
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title

Interface Design and Resource Policies for Networking in Embedded Operating Systems

Permalink

https://escholarship.org/uc/item/8n68229c

Author

Potyondy, Tyler

Publication Date

2023
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8n68229c
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA SAN DIEGO

Interface Design and Resource Policies for Networking in Embedded Operating Systems

A thesis submitted in partial satisfaction of the
requirements for the degree Master of Science

in

Computer Science

by

Tyler Potyondy

Committee in charge:

Professor Pat Pannuto, Chair
Professor Deian Stefan
Professor Geoffrey Voelker

2023



Copyright

Tyler Potyondy, 2023

All rights reserved.



The Thesis of Tyler Potyondy is approved, and it is acceptable in quality and

form for publication on microfilm and electronically.

University of California San Diego

2023

iii



TABLE OF CONTENTS

Thesis Approval Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Abstract of the Thresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 1 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Thread Networking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Technical Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Embedded Software Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.1 FreeRTOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.2 RIOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.3 Contiki-NG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2.4 Zephyr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.5 Tock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Chapter 2 Networking Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 Thread / Network Stack Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.2 Kernel / Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Design Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Proposed Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Chapter 3 Implementation and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1 MLE Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Thread Capsule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Chapter 4 Future Work and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1 Permission Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 OpenThread User Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

iv



LIST OF FIGURES

Figure 1.1. “OpenThread Topology” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Figure 1.2. “Thread Node Types” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Figure 1.3. “Child - Parent Attachment” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Figure 1.4. “IPv6 Addressing” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Figure 1.5. “UDP Payload” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Figure 1.6. “RIOT Networking Stack” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Figure 1.7. “Contiki-NG Network Stack” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Figure 1.8. “Zephyr Architecture” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Figure 1.9. “Tock Architecture” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 2.1. “Standard UDP / IPv6 / 6LoWPAN / IEEE 802.15.4 Network Stack” . . . . . 17

Figure 2.2. “Proposed Thread Network Stack Design” . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Figure 3.1. “Network Stack Framing and Encryption” . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 3.2. “Thread Encryption Ownership” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Figure 3.3. “Thread Parent Request State Machine” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 3.4. “Tock Thread Capsule State Machine” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 3.5. “WireShark Capture” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 3.6. “OpenThread Router Child Table” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

v



ACKNOWLEDGEMENTS

I would like to acknowledge the mentorship and support of Pat Pannuto in my work.

I would like to thank Geoffrey Voelker and Deian Stefan for their willingness to serve on my

committee.

vi



ABSTRACT OF THE THESIS

Interface Design and Resource Policies for Networking in Embedded Operating Systems

by

Tyler Potyondy

Master of Science in Computer Science

University of California San Diego, 2023

Professor Pat Pannuto, Chair

Thread networking’s emergence as the de facto low-power IP networking technology

warrants investigating a Thread interface within embedded operating system network stacks.

Although there exist many embedded software platforms providing Thread integration, these

examples notably lack multi-tenancy and a principled policy for interface design and resource

sharing. This work first provides a survey of leading embedded operating systems’ networking

and Thread capabilities followed by a proposed Thread networking interface design. To demon-

strate the interface design, kernel Thread networking support was implemented within TockOS

and provided functional interoperability for a Tock child device to attach to an OpenThread

router.
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Introduction

The need to communicate information across physically disjoint locations dates back

millennia. The ancient Chinese are well known for the impressive magnitude and length of the

Great Wall of China. Often forgotten, however, is their pronounced communication innovations

allowing a message to pass 7,300 kilometers in only one hour. This feat was accomplished

through the use of light to signal between beacon towers; information was encoded in colored

smoke and the number of lanterns illuminated [1].

Modern sensor networks allow for the measurement and aggregation of data at an

unprecedented scale. This scale and ability for widespread measurements is achieved through the

use of inexpensive microcontrollers coupled with sensors to perform measurements and wireless

radios to transmit this data. Being an inexpensive microcontroller, however, creates numerous

deployment challenges as these inexpensive devices are severely resource constrained. The most

scarce resources are the device’s limited memory (order 64kB) and limited power budget (as

sensor nodes are typically battery powered).

Novel network technologies, such as Thread networking, are purpose built for the

constrained power budget of battery powered devices [2]. Because Thread is purpose built for

low-power devices, it has gained immense popularity among smart home, and sensor network

devices. These systems require wireless communication while also being able to primarily deep-

sleep and cease radio communications [3]. Prior to Thread, these low-power devices all deployed

custom wireless networks with costly and cumbersome supporting infrastructure. Thread solves

this problem and allows devices to act as full-fledged IP endpoints while also providing the means

for these devices to connect to the Internet. Given Thread’s popularity, many embedded software
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platforms have worked to provide Thread networking support. Thread, however, is unlike IEEE

802.15.4 or BLE as it is a networking policy that exists within, alongside, and above the UDP

/ IPv6 / 6LoWPAN / IEEE 802.15.4 networking stack. This presents potential multi-tenancy

concerns and design challenges surrounding how best to interface a Thread implementation

within an existing network stack that may also be used by other non-Thread clients.

Subsequently, we investigated a Thread networking interface and implemented the

proposed design within the embedded operating system Tock. We evaluated the success of this

implementation by confirming interoperability between a Tock child device and an OpenThread

router node. Ultimately, we achieved consistent attachment of the Tock child device to the

OpenThread router. This demonstrated the implementation’s interoperability with a production

grade Thread network.
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Chapter 1

Background and Related Work

1.1 Thread Networking

1.1.1 Overview

Thread networking (hence forth referred to as Thread) is a wireless communication

protocol purpose built for IoT devices. Thread offers IPv6 interoperability, a robust mesh

topology, low-latency data transfer, and low-power operation. The Thread standard is governed

by the Thread Group—a not-for-profit organization composed of Thread stakeholder companies

and institutions that develop products utilizing Thread. Thread currently powers the wireless

communications of Google Nest products, numerous Amazon smart home products, agriculture

livestock monitoring, and various additional smart-home/smart-building products [2]. Notably,

Thread has also been selected as the communication standard to work alongside WiFi to power

Matter, a novel communication standard meant to unify smart devices and provide interoperability

across manufacturers [4]. Currently, Google’s OpenThread serves as the de facto implementation

of the Thread standard.

1.1.2 Technical Description

Thread utilizes a UDP / IPv6 / 6LoWPAN / IEEE 802.15.4 networking stack to form,

maintain, and send messages across a mesh topology. Thread’s network topology, node types,

security strategy, and use of the aforementioned networking layers are described next.
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Network Topology and Node Types

A Thread network is composed of routers and end devices. Together, these devices form

Thread’s mesh network. Router nodes must track the network’s state and store the addresses of

both other network routers and connected end devices. Together, these routers communicate

with each other and work to maintain the mesh network topology. Furthermore, these routers

facilitate the communication of non-adjacent end devices. Figure 1.1 demonstrates a Thread

network topology comprised of routers and end devices. Router devices are often referred to as

“parents” and end devices are often referred to as “children”.

Figure 1.1. Depiction of Thread mesh network topology with routers and end devices—Figure
From [5].

Thread’s division of nodes into children and parents is crucial for providing low power

operation. For many networked, power-constrained devices, the majority of the power budget is

spent operating the radio. Of this, the vast majority of radio energy is spent not on useful data

transmissions, but rather on trying (and failing) to receive just in case someone happens to send

a packet—the “idle listening” problem. To operate in a low-power profile, devices must suspend

radio operations. However, this creates challenges as the device will not receive packets sent
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during this inactive interval. Although this can theoretically be mitigated through resending a

packet until receiving an acknowledgment, this is a highly inefficient use of sender resources

and may lead to these resend attempts saturating the RF band and colliding with other packets.

Thread solves this with an asymmetric design. Thread routers take on the idle listening burden,

which allows for tightly efficient child devices; a low-power device can register as a sleepy end

device to a router, negotiate between the router and child a “sleeping” time period in which the

radio is powered off, and the router will queue and then delay sending all messages destined for

the sleepy end device until the sleepy end device is “awake” (e.g. radio is powered on).

Figure 1.2 depicts the available Thread node subtypes. Each Thread node can be config-

ured as either a Full Thread Device (FTD) or Minimal Thread Device (MTD). Typically, FTD

do not possess power concerns while MTD are often power constrained (i.e. battery powered).

Depending on the current topology, Thread routers may promote a FTD child to a router to

promote a healthy topology of routers.

Figure 1.2. Depiction of Thread device types and their possible roles in the network—Figure
From [5].
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Child - Parent Attachment

Thread utilizes Mesh Link Establishment (MLE) messages to form, maintain, and join a

Thread network. For a child device to attach / connect to a parent, a four part MLE handshake

must occur. First, the joining device multicasts a Parent Request. In response to this parent

request, routers and router eligible end devices (REEDs) that receive this parent request respond

with a parent response. Next, the joining device parses the received parent responses and

determines which responding router is optimal as prescribed in the Thread standard. After

determining the optimal router to attach to, the joining child device sends to that router a child

ID request. This router then completes the joining “handshake” by responding with a child ID

response. Upon sending this child ID response, the router has officially added the joining device

as a child. A visualization of this process is depicted in Figure 1.3. It is important to note that all

Thread devices must join the network in this manner. They are then able to promote from a child

to a router depending on the device specific configuration.

IEEE 802.15.4

IEEE 802.15.4 (hence forth referred to as 15.4) is a widely used networking standard.

This section will not exhaustively describe 15.4, but instead will focus on how Thread uses this

technology. 15.4 constitutes Thread’s Physical (PHY) and medium access control (MAC) layers.

Subsequently, any device implementing Thread must possess a 15.4 radio.

The primary components used in transmitting 15.4 messages are the sending of framed

packets (i.e. data transmission) and acknowledgments of received frames. Acknowledgments

serve an important purpose in notifying a sender if a recipient received a given packet. Addition-

ally, Thread utilizes 15.4’s security protocol for securing Thread packets. This will be discussed

further in the security subsection.
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Figure 1.3. Steps required for a child to attach to a router and join a Thread network. A) Parent
Request B) Parent Response C) Child ID Request D) Child ID Response—Figure From [6].

IPv6 / 6LoWPAN

IPv6 was instantiated to meet the growing demand for internet addresses in light of IPv4’s

limited supply. The expansive scale IPv6 addressing provides requires an increased number of

bytes to encode addresses and subsequently creates 15.4 interoperability challenges. A 15.4

MAC layer frame holds at most 127 bytes—source and destination IPv6 addresses alone would

consume 25% of every frame. 6LoWPAN was created to solve this challenge and provides an

IPv6 compression scheme allowing IPv6 to be used efficiently with 15.4 PHY / MAC [7].

Thread utilizes both IPv6 and subsequently 6LoWPAN in order to be usable with 15.4.

IPv6 allows each Thread node to be globally addressable by generating an IPv6 address tied

to the devices’ Extended Unique Identifier (EUI-64). In a Thread network, a node has three

potential manners in which it can be addressed directly: link-local, mesh-local, and a global
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address. These are depicted in Figure 1.4.

Figure 1.4. IPv6 addressing hierarchy—Figure From [8].

UDP

UDP is utilized to send MLE messages and can also be used to send data between nodes.

MLE messages and data are encapsulated in the UDP packet’s payload. Thread specifies the

use of UDP port 19788 for all MLE messages. Thread UDP packets take one of two forms,

dependent on if link layer encryption is used. In both cases the first payload byte denotes the

encryption scheme. In the encrypted case, an auxillary security header provides the encryption

details, and a message integrity code (MIC) is used to validate the received message. Both the

encrypted and unencrypted cases are displayed in Figure 1.5. MLE messages are primarily

organized by command type and subsequent Type-Length-Values (TLVs). Together, the specified

command and encoded TLV data work to organize and control the Thread mesh network.

Security

Thread security operates in two modalities: MLE and MAC security. MAC security is

provided using the prescribed 15.4 link layer security of AES in Counter with CBC-MAC Mode

(CCM) [9]. In order to simplify MLE security, MAC security is reused and adapted with minor

8



Figure 1.5. UDP Payload depiction. A) Encrypted UDP payload B) Unencrypted UDP payload.
Both the unencrypted and encrypted UDP payload utilize the same format for the command.

modification to the authentication data. Moreover, different keys are used for MAC and MLE

security. Thread’s threat model primarily prevents eaves-dropping upon transmitted packets.

MLE encryption and security fits within this model to primarily initialize link layer security.

Furthermore, the Thread specification explicitly states that “data sent using UDP is not secured”

and that DTLS must be utilized to secure UDP data [10].

Each Thread network has a unique network key that devices require in order to join the

network. From this network key, the MLE and MAC keys are generated using a hashing protocol

described in the Thread specification [10]. Together, MLE and MAC security ensure that only

devices possessing the network key can decrypt and encrypt messages within a Thread network.

However, this implies that if a Thread device is compromised and this network key is leaked,

a malicious actor could observe all Thread traffic. Thread’s threat model does not provide a

solution to this fact, but instead recommends utilizing other forms of protection in addition to

MLE and MAC encryption.

9



1.2 Embedded Software Platforms

1.2.1 FreeRTOS

General Overview

FreeRTOS is a real time operating system that provides a low-memory kernel capable of

low-power operation. This minimal kernel is expanded upon with libraries that can be appended

and configured based on application needs. This project provides a stable and widespread

ecosystem with support for over 40 microcontroller architectures and long term support releases.

FreeRTOS provides implementations of memory protection units on equipped microcontrollers.

However, this must be implemented and configured on a per application basis and does not easily

provide the granularity required for isolating individual processes. Subsequently, FreeRTOS

does not provide a by default kernel-process or process-to-process isolation. [11].

Networking Overview

Given FreeRTOS’s modular library design, the networking stacks are implemented

outside the kernel as libraries. These libraries consist of capabilities ranging from UDP, TCP,

BLE, WiFi, Cellular LTE-M, and ethernet (FreeRTOS-Plus-TCP, Amazon Web Services (AWS)

IoT Greengrass, AWS IoT Core) [12, 13]. Of these, the TCP and UDP networking libraries

are built upon a generic UDP/TCP POSIX socket interface. Furthermore, FreeRTOS provides

packaged networking solutions providing management and updating capabilities through AWS

IoT Over-the-air-updating and AWS IoT Jobs [12].

Thread Specific Overview

FreeRTOS has been used in conjunction with OpenThread in the OpenThread RTOS

project. OpenThread RTOS “provides both system-level and application support for connecting

a device to a Thread network and the internet” [14]. This provides an integration of FreeRTOS,

LwIP, and OpenThread into a single software platform [14]. Despite, OpenThread RTOS being

officially supported by OpenThread, the project seems to have less activity recently based on the

10



repository’s most recent commit occurring in January of 2023 [14, 15]. Beyond OpenThread

RTOS, FreeRTOS is independently also used in numerous Thread applications. Per Thread’s

device manufacturer page, Texas Instruments utilizes FreeRTOS as the embedded operating

system for a number of chipsets providing Thread support. Furthermore, Bouffalo Lab and

Espressif implement a FreeRTOS based Thread border router [16].

1.2.2 RIOT

General Overview

Riot is an embedded operating system purpose built for IoT applications and supports 32,

16, and 8 bit microcontroller architectures. Major features of this operating system include: a

micro-kernel, tickless scheduling, soft real time capabilities, and low overhead multithreading

[17, 18]. The RIOT kernel serves to provide functionality for multi-threading and separates other

necessary functionality such as device drivers, networking stacks, and applications into separate

libraries [18].

Networking Overview

The RIOT networking stack implements a modular design exposing two primary program-

ming interfaces: netdev and sock. Respectively, netdev provides a generalized driver interface for

the underlying radio hardware while sock serves a purpose similar to POSIX sockets. Notably,

sock interfaces exclusively use static memory and provide a generalized API that is agnostic

to the underlying networking stack [18]. Currently, RIOT provides networking support for

application, link, and transport protocols including: IEEE 802.15.4, IPv4, IPv6, LoRa, UDP,

TCP, BLE, 6LoWPAN, and WiFi [17].

Thread Specific Overview

RIOT provides a port of OpenThread that is currently deemed stable [17]. This port to

the RIOT platform has not been officially certified by the Thread group, but is acknowledged by

OpenThread [19].
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Figure 1.6. Depiction of RIOT programming APIs and networking stack integration—Figure
From [18].

1.2.3 Contiki-NG

General Overview

Contiki-NG is an embedded operating system purpose built for “severely constrained

wireless embedded devices” [20]. Contiki-NG originated as a fork from the Contiki operating

system with the aim of robust IPv6 communication and supporting modern 32 bit IoT MCU

platforms such as ARM Cortex M3 [21]. Contiki-NG implements a process abstraction using

the Contiki-NG protothread construct. Process protothreads are scheduled cooperatively and

non-preemptively through an event-driven model [21].

Networking Overview

Contiki-NG describes the projects networking as an “RFC-compliant, low-power IPv6

communication stack, enabling Internet connectivity” [21]. Because networking support is a

primary goal of Contiki-NG, the networking stack provides support for a variety of networking

protocols as depicted in Figure 1.7 [20].
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Figure 1.7. Depiction of Contiki-NG network stack—-Figure From [20].

Thread Specific Overview

Although Contiki-NG possesses the IEEE 802.15.4 / 6LoWPAN / IPV6 / UDP building

blocks needed for a Thread network, Contiki-NG does not possess a Thread implementation.

1.2.4 Zephyr

General Overview

Zephyr is a Linux foundation real time operating system with an emphasis on portability,

security, and connectivity. This RTOS incorporates a lightweight kernel with support for over 450

boards and powers many real world embedded applications ranging from wearables, industrial

IoT, automotive, and healthcare [22]. Furthermore, Zephyr is capable of running on devices as

small as 8kB and also provides thread-level memory protection [23]. Zephyr’s architecture is

depicted in Figure 1.8.

Networking Overview

Zephyr has expansive networking support given the project’s focus on connectivity. This

includes support for the following technologies: IEEE 802.15.4, BLE, CAN, Cellular, Ethernet,

13



Figure 1.8. Zephyr architecture diagram—Figure From [22].

LoRaWAN, Thread, USB, and WiFi. Furthermore, Zephyr’s networking stack also supports

many standards such as 6LoWPAN, CoAP, HTTP, IPv4, IPv6, and MQTT [23].

Thread Specific Overview

Zephyr provides a robust and actively maintained integration for OpenThread [23]. This

OpenThread integration is officially acknowledged by OpenThread [24].

1.2.5 Tock

General Overview

Tock is an embedded operating system, written in Rust, that utilizes Rust’s memory

safety and the microcontroller memory protection unit to provide strict kernel process isolation,

userspace fault tolerance, dynamic memory, and support for multi-tenant applications. Tock is

purpose built for low-memory resource constrained devices [25]. To date, Tock has primarily

been embraced in security and secure root-of-trust applications due to its strict security guarantees

14



[26].

Figure 1.9. Tock architecture diagram demonstrating Tock’s untrusted application and capsule
design—Figure From [26].

Networking Overview

Although Tock possess a networking stack, the networking stack remains primarily

in development and has limited industry adoption. Currently, Tock possesses a UDP / IPv6

/ 6LoWPAN / IEEE 802.15.4 network stack in addition to the capability of sending BLE

advertisements and ethernet packets [26].

Thread Specific Overview

Because Tock possesses a UDP / IPv6 / 6LoWPAN / IEEE 802.15.4 network stack, it

possess all necessary infrastructure to support Thread. However, Tock, prior to this project did

not have Thread support. Tock now supports a limited subset of Thread capabilities to attach as a

child to a Thread router device.
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Chapter 2

Networking Interface

2.1 Challenges

Designing a Thread networking interface faces two primary challenges: how to best incor-

porate Thread into existing network stacks and whether to place Thread specific implementation

details in the kernel or a user process.

2.1.1 Thread / Network Stack Interface

Standard UDP / IPv6 / 6LoWPAN / IEEE 802.15.4 network stacks (Figure 2.1) allow for

clean layer isolation. Each layer possesses a clear role and domain of control: the UDP layer

accepts payload data, the IPv6 layer provides packet routing, the 6LoWPAN layer performs

compression, and the 15.4 layer handles encryption and radio control. This modularity improves

the implementation’s readability and lends well to limiting a given layer’s permissions to what

is strictly necessary. For instance, only the 15.4 layer needs permission to access and alter the

physical radio’s state.

Thread is built upon and utilizes the aforementioned network stack. However, Thread does

not act as a “user application” that interacts exclusively with the UDP layer, but instead exerts

control over multiple layers. This tangibly occurs as Thread “hops” through 15.4 channels and

must change the state of the physical radio. Thus, Thread potentially violates the clean isolations

typically present in a UDP / IPv6 / 6LoWPAN / IEEE 802.15.4 network stack. Furthermore,
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Figure 2.1. Standard UDP / IPv6 / 6LoWPAN / IEEE 802.15.4 Transmission Network Stack.
Each layer appends necessary headers and passes the packet downwards until the physical radio
transmits the packet. The receiving case occurs in the opposite direction.

alterations to the network stack to support Thread may lead to issues implementing a standard

UDP application in addition to Thread. This concern is particularly pronounced in a multi-

tenant embedded operating system; a given application may wish to send standard UDP packets

using the 15.4 radio while a separate application may have initiated a Thread network. In

such an instance, the kernel would need to either appropriately share resources or inform

either application that the given request failed. This implies that a Thread interface can not

be added to the network stack by merely altering the implementation of each layer. Rather,

Thread necessitates a principled design that acknowledges and handles nuances exposed in a

multi-tenant operating system.

2.1.2 Kernel / Process

A Thread implementation can either be placed in the kernel or as an application process.

The benefits of each are respectively the challenges of the counterpart. Namely, an application
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process trades performance for enhanced and simplified isolation while a kernel implementation

removes overhead while introducing greater security risks.

To access needed radio and cryptographic resources, a Thread process would need to

perform a system call and context switch to enter the kernel. Such a context switch and system

call incurs computational overhead and may lead to latency. In a timing sensitive application,

such as Thread networking, this latency may result in unreliable performance. Despite this

overhead, an application process benefits from the strict isolation enforced by an operating

system possessing kernel-process isolation; Thread implementation errors will not cause errors

in other processes.

A kernel based Thread implementation removes substantial overhead related to context

switching, interprocess communication (IPC), and scheduling. These gains are obtained through

the kernel code executing in a privileged state. This subsequently implies, however, that a Thread

related implementation error could result in the entire system being compromised. Moreover,

using a third-party Thread implementation would require importing external dependencies into

the kernel. Such external dependencies linked to core kernel code could expose the system to

supply chain threats and expose the kernel to a greater attack surface.

2.2 Design Goals

Primary Goal: Thread interface design that does not alter the existing networking interface

but instead exerts petitioned control over each layer.

1. Maintain network layer divisions / separations

2. Provide functionality and control to satisfy all Thread requirements

• IEEE 802.15.4 send / receive / acknowledgement

• AES-128 CCM encryption

3. Hardware agnostic: Meet goal two across non-homogenous hardware platforms.
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4. Meet timing requirements: Thread and underlying protocols require that messages be

acknowledged and/or responded to within a certain time bound.

5. Provide multi-tenancy for Thread and UDP application

2.3 Proposed Design

We propose a design in which a Thread implementation does not alter the existing UDP /

IPv6 / 6LoWPAN / IEEE 802.15.4 stack but instead serves as a multi-layer client. Elaborating

further, Thread will register as a client to the UDP and 15.4 mux/virtualizer respectively. Once

registered, Thread will then utilize the existing UDP and 15.4 function call API. This design

satisfies multi-tenancy requirements through the interface with the mux/virtualizer; Thread

requests will be queued and selected for transmission in the same manner as other packets sent

through the network stack. Furthermore, by interfacing with instead of controlling these distinct

layers, Thread can only petition the 15.4 layer for a state change. This ensures each layer can

implement a respective policy to determine how and when Thread, or any other client, should

alter radio state.
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Figure 2.2. Proposed Thread Networking Design. The kernel / process boundary is shown by
the dotted line. The control and data boxes in userspace depict two types of requests related to
Thread (control requests update network state, data requests are the sending of data).
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Chapter 3

Implementation and Evaluation

To implement and explore the proposed design, TockOS was selected as an embedded

operating system to implement Thread networking support [25]. TockOS served as an ideal

candidate for this exploration as it previously did not support Thread, but in theory possessed

the necessary building blocks. Namely, Tock provided support for a UDP / IPv6 / 6LoWPAN /

IEEE 802.15.4 stack and supported AES128-CCM encryption on the nRF52840DK development

platform [26].

A substantial portion of investigating an optimal Thread interface design centered around

first creating a functional Thread implementation. OpenThread was utilized to test the validity of

this implementation. More specifically, a successful preliminary Thread implementation would

consist of a Tock device attaching as a child to an OpenThread router device. In pursuing this

goal, numerous design and Tock specific challenges arose; together these helped to hone what

precisely an optimal Thread interface entails and also provide improvements to the open source

Tock project. The discussion below will be centered around the challenges encountered and

solutions found. Together, these challenges provide a roadmap to the implementation specific

details of a proposed Thread network interface.
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3.1 MLE Encryption

For the initial minimal implementation, MLE encryption was intentionally excluded for

simplicity. However, this immediately created complications as we observed that OpenThread

will ignore all unencrypted MLE messages. Subsequently, this resulted in correctly configuring

the encryption specified for Thread MLE.

Thread’s encryption scheme depends upon a number of minor details and required

immense effort to successfully encrypt and decrypt MLE messages. Thread reuses 15.4’s

AES128-CCM encryption scheme. At a high level, AES-128 CCM requires a 16 byte encryption

key and an input message divided into authentication and message data. The authentication data

is used to generate a message integrity code (MIC). The authentication data is defined as the

concatenation of the source IPv6 address, destination IPv6 address, and auxillary security header.

The message data for a MLE message is then the MLE command field followed by all included

Type-Length-Values (TLVs). To encrypt this message, the MLE encryption key is utilized. This

is generated using Thread’s described hashing function in conjunction with the Thread network

key [10].

Thread also utilizes link layer encryption. Link layer encryption is accomplished within

the 15.4 layer using an AES-128 CCM encryption scheme using the MAC encryption key. This

MAC encryption key is generated using a Thread hashing protocol involving the network key

[10]. Although Tock implemented a 15.4 link layer encryption, the implementation did not

initially work properly and required a minor refactoring. MLE and link layer encryption are

depicted within the context of the entire networking stack in Figure 3.1.

Once successfully encrypting and decrypting individual packets, the Thread interface

implementation encountered another encryption related complication. Tock, being written in

Rust, incorporates the “Rustism” of ownership; this in turn results in strict enforcement of how

and when a data structure can be modified. Tock’s cryptographic functionality subsequently

accepts a buffer that is to be encrypted / decrypted and assumes ownership of the provided buffer.
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Figure 3.1. Network Stack Framing and Encryption for received IEEE 802.15.4 packet. The
upper AES128 CCM decryption represents link layer encryption while the lower AES128 CCM
represents MLE encryption.

The cryptographic operation is asynchronous and executes a registered callback function when

completed. The originally provided buffer is passed as an argument to this callback, containing

the now encrypted or decrypted data. This provides a mechanism to return ownership of this

buffer to the original entity that previously held this buffer (i.e. send or receive buffer for the

Thread interface). This process is depicted in Figure 3.2.

23



Figure 3.2. Thread interface interaction and ownership model with Tock cryptographic library.
The respective buffer that is to be encrypted or decrypted is passed to the AES128-CCM library
through a function which obtains ownership of the buffer. The dotted line signifies a later
time point at which the cryptographic operation is completed and a callback function returns
ownership of the respective buffer to the Thread Interface. A and B each depict operation for the
send / receive buffer.

3.2 Acknowledgments

IEEE 802.15.4 incorporates acknowledgments in which a transmitted packet can specify

if the receiver should respond and acknowledge the receipt of a packet. This is determined using

an Acknowledge Request bit flag in the 15.4 header frame control field. If a received packet

requests to be acknowledged, the receiver must send a response acknowledgement (ACK) within

the IEEE 802.15.4 standard’s prescribed time window, t, such that: 192µs < t < 512µs [9].

Many 15.4 radios implement ACK generation in hardware (auto-ACK). However, the

nrf52840 radio used for developing and testing a Tock Thread network did not possess auto-

ACK capabilities. The lack of acknowledgements for the nrf52840 hardware platform created

numerous Thread related complications as 15.4 prescribes resending unacknowledged packets.

In practice, this resulted in Thread repeatedly sending parent requests and repeatedly timing out

the requests as the sent requests were not acknowledged. The state machine for how Thread

sends a parent request when attaching a child is depicted in Figure 3.3.
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Figure 3.3. Visualization of Thread state machine for sending parent request.

Because not sending acknowledgements resulted in failed parent requests, implementing

ACK support for the nrf52840 radio was a requirement for Tock to support Thread. Given

the nrf52840’s lack of hardware auto-ACK, adding ACK support to the nrf52840 required the

implementation of a software auto-ACK. Tock utilizes a generic hardware abstraction such

that the radio object the kernel interacts with appears uniform despite underlying hardware

inhomogeneities. Subsequently, any software auto-ACK must be implemented in a radio specific

driver (as other radios support hardware auto-ACK).

The narrow IEEE 802.15.4 ACK timing window created immediate implementation

challenges to transmit an ACK within the 512µs upper bound. A software implementation

must complete the following steps in 512µs: receive the packet, parse the input (to check if the

ACK bit flag is set), transition the radio from receive to transmit mode, and then send an ACK

packet. Accomplishing this timing required a major optimization of the nrf52840 radio driver,

but ultimately resulted in meeting the timing requirement for sending ACKs. This was primarily
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achieved by waiting to pass the received packet to the networking stack until after the ACK was

transmitted and optimizing the radio’s state machine.

To fit into Tock’s execution model, the auto-ACK was implemented in the bottom half

interrupt handler. This creates the obvious complication that an unrelated interrupt may assume

control and block, leading to the auto-ACK missing the time bound. However, this potential

failure mode was deemed acceptable as 15.4 is inherently designed to handle failed transmission

(i.e. not receiving ACK). Furthermore, this case has not presented complications across extensive

testing of joining a Thread network and sending 15.4 packets.

3.3 Thread Capsule

Implementing MLE encryption, link layer encryption, and ACKs provides all necessary

components for implementing a Thread capsule. The Thread capsule was generally structured

to possess a receiving buffer, sending buffer, a reference to the cryptographic tooling, and an

interface to the UDPMux. This allows a Thread capsule to register as both a receiver and client

and encrypt the necessary packets. Notably, this capsule implementation does not provide control

over 15.4 properties such as the radio channel. This is a drawback of the current implementation.

The current Thread capsule is capable of successfully attaching a Tock child device to a

Thread router. This is coordinated and controlled through a Thread state machine depicted in

Figure 3.4. The Thread state machine works in conjunction with alarms to time out stale requests

and prevent race conditions. As a whole, the Thread capsule generates, encrypts, and sends a

parent request, followed by handling a receive callback from the UDPMux receiver. The Thread

capsule driver currently exposes only one system call command to userspace: initiating a Thread

parent request. 1

1The entirety of the Tock Thread capsule has been merged into upstream Tock and can be viewed in the Tock
github repository (https://github.com/tock/tock). Within the repository, the source code for this capsule is found
within /capsules/extra/src/net/thread.
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Figure 3.4. Visualization of the Thread state machine implemented in the Thread capsule.

3.4 Evaluation

The Tock Thread network implementation was evaluated against an OpenThread network.

This testing served to confirm interoperability between the Tock Thread device and a production-

grade, certified Thread device. To confirm this interoperability, we attempted to attach the Tock

device to an OpenThread router and evaluate if the router device recognized the Tock device as

an attached child. This was first measured using Wireshark and a dongle to sniff Thread packets.

Through this, we observed a child attachment between the Tock child and OpenThread router

that matched the behavior described in the Thread specification. The Wireshark captured traffic

is displayed in Figure 3.5.

Although observing transmitted packets in joining the Thread network provides proof of
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Figure 3.5. Wireshark capture depicting Thread packets exchanged between Tock child
and OpenThread router. The Tock child has the address fe80::a0b5:a691:ee42:5636. The
OpenThread router has the address fe80::a4c1:d479:21cf:8c6.

interoperability, we can better evaluate the success of the child attaching to the router through

the router’s child table. OpenThread provides a command line interface for interacting with a

device’s OpenThread network. As part of the command line interface, there exists a command to

display all children connected to the router. The OpenThread’s child table is shown in Figure

3.6. In this child table, we observe that the Tock child device has successfully attached to the

OpenThread router.

Figure 3.6. OpenThread Router child table depicting the empty child table prior to the Tock
device attaching and the populated child table after the Tock child device’s attachment.

Together, Figures 3.5 and 3.6 show the Tock Thread network’s ability to attach as a child

to the OpenThread router. These results demonstrate Tock’s Thread compliance to attach to

a parent device; subsequently we demonstrate that Tock possesses Thread interoperability for

child-parent attachment.
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Chapter 4

Future Work and Conclusions

From this work, Tock now supports a minimal Thread implementation to successfully

attach a Tock child device to an OpenThread router. Furthermore, this work provides an interface

design to maintain network layer abstractions while simultaneously providing the needed control.

Using these achievements and gleaned insights, two primary paths for future work are detailed

below.

4.1 Permission Model

A multi-tenant network stack introduces numerous permission challenges as varied

applications may wish to configure the radio differently. The current Thread implementation does

not account for these concerns. Furthermore, Tock currently ignores radio channel permission

concerns and does not expose this functionality.

Future work should investigate how best to allocate resources that are inherently unable

to be shared (i.e. the channel the radio uses). Tock provides the capability mechanism for

controlling elevated permissions. Tock capabilities are a unique data structure that are enforced

using type checking and prevented from being created by using the Rust unsafe label. Subse-

quently, capabilities can only be created and assigned within kernel compilation. Although

capabilities provide an ideal mechanism for handling kernel / capsule elevated permissions,

future investigation will be required for distinguishing and allocating elevated permission to user
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applications.

4.2 OpenThread User Process

The described Tock Thread implementation was completed using a kernel capsule. This

was a simpler initial implementation as it removed the risk of timing latency due to system calls.

This timing concern is particularly pronounced in light of Thread’s strict timing requirements

and Tock’s design fundamentally not providing timing guarantees. Furthermore, a user process

Thread implementation would require interprocess communication to allow multiple processes

access to the Thread network, adding yet another layer of complexity. In total, these complexities

justified an initial proof of concept Thread implementation and network interface existing in the

kernel.

Despite the above concerns and challenges, there exists ample benefits for a user process

Thread implementation; namely the ability to use OpenThread. Tock, emphasizing security,

disallows kernel imports of external dependencies. In turn, this implies that any kernel Thread

implementation would require a bespoke implementation of Thread based upon the the Thread

standard. Fully completing such an implementation for the more complicated router node type

would constitute a herculean effort. This effort, however, can be potentially avoided through

porting OpenThread to Tock as a user process (user processes are entirely untrusted in Tock

and subsequently fully allow external dependencies). Regardless of this security policy, the

Tock kernel is implemented in Rust while OpenThread is implemented in C. An OpenThread

user process also avoids the complication of translating OpenThread to Rust as Tock supports C

applications.

The steps required to port OpenThread to a new platform are as follows [27]:

• IEEE 802.15.4-2006 2.4 GHz radio

– Send and receive IEEE 802.15.4 frames
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– Generate IEEE 802.15.4 Acknowledgment frames

– Provide Received Signal Strength Indicator (RSSI) measurements on received frames

• A millisecond-resolution free-running timer with alarm

• Non-volatile storage for storing network configuration settings

• A true random number generator (TRNG)

The current kernel Thread implementation demonstrates the viability of Tock’s 15.4

capabilities. The three remaining requirements would necessitate additional testing and devel-

opment, but are achievable. Providing Tock with an OpenThread port would provide a unique

combination of Tock’s security guarantees in addition to the production grade Thread stack

OpenThread implements.

4.3 Conclusions

Through this work, Tock now offers limited Thread support. Implementing and interfac-

ing Thread to Tock’s existing network stack provided insights that an “alongside” and “petitioned

control” Thread interface functions well for integrating Thread into an existing network stack.

However, this conclusion must be caveated for network stacks under load and in resource

demanding applications as this remains untested.

Beyond these primary conclusions, this work demonstrated that a software platform’s

presence of building blocks does not necessarily equate with these building blocks being usable.

For instance, Tock in theory appeared to support IEEE 802.15.4 acknowledgments and link

layer encryption. In practice, however, these features in Tock were not usable “as is” for

a robust Thread application. This discrepancy demonstrates the need for software platform

studies to assess the maturity of components rather than simply investigating for the presence of

components.
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