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A Bayesian Framework for Non-Collapsible
Models

Sepehr Akhavan Masouleh, Babak Shahbaba,
and Daniel L. Gillen

Department of Statistics, University of California, Irvine

July 9, 2018

Abstract

In this paper, we discuss the non-collapsibility concept and propose a new ap-
proach based on Dirichlet process mixtures to estimate the conditional effect of co-
variates in non-collapsible models. Using synthetic data, we evaluate the performance
of our proposed method and examine its sensitivity under different settings. We also
apply our method to real data on access failure among hemodialysis patients.

Keywords: Dirichlet process mixture models; Survival analysis; Generalized linear models

1

ar
X

iv
:1

80
7.

02
24

4v
1 

 [
st

at
.M

E
] 

 6
 J

ul
 2

01
8



1 Introduction

Statistically, non-collapsibility represents the setting where the marginal measure of as-

sociation between two random variables X and Y , differs from the conditional measure

of association between these two random variables, after conditioning upon the levels of a

third random variable Z, where Z is not a confounder, i.e., Z is associated with one random

variable but not the other (Greenland et al., 1999). In this situation, a careful attention

is required to properly interpret a conditional association as opposed to a marginal asso-

ciation. Further, one should note that in the absence of confounding, both the marginal

association and the conditional association, despite being different, are unbiased. Hence, a

clear distinction between confounding and non-collapsibility is required.

Similarly, non-collapsibility exists in a regression setting when the marginal association

between a predictor variable, X, and a response variable, Y , differs from the conditional

association in a separate regression model where a third variable Z is adjusted in the model.

As before, we assume that Z is not a confounder so it is only associated with the response

variable.

In general, one needs to consider the relative importance of estimating the marginal

association between the two random variables X and Y , in contrast to the conditional

association given a third random variable Z. When Z is observed, it is possible to heuris-

tically compare the difference between the marginal and the conditional associations by

simply comparing the adjusted and unadjusted estimated associations. However, when Z

is latent, analysts generally default to estimating a marginal association without giving any

thoughts to the relative merits of the two estimands.

In longitudinal studies, non-collapsibility has especially garnered some attention when

comparing the estimates from the generalized linear mixed model with the estimates from
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the generalized estimating equation model, where the former provides conditional estimates

that are conditioned upon the subject-specific random effects, and the latter provides es-

timates that are marginalized over all subjects. Longitudinal data can be considered as a

special case of the repeated measure data with measurements indexed by time. We shall

use the words “longitudinal data” and “repeated measure data” interchangeably.

As a simple case, one may consider n subjects, each with li within subject measurements

with Yij and tij as the outcome and the covariate for the jth measurement on the ith subject,

respectively. One can write a generalized linear mixed effect model with random intercepts

of the form

E[Yij|tij, β0i] = µij,

where the mean µij and the covariate tij and the subject-specific random intercept β0i are

linked using a link function g(.), where

g(µij) = β0i + β0 + β1tij. (1)

In this model, β0 and β1 are intercept and slope that are shared across all subjects. In a

typical mixed effects model, β0i, where i ∈ {1, . . . , n}, are assumed to be independent and

Normally distributed. Under this model setting, conditioned upon the subject-specific ran-

dom intercepts, β0i, β1 represents the conditional association between the random variable

t and the outcome, Y .

Alternatively, one may consider a model of the form

E[Yij|tij] = ηij,

where the mean ηij is related to the covariate tij through a link function g(.), where

g(ηij) = γ0 + γ1tij. (2)
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In this model, γ0 is the intercept and γ1 is the slope where both are shared across all

subjects. Under this model setting, γ1 represents the marginal association between the

covariate t and the outcome, Y .

Generally, even with random intercepts with no confounding effect, the conditional

covariate effect β1 (equation (1)) and the marginal covariate effect γ1 (equation (2)) need

not be equal. Several authors including Gail et al. (1984), Gail (1986) showed that with

non-confounding subject-specific random intercept, β0i, β1 is guaranteed to be collapsible,

if g(.) is either the identity link or the log link. That means with the identity or the log link

and in the absence of confounding, equality of the conditional covariate effect β1 and the

marginal covariate effect γ1 is guaranteed. Hence, we are primarily interested in studying

non-collapsibility in logistic and proportional hazards models.

To show the non-collapsibility effect in the logistic regression model, we generated syn-

thetic data, where we considered three different groups with different intercepts of β01 = −2,

β02 = 0, β03 = 2. Independently of the intercepts, we generated covariate X, where X is

simulated from the standard Normal N(µ = 0, σ2 = 1). Using the a logistic link and with a

true coefficient values of β1 = 2, we generated binary outcomes. We then fit a conditional

model of the form

logit[E(Yij|Xij, β0i)] = β0i + β0 + β1Xij,

where Yij is a binary outcome for the jth measurement on the ith cluster, Xij is the covariate

value corresponding to the outcome Yij, and β0i is the true value of the cluster-specific

intercept that is directly adjusted in the model. We also fit a marginal model of the form

logit[E(Yij|Xij)] = γ0 + γ1Xij.

After fitting the conditional and the marginal models above, we plot the results, where the

x-axis is the covariate values and the y-axis is the predicted probability of Y = 1. In this
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plot, the red curve shows the predicted values from the marginal model and the three black

curves show the predicted values from the conditional each corresponding to a sub-group.

As Figure 1 shows, the marginal slope that is averaged across sub-groups (γ1) is smaller

than the stratum-specific slope (β1). This plots clearly shows non-collapsibility in logit

link.

Figure 1: Graphical representation of non-collapsibility in logistic regression using synthetic

data. Synthetic binary data were generated with three sub-groups with different intercept

of β01 = −2, β02 = 0, β03 = 2. Independently of the intercepts, covariate X was simulated

from the standard Normal N(µ = 0, σ2 = 1). This figure shows that the marginal slope (in

red) is smaller than the stratum-specific slope (in black).

As Figure 1 shows, the marginal coefficient estimand γ1 is shrunk towards the null

hypothesis of no covariate effect compared to the conditional coefficient estimand β1. When
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random intercepts are latent, even under the conditional generalized linear mixed effects

model (equation (1)), the coefficient estimate β̂1 may shrink towards 0 compared to the

true conditional estimand and that is when the distribution of the random intercepts are

mis-specified. One such example is a random intercept model with true random intercepts

distributed according to a bi-modal distribution. In this situation, coefficient estimates

under a model that assumes random intercepts are distributed Gaussian, may still attenuate

towards 0 compared to the true conditional coefficients.

Similar to the logistic regression models, proportional hazards models are also non-

collapsible. Let Tij denote the jth survival time for the ith cluster. One example of such

repeated measure survival data is the survival data on access failure among hemodialysis

patients where each patient may have multiple access failures. Let Xij be the covariate

corresponding to the Tij survival outcome. One can write a multiplicative hazard function

of the form

h(Tij|Xij, β0i) = h0(Tij)exp{β0i + β1Xij},

where h(Tij|Xij, β0i) is the hazard at time Tij, h0(Tij) is the baseline hazard at time Tij,

exp{β0i} is the frailty term including latent cluster-specific baseline hazard multipliers, and

β1 is the log relative risk of the effect of the covariate Xij on the risk of “death”. Under this

model setting, β1 is the conditional relative risk of the covariate Xij that is conditioned on

the frailty them exp{β0i}.

Alternatively, a marginal proportional hazards model is of the form

h(Tij|Xij) = h0(Tij)exp{γ1Xij},

where h(Tij|Xij) and h0(Tij) are hazard and baseline hazard at time Tij, respectively. γ1

represents the marginal log relative risk of the effect of every one unit changes in the
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covariate Xij on the risk of “death”. As we shall show with synthetic data, proportional

hazards models are non-collapsible where the marginal parameter γ1 shrinks toward 0

compared to the conditional parameter β1.

In this paper, we explore non-collapsibility in longitudinal data when there exists latent

subject-specific random intercepts. For non-collapsible logistic regression and proportional

hazards models, we propose Dirichlet process mixture models (Antoniak, 1974; Sethuraman,

1994) that are capable of detecting underlying structure of data by clustering units of

analysis into sub-clusters based on the distributional similarities of those units. We believe

that our approach can provide insights into conditional associations between the response

variable and a set of covariates given population subgroups. Using simulation studies, we

compare our proposed models with the common statistical models to analyze longitudinal

data. Finally, we use our proposed models to analyze data on hemodialysis patients in

order to find risk factors associated with access failure among these patients.

2 Methods

With the focus on logistic regression and the proportional hazards models, and in the

context of modeling correlated longitudinal data where repeated measures on sampling units

are collected over time, we propose Dirichlet process mixture models capable of estimating

conditional covariate effects when there exists latent sub-population effects. In Section 2.1,

we introduce our proposed Bayesian logistic model, and in Section 2.2 we introduce our

proposed Bayesian proportional hazards model.
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2.1 A Bayesian Hierarchical Logistic Regression with Dirichlet

Process Mixture Priors

The logistic link is non-collapsible. This means, when there exists latent population sub-

group effects in the form of random intercepts, failure to adjust for these subgroup effects

leads to coefficient estimates that are shrunk toward 0 compared to the true conditional

estimands from a separate model with those latent random intercepts taken into account.

Generalized linear mixed effects models are capable of modeling random intercepts where

they typically assume random intercepts to be distributed according to a Gaussian distri-

bution, however, distributional mis-specification of the random intercepts may still cause

coefficient estimates to shrink. A model capable of detecting subgroup random intercepts,

that is also robust to distributional mis-specification of random intercepts, can provide the

merits of estimating the conditional coefficient estimates.

We propose a hierarchical Bayesian model that is capable of detecting latent subgroup

effects that are in the form of latent random intercepts. The models is capable of estimating

conditional parameters. Using a Dirichlet process mixture prior, our proposed model is

robust to distributional mis-specification of the random intercepts. In our proposed model,

we consider the binary data Yij to be distributed according to

Yij|β0i, β0, β1, Xij ∼ Bernoulli(pi = β0i + β0 + β1Xij),

where i ∈ {1, . . . , n} and j ∈ {1, . . . , li} with n as the number of subjects and li as

the number of measurements on the ith subject, Xij is the corresponding covariate to the

outcome Yij, β0i is the subject-specific intercept for subject i, and β0 and β1 are the intercept

and the slope that are shared across all subjects, respectively. We consider Gaussian priors
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on the shared intercept β0 and the shared slope β1 of the form

β0 ∼ N(0, σ2
β0

),

β1 ∼ N(0, σ2
β1

).

We propose using the Dirichlet process mixture prior on the random intercepts β0i, where

i ∈ {1, . . . , n} with n as the number of subjects in the data. Using the Dirichlet process

mixture prior, as opposed to an explicit distributional assumption, will make the model

robust to distributional mis-specification. Further, DPM prior will allow subjects to cluster

based on the distributional similarities of their latent random intercepts, hence, provides

higher precision in estimating those latent subject effects. We specify a Dirichlet process

mixture prior on β0i as

β0i ∼ N(µi, σ
2
β0i

),

µi|G ∼ G, (3)

G ∼ DP (α,G0 = N(0, σ2
0)).

The Dirichlet process mixture prior above induces a prior on β0i that is essentially an

infinite mixture of Normal distributions that are mixed over the mean parameter. We shall

refer to this model as a Mean-DPM model. Alternatively, one may set a Dirichlet process

prior that induces an infinite Gaussian mixture prior that are mixed over the standard

deviation parameter. Such a prior can be specified as

β0i ∼ N(0, σ
2(i)

β
(i)
0

),

σ
2(i)

β
(i)
0

|G ∼ G, (4)

G ∼ DP (α,G0 = log −Normal(µG0 , σ
2
G0

)).

We shall refer to this model as Sigma-DPM model.
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2.2 A Bayesian Hierarchical Proportional Hazards Model with

Dirichlet Process Mixture Priors

Similar to the logistic regression models, proportional hazards models are also non-collapsible.

When there exists differential subject-specific baseline hazard risk, even in the absence of

confounding in the baseline hazard risks, failure to adjust for these subject-specific baseline

risks in a proportional hazards model leads to coefficient estimates that are shrunk toward

0 compared to the true conditional estimands from a separate model with those latent

baseline risks taken into account. In this situation, a proportional hazards model that is

capable of detecting subject-specific baseline hazards, can provide the merits of estimating

the conditional coefficient estimates.

We propose a hierarchical Bayesian proportional hazards model that is capable of de-

tecting the differential subject-specific baseline hazard risk across subjects. Our proposed

model uses a Dirichlet process mixture prior on the latent subject-specific baseline hazards.

The Dirichlet process mixture prior allows clustering subjects based on the distributional

similarities of their baseline hazards. Further, by using the Dirichlet process mixture prior,

we avoid any explicit distributional assumption on the latent subject-specific baseline haz-

ards. In our proposed model, we consider survival times Tij, where i ∈ {1, . . . , n} and

j ∈ {1, . . . , li} with n as the number of subjects and li as the number of measurements on

the ith subject, to be distributed according to a Weibull distribution of the form

Tij|τ, β0i, β0, β1, Xij ∼ Weibull(τ, θi),

log(θi) = β0i + β0 + β1Xij,

where Xij is the covariate value corresponding to the Tij survival time, exp{β0i} is a subject-

specific baseline hazard, β0 is a shared intercept across all subjects, β1 is a shared slope

across all subjects that represents the log relative risk of every one unit increase in the
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covariate Xij, τ is the shape parameter, and θi is a subject-specific scale parameter. In

the model specification above, we introduced covariates into the model through the scale

parameter and using the equation log(θi) = β0i + β0 + β1Xij. For our proposed model, we

consider Gaussian priors on β0 and β1 parameters as

β0 ∼ N(0, σ2
β0

),

β1 ∼ N(0, σ2
β1

),

where σβ0 and σβ1 are fixed numbers. We also assume a log-Normal prior on the shape

parameter, τ , as

τ ∼ log −Normal(µτ , σ2
τ ),

with µτ and σ2
τ as fixed numbers.

We use a Dirichlet process mixture prior for the subject-specific β0i parameters as

β0i ∼ N(µi, σ
2
β0i

)

µi|G ∼ G, (5)

G ∼ DP (α,G0 = N(0, σ2
0)).

The Dirichlet process mixture prior above is essentially an infinite mixture of Normal

distributions that are mixed over the mean parameter. We shall refer to this model with

the Mean-DPM proportional hazards model. Alternatively, we propose a Dirichlet process

mixture model that induces an infinite Normal distributions mixed overt the standard

deviation parameter. This Dirichlet process prior can be written as

β0i ∼ N(0, σ
2(i)
β0i

),

σ
2(i)
β0i
|G ∼ G, (6)

G ∼ DP (α,G0 = log −Normal(µG0 , σ
2
G0

)).
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We shall refer to this new model with the above Dirichlet process mixture prior as Sigma-

DPM proportional hazards model.

3 Simulation Studies

Using simulation studies, we investigate non-collapsibility in logistic regression and propor-

tional hazards models. We consider three simulation scenarios: one when subject-specific

intercepts are sampled independently from the standard Normal N(µ = 0, σ2 = 1), another

when subject-specific intercepts are sampled from a mixture distribution of the form

β0i
iid∼ θiN(µ = −1.5, σ2 = 1) + (1− θi)N(µ = 1.5, σ2 = 1),

where θi ∼ Bernoulli(p = 0.5) with i ∈ {1, . . . , n} where n is the number of subjects.

Finally, in the third scenario subject-specific intercepts are sampled from a mixture distri-

bution of the form

β0i
iid∼ θiN(µ = 0, σ2 = 1) + (1− θi)N(µ = 0, σ2 = 5),

where θi ∼ Bernoulli(p = 0.5) for i ∈ {1, . . . , n}.

We compare parameter estimation between our proposed models and some common

statistical models used to analyze repeated measure binary data and survival data. For

every simulation scenario, we run 1,000 simulations each with 300 subjects and 12 within-

subject measurements per subject.

3.1 Logistic Regression Models

Unlike linear and log links, logistic link is not collapsible. In this section, using synthetic

data we compare parameter estimation under our proposed Mean-DPM and Sigma-DPM
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Bayesian hierarchical logistic regressions we use the following common statistical models

to analyze repeated measure binary data:

• Generalized linear model with a logit link (GLM): We fit a frequentist GLM model

with the logit link. This technique ignores the correlation between within-subject

measurements. Further, this model does not account for any subject-specific effect.

Due to the ignorance of within subject correlations in this model, standard error

for the estimated coefficients tend to underestimate the true standard error once the

within subject correlation is taken into account.

• Generalized estimating equation (GEE): Instead of a simple generalized linear model

with the logit link where all within-subject measurements are treated as independent

measures, one can use the generalized estimating equation framework to account

for the correlation between within-subject measurements. Despite accounting for the

correlation between measurements taken on the same subject, GEE does not consider

any subject-specific random effect.

• Generalized linear mixed effects model (GLMM): We also fit the frequentist gener-

alized linear mixed effects model with subject-specific random intercepts to model

binary data. GLMM is capable of taking the correlation in with-subject measure-

ments into account. Further, GLMM is also capable of estimating subject-specific

random intercepts with the assumption that the random intercepts are Normally

distributed.

• Bayesian logistic regression: We also consider a Bayesian logistic regression model

with a likelihood of the form

Yij|β0, β1, Xij ∼ Bernoulli(pi = β0 + β1Xij),

13



where Yij is the outcome of the jth measurement on the ith subject, Xij is the measured

covariate corresponding to Yij outcome, and β0 and β1 are intercept and slope. We

assume priors of the form

β0 ∼ N(0, σ2
β0

),

β1 ∼ N(0, σ2
β1

),

where σβ0 and σβ1 are fixed numbers.

• Hierarchical Bayesian logistic regression model: Analogous to the the GLMM model

to analyze binary data, one can setup a Bayesian hierarchical model with a likelihood

of the form

Yij|β0i, β0, β1, Xij ∼ Bernoulli(pi = β0 + β1Xij),

where Yij is the outcome of the jth measurement on the ith subject, Xij is the measured

covariate corresponding to Yij outcome, β0i is the subject-specific random intercepts

where i ∈ {1, . . . , n} with n as the number of subjects in the data, and β0 and β1 are

intercept and slope. We assume Gaussian priors on subject-specific random intercepts

β0i of the form

β0i ∼ N(0, σ2
β0i

),

where i ∈ {1, . . . , n}. Also, Gaussian priors are assumed on coefficients β0, and β1 of

the form

β0 ∼ N(0, σ2
β0

),

β1 ∼ N(0, σ2
β1

),

where σβ0 and σβ1 are fixed numbers.
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Figure 2 shows the histogram of the posterior median of µi, where i ∈ {1, . . . , n} from the

proposed Mean-DPM hierarchical Bayesian logistic model, where µi is the subject-specific

prior mean on the random intercept of subject i (equation (3)). Under each simulation

scenario, we simulated a single dataset with 300 subjects each with 12 within-subject

measurements and applied our proposed Mean-DPM model. The plot to the left shows a

histogram of the posterior median of µi when data are simulated with random intercept

β0i sampled from the standard Normal N(µ = 0, σ2 = 1). As the histogram shows, most of

the posterior medians are close to zero. The histogram in the model shows the distribution

of the posterior median µi when data are simulated with random intercepts sampled from

mixture of two Normal distributions of the form θiN(µ1 = −1.5, σ2 = 1) + (1− θi)N(µ1 =

1.5, σ2 = 1), where θ is distributed Bernoulli with parameter p = 0.5. As the histogram in

the middle shows, posterior medians are bi-modal where modes are around the true values of

-1.5 and 1.5. Finally, the histogram to the right shows the posterior median of µi when data

are simulated with random intercepts sampled from mixture of two Normal distributions

of the form θiN(µ = 0, σ2
1 = 1) + (1 − θi)N(µ = 0, σ2

2 = 5). Due to the differences in the

standard deviations, one may expect the histogram to be spread more widely compare to

the first scenario, nonetheless, posterior medians are still centered around the true mean

of 0.

Figure 3 shows the histogram of the posterior median of σi, where i ∈ {1, . . . , n} from the

proposed Sigma-DPM hierarchical Bayesian logistic model, where σi is the subject-specific

prior standard deviation on the random intercept of subject i (equation (4)). Under each

simulation scenario, we simulated a single dataset with 300 subjects each with 12 within-

subject measurements and applied our proposed Sigma-DPM model. The plot to the left

shows a histogram of the posterior median of σi when data are simulated with random

intercept β0i sampled from the standard Normal N(µ = 0, σ2 = 1). As the histogram
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Figure 2: Histogram of the posterior median of µi’s from the proposed Mean-DPM hierar-

chical Bayesian logistic model, where µi is the subject-specific prior mean on the random

intercept of subject i. The plot to the left is the histogram of the posterior median of

the sampled µi from the model when it runs under the first simulation scenario where

all random intercepts are sampled from the standard Normal distribution. The plot in

the middle shows the histogram of the posterior medians of µi’s under the second sce-

nario where random intercepts are sampled from a mixture of two Normal distributions

of N(µ1 = −1.5, σ2 = 1) and N(µ1 = 1.5, σ2 = 1) that are equally weighted. The plot

to the right is the histogram of the posterior medians under the third simulation scenario

where the random intercepts are simulated from the mixture of two Normal distributions

of N(µ = 0, σ2
1 = 1) and N(µ = 0, σ2

2 = 5). Results, under each simulation, are from one

single simulated data with N = 300 subjects and li = 12 within subject measurements.

shows, most the posterior medians are close to 1. The histogram in the model shows the

distribution of the posterior median σi when data are simulated with random intercepts

sampled from mixture of two Normal distributions of the form θiN(µ1 = −1.5, σ2 = 1) +
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(1 − θi)N(µ1 = 1.5, σ2 = 1), where θ is distributed Bernoulli with parameter p = 0.5. As

the histogram in the middle shows, posterior medians are uniformly distributed from 3.18

to 3.28. This results make sense as now the data is widely spread with two distinct mean

with a distance of 3. Our Sigma-DPM model with prior mean 0 on random intercepts has

to have a larger standard deviation to provide a prior to cover all plausible subject-specific

random intercepts β0i. Finally, the histogram to the right shows the posterior median of

σi when data are simulated with random intercepts sampled from mixture of two Normal

distributions of the form θiN(µ = 0, σ2
1 = 1) + (1 − θi)N(µ = 0, σ2

2 = 5). It seems that in

this case, the model converged to a standard deviation that is close σ2 =
√

5. This makes

sense since a when a random intercept β0i is plausible under the prior N(0, σ2
1), it’s also

plausible under a prior with larger standard deviation. Hence, posterior medians converged

to a large standard deviation that is plausible according to the random intercepts sampled

from N(0, σ2
2 = 5).

While Figure 2 and Figure 3 show the performance of our proposed models in estimating

prior mean and prior standard deviation of the random intercepts, β0i, however, the main

interest is on evaluating the performance of the model on estimating the actual random

intercepts. Figure 4 provides a grid of scatter plots each shows the relation between the

true random intercept value and the posterior median or the estimate of random intercepts.

As one can see in the plot, when random intercepts are Normally distributed according to

the standard Normal N(µ = 0, σ2 = 1) distribution, in terms of estimating the latent

random intercepts, our proposed Mean-DPM and Sigma-DPM models work equally well

as the GLMM model and the hierarchical Bayesian logistic model with explicit Normal

assumption on the random intercepts. When the reference distribution of the sampled

random intercepts is not Normal, our proposed Mean-DPM and Sigma-DPM models that

are robust to distributional mis-specification of the random intercepts, outperform the
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Figure 3: Histogram of the posterior median of σi’s from the proposed Sigma-DPM hier-

archical Bayesian logistic model, where σi is the subject-specific prior standard deviation

on the random intercept of subject i. The plot to the left is the histogram of the posterior

median of the sampled σi from the model when it runs under the first simulation scenario

where all random intercepts are sampled from the standard Normal distribution. The plot

in the middle shows the histogram of the posterior medians of σi’s under the second sce-

nario where random intercepts are sampled from a mixture of two Normal distributions

of N(µ1 = −1.5, σ2 = 1) and N(µ1 = 1.5, σ2 = 1) that are equally weighted. The plot

to the right is the histogram of the posterior medians under the third simulation scenario

where the random intercepts are simulated from the mixture of two Normal distributions

of N(µ = 0, σ2
1 = 1) and N(µ = 0, σ2

2 = 5). Results, under each simulation, are from one

single simulated data with N = 300 subjects and li = 12 within subject measurements.

GLMM and the hierarchical Bayesian logistic regression in terms of estimating the latent

random intercepts.

As tables (1), (2), and (3) show, coefficient estimates under marginal Bayesian model
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and marginal frequentist GLM and GEE shrank toward the 0 compared to the true con-

ditional value. The fact that in table (1) coefficient estimates under both GLM and GEE

are the same is not surprising as we are using balanced data with the canonical link. By

taking sub-group intercepts into account, coefficient estimates from the generalized lin-

ear mixed effect model and the hierarchical Bayesian model with Normal prior on the

random intercepts are closer to the true conditional estimand compared to the marginal

models. However, the coefficient estimate under these models still shrink toward no 0.

The amount of shrinkage is larger under the second and the third scenarios when the dis-

tribution of random intercepts is mis-specified. Our proposed Dirichlet process mixture

models, however, are capable of detecting sub-group intercepts and are robust to distribu-

tional mis-specification of the random intercepts. Coefficient estimates from our proposed

models lead to the minimum mean squared error (MSE) in estimating the true conditional

coefficient value.

βx = 1.000 SD MSE

GLM 0.845 0.031 0.025

GEE 0.845 0.031 0.025

Bayesian Logistic Reg. 0.847 0.031 0.025

GLMM 0.951 0.032 0.004

Hierarchical Bayes Logistic Reg. 0.947 0.035 0.005

Mean-DPM Hierarchical Logistic Reg. 1.001 0.036 0.001

Sigma-DPM Hierarchical Logistic Reg. 1.003 0.037 0.001

Table 1: Binary data generated with random intercepts that are distributed according to

the standard Normal distribution N(µ = 0, σ2 = 1). Results are from 1, 000 different

simulated data each with N = 300 subjects and li = 12 within subject measurements.
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βx = 1.000 SD MSE

GLM 0.626 0.027 0.141

GEE 0.627 0.275 0.140

Bayesian Logistic Reg. 0.626 0.027 0.141

GLMM 0.938 0.034 0.005

Hierarchical Bayes Logistic Reg. 0.931 0.033 0.006

Mean-DPM Hierarchical Logistic Reg. 1.006 0.042 0.002

Sigma-DPM Hierarchical Logistic Reg. 0.978 0.042 0.002

Table 2: Binary data generated with random intercepts that are distributed according to a

mixture distribution of the form θiN(µ = −1.5, σ2 = 1)+(1−θi)N(µ = 1.5, σ2 = 1), where

θi are distributed Bernoulli with parameter p = 0.5. Results are from 1, 000 different

simulated data each with N = 300 subjects and li = 12 within subject measurements.

3.2 Proportional Hazards Survival Models

To explore non-collapsibility in proportional hazards models and to compare coefficient

estimation under our proposed Mean-DPM and Sigma-DPM models with common propor-

tional hazards models, we consider the following proportional hazards models:

• The frequentist Cox model: We fit the frequentist Cox proportional hazards model.

This model assumes an overall baseline hazards for all subjects. Using the partial

likelihood techniques, Cox model does not need any baseline hazard specification as

that measure gets canceled out during the estimation process. The Cox frequentist

model does not take the differential baseline hazards across subjects into account.

In fitting the Cox model, we take the within subject correlation between multiple

within-subject measurements into account using the approach proposed by Lee et al.

20



βx = 1.000 SD MSE

GLM 0.702 0.028 0.090

GEE 0.701 0.030 0.090

Bayesian Logistic Reg. 0.700 0.028 0.091

GLMM 0.946 0.033 0.004

Hierarchical Bayes Logistic Reg. 0.935 0.034 0.005

Mean-DPM Hierarchical Logistic Reg. 0.998 0.041 0.001

Sigma-DPM Hierarchical Logistic Reg. 0.994 0.040 0.001

Table 3: Binary data generated with random intercepts that are distributed according to a

mixture distribution of the form θiN(µ = 0, σ2 = 1)+(1−θi)N(µ = 0, σ2 = 5), where θi are

distributed Bernoulli with parameter p = 0.5. Results are from 1, 000 different simulated

data each with N = 300 subjects and li = 12 within subject measurements.

(1992) where we first estimate model coefficients using the independent covariance

matrix and then we use a robust sandwich covariance matrix to account for within

subject correlation between measurements.

• Weibull accelerated failure time model (AFT): AFT models describe survival times

as a function of predictor variables. Generally, Weibull AFT models are of the form

log(Tij) = β0 + β1Xij + ε,

where Tij is the survival time for the jth measurement on the ith subject, Xij is the

corresponding covariate to the outcome Tij, and a random error ε such that Tijis

distributed according to a Weibull distribution with shape parameter τ and scale

parameter exp(λ). When there exists multiple measurements per subject, failure

to account for the correlation between within subject measurements leads to incor-
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rect estimated standard error of coefficients. In order to account for this intra class

correlations, we take the the approach proposed by Lee et al. (1992) where first coeffi-

cients in the model are estimated using an independent covariance structure between

within subject measurements and then a robust sandwich covariance matrix is used

to account for the within cluster correlations.

• Bayesian marginal proportional hazards model: We consider a Bayesian proportional

hazard model with a likelihood of the form

Tij|τ, β0, β1, Xij ∼ Weibull(τ, λi = β0 + β1Xij),

where Tij and Xij are the survival times and the measured covariate on the jth

measurement on the ith subject, τ is the shape parameter, β0 and β1 are the intercepts

and the slope with β1 as the log relative risk of death per every one unit change in

Xij. Similar to the previously introduced Weibull distribution for survival times, λi

is the log of the subject-specific scale parameter. We specify a log-Normal prior on

the shape parameter τ that is of the form

τ ∼ log −Normal(µτ , στ ),

where µτ and στ are fixed numbers. Also, β0 and β1 are assumed to have Gaussian

priors of the form

β0 ∼ N(0, σ2
β0

),

β1 ∼ N(0, σ2
β1

).

• Hierarchical Bayesian proportional hazards model: In order to account for the differ-

ential baseline hazard across subjects, one can consider a likelihood of the form

Tij|τ, β0i, β0, β1, Xij ∼ Weibull(τ, λi = β0i + β0 + β1Xij),
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where β0i can be considered as the subject-specific log baseline hazard. For this

model, we assume similar to priors as the one specified for the “Bayesian marginal

proportional hazards model”. Additionally, we assume β0i, where i ∈ {1, . . . , n}, to

have a Gaussian prior of the form:

β0i ∼ N(0, σ2
β0i

),

where σβ0i is a fixed number.

Figure 5 shows the histogram of the posterior median of µi, where i ∈ {1, . . . , n} from

the proposed Mean-DPM hierarchical Bayesian proportional hazard model, where µi is the

subject-specific prior mean on the subject-specific log baseline hazard of subject i, which

we represent it with β0i and for the sake consistency, we shall refer to it as the subject-

specific random intercept (equation (5)). Under each simulation scenario, we simulated a

single dataset with 300 subjects each with 12 within-subject measurements and applied

our proposed Mean-DPM model. The plot to the left shows a histogram of the posterior

median of µi when data are simulated with random intercept β0i sampled from the standard

Normal N(µ = 0, σ = 1). As the histogram shows, most the posterior medians are close

to zero. The histogram in the model shows the distribution of the posterior median µi

when data are simulated with random intercepts sampled from mixture of two Normal

distributions of the form θiN(µ1 = −1.5, σ2 = 1) + (1 − θi)N(µ1 = 1.5, σ2 = 1), where θ

is distributed Bernoulli with parameter p = 0.5. As the histogram in the middle shows,

posterior medians are bi-modal where modes are around the true values of -1.5 and 1.5.

Finally, the histogram to the right shows the posterior median of µi when data are simulated

with random intercepts sampled from mixture of two Normal distributions of the form

θiN(µ = 0, σ2
1 = 1) + (1 − θi)N(µ = 0, σ2

2 = 5). Due the the differences in the standard

deviations, one may expect the histogram to be spread more widely compare to the first
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scenario, nonetheless, posterior medians are still centered around the true mean of 0.

Figure 6 shows the histogram of the posterior median of σi, where i ∈ {1, . . . , n}

from the proposed Sigma-DPM hierarchical Bayesian proportional hazard model, where

σi is the subject-specific prior standard deviation on the random intercept of subject i

(equation (6)). Under each simulation scenario, we simulated a single dataset with 300

subjects each with 12 within-subject measurements and applied our proposed Sigma-DPM

model. The plot to the left shows a histogram of the posterior median of σi when data are

simulated with random intercept β0i sampled from the standard Normal N(µ = 0, σ = 1).

As the histogram shows, most the posterior medians are close to 1. The histogram in

the model shows the distribution of the posterior median σi when data are simulated

with random intercepts sampled from mixture of two Normal distributions of the form

θiN(µ1 = −1.5, σ = 1) + (1− θi)N(µ1 = 1.5, σ = 1), where θ is distributed Bernoulli with

parameter p = 0.5. As the histogram in the middle shows, posterior medians are uniformly

distributed from 3.18 to 3.28. This results make sense as now the data is widely spread

with two distinct mean with a distance of 3. Our Sigma-DPM model with prior mean 0 on

random intercepts has to have a larger standard deviation to provide a prior to cover all

plausible subject-specific random intercepts β0i. Finally, the histogram to the right shows

the posterior median of σi when data are simulated with random intercepts sampled from

mixture of two Normal distributions of the form θiN(µ = 0, σ1 = 1)+(1−θi)N(µ = 0, σ2 =
√

5). It seems that in this case, the model converged to a standard deviation that is close

σ2 =
√

5. This makes sense since a when a random intercept β0i is plausible under the prior

N(0, σ1), it’s also plausible under a prior with larger standard deviation. Hence, posterior

medians converged to a large standard deviation that is plausible according to the random

intercepts sampled from N(0, σ2 =
√

5).

Based on Figure 5 and Figure 6, our proposed models show good performance when
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estimating the prior mean and prior standard deviation of the random intercepts, β0i,

however, the main interest is on evaluating the performance of the proposed model on

estimating the actual random intercepts. In Figure 7, we provide a grid of scatter plots

each shows the relation between the true random intercept value and the posterior median

estimates of those random intercepts. As Figure 7 shows, when random intercepts are

distributed according to the standard Normal N(µ = 0, σ = 1) distribution, in terms

of estimating the latent random intercepts, our proposed Mean-DPM and Sigma-DPM

models work equally well as the the hierarchical Bayesian proportional hazard model with

explicit Normal assumption on the random intercepts. When the reference distribution

of the sampled random intercepts is not Normal, our proposed Mean-DPM and Sigma-

DPM models that are robust to distributional mis-specification of the random intercepts,

outperform the hierarchical Bayesian proportional hazard model in terms of estimating the

latent random intercepts β0i.

Tables 4, 5, and 6 show the results for the proportional hazards models. Coefficient

estimates under the Cox model, the Bayesian marginal model, and the Weibull AFT model,

all examples of marginal models, are smaller compared to the true conditional estimand

and the marginal coefficient estimate under these models shrink toward 0.

By taking the differential subject-specific baseline hazard into account, the hierarchical

Bayes model with the Normal prior on random intercepts β0i is capable of estimating

the true conditional estimand when the random intercepts are truly Normally distributed

(Table 4). However, the model is not robust to distributional mis-specification as under

the second and the third scenarios, the coefficient estimate of β1 shrank toward 0 (Table 5

and Table 6).

Finally, our proposed Mean-DPM and Sigma-DPM proportional hazards models assume

no explicit distributional assumption on the random intercepts, are capable of detecting
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subject-specific random intercepts, and are robust to distributional mis-specification of the

random intercepts. Hence, our proposed DPM proportional hazard models can estimate

the true conditional estimand.

βx = 1.000 SD MSE

Frequentist Cox Model 0.661 0.089 0.123

Weibull AFT 0.709 0.096 0.095

Bayesian Marginal Proportional Hazard Model 0.700 0.038 0.100

Hierarchical Bayesian Proportional Hazard Model 1.015 0.122 0.014

Mean-DPM Proportional Hazard Model 0.995 0.124 0.015

Sigma-DPM Proportional Hazard Model 0.999 0.122 0.016

Table 4: Time-to-event data generated with differential subject-specific log baseline hazards

induced by subject-specific random intercepts that are distributed according to a standard

Normal distribution N(µ = 0, σ2 = 1). Results are from 1, 000 different simulated data

each with N = 300 subjects and li = 12 within subject measurements.

4 Sensitivity Analysis

Using synthetic data, we showed that our proposed Mean-DPM and Sigma-DPM are ca-

pable of estimating latent cluster-specific intercepts and are robust to distributional mis-

specification. Based on the simulation results presented in Section 3, in terms of MSE

of estimating conditional coefficients, our proposed models outperform common frequen-

tist and Bayesian models to analyze repeated measure binary data and survival data. In

this section, we are interested in testing the sensitivity of our proposed Mean-DPM and
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βx = 1.000 SD MSE

Frequentist Cox Model 0.471 0.101 0.290

Weibull AFT 0.507 0.107 0.255

Bayesian Marginal Proportional Hazard Model 0.506 0.038 0.257

Hierarchical Bayesian Proportional Hazard Model 0.898 0.122 0.047

Mean-DPM Proportional Hazard Model 1.002 0.170 0.029

Sigma-DPM Proportional Hazard Model 1.000 0.209 0.033

Table 5: Time-to-event data generated with differential subject-specific log baseline hazards

induced by subject-specific random intercepts that are distributed according to a mixture

distribution of the form θiN(µ = −1.5, σ2 = 1) + (1− θi)N(µ = 1.5, σ2 = 1), where θi are

distributed Bernoulli with parameter p = 0.5. Results are from 1, 000 different simulated

data each with N = 300 subjects and li = 12 within subject measurements.

Sigma-DPM proportional hazards models with respect to the three main parameters of

the number of within unit measurements (li), the difference in mean parameter µ1 and µ2

when random intercepts are simulated from the mixture of two Normal distributions of the

form N(µ1, σ
2) and N(µ2, σ

2), and the ratio between the two parameters σ1 and σ2 when

random intercepts are simulated from the mixture of two Normal distributions of the form

N(0, σ2
1) and N(0, σ2

2).

4.1 Sensitivity to li

In this section, we test the sensitivity of our proposed Mean-DPM proportional hazards

and Sigma-DPM proportional hazards models with respect to the number of within subject

measurements li and under the case where the distribution of the random random intercepts

is mis-specified. We generate synthetic repeated measure binary and survival data under
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βx = 1.000 SD MSE

Frequentist Cox Model 0.460 0.107 0.303

Weibull AFT 0.481 0.109 0.292

Bayesian Marginal Proportional Hazard Model 0.483 0.038 0.290

Hierarchical Bayesian Proportional Hazard Model 0.924 0.121 0.037

Mean-DPM Proportional Hazard Model 1.014 0.184 0.029

Sigma-DPM Proportional Hazard Model 0.997 0.206 0.046

Table 6: Time-to-event data generated with differential subject-specific log baseline hazards

induced by subject-specific random intercepts that are distributed according to a mixture

distribution of the form θiN(µ = 0, σ2 = 1) + (1 − θi)N(µ = 0, σ2 = 5), where θi are

distributed Bernoulli with parameter p = 0.5. Results are from 1, 000 different simulated

data each with N = 300 subjects and li = 12 within subject measurements.

two scenarios - one when subject-specific intercepts are sampled from a mixture distribution

of the form β0i
iid∼ θiN(µ = −1.5, σ2 = 1) + (1 − θi)N(µ = 1.5, σ2 = 1), and another

when subject-specific intercepts are sampled from a mixture distribution of the form β0i
iid∼

θiN(µ = 0, σ2 = 1) + (1 − θi)N(µ = 0, σ2 = 5), where θi ∼ Bernoulli(p = 0.5) with

i ∈ {1, . . . , n} and n as the number of subjects. By changing the number of within subject

measurements li, we test the sensitivity of our proposed models.

Figure 8 provides a histogram of posterior medians of the prior mean µi on the random

intercepts β0i. The results are from our proposed Mean-DPM hierarchical Bayesian propor-

tional hazard model that is run on a single dataset that is generated under the simulation

scenario where random intercepts β0i’s are sampled from an equally weighted mixture of

two Normal distributions with means µ1 = 1.5 or µ2 = 1.5 and with the standard devia-

tion of 1. As one can see, as the number of within subject measurements li increases, our
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proposed Mean-DPM can better estimate the prior mean µi’s with the true values that are

either -1.5 or 1.5.

Similarly, Figure 9 provides a histogram of posterior medians of the prior standard

deviation σi on the random intercepts β0i. The results are from our proposed Sigma-

DPM hierarchical Bayesian proportional hazard model that is run on a single dataset

generated under the simulation scenario where random intercepts β0i’s are sampled from

an equally weighted mixture of two Normal distributions both with mean µ = 0 and with

the standard deviation of σ1 = 1 and σ2 =
√

5. As one can see, as the number of within

subject measurements li increases, our proposed Sigma-DPM can better estimate the prior

standard deviations σi’s with the true values that are either 1 or
√

5.

As Figure8 and Figure9 show, using our proposed Mean-DPM and Sigma-DPM hier-

archical Bayesian proportional hazard model, the larger within subject number of mea-

surements, li, are, the more accurate the posterior medians of prior means µi and prior

standard deviations σi will be. µi and σi are the hyper-parameters that are parameters of

prior distributions on the random intercepts β0i.

Figure 10 includes scatterplots that show the relation between the true β0i values and

the posterior medians from our proposed Mean-DPM and Sigma-DPM proportional hazard

models on simulated data with the true subject-specific random intercepts β0i sampled from

a mixture of two Normal distributions of the form θiN(µ = −1.5, σ2 = 1) + (1− θi)N(µ =

1.5, σ2 = 1), where θi is distributed Bernoulli with the parameter p = 0.5. As one can

infer from the plots in this figure, as the number of within-subject measurements increase,

posterior medians of the random intercepts provide a more accurate estimate of the true

β0i.

Similarly, Figure 11 includes similar scatterplots that show the relation between the

true β0i values and the posterior medians from our proposed Mean-DPM and Sigma-DPM
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proportional hazard models on data simulated with the true subject-specific random inter-

cepts β0i sampled from a mixture of two Normal distributions of the form θiN(µ = 0, σ2 =

1) + (1− θi)N(µ = 0, σ2 = 5), where θi is distributed Bernoulli with the parameter p = 0.5.

From the plots in the figure, one can clearly realize that as the number of within-subject

measurements increase, posterior medians of the random intercepts provide a more accurate

estimate of the true β0i.

Table 7 provides results on the sensitivity of our models under the first simulation

scenario and table 8 provides the result on the sensitivity of our models under the second

simulation scenario. As the results in Table 7 and Table 8 show, with larger number of

within subject measurements li, our proposed models can better estimate the latent random

intercepts, and hence, lead to a smaller error in estimating the true conditional coefficient

estimate.

4.2 Sensitivity to |µ2 − µ1|

In this section, we test the sensitivity of our proposed Mean-DPM and Sigma-DPM pro-

portional hazards models with respect to the distance between the mean parameters µ1

and µ2, where µ1 and µ2 are the mean parameters of two Normal distributions that are

used to simulate subject-specific random intercepts. Subject-specific random intercepts are

sampled from a mixture of two Normal distributions of the form β0i
iid∼ θiN(µ = −1.5, σ2 =

1) + (1 − θi)N(µ = 1.5, σ2 = 1), where θi is distributed Bernoulli with the parameter

P = 0.5. In this section, we evaluate the sensitivity of our proposed Mean-DPM and

Sigma-DPM proportional hazards models with respect to the distance between the means

µ1 and µ2. In particular, we consider five cases where the distance is half of the standard

deviation shared between both components, σ, or is equal to the σ, or is two times bigger

than the σ, or three times bigger, or four times bigger (Table 9).
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Mean-DPM Sigma-DPM

li βx = 1.000 SD MSE βx = 1.000 SD MSE

1 0.998 0.223 0.0291 0.754 0.228 0.104

3 1.014 0.200 0.0283 0.939 0.218 0.044

6 1.010 0.182 0.033 0.958 0.211 0.039

12 1.002 0.170 0.029 1.000 0.209 0.033

Table 7: To test the sensitivity of our proposed proportional hazards models with respect

to the number of within subject measurements li, time-to-event data generated with differ-

ential subject-specific log baseline hazards induced by subject-specific random intercepts

that are distributed according to a mixture distribution of the form θiN(µ = −1.5, σ2 =

1)+(1−θi)N(µ = 1.5, σ2 = 1), where θi are distributed Bernoulli with parameter p = 0.5.

Results are from 1, 000 different simulated data each with N = 300 subjects and li within

subject measurements.

Figure 12 provides a histogram of posterior medians of the prior mean µi on the random

intercepts β0i. The results are from our proposed Mean-DPM hierarchical Bayesian propor-

tional hazard model that is run on a single dataset that is generated under the simulation

scenario where random intercepts β0i’s are sampled from an equally weighted mixture of

two Normal distributions with means µ1 or µ2 and with the standard deviation of σ = 1.

In order to test the sensitivity of our models with respect to the distance between µ1 and

µ2, we consider 5 cases based on the distance between µ1 and µ2. Those cases are when

the distance between the means is half of the standard deviation σ, equal to σ, twice of the

σ, three times of the σ, or four times of the σ.

Figure 13 includes scatterplots that show the relation between the true β0i values and

the posterior medians from our proposed Mean-DPM and Sigma-DPM proportional hazard
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Mean-DPM Sigma-DPM

li βx = 1.000 SD MSE βx = 1.000 SD MSE

1 0.939 0.321 0.077 0.803 0.237 0.080

3 0.984 0.201 0.031 0.947 0.201 0.039

6 0.987 0.190 0.039 0.995 0.210 0.047

12 1.014 0.184 0.046 0.997 0.206 0.046

Table 8: To test the sensitivity of our proposed proportional hazards models with respect

to the number of within subject measurements li, time-to-event data were generated with

differential subject-specific log baseline hazards induced by the subject-specific random

intercept. The random intercepts are distributed according to a mixture distribution of the

form θiN(µ = 0, σ2 = 1) + (1− θi)N(µ = 1.5, σ2 = 5), where θi are distributed Bernoulli

with parameter p = 0.5. Results are from 1, 000 different simulated data each with N = 300

subjects and li within subject measurements.

models on simulated data with the true subject-specific random intercepts β0i sampled from

a mixture of two Normal distributions of the form θiN(µ1, σ
2 = 1) + (1− θi)N(µ2, σ

2 = 1),

where θi is distributed Bernoulli with the parameter p = 0.5. To test the sensitivity of our

proposed models with respect to the distance between µ1 and µ2, we consider 5 different

cases. Those cases are when the distance between the means are σ/2, σ, 2σ, 3σ, and 4σ.

As the results in Table 9 show, our proposed models are very robust in terms of the

distance between the mean parameters µ1 and µ2. One may consider this fact that when

µ1 and µ2 are far apart, the Dirichlet process mixture prior can easily differentiate random

intercepts that are sampled from the Normal distribution with the mean µ1 from random

intercepts sampled from the Normal distribution with the mean µ2. On the other hand,

when µ1 and µ2 are very close, a Normal prior with an incorrectly specified mean can still
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cover the random intercepts that are sampled from the correct Normal distribution. Hence,

our proposed models are not sensitive to the distance between the means of the Normal

distributions they are sampled from.

Mean-DPM Sigma-DPM

|µ1 − µ2| βx = 1.000 SD MSE βx = 1.000 SD MSE

σ/2 0.996 0.125 0.016 1.021 0.216 0.043

σ 1.000 0.132 0.020 1.019 0.231 0.049

2σ 1.021 0.164 0.027 0.987 0.285 0.076

3σ 1.002 0.170 0.029 1.000 0.209 0.033

4σ 0.998 0.152 0.021 1.001 0.211 0.034

Table 9: To test the sensitivity of our proposed proportional hazards models with respect to

the distance between µ1 and µ2, time-to-event data were generated with differential subject-

specific log baseline hazards induced by the subject-specific random intercept. The random

intercepts are distributed according to a mixture distribution of the form θiN(µ1, σ
2 =

1) + (1 − θi)N(µ2, σ
2 = 1), where θi are distributed Bernoulli with parameter p = 0.5.

Results are from 1, 000 different simulated data each with N = 300 subjects and li = 12

within subject measurements.

4.3 Sensitivity to σ2
σ1

In this section, we test the sensitivity of our proposed Mean-DPM and Sigma-DPM propor-

tional hazards models with respect to the relative ratio of the standard deviations σ1 and

σ2 when the subject-specific random intercepts are sampled from a mixture of two Normal

distributions of the form β0i
iid∼ θiN(µ = 0, σ2

1)+(1−θi)N(µ = 0, σ2
2), where θi is distributed

Bernoulli with the parameter P = 0.5. In this section, we evaluate the sensitivity of our
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proposed Mean-DPM and Sigma-DPM proportional hazards models with respect to the

relative ratio of σ1 and σ2 that is of the from σ2/σ1. In particular, we consider four cases

where the ratio 1.5, or the ratio is 2.0, or 3.0, or 5.0. As the results in Table 10 show, our

proposed models are robust to the changes in the ratio between the standard deviations of

the mixture components.

Mean-DPM Sigma-DPM

σ2/σ1 βx = 1.000 SD MSE βx = 1.000 SD MSE

1.5 0.990 0.255 0.060 1.001 0.257 0.069

2.0 0.988 0.302 0.100 1.000 0.304 0.090

3.0 0.960 0.351 0.113 0.989 0.338 0.118

5.0 1.027 0.368 0.129 0.976 0.365 0.129

Table 10: To test the sensitivity of our proposed proportional hazards models with respect

to the ratio of σ1 and σ2, time-to-event data were generated with differential subject-

specific log baseline hazards induced by the subject-specific random intercept. The random

intercepts are distributed according to a mixture distribution of the form θiN(µ = 0, σ2
1) +

(1− θi)N(µ = 0, σ2
2), where θi are distributed Bernoulli with parameter p = 0.5. Results

are from 1, 000 different simulated data each with N = 300 subjects and li = 12 within

subject measurements.

Figure 14 provides a histogram of posterior medians of the prior standard deviation σi

on the random intercepts β0i. The results are from our proposed Sigma-DPM hierarchical

Bayesian proportional hazard model that is run on a single dataset that is generated under

the simulation scenario where random intercepts β0i’s are sampled from an equally weighted

mixture of two Normal distributions of the form N(µ = 0, σ1) and N(µ = 0, σ2). In order

to test the sensitivity of our models with respect to the relative ratio of σ2 and σ1 (σ2/σ1),
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we consider 4 cases. Those cases are when the relative ratio of σ2/σ1 is either 1.5, or 2.0,

or 3.0, or 5.0.

Figure 15 includes scatterplots that show the relation between the true β0i values and

the posterior medians from our proposed Mean-DPM and Sigma-DPM proportional hazard

models under the four simulation scenarios and on simulated data with the true subject-

specific random intercepts β0i sampled from a mixture of two Normal distributions of the

form θiN(µ = 0, σ2
1) + (1 − θi)N(µ = 0, σ2

2), where θi is distributed Bernoulli with the

parameter p = 0.5

5 Examining Different Dialysis Access Types Among

Hemodialysis Patients

End stage renal disease (ESRD) is a condition where kidneys are not capable of filtering

blood from toxins. Standard care for ESRD patients are either kidney transplantation

or hemodialysis. Hemodialysis is a technique that removes blood from the body through

access needles and cleans the blood out of toxins using a dialysis machine.

ESRD patients who are treated with hemodialysis, typically undergo this treatment

three to four sessions a week each session three to four hours. Given the frequency of the

treatment, it is unfeasible to insert a new access at every treatment session as repeatedly

inserting a new access may result in irreparable damage to the patient’s vein. As an al-

ternative to a temporary access, a permanent access may be surgically placed in patient’s

body. Permanent accesses are in two main types of prosthetic graft and autogenous arte-

riovenous fistula (AVF). Prosthetic graft can be easily placed in patient’s body. Similarly,

AVF access can be placed as a standard attachment to a vein. When veins are hard to

find, which is common among diabetic patients, AVF access is placed in the patient’s body
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using a venous transplantation.

Although permanent access technology has improved over time, yet access failure has

remained a major issue among the hemodialysis patients. It’s of interest to compare dura-

bility of different access types among hemodialysis patients. To do so, observational data

were collected on 1,255 hemodialysis patients from clinics across the United States. Pa-

tients were asked to participate in the study at the time that they had their first permanent

access placement. They were then followed over time prospectively and the time to failure

from the time of access placement was recorded. Since patients must always have an access

in order to do hemodialysis, if an access fails, the access is replaced with another access

which may be of a different type than the previous access. Our data include an overall of

1,647 access records from an overall of 1,255 subjects. Some subjects may have multiple

access failures during the study. In particular, over the study followup, 76.7% of subjects

had no access failure, 18% of subjects had one access failure, 4% had two access failures,

and 1.3% had three or more access failures.

Table 11 shows the result of analyzing the association between the access type and

time to failure of the access. We started by analyzing the data using the Cox proportional

hazards model. Note that in the case of multiple access failures per subject in the data,

within subject measurements are correlated. In this case, the within subject correlation

should be taken into account and standard errors of the estimated coefficients should be

taken into account. To do so, we considered the approach proposed by Lee et al. (1992)

in which first the coefficients in the Cox model are estimated using maximizing the partial

likelihood under an independent covariance assumption and then a robust sandwich co-

variance matrix is used to account for within-cluster correlations. This method is available

in R programming language using the ’cluster()’ function that is used inside the ’coxph()’

function in order to fit a Cox model.
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Next, we analyzed the data with our proposed Mean-DPM and Sigma-DPM propor-

tional hazards model. While Cox model is not capable of taking the latent population

subgroups into account and hence, coefficient estimates from this model are marginalized

over all population subgroups, our proposed Mean-DPM and Sigma-DPM models, however,

by accounting for the differential subject-specific baseline hazards, are capable of estimat-

ing the conditional coefficient estimates that are conditioned on subject-specific baseline

hazards.

Our proposed Mean-DPM and Sigma-DPM models suggest that different access types,

after adjusting for other potential risk factors in the model, are different in terms of the risk

of failure. In particular, compared to the graft access, both venous and the standard fistula

method have higher risk of failure. The fitted Cox model, however, finds the standard

fistula access to have lower risk of failure compared to the graft method. This difference

might be an indication of the attenuation in the marginal coefficient estimates under the

Cox model, compared to the conditional coefficient estimate suggested by our proposed

Mean-DPM model.

6 Discussion

A model with different marginal and conditional coefficient estimands is a non-collapsible

model. Examples of such models include the logistic regression and the proportional hazard

models. In this paper and in the context of analyzing repeated measure data, we have

proposed hierarchical Bayesian models with the Dirichlet process mixture priors. We have

shown that our proposed models are capable of detecting latent subgroup effects and hence,

are capable to estimate the true conditional parameters where a population consists of sub-

populations with latent sub-population effects. In particular, we considered hierarchical
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Bayesian logistic regression and hierarchical Bayesian proportional hazards models with

the Dirichlet process mixture prior on latent subgroup intercepts. We compared coefficient

estimates under our proposed models with the coefficient estimates under common logistic

regression and proportional hazards models. Further, we have shown that our proposed

models are robust to distributional mis-specification of the latent subgroup effects. Finally,

the sensitivity of our proposed models were tested in terms of their sensitivity to the

number of within-cluster measurements as well as the distribution parameters of the latent

cluster-specific intercepts.

Using simulation studies, we compared coefficient estimation under our proposed Dirich-

let process mixture models with common statistical longitudinal models. In particular, we

compared our proposed Dirichlet process logistic regression models with the generalized

linear model with the logit link, the generalized estimating equation with the logit link,

the generalized linear mixed effects model with the logit link, Bayesian logistic regression,

and Bayesian hierarchical logistic regression. We also compared our proposed proportional

hazards models with the frequentist Cox model, the Weibull accelerated failure time model,

a marginal Bayesian proportional hazards model, and a hierarchical Bayesian model. We

learned that among all these models, our proposed Dirichlet process mixture models lead

to the minimum mean squared errors in estimating the conditional coefficient estimands.

Furthermore, while other candidate models may depend on explicit distributional assump-

tions over the latent sub-group random intercepts, our proposed Dirichlet process mixture

models are robust to distributional mis-specification. Using sensitivity analysis, we showed

that our proposed Dirichlet process mixture models are robust in terms of the number

of within-cluster measurements. We have also shown that when cluster-specific random

intercepts simulated from a mixture of two normal distributions, our proposed models are

robust regardless of the distributional overlap of the mixing components. More generally
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and with the support of the simulation studies presented in this paper, in analyses aiming

to characterize conditional effect of covariates using the proportional hazards or the logistic

models, our proposed Dirichlet process mixture models will serve the best in terms of mean

square error of estimating conditional estimands compared to other candidate models that

were considered in this paper.

Despite the capability of our proposed methods in estimating conditional estimands in

repeated measure data with latent sub-group random intercepts, our proposed methods,

however, are computationally demanding. Our proposed Dirichlet mixture models, on

average, and for a dataset with 300 subjects each with 12 within subject measurements

and using, takes 3 hours to fit using a 2.53 GHz intel Core 2 Duo processor and 4 GB 1067

MHz DDR3 RAM. In future, instead of using MCMC posterior sampling, one may use

the variational methods in Dirichlet process mixture models to gain more computational

efficiency and more scalability as the number of subjects and the number of within-subject

measurements increase.
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Figure 4: A grid of scatter plots that shows the relation between the true values of the

subject-specific random intercepts, β0i, and the posterior median (or estimated) random

intercepts from the GLMM model, the hierarchical Bayesian logistic model, our proposed

Mean-DPM hierarchical Bayesian logistic model, and the proposed Sigma-DPM hierarchi-

cal Bayesian logistic model. The red dashed line in every plot represents the 45 degree line

and the results are from a single simulated data under each simulation scenario. The first

row represents the scatter plots from data simulated under the first scenario where subject-

specific random intercepts are sampled from the standard Normal N(µ = 0, σ2 = 1). The

second row represents scatter plots resulted from data simulated under the second simu-

lation scenario where random intercepts are sampled from an equally weighted mixture of

two Normal distributions of the form N(µ1 = −1.5, σ2 = 1) and N(µ1 = 1.5, σ2 = 1). Fi-

nally, the last row of plots represents results from data simulated under the third simulation

scenario where random intercepts are sampled from an equally weighted mixture of two

Normals of the form N(µ = 0, σ2
1 = 1) and N(µ1 = 0, σ2

2 = 5).The first column of scatter

plots from left represents results from fitting the generalized linear mixed effect model, the

second column represents the results from a hierarchical Bayesian logistic regression, third

column represents the results from fitting our proposed Mean-DPM hierarchical Bayesian

logistic model, and finally the last column to the right represents results from our proposed

Sigma-DPM hierarchical Bayesian logistic model.
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Figure 5: Histogram of the posterior median of µi’s from the proposed Mean-DPM hier-

archical Bayesian proportional hazard model, where µi is the subject-specific prior mean

on the random intercept of subject i. The plot to the left is the histogram of the posterior

median of the sampled µi from the model when it runs under the first simulation scenario

where all random intercepts are sampled from the standard Normal distribution. The plot

in the middle shows the histogram of the posterior medians of µi’s under the second sce-

nario where random intercepts are sampled from a mixture of two Normal distributions

of N(µ1 = −1.5, σ = 1) and N(µ1 = 1.5, σ = 1) that are equally weighted. The plot to

the right is the histogram of the posterior medians under the third simulation scenario

where the random intercepts are simulated from the mixture of two Normal distributions

of N(µ = 0, σ1 = 1) and N(µ = 0, σ2 =
√

5). Results, under each simulation, are from one

single simulated data with N = 300 subjects and li = 12 within subject measurements.
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Figure 6: Histogram of the posterior median of σi’s from the proposed Sigma-DPM hierar-

chical Bayesian proportional hazard model, where σi is the subject-specific prior standard

deviation on the random intercept of subject i. The plot to the left is the histogram of the

posterior median of the sampled σi from the model when it runs under the first simulation

scenario where all random intercepts are sampled from the standard Normal distribution.

The plot in the middle shows the histogram of the posterior medians of σi’s under the

second scenario where random intercepts are sampled from a mixture of two Normal distri-

butions of N(µ1 = −1.5, σ = 1) and N(µ1 = 1.5, σ = 1) that are equally weighted. The plot

to the right is the histogram of the posterior medians under the third simulation scenario

where the random intercepts are simulated from the mixture of two Normal distributions

of N(µ = 0, σ1 = 1) and N(µ = 0, σ2 =
√

5). Results, under each simulation, are from one

single simulated data with N = 300 subjects and li = 12 within subject measurements.
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Figure 7: A grid of scatter plots that shows the relation between the true values of the

subject-specific random intercepts, β0i, and the posterior median of random intercepts from

the hierarchical Bayesian proportional hazard model, our proposed Mean-DPM hierarchical

Bayesian proportional hazard model, and the proposed Sigma-DPM hierarchical Bayesian

proportional hazard model. The red dashed line in every plot represents the 45 degree line

and the results are from a single simulated data under each simulation scenario. The first

row represents the scatter plots from data simulated under the first scenario where subject-

specific random intercepts are sampled from the standard Normal N(µ = 0, σ2 = 1).

The second row represents scatter plots resulted from data simulated under the second

simulation scenario where random intercepts are sampled from an equally weighted mixture

of two Normal distributions of the form N(µ1 = −1.5, σ2 = 1) and N(µ1 = 1.5, σ2 =

1). Finally, the last row of plots represents results from data simulated under the third

simulation scenario where random intercepts are sampled from an equally weighted mixture

of two Normals of the form N(µ = 0, σ2
1 = 1) and N(µ1 = 0, σ2

2 = 5).The first column of

scatter plots from left represents results from fitting the hierarchical Bayesian proportional

hazard regression, the second column represents the results from fitting our proposed Mean-

DPM hierarchical Bayesian logistic model, and finally the last column to the right represents

results from our proposed Sigma-DPM hierarchical Bayesian proportional hazard model.
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Figure 8: Histogram of the posterior median of µi’s from the proposed Mean-DPM hierar-

chical Bayesian proportional hazard model, where µi is the subject-specific prior mean on

the random intercept of subject i. All plot are based on a simulation scenario where random

intercepts are sampled from a mixture of two Normal distributions of N(µ1 = −1.5, σ = 1)

and N(µ1 = 1.5, σ = 1) that are equally weighted. Moving from left to right, the first

plots shows posterior median of µi’s with li = 1 within subject measurement, the next plot

shows the results with li = 3, the next plot shows the results under data with li = 6 within

subject measurements, and finally, the last plot to the right shows the results with li = 12

within subject measurements.
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Figure 9: Histogram of the posterior median of σi’s from the proposed Sigma-DPM hierar-

chical Bayesian proportional hazard model, where σi is the subject-specific prior standard

deviation on the random intercept of subject i. All plot are based on a simulation sce-

nario where random intercepts are sampled from a mixture of two Normal distributions of

N(µ1 = 0, σ2 = 1) and N(µ1 = 0, σ2 = 5) that are equally weighted. Moving from left to

right, the first plots shows posterior median of σi’s with li = 1 within subject measurement,

the next plot shows the results with li = 3, the next plot shows the results under data with

li = 6 within subject measurements, and finally, the last plot to the right shows the results

with li = 12 within subject measurements.
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Figure 10: A grid of scatter plots that shows the relation between the true values of the

subject-specific random intercepts, β0i, and the posterior median of random intercepts

from our proposed Mean-DPM and Sigma-DPM hierarchical Bayesian proportional hazard

models. The red dashed line in every plot represents the 45 degree line and the results

are from a single simulated under the simulation scenario where random intercepts β0i are

simulated from an equally weighted mixture of two Normal distributions one with mean

µ1 = −1.5 and the other with mean µ2 = 1.5, where both distributions have the standard

deviation of σ = 1. The first row represents the results from our proposed Mean-DPM

and the second row represents results from our proposed Sigma-DPM model. On each row,

from left to right, the scatter plots represents the results from a simulated data with li = 1,

li = 3, li = 6, and li = 12 within subject measurements.
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Figure 11: A grid of scatter plots that shows the relation between the true values of the

subject-specific random intercepts, β0i, and the posterior median of random intercepts

from our proposed Mean-DPM and Sigma-DPM hierarchical Bayesian proportional hazard

models. The red dashed line in every plot represents the 45 degree line and the results

are from a single simulated under the simulation scenario where random intercepts β0i are

simulated from an equally weighted mixture of two Normal distributions both with mean

µ = 0 but one with the standard deviation σ1 = 1 and another with the standard deviation

of σ2 =
√

5. The first row represents the results from our proposed Mean-DPM and the

second row represents results from our proposed Sigma-DPM model. On each row, from

left to right, the scatter plots represents the results from a simulated data with li = 1,

li = 3, li = 6, and li = 12 within subject measurements.
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Figure 12: Histogram of the posterior median of µi’s from the proposed Mean-DPM hierar-

chical Bayesian proportional hazard model, where µi is the subject-specific prior mean on

the random intercept of subject i. All plot are based on a simulation scenario where ran-

dom intercepts are sampled from a mixture of two Normal distributions of N(µ1, σ
2 = 1)

and N(µ2, σ
2 = 1) that are equally weighted with N = 300 subjects each with li = 12

within subject measurements. Moving from the left to right, the first plots shows posterior

median of µi’s when µ1 = −0.25 and µ2 = 0.25 (a distance of σ/2), the next plot shows

the results when µ1 = −0.5 and µ2 = 0.5 (a distance of σ), the next plot is corresponding

to the true µ1 = −1.0 and µ2 = 1.0 (a distance of 2σ), the next plot is corresponding to

the true µ1 = −1.5 and µ2 = 1.5 (a distance of 3σ), the next plot is corresponding to the

true µ1 = −2 and µ2 = 2 (a distance of 4σ).

49



−4 0 4

−
4

−
2

0
2

4

Mean−DPM − | µ1 − µ2 | = σ 2

β0 i True Values

β 0
 i P

os
te

rir
 M

ed
ia

n

−4 0 4

−
4

−
2

0
2

4

Mean−DPM − | µ1 − µ2 | = σ

β0 i True Values

β 0
 i P

os
te

rir
 M

ed
ia

n

−4 0 4

−
4

−
2

0
2

4

Mean−DPM − | µ1 − µ2 | = 2 σ

β0 i True Values

β 0
 i P

os
te

rir
 M

ed
ia

n

−4 0 4

−
4

−
2

0
2

4

Mean−DPM − | µ1 − µ2 | = 3 σ

β0 i True Values

β 0
 i P

os
te

rir
 M

ed
ia

n

−4 0 4

−
4

−
2

0
2

4

Mean−DPM − | µ1 − µ2 | = 4 σ

β0 i True Values

β 0
 i P

os
te

rir
 M

ed
ia

n

−4 0 4

−
4

−
2

0
2

4

Sigma−DPM − | µ1 − µ2 | = σ 2

β0 i True Values

β 0
 i P

os
te

rir
 M

ed
ia

n

−4 0 4

−
4

−
2

0
2

4
Sigma−DPM − | µ1 − µ2 | = σ

β0 i True Values

β 0
 i P

os
te

rir
 M

ed
ia

n

−4 0 4

−
4

−
2

0
2

4

Sigma−DPM − | µ1 − µ2 | = 2 σ

β0 i True Values

β 0
 i P

os
te

rir
 M

ed
ia

n

−4 0 4

−
4

−
2

0
2

4

Sigma−DPM − | µ1 − µ2 | = 3 σ

β0 i True Values

β 0
 i P

os
te

rir
 M

ed
ia

n

−4 0 4

−
4

−
2

0
2

4

Sigma−DPM − | µ1 − µ2 | = 4 σ

β0 i True Values

β 0
 i P

os
te

rir
 M

ed
ia

n

Figure 13: A grid of scatter plots that shows the relation between the true values of the

subject-specific random intercepts, β0i, and the posterior median of random intercepts

from our proposed Mean-DPM and Sigma-DPM hierarchical Bayesian proportional hazard

models. The red dashed line in every plot represents the 45 degree line and the results

are from a single simulated under the simulation scenario where random intercepts β0i are

simulated from an equally weighted mixture of two Normal distributions of N(µ1, σ
2 = 1)

and N(µ2, σ
2 = 1). The first row represents the results from our proposed Mean-DPM and

the second row represents results from our proposed Sigma-DPM model. On each row,

from the left to the right, the scatter plots represents the results from a simulated data

under the 5 cases of µ1 = −0.25 and µ2 = 0.25 (a distance of σ/2), µ1 = −0.5 and µ2 = 0.5

(a distance of σ), µ1 = −1.0 and µ2 = 1.0 (a distance of 2σ), µ1 = −1.5 and µ2 = 1.5 (a

distance of 3σ), and µ1 = −2 and µ2 = 2 (a distance of 4σ).
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Figure 14: Histogram of the posterior median of σi’s from the proposed Sigma-DPM hierar-

chical Bayesian proportional hazard model, where σi is the subject-specific prior standard

deviation on the random intercept of subject i. All plot are based on a simulation sce-

nario where random intercepts are sampled from a mixture of two Normal distributions

of N(µ = 0, σ2
1) and N(µ = 0, σ2

2) that are equally weighted with N = 300 subjects each

with li = 12 within subject measurements. Moving from the left to right, the first plots

shows posterior median of σi’s when σ1 = 1 and σ2 = 1.5 (a relative ratio of 1.5), the next

plot shows the results when σ1 = 1 and σ2 = 2.0 (a relative ratio of 2.0), the next plot is

corresponding to the true σ1 = 1 and σ2 = 3.0 (a relative ratio of 3.0), and the last plot to

the right is corresponding to the true σ1 = 1.0 and σ2 = 5.0 (a relative ratio of 5.0).
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Figure 15: A grid of scatter plots that shows the relation between the true values of the

subject-specific random intercepts, β0i, and the posterior median of random intercepts

from our proposed Mean-DPM and Sigma-DPM hierarchical Bayesian proportional hazard

models. The red dashed line in every plot represents the 45 degree line and the results

are from a single simulated under the simulation scenario where random intercepts β0i are

simulated from an equally weighted mixture of two Normal distributions of N(µ = 0, σ2
1)

and N(µ = 0, σ2
2). The first row represents the results from our proposed Mean-DPM and

the second row represents results from our proposed Sigma-DPM model. On each row,

from the left to the right, the scatter plots represents the results from a simulated data

under the 4 cases of σ1 = 1.0 and σ2 = 1.5 (a relative ratio of 1.5), σ1 = 1.0 and σ2 = 2.0

(a relative ratio of 2.0), σ1 = 1.0 and σ2 = 3.0 (a relative ratio of 3.0), and σ1 = 1.0 and

σ2 = 5.0 (a relative ratio of 5.0).
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Cox Model Mean-DPM Model Sigma-DPM Model

No. of No. of Relative Risk Relative Risk Relative Risk

Covariates Cases Failure (95% CI) P-value (95% CR) (95% CR)

Access Type

graft 1,140 271 1.0 1.0 1.0

standard fistula 367 81 0.91 (0.70,1.18) 0.471 1.11 (0.80,2.13) 1.09 (0.73, 2.18)

venous transposition fistula 140 40 1.43 (1.02,2.00) 0.039 1.46 (0.96,2.19) 1.45 (0.93,2.17)

Age 1,647 392 1.00 (0.99-1.01) 0.513 1.00 (0.94,1.01) 1.01 (0.92,1.04)

Female 1,647 392 1.11 (0.90-1.38) 0.328 1.12 (0.85,1.52) 1.14 (0.82,1.57)

Race

Caucasian 987 218 1.0 1.0 1.0

African American 550 152 1.22 (0.98,1.52) 0.071 1.24 (0.71,1.65) 1.24 (0.70,1.65)

other 110 22 0.79 (0.50,1.22) 0.288 0.81 (0.43,1.40) 0.82 (0.39,1.38)

BMI 1,647 392 0.99 (0.98-1.01) 0.287 0.99 (0.93,1.01) 0.98 (0.91,1.03)

Smoking

never smoked 900 219 1.0 1.0 1.0

former smoker 517 116 0.98 (0.78,1.24) 0.89 0.98 (0.66,1.30) 0.99 (0.64,1.32)

current smoker 230 57 1.10 (0.81,1.50) 0.541 1.08 (0.44,1.61) 1.07 (0.42,1.65)

Serum Calcium (mg/dL) 1,647 392 0.97 (0.87-1.08) 0.595 0.99 (0.19,1.10) 0.99 (0.18,1.13)

Serum Phosphorus (mg/dL) 1,647 392 1.02 (0.96-1.07) 0.524 1.00 (0.71,1.09) 1.00 (0.68,1.10)

Hematocrit (g/dL) 1,647 392 0.99 (0.97-1.01) 0.317 0.99 (0.91,1.01) 0.99 (0.90,1.04)

Serum Albumin (g/dL) 1,647 392 1.01 (0.84-1.21) 0.909 0.88 (0.36,1.24) 0.83 (0.36,1.29)

Diabetes 1,647 392 1.24 (1.01-1.54) 0.041 1.18 (0.5,1.58) 1.16 (0.52 ,1.51)

Table 11: In order to compare durability of different hemodialysis access types, obser-

vational data on 1,255 hemodialysis patients were analyzed using the Cox proportional

hazards model, our proposed Mean-DPM proportional hazards model, and our proposed

Sigma-DPM hazards model. 53
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