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In this dissertation, we propose several methodology in clustering and mixture modeling

when the user has some prior knowledge regarding one or more of the clusters or mixture

components. We also provide theory in the consistency of K-medoids, and prove its consistency

under two versions of ordinal information.

We begin by considering the problem of clustering and mixture modeling in situations

where the user has relevant prior knowledge on the center separation between clusters or mixture

components. We propose a dynamic programming approach to solving the K-means problem

exactly with a separation constraint on the centers in the context of real-valued data, and propose

an EM algorithm that incorporates such a constraint in the context of fitting a Gaussian mixture
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model.

We then move onto two-component mixture models, where one component plays the

role of the background component. We consider situations where the user has prior information

on this background component’s distribution: symmetric, monotonic, or log-concave. In each

setting, we derive estimators for the background component and provide relevant theory. While

estimating the log-concave background distribution, we also propose a method to estimate the

largest concave minorant.

In addition, we consider the situation where the user has information on the number of

modes of a mixture density. We provide a dynamic programming approach to fitting a density

function by maximum likelihood when it is constrained to have a given number of modal intervals.

When this value is not available, we provide several data-driven ways for selecting it.

For the last project, we establish the consistency of K-medoids in the context of metric

spaces. Our general approach applies also to non-metric settings where only an ordering of

the dissimilarities is available. We consider two types of ordinal information: one where all

quadruple comparisons are available; and one where only triple comparisons are available.
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Chapter 1

Introduction

Cluster analysis is widely regarded as one of the most important tasks in unsupervised

data analysis (Duran and Odell, 2013; Jain et al., 1999; Kaufman and Rousseeuw, 2009), with

broad applications in areas such as statistics, artificial intelligence, biology and economics. It

focuses on the task of grouping a set of objects into clusters, such that objects in the same

cluster are more similar to each other than to those in different clusters. In many situations, the

user might have some prior knowledge on some of the clusters or mixture components, and

incorporating such information via constraints could improve the accuracy of the clustering

output (Basu et al., 2008). The main part of this dissertation is dedicated to clustering and

mixture modeling methods with constraints. We also provide some theory on the consistency of

K-medoids.

Chapter 2 is motivated by the desire to create well separated and meaningful clusters or

mixture components, and by the dynamic programming approach of (Wang and Song, 2011).

Many constraints have been incorporated into variants of K-means, for example on cluster sizes

(Banerjee and Ghosh, 2006; Bennett et al., 2000; Nielsen and Nock, 2014), on user-specified

pairs of data points that must belong to the same or different clusters (Basu et al., 2004; Davidson

and Basu, 2007; Wagstaff et al., 2001). In addition, many constraints have been considered

in the context of fitting a mixture model via EM-type algorithms, for example with equality

constraints on a subset of parameters (Jamshidian, 2004; Kim and Taylor, 1995; Takai, 2012),
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on the variance covariance matrices of Gaussian mixture models (Day, 1969; Hathaway, 1985,

1986; Ingrassia, 2004; Ingrassia and Rocci, 2007, 2011; Rocci et al., 2018), and on penalizing the

norms of the mean vectors (Pan and Shen, 2007; Wang and Zhu, 2008). Although many variants

of constraints have been proposed, none considers the constraint on separation between the

centers of K-means clusters or Gaussian mixture model components, and therefore we introduce

this constraint to K-means and Gaussian mixture modeling, and provide algorithms for the two

situations respectively.

To do so, we place ourselves in dimension one. We first propose an optimal dynamic

programming approach to solving the K-means problem exactly under a center separation

constraint, building on (Wang and Song, 2011). In the context of fitting a Gaussian mixture

model, we then propose an EM algorithm that incorporates such a constraint. When appropriate

prior center separation information is available, our algorithms can improve clustering accuracy

significantly.

Chapter 3 is motivated by the wide applications of two-component mixture models and

the novel approach of Patra and Sen (2016). Two-component mixture models can be applied

in robust statistics to model contamination (Hettmansperger and McKean, 2010; Huber, 1964;

Huber and Ronchetti, 2009; Tukey, 1960), and can be applied in multiple testing to model

the test statistics under their null hypotheses (Cai and Jin, 2010; Efron, 2007, 2012; Efron

et al., 2001; Genovese and Wasserman, 2002; Jin, 2008; Jin and Cai, 2007; Meinshausen and

Rice, 2006). Working within the multiple testing framework, Patra and Sen (2016) address the

problem of estimating the background proportion with complete information on the background

component. Their method focuses on fitting a “largest” known component under the mixture

density. Specifically, given a two-component mixture density f representing the density of all

the test statistics combined, and letting g0 denote a completely known density, Patra and Sen

(2016) try to estimate the following quantity

θ0 ∶= sup{t ∶ f ≥ tg0}. (1.1)
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Inspired by Patra and Sen (2016), we extend their approach to settings where we do not have

complete information on the background distribution.

To do so, we consider three widely-encountered situations where the background com-

ponent’s distribution is assumed to be either symmetric, monotone, or log-concave. For each

of these settings, we provide an estimator for the background component’s proportion and

density, and provide numerical implementations. We also provide a confidence interval for the

background proportion and a simultaneous confidence band for the background density, and

study their consistency results. While implementing the algorithm for log-concave background

components, we encountered a situation where we need to compute the largest concave minorant,

and provide a numerical implementation based on sequential quadratic programming. We finally

show the advantages our method has over existing methods, including requiring much less prior

knowledge and being less prone to model misspecification.

Chapter 4 is motivated by the goal to create well-explained densities with a given number

of modal intervals, and by the relatively lack of methodology in fitting densities with an arbitrary

amount of modes. Not only do modes play an important role in densities (Pearson, 1895), they

are also crucial to clustering purposes (Fukunaga and Hostetler, 1975). Although a significant

amount of methods for fitting densities with a single mode has been proposed, only a very limited

amount of literature considered fitting densities with 2 or more modes, and none implemented a

dynamic programming approach. Therefore, we propose a dynamic programming approach to

fitting densities with an arbitrary amount of modal intervals, and provide ways for selecting the

amount of modal intervals when this information is not given.

To do so, we implement a grid search approach for the knots separating adjacent uni-

modal densities. We propose a dynamic programming approach based on this grid, and propose

a multi-grid search to reduce computational cost and improve the accuracy of the estimation on

knot locations. Based on our approach, we also provide two ways – measure of fit and cross

validation – for choosing the number of uni-modal intervals when this information is unknown.

Chapter 5 is motivated by a relatively lack of theoretical treatment on the clustering
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method of K-medoids. K-medoids (Kaufman and Rousseeuw, 1987) is a popular alternative to

K-means (MacQueen, 1967), where instead of any location in the metric space, cluster centers

can only land on the data points. It has the advantage of being more robust than K-means, and

also being applicable in non-metric settings, where only a ranking of the dissimilarities between

data points are available. Although many variants of K-medoids have been proposed (Kaufman

and Rousseeuw, 2009; Park and Jun, 2009; Van der Laan et al., 2003; Wang et al., 2019), the

consistency of K-medoids in the more standard setting of clustering points in a metric space has

not been previously proved. Also, the use of K-medoids in ordinal settings with only a ranking of

the dissimilarities of data points does not seem very widespread. We were only able to find a few

literature in fields such as computer vision (Huang et al., 2020; Zadegan et al., 2013; Zhu et al.,

2011). Therefore we establish the consistency of K-medoids in the context of metric spaces, and

establish its consistency for two types of ordinal information.

To do so, we first prove that K-medoids is asymptotically equivalent to K-means restricted

to the support of the underlying distribution under general conditions and a broad range of loss

functions. This asymptotic equivalence enables us to apply the work of Pärna (1986) on the

consistency of K-means. Our approach also applies to showing consistency in non-metric settings

where only an ordering of the dissimilarities is available. We consider two types of ordinal

information: quadruple comparisons giving an overall ranking of all pairwise dissimilarities; and

triple comparisons giving a ranking relative to each sample point.
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Chapter 2

K-Means and Gaussian Mixture Modeling
with a Separation Constraint

2.1 Abstract

We consider the problem of clustering with K-means and Gaussian mixture models with

a constraint on the separation between the centers in the context of real-valued data. We first

propose a dynamic programming approach to solving the K-means problem with a separation

constraint on the centers, building on (Wang and Song, 2011). In the context of fitting a

Gaussian mixture model, we then propose an EM algorithm that incorporates such a constraint.

A separation constraint can help regularize the output of a clustering algorithm, and we provide

both simulated and real data examples to illustrate this point.

2.2 Introduction

Cluster analysis is broadly seen as one of the most important tasks in (unsupervised) data

analysis (Jain et al., 1999; Kaufman and Rousseeuw, 2009). In some situations, the analyst might

have some prior knowledge or relevant information regarding the clusters, and incorporating

this information — which may be done via constraints — is thought to improve the accuracy

of the clustering output (Basu et al., 2008). In the present paper, we address situations where

the analyst has prior knowledge on the separation between the cluster centers. We indeed focus
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on methods that rely on centers to define clusters: the K-means criterion and Gaussian mixture

models (GMM).

2.2.1 Constrained K-means

A number of constrained variants of K-means have been proposed in the literature, where

a significant amount of attention have been placed on the cluster sizes such as imposing a lower

bound on the minimum cluster size or aiming for balancing the cluster sizes. For instance,

Bennett et al. (2000) addressed the problem of small or even empty clusters by enforcing a size

constraint in the cluster assignment step of Lloyd’s algorithm; Nielsen and Nock (2014) designed

a dynamic K-means algorithm in 1D aimed at optimizing the Bregman divergence that can

incorporate a constraint on the minimum cluster size; and Banerjee and Ghosh (2006) proposed

an approach to K-means that is able to handle cluster size balance constraints. Constrained

K-means has also been widely considered in other areas (Basu et al., 2008). For example, (Basu

et al., 2004; Wagstaff et al., 2001) considered forcing some user-specified pairs of observations

to belong to the same cluster while forcing others to belong to different clusters. A overview of

instance-level constrained clustering, including K-means approaches and related methods, can

be found at (Davidson and Basu, 2007). Davidson and Ravi (2005) also incorporated a minimum

separation constraint between clusters mandating that any two points assigned to different

clusters need to be separated by at least δ , a parameter specified by the analyst. Szkaliczki (2016)

considered points arriving sequentially and constraints where clusters have to be of the form

{xi, . . . ,xi+ j}. A recent survey of constrained clustering, including K-means related methods and

modern development can be found at Gançarski et al. (2020).

We propose a variant of K-means where a user-specified separation between the cluster

centers is enforced which, to the best of our knowledge, is novel. We place ourselves in

dimension one, where we are able to solve the resulting constrained optimization problem exactly

by building on the dynamic programming approach of Wang and Song (2011).
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2.2.2 Constrained Gaussian mixture models

Model based clustering is an important aspect in clustering (Fraley and Raftery, 2002;

McLachlan and Peel, 2004), and among parametric finite mixture models, Gaussian mixture

models (GMM) are by far the most popular, with their parameters frequently estimated by the

EM algorithm or variants (Dempster et al., 1977; McLachlan and Krishnan, 2007).

EM-type algorithms forcing various constraints on the parameters of the mixture model

have been considered extensively in the literature. Kim and Taylor (1995), in a more general

setting that includes GMM, considered enforcing some equality constraints on a subset of the

parameters and provided an EM algorithm based on a projected Newton–Raphson step in the

maximization stage. Along the lines, but addressing both equality and inequality constraints,

Jamshidian (2004) used a projected gradient step instead, in conjunction with an active set

method in order to handle the inequality constraints. See also (Takai, 2012). In the context of

linear models in regression, EM-type algorithms were also proposed to handle constraints on the

parameters, in particular linear equalities and inequalities (Davis et al., 2012; Shi et al., 2005;

Shin et al., 2001; Tan et al., 2007; Tian et al., 2008; Zheng et al., 2012, 2005).

In the context of GMM proper, constraints have been considered for a very long time

to reduce the number of parameters, for example, by making all the variances or covariance

matrices to be equal. Beyond that, constraints on the variances or eigenvalues of the covariance

matrices have been considered extensively, mostly for the purpose of bounding the log likelihood

(Day, 1969). In particular, Hathaway (1985) proposed a lower bound on the ratio of any two

component standard deviations, which enabled the author to prove the strong consistency of

the resulting maximum likelihood estimator. This was followed by (Hathaway, 1986) where a

constrained EM algorithm was proposed for maximizing the likelihood with this lower bound

constraint on the ratio of any two standard deviations, and also another lower bound constraint on

the weights. Generalizing Hathaway’s results to higher dimensions, Ingrassia (2004); Ingrassia

and Rocci (2007, 2011); Rocci et al. (2018) examined EM algorithms enforcing constraints on

7



the eigenvalues of the covariance matrices.

In addition to constraints on component variance or eigenvalues, estimation of component

means under constraints has also been considered in the literature, where EM-type algorithms

have been proposed for that purpose. For example, Pan and Shen (2007) and Wang and Zhu

(2008) considered penalizing the L1 and L∞ norms of the mean vectors, respectively, to enforce

sparsity and/or regularize the model in high dimensions, while Chauveau and Hunter (2013) and

Qiao and Li (2015) proposed EM algorithms for linear constraints on the mean parameters.

We consider here, in dimension 1, arbitrary constraints on the separation between adjacent

means. We propose an EM algorithm that enforces such constraints, where the M step amounts

to solving a quadratic program.

2.2.3 Setting and content

The main focus will be on real-valued data. We do not know how to enforce a separation

constraint on the centers in higher dimensions, at least not in such principled fashion. The data

points will be assumed ordered without loss of generality, denoted x1 ≤⋯ ≤ xN and gathered in a

vector x = (x1, . . . ,xN) ∈RN . Our goal will be to group these data points into K clusters, where K

is specified by the user.

The organization of the paper will be as follows. In Section 2.3, we introduce our

dynamic programming algorithm for exactly solving K-means in dimension one with a constraint

on the minimum separation between the centers. In Section 2.4, we introduce our EM algorithm

for (approximately) fitting a Gaussian mixture model by maximum likelihood under the same

constraint. It is a true EM algorithm in that the likelihood increases with each iteration. In

Section 2.5, we describe some numerical experiments on both simulated data and real data to

illustrate the use and accuracy of our methods.
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2.3 A dynamic program for separation-constrained K-
means

Given data points on the real line, x1, . . . ,xn, and a desired number of cluster, K, basic

K-means is defined as the following optimization problem (MacQueen, 1967)

minimize
n
∑
i=1

min
k=1,...,K

(xi−µk)
2,

over µ1 <⋯ < µK.

This problem is difficult in general. For one thing, a brute-force approach by grid search would

be in dimension K and quickly unfeasible or too costly. The problem is instead most often

approached via iterative methods such as Lloyd’s algorithm (Lloyd, 1982), which consists in

alternating between, for all k, defining Cluster k as the set of points nearest to µk and then

recomputing µk as the barycenter or average of the points forming Cluster k. In dimension 1,

however, the K-means problem can be solved by dynamic programming as was established and

carried out by Wang and Song (2011).

We are interested in a variant of the K-means problem where the following separation

constraint on the centers is enforced: µk+1−µk ≥ δ for all k = 1, . . . ,K−1. In other words, we

consider the following optimization problem:

minimize
n
∑
i=1

min
k=1,...,K

(xi−µk)
2,

over µ1 <⋯ < µK satisfying µk+1−µk ≥ δ for all k = 1, . . . ,K −1.

The amount of separation is determined by the user-specified parameter δ ≥ 0. (Of course, if

δ = 0, we recover the basic K-means problem.) Inspired by the work of Wang and Song (2011),

we propose a dynamic programming algorithm to solve this constrained variant of K-means.

The remaining of this section is dedicated to describing this algorithm, which is encapsulated in
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Table 2.1 and Table 2.2.

2.3.1 The DP algorithm of Wang and Song (2011)

Given the sorted data x = (x1, . . . ,xN), for r1 = 1, . . . ,N and r2 = r1, . . . ,N, we first define

the within current cluster center (C) and the within current cluster sum of squares (W ):

C[r1,r2] =
1

r2− r1+1

r2

∑
i=r1

xi, (2.1)

W [r1,r2] =
1

r2− r1+1

r2

∑
i=r1

(xi−C[r1,r2])
2 (2.2)

Each element can be efficiently computed using a simple recursion. For i = 1, . . . ,N and m =

1, . . . ,K, define D[i,m] as recording the minimum error sum of squares when grouping the first i

data points into m clusters. The main idea of Wang and Song (2011) is to update D dynamically

as follows:

D[i,m] = min
j=m,...,i

D[ j−1,m−1]+W [ j, i] . (2.3)

This is carried out for i = 1, . . . ,N and m = 1, . . . ,K. (Initialization is D[0,m] = 0 for all m and

D[i,0] = 0 for all i.)

The method of (Wang and Song, 2011) was designed for solving the basic K-means

problem and needs to be modified, in a substantial way, to solve the separation-constrained

K-means problem. For illustrative purposes, consider clustering data x = (−2,1,2,4,5,6,9,10)

into K = 5 clusters, while keeping each cluster center separated by at least δ = 1.75. Note that

without separation the clustering assignment is 12233455 but the centers of Cluster 3 and Cluster

4 are only separated by 1.5, which is less than δ . With separation, the clustering assignment is

12334455. The same example is used to highlight two issues that need to be addressed in order

to incorporate the separation constraints:

• The m-th cluster consisting of x j, . . . ,xi, and the previous cluster, i.e., the (m−1)-th cluster
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that gives the optimal clustering of j − 1 data points into m− 1 clusters, might not be

separated by δ in terms of their means. In our example, when grouping {x1, . . . ,x5} into 3

clusters, the optimal solution is 12233, but when we try to group {x1, . . . ,x6} into 4 clusters

under the separation constraint it becomes impossible to do so as C[6,6]−C[4,5] < δ . (We

are not allowing the clusters to be empty.)

• Consider the stage where we have grouped x1, . . . ,xi into m clusters, and the last cluster

is x j, . . . ,xi. Then it is not necessarily the case that the first m−1 clusters constitute an

optimal grouping of x1, . . . ,x j−1, and so the recursion (2.3) is not necessarily valid. In our

example, the optimal clustering for grouping {x1, . . . ,x4} into 3 clusters is 1223, however

when grouping {x1, . . . ,x5} into 4 clusters under the separation constraint the clustering

assignment becomes 12334, so that the starting point of cluster 3 has changed from x4 to

x3.

In brief, (2.3) cannot be used as the updating rule. Although the first issue is easy fix by

checking that the separation constraint is satisfied, the second issue is more difficult to deal with

and requires us to introduce additional matrices/tensors as described below.

2.3.2 Our DP algorithm with separation constraint

We describe here our algorithm. First initialize:

β =W [1,N]+1, D = β 1N×K, I = 0N×K, B = 0N×K, U = β 1N×N×K , (2.4)

where β is a placeholder value chosen to be larger than the maximum possible error sum of

squares. Define:

D[i,1] =
i
∑
l=1
(xl −C[1, i])2, I[i,1] = 1, B[i,1] = 1, U[i,r,1] = 0,

for i = 1,2, . . . ,N; r = i, . . . ,N .

(2.5)

11



The D matrix is used to store the optimal error sum of squares under the separation constraint,

specifically D[i,m] records the minimal error sum of squares when putting the first i values into

m clusters while satisfying separation, if possible (recall we do not allow clusters to be empty).

The corresponding entry in the I matrix, I[i,m], is used to record the index of the first data point

in the m-th cluster in the optimal clustering of the first i data points into m clusters (the clustering

corresponding to D[i,m]). B[i,m], on the other hand, is used to store the smallest possible index

of the leftmost data point in the m-th cluster over all groupings of the first i data points into m

clusters satisfying the separation constraint. Lastly, U[q,r,m] records the optimal error sum of

squares for grouping the first q−1 data points into m−1 clusters, while satisfying the constraint

that the (m−1)-th cluster and m-th cluster, which consists of data points xq, . . . ,xr, are separated

by δ in means.

In our updates of the above matrices/tensors, we enforce the separation constraint.

Suppose that D[⋅,m−1],I[⋅,m−1],B[⋅,m−1] as well as U[⋅, ⋅,m−1] have been updated, so we

are at stage m with the immediate task of updating D[⋅,m],I[⋅,m],B[⋅,m] as well as U[⋅, ⋅,m].

Now consider grouping the first i data points into m clusters. If B[i−1,m−1] = 0, do nothing

(the values stay at the initial ones). Otherwise, for each j =m, . . . , i, we find the first value in the

descending sequence Tj ∈ {I[ j−1,m−1], . . . ,B[ j−1,m−1]} that satisfies C[ j, i]−C[Tj, j−1] ≥ δ .

Note that Tj also depends on i and m, but that is left implicit. The reason for defining Tj as such

is because starting from B[ j−1,m−1], the closer we are to I[ j−1,m−1], the smaller the error

sum of squares. Then the main update that guarantees optimality is:

D[i,m] = min
j=m,...,i

(U[Tj, j−1,m−1]+W [Tj, j−1]+W [ j, i]) , (2.6)

and

U[ j, i,m] =U[Tj, j−1,m−1]+W [Tj, j−1] . (2.7)

Then I[i,m] is updated as the smallest minimizing index in (2.6) and B[i,m] is updated as the

smallest j that satisfies C[ j, i]−C[Tj, j−1] ≥ δ .
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Table 2.1. Separation Constrained K-Means.

inputs: C,I,B (all three obtained from Table 2.2), number of clusters K, separation δ

initialize b = 0{K}, compute b[K] = I[N,K], and set l = b[K]−1
if K = 1 then

return b
for j = I[l,K−1], . . . ,B[l,K−1] do

if C[l+1,N]−C[ j, l] ≥ δ then
b[K−1] = j, l = j−1
break

if K = 2 then
return b

for k = (K−2), . . . ,1 do
for j = I[l,k], . . . ,B[l,k] do

if (C[l+1,b[k+2]−1]−C[ j, l]) ≥ δ then
b[k] = j, l = j−1
break

return b

Computational complexity

While the algorithm of Wang and Song (2011) has time complexity O(N2K), our method

has computational complexity O(N3K). While this is true in the worst case, in practice the

computational cost appears much lower as moving from I[ j−1,m−1] to B[ j−1,m−1] and

stopping at the first value where the constraint is satisfied considers significantly fewer options

than N. The upper bound for space complexity of this algorithm is O(N2K)— compared to

O(NK) for the algorithm of Wang and Song (2011). This is due to the maintaining of the tensor

U , but again, this is in the worst case, as in practice U is very sparse (most of its coefficients

are equal to the initial value β ) and the space complexity is far below the upper bound. We are

now ready to use Table 2.2 to find the the optimal error sum of squares under separation and find

the corresponding optimal clustering using Table 2.1. We note that the result b of Table 2.1 is a

vector indicating the index of each cluster’s last datapoint. We also note that in Table 2.2 there is

the possibility that the minimum value of p occurs at multiple locations; when this happens, we

select the entry with the smallest location index.
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Table 2.2. Routine computing matrices C,W,D,I,B.

inputs: data x1 ≤⋯ ≤ xN , number of clusters K, separation δ

compute C and W as in (2.1) and (2.2)
define β and initialize D,I,B,U as in (2.4) and (2.5)
if K = 1 then
go to return step
else if K = 2 then

for i = 2, . . . ,N do
p = β{i−1}
for j = 2, . . . , i do

if C[ j, i]−C[1, j−1] ≥ δ then
p[ j−1] =W [ j, i]+W [1, j−1]
U[ j, i,2] =W [1, j−1]

D[i,2] =min(p)
if D[i,2] = β then

I[i,2] = 0,B[i,2] = 0
else

I[i,2] =min(argmin(p))+1, B[i,2] =min{a ∶ p[a] < β}+1
go to return step

else
do everything in K = 2 case except go to return step, and:
for m = 3, . . . ,K do

for i =m, . . . ,N do
if D[i−1,m−1] < β then

p = β{i−m+1}
for j =m, . . . , i do

if B[ j−1,m−1] ≠ 0 then
if C[ j, i]−C[I[ j−1,m−1], j−1] ≥ δ then

p[ j−m+1] =D[ j−1,m−1]+W [ j, i]
U[ j, i,m] =D[ j−1,m−1]

else
for t = I[ j−1,m−1], . . . ,B[ j−1,m−1] do

if C[ j, i]−C[t, j−1] ≥ δ then
p[ j−m+1] =min(p[ j−m+1],U[t, j−1,m−1]+W [t, j−

1]+W [ j, i])
U[ j, i,m] =U[t, j−1,m−1]+W [t, j−1]
break

D[i,m] =min(p)
if D[i,m] = β then

I[i,m] = 0,B[i,m] = 0
else

I[i,m] =min(argmin(p))+m−1, B[i,m] =min{a ∶ p[a] < β}+m−1
return D,I,B,C,W,β , U

14



2.4 An EM algorithm for separation-constrained GMM

A Gaussian mixture model is of the form:

K
∑
k=1

πk f (x;µk,vk), (2.8)

where f (⋅;µ,v) is the density of the normal distribution with mean µ and variance v, meaning

f (x;µ,v) =
1
√

2πv
exp(−

(x−µ)2

2v
) , (2.9)

and π1, . . . ,πK are the mixture weights satisfying

min
k

πk > 0, ∑
k

πk = 1. (2.10)

For convenience, define θ = (π,µ,v) where π = (π1, . . . ,πK) ∈RK , µ = (µ1, . . . ,µK) ∈RK , and

v = (v1, . . . ,vK) ∈RK . We then let gθ denote the mixture (2.8). The working assumption is that

the data points, x1, . . . ,xN , are the realization of a sample of some size N drawn iid from a mixture

distribution of the form (2.8), where a draw from that distribution amounts to drawing a cluster

index in {1, . . . ,K} according to the probability distribution π and then generating a real valued

observation according the corresponding normal density — f (⋅;µk,vk) if k is the drawn index

value. Given the mixture model (2.8), a point x is assigned to the most likely cluster, meaning, to

argmax
k

πk f (x;µk,vk). (2.11)

Thus clustering using a Gaussian mixture model boils down to estimating the parameters

of the model. Maximum likelihood estimation1 is a natural candidate, but difficult to implement,

1 Interestingly, maximum likelihood is a competitive method even though the likelihood is not bounded. To
make sense of what the EM algorithm does, we believe that a useful perspective is to see it as attempting to maximize
the likelihood starting from a reasonable initialization, understanding that the E and M steps prevent the algorithm
from arriving at pathological values of the parameters.
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even in dimension 1, as maximizing the likelihood is not a convex problem and a grid search

is too costly given the number of parameters (3K −1). The Expectation-Maximization (EM)

algorithm of Dempster et al. (1977) — arguably the most famous approach to fitting a Gaussian

mixture model — is an iterative method that attempts to maximize the (log) likelihood:

L(θ ,x) =
N
∑
i=1

loggθ(xi). (2.12)

The main idea is based on introducing cluster assignment variables, z1, . . . ,zn, where zi = k if xi

was drawn from the k-th component of the mixture. These assignment variables are not observed

(they are said to be latent), but are useful nonetheless for thinking about the problem. To that

end, let gθ(x,z) denote the joint density of (Xi,Zi). Note that Zi has distribution π and Xi ∣ Zi = k

has the normal distribution with mean µk and variance vk. The algorithm starts with a value

of the parameter vector, θ 0, and then alternates between an E step and an M step, until some

convergence criterion is satisfied. Suppose we are at the s-th iterate. The E step consists in

computing the expectation of the log-likelihood for an arbitrary value of θ with respect to the

mixture distribution given by the current parameter estimates:

Q(θ ,θ s) ∶=
N
∑
i=1

Eθ s [ loggθ(Xi,Zi) ∣ Xi = xi]. (2.13)

It turns out that

Q(θ ,θ s) =
N
∑
i=1

K
∑
k=1

ws+1
i,k log(πk f (xi;µk,vk)), (2.14)

where

ws+1
i,k ∶=

πs
k f (xi;µs

k ,v
s
k)

∑
K
l=1 πs

l f (xi;µs
l ,v

s
l)
. (2.15)

The M step consists of maximizing the resulting function with respect to θ to yield the updated

values of the parameters:

θ
s+1 = argmax

θ

Q(θ ,θ s). (2.16)
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This amounts to the following:

π
s+1
k =

1
N

N
∑
i=1

ws+1
i,k (2.17)

µ
s+1
k =

1

∑
N
i=1 ws+1

i,k

N
∑
i=1

ws+1
i,k xi (2.18)

vk
s+1 =

1

∑
N
i=1 ws+1

i,k

N
∑
i=1

ws+1
i,k (xi−µ

s+1
k )

2 (2.19)

We are interested in a variant of the EM algorithm for maximizing the likelihood under

the following separation constraint on the centers: δk,1 ≤ µk+1−µk ≤ δk,2 for all k = 1, . . . ,K−1.

The separation parameters, δk,1 and δk,2, are set by the user. We note that this reduces to

separation when we set δ1,1 = ⋅ ⋅ ⋅ = δK−1,1 = δ and δ1,2 = ⋅ ⋅ ⋅ = δK−1,2 =∞ (in practice, a very large

number). We propose an EM algorithm that incorporates separation2. It is a true EM algorithm

in that the likelihood increases with each iteration. The remaining of this section is devoted to

introducing the algorithm, which is otherwise compactly given in Table 2.3.

In the algorithm, the E Step is identical to that in the regular EM algorithm. The M Step

is also the same except that the maximization is done under separation2. The constraint is only on

the centers, and to isolate that, we adopt an ECM approach (Meng and Rubin, 1993), where we

first maximize over the weights, which amounts to the same update (2.17); then maximize over

the centers subject to separation2 (see details below); and finally maximize over the variances,

which amounts to the same update (2.19).

Proposition 1. The separation-constrained EM algorithm does not decrease the log likelihood

of the model, i.e., L(θ s+1,x) ≥ L(θ s,x) for all s.
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Proof. Using Jensen’s inequality, we derive:

L(θ ,x) =
N
∑
i=1

log(
K
∑
k=1

πk f (xi;µk,vk)) (2.20)

=
N
∑
i=1

log(
K
∑
k=1

ws+1
i,k

πk f (xi;µk,vk)

ws+1
i,k

) (2.21)

≥
N
∑
i=1

K
∑
k=1

ws+1
i,k log(

πk f (xi;µk,vk)

ws+1
i,k

) (2.22)

=Q(θ ,θ s)−
N
∑
i=1

K
∑
k=1

ws+1
i,k log(ws+1

i,k ). (2.23)

Plugging in θ s+1 for θ , we obtain:

L(θ s+1,x) ≥Q(θ s+1,θ s)−
N
∑
i=1

K
∑
k=1

ws+1
i,k log(ws+1

i,k ), (2.24)

while by definition of the weights in (2.15), we have:

L(θ s,x) =Q(θ s,θ s)−
N
∑
i=1

K
∑
k=1

ws+1
i,k log(ws+1

i,k ) (2.25)

Thus to prove that L(θ s+1,x) ≥ L(θ s,x), it suffices to prove that Q(θ s+1,θ s) ≥Q(θ s,θ s). As we

maximized Q(θ = (π,µ,v),θ s) in every step of the ECM algorithm with other parameters fixed,

we have:

Q(θ s+1,θ s) =Q((πs+1,µs+1,vs+1),θ s) (2.26)

≥Q((πs+1,µs+1,vs),θ s) (2.27)

≥Q((πs+1,µs,vs),θ s) (2.28)

≥Q((πs,µs,vs),θ s) (2.29)

=Q(θ s,θ s). (2.30)
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The maximization over the centers amounts to solving the following optimization prob-

lem:

minimize
N
∑
i=1

K
∑
k=1

ws+1
i,k

2vs
k
(xi−µk)

2

over µ1, . . . ,µK such that δk,1 ≤ µk+1−µk ≤ δk,2 for all k = 1,2, . . . ,K−1.

(2.31)

Define gi,k =ws+1
i,k /2vs

k and

Gi = diag(gi,1, . . . ,gi,K), G =
n
∑
i=1

Gi . (2.32)

Also define

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 1 0 . . . 0 0

0 −1 1 . . . 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 . . . −1 1

1 −1 0 . . . 0 0

0 1 −1 . . . 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 . . . 1 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, b0 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

δ1,1

δ2,1

. . .

δK−1,1

−δ1,2

−δ2,2

. . .

−δK−1,2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (2.33)

where A is a 2K−2 by K matrix and b0 is a 2K−2 vector. With this notation, and let 1⊺ denote a

vector of length K with each entry as 1, the optimization problem (2.31) can be equivalently

expressed as follows:

minimize µ
⊺Gµ −2

N
∑
i=1

xi 1⊺Giµ

subject to Aµ ≥ b0,

(2.34)

which is a quadratic program. In practice, we solve it using the primal dual interior point method

of Goldfarb and Idnani (1982, 1983) implemented in the quadprog package2 in R.

2 https://cran.r-project.org/web/packages/quadprog/
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Table 2.3. Separation Constrained EM Algorithm for GMM.

inputs: data x1, . . . ,xN , number of clusters K, tolerance value γ

initialization
initialize (π1,µ1,v1) using constrained 1D optimal K-means algorithm as in
Section 2.3, if given the same lower bound constraint; otherwise initialize using
1D optimal K-means of (Wang and Song, 2011):

µ
1
1 < µ

1
2 < ⋅ ⋅ ⋅ < µ

1
K, µ

1
k =

1
∣Jk∣
∑
i∈Jk

xi, π
1
k =
∣Jk∣

N
, v1

k =
1
∣Jk∣
∑
i∈Jk

(xi−µk)
2 (2.35)

where Jk denotes the indices that are clustered into the k− th cluster

E step
compute wi,k for i = 1,2, . . . ,N and k = 1,2, . . .K:

ws+1
i,k =

πs
kN(xi∣µ

s
k ,v

s
k)

∑
K
j=1 πs

jN(xi∣µ
s
j ,v

s
j)

(2.36)

M step
update πk, k = 1,2, . . . ,K:

π
s+1
k =

1
N

N
∑
i=1

ws+1
i,k (2.37)

update µk, k = 1,2, . . . ,K by the solution to minimization problem (2.34)
update vk, k = 1,2, . . . ,K:

vk
s+1 =

1

∑
N
i=1 ws+1

i,k

N
∑
i=1

ws+1
i,k (xi−µ

s+1
k )

2 (2.38)

convergence check
if max{maxk ∣π

s+1
k −πs

k ∣, maxk ∣µ
s+1
k −µs

k ∣, maxk ∣vs+1
k −vs

k∣} ≤ γ

then stop and return θ s+1 = (πs+1,µs+1,vs+1)

else
s = s+1 and go to E step
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2.5 Experiments

This section will provide some simulated and real data examples illustrating the applica-

tion of our algorithms. The constrained algorithms are shown to outperform their unconstrained

counterparts in both parameter estimation and in producing a clustering that is more similar to

the actual clusters, of course, if the separation constraint reflects the reality of the situation. Our

code is publicly available.3

2.5.1 Simulations

We start with experiments performed on simulated data using our constrained algorithms.

We will first look at the performance of our constrained K-means algorithm over regular K-means

as implemented by Wang and Song (2011). We then look at the performance of our constrained

EM algorithm for fitting Gaussian mixture models with the regular EM algorithm (Dempster

et al., 1977). Finally, we examine the impact of the imposed constraints, including when they are

not congruent with the actual situation.

All the simulated data sets were generated from one of the following models:

• Model A: 0.333 N(0,12)+0.667 N(2,12)

• Model B: 0.45 N(0,0.752)+0.1 N(2,1.52)+0.45 N(4,0.752)

• Model C: 0.2 N(0,12)+0.2 N(2,12)+0.2 N(4,12)+0.2 N(6,12)+0.2 N(8,12)

• Model D: 0.1 N(0,0.252)+0.2 N(2,0.752)+0.4 N(4,1.252)

+0.2 N(6,0.752)+0.1 N(8,0.252)

We first apply constrained and unconstrained K-means on data generated from Model D

(Experiment 1) and on data generated from Model B (Experiment 2). The comparison criteria

3 https://github.com/h8jiang/Center-Separation-Constrained-K-Means-and-EM-Algorithm/
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Table 2.4. Errors and Rand Indices of Optimal K-means and Optimal Constrained K-means.

Experiment Model Criteria K-means Constrained K-means

Experiment 1 Model D center error 1.092 (0.276) 0.374 (0.161)
size error 165.6 (22.9) 119.9 (25.4)
Rand index 0.786 (0.015) 0.807 (0.014)

Experiment 2 Model B center error 1.339 (0.393) 0.561 (0.190)
size error 143.4 (45.9) 58.1 (18.8)
Rand index 0.834 (0.016) 0.858 (0.014)

are total error on cluster center values and the total difference on the cluster sizes:

K
∑
k=1
∣µ̂k−µk∣, and

K
∑
k=1
∣n̂k−nk∣ , (2.39)

and also the Rand index. The sample size was set to N = 500, the separation to δ = 1.95, and

the number of repeats to R = 1000. Note that the separation is satisfied in actuality, and this is

important. We record the mean value over all R experiments and their standard deviations in

Table 2.4. It is quite clear that in these experiments constrained K-means improves significantly

over unconstrained K-means in terms of both center estimates and clustering accuracy.

Experiments 3, 4 and 5 will show three examples where applying our constrained

EM algorithm with a valid separation constraint results in a large improvement of parameter

estimation over the regular EM algorithm. Both algorithms are identically initialized using the

constrained K-means algorithm in Section 2.3. We apply these two methods on data generated

from Model B in Experiment 3, data generated from Model A in Experiment 4, and data generated

from Model C in Experiment 5. The comparison criteria are average error on center values and

the average error on all parameters:

1
K

K
∑
k=1
∣µ̂k−µk∣, and

1
K

K
∑
k=1
(∣µ̂k−µk∣ + ∣π̂k−πk∣ + ∣v̂k−vk∣) , (2.40)

and the Rand index. Here the sample size is N = 500, the lower and upper bounds on the
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Table 2.5. Errors and Rand Indices of EM Algorithm and Constrained EM Algorithm.

Experiment Model Criteria Regular EM Constrained EM

Experiment 3 Model B center error 0.339 (0.205) 0.058 (0.021)
all parameters error 0.976 (0.296) 0.454 (0.197)
Rand index 0.893 (0.023) 0.906 (0.013)

Experiment 4 Model A center error 0.252 (0.155) 0.172 (0.120)
all parameters error 0.568 (0.320) 0.409 (0.242)
Rand index 0.715 (0.047) 0.726 (0.040)

Experiment 5 Model C center error 0.448 (0.231) 0.276 (0.213)
all parameters error 0.994 (0.415) 0.764 (0.367)
Rand index 0.810 (0.028) 0.820 (0.030)

separation are δ1 = 1.9 and δ2 = 2.1 (same across k), and the number of repeat is R = 1000. Note

again that the separation constraint is accurate in that it holds in all the models used in this set of

experiments. We record the mean value of all R experiments and their standard deviations in

Table 2.5. It is clear that in these 3 experiments, the constrained EM algorithm improves over the

regular EM algorithm in terms of both parameter estimation and clustering accuracy.

In the last experiments, we look at the impact of the separation constraint on the result of

the constrained algorithms (Experiment 6), and also explore how imposing two-sided constraints

differs from imposing one-sided constraints (Experiment 7). We focus on the simplest model,

Model A, which has only two components. In Experiment 6, we gradually increase δ on a grid

of values ranging from 0.85 to 2.4. We generate R = 100 data sets from Model A, then for each δ ,

we fit the model and record all parameters as done in Experiments 3-5. We present the results in 3

plots with 90% confidence bands in Figure 1. We can see that the curves representing regular and

one-sided EM tend to overlap on the very left. The one-sided EM starts to become more accurate

in parameter estimation compared to regular EM when δ is as low as 0.9, and the improvement

increases as we move closer to actual value 2. Once passed 2, the performance starts to deteriorate

compared to the regular EM. On the other hand, when the two-sided constraint indeed contains

the true separation, 2, the two-sided constrained EM outperforms the one-sided constrained and
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(a) error in the estimation of the cen-
ters as a function of the separation δ

(b) error in the estimation of all the
parameters as a function of the separa-
tion δ

(c) Rand index as a function of the
separation δ

Figure 2.1. Results of Experiments 6 and 7: black curves represent unconstrained EM; red curves
represent constrained EM with a lower bound on separation, δ ; blue curves represent two-sided
constrained EM, with lower bound on separation being δ1 = δ and upper bound being δ2 = δ +0.2;
thick horizontal line is at the mean values of 100 experiments, while the thin horizontal lines
give the 90% confidence bands; the actual separation, 2, is indicated by a dotted vertical line.
Note that the red and black curves tend to overlap on the left side of plots, and the red and blue
curves tend to overlap on the right side of plots.

regular EM. However, quite intuitively, when the two-sided constraint does not include the actual

separation inside, the performance of the two-sided constrained EM is significantly worse than

the two other algorithms before reaching actual separation value, and the same as the one-sided

constrained EM after passing the actual separation value.

2.5.2 Real dataset

In this section we apply our constrained EM Algorithm to the 2010 National Youth

Physical Activity and Nutrition Study (NYPANS) dataset provided in (Centers for Disease

Control and Prevention, 2010). The dataset consists of measurements on high school students in

the United States in 2010. Since the height of students in each grade follows an approximate

Gaussian distribution, and there are 4 grades, the height of all the students could form a GMM

with K = 4. We focus on estimating the parameters of this GMM.

As prior knowledge, we use information from the data table of stature-for-age charts

provided by National Center for Health Statistics in (Centers for Disease Control and Prevention,
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Table 2.6. Errors and Rand Indices of EM Algorithm and Constrainted EM Algorithm.

Model Criteria Regular EM Constrained EM

NYPANS center error (times 100) 6.7 0.5
all parameters error (times 100) 15.6 3.2
Rand index 0.566 0.596

2001). The two sources are both gathered in the United States, with a time difference of 9 years.

From the mean age of students in the NYPANS study in each of the 4 grades, we found the

most relevant median height, and in Gaussian distributions the mean height, in these charts,

and subtracted the adjacent values. To account for possible slight changes over the years, we

add and subtract respectively 0.005, in meters, to each of the differences. The resulting prior

knowledge, in units of meters, gives us: δ1,1 = 0.019023,δ2,1 = 0.00895,δ3,1 = 0.00154 and

δ1,2 = 0.029023,δ2,2 = 0.01895,δ3,2 = 0.01154. It is clear from Table 2.6 that the constrained EM,

with proper prior knowledge, outperforms regular EM in both parameter estimation and Rand

index, and therefore significantly improves on the ability to uncover the underlying components.
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Chapter 3

Extending the Patra–Sen Approach to
Estimating the Background Component in
a Two-Component Mixture Model

3.1 Abstract

Patra and Sen (2016) consider a two-component mixture model, where one component

plays the role of background while the other plays the role of signal, and propose to estimate the

background component by simply ‘maximizing’ its weight. While in their work the background

component is a completely known distribution, we extend their approach here to three emblematic

settings: when the background distribution is symmetric; when it is monotonic; and when it

is log-concave. In each setting, we derive estimators for the background component, establish

consistency, and provide a confidence band. While the estimation of a background component

is straightforward when it is taken to be symmetric or monotonic, when it is log-concave its

estimation requires the computation of a largest concave minorant, which we implement using

sequential quadratic programming. Compared to existing methods, our method has the advantage

of requiring much less prior knowledge on the background component, and is thus less prone

to model misspecification. We illustrate this methodology on a number of synthetic and real

datasets.
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3.2 Introduction

3.2.1 Two component mixture models

Among mixture models, two-component models play a special role. In robust statistics,

they are used to model contamination, with the main component representing the inlier distri-

bution, while the remaining component representing the outlier distribution (Hettmansperger

and McKean, 2010; Huber, 1964; Huber and Ronchetti, 2009; Tukey, 1960). In that kind of

setting, the contamination is a nuisance and the goal is to study how it impacts certain methods

for estimation or testing, and also to design alternative methods that behave comparatively better

in the presence of contamination.

In multiple testing, the background distribution plays the role of the distribution assumed

(in a simplified framework) to be common to all test statistics under their respective null

hypotheses, while the remaining component plays the role of the distribution assumed of the

test statistics under their respective alternative hypotheses (Efron et al., 2001; Genovese and

Wasserman, 2002). In an ideal situation where the p-values can be computed exactly and

are uniformly distributed on [0,1] under their respective null hypotheses, the background

distribution is the uniform distribution on [0,1]. Compared to the contamination perspective,

here the situation is in a sense reverse, as we are keenly interested in the component other than

the background component. We adopt this multiple testing perspective in the present work.

3.2.2 The Patra–Sen approach

Working within the multiple testing framework, Patra and Sen (2016) posed the problem

of estimating the background component as follows. They operated under the assumption that

the background distribution is completely known — a natural choice in many practical situations,

see for example the first two situations in Section 3.3.3. Given a density f representing the

density of all the test statistics combined, and letting g0 denote a completely known density,
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define

θ0 ∶= sup{t ∶ f ≥ tg0}. (3.1)

Note that θ0 ∈ [0,1]. Under some mild assumptions on f , the supremum is attained, so that f

can be expressed as the following two-component mixture:

f = θ0g0+(1−θ0)u, (3.2)

for some density u. Patra and Sen (2016) aim at estimating θ0 defined in (3.1) based on a sample

from the density f , and implement a slightly modified plug-in approach. Even in this relatively

simple setting where the background density — the completely known density g0 above — is

given, information on θ0 can help improve inference in a multiple testing situation as shown

early on by Storey (2002), and even earlier by Benjamini and Hochberg (2000).

3.2.3 Our contribution

We find the Patra–Sen approach elegant, and in the present work extend it to settings

where the background distribution (also referred to as the null distribution) — not just the

background proportion — is unknown. For an approach that has the potential to be broadly

applicable, we consider three emblematic settings where the background distribution is in turn

assumed to be symmetric (Section 3.3), monotone (Section 3.4), or log-concave (Section 3.5).

Each time, we describe the estimator for the background component (proportion and density) that

the Patra-Sen approach leads to, and study its consistency and numerical implementation. We

also provide a confidence interval for the background proportion and a simultaneous confidence

band for the background density. In addition, in the log-concave setting, we provide a way of

computing the largest concave minorant. We address the situation where the background is

specified incorrectly, and mention other extensions, including combinations of these settings and

in multivariate settings, in Section 3.6.
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3.2.4 More related work in multiple testing

The work of Patra and Sen (2016) adds to a larger effort to estimate the proportion

and/or the density of the null component in a multiple testing scenario. This effort dates back,

at least, to early work on false discovery control (Benjamini and Hochberg, 1995) where (over-

)estimating the proportion of null hypotheses is crucial to controlling the FDR and related

quantities (Benjamini and Hochberg, 2000; Genovese and Wasserman, 2004; Storey, 2002).

Directly focusing on the estimation of the null proportion, Langaas et al. (2005) consider a

setting where the p-values are uniform in [0,1] under their null hypotheses and have a monotone

decreasing density under their alternative hypotheses, while Meinshausen and Rice (2006) do

not assume anything of the alternative distribution and propose an estimator which is similar in

spirit to that of Patra and Sen (2016). Jin and Cai (2007) and Jin (2008) consider a Gaussian

mixture model and approach the problem via the characteristic function — a common approach

in deconvolution problems. Gaussian mixtures are also considered in (Cai and Jin, 2010; Efron,

2007, 2012), where the Gaussian component corresponding to the null has unknown parameters

that need to be estimated.

Some references to estimating the null component that have been or could be applied in

the context of multiple testing are given in (Efron, 2012, Ch 5). Otherwise, we are also aware of

the very recent work of Roquain and Verzelen (2020), where in addition to studying the ‘cost’ of

having to estimate the parameters of the null distribution when assumed Gaussian, also consider

the situation where null distribution belongs to a given location family, and further, propose to

estimate the null distribution under an upper bound constraint on the proportion of non-nulls in

the mixture model.

Remark 1. Much more broadly, all this connects with the vast literature on Gaussian mixture

models (Cohen, 1967; Lindsay and Basak, 1993) and on mixture models in general (Lindsay,

1995; McLachlan and Basford, 1988; McLachlan et al., 2019; McLachlan and Peel, 2004),

including two-component models (Bordes et al., 2006; Gadat et al., 2020; Ma and Yao, 2015;
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Shen et al., 2018).

3.3 Symmetric background component

We start with what is perhaps the most natural nonparametric class of null distributions:

the class of symmetric distributions about the origin. Unlike Roquain and Verzelen (2020),

who assume that the null distribution is symmetric around an unknown location that needs to

be estimated but is otherwise known, i.e., its ‘shape’ is known, we assume that the shape is

unknown. We do assume that the center of symmetry is known, but this is for simplicity, as an

extension to an unknown center of symmetry is straightforward (see our numerical experiments

in Section 3.3.2). Mixtures of symmetric distributions are considered in (Hunter et al., 2007),

but otherwise, we are not aware of works estimating the null distribution under an assumption of

symmetry in the context of multiple testing. For works in multiple testing that assume that the

null distribution is symmetric but unknown, but where the goal is either testing the global null

hypothesis or controlling the false discovery rate, see (Arias-Castro and Chen, 2017; Arias-Castro

and Wang, 2017).

Following the footsteps of Patra and Sen (2016), we make sense of the problem by

defining for a density f the following:

π0 ∶= sup{π ∶ ∃g ∈ S s.t. f −πg ≥ 0 a.e.}, (3.3)

where S is the class of even densities (i.e., representing a distribution that is symmetric about the

origin). Note that π0 ∈ [0,1] is well-defined for any density f , with π0 = 1 if and only if f itself

is symmetric.

Theorem 1. We have

π0 = ∫

∞

−∞
h0(x)dx, h0(x) ∶=min{ f (x), f (−x)}. (3.4)
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Moreover, if π0 > 0 the supremum in (3.3) is attained by the following density and no other 1 :

g0(x) ∶=
h0(x)

π0
. (3.5)

Proof. The parameter π0 can be equivalently defined as

π0 = sup{∫ h ∶ h is even and 0 ≤ h ≤ f a.e.}. (3.6)

Note that h0, as defined in the statement, satisfies the above conditions, implying that π0 ≥ ∫ h0.

Take h satisfying these same conditions, namely, h(x) = h(−x) and 0≤ h(x) ≤ f (x) for almost all x.

Then, for almost any x, h(x) ≤ f (x) and h(−x) ≤ f (−x), implying that h(x) ≤ f (x)∧ f (−x) = h0(x).

(Here and elsewhere, a∧b is another way of denoting min(a,b).) Hence, ∫ h ≤ ∫ h0 with equality

if and only if h = h0 a.e., in particular implying that π0 ≤ ∫ h0. We have thus established that

π0 = ∫ h0, and also that ∫ h = π0 if and only if h = h0 a.e.. This not only proves (3.4), but also

(3.5), essentially by definition.

We have thus established that, in the setting of this section, the background component

as defined above is given by

h0(x) = π0g0(x) =min{ f (x), f (−x)}, (3.7)

and f can be expressed as a mixture of the background density and another, unspecified, density

u, as follows:

f = π0g0+(1−π0)u. (3.8)

The procedure is summarized in Table 3.1. An illustration of this decomposition is shown in

Figure 3.1. By construction, the density u is such that it has no symmetric background component

in that, for almost every x, u(x) = 0 or u(−x) = 0.

1 As usual, densities are understood up to sets of zero Lebesgue measure.
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Table 3.1. Symmetric background computation.

inputs: density f , given center of symmetry c0 or candidate center points
{c1,c2, . . . ,ck}

if center of symmetry is not provided then
for i = 1, . . . ,k do

hi(x) =min{ f (x), f (2ci−x)}
πi(x) = ∫

∞
−∞hi(x)dx

β = argmaxi πi(x)
c0 = cβ

h0(x) =min{ f (x), f (2c0−x)}
π0 = ∫

∞
−∞h0(x)dx

g0(x) = h0(x)/π0

return c0,π0,g0,h0

(a) Decomposition of f with center of symmetry
specified as 0 (dotted).

(b) Decomposition of f with center of symme-
try, 0.04 (dotted), found by maximization.

Figure 3.1. The density f of the Gaussian mixture 0.85 N(0,1)+0.15 N(3,1), in black, and its
decomposition into π0g0, in orange, and (1−π0)u, in blue. We specify the center of symmetry
as 0 on the left, and we do not specify the center of symmetry on the right. Notice π0 = 0.850 on
the left and π0 = 0.860 on the right.
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3.3.1 Estimation and consistency

When all we have to work with is a sample — x1,x2, . . . ,xn ∈R — we adopt a straight-

forward plug-in approach: We estimate the density f , obtaining f̂ , and apply the procedure

of Table 3.1, meaning, we compute ĥ0(x) ∶=min{ f̂ (x), f̂ (−x)}. If we want estimates for the

background density and proportion, we simply return π̂0 ∶= ∫ ĥ0 and ĝ0 ∶= ĥ0/π̂0. (By convention,

we set ĝ0 to the standard normal distribution if π̂0 = 0.)

We say that f̂ = f̂n is locally uniformly consistent for f if E[esssupx∈I ∣ f̂n(x)− f (x)∣] → 0

as n→∞ for any bounded interval I. (Here and elsewhere, esssupx∈I f (x) denotes the essential

supremum of f over the set I.) We note that this consistency condition is satisfied, for example,

when f is continuous and f̂ is the kernel density estimator with the Gaussian kernel and

bandwidth chosen by cross-validation (Chow et al., 1983).

Theorem 2. Suppose that f̂ is a true density and locally uniformly consistent for f . Then ĥ0 is

locally uniformly consistent for h0 and π̂0 is consistent, and if π0 > 0, then ĝ0 is locally uniformly

consistent for g0.

Proof. All the limits that follows are as the sample size diverges to infinity. We rely on the

elementary fact that, for a1,a2,b1,b2 ∈R,

∣min{a1,b1}−min{a2,b2}∣ ≤max{∣a1−a2∣, ∣b1−b2∣}, (3.9)

to get that, for all x,

∣ĥ0(x)−h0(x)∣ ≤max{∣ f̂ (x)− f (x)∣, ∣ f̂ (−x)− f (−x)∣}, (3.10)

implying that ĥ0 is locally uniformly consistent for h0. To be sure, take a bounded interval I,
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which we assume to be symmetric without loss of generality. Then

esssup
x∈I
∣ĥ0(x)−h0(x)∣ ≤ esssup

x∈I
∣ f̂ (x)− f (x)∣∨esssup

x∈I
∣ f̂ (−x)− f (−x)∣

= esssup
x∈I
∣ f̂ (x)− f (x)∣,

and we then use the fact that E[esssupI ∣ f̂ − f ∣] → 0. (Here and elsewhere, a∨b is another way of

denoting max(a,b).)

To conclude, it suffices to show that π̂0 is consistent for π0. Fix ε > 0 arbitrarily small.

There is a bounded interval I such that ∫I f ≥ 1−ε . Then, by the fact that 0 ≤ h0 ≤ f a.e.,

∫
I
h0 ≤ π0 = ∫ h0 ≤ ∫

I
h0+∫

Ic
f ≤ ∫

I
h0+ε.

(Ic denotes the complement of I, meaning, Ic =R∖ I.) Similarly, by the fact that 0 ≤ ĥ0 ≤ f̂ a.e.,

∫
I
ĥ0 ≤ π̂0 = ∫ ĥ0 ≤ ∫

I
ĥ0+∫

Ic
f̂ .

From this we gather that

∫
I
ĥ0−∫

I
h0−ε ≤ π̂0−π0 ≤ ∫

I
ĥ0−∫

I
h0+∫

Ic
f̂ .

Thus consistency of π̂0 follows if we establish that limsup∫Ic f̂ ≤ ε and that ∫I ĥ0−∫I h0→ 0. The

former comes from the fact that

∫
Ic

f̂ = ∫
Ic

f̂ −∫
Ic

f +∫
Ic

f

≤ ∫
I
( f̂ − f )+ε

≤ ∣I∣esssup
I
∣ f̂ − f ∣ +ε → ε,
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using the fact that f and f̂ are densities and that ∫Ic f ≤ ε . (∣I∣ denotes the Lebesgue measure of I,

meaning its length when I is an interval.) For the latter, we have

∣∫
I
ĥ0−∫

I
h0∣ ≤ ∫

I
∣ĥ0−h0∣ ≤ ∣I∣esssup

I
∣ĥ0−h0∣ → 0,

having already established that ĥ0 is locally uniformly consistent for h0.

Confidence interval and confidence band

Beyond mere pointwise consistency, suppose that we have available a confidence band

for f , which can be derived under some conditions on f from a kernel density estimator — see

(Chen, 2017) or (Giné and Nickl, 2021, Ch 6.4).

Theorem 3. Suppose that for some α ∈ (0,1), we have at our disposal f̂l and f̂u such that

P( f̂l(x) ≤ f (x) ≤ f̂u(x), for almost all x) ≥ 1−α. (3.11)

Then, with probability at least 1−α ,

π̂l ≤ π0 ≤ π̂u, ĝl ≤ g0 ≤ ĝu a.e., (3.12)

where

π̂l ∶= ∫ ĥl, π̂u ∶= ∫ ĥu, ĥl(x) ∶=min{ f̂l(x), f̂l(−x)}, ĥu(x) ∶=min{ f̂u(x), f̂u(−x)}.

Proof. Let Ω be the event that f̂l(x) ≤ f (x) ≤ f̂u(x) for almost all x, and note that P(Ω) ≥ 1−α

by assumption. Assuming that Ω holds, we have, for almost all x,

f̂l(x) ≤ f (x) ≤ f̂u(x), f̂l(−x) ≤ f (−x) ≤ f̂u(−x),
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and taking the minimum in the corresponding places yields

ĥl(x) ≤ h0(x) ≤ ĥu(x). (3.13)

Everything else follows immediately from this.

In words, we apply the procedure of Table 3.1 to the lower and upper bounds, f̂l and f̂u.

If the center of symmetry is not provided, then we determine it based on f̂ , and then use that

same center for f̂l and f̂u.

3.3.2 Numerical experiments

In this subsection we provide simulated examples when the background distribution is

taken to be symmetric. We acquire f̂ by kernel density estimation using the Gaussian kernel with

bandwidth selected by cross-validation (Arlot and Celisse, 2010; Rudemo, 1982; Sheather and

Jones, 1991; Silverman, 1986; Stone, 1984), where the cross-validated bandwidth selection is

implemented in the kedd package (Guidoum, 2020). The consistency of this density estimator has

been proven in (Chow et al., 1983). Although there are many methods that provide confidence

bands for kernel density estimator, for example (Bickel and Rosenblatt, 1973; Giné and Nickl,

2010), for consideration of simplicity and intuitiveness, our simultaneous confidence band (in the

form of f̂l and f̂u) used in the experiments is acquired from bootstrapping a debiased estimator

of the density as proposed in (Cheng and Chen, 2019). For a comprehensive review on the area

of kernel density and confidence bands, we point the reader to the recent survey paper (Chen,

2017) and textbook (Giné and Nickl, 2021, Ch 6.4).

In the experiments below, we carry out method and report the estimated proportion π̂0, as

well as its 95% confidence interval (π̂L
0 , π̂

U
0 ). We consider both the situation where the center of

symmetry is given, and the situation where it is not. In the latter situation, we also report the

background component’s estimated center, which is selected among several candidate centers

and chosen as the one giving the largest symmetric background proportion.
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We are not aware of other methods for estimating the quantity π0, but we provide a

comparison with several well-known methods that estimate similar quantities. To begin with, we

consider the method of Patra and Sen (2016), which estimates the quantity θ0 as defined in (3.1).

We let θ̂ PSC
0 , θ̂ PSH

0 , θ̂ PSB
0 denote the constant, heuristic, and 95% upper bound estimator

on θ0, respectively. We then consider estimators of the quantity θ , the actual proportion of the

given background component fb in the mixture density

f = θ fb+(1−θ)u, (3.14)

where u denotes the unknown component. Note that θ0 and π0 may be different from θ . This

mixture model may not be identifiable in general, and we discuss this issue down below. We

also consider the estimator of (Efron, 2007), denoted θ̂ E, and implemented in package locfdr 2.

This method requires the unknown component to be located away from 0, and to be have heavier

tails than the background component. In addition, when the p-values are known, Meinshausen

and Rice (2006) provide a 95% upper bound on the proportion of the null component, and we

include that estimator also, denoted θ̂ MR, and implemented in package howmany 3. Finally, when

the distribution is assumed to be a Gaussian mixture, Cai and Jin (2010) provide an estimator,

denoted θ̂ CJ, when the unknown component is assumed to have larger standard deviation than the

background component. θ̂ CJ requires the specification of a parameter γ , and following the advice

given by the authors, we select γ = 0.2. Importantly, unlike our method, these other methods

assume knowledge of the background distribution. (Note that the methods of Efron (2007) and

Cai and Jin (2010) do not necessitate full knowledge of the background distribution, but we

provide them with that knowledge in all the simulated datasets.) We summarize the methods used

in our experiments in Table 3.2. For experiments in situations where the background component

is misspecified, we invite the reader to Section 3.6.1.

2 https://cran.r-project.org/web/packages/locfdr/index.html
3 https://cran.r-project.org/web/packages/howmany/howmany.pdf
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Table 3.2. Summary of the methods considered in our experiments.

Estimator Reference Description Background information
needed

π̂0, π̂
L
0 , π̂

U
0 Current paper Estimator of π0 with 95%

lower and upper confi-
dence bounds.

Requires background dis-
tribution to be symmetric
(note the requirement be-
comes monotonic in Sec-
tion 3.4 or log-concave in
Section 3.5).

θ̂
PSC
0 , θ̂

PSH
0 , θ̂

PSB
0 (Patra and Sen,

2016)
Constant, heuristic, and
95% upper bound esti-
mates of θ0.

Requires complete knowl-
edge on the background
distribution.

θ̂
E
0 (Efron, 2007) Estimator of θ . Either requires full knowl-

edge of background dis-
tribution or can estimate
the background distribu-
tion when it has shape sim-
ilar to a Gaussian distribu-
tion centered around 0.

θ̂
MR
0 (Meinshausen

and Rice, 2006)
95% upper bound of θ . Requires complete knowl-

edge on the background
distribution.

θ̂
CJ
0 (Cai and Jin,

2010)
Estimator of θ . Either requires full knowl-

edge of background dis-
tribution or can estimate
the background distribu-
tion when it is Gaussian.
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We consider four different situations as listed in Table 3.3. Each situation’s corresponding

θ , θ0, and π0, defined as in (3.3), are also presented, where θ0 and π0 are obtained numerically

based on knowledge of f . For each model, we generate a sample of size n = 1000 and compute

all the estimators described above. We repeat this process 1000 times. We transform the data

accordingly when applying the comparison methods. The result of our experiment are reported,

in terms of the mean values as well as standard deviations, in Table 3.4. It can be seen that in

most situations, our estimator achieves comparable if not better performance when estimating π0

as compared to the other methods for the parameter they are meant to estimate (θ or θ0). We also

note that our method is significantly influenced by the estimation of f̂ , therefore in situations

where f̂ deviates from f often, our estimator will likely result in higher error. In addition, it is

clear from the experiments that specifying the center of symmetry is unnecessary.

Table 3.3. Simulated situations for the estimation of a symmetric background component,
together with the corresponding values of θ , θ0, π0 (unspecified center), and π00 (given center),
obtained numerically (and rounded at 3 decimals).

Model Distribution θ θ0 π0 π00

S1 0.85 N(0,1)+0.15 N(3,1) 0.850 0.850 0.860 0.850

S2 0.95 N(0,1)+0.05 N(3,1) 0.950 0.950 0.950 0.950

S3 0.85 N(0,1)+0.1 N(2.5,0.75)+0.05 N(−2.5,0.75) 0.850 0.851 0.954 0.950

S4 0.85 N(0,1)+0.1 N(2.5,0.75)+0.05 N(5,0.75) 0.850 0.850 0.858 0.850

3.3.3 Real data analysis

In this subsection we examine six real datasets where the null component could be

reasonably assumed to be symmetric.

We begin with two datasets where we have sufficient information on the background

component. The first one is the Prostate dataset (Singh et al., 2002), which contains gene

expression levels for n = 6033 genes on 102 men, 50 of which are control subjects and 52

are prostate cancer patients. The main objective is to discover the genes that have a different
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Table 3.4. A comparison of various methods for estimating a background component in the
situations of Table 3.3. For our method, the first and second rows in each situation are for when
the center is unspecified, while the third and fourth rows are for when the center is specified to
be the origin. Thus π̂0 on the first row of each situation is compared with π0, π̂0 on the third row
of each situation is compared with π00. Otherwise, the θ̂ X

0 are compared with θ0, while the θ̂ X

are compared with θ .

Model Center π̂0 π̂
L
0 π̂

U
0 Null θ̂

PSC
0 θ̂

PSH
0 θ̂

PSB
0 θ̂

E
θ̂

MR
θ̂

CJ

S1 0.068 0.857 0.571 1 N(0,1) 0.848 0.855 0.893 0.861 0.890 0.893
(0.052) (0.021) (0.059) (0) (0.024) (0.023) (0.018) (0.023) (0.014) (0.085)
0 0.835 0.561 1
given (0.022) (0.058) (0)

S2 0.024 0.936 0.631 1 N(0,1) 0.938 0.954 0.985 0.955 0.972 0.963
(0.044) (0.017) (0.066) (0) (0.023) (0.022) (0.015) (0.026) (0.008) (0.082)
0 0.925 0.623 1
given (0.019) (0.067) (0)

S3 0.046 0.945 0.597 1 N(0,1) 0.864 0.942 0.937 0.856 0.896 0.707
(0.050) (0.019) (0.063) (0) (0.023) (0.034) (0.017) (0.024) (0.015) (0.085)
0 0.930 0.587 1
given (0.020) (0.064) (0)

S4 0.070 0.856 0.574 1 N(0,1) 0.846 0.854 0.891 0.849 0.889 0.713
(0.056) (0.021) (0.061) (0) (0.023) (0.024) (0.018) (0.024) (0.014) (0.088)
0 0.833 0.563 1
given (0.022) (0.060) (0)
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expression level on the control and prostate patient groups. For each gene, we conduct a two-

sided two sample t test on the control subjects and prostate patients, and then transform these t

statistics into z values, using

zi =Φ
−1(F100(ti)), i = 1,2, . . . ,6033, (3.15)

where Φ denotes the cdf of the standard normal distribution, and F100 denotes the cdf of the t

distribution with 100 degrees of freedom. We work with these n = 6033 z values. From (Efron,

2007) the background component here could be reasonably assumed to be N(0,1). The results

of the different proportion estimators compared in Section 3.3.2 are shown in the first row of

Table 3.5. The fitted largest symmetric component as well as confidence bands are plotted in

Figure 3.2(a).

Next we consider the Carina dataset (Walker et al., 2007), which contains the radial

velocities of n = 1266 stars in Carina, a dwarf spheroidal galaxy, mixed with those of Milky Way

stars in the field of view. As Patra and Sen (2016) stated, the background distribution of the

radial velocity, bgstars, can be acquired from (Robin et al., 2003). The various estimators are

computed and shown in the second row of Table 3.5. The fitted largest symmetric component as

well as confidence bands are plotted in Figure 3.2(b).

Table 3.5. Two real datasets where background component can be reasonably guessed or
derived. We compare the same methods for extracting a background symmetric component as in
Section 3.3.2. (Note that we work with z values here instead of p-values so our results for the
Prostate dataset are slightly different from those reported by Patra and Sen (2016).)

Model Center π̂0 π̂
L
0 π̂

U
0 Null θ̂

PSC
0 θ̂

PSH
0 θ̂

PSB
0 θ̂

E
θ̂

MR
θ̂

CJ

Prostate 0 0.977 0.789 1 N(0,1) 0.931 0.941 0.975 0.931 0.956 0.867

Carina 59 0.540 0.071 1 bgstars 0.636 0.645 0.677 0.951 0.664 0.206

Aside from these two real datasets where we know the background distribution, we

consider four other real datasets — three microarray datasets and one police dataset — where
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(a) Prostate dataset (b) Carina dataset

Figure 3.2. Estimated symmetric component on the Prostate (z values) and Carina (radial
velocity) datasets: the black curve represents the fitted density; the center orange curve represents
the computed ĥ0; the top and bottom orange curves represent the 95% simultaneous confidence
bands for h0; the estimated center of the symmetric component is indicated by a dotted vertical
line.

we do not know the null distribution (Efron, 2012). Here, out of the methods considered above,

only our method and that of (Efron, 2007) and (Cai and Jin, 2010) are applicable. For the first

comparison method we use the MLE estimation as presented in (Efron, 2007, Sec 4), which is

usually very close to the result of Central Matching as used in (Efron, 2012). For the second

comparison method we use the estimator in (Cai and Jin, 2010, Sec 3.2), although we use

γ = 0.1 as the recommended value γ = 0.2 leads to significant underestimation of the background

proportion. Note that both of these methods are still meant to estimate θ .

The HIV dataset (van’t Wout et al., 2003) consists of a study of 4 HIV subjects and 4

control subjects. The measurements of n = 7680 gene expression levels were acquired using

cDNA microarrays on each subject. We compute t statistics for the two sided t test and then

transform them into z values using (3.15), with the degree of freedom being 6 here. We would

like to know what proportion of these genes do not show a significant difference in expression

levels between HIV and control subjects. The results are summarized in the first row of Table 3.6.

The fitted largest symmetric component as well as confidence bands are shown in Figure 3.3(a).

42



The Leukemia dataset comes from (Golub et al., 1999). There are 72 patients in this study,

of which 45 have ALL (Acute Lymphoblastic Leukemia) and 27 have AML (Acute Myeloid

Leukemia), with AML being considered more severe. High density oligonucleotide microarrays

gave expression levels on n = 7128 genes. Following (Efron, 2012, Ch 6.1), the raw expression

levels on each microarray, xi, j for gene i on array j, were transformed to a normal score

yi, j =Φ
−1((rank(xi, j)−0.5)/n), (3.16)

where rank(xi, j) denotes the rank of xi, j among n raw values of array j. Then t tests were then

conducted on ALL and AML patients, and t statistics were transformed to z values according

to (3.15), now with 70 degrees of freedom. As before, we would like to know the proportion

of genes that do not show a significant difference in expression levels between ALL and AML

patients. The results are summarized in the second row of Table 3.6. The fitted largest symmetric

component as well as confidence bands are shown in Figure 3.3(b).

The Parkinson dataset comes from (Lesnick et al., 2007). In this dataset, substantia

nigra tissue — a brain structure located in the mesencephalon that plays an important role in

reward, addiction, and movement — from postmortem the brain of normal and Parkinson disease

patients were used for RNA extraction and hybridization, done on Affymetrix microarrays. In

this dataset, there are n = 54277 nucleotide sequences whose expression levels were measured

on 16 Parkinson’s disease patients and 9 control patients. We wish to find out the proportion of

sequences that do not show significant difference between Parkinson and control patients. The

results are summarized in the third row of Table 3.6. The fitted largest symmetric component as

well as confidence bands are shown in Figure 3.3(c).

The Police dataset is analyzed in (Ridgeway and MacDonald, 2009). In 2006, based on

500000 pedestrian stops in New York City, each of the city’s n = 2749 police officers that were

regularly involved in pedestrian stops were assigned a z score on the basis of their stop data, in

consideration of possible racial bias. For details on computing this z score, we refer the reader
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to (Efron, 2012; Ridgeway and MacDonald, 2009). Large positive z values are considered as

possible evidence of racial bias. We would like to know the percentage of these police officers

that do not exhibit a racial bias in pedestrian traffic stops. The estimated proportion are reported

on the last row of Table 3.6. The symmetric component as well as confidence bands are presented

in Figure 3.3(d).

Table 3.6. Real datasets where background distribution is unknown and needs to be estimated.
We compare the methods for extracting a background symmetric component among those in
Section 3.3.2 that apply.

Model Center π̂0 π̂
L
0 π̂

U
0 θ̂

E
θ̂

CJ

HIV -0.62 0.950 0.775 1 0.940 0.926

Leukemia 0.16 0.918 0.639 1 0.911 0.820

Parkinson -0.18 0.985 0.924 1 0.998 0.993

Police 0.10 0.982 0.767 1 0.985 0.978

3.4 Monotone background component

In this section, we turn our attention to extracting from a density its monotone background

component following the Patra–Sen approach. For this to make sense, we only consider densities

supported on R+ = [0,∞). In fact, all the densities we consider in this section will be supported

on R+. For such a density f , we thus define

π0 ∶= sup{π ∶ ∃g ∈M s.t. f −πg ≥ 0 a.e.}, (3.17)

where M is the class of monotone (necessarily non-increasing) densities on R+. Note that

π0 ∈ [0,1] is well-defined for any density f , with π0 = 1 if and only if f itself is monotone.

Recall that the essential infimum of a measurable set A, denoted essinfA, is defined as

the supremum over t ∈R such that A∩(−∞,t) has Lebesgue measure zero. Everywhere in this

section, we will assume that f is càdlàg, meaning that, at any point, it is continuous from the
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(a) HIV dataset (b) Leukemia dataset

(c) Parkinson dataset (d) Police dataset

Figure 3.3. Estimated symmetric component on HIV (z values), Leukemia (z values), Parkinson
(z values), and Police (z scores) datasets: the black curve represents the fitted density; the center
orange curve represents the computed ĥ0; the top and bottom orange curves represent the 95%
simultaneous confidence bands for h0; the estimated center of the symmetric component is
indicated by a dotted vertical line.
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right and admits a limit from the left.

Theorem 4. Assuming f is càdlàg, we have

π0 = ∫

∞

0
h0(x)dx, h0(x) ∶= essinf{ f (y) ∶ y ≤ x}. (3.18)

Moreover, if π0 > 0 the supremum in (3.17) is attained by the following density and no other:

g0(x) ∶=
h0(x)

π0
. (3.19)

Note that π0 = 0 (i.e., f has no monotone background component) if and only if

essinf{ f (y) ∶ y ≤ x} = 0 for some x > 0, or equivalently, if {x ∈ [0,t] ∶ f (x) ≤ ε} has positive

measure for all t > 0 and all ε > 0. If f is càdlàg, this condition reduces to f (0) = 0. Also, if f is

càdlàg, h0(x) =min{ f (y) ∶ y < x}.

Proof. Note that π0 can be equivalently defined as

π0 = sup{∫ h ∶ h is monotone and 0 ≤ h ≤ f a.e.}. (3.20)

Note that h0, as defined in the statement, satisfies the above conditions, implying that π0 ≥ ∫ h0.

Take h satisfying these same conditions, namely, h is monotone and 0 ≤ h(x) ≤ f (x) for almost

all x, say, for x ∈R+∖A where A has Lebesgue measure zero. Take such an x. Then for any y ≤ x

we have h(x) ≤ h(y), and h(y) ≤ f (y) if in addition y ∉ A. Hence,

h(x) ≤ inf{ f (y) ∶ y < x,y ∉ A} ≤ essinf{ f (y) ∶ y < x} = h0(x),

where the second inequality comes from the fact that A has zero Lebesgue measure and the

definition of essential infimum. Hence, ∫ h ≤ ∫ h0 with equality if and only if h = h0 a.e., in

particular implying that π0 ≤ ∫ h0. We have thus established that π0 = ∫ h0, and also that ∫ h = π0
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if and only if h = h0 a.e.. This not only proves (3.18), but also (3.19).

We have thus established that, in the setting of this section where f is assumed to be

càdlàg, the background component as defined above is given by

h0(x) = π0g0(x) = essinf{ f (y) ∶ y < x}, (3.21)

and f can be expressed as a mixture of the background density and another, unspecified, density

u, as follows:

f = π0g0+(1−π0)u. (3.22)

The procedure is summarized in Table 3.7. An illustration of this decomposition is shown

in Figure 3.4. (In this section, E(σ) denotes the exponential distribution with scale σ and

G(κ,σ) denotes the Gamma distribution with shape κ and scale σ . Recall that E(σ) ≡ G(1,σ).)

By construction, the density u is such that it has no monotone background component in that

essinf{u(y) ∶ y < x} = 0 for any x > 0.

Table 3.7. Monotone background computation.

inputs: density f defined on [0,∞)

h0(x) = essinf{ f (y) ∶ y ≤ x}
π0 = ∫

∞
0 h0(x)dx

g0(x) = h0(x)/π0

return π0,g0,h0

3.4.1 Estimation and consistency

In practice, when all we have is a sample of observations, x1, . . . ,xn ∈R+, we first estimate

the density, resulting in f̂ , and then compute the quantities defined in (3.18) and (3.19) with f̂ in
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Figure 3.4. The density f of the Gamma mixture 0.85 E(1)+0.15 G(100,1/20), in black, and
its decomposition into π0g0, in orange, and (1−π0)u, in blue. Notice that the orange curve has a
flat part around the middle and is slightly different from 0.85 E(1).

place of f . Thus our estimates are

π̂0 ∶= ∫

∞

0
ĥ0(x)dx, ĥ0(x) ∶= essinf{ f̂ (y) ∶ y < x}, ĝ0(x) ∶=

ĥ0(x)
π̂0

. (3.23)

Theorem 5. Assume f is càdlàg, and suppose that f̂ is a true density, càdlàg, and is locally

uniformly consistent for f . Then ĥ0 is locally uniformly consistent for h0 and π̂0 is consistent for

π0, and if π0 > 0, then ĝ0 is locally uniformly consistent for g0.

Proof. From the definitions,

h0(x) = essinf{ f (y) ∶ y < x}, ĥ0(x) ∶= essinf{ f̂ (y) ∶ y < x},

so that

∣h0(x)− ĥ0(x)∣ ≤ esssup{∣ f (y)− f̂ (y)∣ ∶ y < x},

further implying that

esssup
x<a

∣h0(x)− ĥ0(x)∣ ≤ esssup
y<a

∣ f (y)− f̂ (y)∣, for any a > 0,
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from which we get that ĥ0 is locally uniformly consistent for h0 whenever f̂ is locally uniformly

consistent for f .

For the remaining of the proof, we can follow in the footsteps of the proof of Theorem 2

based on the fact that, for any a > 0,

∣∫[0,a]
h0−∫[0,a]

ĥ0∣ ≤ ∫[0,a]
∣h0− ĥ0∣ ≤ aesssup

[0,a]
∣h0− ĥ0∣ → 0,

where the limit is in expectation as the sample size increases.

Confidence interval and confidence band

To go beyond point estimators, we suppose that we have available a confidence band for

f and deduce from that a confidence interval for π0 and a confidence band for g0.

Theorem 6. Suppose that we have a confidence band for f as in (3.11). Then (3.12) holds with

probability at least 1−α , where

π̂l ∶= ∫ ĥl, π̂u ∶= ∫ ĥu, ĥl(x) ∶= essinf{ f̂l(y) ∶ y < x}, ĥu(x) ∶= essinf{ f̂u(y) ∶ y < x}.

The proof is straightforward and thus omitted.

Remark 2. So far, we have assumed that the monotone density is supported on [0,∞), but in

principle we can also consider the starting point as unspecified. If this is the case, similar to

what we did for the case of a symmetric component in Table 3.1, we can again consider several

candidate locations defining the monotone component’s support, and select the one yielding the

largest monotone component weight.

3.4.2 Numerical experiments

We are here dealing with densities supported on [0,∞), and what happens near the origin

is completely crucial as is transparent from the definition of ĥ0. It is thus important in practice to

choose an estimator for f that behaves well in the vicinity of the origin. As it is well known that
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kernel density estimators have a substantial bias near the origin, we opted for a different estimator.

Many density estimation methods have been proposed to deal with boundary effects, including

smoothing splines (Gu, 1993; Gu and Qiu, 1993), local density estimation approaches (Fan, 1993;

Hjort and Jones, 1996; Loader, 1996; Park et al., 2002), and local polynomial approximation

methods (Cattaneo et al., 2019, 2020). For consideration of simplicity and intuitiveness, we

consider kernel density estimation using a reflection about the boundary point (Cline and Hart,

1991; Karunamuni and Alberts, 2005; Schuster, 1985). We acquire f̂ from (Schuster, 1985) and,

as we did before, we acquire a 95% confidence band [ f̂l, f̂u] from (Cheng and Chen, 2019). We

also note that f̂ is consistent for f as shown by Schuster (1985).

We consider two different situations as listed in Table 3.8. Each situation’s corresponding

θ , θ0, and π0, defined as in (3.17), are also presented. We again generate a sample of size

n = 1000 from each model, and repeat each setting 1000 times. The mean values as well as

standard deviations of our method and related methods are reported in Table 3.9.

In the situation M1, our estimator achieves a smaller estimation error for π0 than all other

methods for their corresponding target, either θ or θ0, even with much fewer information on the

background component. In situation M2, our method has a slightly higher error than the error of

θ̂ PSH
0 , θ̂ E

0 , both having complete information on the background component, but lower than that

of θ̂ PSC
0 and θ̂ CJ

0 .

Table 3.8. Simulated situations for the estimation of a monotone background component,
together with the corresponding values of θ , θ0, π0, obtained numerically (and rounded at 3
decimals).

Model Distribution θ θ0 π0

M1 0.85 E(1)+0.15 G(50,1/10) 0.850 0.850 0.922

M2 0.95 E(1)+0.05 G(50,1/10) 0.950 0.950 0.993
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Table 3.9. A comparison of various methods for estimating a monotone background component
in the situations of Table 3.8. As always, π̂0 is compared with π0, the θ̂ X

0 are compared with θ0,
while the θ̂ X are compared with θ .

Model π̂0 π̂
L
0 π̂

U
0 Null θ̂

PSC
0 θ̂

PSH
0 θ̂

PSB
0 θ̂

E
θ̂

MR
θ̂

CJ

M1 0.920 0.460 1 E(1) 0.843 0.854 0.889 0.841 0.866 0.533
(0.020) (0.053) (0) (0.022) (0.022) (0.018) (0.028) (0.013) (0.085)

M2 0.984 0.519 1 E(1) 0.936 0.953 0.984 0.954 0.964 0.842
(0.012) (0.061) (0) (0.022) (0.020) (0.014) (0.028) (0.009) (0.083)

3.4.3 Real data analysis

In this subsection we consider a real dataset where the background component could

be assumed to be monotonic nonincreasing. We look at the Coronavirus dataset (Dong et al.,

2021), acquired from the COVID-19 Data Repository by the Center for Systems Science and

Engineering (CSSE) at Johns Hopkins University4. It is well known that new coronavirus cases

are consistently decreasing in the USA currently, and this trend could be seen to begin on Jan 8,

2021 as shown by the New York Times interactive data5. For each person infected on or after

Jan 8, 2021, we count the number of days between that day and the time they were infected. We

are interested in quantifying how monotonic that downward trend in coronavirus infections is.

As we do not know the actual background distribution here, and Gaussian distributions are of

not particular relevance, we find that none of the other comparison methods in Section 3.3.2

are applicable, and therefore only provide our method’s estimate in Table 3.10 and Figure 3.5.

Numerically, it can be seen that the background monotonic component accounts for around

96.7% of the new cases arising on or after Jan 8, 2021.

4 https://github.com/CSSEGISandData/COVID-19
5 https://www.nytimes.com/interactive/2021/us/covid-cases.html
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Table 3.10. Coronavirus dataset where it is of interest to gauge how monotonic the trend is
starting in Jan 8, 2021.

Model π̂0 π̂
L
0 π̂

U
0

Coronavirus 0.967 0.955 0.968

Figure 3.5. Estimated background monotone component on the Coronavirus dataset: the black
curve represents the fitted density; the center orange curve represents the computed ĥ0; and the
top and bottom orange curves represent the 95% simultaneous confidence bands for h0. (Due to
the large amount of data here the confidence bands are very narrow.)

3.5 Log-concave background component

Our last emblematic setting is that of extracting a log-concave background component

from a density. Log-concave densities have been widely studied in the literature (Samworth, 2018;

Walther, 2009), and include a wide variety of distributions, including all Gaussian densities, all

Laplace densities, all exponential densities, and all uniform densities. They have been extensively

used in mixture models (Chang and Walther, 2007; Hu et al., 2016; Pu and Arias-Castro, 2020).

Following Patra and Sen (2016), for a density f we define

π0 ∶= sup{π ∶ ∃g ∈ C s.t. f −πg ≥ 0 a.e.}, (3.24)

where C is the class of log-concave densities. Note that π0 ∈ [0,1], with π0 = 1 if and only if f

itself is log-concave.
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Theorem 7. π0 is the value of following optimization problem:

maximize ∫

∞

−∞
h(x)dx

over {h ∶RÐ→R+, log-concave, h ≤ f}.
(3.25)

Indeed, this problem admits a solution, although it may not be unique.

Proof. From the definition in (3.24), it is clear that

π0 = sup{∫ h ∶ h is log-concave and 0 ≤ h ≤ f a.e.}. (3.26)

Thus we only need to show that the problem (3.25) admits a solution — and then show that it

may not be unique to complete the proof. Here the arguments are a bit more involved.

Let (hk) be a solution sequence to the problem (3.25), meaning that hk ∶ R → R+ is

log-concave and satisfies hk ≤ f , and that qk ∶= ∫ hk converges, as k→∞, to the value of the

optimization problem (3.25), denoted q∗ henceforth. Note that 0 ≤ qk ≤ 1 since 0 ≤ hk ≤ f and

∫ f = 1, implying that 0 ≤ q∗ ≤ 1. We only need to consider the case where q∗ > 0, for when q∗ = 0

the constant function h ≡ 0 is a solution. Without loss of generality, we assume that qk > 0 for all

k.

Each hk is log-concave, and from this we know the following: its support is an interval,

which we denote [ak,bk] with −∞ ≤ ak < bk ≤ ∞; hk is continuous and strictly positive on

(ak,bk); and x↦ (loghk(y)− loghk(x))/(y−x) is non-increasing in x ≤ y and y↦ (loghk(y)−

loghk(x))/(y− x) is non-increasing in y ≥ x. Extracting a subsequence if needed, we assume

without loss of generality that ak → a and bk → b as k→∞, for some −∞≤ a ≤ b ≤∞.

Define F(t) = ∫
t
−∞ f (x)dx and Hk(t) = ∫

t
−∞hk(x)dx. We have that Hk is a non-decreasing,

and if s≤ t, Hk(t)−Hk(s) ≤F(t)−F(s), because hk ≤ f . In particular, by Helly’s selection theorem

(equivalent to Prokhorov’s theorem when dealing with distribution functions), we can extract a

subsequence that converges pointwise. Without loss of generality, we assume that (Hk) itself
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converges, and let H denote its limit. Note that H is constant outside of [a,b]. In fact, H(x) = 0

when x < a, because x < ak eventually, forcing Hk(x) = 0. For x,x′ > b, we have that x,x′ > bk for

large enough k, implying that Hk(x) =Hk(x′), yielding H(x) =H(x′) by taking the limit k→∞.

Note also that, for all s ≤ t,

H(t)−H(s) = lim
k→∞
(Hk(t)−Hk(s)) ≤ F(t)−F(s).

This implies that H is absolutely continuous with derivative, denoted h, satisfying h ≤ f a.e..

We claim that h is a solution to (3.25). We already know that 0 ≤ h ≤ f a.e.. In addition,

we also have ∫
∞
−∞h ≥ q∗. To see this, fix ε > 0, and let t be large enough that ∫

∞
t f ≤ ε . Because

hk ≤ f , we have Hk(t) = qk −∫
∞

t hk ≥ qk − ε , implying that H(t) ≥ q∗− ε by taking the limit as

k→∞. Hence, ∫
∞
−∞h =H(∞) ≥H(t) ≥ q∗−ε , and ε > 0 being otherwise arbitrary, we deduce

that ∫
∞
−∞h ≥ q∗. It thus remains to show that h is log-concave.

We establish this claim by proving that, extracting a subsequence if needed, hk converges

to h a.e., and it is enough to do so in an interval. Thus let x0 and ∆ > 0 be such that [x0 −

4∆,x0 +4∆] ⊂ (a,b). Note that H is strictly increasing on (a,b), because each Hk is strictly

increasing on (ak,bk) due to hk being log-concave. Take any x0 −∆ ≤ x < y ≤ x0 +∆ and let

δk = (loghk(y)− loghk(x))/(y− x). We assume, for example, that δk ≥ 0, and bound it from

above. Let zk ∈ [x0−4∆,x0−3∆] be such that Hk(x0−3∆)−Hk(x0−4∆) = hk(zk)∆, which exists

by the mean-value theorem. Note that hk(zk)∆→ ∆1 ∶=H(x0−3∆)−H(x0−4∆), so that hk(zk) ≥

∆2 ∶= ∆1/2∆ > 0, eventually. Now, for any z in [x0−2∆,x0−∆], due to zk < z < x < y and loghk

being concave,
loghk(z)− loghk(zk)

z− zk
≥

loghk(y)− loghk(x)
y−x

= δk,

which implies

hk(z) ≥ hk(zk)exp(δk(z− zk)) ≥ ∆2 exp(δk∆).
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This being true for all such z, we have

1 ≥ ∫
∞

−∞
f (z)dz ≥ ∫

∞

−∞
hk(z)dz ≥ ∫

x0−∆

x0−2∆

hk(z)dz ≥ ∆ ⋅∆2 exp(δk∆),

allowing us to derive δk ≤M1 ∶= ∆−1 log(2/∆1). We can deal with the case where δk < 0 by

symmetry, obtaining that, for all k sufficiently large and all x0−∆ ≤ x < y ≤ x0+∆,

∣
loghk(y)− loghk(x)

y−x
∣ ≤M1.

Let uk = hk(x0). Because hk is unimodal, either hk(x) ≤ uk for all x ≤ x0 or hk(x) ≤ uk for all x ≥ x0.

Extracting a subsequence if needed, and by symmetry, assume that the former is true for all k

large enough. Then

∆1 =H(x0−3∆)−H(x0−4∆)

= lim
k→∞
(Hk(x0−3∆)−Hk(x0−4∆))

= lim
k→∞∫

x0−4∆

x0−3∆

hk(x)dx

≤ liminf
k→∞

∆uk,

so that uk ≥ ∆2 > 0, eventually. Assuming so, we have ukhk(x0) ≥ ∆1/∆ ≥ ∆2. And we also

have hk(x0) ≤ f (x0), and together, ∣ loghk(x0)∣ ≤M2 ∶= ∣ log(∆2)∣∨ ∣ log f (x0)∣. With the triangle

inequality, we thus have, for all x ∈ [x0−∆,x0+∆],

∣ loghk(x)∣ ≤M1∣x−x0∣ + ∣ loghk(x0)∣ ≤M1∆+M2 =∶M3.

The family of functions (loghk) (starting at k large enough) is thus uniformly bounded and

equicontinuous on [x0−∆,x0+∆], so that by the Arzelà–Ascoli theorem, we have that (loghk)

is precompact for the uniform convergence on that interval. Therefore, the same is true for
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(hk). Let h∞ be the uniform limit of a subsequence, and note that h∞ is continuous. h∞ must

also be a weak limit as well, since uniform convergence on a compact interval implies weak

convergence on that interval. Therefore h∞ = h a.e. on that interval, since (hk) converges weakly

to h. Hence, all the uniform limits of (hk) must coincide with h a.e., and since any such limit

must be continuous, it means that they are the same. We conclude that, on the interval under

consideration, h is equal a.e. to a continuous function which is the (only) uniform limit of (hk),

and in particular, (hk) converges pointwise a.e. to h on that interval.

Thus, we have proved that the optimization problem (3.25) has at least one solution.

We now show that there may be multiple solutions. This is the case, for instance, when

f = 1
m f1+⋯+

1
m fm where each f j is a log-concave density and these densities have support sets

that are pairwise disjoint. In that case, any of the components, meaning any f j, is a solution

to (3.25), and these are the only solutions. This comes from the fact that the support of a

log-concave distribution is necessarily an interval.

We have thus established that a density has at least one log-concave background com-

ponent, and possibly multiple ones, corresponding to the solutions to (3.25). If h is one such

solution, then π0 = ∫ h and we may define the corresponding density as g = h/π0 if π0 > 0. Then

f can be expressed as a mixture of the background density g and another, unspecified, density u,

as follows

f = π0g+(1−π0)u. (3.27)

(We do not use the notation h0 and g0 here, since these may not be uniquely defined.) The

procedure is summarized in Table 3.11. An illustration of this decomposition is shown in

Figure 3.6. Note that the density u may have a non-trivial log-concave background component.

This is the case, for example, if f is the (nontrivial) mixture of two log-concave densities with

disjoint support sets, in which case u is one of these log-concave densities.
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Table 3.11. Log-concave background computation. (The input d is used to initialize the function
v — discretized as v below — that is bounded from above by log f . In our experiments, we
chose d = 0.02.)

inputs: equally spaced gridpoints t = {t1,t2, . . . ,tk}, density f , a boolean R indicating
whether to use the Riemann integral approximation, initialization amount d

initialize w = (0,0, . . . ,0) with length k
for i = 1, . . . ,k do

w[i] = log( f (ti))
compute A and b as in (3.36)
initialize v =w−(d,d, . . . ,d)
if R = true then

do optimization (3.44) using SQP, and record the optimizer v and the maximum as
π0
else

do optimization (3.33) using SQP, and record the optimizer v and the maximum as
π0

return v,π0

Figure 3.6. The density f of the Gaussian mixture 0.85 N(0,1)+0.15 N(3,1), in black, and
its decomposition into π0g, in orange, and (1−π0)u, in blue. The orange curve is acquired by
maximizing (3.34), but maximizing the Riemann integral approximation (3.44) gives almost
the same result (with the maximum difference between the two curves being 2×10−14). Notice
π0 = 0.931 as π0g also takes a non-negligible weight from the smaller component 0.15 N(3,1).
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3.5.1 Estimation and consistency

In practice, based on a sample, we estimate f , resulting in f̂ , and simply obtain estimates

by plug-in as we did before, this time via

maximize ∫

∞

−∞
h(x)dx

over {h ∶RÐ→R+, log-concave, h ≤ f̂}.
(3.28)

At least formally, let ĥ be a solution to (3.28). We then define

π̂0 = ∫

∞

−∞
ĥ(x)dx, ĝ(x) =

ĥ(x)
π̂0

. (3.29)

Here, to avoid technicalities, we work under the assumption that the density estimator

f̂ = f̂n satisfies

E
⎡
⎢
⎢
⎢
⎢
⎣

esssup
∣x∣≤a

max{ f̂n(x), f (x)}
min{ f̂n(x), f (x)}

⎤
⎥
⎥
⎥
⎥
⎦

→ 1, n→∞, ∀a > 0. (3.30)

This condition is better suited for when the density f approaches 0 only at infinity. Also for the

sake of simplicity, we only establish consistency for π̂0.

Theorem 8. When (3.30) holds, π̂0 is a consistent.

Proof. Fix η > 0 and a > 0, and consider the event, denoted Ω, that

esssup
∣x∣≤a

max{ f̂ (x), f (x)}
min{ f̂ (x), f (x)}

≤ 1+η . (3.31)

Because of (3.30), Ω happens with probability tending to 1 as the sample size increases. Let

ε = 1−∫[−a,a] f , which is small when a is large.

Assume that Ω holds. Let h be a solution to (3.25), so that π0 = ∫ h. Then define
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h̃(x) = (1−η)h(x)1{∣x∣ ≤ a} and note that

∫ h̃ = (1−η)∫[−a,a]
h ≥ (1−η)(π0−ε),

so that ∫ h̃ is close to π0 when η is small and a is large. We also note that h̃ is log-concave

and satisfies 0 ≤ h̃ ≤ (1−η) f a.e.. Under Ω, we have f ≤ (1+η) f̂ , and so it is also the case that

h̃ ≤ (1−η)(1+ε) f̂ ≤ f̂ , assuming as we do that η and ε are small enough. Then ∫ h̃ ≤ π̂0, by

definition of π̂0. Gathering everything, we obtain that (1−η)(π0−ε) ≤ π̂0. By letting η → 0 and

a→∞ so that ε → 0, we have established that liminf π̂0 ≥ π0 in probability. (The liminf needs to

be understood as the sample size increases.)

The reverse relation, meaning limsup π̂0 ≤ π0, can be derived similarly starting with a

solution ĥ to (3.28).

Confidence interval

Once again, if we have available a confidence band for f , we can deduce from that a

confidence interval for π0.

Theorem 9. Suppose that we have a confidence band for f as in (3.11). Then

π̂l ≤ π0 ≤ π̂u (3.32)

holds with probability at least 1−α , where π̂l and π̂u are the values of the optimization problem

(3.25) with f replaced by f̂l and f̂u, respectively.

The proof is straightforward and thus omitted.

3.5.2 Numerical method

Unlike the previous sections, here the computation of our estimator(s) is non-trivial:

indeed, after computing f̂ with an off-the-shelf procedure, we need to solve the optimization

problem (3.28). Thus, in this section, we discuss how to solve this optimization problem.
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Although least concave majorants (or equivalently greatest convex minorants) have been

considered extensively in the literature, for example in (Franců et al., 2017; Jongbloed, 1998),

the problem (3.25) calls for a type of greatest concave minorant, and we were not able to find

references in the literature that directly tackle this problem. We do want to mention (Gorokhovik,

2019), where a similar concept is discussed, but the definition is different from ours and no

numerical procedure to solve the problem is provided. For lack of structure to exploit, we

propose a direct discretization followed by an application of sequential quadratic programming

(SQP), first proposed by Wilson (1963). For more details on SQP, we point the reader to (Gill

and Wong, 2012) or (Nocedal and Wright, 2006, Ch 18).

Going back to (3.25), where here f plays the role of a generic density on the real line,

the main idea is to restrict v ∶= logh to be a continuous, concave, piecewise linear function. Once

discretized, the integral admits a simple closed-form expression and the concavity constraint is

transformed into a set of linear inequality constraints.

To setup the discretization, for k ≥ 1 integer, let t−k,k < t−k+1,k < ⋯ < tk−1,k < tk,k be such

that t j,k = −t− j,k (symmetry) and t j+1,k− t j,k = δk (equispaced) for all j, with δk → 0 (dense) and

tk,k →∞ as k→∞ (spanning the real line). Suppose that v is concave with v ≤ log f and to that

function associate the triangular sequence v j,k ∶= v(t j,k). Then, for each k,

−v j+1,k+2v j,k−v j−1,k = −v(t j+1,k)+2v(t j,k)−v(t j−1,k)

= 2(v(t j,k)−
1
2v(t j+1,k+δk)−

1
2v(t j−1,k+δk)) ≥ 0, for all k,

by the fact that v is concave. In addition, v j,k = v(t j,k) ≤ log f (t j,k) =∶ u j,k (which are given).

Instead of working directly with a generic concave function v, we work with those that are

piecewise linear as they are uniquely determined by their values at the grid points if we further

restrict them to be = −∞ on (−∞,t−k,k)∪(tk,k,+∞). Effectively, at k, we replace in (3.25) the

class C with the class Ck of functions h such that v = logh is log-concave, linear on each interval

[t j,k,t j+1,k], v(x) = −∞ for x < t−k,k or x > tk,k, and that satisfies v(t j,k) ≤ log f (t j,k), for all j.
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This leads us to the following optimization problem, which instead of being over a

function space is over a Euclidean space:

maximize Λ(v)

over v = [v−k,k, . . . ,vk,k]
⊺ such that Av ≥ b,

(3.33)

where

Λ(v−k, . . . ,vk) ∶= δk

k−1
∑
j=−k

λ(v j,v j+1), (3.34)

λ(x,y) ∶= 1{x ≠ y}
exp(x)−exp(y)

x−y
+1{x = y}exp(x), (3.35)

and where the 2k by k+2 matrix A and the 2k by 1 vector b are defined as

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1 2 −1 0 . . . 0 0 0

0 −1 2 −1 . . . 0 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 0 . . . −1 2 −1

−1 0 0 0 . . . 0 0 0

0 −1 0 0 . . . 0 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 0 . . . 0 0 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, b =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

0

⋮

0

−u1

−u2

⋮

−uk

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.36)

As we are not aware of any method that could solve (3.33) exactly, we will use sequential

quadratic programming (SQP). In our implementation we use the R package nloptr 6 based on an

original implementation of Kraft (1988).

Theorem 10. Assume that f is Lipschitz and locally bounded away from 0. Then the value

of discretized optimization problem (3.33) converges, as k→∞, to the value of the original

6 https://cran.r-project.org/web/packages/nloptr/index.html
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optimization problem (3.25).

The assumptions made on f are really for convenience — to expedite the proof of the

result while still including interesting situations — and we do expect that the result holds more

broadly. We also note that, in our workflow, the problem (3.33) is solved for f̂ , and that f̂

satisfies these conditions (remember that the sample size is held fixed here) if it is a kernel

density estimator based on a smooth kernel function supported on the entire real line like the

Gaussian kernel.

Proof. Let h be a solution to (3.25) so that ∫ h = π0, where π0 denotes the value of (3.25). Define

v = logh and let v j,k = v(t j,k). As we explained above, this makes vk ∶= (v−k,k, . . . ,vk,k) feasible

for (3.33). Therefore Λ(vk) ≤ π0,k, where π0,k denotes the value of (3.33). On the other hand,

let ṽk denote the piecewise linear approximation to v on the grid, meaning that ṽk(x) = −∞ if

x < t−k,k or x > tk,k, ṽk(t j,k) = v(t j,k) and ṽk linear on [t j,k,t j+1,k] for all j. We then have

Λ(vk) = ∫ h̃k
k→∞
ÐÐÐ→∫ h, (3.37)

where the convergence is justified, for example, by the fact that h̃k → h pointwise and 0 ≤ h̃k ≤ h

(because, by concavity of v, v ≥ ṽk), so that the dominated convergence theorem applies. From

this we get that

liminf
k→∞

π0,k ≥ π0. (3.38)

In the other direction, let vk be a solution of (3.33), so that Λ(vk) = π0,k. Let ṽk denote

the linear interpolation of vk on the grid (t−k,k, . . . ,tk,k), defined exactly as done above, and let

h̃k = exp(ṽk). We have that h̃k ≤ f at the grid points, but not necessarily elsewhere. To work in

that direction, fix a > 0, taken arbitrarily large in what follows. Because of our assumptions on f ,

we have that u ∶= log f is Lipschitz on [−a,a], say with Lipschitz constant L. In particular, with
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ũk denoting the linear approximation of u based on the grid, we have

∣u(x)− ũk(x)∣ ≤ Lδk =∶ ηk. (3.39)

Define v̄k(x) = ṽk(x)−ηk if x ∈ [−a,a] and v̄k(x) = −∞ otherwise. Note that v̄k is also concave

and piecewise linear, and because h̃k ≤ f , ṽk ≤ ũk, we have

v̄k(x) = ṽk(x)−ηk ≤ ũk(x)−ηk ≤ u(x), ∀x ∈ [−a,a]. (3.40)

In particular, h̄k ∶= exp(v̄k) is feasible for (3.25), implying that ∫ h̄k ≤ π0. On the other hand, we

have

∫ h̄k = ∫ exp(v̄k) = exp(−ηk)∫[−a,a]
exp(ṽk) = exp(−ηk)∫[−a,a]

h̃k, (3.41)

and so, because h̃k ≤ f̃k ∶= exp(ũk),

π0,k =Λ(vk) = ∫ h̃k = ∫[−a,a]
h̃k+∫[−a,a]c

h̃k

= exp(ηk)∫ h̄k+∫[−a,a]c
h̃k

≤ exp(ηk)π0+∫[−a,a]c
f̃k.

Given ε > 0 arbitrarily small, choose a large enough that ∫[−a,a]c f ≤ ε . Since

∫[−a,a]c
f̃k

k→∞
ÐÐÐ→∫[−a,a]c

f , (3.42)

for k large enough we have ∫[−a,a]c f̃k ≤ 2ε , implying that π0,k ≤ exp(ηk)π0+2ε . Using the fact

that exp(ηk) → 1 since ηk = Lδk → 0, and that ε > 0 is arbitrary, we get that

limsup
k→∞

π0,k ≤ π0, (3.43)

63



concluding the proof.

We mention that besides the discretization (3.33), we also considered a more straightfor-

ward discretization of the integral, effectively replacing Λ in (3.33) with Λ0 defined as

Λ0(v−k, . . . ,vk) ∶= δk
⎛

⎝

1
2 exp(v−k)+

1
2 exp(vk)+

k−1
∑

j=−k+1
exp(v j)

⎞

⎠
. (3.44)

The outputs returned by these two discretizations, (3.33) and (3.44), were very similar in our

numerical experiments.

3.5.3 Numerical experiments

In this subsection we consider experiments where the background component could

be assumed to be log-concave. The density fitting process and confidence band acquisition

are exactly the same as in Section 3.3.2. We first consider four different situations as listed

in Table 3.12. Although the mixture distributions are identical to those in Table 3.3 for the

symmetric case, we need to point out that π0 is different here, as π0 here corresponds to the

largest possible log-concave component as defined in (3.24). We again generate a sample of size

n = 1000 from each model, and repeat each setting 1000 times.

We note that the output of our algorithm depends heavily on the estimation of the density

f̂ . When the bandwidth selected by cross-validation yields a density with a high frequency

of oscillation, the largest log-concave component is very likely to be smaller than the correct

value. For an illustrative situation, see Figure 3.7. In the event that such a situation happen, we

recommend that the user look at a plot of f̂ before applying our procedure, with the possibility

of selecting a larger bandwidth. This is what we did, for example, for the Carina and Leukemia

datasets in Figure 3.10. In the simulations, to avoid the effect of these issue, we report the median

value instead of the mean. These values are reported in Table 3.13.

As can be seen, even with only the assumption of log-concavity, our method is accurate

in estimating π0, with estimation errors ranging from 0.001 to 0.007. Our method frequently
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achieves smaller error in estimating π0 than comparison methods in estimating θ0 and θ , and does

so with less information on the background component. For situations where the background

component is specified incorrectly, we invite the reader to Section 3.6.1.

Figure 3.7. An illustrative situation that occurred in the course of our simulations, where a
high frequency of oscillation of f̂ results in a significantly lower estimation for π0: a Gaussian
mixture density 0.85 N(0,1)+0.15 N(0,1), in black, and corresponding largest log-concave
component h, in red, with the fitted density f̂ , in orange, and fitted largest log-concave component
ĥ, in blue. Here, as before, f̂ is obtained by kernel density estimation with bandwidth chosen
by cross-validation. The result based on this estimate is π̂0 = 0.807, while the actual value is
π0 = 0.931.

Remark 3. We note that here the SQP algorithm as implemented in the R package nloptr

sometimes gives ĥ = 0 as the largest log-concave component due to some parts of the estimated

density f̂ being 0. This situation happens occasionally when computing the lower confidence

bound, and it is of course incorrect in situations like those in Table 3.12. When this situation

occurs, we rerun the algorithm on the largest interval of non-zero f̂ values and report the greatest

log-concave component acquired on that interval.

3.5.4 Real data analysis

In this subsection we examine real datasets of two component mixtures where the

background component could be assumed to be log-concave. We first consider the six real

datasets presented in Section 3.3.3, but this time look for a background log-concave component.
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Table 3.12. Log-concave simulation situations of Gaussian mixtures, as well as values of θ , θ0,
and π0, obtained through numerical optimization.

Model Distribution θ θ0 π0

L1 0.85 N(0,1)+0.15 N(3,1) 0.850 0.850 0.931

L2 0.95 N(0,1)+0.05 N(3,1) 0.950 0.950 0.981

L3 0.85 N(0,1)+0.1 N(2.5,0.75)+0.05 N(−2.5,0.75) 0.850 0.851 0.975

L4 0.85 N(0,1)+0.1 N(2.5,0.75)+0.05 N(5,0.75) 0.850 0.850 0.946

Table 3.13. A comparison of various methods for estimating a log-concave background compo-
nent in the situations of Table 3.12. Here we report the median values instead of the mean values
(and also report the standard deviations, as before). As always, π̂0 should be compared with π0,
θ̂ X

0 should be compared with θ0, and θ̂ X should be compared with θ .

Model π̂0 π̂
L
0 π̂

U
0 Null θ̂

PSC
0 θ̂

PSH
0 θ̂

PSB
0 θ̂

E
θ̂

MR
θ̂

CJ

L1 0.932 0.596 1 N(0,1) 0.850 0.858 0.894 0.861 0.890 0.888
(0.034) (0.074) (0) (0.024) (0.023) (0.018) (0.023) (0.014) (0.085)

L2 0.974 0.662 1 N(0,1) 0.942 0.958 0.988 0.953 0.972 0.964
(0.028) (0.080) (0) (0.023) (0.022) (0.015) (0.026) (0.008) (0.082)

L3 0.969 0.611 1 N(0,1) 0.864 0.948 0.936 0.856 0.896 0.705
(0.031) (0.077) (0) (0.023) (0.034) (0.017) (0.024) (0.015) (0.085)

L4 0.942 0.632 1 N(0,1) 0.848 0.857 0.893 0.849 0.890 0.712
(0.033) (0.074) (0) (0.023) (0.024) (0.018) (0.024) (0.014) (0.088)
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When the background is known, the numerical results of the Prostate and Carina datasets can

be found in Table 3.14, Figure 3.8(a) and Figure 3.8(b). When the background is unknown, the

numerical results of the HIV, Leukemia, Parkinson and Police datasets can be found in Table 3.15,

Figure 3.9(a), Figure 3.9(b), Figure 3.9(c) and Figure 3.9(d).

In addition to the above six datasets, we also include here the Old Faithful Geyser dataset

(Azzalini and Bowman, 1990). This dataset consists of 272 waiting times, in minutes, between

eruptions for the Old Faithful Geyser in Yellowstone National Park, Wyoming, USA. We attempt

to find the largest log-concave component of the waiting times. The results are summarized in

the first row of Table 3.15, Figure 3.11(a) and Figure 3.11(b). We want to note from this example

that the curve ĥu acquired from f̂u leading to the computation of π̂U
0 , is not the upper confidence

bound of h0, as shown by Figure 3.11(a).

Remark 4. We observe here through these real datasets that compared to symmetric background

assumptions in Section 3.3.3, the largest log-concave background component usually has a higher

weight than the largest symmetric background component.

Table 3.14. Real datasets where the background log-concave component is known. (Note that we
work with z values here instead of p-values so our result in Prostate dataset is slightly different
from that in (Patra and Sen, 2016).)

Model π̂0 π̂
L
0 π̂

U
0 Null θ̂

PSC
0 θ̂

PSH
0 θ̂

PSB
0 θ̂

E
θ̂

MR
θ̂

CJ

Prostate 0.994 0.809 1 N(0,1) 0.931 0.941 0.975 0.931 0.956 0.867

Carina 0.600 0.242 1 bgstars 0.636 0.645 0.677 0.951 0.664 0.206

3.6 Conclusion and discussion

In this paper, we extend the approach of Patra and Sen (2016) to settings where the

background component of interest is assumed to belong to three emblematic examples: symmet-

ric, monotone, and log-concave. In each setting, we derive estimators for both the proportion

and density for the background component, establish their consistency, and provide confidence
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Table 3.15. Real datasets where the background log-concave distribution is unknown. (Note that
Efron’s method will not run on the Geyser dataset.)

Model π̂0 π̂
L
0 π̂

U
0 θ̂

E
θ̂

CJ

Geyser 0.693 0.287 1 NA 1

HIV 0.984 0.804 1 0.940 0.926

Leukemia 0.981 0.695 1 0.911 0.820

Parkinson 1 0.605 1 0.998 0.993

Police 0.997 0.765 1 0.985 0.978

(a) Prostate dataset (b) Carina dataset

Figure 3.8. Estimated background log-concave component on the Prostate (z values) and Carina
(radial velocity) datasets: the black curve represents fitted density; the blue curve represents
computed ĥ, one of the largest log-concave components. Due to unusually high frequency of
oscillation in f̂ in the Carina dataset, we consider increasing the bandwidth from the one acquired
by cross-validation, and the corresponding result is shown in Figure 3.10(a).
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(a) HIV dataset (b) Leukemia dataset

(c) Parkinson dataset (d) Police dataset

Figure 3.9. Estimated background log-concave component on HIV (z values), Leukemia (z
values), Parkinson (z values), and Police (z scores) datasets: the black curve represents fitted
density; the blue curve represents computed ĥ, one of the largest log-concave components. Due
to the high frequency of oscillation in f̂ in the Leukemia dataset, we consider increasing the
bandwidth from the one acquired by cross-validation, and the corresponding result is shown in
Figure 3.10(b).
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(a) Carina dataset (b) Leukemia dataset

Figure 3.10. Carina (radial velocity) and Leukemia (z values) datasets with kernel density, with
bandwidth chosen ‘by hand’ instead of by cross-validation: the black curve represents fitted
density with increased bandwidth; the blue curve represents the computed ĥ. We note that for
the Carina dataset, the bandwidth was increased from 3.085 to 6, and π̂0 changed from 0.550 to
0.600. For the Leukemia dataset, the bandwidth was been increased from 0.124 to 0.25, and π̂0
changed from 0.939 to 0.981.

(a) Geyser dataset with ĥl and ĥu (b) Geyser dataset with only ĥ

Figure 3.11. Estimated background log-concave component on the Geyser (duration) dataset:
the black curve represents the fitted density; the blue curve represents the computed ĥ; the gray
curves (left) represent f̂l and f̂u; the light blue curves (left) represents ĥl and ĥu. Note from the
left plot that ĥu is only used to compute π̂U

0 , and is not an upper bound for h.
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intervals/bands. However, the important situation of incorrect background distribution and other

extensions remain unaddressed, and therefore we discuss them in this section.

3.6.1 Incorrect background specification

As mentioned in Section 3.3.2 and Section 3.5.3, our method requires much less infor-

mation than comparable methods, and therefore is much less prone to misspecification of the

background component. In this subsection, we give an experiment illustrating this point. We

consider the mixture model: 0.85 T6+0.15 N(3,1). Instead of the correct null distribution T6,

we take it to be N(0,1). This situation could happen in situations of multiple testing settings,

for example in the HIV dataset in Section 3.3.3. We consider both a symmetric background and

log-concave background on this model in Table 3.16, and report the fitted values of our method

and comparison methods in Table 3.17. As can be seen, when estimating π0, our estimator

achieves 0.002 error when assuming symmetric background and 0.004 error when assuming

log-concave background, less then any other method in comparison that estimates θ0 or θ . The

heuristic estimator of Patra and Sen (2016) has slightly higher error than our method, while the

constant estimator of Patra and Sen (2016) and the estimators of Efron (2007) and Cai and Jin

(2010) have large errors. The upper confidence bound of Meinshausen and Rice (2006) also

becomes incorrect.

Table 3.16. Simulation situations when background specification is incorrect, as well as values
of θ , θ0, π0, obtained through numerical optimization.

Model Background Distribution θ θ0 π0

S5 Symmetric 0.85 T6+0.15 N(3,1) 0.850 0.850 0.859

L5 Log-concave 0.85 T6+0.15 N(3,1) 0.850 0.850 0.925

3.6.2 Combinations

Although not discussed in the main part of the paper, some combinations of the shape

constraints considered earlier are possible. For example, one could consider extracting a maximal
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Table 3.17. Results for the situations of Table 3.16. We provide mean values in S5, and median
values in L5.

Model Center π̂0 π̂
L
0 π̂

U
0 Null θ̂

PSC
0 θ̂

PSH
0 θ̂

PSB
0 θ̂

E
θ̂

MR
θ̂

CJ

S5 0.073 0.857 0.541 1 N(0,1) 0.815 0.855 0.877 0.803 0.843 0.816
(0.057) (0.021) (0.057) (0) (0.021) (0.022) (0.016) (0.026) (0.015) (0.086)

L5 0.921 0.574 1 N(0,1) 0.817 0.856 0.877 0.803 0.843 0.814
(0.036) (0.069) (0) (0.021) (0.022) (0.016) (0.026) (0.015) (0.086)

background that is symmetric and log-concave; or one could consider extracting a maximal

background that is monotone and log-concave. As it turns out, these two combinations are

intimately related. Mixtures of symmetric log-concave distributions are considered, for example,

in (Pu and Arias-Castro, 2020).

3.6.3 Generalization to higher dimensions

All our examples were on the real line, corresponding to real-valued observations, simply

because the work was in large part motivated by multiple testing in which the sample stands for

the test statistics. But the approach is more general. Indeed, consider a measurable space, and let

D be a class of probability distributions on that space. Given a probability distribution µ , we can

quantify how much there is of D in µ by defining

π0 ∶= sup{π ∶ ∃ν ∈ D s.t. µ ≥ πν}. (3.45)

For concreteness, we give a simple example in an arbitrary dimension d by generalizing

the setting of a symmetric background component covered in Section 3.3. Although various

generalizations are possible, we consider the class — also denoted S as in (3.3) — of spherically

symmetric (i.e., radial) densities with respect to the Lebesgue measure on Rd . It is easy to see
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that the background component proportion is given by

π0 = ∫Rd
h0(x)dx, h0(x) ∶=min{ f (y) ∶ ∥y∥ = ∥x∥}, (3.46)

and, if π0 > 0, the background component density is given by g0 ∶= h0/π0.
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Chapter 4

Fitting a Multi-Modal Density
by Dynamic Programming

4.1 Abstract

We consider the problem of fitting a probability density function when it is constrained to

have a given number of modal intervals. We propose a dynamic programming approach to solving

this problem numerically. When this number is not known, we provide several data-driven ways

for selecting it. We perform some numerical experiments to illustrate our methodology.

4.2 Introduction

Density estimation is an important task in exploratory data analysis, for example, the

histogram is introduced in the most basic courses in statistics, and as such has been the object of

some longstanding and intense study in statistics and related fields (Scott, 2015; Sheather, 2004;

Silverman, 2018). Rather than assuming that the underlying density comes from a parametric

family (e.g., normal), or some smoothness class (e.g., differentiable with some given bound on

the derivative), we focus here on the shape constraint that the density has at most a given number

of modal intervals. A mode is an important feature and defining the density based on the number

of modal intervals is thus intuitive. It also goes hand-in-hand with a modal approach clustering,

in particular, as proposed by Fukunaga and Hostetler (1975). In this paper, we propose a dynamic
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programming way of fitting a multi-modal density to a numerical (one-dimensional) sample, and

discuss data-driven ways of choosing the number of modal intervals when this information is

unknown.

4.2.1 Importance of density modes

Modes are important features of densities, and do not fail to catch the eye of the analyst

when they manifest themselves in plots of histograms or other estimates of the density, as Pearson

(1895) pointed out, “thus the ‘mean,’ the ‘mode,’ and the ‘median’ have all distinct characters

important to the statistician”. See Figure 4.1 for a classical example. Estimating the modes of the

waiting time (mins)
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Figure 4.1. A histogram of the waiting times between eruptions of the Old Faithful Geyser, with
a an overlay of a kernel density estimate. (This is the geyser dataset in the MASS package in R.)

underlying density has thus been an important problem in statistics which dates back to Parzen

(1962), who proposed to first estimate the density by kernel density estimation — pioneered

by Rosenblatt (1956) — and then locate the mode of the resulting estimator. The problem of

estimating the density modes has been the subject of great, ongoing interest by statisticians since

then; see (Chacón, 2020) for a recent review.

In addition to being important features of densities which are likely to attract the attention

of the data scientist, modal intervals are also useful when the goal is clustering. Working at the

population level as in (Chacón, 2015), a clustering amounts to a partitioning of the population,

and Fukunaga and Hostetler (1975) proposed to partition the population according to the basins

of attraction of the gradient ascent flow defined by the density. These are called the “descending
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manifolds” in Morse theory (Chen et al., 2017), and the ones that pertain to modal intervals

provide a partition of the support of the density up to a set of measure zero when the density is

regular in a certain sense (specifically, when it is of Morse type). The corresponding methodology

is known as the “mean-shift algorithm” (Cheng, 1995) and is now a well-established approach to

clustering with its own literature (Carreira-Perpiñán, 2015; Chacón, 2020; Menardi, 2016). This

approach to clustering turns out to be very closely related to the level set/cluster tree approach of

Hartigan (1975), which itself has generated a good amount of research (Chaudhuri et al., 2014;

Rinaldo et al., 2012; Stuetzle and Nugent, 2010). For a connection between these two approaches

to clustering, see our recent work (Arias-Castro and Qiao, 2021a,b). The level set approach to

clustering is also known to be intimately connected to single-linkage clustering (Hartigan, 1981;

Penrose, 1995). We note that, in dimension one — our focus here — modal clustering amounts

to partitioning the support of the density according to the intervals defined by the knots (indeed,

not the modes or local maxima), and thus is exceedingly simple to execute when that information

is available. In practice, of course, inference is based on a sample. Our approach to estimating a

multi-modal density returns estimates for the knots separating the modes.

In a closely related field, modes of densities are also of interest in mixture models. For

example, the number of modes in a Gaussian mixture model has been the subject of some

attention (McLachlan and Rathnayake, 2014). We note, however, that the consideration of modes

is not particularly natural in the context of mixtures, for the simple reason that the modes are

not directly related to the component centers. When components are too close to each other in a

mixture model, it is difficult to interpret the meaning of each component. Fitting a density with a

given number of modal intervals can be seen as an alternative offering a clearer interpretation in

some settings.

4.2.2 Estimating a uni-modal or multi-modal density

As we just alluded to, a model for multi-modal densities offers a competitive alternative

to a mixture model. In this paper, we simply choose as model the entire class of densities with at
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most K modes. While a mode typically means an isolated local maximum, to better accommodate

step density functions — which are important in many respects, including in their connection to

maximum likelihood — we here call a density f K-modal if there are λ1 <⋯ < λK+1 such that f

is uni-modal on [λk,λk+1] for all k = 1, . . . ,K, where λ1 = −∞ and λK+1 =∞. We call an interval

a modal interval of f if f is uni-modal on that interval. To be sure, f is uni-modal if there is

some µ such that f is non-decreasing on (−∞,µ] and non-increasing on [µ,∞). In that case, µ

is a mode of the density f . We also denote λ2,λ3, . . . ,λK as the knots.

Given the significance of modes, there is some amount of literature on fitting densities

with some constraints on the number of modes, although most of the attention has gone to

uni-modal densities, i.e., densities with a single mode, with both methodological and theoretical

developments. This effort dates back to the work of Grenander (1956) on the estimation of

a monotonic density, and his derivation of the corresponding maximum likelihood estimator,

which nowadays bears his name. A monotone density is, of course, uni-modal. Vice versa, a

uni-modal density with known mode at µ is non-decreasing on (−∞,µ] and non-increasing on

[µ,∞), so that the maximum likelihood is given by Grenander’s estimator applied on each side

of µ with the proper monotonicity constraint. When the mode is unknown, the likelihood is

simply maximized over the location µ ∈R. Rao (1969) obtained the asymptotic distribution of

this estimator pointwise when applied to estimating uni-modal densities with a known mode,

and showed this estimator’s consistency on intervals not containing the mode. As an extension,

Wegman (1970a,b) proposed a maximum likelihood estimator of a uni-modal density when the

location of the mode is unknown, and showed that for sufficiently large sample size and on

certain regions, this estimator agrees with the maximum likelihood estimator of a uni-modal

density with known mode. We note that penalized versions of Grenander’s estimator have also

been proposed (Sun and Woodroofe, 1996; Woodroofe and Sun, 1993), and their use could be

extended to fitting a uni-modal density. Besides maximum likelihood methods, the problem

of uni-modal density estimation has also been considered using other approaches, including

via the use of splines (Bickel and Fan, 1996; Meyer, 2012; Meyer and Woodroofe, 2004), data
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sharpening (Braun and Hall, 2001; Choi and Hall, 1999; Wolters, 2012), and optimal transport

(Cumings-Menon, 2018). We also mention Birgé (1987a,b), who derived nonparametric minimax

rates for estimating a uni-modal density or decreasing density using well chosen histograms with

unequal bin width, and Hengartner and Stark (1995), who computed conservative finite-sample

confidence regions for the entire density assuming monotonicity or uni-modality on the density,

using linear programming methods.

Given the amount of literature on fitting a uni-modal density, it is natural to consider

a fitting multi-modal density with any given number of modal intervals. There is a significant

literature on testing for multi-modality, which we review later in the paper in Section 4.4.1. In

terms of estimation methodology, the literature is much more scarce. Minnotte and Scott (1993)

proposed an exploratory, multi-scale method they named the mode tree. A similar method, called

SiZer, was later proposed by Chaudhuri and Marron (2000, 1999), and later, a rank-based variant

was suggested by Dümbgen and Walther (2008). Such methods, although do not offer a way

of estimating a multi-modal density, may be seen as offering a way to partition the real-line

into (possible) modal intervals. Directly tackling the estimation problem, Wolters and Braun

(2018a) considered fitting densities with 1 or 2 modes by adding an additive curve to the regular

kernel density. Dasgupta et al. (2021) considered fitting multi-modal densities by first fitting a

template density with the given amount of modes, in the spirit of (Cheng et al., 1999), and then

transforming this density under a shape-preserving transformation to obtain the final optimal

estimate under maximum likelihood.

4.2.3 Contribution and content

We consider fitting a probability density function with a constraint on the number of

modal intervals. We introduce a dynamic programming approach to solving this problem

numerically which, in principle, may be based on any method for fitting a uni-modal density

— in our numerical experiments we use the method recently proposed by Wolters and Braun

(2018a). To lighten up the computational burden, we propose a multi-grid search approach.

78



In addition, we offer data-driven ways for selecting the number of modal intervals when this

information is unknown.

The organization of the paper will be as follows. In Section 4.3, we provide our way

of fitting a K-modal density via dynamic programming, where K is provided by the user. We

also introduce a multi-grid search approach to improving the estimate of the knot values of the

density. In Section 4.4, we provide several data-driven options for choosing the number of modal

intervals K, when this information is unknown. In Section 4.5, we report on some numerical

experiments. We end with a discussion in Section 4.6.

4.3 Dynamic programming method

We have at our disposal a sample of real-valued observations. These data points are

assumed ordered (without loss of generality), denoted x1 ≤ ⋯ ≤ xn, and gathered in a vector

x = (x1, . . . ,xn) ∈Rn. Given x, our goal is to fit a K-modal density.

4.3.1 Maximum likelihood estimation

It is natural to first consider an estimation by maximum likelihood, which we can

formalize as the following optimization problem:

maximize
n
∑
i=1

log( f (xi)), (4.1)

over f an arbitrary K-modal density.

While when K = 1 this leads to the Grenander estimator for fitting a uni-modal density,

when K ≥ 2, this problem is not well-posed due to the fact that the likelihood is not bounded over

the class of K-modal densities. In fact, this is already the case when fitting mixtures of two or

more components, including Gaussian mixtures, if the variances are left unconstrained. See, e.g.,

(Day, 1969, Sec 7) or (van der Vaart, 2000, Ex 5.51).

Some solutions to this issue have been suggested. For example, Hathaway (1986)
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proposed a constrained EM algorithm when maximizing the likelihood with a lower bound on

component weights and an upper bound on the aspect ratio of the component variances, which

allows the maximum likelihood estimator to be consistent (Hathaway, 1985).

In our situation, we can think of multiple ways to regularize the optimization problem.

One way to do so is to constrain the search for modes to a finite grid of values that avoids all

the data points. A further discretization of the problem would involve a search over a finite grid

(the same one, or another one) for the K −1 knots defining the K candidate modal intervals. For

such a (K−1)-tuple, the optimization would lead to fitting a uni-modal density on each of the

corresponding intervals with a search for the mode done over the mode grid.

4.3.2 Fitting uni-modal densities

Even though the maximum likelihood estimator — at least in its constrained and dis-

cretized form — exists, it is known to have an issue, which comes from the Grenander estimator

being inconsistent at the mode (Balabdaoui et al., 2011; Bickel and Fan, 1996; Woodroofe and

Sun, 1993). Although it is consistent everywhere else and so, practically speaking, this is not

particularly important, the resulting fit is not “visually” pleasing, as the value at the mode tends

to be much larger than the other values that the density estimator takes, which results in a “spike”

at the mode. As our approach can accommodate any method for fitting a uni-modal density, in

our implementation we chose another method, that of Wolters and Braun (2018a).

As an example, we generated a sample of size n = 10,000 from a Laplace distribution

with mean 0 and standard deviation 0.05. We first fitted a uni-modal density with the Grenander

estimator (Grenander, 1956) with unknown mode where the mode location was selected to

maximize the likelihood. We then fitted a uni-modal density based on adjustedKDE method

(Wolters and Braun, 2018a). The result of the fitted densities are shown in Figure 4.2.
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Figure 4.2. The density f of the Laplace distribution with mean 0 and standard deviation 0.05,
in black, overlaid with the uni-modal density acquired via maximum likelihood (Grenander,
1956), in orange, and the uni-modal density acquired via adjusted KDE (Wolters and Braun,
2018a), in blue. Although not completely shown in this plot, the MLE estimator takes a value
larger than 30,000 at the mode.
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4.3.3 Problem decomposition

We approach the optimization problem (4.1) in the following way, which involves a

regularization by discretization and the use of a well-behaved method for fitting a uni-modal

density on a given sample. For a candidate density f , let λ = (λ1, . . . ,λK+1), with λ2 <⋯ < λK ,

denote the vector of knots defining modal intervals for f , and add λ1 = −∞ and λK+1 =∞. Define

πk = ∫
λk+1

λk
f (x)dx and assume that πk > 0. Let hk denote the density f conditional on [λk,λk+1],

i.e.,

hk(x) =
f (x)
πk

1{λk ≤ x < λk+1},

and note that it is uni-modal by construction. We will refer to πkhk as the “rescaled” version of

hk.

Realizing that the set of knots (λ2, . . . ,λK), the set of weights (π1, . . . ,πK), and the set of

uni-modal densities h1, . . . ,hK , can “move” independently of each other, we may re-express the

maximization problem (4.1) as follows:

maximize
K
∑
k=1

n
∑
i=1

log(πkhk(xi))1{λk ≤ xi < λk+1}, (4.2)

over λ2 <⋯ < λK chosen among grid points g2, . . . ,gM; over π1, . . . ,πK > 0 such that ∑K
k=1 πk = 1;

and over h1, . . . ,hK uni-modal densities with hk supported on [λk,λk+1]. Again, the fitting of

these uni-modal densities will be eventually done by a well-behaved method, as otherwise the

likelihood is not bounded and the problem above is not well-posed.

Given λ , for each k, let hλ

k denote the uni-modal density fitted by our method of choice

based on the sample falling in the interval [λk,λk+1). Note that hλ

k is supported on [λk,λk+1].

Having computed these, the maximizing set of weights maximizes

K
∑
k=1

n
∑
i=1

log(πkhλ

k (xi))1{λk ≤ xi < λk+1} =
K
∑
k=1

nλ

k logπk+
K
∑
k=1

n
∑
i=1

log(hλ

k (xi))1{λk ≤ xi < λk+1},

(4.3)
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where nλ

k denote the amount of data points in [λk,λk+1). Since the second term on the right-hand

side does not depend on the weights, the solution is the one maximizing the first term, which is

πλ
1 , . . . ,π

λ
K , where πλ

k = nλ

k /n. The corresponding estimate for the density is simply

f λ (x) =
K
∑
k=1

π
λ

k hλ

k (x)1{λk ≤ x < λk+1}.

It thus remain to optimize with respect to the knot set λ . The search will be over a finite grid

g2 <⋯ < gM, to which we add g1 = −∞ and gM+1 =∞. We are able to implement this search in

an efficient way.

4.3.4 Dynamic programming approach

As described in (Bradley et al., 1977, Chap 11), dynamic programming is an optimization

method that turns a large and complex problem into a sequence of smaller and simpler problems,

where its essential characteristic is a multi-stage optimization procedure. In our situation, we

turn a maximization problem over K-modal densities into a sequence of maximizations over

uni-modal densities. This is possible because of the fact that in (4.2) the maximization over

the uni-modal densities h1, . . . ,hK can be done with respect to each hk independently, without

coordination. We provide an example to illustrate our method in action in Figure 4.3.

To set up the dynamic programming recursion, we define two matrices. We first let S

be an M-by-M upper-triangular matrix, where S[i, j], i = 1, . . . ,M, and j = i, . . . ,M, denote the

log-likelihood value of the (rescaled) uni-modal density fitted on [gi,g j+1]. In formula,

S[i, j] =
n
∑
l=1

log(hi j(xl))1{gi ≤ xl < g j+1}+ni j log(
ni j

n
), (4.4)

where hi j denote the uni-modal density estimated on [gi,g j+1], and ni j denote the number of

data points in that interval.

In addition to S, let D be an M-by-K lower-triangular matrix, where D[m,k], k = 1, . . . ,K,
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Figure 4.3. An illustrative example on our methodology. It is based on a sample of size
n = 10,000 generated from the mixture model 1

3N(0,1)+
1
3N(5,1)+

1
3N(10,1). The number

of modes for this mixture is K = 3. In dark grey we plot a histogram of the sample. We consider
the default M = 5K−1 = 14 grid points as candidate locations for the knots λ = (λ2,λ3). We plot
these grid points, g = (g2, . . . ,g15), in vertical dotted orange lines, together with the extremes, in
the left and right dotted orange lines. The m-th interval of interest, is located between the m-th
and (m+1)-th dotted orange lines, where m = 1,2, . . . ,15. The purple line is a drawing of the
density found by our dynamic programming method with knowledge of the correct number of
modes.

m = k, . . . ,M, denote the maximum log-likelihood of fitting k (rescaled) uni-modal densities on

[g1,gm+1]. By definition, only entries D[m,k], m ≥ k carry meaning as it would be impossible to

fit a k-modal density on [g1,gm+1] if m < k as we assume that the density has at most one modal

interval in any interval of the form [gk,gk+1].

We initialize D as follows

D[m,1] = S[1,m], m = 1,2, . . . ,M. (4.5)
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From there, the dynamic programming recursion takes the form

D[m,k] = max
k−1≤i≤m−1

D[i,k−1]+S[i+1,m], (4.6)

for k = 2, . . . ,K and m = k, . . . ,M.

To find the actual values of λ , we also create an M-by-K matrix I. In the setting with

the highest log-likelihood, I[m,k] indicates the index of the first interval of the k-th uni-modal

density, when fitting k uni-modal densities on the first m intervals. By definition, the initialization

is,

I[m,1] = 1. (4.7)

Then I[m,k] is updated as the maximizing index i in (4.6).

The algorithm for finding the optimal log-likelihood, as well as the optimal knot values

of the K-modal density, is summarized in Table 4.1, while the algorithm for finding S, D, and I

is now summarized in Table 4.2.

Table 4.1. Dynamic programming approach for fitting a density with K modes, which returns
the maximum likelihood D[M,K] and the optimal knots λ

⋆

inputs: D and I (from Table 4.2), number of modes K, grid g of size M

initialize b = 0K+1 and b[K+1] =M+1
initialize l =M
for k =K, . . . ,1 do

b[k] = I[l,k]
l = I[l,k]−1

λ
⋆
= g[b]

return λ
⋆, D[M,K]

4.3.5 Multi-grid search

We note that an initial grid search over a large number of grid points is time consuming,

so we first use a coarse grid, and then refine locally around each pair of knots using a finer grid.
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Table 4.2. Rountine for computing S, D and I

inputs: data x, number of modes K, grid g of size M

compute S as in (4.4)
initialize D as in (4.5) and I as in (4.7)
if K = 1 then
go to return step
else if K ≥ 2 then

for k = 2, . . . ,K do
for m = k, . . . ,M do

initialize p = 0m−k+1
for i = k−1, . . . ,m−1 do

p[i−k+2] =D[i,k−1]+S[i+1,m]
D[m,k] =max(p)
I[m,k] = argmax(p)+k−1

return S,D,I

Suppose we have found λ
⋆
= {λ⋆2 , . . . ,λ

⋆
K} as optimal solution for the knots on a grid

containing M intervals. We then consider, for each k, a local grid of size L spanning the interval

[λ∗k − r,λ∗k + r]; this local grid is denoted as a vector θ k. We then optimize the log-likelihood

over all the combinations of K −1 values1, one from each θ k. The parameters L and r can be set

by the user, although the parameter r is preferably chosen so that 2r < δ∗ =mink(λ
∗
k+1−λ∗k ).

4.4 Selecting the number of modes

Our dynamic programming approach in the previous section is based on knowing the

value of K. In this section, we introduce two data-driven ways for selecting K when it is unknown.

4.4.1 Literature on testing multi-modality

There is a significant amount of literature on testing for multi-modality. For instance,

Silverman (1981) introduced a way of using kernel density estimates to investigate multi-

modality, where the smoothing parameter is chosen automatically. This method was followed up

1The left and right end points can be taken as the minimum and maximum values of the data points, respectively.
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by Hall and York (2001); Mammen et al. (1992), who considered its calibration and asymptotic

characteristics. Hartigan and Hartigan (1985) proposed the dip test, which measures multi-

modality in a sample by the maximum difference between the empirical distribution function

and a chosen uni-modal distribution. Later, Müller and Sawitzki (1991) considered the excess

mass functional, which measures excessive empirical mass in comparison with multiples of

uniform distributions. From the perspective of hierarchical clustering, Hartigan and Mohanty

(1992) designed a test for uni-modality based on the runt size in single linkage hierarchical

clustering, defined as the number of points in a cluster’s smallest subcluster. For an early

survey see, e.g., (Fischer et al., 1994). Testing of the significance of a mode was considered

by Chacón and Duong (2013); Cheng and Hall (1999); Duong et al. (2008); Genovese et al.

(2016); Godtliebsen et al. (2002); Minnotte (1997); Rufibach and Walther (2010), among others.

Hengartner and Stark (1995) developed a lower confidence bound for the number of modes.

Multi-scale methods aiming at partitioning the real-line into modal intervals, such as those of

Minnotte and Scott (1993), Chaudhuri and Marron (2000, 1999), and Dümbgen and Walther

(2008), already mentioned in the introduction, are based on testing the significance of modes.

We note that closely related to the problem of selecting the number of modes is the

problem of selecting the number of clusters (Rousseeuw, 1987; Wang, 2010) or choosing the

number of components in a mixture model (Celisse, 2014; McLachlan, 1987; McLachlan and

Rathnayake, 2014).

4.4.2 Our approaches

We offer two data-driven options here for choosing the number of modes K, using our

dynamic programming approach in Section 4.3.4.

Measure of fit

Let ∆(F,G) be a measure of fit for comparing the distribution functions F and G. An

example is the one used for the Kolmogorov–Smirnov test which corresponds to the supnorm,
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i.e., ∆(F,G) = supx ∣F(x)−G(x)∣, which is particularly easy to intuit. Let F̂ denote the empirical

distribution of x and F̂K denote the distribution function under the maximum likelihood criterion

with K modes. In the spirit of Hartigan and Hartigan (1985), the general idea is to ‘look’ at how

∆(F̂K, F̂) varies with K. For the particular choice of the supnorm, one could set a threshold τ ,

for example, τ = 0.01, and select K∗ =min{K ∶ ∆(F̂K, F̂) ≤ τ}.

Cross validation

We can also adopt a cross validation procedure. For a comprehensive review on applying

cross validation procedures to model selection problems, we invite the reader to (Arlot and

Celisse, 2010). For every candidate K for the number of modes, we can acquire a cross-

validation log-likelihood. Specifically, if we are doing 5-fold cross validation, we would fit a

K-modal density on the datapoints in the training folds, and then evaluate the log-likelihood of

this model on the datapoints in the validation fold. We take an average over the folds at the end.

We note that the log-likelihood could also be replaced by the L2 norm, i.e., the integrated mean

squared error. Due to computational reasons, this method is suited if the largest candidate for K

is not too large, for example, K = 5.

Remark 1. We note that since the selection of K involves potentially a large amount of overhead

computations, one might want to use a coarser computation of the density, which can then be

refined when the choice of K is settled.

4.5 Numerical experiments

In this section, we provide some numerical experiments to illustrate our dynamic pro-

gramming method and its application to determining the number of modes.

4.5.1 Application to real dataset

We first apply our method to the Old Faithful Geyser dataset (Azzalini and Bowman,

1990) in the MASS package of R. This dataset contains 272 waiting times, in minutes, indicating
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the duration between eruptions for the Old Faithful Geyser in Yellowstone National Park,

Wyoming, USA. For this dataset, we consider fitting a density with the widely used K = 2 modes,

for example, in (Pu and Arias-Castro, 2020). As initialization, we select M = 5K. We also use

the multi-grid search in Section 4.3.5, with L = 15 and r = δ∗(1/2−1/2L).

In addition to our method, we provide the estimates of the regular kernel density estima-

tor(KDE) with bandwidth chosen by the “rule of thumb” as in (Silverman, 1986, page 28). We

also provide the density constrained to have two modes (Wolters and Braun, 2018a), acquired

from adding an additive curve to the regular kernel density, implemented in the R package

scdensity (Wolters and Braun, 2018b).

The histogram of the waiting times, and the 3 resulting densities, are shown in Figure 4.4.

The regular KDE achieves a negative log-likelihood of 1160.584; the method of Wolters and

Braun (2018a) achieves a negative log-likelihood of 1167.776; and our method achieves a

negative log-likelihood of 944.366. We also note that in this dataset, our method gives a density

that fits the data better both when the density of the histogram is low and when it is high.

4.5.2 Selecting the number of modes

We next consider selecting the number of modes when it is not known. To do so, we

generate random mixture models, and check the performance of our method on these random

mixtures.

We start by considering random Gaussian mixture models. We first uniformly sample the

number of components from 1,2, . . . ,5. Once given the number of components, we randomly

generate each components’ mean values uniformly from [0,10], and standard deviation values

exponentially with parameter 1. We note that for each of these randomly generated Gaussian

mixture models, the actual number of modes is not always the same as the number of components,

and therefore we also compute the number of modes in each model by the amount of locations

where the derivative changes from increasing to decreasing. For each randomly generated model,

we generate a sample of size n = 10,000. We consider here possible candidates of K ranging
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Figure 4.4. Histogram of waiting times, in minutes, of the Geyser dataset, overlaid with density
estimators acquired by regular KDE (in yellow), by additive curve (in orange), and by dynamic
programming (in purple). We note that our density acquired from dynamic programming (in
purple) is interpolated between the area where the two modal densities meet, i.e. around 71.6.
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Table 4.3. Amount of times (out of 100) for choosing the actual number of modes by measure of
fit, among data from randomly generated mixture models. We select the smallest K that has a
KS distance less than γ . We present 0.01 and 0.05 as the standard γ values, and also present the
γ value resulting in the largest amount of correct selections.

Random Mixture Distribution γ Amount of Times for Selecting the Ac-
tual K (out of 100)

Gaussian 0.01 76
0.05 59
0.0162 78

Laplace 0.01 66
0.05 50
0.0104 68

from 1,2, . . . ,5. (This is mainly for computational considerations, as our experiments necessarily

involve replicates. In practice, the range of K can be much larger.) For each possible value

of K, we initialize M = 5K. We also use the multi-grid search in Section 4.3.5 with L = 5 and

r = δ∗(1/2−1/2L). We generate B = 100 random Gaussian mixtures.

We then consider random Laplace mixture models. We use the same sampling method

as the Gaussian case to generate the number of components, the mean values, and the standard

deviations of each component. We also compute the actual number of modes like in the Gaussian

case. Similarly, we generate B = 100 random Laplace mixtures. We use these data from random

mixtures in the following two subsections to determine the number of modal intervals.

Measure of fit

In this subsection, we determine the number of uni-modal intervals based on a measure

of fit as in Section 4.4.2. Specifically, we use the supnorm, as detailed in that same subsection.

The result on the number of times the number of uni-modal intervals has been correctly identified

is summarized in Table 4.3.
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Table 4.4. Amount of times (out of 100) for choosing the actual number of modes by cross
validation, among data from randomly generated mixture models. We select the smallest K under
each given decreasing percentage of improvement. We present 1% as the default percentage, and
also present the percentage value resulting in the largest amount of correct selections.

Random Mixture Distribution Percentage (in %) Amount of Times for Selecting the Ac-
tual K (out of 100)

Gaussian 1 66
0.08 75

Laplace 1 53
0.17 62

Cross validation

In this subsection we conduct simulations to determine the number of modes based on

cross validation as in Section 4.4.2. Here we use 5 folds, and set L = 3. At any given value K,

if increasing the number of modes from K to K +1 does not result in an improvement of the

log-likelihood by more than 1%, we select the K as the number of modes; otherwise we move on

to comparing K+1 and K+2; and so on. The result on the number of times the correct number

of modes is selected is summarized in Table 4.4.

4.6 Discussion

In this paper, we considered a dynamic programming approach to fitting a probability

density function when it is constrained to have a given number of modal intervals. Based on this

approach, we then gave two data driven ways for selecting the number of modal intervals when

it is not given.

It is in principle possible to develop a similar dynamic programming approach to fitting

a density whose shape is constrained in a certain way over a number of intervals defining a

partition of the real line. For example, we can consider fitting a density which is log-concave

(Walther, 2009) in each of K intervals defining a partition. Importantly, though, this dynamic

programming approach seems limited to real-valued data.
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Chapter 5

On the Consistency of Metric and Non-
Metric K-medoids

5.1 Abstract

We establish the consistency of K-medoids in the context of metric spaces. We start by

proving that K-medoids is asymptotically equivalent to K-means restricted to the support of the

underlying distribution under general conditions, including a wide selection of loss functions.

This asymptotic equivalence, in turn, enables us to apply the work of Pärna (1986) on the

consistency of K-means. This general approach applies also to non-metric settings where only

an ordering of the dissimilarities is available. We consider two types of ordinal information:

one where all quadruple comparisons are available; and one where only triple comparisons are

available. We provide some numerical experiments to illustrate our theory.

5.2 Introduction

Cluster analysis is widely regarded as one of the most important tasks in unsupervised

data analysis (Jain et al., 1999; Kaufman and Rousseeuw, 2009). In this paper, we consider

several center based clustering methods. Specifically, we show the asymptotic equivalence of

K-means and K-medoids, and use this equivalence to prove the consistency of K-medoids in

metric and non-metric (i.e., ordinal) settings.
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5.2.1 K-means and K-medoids

The problem of K-means can be traced back to the 1960’s to early work of MacQueen

(1967). As the problem is computationally difficult in higher dimensions or when the number

of clusters is large, it is instead most often approached via iterative methods such as Lloyd’s

algorithm (Lloyd, 1982). Leaving these computational challenges aside, assuming the problem

is solved exactly, the consistency of K-means as a method has been thoroughly addressed in

the literature. Early in this line of work, Pollard (1981) established the consistency of K-means

in Euclidean spaces. Pärna (1986) extended the result to separable metric spaces, while Pärna

(1988, 1990, 1992) examined the particular situation of Hilbert and Banach spaces, where the

existence of an optimal solution had been considered by Herrndorf (1983) and Cuesta and Matrán

(1988).

The problem of K-medoids dates back to the 1980’s to work of Kaufman and Rousseeuw

(1987), who in the process proposed the Partition Around Medoids (PAM) iterative algorithm.

Van der Laan et al. (2003) discovered that the original PAM has problem with recognizing rather

small clusters, and defined a new version of PAM based on maximizing average silhouette, as de-

fined by Kaufman and Rousseeuw (1990). Later Park and Jun (2009) proposed a computationally

simpler version of PAM akin to Lloyd’s algorithm for K-means. See (Kaufman and Rousseeuw,

2009, Ch 2). In a setting where the goal is the clustering of data sequences, Wang et al. (2019)

established an exponential consistency result for K-medoids itself (when solved exactly). To the

best of our knowledge, however, the consistency of K-medoids in the more standard setting of

clustering points in a metric space has not been previously established.

We establish the consistency of K-medoids by first showing that K-medoids is asymptot-

ically equivalent to K-means restricted to the support of the underlying distribution, and then

leveraging the work of Pärna (1986) on the consistency of K-means in metric spaces.
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5.2.2 Ordinal K-medoids

Beyond the more standard setting where the distances are available to us, we also

consider ordinal settings where only an ordering of the distances is available. Even when the

dissimilarities are available, turning them into ranks, and thus only working with the underlying

ordinal information, can be attractive in situations where the numerical value of the dissimilarities

has little meaning besides providing an ordering. This is the case, for example, in psychological

experiments where human subjects are tasked with rating some items in order of preference.

Working with ranks also has the advantage of added robustness to outliers.

Statisticians and other data scientists have dealt with ordinal information for decades.

Without going too far afield into rank-based inference (Hájek and Sidák, 1967) or ranking models

(Bradley and Terry, 1952), there is non-metric scaling, aka ordinal embedding, which is the

problem of embedding a set of items based on an ordering of their pairwise dissimilarities, with

pioneering work in the 1960’s by Shepard (1962a,b) and Kruskal (1964). The consistency of

ordinal embedding — by which we mean any solution to the problem assuming one exists —

was already considered by Shepard (1966), and more thoroughly addressed only recently by

Kleindessner and Luxburg (2014) and Arias-Castro (2017).

Even closer to our situation, in the area of clustering, we know that hierarchical clustering

with either single or complete linkage (or the less popular median linkage) only use the ordinal

information, as can be seen from the fact that the output grouping remains the same if the

dissimilarities are transformed by the application of a monotonically increasing function. The

well-known clustering method DBSCAN of Ester et al. (1996) can be seen as a robust variant of

single linkage, in its nearest-neighbor formulation, only relies on ordinal information as well. On

the other hand, hierarchical clustering with either average linkage or Ward’s criterion does not

have that property. The use of K-medoids in ordinal settings does not seem nearly as widespread.

In fact, we could only find a few references where the idea was proposed, scattered across various

fields such as computer vision (Zhu et al., 2011) and data mining (Zadegan et al., 2013). In the
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context of an application to the clustering of pictures of human faces, Zhu et al. (2011) proposed a

rank order distance (ROD) based on a sum of individual ranks, acquired from triple comparisons,

and then applied single linkage hierarchical clustering with this distance. They argued that this

distance was more appropriate for their particular application than the more standard L1 distance.

In a followup work, Huang et al. (2020) proposed a kernel variant of ROD. With the intention

of making the clustering result less sensitive to initialization and potential outliers, Zadegan

et al. (2013) proposed the concept of hostility index based on a sum of ranks obtained from

triple comparisons. Aside from these, Achtert et al. (2006) proposed a dissimilarity based on

the distance to the ℓ-th nearest neighbor, which can therefore be implemented based solely on

ordinal information.

Besides putting ordinal K-medoids in the context of ordinal data, as we just did, we

establish its consistency for two types of ordinal information: quadruple comparisons giving an

overall ranking of all pairwise dissimilarities; and triple comparisons giving a ranking relative to

each sample point.

5.2.3 Setting and content

We consider the problem of clustering some data points in a metric space into k clusters,

where k is given. The metric space is denoted (X ,d) and assumed to be a locally compact

Polish space. The sample is denoted x1, . . . ,xn and assumed to have been drawn from a Borel

probability measure Q assumed to have bounded support1 containing at least k points. We will

let Qn denote the empirical distribution, namely, Qn(B) ∶= 1
n∑

n
i=1 1{xi∈B} for any set B ⊂ X . For

two sets A,B ⊂ X , define

H(A∣B) ∶= sup
a∈A

inf
b∈B

d(a,b), (5.1)

so that the Hausdorff distance between A and B is max{H(A∣B),H(B∣A)}.

The organization of the paper will be as follows. In Section 5.3, we prove the asymptotic

1This is for convenience. See (Pärna, 1986).
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equivalence of K-means and K-medoids, and deduce from that the consistency of K-medoids

in the metric setting. In Section 5.4, we consider two ordinal settings, based on quadruple and

triple comparisons respectively, and establish the consistency of K-medoids in each case using

the equivalence result from Section 5.3. We provide numerical experiments along the way to

illustrate our theoretical results. Our work is greatly inspired by that of Pärna (1986), and we

will refer to his work often.

Remark 2. We want to mention that all our results apply when X is a finite dimensional Banach

space and Q has a density with respect to the Lebesgue measure which is bounded and has

compact support.

5.3 Consistency of K-medoids

For a k-tuple A ⊂ X , consider the risk

L(A,Q) = ∫X
min
a∈A

φ(d(x,a))dQ(x), (5.2)

where φ ∶ [0,∞)→ [0,∞) is a loss function assumed to be non-decreasing, continuous, and such

that φ(d) = 0 if and only if d = 0 — all these assumptions being rather standard. By K-means we

mean the result of the following optimization problem:

minimize L(A,Qn) over A ⊂ X , ∣A∣ = k. (5.3)

And by K-medoids we mean the same optimization problem but restricted to k-tuples made of

sample points:

minimize L(A,Qn) over A ⊂ Xn, ∣A∣ = k, (5.4)

where Xn ∶= {x1, . . . ,xn}. Note that

L(A,Qn) =
1
n

n
∑
i=1

min
a∈A

φ(d(xi,a)). (5.5)
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It is well-known that, as formulated, (5.3) and (5.4) can behave quite differently. Take

for example the case of the real line with Q the uniform distribution on [−2,−1]∪[1,2]. When

k = 1, in the large-sample limit, the origin is the unique solution to K-means problem, while −1

and 1 are the solutions to the K-medoids problem. Instead, we consider the following restricted

form of K-means:

minimize L(A,Qn) over A ⊂ supp(Q), ∣A∣ = k, (5.6)

where supp(Q) denotes the support of Q. The analyst cannot consider this problem when the

support of Q is unknown, which is typically the case. But this optimization problem is only used

as a device to analyze the asymptotic behavior of K-medoids.

Theorem 1. In the present context, K-medoids (5.4) is asymptotically equivalent to K-means

(5.6), which in turn is asymptotically equivalent to population version of the same problem,

namely

minimize L(A,Q) over A ⊂ supp(Q), ∣A∣ = k. (5.7)

We conclude that, if A∗n is a solution to (5.4), then in probability,

L(A∗n ,Q)
n→∞
ÐÐÐ→min

∣A∣=k
L(A,Q). (5.8)

Remark 3. As discussed in (Cuesta and Matrán, 1988; Pärna, 1990, 1992), a K-means problem

may not have a solution. In our situation, however, we are assuming that the space is a locally

compact Polish space, and a solution can be shown to exist by a simple compactness argument

together with our assumptions on φ (and the fact that the distance function is always continuous

in any metric space it equips). This applies to (5.3), (5.6) and (5.7).

Proof. Since everything happens within the support of Q, we may assume without loss of

generality that Q is supported on the entire space, meaning that supp(Q) = X . And since we

assume supp(Q) to be bounded, we are effectively assuming that X is bounded, and therefore

compact since it is assumed to be locally compact.
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The asymptotic equivalence of (5.6) and (5.7) is the consistency result of Pärna (1986).

It can be deduced easily from the arguments we present below, which themselves are by-and-

large adapted from (Pärna, 1986). So all we are left to do is prove that (5.4) is asymptotically

equivalent to (5.6). To be sure, by this we mean that, if A∗n is a solution to the former and An a

solution to the latter, then

∣L(A∗n ,Qn)−L(An,Qn)∣
n→∞
ÐÐÐ→ 0, (5.9)

in probability. Because by definition L(A∗n ,Qn) ≥ L(An,Qn), all we need to show is that

limsup
n→∞

L(A∗n ,Qn)−L(An,Qn) ≤ 0. (5.10)

The remaining of the proof consists of three steps. We first show in Lemma 2 below that

L(A,Qn) → L(A,Q) as n→∞, uniformly over A. We then show in Lemma 4 further down that

A↦ L(A,Q) is uniformly continuous. The last step consists in using these results in conjunction

with the ‘squeeze theorem’.

By the uniform convergence established in Lemma 2, we have

lim
n→∞
∣L(A∗n ,Qn)−L(A∗n ,Q)∣ = 0, (5.11)

as well as

lim
n→∞
∣L(An,Qn)−L(An,Q)∣ = 0. (5.12)

Therefore, all we need to show is that

limsup
n→∞

L(A∗n ,Q)−L(An,Q) ≤ 0. (5.13)

For every point in An find the closest sample point, and gather all these in B∗n .
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Note that by Lemma 1,

hn ∶=H(An∣Bn) =max
a∈An

min
b∈B∗n

d(a,b)
n→∞
ÐÐÐ→ 0, (5.14)

in probability. Hence, by Lemma 4, we have

limsup
n→∞

L(B∗n ,Q)−L(An,Q) ≤ limsup
n→∞

ω(hn) = 0. (5.15)

With the fact that L(A∗n ,Qn) ≤ L(B∗n ,Qn) by definition of A∗n , together with the uniform conver-

gence also giving

lim
n→∞
∣L(B∗n ,Qn)−L(B∗n ,Q)∣ = 0, (5.16)

we thus conclude that (5.13) holds.

Lemma 1. Assuming that X is compact and that supp(Q) = X , in probability,

H(X ∣Xn) = sup
x∈X

min
i∈[n]

d(x,xi) → 0, n→∞. (5.17)

Proof. The arguments are standard and follow from the definition of supp(Q). Indeed, supp(Q)

is the complement of the largest open set D in X such that Q(D) = 0. Since supp(Q) = X by

assumption, it must be that Q(B(x,r)) > 0 for all x ∈ X and all r > 0, where B(x,r) is defined as

the closed ball centered at x with radius r. Fix r > 0. Because X is compact there is y1, . . . ,ym ∈ X

such that X =⋃ j B(y j,r). By the triangle inequality,

H(X ∣Xn) ≥ 2r

⇔ ∃x ∶min
i
d(x,xi) ≥ 2r

⇒ ∃ j ∶min
i
d(y j,xi) ≥ r,
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and by the union bound, this implies that

P(H(X ∣Xn) ≥ 2r)

≤∑
j
P(min

i
d(y j,xi) ≥ r)

=∑
j
(1−Q(B(y j,r))n

≤m(1−min
j

Q(B(y j,r))n

→ 0, n→∞.

Since r > 0 is arbitrary, the claim is established.

5.3.1 Uniform convergence lemma

Lemma 2. Assuming that X is compact, we have, in probability,

limsup
n→∞

sup
∣A∣≤k
∣L(A,Qn)−L(A,Q)∣ = 0. (5.18)

The rest of this subsection is devoted to proving this lemma. It is enough to prove the

variant where ∣A∣ ≤ k is replaced by ∣A∣ = k. The proof is very similar to the proof of (Pärna, 1986,

Lem 1), with some differences. We provide a full proof for the sake of completeness.

Note that, like L(A,Q), L(A,Qn) can be expressed as an integral:

L(A,Qn) = ∫X
min
a∈A

φ(d(x,a))dQn(x). (5.19)

To each finite set A, we associate the following function

fA(x) =min
a∈A

φ(d(x,a)). (5.20)
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Define the following class of functions

F = { fA ∶ A ⊂ X , ∣A∣ = k}. (5.21)

Lemma 3 (Th 3.2 of (Rao, 1962)). Let F be a family of continuous functions on a separable

metric space X which is equicontinuous and admits a continuous envelope (there is g continuous

such that ∣ f (x)∣ ≤ g(x) for all f ∈ F ). In this context, suppose that (µn) is a sequence of measures

on X converging weakly to µ , another measure on X with ∫ gdµnÐ→ ∫ gdµ <∞. Then we have:

limsup
nÐ→∞

sup
f ∈F
∣∫ f dµn−∫ f dµ∣ = 0. (5.22)

We apply this result with µn =Qn and µ =Q, for which the weak convergence is satisfied

with probability 1 (Varadarajan, 1958). The existence of an envelope function g satisfying the

requirements for the function class of interest, F above, is here immediate since for any A,

0 ≤ fA(x) ≤ φ(diam(X)) <∞, (5.23)

so that we may take g ≡ φ(diam(X)). It only remains to show F is equicontinuous. This amounts

to showing that, for any y0 ∈ X and any ε > 0, there exists a δ > 0, such that ∣ fA(y0)− fA(y)∣ < ε

for any k-tuple A and any y ∈ B(y0,ε).

For the given y0 and y, we denote a(y0) and a(y) closest points in A to them so that

min
a∈A

d(y0,a)−min
a∈A

d(y,a) = d(y0,a(y0))−d(y,a(y)).
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By definition and the triangle inequality,

d(y0,a(y0))−d(y,a(y))

≤ d(y0,a(y))−d(y,a(y))

≤ d(y0,y),

and similarly,

d(y0,a(y0))−d(y,a(y))

≥ d(y0,a(y0))−d(y,a(y0))

≥ −d(y0,y).

We thus deduce that

∣min
a∈A

d(y0,a)−min
a∈A

d(y,a)∣ ≤ d(y0,y). (5.24)

Since φ is assumed to be continuous, it is uniformly continuous on [0,diam(X)]. Let ω

denote its modulus of continuity on that interval so that

∣φ(d)−φ(d′)∣ ≤ω(∣d−d′∣), ∀d,d′ ∈ [0,diam(X)].

We then have

∣ fA(y0)− fA(y)∣ (5.25)

= ∣min
a∈A

φ(d(y0,a))−min
a∈A

φ(d(y,a))∣ (5.26)

= ∣φ(min
a∈A

d(y0,a))−φ(min
a∈A

d(y,a))∣ (5.27)

≤ω(d(y0,y)), (5.28)
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using the monotonicity of φ along the way. We have proved that F is indeed equicontinuous.

Therefore the proof of Lemma 2 is complete.

5.3.2 Uniform continuity lemma

Lemma 4. For any two sets A,B ⊂ X , we have

L(B,Q) ≤ L(A,Q)+ω(H(A∣B)), (5.29)

where ω is the modulus of continuity of φ on [0,diam(X)].

The rest of this subsection is devoted to proving this lemma. Fix two sets A,B ⊂ X , and

let h ∶=H(A∣B). For any a ∈ A, define ba as the closest point in B to a. Notice that by definition:

d(a,ba) ≤ h, (5.30)

and thus with the triangle inequality, for any point x we have:

d(x,a) ≥ d(x,ba)−d(a,ba) ≥ d(x,ba)−h. (5.31)

Taking minimums we get:

min
a∈A

d(x,a) ≥min
a∈A

d(x,ba)−h ≥min
b∈B

d(x,b)−h. (5.32)

Using the fact that φ is non-decreasing, we then have:

min
a∈A

φ(d(x,a))−min
b∈B

φ(d(x,b)) (5.33)

= φ(min
a∈A

d(x,a))−φ(min
b∈B

d(x,b)) (5.34)

≥ −ω(h). (5.35)
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Therefore, by integrating with respect to Q, we obtain:

L(A,Q)−L(B,Q)

= ∫ min
a∈A

φ(d(x,a))dQ(x)−∫ min
b∈B

φ(d(x,b))dQ(x)

= ∫ [min
a∈A

φ(d(x,a))−min
b∈B

φ(d(x,b))]dQ(x)

≥ −ω(h).

5.3.3 Simulations

We report on a simple experiment illustrating the asymptotic equivalence established

in Theorem 1. To keep a balance between the necessity to probe an asymptotic result (n large

enough) and computational feasibility (n not too large), we choose to work with a sample of size

n = 2000. We generate data from two equally weighted Gaussian distributions in R2, centered

at (−0.5,0) and (0.5,0), each with covariance 0.05× I2. Each setting is repeated 50 times. The

result of this experiments is summarized in Table 5.1. As can be seen from this experiment,

although varying according to different metrics and loss functions, the performance of K-means

and K-medoids are indeed very similar.

5.4 Consistency of ordinal K-medoids

In this section we consider the problem of clustering with only an ordering of the

dissimilarities. We consider two such orderings, one based on quadruple comparisons and

another based on triple comparisons. We apply the results from Section 5.3 to show that, in both

cases, K-medoids is consistent.

5.4.1 Quadruple comparisons

First we consider a situation in which all quadruple comparisons of the form ‘Is d(xi,x j)

larger or smaller than d(xl,xm)?’ are available. Equivalently, this is a situation in which a
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Table 5.1. Mean values and standard deviations of the Average Center Error (error) and the
Adjusted Rand Index (ARI) of K-means and K-medoids for various metrics and loss functions.

K-means K-medoids

L1 error [×10−2] 1.2 (0.4) 1.8 (0.7)
ARI 0.780 (0.017) 0.778 (0.016)

√
L2 error [×10−2] 8.9 (1.7) 11.7 (2.5)

ARI 0.784 (0.020) 0.782 (0.022)

L2 error [×10−3] 9.4 (3.2) 12.3 (4.3)
ARI 0.789 (0.017) 0.789 (0.017)

L2
2 error [×10−4] 1.1 (0.9) 2.3 (1.7)

ARI 0.785 (0.016) 0.785 (0.016)

L∞ error [×10−3] 8.9 (3.4) 12.0 (4.2)
ARI 0.785 (0.021) 0.783 (0.020)

complete ordering of the pairwise dissimilarities is available.

For i ∈ [n], let Ri(a) denote the rank of d(xi,a) among {d(xl,xm) ∶ l <m}, and for a k-tuple

A, define

Srank(A,Qn) =
1
n

n
∑
i=1

min
a∈A

Ri(a)
n(n−1)

2

. (5.36)

By ordinal K-medoids we mean the following optimization problem:

minimize Srank(A,Qn) over A ⊂ Xn, ∣A∣ = k. (5.37)

This problem can be posed with the available information, and thus in principle can be solved.

The equivalent restricted variant of ordinal K-means corresponds the following optimization

problem:

minimize Srank(A,Qn) over A ⊂ supp(Q), ∣A∣ = k. (5.38)

As before, the latter is used as a bridge to show that the former is asymptotically equivalent to
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the population version of this K-means problem, which is given by

minimize S(A,Q) over A ⊂ supp(Q), ∣A∣ = k, (5.39)

where

S(A,Q) ∶= ∫ min
a∈A

G(d(x,a))dQ(x), (5.40)

with

G(t) ∶= P(d(X ,X ′) ≤ t), (5.41)

X ,X ′ being independent with distribution Q.

Here is the missing link between Srank and S.

Lemma 5. The following holds in probability:

limsup
n→∞

sup
∣A∣≤k
∣Srank(A,Qn)−S(A,Qn)∣ = 0. (5.42)

Proof. Let Ĝn denote the empirical distribution function of all the pairwise distances between

sample points, meaning,

Ĝn(t) ∶=
2

n(n−1)
∑
l<m

1{d(xl ,xm)≤t}.

By the law of large numbers for U-statistics, in probability, Ĝn(t) →G(t) as n→∞ for every

fixed t. The Glivenko–Cantelli lemma does not quite apply as the pairwise distances are not

an iid sample, but the two ingredients are there (van der Vaart, 2000): pointwise convergence

as just stated, and the fact that ĜN and G are both distribution functions in that they both are

non-decreasing from 0 to 1 on [0,∞). Hence,

εn ∶= sup
t
∣Ĝn(t)−G(t)∣

n→∞
ÐÐÐ→ 0,
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in probability. We then have:

Ri(a) = ∑
l<m

1{d(xl ,xm)≤d(xi,a)}

=
n(n−1)

2
Ĝn(d(xi,a))

=
n(n−1)

2
G(d(xi,a))±

n(n−1)
2

εn,

giving

Srank(A,Qn) =
1
n

n
∑
i=1

min
a∈A

G(d(xi,a))±εn

= S(A,Qn)±εn,

for any finite A, which establishes the result.

Establishing the consistency of ordinal K-medoids is now a straightforward consequence

of Theorem 1. We need to assume that G defined above is continuous, which is the case in the

canonical situation of Remark 2.

Theorem 2. In the present context, if A∗n is a solution to ordinal K-medoids in the form of (5.37),

then in probability,

S(A∗n ,Q)
n→∞
ÐÐÐ→min

∣A∣=k
S(A,Q). (5.43)

Proof. By Lemma 5, we have that ordinal K-medoids (5.37) is asymptotically equivalent to the

following problem:

minimize S(A,Qn) over A ⊂ Xn, ∣A∣ = k. (5.44)

But S is exactly as L in Section 5.3, with G replacing φ there, and since G satisfies the same

properties assumed of φ , Theorem 1 applies to yield the claim.
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5.4.2 Triple comparisons

We turn to a situation in which only triple comparisons of the form ‘Is d(xi,x j) larger or

smaller than d(xi,xl)?’ are available. We do assume that all of these comparisons are on hand.

Equivalently, this is a situation in which an ordering of the pairwise dissimilarities involving a

particular point are available.

Hence, we work here with the ranks (re)defined as follows. For i ∈ [n], let Ri(a) denote

the rank of d(xi,a) among {d(xi,x j) ∶ j ≠ i}, and for a k-tuple A, define

Srank(A,Qn) =
1
n

n
∑
i=1

min
a∈A

Ri(a)
n−1

. (5.45)

Ordinal K-medoids and (restricted) ordinal K-means are otherwise defined as before. The

population equivalent to ordinal K-means is now given by

minimize S(A,Q) over A ⊂ supp(Q), ∣A∣ = k, (5.46)

where

S(A,Q) ∶= ∫ min
a∈A

Gx(d(x,a))dQ(x), (5.47)

with

Gx(t) ∶= P(d(x,X ′) ≤ t), (5.48)

X ′ having distribution Q.

Lemma 6. The following holds in probability:

limsup
n→∞

sup
∣A∣≤k
∣Srank(A,Qn)−S(A,Qn)∣ = 0. (5.49)
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Proof. Define

Ĝn,i(t) ∶=
1

n−1
∑
j≠i

1{d(xi,x j)≤t}.

By the Dvoretzky–Kiefer–Wolfowitz (DKW) inequality, for each i and any ε > 0, we have:

P(sup
t
∣Ĝn,i(t)−Gxi(t)∣ > ε) ≤ 2exp(−2(n−1)ε2).

With this, and the union bound, we obtain:

εn ∶=max
i

sup
t
∣Ĝn,i(t)−Gxi(t)∣

n→∞
ÐÐÐ→ 0,

in probability. We then have:

Ri(a) =∑
j≠i

1{d(xi,x j)≤d(xi,a)}

= (n−1)Ĝn,i(d(xi,a))

= (n−1)Gxi(d(xi,a))±(n−1)εn,

giving

Srank(A,Qn) =
1
n

n
∑
i=1

min
a∈A

Gxi(d(xi,a))±εn

= S(A,Qn)±εn,

for any finite A, which establishes the result.

The following is our consistency result for K-medoids based on triple comparisons. It

is not an immediate consequence of Theorem 1, but the proof arguments are parallel. We need

to make additional assumption that (x,t) ↦Q(B(x,t)) is continuous on X ×(0,∞). This is the

case in the canonical situation of Remark 2.
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Theorem 3. In the present context, if A∗n is a solution to ordinal K-medoids based on triple

comparisons, then in probability,

S(A∗n ,Q)
n→∞
ÐÐÐ→min

∣A∣=k
S(A,Q), (5.50)

now with S defined as in (5.47).

Proof. By Lemma 6, we have that ordinal K-medoids is asymptotically equivalent to the follow-

ing problem:

minimize S(A,Qn) over A ⊂ Xn, ∣A∣ = k. (5.51)

But unlike the situation in Theorem 2, now S is not exactly as L in Section 5.3, complicating

matters a little bit. Nevertheless, the proof arguments are parallel to those underlying Theorem 1.

As we did there, we need to establish uniform convergence and uniform continuity. As before,

we may assume without loss of generality that X is compact and that supp(Q) = X . In that case,

(x,t) ↦Q(B(x,t)) is uniformly continuous, and we let Ω denote its modulus of continuity so

that

∣Q(B(x,s))−Q(B(y,t))∣ ≤Ω(d(x,y), ∣s− t ∣),

for all x,y ∈ X and all s,t > 0.

For the uniform convergence, the proof of Lemma 2 proceeds as before until the very
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end where instead

∣ fA(y0)− fA(y)∣ (5.52)

= ∣min
a∈A

Gy0(d(y0,a))−min
a∈A

Gy(d(y,a))∣ (5.53)

= ∣Gy0(d(y0,A))−Gy(d(y,A))∣ (5.54)

≤Ω(d(y0,y), ∣d(y0,A)−d(y,A)∣) (5.55)

≤Ω(d(y0,y),d(y0,y)) (5.56)

→ 0, when d(y0,y) → 0. (5.57)

For the uniform continuity, the proof of Lemma 4 proceeds as before except that

min
a∈A

Gx(d(x,a))−min
b∈B

Gx(d(x,b)) (5.58)

=Gx(d(x,A))−Gx(d(x,B)) (5.59)

≥ −Ω(0,h), (5.60)

with h ∶=H(A∣B) as in that proof, so that the statement of that lemma continues to hold but with

ω(t) ∶=Ω(0,t).

5.4.3 Simulations

We again report on a numerical experiment showcasing the results derived in this section

in the context of ordinal clustering. We chose to work with a sample of size n = 750. We generate

data from three equally weighted Gaussian distributions in two dimensions, centered at (−0.5,0),

(0.5,0) and (0,
√

3/2), each with covariance 0.05× I2. Each setting is repeated 50 times. The

result of our experiment is summarized in Table 5.2. As can be seen from this experiment,

K-medoids based on ordinal information performs nearly as well as K-medoids based on the full

dissimilarity information.
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Table 5.2. Mean values and standard deviations of the Average Center Error (error) and the
Adjusted Rand Index (ARI) for various metrics and loss functions for K-medoids based on
triple-comparisons (TC), quadruple-comparisons (QC), and the actual distances (KM).

TC QC KM

L1 error [×10−2] 4.4 3.6 3.7
(1.3) (1.3) (1.2)

ARI 0.924 0.924 0.925
(0.014) (0.014) (0.014)

√
L2 error [×10−1] 1.8 1.6 1.7

(0.3) (0.2) (0.3)
ARI 0.928 0.929 0.929

(0.016) (0.015) (0.016)

L2 error [×10−2] 3.2 2.7 2.7
(0.8) (0.9) (0.9)

ARI 0.934 0.933 0.933
(0.016) (0.016) (0.016)

L2
2 error [×10−3] 1.4 0.9 0.8

(0.7) (0.5) (0.5)
ARI 0.931 0.931 0.930

(0.020) (0.019) (0.020)

L∞ error [×10−2] 3.0 2.6 2.7
(1.1) (1.0) (1.0)

ARI 0.918 0.917 0.918
(0.017) (0.017) (0.017)
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5.5 Discussion

In this paper, we have shown the asymptotic equivalence of K-means and K-medoids, and

used this equivalence to prove the consistency of K-medoids in metric and non-metric situations.

5.5.1 Consistency of the solution

Our consistency results are on the value of the optimization problem defining K-medoids

in the various settings we considered. Specifically, we showed in each case that T(A∗n ,Q) →n→∞

minA T(A,Q), in probability, where T is an appropriate criterion (either L or one of the two

variants of S) and A∗n is the solution to K-medoids. What about the behavior of the solution A∗n

itself?

Here the situation is completely generic: if the solution to the population problem, namely

Aopt ∶= argminA T(A,Q), is unique, then A∗n →n→∞ Aopt, again in probability. This is simply due

to the fact that in our setting we can reduce the situation to when X is compact, and in all cases

we considered A↦ T(A,Q) is continuous.

5.5.2 Clustering after embedding?

It might be possible to establish the consistency of ordinal K-medoids building on the

consistency of ordinal embedding. This route appears unnecessarily sophisticated, however,

in particular in light of a more straightforward approach that we built on the work of Pärna

(1986). And from a computational standpoint, performing K-medoids in the ordinal setting has

essentially the same complexity as in the regular (i.e., metric) setting, while methods for ordinal

embedding tend to be much more demanding in computational resources.

5.5.3 A ‘bad’ variant of K-medoids

In the setting where triple comparisons are available, instead of defining the ranks as we

did, we could have worked with the following definition. For i ∈ [n], let Ri(a) denote the rank

of d(xi,a) among {d(x j,a) ∶ j ∈ [n]}. Although the resulting method can be analyzed in very
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much the same way, it turns out to not be useful for the purpose of clustering. This is due to the

fact that the corresponding optimization problem accepts a large range of solutions. To see this,

consider the case k = 1. With the corresponding definition of Srank, we have that

Srank(a,Qn) =
1+2+ ⋅ ⋅ ⋅+n

n(n−1)
, (5.61)

for all a ∈ {x1, ...,xn}. And the problem persists for other values of k. For another example,

consider clustering points distributed uniformly between [−1,1] into k = 2 clusters. It is clear

that the correct population centers for K-means here are {−1/2,1/2}. However, it can be seen

that for any 1/2 ≤ c ≤ 1, A = {−c,c} also achieves the optimal population risk.
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