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Extracellular enzymes represent a public good for microbial communities, as they break
down complex molecules into simple molecules that microbes can take up. These com-
munities are vulnerable to cheating by microbes that do not produce enzymes, but benefit
from those produced by others. However, extracellular enzymes are ubiquitous and play an
important role in the depolymerization of nutrients. We developed a multi-genotype, multi-
nutrient model of a community of exoenzyme-producing microbes, in order to investigate
the relationship between diversity, social interactions, and nutrient depolymerization. We
focused on coalitions between complementary types of microbes and their implications
for spatial pattern formation and nutrient depolymerization. The model included polymers
containing carbon, nitrogen, or phosphorus, and eight genotypes of bacteria, which pro-
duced different subsets of the three enzymes responsible for hydrolyzing these polymers.
We allowed social dynamics to emerge from a mechanistic model of enzyme production,
action, and diffusion.We found that diversity was maximized at high rates of either diffusion
or enzyme production (but not both). Conditions favoring cheating also favored the emer-
gence of coalitions. We characterized the spatial patterns formed by different interactions,
showing that same-type cooperation leads to aggregation, but between-type cooperation
leads to an interwoven, filamentous pattern. Contrary to expectations based on niche
complementarity, we found that nutrient depolymerization declined with increasing diver-
sity due to a negative competitive effect of coalitions on generalist producers, leading to
less overall enzyme production. This decline in depolymerization was stronger for non-
limiting nutrients in the system.This study shows that social interactions among microbes
foraging for complementary resources can influence microbial diversity, microbial spatial
distributions, and rates of nutrient depolymerization.

Keywords: nutrient depolymerization, cooperation, spatial model, density-dependence, extracellular enzymes,
facilitation, microbe, decomposition

INTRODUCTION
Microbial public goods are products that are secreted outside the
cell, and therefore benefit not only the individuals producing them,
but also neighboring cells (Velicer, 2003; West et al., 2006, 2007).
They include substances crucial to intercellular interactions, such
as quorum sensing molecules, biofilm polymers, siderophores,
exoenzymes, and many other cell products (West et al., 2006,
2007). Public goods are ubiquitous in microbial ecosystems. How-
ever, evolutionary theory predicts that producers of public goods
are vulnerable to cheating by individuals that receive the benefits
without paying the cost of production. Exoenzyme production by
bacteria and fungi is particularly important for ecosystem func-
tion because these enzymes catalyze the rate-limiting step in the
depolymerization of carbon and nutrients from organic polymers
in the environment (Schimel and Bennet, 2004). Thus the quan-
tity and types of enzymes produced by microbes influence the
rate at which these nutrients flow through the ecosystem. How-
ever, despite their importance to nutrient cycling, these enzymes

have received little attention from a social evolution perspective
relative to other public goods. At the same time, models of enzyme-
mediated decomposition by microbes (for example Schimel and
Weintraub, 2003) do not account for social interactions.

Allison (2005) applied a public goods framework to exoen-
zyme production by microbes and demonstrated that the presence
of cheaters reduces nutrient depolymerization, and that the cost
of cheating increases with the diffusion rate of the enzyme and
the rate of constitutive enzyme production. This study consid-
ered an environment with one limiting nutrient and two types
of microbes, producers, and cheaters. However, real microbial
communities are highly diverse, with thousands of taxa (Roesch
et al., 2007), and they depend on multiple nutrients. The present
study extends the model of Allison (2005) to investigate the social
dynamics of enzyme production in a multi-genotype community
in a multi-nutrient environment.

We used this model to examine how diversity and social interac-
tions modulate each other’s effects on nutrient depolymerization.
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Our first objective was to determine the conditions for the main-
tenance and loss of diversity. Second, in the context of social
evolution, we determine the conditions under which coalitions
can form and compete successfully. We define a coalition to be
a mutualistic interaction between two or more complementary
types that each produce enzymes lacking in the other. Since inter-
actions due to diffusion occur locally, this would lead to greater
growth and survival when complementary types are close together.
We predict that complementary types should therefore be spa-
tially associated and take such spatial correlation to be evidence
for coalitions. Finally, in the context of ecosystem function, our
third objective was to examine how diversity and coalitions affect
rates of nutrient depolymerization. If social interactions limit the
production of enzymes, these effects could cascade upwards, lim-
iting the depolymerization of nutrients, and therefore the overall
rate of flow through the ecosystem.

MATERIALS AND METHODS
MODEL OVERVIEW
The model is an individual-based, stochastic simulation coded in
C++, built on a previous model by Allison (2005). It consists of
a 100× 100 lattice grid, where each grid box represents 1 µm3. In
each box of the grid, the model tracks the substrate, enzyme, and
product concentrations for each of the three nutrients, as well as
the resident microbe if one is present. Each microbe has a geno-
type and a pool of nutrients internal to itself. At each time step
of the model, the following processes occur in each grid box in
this order: substrate input, substrate decay, product decay, prod-
uct diffusion, enzyme decay, enzyme diffusion, product formation,
nutrient uptake and enzyme production, microbial metabolism,
death, and reproduction. Microbes optimize their nutrient uptake
and enzyme production in order to balance their internal nutrients
in their stoichiometric ratios.

The original study (Allison, 2005) analyzed the social dynam-
ics of producers and cheaters in the case where only carbon was
limiting. In the current model, carbon (C), nitrogen (N), and
phosphorus (P) were all present only as substrates that must be
hydrolyzed by enzymes in order to be available. We used a genet-
ically explicit model with three loci, each of which coded for an
enzyme that breaks down C, N, or P. At each locus, there was
one allele for enzyme production and one for no enzyme pro-
duction (i.e., cheating). In naming a genotype, we represent the
former with the capital letter of the respective nutrient and the
latter with the lowercase letter. Thus the genotype CNp represents
a microbe that produces C- and N-enzymes, but not P-enzymes.
There are eight genotypes in total: cnp, Cnp, cNp, cnP, CNp, CnP,
cNP, and CNP. We also include mutation, which allows for the
reintroduction of new types after they have been lost.

INITIALIZATION
At the start of the model, the concentrations of substrate, enzyme,
and product are all initialized to 0 over the entire grid. Each grid
box may contain zero or one microbe, but no more than one
microbe may occupy a single grid box. Thus the maximum den-
sity is 1 microbe/1 µm3, so the population is limited by space.
Microbes are introduced randomly with a total frequency of 0.02,
and each is assigned a random genotype with equal probability.

The C biomass of each microbe is initialized to 150 fg C (But-
ton et al., 1998), and the other nutrients within the microbe are
initialized to maintain the stoichiometric ratios of C:N= 6 and
C:P= 60.

ITERATION
Although conceptually the following processes occur simultane-
ously across all grid boxes, the program must compute them
sequentially. The order of the grid boxes and of the nutrients is
randomized so as to avoid bias, which would arise if the same order
were used each time.

INPUTS
Substrate is added to each grid box at each time step, at rates of
0.1 fg C/min/µm2., 0.01 fg N/min/µm2, and 0.001 fg P/min/µm2.
No product or enzyme is directly added to the grid.

DECAY AND DIFFUSION
The substrate, product, and enzymes were removed from the grid
at a constant rate of 0.01/min. Substrate does not diffuse. Product
diffusion rates are set to 0.5 µm2/min, meaning that the concen-
trations in two adjacent grid boxes will equilibrate in 1 min of
model time. When diffusion occurs at a box, a random neighbor
box is chosen, and an amount proportional to the difference in the
concentrations of the two boxes is moved from the box with the
higher concentration to that with the lower concentration. These
values are based on diffusion and loss rates reported by Vetter et al.
(1998).

PRODUCT FORMATION
Product is formed by the action of enzymes on substrate, following
Michaelis–Menten kinetics:

∆ [Product] =
[
Enzyme

]
∗ Vmax ∗

[Substrate]

Km + [Substrate]
∗∆t

where V max= 10 fg/fg/min is the maximum rate of product for-
mation at substrate saturation, and K m= 0.001 fg/µm3 is the half-
saturation constant. These values fall within the range reported in
the literature for hydrolytic enzymes (Schomburg and Schomburg,
2001). This quantity is also deducted from the substrate pool.

PRODUCT UPTAKE
Microbes only take up nutrients when they are in demand relative
to the microbe’s stoichiometric ratios of C:N= 6 and C:P= 60.
For example, if the microbe’s internal ratio is C:N > 6, this would
mean that N was in demand, and the microbe would take up N
in order to maintain its stoichiometric ratio. Although microbes
are actually more flexible in their nutrient uptake, this constraint
reflects a microbial tendency to maintain stoichiometric ratios
within limits (Sterner and Elser, 2002).

The rate of product uptake is proportional to the surface area
of the microbe and also follows the Michaelis–Menten kinetics:

∆ [Nutrient] = Enz Per Area ∗ Area To Mass ∗ Biomass2/3

∗ Vmax ∗
[Product]

Km [Product]
∗∆t
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where Enz Per Area= 0.1 is the density of uptake enzymes on
the exterior of the microbe, Area To Mass= 0.0428 is the ratio
of surface area to volume of the microbe, V max= 10 fg/fg/min
is the maximum rate of uptake at product saturation, and
Km= 0.001 fg/µm3 is the half-saturation constant. These values
fall within the ranges reported by Button et al. (1998).

ENZYME PRODUCTION
In each time step, if a microbe has the gene to produce an enzyme,
it must produce the enzyme at a minimum constitutive rate, which
by default is set to 10−7 fg/fg/min, times its biomass.

Facultative enzyme production occurs only if the nutrient is
still in demand following nutrient uptake, in which case a maxi-
mum of 1% of uptake from the current time step is allocated to
enzyme production. This value is within the range of 0.7–2.1%
reported for α-glucosidase production by yeasts (Giuseppin et al.,
1993) and slightly higher than the 0.3–0.9% reported for protease
production by Bacillus clausii (Christiansen and Nielsen, 2002).
Production of N and P-enzymes is initially calculated in units of
N or P mass, respectively. This quantity is then converted to C
mass using the stoichiometric ratios of C:N= 3.5 and C:P= 200.
The first value is based on the stoichiometry of proteins, and the
second on the assumption that small amounts of P could be lost
during enzyme secretion, especially if protein phosphorylation is
involved. When enzymes are produced, a quantity of C equal to
10% of enzyme C mass is respired due to the metabolic costs of
enzyme production.

If producing enzyme at the maximum level will cause another
nutrient to become limiting, the microbe will produce less enzyme.
For example, the ratio of C:N for microbes is 6, nearly twice that
of enzymes. Suppose initially the microbe’s C:N ratio is less than 6,
indicating that C is limiting, and the microbe takes up a quantity of
C equal to uptake. Then its maximum enzyme production will be
0.01× uptake. However, producing this quantity may reduce the
microbe’s N pool to the point where its C:N ratio is now greater
than 6, making N limiting. In this case, the microbe will produce
a quantity equal to

Enz Prod =
C to Nmic ∗N− C

C to Nmic/C to Nenz − 1− Respenz

Here, C to Nmic is the microbial C:N ratio of 6, C to Nenz is
the enzyme C:N ratio of 3.5, Respenz is the rate of respiration due
to enzyme production, 0.1, and N and C are the current pools
of N and C in the microbe. This quantity of enzyme produc-
tion equalizes the microbe’s C:N ratio at its target level of C to
Nmic= 6. Analogous calculations are applied to the other nutrient
combinations.

MICROBIAL PROCESSES
In addition to product uptake and enzyme production, microbes
also undergo metabolism, reproduction, and mortality. Microbes
respire C at a constant basal metabolic rate (BMR), of
0.00015 fg/fg/min to account for cellular maintenance. This rate is
10 times higher than the range reported by Price and Sowers (2004)
because we assume that actively growing microbes require more
energy for maintenance metabolism. Thus the BMR also includes

growth metabolism. Microbes also lose N and P in proportion to
the amount of C lost by a factor of 0.1 divided by the C:nutrient
ratio.

When a microbe reaches a critical mass of 300 fg, it divides,
producing an exact copy of itself (unless mutation occurs). Muta-
tions, which occur independently at each locus and change the
allele to its complement, occur at a rate of 10−5/locus/division.
One copy remains in the current grid box, and the other moves
into a neighboring grid box. If that box is occupied, then one of
the microbes dies randomly with probability 0.5.

Microbial mortality occurs randomly at a fixed rate of
3× 10−5/min and also occurs if a microbe’s biomass falls below
30 fg C. This minimum mass is based on the low end of bacterial
sizes reported by Button et al. (1998). When a microbe dies, its
biomass and nutrients are added back to the grid, half as substrate
and half as product.

For more details on the parameterization of the model, see
Allison (2005).

MODEL RUNS
We varied the enzyme diffusion rate (EDiff) over the values 10−4,
10−3, and 10−2, and the constitutive enzyme production rate
(EConstit) over the values 10−7, 10−6, 10−5, and 10−4. In these
non-mixed runs, direct interactions are only between neighboring
grid boxes, defined as the eight grid boxes surrounding a focal box.
The model was also run in a well-mixed mode, in which the inter-
acting box is drawn randomly from the entire grid, so that each box
is equally close to every other box, removing spatial effects. For the
well-mixed scenarios, the EDiff was always set to 0.5. These sce-
narios were run both with and without mutation enabled. We also
ran the model with only two types, CNP (generalist producers)
and cnp (cheaters). These runs did not include mutation.

We ran the model for 35,000 h for the full genotype set and
8,000 h for the two-typeset and for the full set in the case with
EConstit= 10−4. For the 35,000 h runs, we ran five replicates both
with and without mutation. For the scenario with EConstit= 10−5

and E Diff= 10−2, we ran six additional replicates.

MODEL OUTPUTS
The outputs of the model are population density by genotype,
diversity, and depolymerization of C, N, and P. Densities were
computed as the number of microbes over the area of the grid,
which is 10,000 µm2. Diversity was calculated as1−Σp2

i , where pi

is the proportion of genotype i in the community. This quantity is
bounded by 0 and 1, and higher values represent greater diversity.
Nutrient depolymerization is the amount of substrate that is con-
verted into product per hour, whether or not this product is taken
up and used by microbes. Diversity and nutrient depolymeriza-
tion were averaged over the last 10,000 model hours of all replicate
runs.

SPATIAL ANALYSIS
To test for spatial associations between microbial types, we used
spatial statistics on independent samples of the grid outputs. Grid
outputs that are close in time cannot be considered independent
because of temporal autocorrelations. Therefore, we calculated
the time required for these autocorrelations to disappear and used
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these intervals as a basis for sampling the grid. The number of time
steps required for two time slices to be considered independent is
Nt= (1+rt)/(1−rt), where rt is the correlation between time slices,
computed as the proportion of grid boxes that retained the same
value at times t and t + 1. This value tended to increase over the
course of a run, so one cannot assume that it is constant. We took
the first time slice at t = 1, and then additional slices moving in
steps of Nt, where t is in units of 1,000 h, and Nt is computed
dynamically at each time slice and rounded up to the next integer.

At each independent time point, we analyzed the spatial asso-
ciations of the microbial types using a multi-way “join-count”
analysis. This analysis “counts” the number of “joined” (neigh-
boring) cells of a pair of focal types and compares this number
to the expected count assuming a purely random spatial distrib-
ution, yielding a z-statistic for each pair of types (Cliff and Ord,
1973, 1981). We used the “joincount.multi” and “cell2nb” func-
tions in the “spdep” package in R (Bivand, 2012) to perform the
calculations.

The z-statistics from the join-count analysis were squared and
then summed over all time slices for all replicates of a given sce-
nario to give a χ2 statistic. We also computed a total χ2 statistic
summed over all scenarios. These statistics were then compared
to a χ2-distribution with degrees of freedom equal to the num-
ber of independent time slices analyzed for that scenario (or over
all scenarios) in which the pair was present. As there are 45 pairs
(including empty boxes), we applied the Bonferroni correction to
get a cutoff of 0.05/45= 0.0011. For each pair, we computed the
average z-statistic over all cases for which there was a significant
positive association, in order to get a score for the strength of the
association.

The default implementation of the “cell2nb” function allows
one to analyze a grid only in the case where each cell is considered
“joined” to only its nearest neighbors. However, this spatial scale
was too small to yield significant positive correlations between
different types. We modified this function to join all cells in a
neighborhood with a radius of any length. We ran the analysis
with neighborhood radius lengths of 1, 2, 3, 4, and 5 grid boxes.
As the relative values of the z-scores did change depending on the
radius length, we averaged the z-scores for each pair over all radius
lengths. Since smaller neighborhoods are contained within larger
neighborhoods, this method implicitly weights closer neighbors
more than farther neighbors by 1/x, where x is the neighborhood
radius. We used these average z-scores to rank the pairs by strength
of association.

To quantify the degree of complementarity between pairs of
types, we calculated a complementation score as the number of
enzyme loci with different alleles. For example, the pair (CNp,
Cnp) has a score of 1, because it has the same alleles at the C and
P loci and different alleles at the N locus. Across all pairs of types,
we tested the correlation between this complementation score and
the strength of the spatial association based on z-scores from the
join-count analyses.

RESULTS
In both the two-type and eight-type models, under low diffusion
and constitutive production, producers dominated the commu-
nity. As constitutive enzyme production and enzyme diffusion
increased, cheaters made up a larger proportion of the community.

FIGURE 1 | Diversity of the community as a function of diffusion rate
(EDiff) and constitutive enzyme production rate (EConstit), averaged
over all replicate runs. Blue represents low diversity, and pink high
diversity.

When EConstit was increased to 10−4, the high cost of produc-
tion caused the community to go extinct. Community extinc-
tion also occurred in the well-mixed scenarios. In the scenario
with high constitutive production (EConstit= 10−5) and diffu-
sion (EDiff= 10−2), the two-type model resulted in extinction,
but in the eight-type model, the community survived in 64% of
replicates.

DIVERSITY AND COMMUNITY COMPOSITION
Diversity was lowest when constitutive production and diffusion
were both low (Figure 1). Generalist producers (CNP) dominated,
driving all other types to extinction (Figure 2A). Under interme-
diate constitutive production and diffusion, although generalist
producers (CNP) were still most common, they only made up
approximately half of the community, with the remainder includ-
ing the three other C-producers, CNp, CnP, and Cnp (Figure 2B).
Increasing constitutive production while holding diffusion con-
stant caused a shift in the community composition, but had little
effect on diversity (Figure 1). Cheaters (cnp) made up half of
the community, and types CNP, CNp, and cnP were also mod-
erately successful (Figure 2C). The highest diversity was found
under intermediate constitutive production and high diffusion
(Figure 1). All types other than cNP and cNp were able to persist,
and at relatively even frequencies, but with CNP at the highest fre-
quency (Figure 2D). Diversity also peaked under high constitutive
production and low diffusion, showing that high diversity could be
maintained either by high diffusion or high constitutive produc-
tion, but not both (Figure 1). The mixture of types at this scenario
included more of types cnp and Cnp, because high constitutive
production favors cheating more than high diffusion (Figure 2E).

Diversity was intermediate under high constitutive production
and diffusion, which favor cheaters and coalitions (Figure 1).
Competition from cheaters drove the community to very low
densities, with most types going extinct. However, as densities
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FIGURE 2 | Density of microbes by genotype over various combinations
of diffusion rate (EDiff) and constitutive enzyme production rate
(EConstit). Densities are in 1,000 microbes/10,000 µm2. (A) EDiff=10−4,

EConstit=10−7. (B) EDiff=10−3, EConstit=10−6. (C) EDiff= 10−3,
EConstit=10−5. (D) EDiff=10−2, EConstit=10−6. (E) EDiff=10−4,
EConstit=10−5. (F) EDiff=10−2, EConstit=10−5.

declined, competition from cheaters was relaxed, and the sur-
viving types were able to rebound in some cases. The specific
types that survived this bottleneck were determined randomly,
but in order to survive, the community must include a set of
types that produce all three nutrients, for example, types CnP and
cNp (Figure 2F). Cheaters (cnp) were nearly always successful in
this scenario, due to the high diffusion and constitutive produc-
tion. Density-dependent competition from cheaters caused the
total density to cycle. Mutation has the ability to reintroduce types
lost during the bottleneck, so diversity tended to be higher under
mutation in this scenario.

The variability of the outcomes also increased with diffusion
and constitutive production, and the last scenario was much more
variable than the others, due to the bottleneck. Figures 1 and 4
show results averaged over all replicate runs, and Figures 2 and 3
show representative individual runs.

SPATIAL ASSOCIATIONS AND COALITIONS
The strongest spatial associations were between microbes of the
same type (Table 1). All of these associations were statistically
significant at all spatial scales. C-enzyme producers were more
strongly autocorrelated, as indicated by a significant correlation
between C production and rank (r =−0.87, p= 0.048). However,
there was no association between N- or P-enzyme production and
the degree of autocorrelation.

Associations involving five pairs of different types were sig-
nificant when summed across all scenarios at the 5-µm radius

scale (Table 2). Fewer were significant at shorter distances,
with none significant at the 1-µm radius scale. The correlation
between average z-score and complementation score was signif-
icant (r = 0.71, p= 0.035), indicating that complementary types
were more strongly associated.

Although associations between complementary types could be
statistically detected when averaged across all scenarios, coali-
tions only played a major role in scenarios with high constitutive
production. Under intermediate diffusion, the coalition between
CNp and cnP was moderately successful, despite the high den-
sity of cheaters (Figure 2C). Colonies of these two types were
strongly associated, as were types CNP and cnp (Figure 3A).
The scenario with high diffusion and constitutive production
(EDiff= 10−2, EConstit= 10−5) displayed uniquely variable out-
comes due to a bottleneck caused by density-dependent com-
petition from cheaters. These variable outcomes highlight how
mutualistic, competitive, and parasitic interactions shaped the
spatial patterns of the community.

When only types CNP and cnp survived, the producers
formed dense aggregations due to their facilitative interactions,
whereas cheaters were more diffuse due to their competitive
relationship with each other, and clung to the edges of pro-
ducer colonies due to their parasitic relationship with them
(Figure 3B; Movie S1 in Supplementary Material). Densities of
both types cycled due to negative density-dependent fitness of
the producer and delayed tracking of producer density by the
cheater.
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FIGURE 3 | Spatial grid at a time slice for various scenarios. In all
figures, constitutive enzyme production is high (EConstit=10−5). (A)
Enzyme diffusion is intermediate (EDiff=10−3), t =34,000 h. (B–D) Show
different replicates with high enzyme diffusion (EDiff=10−2). (B) Types CNP
(red) and (cnp) blue, t =20,000 h. (C) Types CnP (pink), cNp (green), and
cnp (blue), t =21,000 h. (D) Types Cnp (light blue), cNp (green), and cnP
(purple), t =25,000 h. (E) Types CNp (orange), cNp (green), cnP (purple),
and cnp (blue), t = 27,000 h. (F) Types CNp (orange), Cnp (light blue), cNp
(green), cnP (purple), and cnp (blue), t =27,000 h.

When types Cnp, cNp, and cnP survived, they formed a three-
way coalition (Figure 3C; Movie S2 in Supplementary Material).
In this case, the relationship is opposite to that described above,
in that microbes of the same type inhibit each other’s growth due
to competition for the nutrients for which they cannot produce
enzymes, but facilitate the growth of the other types by providing
their complementary enzymes. This led to coalitional colonies of
interwoven filamentous shapes.

When types CnP and cNp survived, they formed a success-
ful coalition (Figures 2F and 3D; Movie S3 in Supplementary
Material). The relationship between these types includes both
mutualistic and parasitic aspects. Both produce the complemen-
tary enzymes required by the other type, causing them to facilitate
each other’s growth. However, there is an inherent asymmetry,

Table 1 | Ranking of spatial autocorrelation between pairs of the same

genotype with average z-score.

Types Score

CNp 8.86*

CNP 8.29*

Cnp 6.98*

CnP 6.86*

cnP 6.64*

cnp 6.48*

cNp 6.44*

cNP 6.21*

*Denotes statistical significance with Bonferroni correction at all scales.

Table 2 | Ranking of spatial association between pairs of different

genotypes, with average z-score and complementation score, defined

as the number of loci at which they have different alleles.

Types Score Comp.

cnP,CNp 0.62* 3

CnP,cNp 0.40* 3

cNp,Cnp 0.34* 2

CNP,cnp 0.26* 3

cNP,Cnp 0.23* 3

CnP,CNp 0.20 2

cNP,CNp 0.20 2

CNp,cnp 0.17 2

cNP,CnP 0.14 2

cnP,Cnp 0.10 2

CNP,cNp 0.09 2

CNp,cNp 0.08 1

cNP,cNp 0.08 1

CNp,Cnp 0.07 1

CNP,cNP 0.07 1

Cnp,cnp 0.06 1

CnP,cnP 0.06 1

cNP,cnP 0.05 1

CnP,cnp 0.05 2

CNP,CnP 0.05 1

cNp,cnp 0.05 1

CNP,cnP 0.05 2

cnP,cNp 0.04 2

cNP,cnp 0.03 2

CnP,Cnp 0.02 1

cnP,cnp 0.02 1

CNP,Cnp 0.02 2

CNP,CNp 0.02 1

*Denotes statistical significance with Bonferroni correction at the 5 µm scale.

because one produces only one enzyme and the other two. The net
impact of cNp on the fitness of CnP was positive at low density,
but negative at high density, when competition for C became over-
whelming, leading to cycling. Types CNp and cnP have a similar
relationship and formed similar spatial patterns (Figure 3E; Movie
S4 in Supplementary material).
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The outcome with the highest diversity included five types,
CNp, Cnp, cNp, cnP, and cnp, and displayed patterns of both
mutualistic and parasitic interactions (Figure 3F; Movie S5 in
Supplementary Material). Type CNp had a higher growth rate
and was more independent relative to other types, and so formed
larger colonies, whereas the single-enzyme producers formed thin-
ner, more filamentous colonies because of competitive interactions
with their own type. Density-dependent effects also led to cycling
of CNp in this scenario.

NUTRIENT DEPOLYMERIZATION
Overall, holding constitutive production constant, nutrient
depolymerization was highest for low diffusion (Figure 4). Under
low diffusion, depolymerization was highest under intermediate
constitutive production, and under intermediate to high diffusion,
depolymerization was highest under low constitutive production
(Figure 4). A negative correlation was found between diversity
and nutrient depolymerization of −0.45, −0.29, and −0.38 for
C, N, and P, respectively. The p-values for these correlations were
0.020, 0.051, 0.030. This indicates weak significance for C and P,
although if a Bonferroni correction with n= 3 is applied, none are
significant.

In comparison with the two-type model, the eight-type model
showed reduced depolymerization rates, especially for N and P.
This effect was strongest under high constitutive production and
low diffusion. In the two-type model, producers were able to dom-
inate cheaters in this scenario. However, in the eight-type model, a
diverse mix of types persisted, including a relatively high frequency
of Cnp (Figure 2E), accounting for the low depolymerization of
N and P. This effect was reversed under high constitutive produc-
tion and diffusion, because in this case, the two-type model went
extinct, whereas the eight-type model was able to survive the bot-
tleneck caused by the initial crash in some replicates. Therefore, its
average nutrient depolymerization rates were much higher than
the two-type model.

DISCUSSION
We have modeled the enzyme-mediated depolymerization of
nutrients by microbes as a public goods game in a diverse commu-
nity of microbes. Our model differs from previous models in sev-
eral important ways. While many models specify fitness payoffs of
an evolutionary game exogenously (Durrett and Levin, 1994; Kerr
et al., 2002; Hauert and Doebeli, 2004; Gore et al., 2009; Wakano
et al., 2009), this model mechanistically models the production and
action of enzymes by the microbes, and allows the game dynamics
to emerge from them. Furthermore, rather than arbitrarily spec-
ifying the efficiency of resource capture (as do Gore et al., 2009)
or the size of the interaction neighborhood (as do Wakano et al.,
2009), we simply allow enzymes to diffuse through the environ-
ment. By increasing the diffusion rate, we reduce the efficiency of
resource capture for enzyme producers, thus reducing the benefits
of enzyme production for producers and increasing the amount
of product available for cheaters. For this reason, faster diffusion
benefits cheaters at the expense of producers (Allison, 2005).

This model builds on the previous one by Allison (2005) by
the addition of multiple types of microbes, which may or may not
produce enzymes for the three types of nutrients in the model.
Thus there are two (not completely orthogonal) axes on which

FIGURE 4 | Rate of nutrient depolymerization as a function of diffusion
rate (EDiff) and constitutive enzyme production rate (EConstit) for
each of the three nutrients, averaged over all replicate runs. Blue
represents low rates of depolymerization, and pink high rates. (A) Carbon
depolymerization. (B) Nitrogen depolymerization. (C) Phosphorous
depolymerization. Across all three nutrients, the depolymerization rate is
highest for intermediate production and low diffusion, and lowest for high
production and high diffusion. The depolymerization rate decreases with the
diffusion rate over the domain studied.

types vary, the number of enzymes they produce (from 0 to 3)
and the types of enzymes they produce (C, N, or P). Most models
of public goods games include only two types of agents, produc-
ers and cheaters. Some models of allelopathy include three types
of agents, which can lead to rock-paper-scissors dynamics that
allow for the maintenance of diversity (Durrett and Levin, 1997;
Kerr et al., 2002). However, real microbial communities are highly
diverse, as are the enzymes produced by them and the substrates
they hydrolyze. While this model does not seek to model the full
diversity of a real system, increasing the number of types from
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two to eight allows us to gain some heuristic insight into the
relationship between the diversity of enzyme production strate-
gies and three important biological properties: diversity, social
interactions, and nutrient depolymerization.

DIVERSITY
Diversity was highest under intermediate conditions, specifically
relatively fast diffusion (but not well-mixed), and intermediate
constitutive production. Under these conditions, most types were
able to coexist at relatively even frequencies. The intermediate level
of constitutive production maintained a balance between produc-
ers and cheaters, and the fast diffusion allowed for the sharing
of enzymes between complementary types. Diffusion rate is a
function of both the size of the enzymes and the physical envi-
ronment. The diffusion rates considered in this study are much
slower than published diffusion coefficients in liquid media (Vet-
ter et al., 1998; He and Niemeyer, 2003). They are intended to
model diffusion in complex soils or sediment matrices, in which
diffusion is slowed due to complex pore structures (Moldrup et al.,
2001). Therefore the model predicts that environments allowing
for an intermediate rate of diffusion should have higher diversity
than either well-mixed environments or ones where diffusion is
highly constrained.

Consistent with our model predictions, empirical studies show
that differences in diffusion rates can influence microbial diversity
and community composition. In a soil microcosm study, Car-
son et al. (2010) found that bacterial diversity increased at lower
water potential, indicative of reduced soil pore connectivity and
diffusion rates. Bacterial diversity and evenness also increased sys-
tematically as water content declined across a gradient of 29 soils
sampled in the field (Zhou et al., 2002). Competition experiments
under controlled conditions further suggest that rates of diffusion
influence coexistence among bacteria. In soil microcosms, coex-
istence between Ralstonia and Sphingomonas bacteria increased
with decreasing soil water potential (Treves et al., 2003). Another
laboratory experiment found that two competing Pseudomonas
putida strains coexisted on diffusion-limited agar plates but not in
liquid culture (Dechesne et al., 2008). Thus there is good empirical
support for the prediction that increasingly well-mixed conditions
reduce the diversity of bacterial communities. However, our model
also predicts that very low rates of diffusion could reduce diversity
by selecting against cheaters that depend on diffusion to access
enzyme reaction products. Since most prior studies have focused
on relatively high diffusion environments, additional experiments
should be conducted to test this prediction.

SOCIAL INTERACTIONS
In the domain of social interactions, our model reveals an alterna-
tive strategy to generalist production and cheating: the formation
of coalitions between complementary types. Our model assumes
that if a microbe has the potential to make an enzyme, it must do so
at constitutive levels or more, making the generalist producer strat-
egy (CNP) inherently costly. Under low constitutive production,
these costs are small, generalist producers dominate, and neither
coalitions nor cheaters are observed. However, as constitutive pro-
duction increases, enzyme costs reduce the competitive ability of
generalist producers. While this level of public goods production

favors the evolution of cheaters, it also favors coalitions that reduce
the costs of enzyme production by allowing microbe types to
obtain resources through the activity of complementary types. The
same conditions that favor cheaters also favor coalitions because
mechanistically, coalitions can be thought of as mutual “cheat-
ing,” since both types take advantage of the enzymes produced
by the other. Interactions between complementary types can be
mutualistic, if they facilitate each other’s growth, or parasitic, if
one benefits at the expense of the other. We found that comple-
mentary types were spatially associated regardless of whether their
interaction was mutualistic or parasitic, but the spatial association
was stronger for mutualistic interactions. Therefore, if different
microbe types are spatially associated, they should produce com-
plementary enzymes, and their interaction is probably mutualistic,
but need not be.

Coalitions were most important under high constitutive pro-
duction and diffusion. Under these conditions, the two-type com-
munity was not stable, and crashed due to cheating. However, the
eight-type community was able to survive the bottleneck of the
initial crash and rebound in some replicates, albeit with reduced
diversity. In some cases, the community even entered a cyclic
state of repeated crashes and rebounds. This behavior is due to
the density-dependence of microbe fitness, since producers have
the advantage at low density, but cheaters the advantage at high
density. More abstract models of evolutionary games have also
shown that the addition of an advantage to cooperators at low
densities allows for coexistence in a public goods game (Durrett
and Levin, 1994; Wakano et al., 2009). These theoretical predic-
tions are also supported by experimental evidence from the yeast
Saccharomyces cerevisiae, which produces an extracellular enzyme
that hydrolyzes the disaccharide sucrose into glucose. By vary-
ing the density of cells, Greig and Travisano (2004) showed that
cooperators have higher fitness at low densities, but that cheaters
have higher fitness at high densities. Since cheaters rely on the
enzymes produced by cooperators, they are not able to survive at
low densities, but enzyme producers are self-sufficient, and so are
able to survive even at low density. However, at high densities,
the enzyme is plentiful, and the cheaters are able to outcom-
pete the cooperators because they do not pay the cost of enzyme
production.

In addition, the high diffusion and constitutive productions
scenario revealed differences in the emergent spatial patterns of
different microbial associations. Fully cooperative interactions led
to a dense, highly aggregated pattern with high autocorrelation, as
observed for CNP–CNP interactions. In contrast, fully competitive
interactions led to a dispersed pattern with lower autocorrelation,
as observed for cnp–cnp. Interactions between complementary
types include aspects of both cooperation and competition, and
therefore produced more complex spatial patterns.

NUTRIENT DEPOLYMERIZATION
Social interactions could complicate the relationship between
microbial diversity and ecosystem function (Nielsen et al., 2011).
Nutrient depolymerization was highest for low diffusion and low
to intermediate constitutive production. In the absence of compe-
tition from cheating, depolymerization increased with increasing
diffusion and constitutive production (Allison, 2005), due to the

Frontiers in Microbiology | Terrestrial Microbiology September 2012 | Volume 3 | Article 338 | 8

http://www.frontiersin.org/Terrestrial_Microbiology
http://www.frontiersin.org/Microbiology
http://www.frontiersin.org/Terrestrial_Microbiology/archive


Folse and Allison Coalitions in enzyme-producing microbes

fact that high constitutive production directly increases the quan-
tity of enzymes produced, and high diffusion reduces enzyme
saturation by spreading enzymes from areas of high concentra-
tion to areas of low concentration. However, these conditions
also favored cheaters and coalitions of intermediate types in com-
petition with generalist producers, and when these effects were
accounted for, the net effects of high constitutive production and
diffusion were reversed, reducing nutrient depolymerization.

By comparing nutrient depolymerization rates between the
two-type and eight-type models, we found that nutrient depoly-
merization for all nutrients tended to be lower in the more diverse
model (except under high constitutive production and diffusion
where the two-type community went extinct). This effect may
seem counterintuitive, because it is often assumed that increas-
ing diversity will increase the rate of resource use due to niche
complementarity between types (Tilman, 1999; Tilman et al.,
2001). However, when social interactions are also considered,
the effect of diversity may also be reversed, reducing nutrient
depolymerization.

The reduction in depolymerization was strongest for P, inter-
mediate for N, and weakest for C. This pattern was due to
C-limitation of microbial growth in the model imposed by a
higher stoichiometric demand for C relative to the substrate
supply. Therefore C-only producers could acquire the most
valuable resource while paying less cost of enzyme produc-
tion than generalist producers. Competition from C-only pro-
ducers reduced the density of generalist producers, and con-
sequently N- and P-depolymerization were reduced relative to
C-depolymerization. Therefore a prediction of our model is that
N- and P-depolymerization are reduced more by competition than
C-depolymerization, a prediction that could not be made by a sim-
pler two-type model. Furthermore, this prediction is general and
not restricted to C-limitation. Cheating is constrained for the most
limiting nutrient, so the less limiting a nutrient is biologically, the
more its depolymerization will be reduced by social interactions.

In this study, we showed that increasing diversity from two to
eight types reduced nutrient depolymerization rates due to social
interactions. However, real microbial communities contain thou-
sands of taxa, although at this time it is unknown how much
functional diversity is represented by this taxonomic diversity.
Therefore, an important challenge for future work is to understand
how social interactions influence nutrient dynamics at the high
levels of microbial diversity observed in real ecosystems. Under-
standing these scaling rules could improve our ability to predict
carbon and nutrient cycling processes driven by complex microbial
communities.
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Movie S1 | Cycling of generalist producers and cheaters. Only three types
survive the initial bottleneck: generalist producers (red), cheaters (blue), and
P-only producers (purple). When densities are low, generalist producers are
capable of very high growth rates because they catalyze their own growth, and
so form large aggregations. However, their high cost makes them poor
competitors at high densities, and they are outcompeted by cheaters. Once
density drops due to the cheater load, producers rebound, leading to cyclical
behavior (http://dx.doi.org/10.6084/m9.figshare.92321).

Movie S2 |Three-way coalition of single-enzyme producers. Only three
types survive the initial bottleneck: C-only (light blue), N-only (green), and P-only
(purple). These types compete with their own type for the resources of
enzymes they cannot produce, but catalyze each other’s growth by providing
their complementary enzymes. This leads to a spatial pattern in which the
shapes of colonies maximize their perimeter, and different types are highly
interwoven. Mutations can be seen when small colonies of other colors appear,
but none of these are able to invade, indicating that this community is stable to
invasion. This is the same replicate as Figure 3D (http://dx.doi.org/10.6084/m9.
figshare.92322).

Movie S3 | Asymmetric coalition between a two-enzyme producer and a
one-enzyme producer. Only three types survive the initial bottleneck: CnP
(pink), cNp (green), and cnp (blue). CnP and cNp catalyze each other’s growth at
low density, but cNp becomes parasitic on CnP at high densities, leading to
complex spatial patterns and cycling (http://dx.doi.org/10.6084/m9.figshare.
92323).

Movie S4 | Four types survive the initial bottleneck: CNp (orange), cNp
(green), cnP (purple), and cnp (blue). CNp and cnP complement each other,
forming a mutualistic coalition at low densities, but at high densities,
competition from the other types causes collapse of the CNp population, nearly
leading to extinction. Once densities are low enough, CNp rebounds quickly,
leading to cycling (http://dx.doi.org/10.6084/m9.figshare.92325).

Movie S5 | High diversity. In this scenario, five type survive the bottleneck:
CNp (orange), Cnp (light blue), cNp (green), cnP (purple), and cnp (blue).
This scenario includes the mutualistic interactions between single-enzyme
producers as in Movie S2, the asymmetric coalition between CNp and cnP in
Movie S4, and competition from cheaters, leading to a complex set of
interactions. CNp is able to grow much faster than other types because it is
more independent and catalyzes its own growth. This community is stable to
invasion by other types due to mutation and represents the highest diversity
outcome of this scenario (http://dx.doi.org/10.6084/m9.figshare.92324).

REFERENCES
Allison, S. D. (2005). Cheaters, diffusion

and nutrients constrain decomposi-
tion by microbial enzymes in spa-
tially structured environments. Ecol.
Lett. 8, 626–635.

Bivand, R. (2012). spdep: Spatial Depen-
dence: Weighting Schemes, Statistics,
and Models. R package version
0.5-45. Available at: http://cran.r-
project.org/web/packages/spdep/
spdep.pdf

Button, D. K., Robertson, B. R., Lepp,
P. W., and Schmidt, T. M. (1998).
A small, dilute-cytoplasm, high-
affinity, novel bacterium isolated by
extinction culture and having kinetic
constants compatible with growth at
ambient concentrations of dissolved
nutrients in seawater. Appl. Environ.
Microbiol. 64, 4467–4476.

Carson, J. K., Gonzalez-Quiñones, V.,
and Murphy, D. V. (2010). Low
pore connectivity increases bacterial

diversity in soil. Appl. Environ.
Microbiol. 76, 3936–3942.

Christiansen, T., and Nielsen, J. (2002).
Production of extracellular protease
and glucose uptake in Bacillus clausii
in steady-state and transient con-
tinuous cultures. J. Biotechnol. 97,
265–273.

Cliff, A. D., and Ord, J. K. (1973). Spatial
Autocorrelation: Monographs in Spa-
tial Environmental Systems Analysis.
London: Pion.

Cliff, A. D., and Ord, J. K. (1981). Spatial
Processes: Models and Applications.
London: Pion.

Dechesne, A., Or, D., and Smets, B.
F. (2008). Limited diffusive fluxes
of substrate facilitate coexistence
of two competing bacterial strains.
FEMS Microbiol. Ecol. 64, 1–8.

Durrett, R., and Levin, S. (1994).
The importance of being discrete
(and spatial). Theor. Popul. Biol. 46,
363–394.

www.frontiersin.org September 2012 | Volume 3 | Article 338 | 9

http://www.frontiersin.org/Terrestrial_Microbiology/10.3389/fmicb.2012.00338/abstract
http://www.frontiersin.org/Terrestrial_Microbiology/10.3389/fmicb.2012.00338/abstract
http://dx.doi.org/10.6084/m9.figshare.92321
http://dx.doi.org/10.6084/m9.figshare.92322
http://dx.doi.org/10.6084/m9.figshare.92322
http://dx.doi.org/10.6084/m9.figshare.92323
http://dx.doi.org/10.6084/m9.figshare.92323
http://dx.doi.org/10.6084/m9.figshare.92325
http://dx.doi.org/10.6084/m9.figshare.92324
http://cran.r-project.org/web/packages/spdep/spdep.pdf
http://cran.r-project.org/web/packages/spdep/spdep.pdf
http://cran.r-project.org/web/packages/spdep/spdep.pdf
http://www.frontiersin.org
http://www.frontiersin.org/Terrestrial_Microbiology/archive


Folse and Allison Coalitions in enzyme-producing microbes

Durrett, R., and Levin, S. (1997).
Allelopathy in spatially distributed
populations. J. Theor. Biol. 185,
165–171.

Giuseppin, M. L. F., Almkerk, J.
W., Heistek, J. C., and Verrips,
C. T. (1993). Comparative study
on the production of guar alpha-
galactosidase by Saccharomyces cere-
visiae SU50B and Hansenula poly-
morpha 8 2 in continuous cultures.
Appl. Environ. Microbiol. 59, 52–59.

Gore, J., Youk, H., and Van Oude-
naarden, A. (2009). Snowdrift game
dynamics and facultative cheating in
yeast. Nature 459, 253–256.

Greig, D., and Travisano, M. (2004).
The prisoner’s dilemma and poly-
morphism in yeast SUC genes. Proc.
Biol. Sci. 271(Suppl. 3), S25–S26.

Hauert, C., and Doebeli, M. (2004). Spa-
tial structure often inhibits the evo-
lution of cooperation in the snow-
drift game. Nature 428, 643–646.

He, L., and Niemeyer, B. (2003). A
novel correlation for protein diffu-
sion coefficients based on molecu-
lar weights and radius of gyration.
Biotechnol. Prog. 19, 544–548.

Kerr, B., Riley, M. A., Feldman, M.
W., and Bohannan, B. J. M. (2002).
Local dispersal promotes biodiver-
sity in a real-life game of rock-paper-
scissors. Nature 418, 171–174.

Moldrup, P., Olesen, T., Komatsu, T.,
Schjonning, P., and Rolston, D. E.
(2001). Tortuosity, diffusivity, and

permeability in the soil liquid and
gaseous phases. Soil Sci. Soc. Am. J.
65, 613–623.

Nielsen, U. N., Ayres, E., Wall, D.
H., and Bardgett, R. D. (2011).
Soil biodiversity and carbon cycling:
a review and synthesis of studies
examining diversity-function rela-
tionships. Eu. J. Soil Sci. 62, 105–116.

Price, P. B., and Sowers, T. (2004). Tem-
perature dependence of metabolic
rates for microbial growth, mainte-
nance, and survival. Proc. Natl. Acad.
Sci. U.S.A. 101, 4631–4636.

Roesch, L. F., Fulthorpe, R. R., Riva,
A., Casella, G., Hadwin, A. K., Kent,
A. D., Daroub, S. H., Camargo, F.
A., Farmerie, W. G., and Triplett,
E. W. (2007). Pyrosequencing enu-
merates and contrasts soil microbial
diversity. ISME J. 1, 283–290.

Schimel, J., and Weintraub, M. (2003).
The implications of exoenzyme
activity on microbial carbon and
nitrogen limitation in soil: a theo-
retical model. Soil Biol. Biochem. 35,
549–563.

Schimel, J., and Bennet, J. (2004). Nitro-
gen mineralization: challenges of
a changing paradigm. Ecology 85,
591–602.

Schomburg, D., and Schomburg,
I. (2001). Springer Handbook of
Enzymes. New York: Springer.

Sterner, R. W., and Elser, J. J. (2002).
Ecological Stoichiometry: The Biology
of Elements from Molecules to the

Biosphere. Princeton, NJ: Princeton
University Press.

Tilman, D. (1999). The ecological con-
sequences of changes in biodiver-
sity: a search for general principles.
Ecology 80, 1455–1474.

Tilman, D., Reich, P. B., Knops, J.,
Wedin, D., Mielke, T., and Lehman,
C. (2001). Diversity and productiv-
ity in a long-term grassland experi-
ment. Science 294, 843–845.

Treves, D. S., Xia, B., Zhou, J., and Tiedje,
J. M. (2003). A two-species test of
the hypothesis that spatial isolation
influences microbial diversity in soil.
Microb. Ecol. 45, 20–28.

Velicer, G. J. (2003). Social strife in the
microbial world. Trends Microbiol.
11, 330–337.

Vetter,Y. A.,Denning, J. W., Jumars,P. A.,
and Krieger-Brockett, B. B. (1998).
A predictive model of bacterial for-
aging by means of freely released
extracellular enzymes. Microb. Ecol.
36, 75–92.

Wakano, J.Y., Nowak, M. A., and Hauert,
C. (2009). Spatial dynamics of eco-
logical public goods. Proc. Natl.
Acad. Sci. U.S.A. 106, 7910–7914.

West, S. A., Diggle, S. P., Buckling, A.,
Gardner,A., and Griffin,A. S. (2007).
The social lives of microbes. Annu.
Rev. Ecol. Evol. Syst. 38, 53–77.

West, S. A., Griffin, A. S., Gardner,
A., and Diggle, S. P. (2006). Social
evolution theory for microorgan-
isms. Nat. Rev. Microbiol. 4, 597–607.

Zhou, J., Xia, B., Treves, D. S., Wu,
L. Y., Marsh, T. L., O’neill, R. V.,
Palumbo, A. V., and Tiedje, J. M.
(2002). Spatial and resource factors
influencing high microbial diversity
in soil. Appl. Environ. Microbiol. 68,
326–334.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 01 June 2012; accepted: 01 Sep-
tember 2012; published online: 27 Sep-
tember 2012.
Citation: Folse HJ III and Allison SD
(2012) Cooperation, competition, and
coalitions in enzyme-producing microbes:
social evolution and nutrient depolymer-
ization rates. Front. Microbio. 3:338. doi:
10.3389/fmicb.2012.00338
This article was submitted to Frontiers
in Terrestrial Microbiology, a specialty of
Frontiers in Microbiology.
Copyright © 2012 Folse and Allison. This
is an open-access article distributed under
the terms of the Creative Commons Attri-
bution License, which permits use, distri-
bution and reproduction in other forums,
provided the original authors and source
are credited and subject to any copy-
right notices concerning any third-party
graphics etc.

Frontiers in Microbiology | Terrestrial Microbiology September 2012 | Volume 3 | Article 338 | 10

http://dx.doi.org/10.3389/fmicb.2012.00338
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Terrestrial_Microbiology
http://www.frontiersin.org/Microbiology
http://www.frontiersin.org/Terrestrial_Microbiology/archive

	Cooperation, competition, and coalitions in enzyme-producing microbes: social evolution and nutrient depolymerization rates
	Introduction
	Materials and Methods
	Model overview
	Initialization
	Iteration
	Inputs
	Decay and diffusion
	Product formation
	Product uptake
	Enzyme production
	Microbial processes
	Model runs
	Model outputs
	Spatial analysis

	Results
	Diversity and community composition
	Spatial associations and coalitions
	Nutrient depolymerization

	Discussion
	Diversity
	Social interactions
	Nutrient depolymerization

	Acknowledgments
	Supplementary Material
	References




