependence
of the scattering law. In addition, it is experimen-
tally difficult to obtain single crystals that are large

enough to obtain good neutron scattering data (∼ 1 g
is needed [17]). Thus, crystalline powder samples
are commonly used for neutron measurements, which
require an orientational average over the scattering
function. The orientational dependence of the scat-
tering function is graphically depicted in Figure 1a,b,
and the equation for the orientational average has no
analytical solution, and must be numerically approx-
imated. The most common approach to simplify the
powder average is the “almost isotropic” approxima-
tion [17, 18]. This approach is used to approximate
the powder average of the first overtone of the scat-
tering equation (n = 1 in eq 1) which we write as,

S0→1(q, ωj) =
1

4π

∫
S0→1(~q, ωj)dΩ (9)

S0→1(~q, ωj) =
∑
i

σi(~q · ~uij)2 exp

−∑
j

(~q · ~uij)2


(10)

where S0→1(q, ωj) is the powder averaged scattering
function for the first overtone, and dΩ is the differen-
tial angle. The equation is restricted to a single mode
j for simplicity; the full scattering function is the sum
over all mode contributions. The almost isotropic ap-
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proximation [17] changes this equation to:

S0→1(q, ωj) ≈
∑
i

q2

3
Tr(Bij) exp

(
−q2αij

)
(11)

αij =
1

5

[
Tr(Ai) + 2

(
Bij : A

Tr(Bj)

)]
(12)

Bij = ~uij~u
T
ij (13)

Ai =
∑
j

Bij (14)

where Bij is defined as the displacement tensor of

atom i for mode j, and Ai is the total displacement
tensor for atom i. Eq 11 is typically used for the
first overtone, while higher overtones are usually com-
puted within the isotropic approximation [17] as the
almost isotropic approximation only marginally im-
proves accuracy while severely complicating the com-
putation. The isotropic approximation of the Debye-
Waller factor is

DWF = exp
[
−q2Ai/3

]
. (15)

To make our formulation consistent with the almost
isotropic approximation, we must create analogous

versions of Ai and Bij from MD trajectories. The
power spectrum in eq 8 is analogous to the trace of

Bij , so we must expand the power spectrum to in-
clude all possible cross correlations between the dif-
ferent Cartesian components of the velocity. Thus,
we define an outer-product velocity correlation func-
tion, 〈~v∗i (t)~vTi (t + τ)〉, which is a Hermitian tensor,
and its corresponding Fourier transform is shown in
matrix form in eq 16.

~v~vT (ω) = 〈|vx(ω)|2〉 〈v∗x(ω)vy(ω)〉 〈v∗x(ω)vz(ω)〉
〈v∗y(ω)vx(ω)〉 〈|vy(ω)|2〉 〈v∗y(ω)vz(ω)〉
〈v∗z(ω)vx(ω)〉 〈v∗z(ω)vy(ω)〉 〈|vz(ω)|2〉


(16)

We can replace v2i (ω) with ~v~vT (ω) in eq 8 to construct

an analogous version of Bij , which extends our for-
mulation beyond the isotropic approximation. In this

formulation, Ai is the integral of Bj with respect to

ω. From here, our analogous versions of Ai and Bij

can be inserted into the almost isotropic approxima-
tion equation providing the scattering function of the
first overtone completely in terms of the information
present in a classical MD simulation.

To summarize, we have computed ground state
displacements of a set of quantum harmonic oscilla-
tors from the information in the classical power spec-
trum, and we have approximated the powder average

while accounting for anisotropies of vibrational mo-
tion. The only remaining problem is the inclusion
of overtones in the simulated spectrum because the
power spectrum does not contain any overtones as-
suming the harmonic approximation is valid. It is
possible that overtones appear in highly anharmonic
modes, which is why we run the molecular dynamics
simulation at low temperature (which also simulates
the INS experiment at low temperature). Obtaining
the spectral contribution of overtones is not trivial be-
cause combination excitations need to be calculated
(simultaneous excitation of two different 0→ 1 tran-
sitions) in addition to the principal overtones (0→ 2
transitions). To obtain the full second overtone spec-
trum, including combination excitations, the funda-
mental spectrum (obtained from 〈~v~vT (ω)〉) is con-
volved with itself:

B0→2(ω) = B ∗B =

∫
B(ω′)B(ω − ω′)dω′ (17)

In principle, since B is a matrix, the convolution pro-
duces a fourth order tensor that must be contracted
into a second order tensor (to be used in the almost
isotropic approximation), which we approximate as a

simple matrix multiplication between B with itself at
a different frequency. To get the third overtone spec-

trum, we convolute B0→2(ω) with B(ω). Therefore,
the spectrum of the nth overtone in INS can be com-

puted of as the nth convolution of B with itself. If we
define the convolution as an operator, we can show
that the series of convolution operators reproduces
the intermediate scattering function (see Supplemen-
tal Information section 1), which has been used for
analyzing all other forms of inelastic neutron scat-
tering experiments (e.g. QENS, neutron spin echo,
etc.). The intermediate scattering function is a use-
ful starting point for which to analyze other dynam-
ical measurements such as X-ray techniques and dy-
namic light scattering, meaning that our approach
can be used for something other than neutron scat-
tering measurements.

The computational workflow is as follows:

1. The atomic displacement tensor, B1, for atom i
was computed from the molecular dynamics tra-
jectory for that atom using eqs 8 and 16.

2. Vector containing the q2 dependence as a func-
tion of ω was computed (specific to the back
scattering analyzers of the VISION spectrome-
ter [20]),

3. The Debye-Waller factor was computed for both
the isotropic and “almost isotropic” approxima-
tions.
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4. The q2 vector, the trace of the current Bn(ω)
object (trace of this object is a vector), and
the Debye-Waller factor were element-wise mul-
tiplied, and the resulting vector was multiplied
by the prefactor scalar that depends on the over-
tone number (same as the loop counter).

5. Resulting vector was added to a total scattering
function vector (initialized to zeroes).

6. The current Bn object was convolved with the

original atomic displacement tensor, B1, which

generates a new object, Bn+1, that corresponds
to the next overtone spectrum to be computed
in the next iteration of the loop.

7. The above algorithm was repeated for each over-
tone (total number of overtones is set at the be-
ginning of the workflow).

We assume that the convolution operation between
two matrices of functions can be approximated as an-
other matrix that follows from standard matrix multi-
plication rules (e.g. B ∗B =

∑
j Bij ∗Bjk), ensuring

that the resulting matrix is Hermitian. Thus, each
convolution operation contracts the inner indices of
the resulting rank-4 tensor. The Debye-Waller factor
from the “almost isotropic” approximation is used for
the first overtone n = 1, and the isotropic approxi-
mation is used for all others. The loop index specific

prefactor is assumed to be 3n−2

n!5n−1 because it is a gen-
eral relation that closely resembles the known prefac-
tors for the first four overtones for powder averages
using either isotropic or “almost isotropic” approxi-
mations [18].

If we want to extend our approach beyond the har-
monic approximation, we must identify anharmonic-
ities in the classical power spectra. The anharmonic-
ities manifest as either (1) overtones in the harmonic
power spectrum, or (2) decay rates of periodic mo-
tions, which broaden peaks in the power spectrum
(typically with a Lorentzian lineshape) . The for-
mer arises from anharmonicities along the vibrational
mode coordinate (see SI Figure S1b), which can be
mathematically represented by coupling between en-
ergy levels on the same oscillator. The decay rates
of classical motions come from coupling between en-
ergy levels on different harmonic modes (see SI Fig-
ure S1c). In principle, it is possible to approximate
the different anharmonic contributions by fitting the
power spectrum to an appropriate model. However,
fitting the anharmonic overtones is challenging be-
cause it is impossible to differentiate between an over-
tone and a different mode at the same frequency as
the overtone. To simplify our formulation, we only

consider coupling between different modes and ig-
nore contributions from anharmonic overtones. If we
model the classical dynamics as a set of decaying har-
monic oscillators (eq 18), then we can compute a set
of decay constants (kj) that correspond to frequencies
(ωj).

〈v2i 〉 =
∑
j

V 2
ije

iωjt−kjt (18)

In the observed INS spectrum, anharmonicities
cause a decrease in the energetic difference between
overtones, meaning that overtones can no longer be
calculated via simple Fourier convolution. The goal
is to relate the relaxation rates (kj) to the second

order energy correction (E
(2)
j ) found by perturbation

theory to correct the overtones. In SI section 2, we
derive a natural relationship between the relaxation
rate ki and the second order correction to the har-
monic energy levels, E

(2)
i :

〈ki〉 = −
∑
f

4〈i|V |f〉〈f |V |i〉
πh̄ (Ef − Ei)

=
4E

(2)
i

πh̄
(19)

Given this connection, we can develop a scheme to
correct the convolutions to give the proper energetic
spacing for an anharmonic oscillator truncated to
third order. Importantly, the decay rates determined
from a classical simulation correspond to the thermal-
ized initial state, not the vibrational ground state as
is typically assumed for computing INS spectra. Cor-
recting for this effect would require multiple classical
simulations at different temperatures. While such an
implementation is possible, we do not find it prac-
tical for large systems of atoms with complex INS
spectra, as the harmonic approximation appears to
be sufficient.

3 Results

To demonstrate our new approach, we chose to study
a semiconducting polymer called P3HT, because it
has a complex microstructure owing to its semicrys-
talline nature. This makes it challenging to experi-
mentally characterize the microstructure and model
the functional properties [5, 25]. We used the method
presented above to compute an INS spectrum from
an MD trajectory and compare to a previously pub-
lished experimental INS spectrum for semicrystalline
P3HT [6]. Since P3HT is known to have amorphous
and crystalline regions [25], we perform independent
simulations on both phases, and compare to combi-
nations of regioregular (semicrystalline) and regioran-
dom (fully amorphous) INS spectra. RRa P3HT is a
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Figure 2: Comparison between experimental INS spectrum for crystalline P3HT (defined as the difference
between the semicrystalline spectrum and 55% of the amorphous spectrum) and a simulated spectrum from
molecular dynamics. The spectral contributions for individual overtones are also shown. The MD spectrum
was convoluted by a Gaussian of width 0.01E, where E is the energy transfer.

surrogate for the amorphous regions of regioregular
(RR) P3HT because the random head/tail orienta-
tion of the monomers increases dihedral distortions
through steric interactions between neighboring side-
chains. The increased dihedral distortions reduce the
favoring of π − π stacking/crystalline morphologies.

To simulate the crystalline phase of P3HT, we con-
structed a box of 16 20-mers created from a larger
crystalline structure taken from ref [26] containing
400 chains that was annealed at 300 K and 1 bar
for 15 ns. The classical force-field used was taken
from Poelking et al. [5], in which the monomer-
monomer torsional parameters and partial charges
were parametrized from DFT simulations, and stan-
dard OPLS-AA forcefield parameters were used for
all other values. The lattice parameters for the room
temperature crystalline structure agree with prior ex-
perimental work [27]. The structure was quenched
down to 10 K, and equilibrated for 10 ns, enough
time to allow the kinetic temperature to reach 10 K.
We were not interested in finding the thermodynam-
ically equilibrated 10 K structure, as the real sam-
ple used in the INS experiment was quickly cooled
to cryogenic temperatures with liquid helium, kinet-
ically trapping the configurations during the cooling
process. After the short equilibration run at low tem-
perature, a production run was started in which we
collected velocity data every 2 fs for 100 picoseconds.
Such a high data collection rate is needed to resolve
higher energy peaks (C-H stretch period is ∼ 10 fs).

If smaller data collection rates are used, the higher
energy peaks will not be resolvable as their frequen-
cies are greater than half of the data collection rate.
These high energy peaks are not filtered out of the
spectrum, and instead fold back onto the observed
spectrum at a different energy, creating unphysical
spectral artifacts that contaminate the computed INS
spectrum. The choice of 100 ps simulation time leads
to a frequency spacing of 0.33 cm−1, which is small
enough to resolve any salient features in the experi-
mental INS spectrum. One is free to simulate longer,
but the high data collection rate means that the file
sizes can become extremely large for systems with
many atoms. Further details for all MD simulations
are in the Methods section.

The resulting simulated spectrum is compared
against the experimental INS spectrum in Figure 2.
In addition to the total spectrum, we show the differ-
ent contributions from each of the overtones. With-
out any overtones, the simulated spectrum would be
equal to the 0-1 spectrum, leading to inaccuracies
when comparing to the experimental data. Properly
accounting for the overtones allows for quantitative
comparisons between theory and experiment, which
has applications in direct forcefield parameter fitting.

To demonstrate an improvement over the existing
methodology for simulating INS spectra, we compare
the MD simulated spectrum against INS data, and a
full Brillouin zone DFT calculation of a single con-
formation of crystalline P3HT in Figure 2. The INS
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Figure 3: Comparison between experimental INS
spectrum, DFT simulated spectrum, and MD sim-
ulated spectrum. The MD spectrum was convoluted
by a Gaussian of width 0.01E, where E is the energy
transfer.

data in Figure 2 is the result of subtracting 55% of
a regiorandom P3HT INS spectrum (assumed to be
completely amorphous) from the regioregular P3HT
spectrum, meaning we are assuming that the P3HT
sample is 45% crystalline, which agrees with prior
literature [25]. At energies below 600 cm−1, the MD
simulation more accurately models the INS spectrum
than the DFT simulation. Since prior literature has
shown that DFT can accurately simulate INS spec-
tra [15], we can assume that the DFT spectrum is
accurate for the chosen configuration, so the MD sim-
ulation is more accurate than the DFT simulation be-
cause it properly samples the relevant phase space of
crystalline P3HT. In the intermediate energy range
of 600–1600 cm−1, the MD simulation shows poorer
agreement with the experimental INS spectrum than
the DFT simulation, indicating that DFT is better
at accurately modeling the angle bends/wags, and
bond stretch modes present in this energy range. Be-
yond 1600 cm−1, the experimental spectrum levels
off, and there is decent agreement between the simu-
lation and experiment in which the C-H stretch peak
at ∼3000 cm−1 is well parametrized in the forcefield,
and the computed background scattering levels are
accurate. The comparison between experiment and
both simulations is available in the Supplemental In-
formation Figure S5.

For the amorphous region of P3HT, we started
from a box of 800 amorphous 20-mer chains an-

nealed at 300 K, which was taken from Scherer et
al. [26]. The average density of the initial structure
was 1.05 g/cm3, which reasonably agrees with prior
literature values for the room temperature density
of amorphous P3HT [28]. The details for the melt-
ing and annealing of the simulation box are in the
Methods section. From 300 K, the amorphous sys-
tem was ramped down to 10 K over 1 µs, and held
there for 10 ns. Then, the simulated INS spectrum
was computed from a short production run (same as
the crystalline simulation), and compared against the
crystalline simulated spectrum in Figure 4a. There
are significant deviations between the two spectra at
low energies, and the change between the two spectra
is not consistent with the experimental INS spectrum
of regiorandom (RRa) P3HT in Figure 4b. In Fig-
ure S4 of the Supplemental Information, we demon-
strate that there is very little change at low energies
between the experimental INS spectra for RRa P3HT
and RR P3HT, indicating a subtle inaccuracy in the
MD simulation.

We use a least-squares error statistic weighted by
the experimental error of each data point to deter-
mine the quality of the agreement between the simu-
lations and the experimental data. The equation for
determining the error is given below,

E =
1

N

N∑
i

(xi − xoi )2

σ2
i

(20)

where xi and xoi are the simulated intensities and
experimental intensities at frequency i, respectively,
and σi is the experimental error at that frequency.

Table 1: Weighted least squares error for the com-
parisons of the three simulations to the experimental
data. Elow and Ehigh are the weighted least squares
errors for the energy ranges 10 cm−1-600 cm−1 and
600 cm−1-3500 cm−1, respectively.

Simulation Elow Ehigh

Crystalline MD 30.4 23.7
Amorphous MD 53.4 28.5
Crystalline DFT 41.0 17.7

Table 1 compares the weighted least square error
for each of the simulations. In the low energy re-
gion (10 cm−1-600 cm−1), the crystalline MD simu-
lation more accurately represents the data than the
other simulations. This quantitatively demonstrates
that the presence of multiple morphologies in the
larger MD simulation leads to a more accurate agree-
ment with experimental data for low energy dynam-
ics. In the high energy region (600 cm−1-3500 cm−1),
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Figure 4: Comparison between MD simulated spectra for crystalline and amorphous P3HT materials. (b)
Comparison between experimental INS spectrum for regiorandom (RRa) P3HT, and the amorphous MD
simulated spectrum. (c) Radial distribution functions comparing crystalline and amorphous regions of P3HT;
the inset is the same plot expanded at low probability densities to demonstrate the differences between the
two distributions. The MD spectrum was convoluted by a Gaussian of width 0.01E, where E is the energy
transfer.

the crystalline DFT simulation is the most accurate,
which makes sense because the classical forcefield has
not been modified specifically for the bond vibrations
present in P3HT. When comparing the two MD sim-
ulations, we see that the amorphous simulation is sig-
nificantly less accurate than the crystalline one.

There are two possible causes for the changes we
observe in the simulated INS spectra: (1) the simu-
lated morphology leads to a lower density than what
is observed in reality, and (2) the force field parame-
ters, obtained at room temperature, are not trans-
ferable to low temperatures. The answer is likely
some combination of both causes. Since low tem-
perature structural studies that measure density are
unavailable for P3HT, it is difficult to quantitatively
determine the quality of our simulated amorphous
morphology. It is possible that the 300 K melt of
P3HT chains was not in the correct morphology be-
fore the quench; the simulated density was lower
than the experimental density (1.05 g/cm−1 versus
1.09 g/cm−1). This morphological error led to a lower
density for the low temperature morphology, which
may partially explain the deviation we see in Fig-
ure 4. Any evidence of errors in morphology is largely
absent from structural descriptors, like the radial dis-
tribution functions in Figure 4c, which demonstrates
the sensitivity of low frequency dynamics to subtle
changes in morphology.

Also, despite the lack of experimental evidence, we
expect that the measured amorphous density is lower
than the measured crystalline density at low temper-
ature (the amorphous density is lower than the crys-
talline density at 300 K [28]), which means that we

should see a shift in the low frequency portion of the
INS spectra when we compare regioregular and re-
giorandom P3HT. However, in Figure S4 of the Sup-
plemental Information, there are no observed shifts
in the low frequency spectra, indicating that the low
frequency dynamics should be relatively invariant to
small changes in density. This difference between ex-
perimental and simulated trends is likely due to sub-
tle inaccuracies in the non-bonded potential in the
force field, which is explained by the lack of transfer-
ability of the force field, which was parametrized for
300 K properties, to 10 K simulations.

While there are differences between the low fre-
quency modes in the crystalline and amorphous simu-
lations, both the crystalline/amorphous comparisons
with experimental spectra (Figure 3 and Figure 4b,
respectively) show that the low energy peaks in the
simulated spectra (< 200 cm−1) are lower in energy
than the experimental spectra. This provides evi-
dence that there are subtle inaccuracies in the force
field parameters at low temperatures that are inde-
pendent of the simulated morphology. Further neu-
tron experiments (e.g. 300 K INS) and temperature
dependent structural studies (e.g. grazing incidence
x-ray diffraction) are required to understand if the
forcefield accurately characterizes the low energy dy-
namics at 300 K, which are outside the scope of this
work. In principle, the forcefield and morphology in-
accuracies can be quantified by using our method in
combination with these additional experiments.
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4 Conclusions

We have demonstrated a novel method for computing
INS spectra from classical molecular dynamics tra-
jectories that is theoretically equivalent to more com-
mon normal mode approaches, while being more com-
putationally scalable, allowing simulations of much
larger systems than those studied in prior INS pub-
lications. As a result, this method opens the door
to many research areas that can use INS as an an-
alytical tool, but have not yet done so because the
target molecules/materials are too complex for ab
initio methods. Our complex example material is
semicrystalline P3HT, and we were able to use our
method, along with experimental INS data, to make
a valuable, direct comparison between experimental
and simulated low energy dynamics. Such a direct
comparison with molecular dynamics simulations is
not possible with other experimental techniques.

In our example, we demonstrated that the simu-
lation of larger scale morphologies of P3HT using
molecular dynamics yielded better agreement with
experimental INS spectra than crystalline density
functional theory simulations in the 10 − 600 cm−1

energy range. In the range beyond 600 cm−1,
the DFT simulation is most accurate. Our analy-
sis also revealed potential inaccuracies within some
combination of the simulated morphology and the
non-bonded parameters of the empirical forcefield of
P3HT. We showed that changes in the amorphous
density relative to the crystalline density caused large
changes in the low frequency dynamics, demonstrat-
ing that the low energy region of simulated spec-
tra is sensitive to morphological changes. Therefore,
our method provides important information that de-
scribes the impact of the forcefield and the simulated
non-equilibrium morphologies on low frequency dy-
namics, which is not accessible by any other combi-
nation of simulation and experiment.

Implementation of our method to multiple diverse
amorphous and semicrystalline systems provides a
basis for more accurate characterization of materi-
als that spans a large area of chemical space. This
offers the potential to improve the theoretical under-
standing of how chemical structure impacts empirical
forcefield parameters, which aids the general predic-
tion of observed properties from chemical structure.

5 Methods

Molecular dynamics simulations were performed us-
ing the Gromacs simulation package [29, 30, 31] in-
stalled on a high-performance computing cluster at
UC Davis. Crystalline P3HT simulations began as

a slice from a larger crystalline slab generated by
Scherer et al. [26], which were equilibrated at 300 K
for 15 ns. We then lowered the control tempera-
ture of the thermostat to 10 K, and simulated in an
NPT ensemble for 10 ns, allowing the kinetic tem-
perature to reach equilibrium. We used a velocity-
rescale thermostat [32] with a time constant of 1 ps,
and an anisotropic Parrinello-Rahman barostat [33]
with damping constants of 1 ps and 4.5 · 10−5 bar−1

in all directions. For the production run in which
we simulated the INS spectrum, the thermostat time
constant was increased to 10 ps, we switched to an
Andersen massive thermostat, we turned off the baro-
stat, and fixed the lattice dimensions to their average
values over the final 1 ns of the equilibration run.
The 100 ps production runs recorded atomic veloc-
ities every 2 fs to properly record every vibrational
mode in the material. We switched to the Andersen
massive thermostat [34] to properly decorrelate the
atomic motions after 10 picoseconds, which ensured
the success of our method. However, we ultimately
found no dependence on the observed spectrum and
the type of thermostat used; see SI section 3. If the
time constant is decreased to 1 picosecond, then the
thermostat interferes with the simulated INS spec-
trum, also shown in section 3. The NPT ensemble
was not used for production runs because the baro-
stat dampens the dynamics of the molecules (see SI
section 3).

The amorphous structure for P3HT was also
started from configurations generated by Scherer et
al. [26]. We repeat some details here for clarity. For
the amorphous region of P3HT, a box of 800 20-mer
chains in the crystalline configuration above was sim-
ulated at 750 K for ∼3.7 ns to randomize all config-
urations. The box was brought to 300 K by stepping
down the temperature by 50 K increments and sim-
ulating for 200 ps. Once 300 K was reached, the box
was annealed for ∼ 61 ns. The average density of the
final structure at 300 K was 1.05 g/cm3, which rea-
sonably agrees with prior literature values [28]. From
300 K, the amorphous system was ramped down to
10 K over 1 µs at a constant rate, and held there for
10 ns. We used an Andersen-massive thermostat with
a time constant of 1 ps, and an anisotropic Parrinello-
Rahman barostat with the same damping constants
as the crystalline quench to 10 K. Then, we averaged
the lattice parameters over the latter half of the 10 K
NPT hold simulation to fix the lattice parameters for
the 100 ps NVE production run, which we used to
simulate the INS spectrum.

INS spectra were computed using a Python code
developed by our group utilizing mpi4py [35, 36, 37]
to parallelize the calculation. All convolution and
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correlation operations were performed via Fourier
transforms within the Scipy package. The resolution
function of the VISION instrument was assumed to
be Gaussian with a width that scales with energy
transfer as σ = 0.01∆E, where ∆E is the energy
transfer. We assumed that the energy of the scattered
neutron that hits the detector is fixed at 32 cm−1,
which is typical of inverted neutron spectrometers like
VISION [17].
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Böckmann, “Optimization of the OPLS-AA
Force Field for Long Hydrocarbons,” J. Chem.
Theory Comput., vol. 8, no. 4, pp. 1459–1470,
2012.

[12] S. F. Parker, A. J. Ramirez-Cuesta, and L. Dae-
men, “Vibrational spectroscopy with neutrons:
Recent developments,” Spectrochimica Acta Part
A: Molecular and Biomolecular Spectroscopy,
vol. 190, pp. 518–523, 2018.

11



[13] T. F. Harrelson, A. J. Moulé, and R. Faller,
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