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Phylogenies are trees showing the evolutionary relationship among species, and recon-
structing phylogenies using molecular data can be framed as an optimization problem. Recent
advances in DNA sequencing have resulted in extensive application of phylogenetic inference
to (meta)genomic data. However, the scale and the complexity of the data has presented
researchers with new algorithmic and statistical challenges, in particular, difficulties in noise
reduction and statistical support estimation. This dissertation addresses these challenges.

A significant challenge in using genomic data for phylogenetics (phylogenomics) is

inconsistencies between evolutionary histories across different parts of the genome. Thus,
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phylogenomics methods need to consider these inconsistencies. One scalable solution is
using summary methods, where a tree is first inferred for each gene, and then gene trees are
summarized to build the species tree. Chapter [2] of this dissertation is dedicated to presenting
a scalable and accurate summary method called DISTIQUE for reconstructing species trees
from gene trees.

A major challenge in phylogenomics is the interpretation of inferred phylogenies,
especially in the presence of noise and gene-tree inconsistencies. Biologists rely on measures
of statistical support for interpreting branches of the phylogeny. Chapter [3] introduces a
highly scalable and reliable Bayesian measure of support, localPP, and Chapter [ introduces a
frequentist version of localPP for performing hypothesis testing.

When using any summary method, the quality of the inferred species tree is highly
impacted by the quality of gene phylogenies. In Chapter[5| we identify one factor that reduces
the gene tree accuracy (gene fragmentation) and introduce a filtering strategy that effectively
reduces error in gene trees and species trees. Further, Chapter [6]introduces a visualization
framework, DiscoVista, to assist biologists in interpreting potentially discordant phylogenetic
results.

The final chapter focuses on the use of phylogenies in microbiome studies, where the
goal is analyzing genetic material from environmental samples and to infer associations of
genotype to phenotypical properties of samples. A main challenge in microbiome analyses is
the huge variability across samples and small sample sizes. Chapter[7]introduces TADA, a new
phylogeny-based method of data augmentation that improves the accuracy of classification

methods applied to microbiome data.
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Chapter 1

Introduction

Phylogenies are typically trees showing evolutionary relationship between species.
They are crucial for better understanding of the life diversity on earth [50]. More generally,
phylogenies help us to explore how sequences, genomes, and species evolve [94]. The
branching structure of phylogenies can represent the speciation events (i.e., the species tree),
or the relationship between different genes (i.e., the gene trees). Also, the branch length
shows the time between two nodes in evolutionary time. The leaves of the phylogeny can
show the extant species (or genes), internal nodes present ancestral species (or genes), and
the root of the phylogeny shows the common ancestor of all extant species.

We can represent species with character sequences, where these characters capture
the characteristics of the species. Reconstructing the phylogenies is typically framed as
reconstructing a tree using statistical models that best describes observed sequences for extant
species [94} 68, [135]]. Historically, morphology (e.g., color, shape, pattern, size) were used to
reconstruct phylogenies. However, evolution can happen through accumulation of change in
the genome of species, and thus we could use molecular data (e.g., DNA or protein sequences)
to reconstruct phylogenies [94]].

With advances in sequencing technology as well as advances in computational meth-



ods (e.g., development of ML methods for phylogenetic inferences), single gene sequences are
used to infer the phylogenies since mid 20th century [67]. More recently and after introduc-
tion of technologies such as Next Generation Sequencing [157, 30]), using genomic data to
reconstruct the phylogenies is becoming routine. Using whole genomes to infer phylogenies
provides us tremendous amount of data and the prospect that we could solve phylogenetic
problems with less uncertainties [76]]. However, using whole genome (i.e., multiple loci) to
infer phylogenies had introduced new challenges and complexities [[106,[183]. The biological
reasons behind these complexities lie with the inconsistencies prevalent between the evolu-
tionary history of different parts of the genome (i.e. gene trees), and the phylogeny showing
the speciation events (i.e., the species tree). To address inconsistencies prevalent between
gene trees and species tree, new models of gene tree evolution are introduced [60, (74} 56].

Inferring phylogenies from sequence data typically requires multiple steps. Due
to mutations (such as insertion and deletion) and for a particular gene, different species
can have different sequence length. Therefore, a main step in many phylogenetic analyses
is to align different species sequence belong to a particular gene so that they all have the
same length using Multiple Sequence Alignment (MSA) algorithms [205) 137, [136]. The
aligned sequences can be used to infer phylogenies. In this dissertation, I mostly focus on the
pipelines of reconstructing species trees from genomic data. Previously, different methods of
reconstructing species tree from genomic data are developed. One of these methods is called
concatenation. In this method all genes simply concatenated together to form a supermatrix,
and then a statistical phylogeny reconstruction method is used to infer the tree.

An alternative approach which directly considers gene tree discordance is the so-called
two-step method (also called the summary method). In summary methods, i) for each gene a
tree is constructed independently (e.g., using maximum likelihood methods (232, [188|, 1861]),
and then i1) all gene trees are summarized to construct a tree for the entire genome (considering

gene trees discordance). Since summary methods use gene trees to reconstruct the species



tree, the quality of inferred species trees are largely affected by the quality of gene trees and
missing data as I will elaborate in Chapter [5]

Finally, in biological analyses, we don’t have access to the true phylogeny. More-
over, my inferences are based on limited noisy sequences. Thus, assessing the quality of
reconstructed phylogenies is a major step in phylogenetic analyses.

In this dissertation, I contributed to different parts of phylogeny reconstruction pipeline,
by introducing new methods of filtering, inferring, assessing and visualization phylogenies
and phylogenomic data. I show that my methods can effectively improve the quality of
phylogenies, enrich our understanding of the inconsistencies in the genomic data, and enables
us to compute a reliable statistical support for datasets with large number of genes and species.

One of the major sources of discordance between gene trees and species tree is
Incomplete Lineage Sorting (ILS, will be elaborated in Chapter [2)). To address ILS, different
summary methods of reconstruction species trees are introduced [277, 255, 142]]. However,
due to the scalability and accuracy issues introducing new methods is still needed. One
principal way of inferring species tree is to first compute distances between species and then
build a tree that best represents these estimated distances using distance-based methods like
neighbor-joining (NJ) or UPGMA [206, 224]]. In Chapter [2| I introduce a new summary
method of estimating species tree from gene trees called DISTIQUE. I first show that by
choosing two random species as anchors, I can calculate relative phylogenetic distances
between all other pairs of species using gene trees (by considering unrooted trees of size four,
i.e., quartets). Then, using distance-based methods like NJ, I can infer the species tree from
computed distances.

To reduce the estimation bias and variance for the anchored distances, I either average
the relative distances for randomly chosen anchors, or I build separate trees for different
pairs of anchors and combine trees to get the final species tree. This method is guaranteed to

produce the true species tree with high probability if ILS is the only source of discordance



(1.e., a statistically consistent method under ILS). In my simulation and biological analyses, I
compared DISTIQUE with the state-of-the-art summary methods including ASTRID [255]]
and ATRAL-II [165]]. I showed that DISTIQUE is as accurate as (or sometimes better than)
ASTRID but slightly less accurate than ASTRAL-II. In terms of running time, DISTIQUE is
faster than ASTRAL-II but less scalable than ASTRID.

Summary methods first infer gene trees and then use them to reconstruct the species
tree. Accordingly, the quality of summary methods is highly affected by the quality of gene
trees. However, the bioinformatics pipelines used in the whole-genome and transcriptomic
data preparation (i.e., transcribed part of the genome), can inject errors and missing data into
the datasets. These errors can negatively affect the quality of reconstructed phylogeny [130,
185, 197]. For summary methods, two types of missing data exit: i) missing taxon, and ii)
fragmentary data [97]. When for a gene, a species is entirely missing, we call it a missing
taxon, and when a large portion of data is missing (i.e. fragmentation) we call it fragmentary
data. In Chapter[5] I further analyzed the effects of fragmentary data on the quality of gene
trees and eventually on the quality of species tree estimation. Then I introduced an effective
filtering strategy to deal with fragmentation. I used biological and simulation analyses
to benchmark the parameters and investigate the effectiveness of my filtering strategy. In
particular, in simulations I showed that applying more filtering improves the quality of gene
trees at the expense of introducing more missing taxa. Hence, there is a tradeoff between
quality of species tree and applying more strict filtering.

Evaluating statistical support for reconstructed phylogenies is the essence of many
phylogenomic analyses. Different methods of calculating support like multi-locus boot-
strapping (MLBS, will be discuss in Chapter [3) [214] and Bayesian posterior probabili-
ties [192, 1124, [151] are widely used in summary methods. However, shortcomings of these
methods such as lack of interpretability, scalability, and reliability motivate us to introduce

novel measures of assessing phylogenies [1359, [13, 221]]. More particularly, calculating



Bayesian posterior probabilities requires MCMC sampling from the distribution of gene trees
and species trees parameters and topology, and is computationally challenging. On the other
hand, using MLBS, the support can be easily underestimated or overestimated [159) 221]].
These biases are due to the higher level of gene tree discordance and errors derived by the
lack of phylogenetic signal in bootstrapped gene alignments.

Under the MSC model of ILS (will be discussed in Chapter [2)), and considering only
four species (i.e., quartets with only three possible unrooted topology), the most frequent
gene tree is topologically congruent with the species tree. Moreover, based on the MSC
model the other alternative topologies are equiprobable with probabilities depending on the
branch length separating species [6]. In Chapter [3| I analytically computed the posterior
probability of different species tree topologies around a single branch given the inferred gene
trees as input. Having more than four species, computing the posterior probability becomes
computationally challenging [6,/151], and so I compute an approximate solution by mapping
the problem to the problem of having four species. This measure of support is called local
posterior probability (localPP). In simulations and biological analyses, I showed that localPP
is highly reliable, and is more accurate than MLBS. Moreover, the algorithm I introduced to
calculate localPP is highly scalable and can handle datasets with thousands of species and
genes.

Typically, phylogenies are binary, meaning that all internal nodes of the tree are of
degree three. In this case, we call the phylogeny a bifurcating tree. On the other hand, we
could have trees that they have at least a node with degree greater than three (i.e., a polytomy).
This could happen for two reasons, first we didn’t have enough evidence and information
to resolve the topology (i.e., soft polytomy). Alternatively, a speciation event can lead to
more than two offspring, and thus produce a hard polytomy. In Chapter § I introduce a
statistical hypothesis test for detecting multifurcating events. The test null hypothesis is that

the branch length is zero and the branch is multifurcating (i.e., forms a polytomy). This test is



a frequentist version of localPP, and incorporates the same mapping introduced in Chapter
In simulations and biological analyses, I show the effectiveness of my method.

With the amount of complexity and incongruence prevalent in the phylogenomic
data, visualizing the results and making comparisons between different studies is crucial.
Despite the availability of tools for comparing and visualizing phylogenomic and phylogenetic
analyses, the interpretation of their visualizations and measures remains challenging. In
Chapter [0] I introduce DiscoVista to create easily interpretable visualizations to compare
different trees (from various studies or using different methods) and to show the amount of
discordance and biases available in phylogenomic data. Using biological datasets, I show
different modules and visualizations of DicoVista.

Phylogenies are widely used in metagenomics analyses, where the goal is exploring
what microorganisms exist in an environment by studying their genetic materials. For example,
microorganisms can be related to some disease and studying microbiome data can enrich
our understanding of such disease [[172]. Machine learning techniques are widely used in
metagenomics analyses to characterize important microbial communities prevalent in different
cohorts, and classifying phenotypes [114} 233 208]].

The accuracy of the ML methods are highly sensitive to the number and distribution
of labels in training data. In microbiome analyses, the number of features is commonly much
larger than the number of training data points, and hence overfitting of the ML methods is a
possibility that can lead to the poor generalization of the model to query samples [43] 46].
When collecting more samples is not feasible, data augmentation techniques have been used to
balance the distribution of training data and ameliorate overfitting [46]. For example, existing
ML methods such as SMOTE [46]] and ADASYN [&89]] are introduced to address issues related
to the unbalanced distribution of labels in the training data, without considering the correlation
between features. In Chapter [/ I introduce a new data augmentation algorithm, called TADA,

that can be used in microbiome analyses to address issues related to limited data size and



imbalanced datasets. My algorithm considers phylogenetic relationships between microbial
units (ideally, organisms), and a statistical generative model to simulate new samples. Using
two biological datasets and traits, and performing different cross-validation experiments |
show TADA can improve the performance of ML methods dramatically. This improvement is
more pronounced, especially when class labels in the training datasets are highly unbalanced.

In summary, I show phylogenetic reconstruction pipelines are highly sensitive to noise
and incongruences omnipresent in genomic data. Moreover, measures for assessing the quality
of inferred phylogenies are either not scalable to large datasets or not well-calibrated. In this
dissertation, I introduce techniques to reduce noise prevalent in the genomic data that can
affect quality of reconstructed phylogenies. Moreover, I present highly scalable methods of
inferring, testing, assessing and visualizing phylogenies. Finally, I consider the application of
phylogenies in machine learning tasks using metagenomic data. Considering the evolutionary
relationship between microbiome features and using a statistical generative procedure, I
introduce a new method of augmenting synthetic samples from available training data. This
method can be used to address issues of limited sample size in machine learning tasks (e.g.,
classification or regression). For all methods I explore in this dissertation, I provide amortized
running time and show their effectiveness in extensive biological and simulated analyses (if

applicable).



Chapter 2

Anchoring quartet-based phylogenetic
distances and applications to species tree

reconstruction

Inferring species trees from gene trees using the coalescent-based summary methods
has been the subject of much attention, yet new scalable and accurate methods are needed. I in-
troduce DISTIQUE, a new statistically consistent summary method for inferring species trees
from gene trees under the coalescent model. I generalize my results to arbitrary phylogenetic
inference problems; I show that two arbitrarily chosen leaves, called anchors, can be used
to estimate relative distances between all other pairs of leaves by inferring relevant quartet
trees. This results in a family of distance-based tree inference methods, with running times
ranging between quadratic to quartic in the number of leaves. I show in simulated studies
that DISTIQUE has comparable accuracy to leading coalescent-based summary methods and

reduced running times.



2.1 Background

The evolutionary histories of species and genes can be discordant [[147], necessitating
a distinction between genes trees and species trees. Incomplete Lineage Sorting (ILS),
modeled by the multi-species coalescent (MSC) model [191]], is one of the main causes of
discordance. A fast approach for estimating the species relationships in the face of such
discordances is to first estimate a gene tree for each gene and to summarize the gene trees
to build a species tree. The summary method, thus, takes as input a set of gene trees and
returns a species tree. A desirable property for a summary method is statistical consistency (a
theoretical guarantee that it converges in probability to the correct species tree as the number
of error-free genes increases). Many statistically consistent summary methods are available
(e.g., ASTRAL [164,[165], BUCKy-population [[125], and MP-EST [[142])), and coalescent-
based species tree estimation is a vibrant field of research, with many recent examples of
successful biological analyses [105} 227, 270] (see [[75} 161} 160, 180, 229] for criticism of
these methods, especially their sensitivity to gene tree error).

Inferring trees using pairwise distances is a well-studied general method of phylo-
genetic reconstruction [37, 164} 206, 263]], and several summary methods are distance-based.
These methods first compute a pairwise distance between species based on input gene trees
and then use a distance method (e.g., neighbor joining [206]]) to build the species tree; exam-
ples of distance-based summary methods are STAR [143], GLASS [169], NJst [[141], and its
new implementation, ASTRID [255].

Another powerful general approach to phylogenetic reconstruction is analyzing quar-
tets, which are subsets of four leaves in a tree. Quartet methods first infer a set of quartet
trees and then combine them to build a tree on the full dataset [237, 164, 223]]. Induced quartet
trees have also been used [[17, 39, 107, 186, 223]] to combine a collection of input trees to

build a so-called supertree [27]. Quartet-based phylogeny estimation has been revived in



recent years [[164, 197, 125,235, [199] because of its connections to coalescent-based analy-
ses [7,153,47]. Under the MSC model, for unrooted species trees with four leaves, the most
likely unrooted gene tree is identical to the species tree [/] (but this is not true for larger
trees [202, 53]]). Furthermore, the length of the internal branch in a quartet species tree (in co-
alescent units) defines the probabilities of the three possible gene tree quartet topologies [S3l].
Some recent and statistically consistent quartet-based species tree estimation methods rely on
these results. For example, ASTRAL seeks the species tree with the maximum number of
quartet trees shared with input gene trees [164} 165].

in this dissertation, I introduce a new coalescent-based summary method, called
DISTIQUE (Distance-based Inference of Species Trees from Induced QUartet Elements).
Like ASTRAL, DISTIQUE is based on quartets, but instead of directly optimizing a quartet
score, it uses quartets to compute pairwise distances, which are then used as input to a distance
method. The innovative aspect of DISTIQUE is its method of calculating distances. It chooses
two arbitrary “anchor” species and computes the frequency of quartet trees induced by gene
trees that include the two anchors as sisters. I show that these frequencies can be transformed
into an asymptotically additive distance matrix; using this matrix with a consistent distance-
based method (e.g., neighbor joining) gives a statistically consistent summary method. This
method would generate a species tree on all species except the two anchors in @(n?k) (for n
species and k gene trees). However, using multiple anchor pairs can increase accuracy and
can ensure all species are included in the final tree. Various strategies for choosing anchors
and combining their results are introduced, with running times ranging between ®(n’k) and
O (n*k).

After describing DISTIQUE, I show that the anchoring approach can be generalized
to any tree inference problem. Assume I have a way to compute the topology and the internal
branch length for any quartet of leaves. I show that as long as this quartet estimator is

consistent, my anchoring mechanism and a certain family of transformations can be used
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to compute an additive distance matrix, which in turn can be used to infer the correct tree
topology but not correct branch lengths. This result is rather surprising because, for any pair
of anchors and a pair of other leaves, the quartet internal branch length will often be very
different from the distance between non-anchor leaves. Thus, anchoring produces incorrect
pairwise distances that are nevertheless additive for the correct tree topology. DISTIQUE
uses anchoring because for the MSC-based species tree inference, pairwise species distances
are not straightforward to define but inferring quartet trees is easy. I evaluate the accuracy
of DISTIQUE on simulated and biological data and show that its accuracy is competitive
with the best alternative methods even when used with relatively small subsets of all possible

anchors.

2.2 Methods

Notation and background: Let £ denote the leaf-set of size n. For an unrooted tree
T on L, the set of quartet trees induced on all possible (Z) quartets of leaves is denoted by
QT. I use ab.cd to denote that a and b are sisters in the quartet tree on {a,b,c,d}. A tree T is
equivalent to a distance matrix D’ , computed by summing lengths of the edges between pairs
of leaves, and a distance matrix that corresponds to a tree is called additive [40]. I refer to the
unique tree [40] associated with the additive distance matrix D as TP or T. Also, T|L and
D|L' denote T and D restricted to the leaf-set £'.

To test for the additivity of a distance matrix D, I can use the four point condition [40].
For a quartet of leaves Q = {a,b,c,d} C L, the median and the maximum of the following
three values should be the same: {D|a,b] + D|[c,d],D|a,c|+ D[b,d|,D[a,d| + D|b,c]}. When
internal branch lengths are assumed positive, as I do throughout this chapter, the minimum
value is strictly smaller than the median. Assuming w.l.0.g. D[a,b] + D|c,d] is the smallest

value, I can infer ab.cd is the topology induced by TP. Let t(Q) > 0 denote the length of the
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single internal branch in this quartet tree, which I call its “quartet length”; i.e., if ab.cd € QT ,

then ©(Q) = $(D[a,c]+ D[b,d] — D[a,b] — D[c,d]).

2.2.1 General theoretical results

Definition 1 (Anchored Distances). Given two positive constants o, 3 and a monotonically
increasing function f(x) bounded above by B for positive x (i.e., 0 < f(x) < B for x > 0), two
“anchor” leaves u,v € L, and a tree T equivalent to distance matrix D with the corresponding

quartet length function t(Q), I define:

B+a.t({a,b,u,v}) abuvg QT

D), la,b] = 2.1)
B—f(x({a,b,u,v})) abuve Q'

D[a,b] = Y D,lab] (2.2)
ucL—{ab,v}

D'lab) = ) Y, D,lab] (2.3)
veL—{a,b} uc L—{a,bv}

/ —

D"[a,b] = max maX(O,M). (2.4)

uyveL—{a,b} o

D', D), and D), are distance matrices on leaf-sets £, £{v}, and £ — {u,v}, respectively,
and are called “all-pairs anchored”, “single anchored”, and “double anchored”. 1 say D),
is induced from D anchored by u,v. D" is called an “all-pairs anchored maximum distance

matrix”’ and is defined on the leaf-set L.

Theorem 1. Let D be an additive distance matrix. A double anchored distance matrix D/,
induced from D’ anchored by arbitrary leaves u,v € L is an additive distance matrix for
the leaf-set L' = £ — {u,v} and corresponds to a tree that is topologically identical to T'|L'.
Similarly, a single anchored distance matrix D/, induced from DT anchored by an arbitrary leaf
and an all-pairs anchored distance matrix D’ induced from D7 are additive distance matrices

for the leaf-sets L — {v} and L, respectively, and correspond to trees that are topologically
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identical to T|L — {v} and T, respectively.

Theorem 2. An All-pairs anchored maximum distance matrix D" induced from additive
matrix D’ is additive and corresponds to a tree with the identical topology and internal branch

lengths to 7'.

Proof of Theorem[l} Let {a,b,c,d} C L be four arbitrary leaves and L' = L — {a,b,c,d}.
W.l.o.g assume ab.cd € Q. 1 prove that the four point conditions hold for this arbitrarily
chosen quartet in D), D, and D’; T also prove that the four point conditions are true for a
tree compatible with the tree 7. Proving these conditions for arbitrary quartets completes the
proof by results of Buneman [40].

I start with the double-anchored matrix. The four point condition can be written in

three ways, but only one of them is compatible with the tree 7. Since I assumed w.l.0.g that

ab.cd € QT, the four point condition compatible with 7 is:

L R1
Dj,la.b]+ Dy [c,d] < Dy [a,d] + Dy, [b,c]
R2

=Dj,la,c]+ D, [b,d].

Proof of Theorem[2} 1 prove that Equation (2.4) returns the sum of internal branch lengths on
the path from a to b on the tree T (I denote this by DaTb). The theorem immediately follows
because a distance matrix compatible with the tree 7 has to be by definition additive and
compatible with it (note that the theorem also claims that D” gives internal branch lengths).
For simplicity, I prove with o0 = 1; extension to other values is simple. If @ and b are not sisters
in T, there exists an anchor pair (u,v) with quartet topology au.bv and t(a,b,u,v) = DT ;
to find such u and v, the following procedure can be followed. Pick u arbitrarily from the
sister group of a after rooting 7 on b and pick v arbitrarily from the sister group of b after

rooting T on a. With this choice, it’s easy to see that t(a,b,u,v) becomes simply the sum
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Figure 2.1: Possible ways of adding anchors to a quartet. Left: All 7 possible placements of
two anchors 1 and v on a given quartet topology ab.cd. Internal branches are labeled with
their length. Right: Placements of a single anchor v on quartet tree ab.cd.

of internal branches between a and b; thus, from the first case of Equation (2.1)), I have
D! [a,b] —B = %“’"’V) +B—B = DI,. Moreover, D), [a,b] — B for two other anchors w,z
cannot be bigger than D, . That is because if ab.wz € QT , then D), [a,b] < B; else, T(a,b,w,z)
will give the length for a subpath from a to b. Thus, the max function in Equation (2.4)) returns
D!, . as desired. When (a,b) are sisters, D!, = 0; also D}, [a,b] < 0 for any (u,v), and thus,
the max function returns D" [a,b] = 0; this is what I want, since for sisters, the length of the

internal branch length is zero. Thus, as desired, Equation (2.4) always returns the length of

the internal branches in the 7" between a and b; this completes the proof. 0

Figure 2.1{shows all ways of placing anchors {u,v} on the quartet tree ab.cd. Anchors
can be sisters, placed on the internal branch (Case 1) or on a tip branch (Case 2; w.l.o.g, |
pick the branch pending to d). When anchors are not sisters, they can be both placed on the
internal branch (Case 3), or one on the internal branch and the other on a tip branch (Case
4), or they can be both on terminal branches, which can be done in three ways: u and v can
be on the same terminal branch (Case 5), on different but adjacent branches (Case 6), or on
non-adjacent branches (Case 7).

In Table 2.1} for each of the seven cases, I compute L, R1,R2. I use Equation (2.1)) to

14



Table 2.1: Four point condition for all 7 cases of adding {u,v} to a quartet tree, as shown in
Figure 2.1] (left side).

L=D,,[a,b]+D,,c,d] D! la,d]+D.,,[b,c] | R2=D),,|a,c]+D.,,[b,d]
Case 1 | P—Fler+es)]+ [B f( 3)] B—f(e3)]
[B—f(e2+e3)] [B—f(e3)] [B—f(e3)]
Case | B—flertertes)+ | [B—fles)l+ [B—fler+es3)+
[B—f(e3)] [B—f(e1+e3)] B—f(e3)]
Case3 | [B—f(en)]+[B—f(es)] | B+oea] +[B+oes] | [B+oae] + [B+ctes]
Case 4 | [B— f(e3)] + B+ o] {Eizg]ﬁrez)]—k %Eizzl-l-ez)}
Cases | BTt T pe)) (Brae] | (B slen)+ B o
Case 6 {Elé((zlz)—]l-—;)] B+ aes] + [P+ o] B+ aez] + [P+ oes)
Case 7 | [B+oer]+ [B+ oes] {Eigz]ﬁ-ez-i-%)]—i- %Eizgzizﬁ%—

derive D), [x,y] values. Where xy.uv is induced by the tree shown in Figure[2.1} Tuse [B— f(1)]
and otherwise I use [+ o], where t = T(x,y,u,v) is the length of the internal branch for
the quartet tree induced by {x,y,u,v}. For example, for Case 1, D), [a,b] = [ — f(e1 +e3)]
because ab.uv is induced by the tree, and the length of the edge on the ab.uv quartet tree
is e] +e3; in Case 7, D), [a,b] = B+ ae; because ab.uv is not induced by the tree and
t(a,b,u,v) =ej.

I need to show that L < R1 and R1 = R2. I remind the reader that all branches are
assumed to be strictly positive and that f is a positive and monotonically increasing function
bounded from above by B. In all cases, the equality of R1 and R2 is immediately clear from
the Table The inequality L < R1 follows directly from the fact that f(x) is monotonically
increasing in Cases 1, 2, and 5. For Case 3, because of positivity of f(x) and a, I have
L < 2B < R. Similarly, for Case 4, L < 2B+ ae; < 2P+ ae; + 20, = R. Case 6 follows

from the positivity of f, and Case 7 is trivially correct for positive branch lengths. Thus, I

15



have shown in all possible relationships between {u, v} and the quartet tree, the four point
condition holds for the topology consistent with tree 7. Therefore, the proof is complete for
the double anchored case.

Now consider the “single anchored” distance matrix D} on the leaf-set L — {v} (for a
single v € L). To prove additivity of the single anchored distance matrix, we need to prove

the following four point condition:

Zu%{a,b}D;v[avb]+Zu¢{c,d}D;v[cvd] <
Yu¢{ad} D@, d] + Xug(apy Dilbsc] =

Zu¢{a,c} D;v [aa C] + Zu@é{b,d} Ditv [bv d]
I divide each sum to terms withu € L' and u ¢ L'

Y. D, la,b]+ D), [c,d]+

ucl’

D\ [a,b] +D£1v la,b] + D, [c,d] +D’bv [c,dl <
b

Y. D, la.d]+D,,[b,c]+

uct’
D}, a,d)+ D, a,d) + D, [b.c] + Dl [b.c] -
R1

Z D;v[aac] +D;v[b7d]+
uct’

Dj,la,c]+ D) la,c] + Dy [b.d] + Dg, [b,d]

R2

For u € L' terms, the sums are exactly those I analyzed for double anchored distances;
thus, the additivity is already proved. Since the sum of two additive distances is additive, it

suffices to prove additivity for u € {a,b,c,d} cases, marked as L, R1, and R2 above.
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A single anchor v can be placed (Fig. either on the internal branch (Case 8) or on

a terminal branch (Case 9) of a quartet tree. I prove L < R1 = R2 for these: In Case 8, I have:

L=[B—f(e)]+[B—fle)]+[B—f(e2)] +[B—fle)]

<4B < [B+oer]+[B+oer]+ [P+ oer] =Rl =R2

and in case 9,

L=2[B+ae]+[B—fle2)] +[B—fle1te2)] <
4B+ 20 — feg +e2) <
[B+owe] +[B—f(e1)] + [B+aer] + [B+aler +e2)]

=R1 =R2.

Note that the four point condition proved above is for the topology that corresponds to the
tree T. The proof for single-anchored distances follows from additivity of sum of additive

matrices.

I now prove the additivity for the all-pairs matrix. Equation (2.3) has three types of
terms: {u,v}N{a,b,c,d} may have (I) both anchors, (IT) one anchor, or (III) none. The four
point condition can be written:

1 11
/ / /
2Dab[c7d] + Z Z Duv[“’b] + Z Duv[cvd] +
veLlue{cd} uc{a,b}
yass

Y. Dlyla.b]+ D, e.d] <

uyver

2D;d[bvc]+z Z Diw[avd]"" Z D;w[bﬂ,‘]-‘r
veLl ue{b.c} uef{a,d}

Z D;ll’ [a7 d} + D;l\’ [b" C] =

uyverl

20, [bdl+ Y, Y, Dilac+ Y, Dilb.d+
veLl ue{bd} uefa,c}

Y Dila.cl+D[b.d)

uyver
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For terms of type (III) and (I), the additivity is already proved in double and single anchored
cases, respectively. Thus, I need to prove additivity only for terms of type (I), which have no

anchors. Let x = t(a, b, c,d).

2D)ple,d] =2[B— f(x)] <2B < 2[B+owx] =

2D;d[bvc] = 2D;c[b’d]

Thus, for all three types, the four point conditions hold for the topology found in 7. Proof

follows from the fact that the sum of additive terms is additive. ]

Theorem [2is similar to a result given by Brodal et al. [36]], and is easy to prove. The
basic idea is that for any two non-sister leaves {a, b}, there is a pair of anchors such that in
the resulting quartet, a and b are not sisters, and the quartet length is exactly the same as
the distance between the two leaves minus their terminal branches. I note that similar to us,
Brodal et al. use the concept of anchors, but instead of using anchors to define distances,
they use anchors to efficiently build Buneman trees from given distances. Thus, despite some
parallels, my anchoring mechanism is novel; In particular, Brodal et al. do not prove my
surprising result that a single arbitrarily chosen pair of anchors gives additive distances for
the correct topology.

Theorem [I] states anchored distances induced from an additive matrix will correspond
to the same topology as the initial matrix (albeit with wrong branch lengths). This result is
surprising, but its usefulness might be less clear. Theorem |I|enables new estimators of the
tree topology that rely on quartets to compute pairwise distances. Let D denote the input
data to be used for inferring a phylogeny. Regardless of the nature of D, I require having a
quartet estimator. A quartet estimator is a function that given a quartet of leaves Q, uses D to
estimate the quartet tree topology and the quartet length t(Q), and is statistically consistent

if, as the size of D increases, the estimated quartet topology and length both converge in
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probability to correct values. Statistically consistent quartet estimators can be designed for
various models (e.g., sequence evolution [234] and the MSC [7, 53]]).

Given a statistically consistent quartet estimator, a family of statistically consistent
tree inference algorithms can be designed (Algorithm[I). See Section for details and
proofs. The basic idea is the following. I can use the quartet estimator to infer a distance
matrix that asymptotically can be made arbitrarily close to an additive distance matrix for the
true tree topology. Using a method such as neighbor-joining that infers the correct tree for

additive distance matrices with a safety radius will give a consistent estimator of the tree [16].

2.2.2 Tree inference algorithms

Let D denote the input data (e.g., for a summary method, the set of input gene trees,

G, was the input data). Regardless of the nature of D, I require having a quartet estimator:

Definition 2 (Quartet estimator). A quartet estimator 87 (¢) is a function that given a quartet
of leaves t = {a,b,c,d}, uses D to estimate the quartet tree topology and the quartet length
T(¢). A quartet estimator is statistically consistent if, as the size of 9 increases, the estimated

quartet topology and length both converge in probability to correct values.

Given a consistent quartet estimator 67(.), Theorems 1 and 2 define a family of
statistically consistent phylogenetic reconstruction methods that range in running time between
©(n?) and ®(n*). Algorithm [1]shows general forms of these algorithms. All-pairs and all-
pairs-max, which are the simplest methods in this family, use equations and to
compute the distance matrix. They then compute the tree using neighbor joining [206} 238 [16]]

(but any consistent distance method with a safety radius [16] could be used).

Theorem 3. All-pairs and all-pairs-max phylogenetic reconstruction methods shown in

Algorithm (1| are statistically consistent.
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Algorithm 1 Anchored quartet-based algorithms. 87 (¢) is a quartet estimator and returns the
quartet topology and length t(¢). ot and [ are constants, and f(x) is a monotonically increasing
function bounded above by B for positive x (i.e., 0 < f(x) < B for x > 0). Anchors(.) uses
some strategy to select a subset of all possible anchor pairs.

function ANCHORS(L) function ALL-PAIRS(D)
return a set of anchor pairs D'+ 0,xn
function D/, (a,b) for {u,v} C L do
(t,d) < 0% (a,b,u,v) D’<—[_)’—|-D’(u,)/)
if t = ab.uv then return § — f(d) return NeighborJ(D')
else return + o.d function DISTANCE-SUM(D)
function D/ (u,v) g‘/[ <1 Anchors(£) d
D:w < Op—2xn—2 or g/;,’v} Cﬂ/[ I;:/ ors(L) do
for {a,b} C L—{u,v} do « [M,D'(u,v)]
D! la,b] < D, (a,b) DS <+ average(M)
return D), , return NeighborJ(DS)
function ALL-PAIRS-MAX(D) function TREE-SUM(D)
D" < 0,xn T =
for {a,b} C L do for {u,v} C Anchors(L) do
for {u,v} C L—{a,b} do T « [T ,NeighborJ(D'(u,v)]
if D"[a,b] < D,,,(a,b) then return SuperTree(T)
D"[a,b] + D, (a,b)
return NeighborJ(D")

Proof (sketch). Since 6@(.) is assumed statically consistent, in limit, it will return the correct
quartet topology with arbitrarily high probability, and its estimates of quartet lengths can be
made arbitrarily close to true values with any desired probability. From this and Theorems
1 and 2, it follows that distance matrices used in AllPairs and AllPairsMax are arbitrarily
close to additive, with high probability. The proof follows from the statistical consistency of

neighbor joining for distance matrices that are within a safety radius of additivity [16]. [

Algorithms Distance-sum and Tree-sum use a subset of all (g) anchors, combining the
results from multiple anchors using methods I described in Section [2.2.6] Both distance-sum
and tree-sum methods first select m pairs of anchors with a criterion of choice (e.g., those
mentioned for DISTIQUE in Section [2.2.6|and detailed in Algorithm [5]). For each anchor pair
{u,v}, a double anchored distance matrix on £ — {u,v} is computed. Tree-sum computes

m trees, each on n — 2 leaves using neighbor joining [206]], and then combines the m trees

20



using a supertree method (e.g., SuperFine [244]] or MRL [174]). Distance-sum combines
distance matrices by averaging them, ignoring missing values. I have not been able to prove
consistency for the distance-sum strategy, but tree-sum can be proved consistent with an
appropriate choice of the supertree method. Recall a compatibility supertree refines all its
inputs in the output when the input trees are compatible. I define a set of trees complete if

every quartet of leaves appears in at least one tree.

Theorem 4. The tree-sum phylogenetic reconstruction method shown in Algorithm (1] is
statistically consistent if used with a compatibility supertree and when the anchor selection

generates a complete set of m trees.

Proof. By Theorem 1 and arguments similar to those used for Theorem 3] each tree 7 ... T,
on n — 2 leaves is a statistically consistent estimate; thus, for any € < 1, there is a dataset size
such that each T; is correct with probability 1 —¢’. Taking the largest of these dataset sizes,
with probability at least (1 —€)™, every T; is correct. By setting &’ < 1—(1— e)% I argue that
for any &, there is a dataset size where all 7;s are correct with probability at least 1 —€. By
Lemma 2] the use of a compatibility supertree method and the completeness of m binary and

correct trees guarantee that the supertree is the correct tree. [

Combining these algorithms with my approaches for dealing with long branches (i.e.,
the use of a consensus tree) results in a somewhat more complicated algorithm. Algorithm
shows the detailed steps for my default distance-sum approach.

A note on branch lengths: Anchored distances (when computed exactly) set the
length of terminal branches to zero. A constant can be added to all distances for inference
methods that expect non-zero terminal lengths. AllPairsMax returns statistically consistent
estimates of internal branch lengths, but branch lengths from my other methods should be

ignored.
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2.2.3 DISTIQUE (theory)

Problem statement: Given an input dataset G of a collection of k unrooted gene
trees, I seek to find the unrooted species tree topology, assuming gene trees are generated by
the MSC model [191]].

Next, I first describe anchored distances based on the MSC model used in DISTIQUE.
I then describe the algorithmic design of DISTIQUE, including its strategies for selecting

anchors, combining results from multiple anchors, and dealing with long branches.

Definition 3 (MSC-based anchored distances). Let p(ab.uv) denote the true probability of
observing the quartet topology ab.uv in gene trees generated according to the MSC model. 1
define MSC-based double, single, and all-pairs anchored distance matrices D} ,, D}, and D*,

u,ve

respectively on leaf-sets £ — {u,v}, L —{v} and L as:

D, ,la,b] = —Inp(ab.uv) (2.5)

Dila,b)= Y  —Inp(abuv) (2.6)
uceL—{a,b,v}

D¥la,b]= ) Y, —Inp(abuv) (2.7)

veL—{a,b} uc L—{a,bv}

Lemma 1. For species tree estimation under the MSC model, Equation (2.1) simplifies to
Equation (2.3) for B =1In3, o= 1, and f(x) = In(3 —2¢™*). Thus D), [a,b] = D}, |a,b] =

—Inp(ab.uv).

Theorem 5. Given true quartet probabilities p(ab.uv), D}, D}, and D* become additive
distance matrices that correspond to the true species tree topology on leaf-sets £ — {u, v},

L —{v}, and L, respectively.

From Lemma (1} it follows that Equation (2.5)) is a special case of Equation (2.1));

Theorem [5|follows directly from Theorem I}
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It may be surprising that Dj,,, which is a special case of D,,,, depends only on quartet
topologies and not branch lengths. To see why, readers should recall that p is the quart
frequency in gene trees, and relates to both the quartet topology and the quartet length in the
species tree.

True quartet probabilities are not known. Instead, I empirically use p(ab.uv) = 1 |{t:
Glab.uv € Q'}|. Empirical frequencies inferred from gene trees converge in probability to

true values as the number of genes increases; thus, it is easy to show (proof omitted):

Corollary 6. D, D}, and D* computed using empirical frequencies in a random sample
of error-free gene trees converge in probability to an arbitrarily small radius of an additive
matrix identical in topology to the true species tree; a consistent distance method with a safety

radius [16] run on these matrices is a consistent estimator of the species tree topology.

Computing anchored matrices require ®(n’k), ®(n’k), and @ (n*k) time, respectively

for D*

e Dy, and D*. Among these matrices, only D* includes all species.

2.2.4 DISTIQUE (algorithmic design)

DISTIQUE uses double anchored matrices, which can be each computed in ®(n’k).
It uses multiple anchors and combines the trees or matrices produced by different anchors.
A careful selection of anchors can ensure the final DISTIQUE tree includes all species, and
can control its running time between @(n’k) and ®(n*k). Before presenting my anchoring

strategy, I first need to show how DISTIQUE deals with long branches.

Long branches: smoothing and consensus

Smoothing: For species tree branches that are even moderately long, expected fre-
quencies of alternative quartet topologies become exceedingly close to zero. For example, a

species tree quartet length of 12 in coalescent units [S6]] results in a 99.6% chance of observing
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leaf-set X

b U1

Figure 2.2: An example where long branches can cause problems. See section 2.3 for
descriptions.

no discordance among 1000 genes. Thus, my simple empirical frequency estimator p can
easily be equal to zero, resulting in distances of infinity (Eq.[2.5)). To avoid this problem, I
use Krichevsky-Trofimov [[116] (i.e., add-half estimator), which adds a pseudo-count of 0.5
for each of three possible quartet topologies. This estimator has been shown to reach the

min-max cumulative loss for KL divergence asymptotically [116].

2.2.5 Computing pseudo-counts for allpairs-max

In allpairs-max methods, in case of zero frequencies for some quartet topologies,
without changing the definition of the pseudo-count, the relative information about quartets
would be lost. For example, assume I have topology ab.cz with long internal branch length,
like 16 as mentioned, and ab.dz with internal branch length of 20 (longer than the previous

length), and no sample for none of the topologies that contradict the species tree. In this case,
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0.5

i3 where n

the distance between a, and c is equal to the distance of a, and d which is In
is the number of samples. So the relative information is lost. In order to avoid this problem,
the definition of pseudo count in allpairs-max is slightly changed. In order to have a pseudo

count that could capture the relative distances, first, the number of zero quartet topologies are

counted. This is called ngb. The pseudo count, in this case, is defined as:

0.5

1 2.
ngki—l—l.S (2.8)

Where 0.5 comes from my add half estimator, is probability of zero frequencies, and k; is the

number of samples for quartet topology of i.

2.2.6 Difficulties with long branches and need for majority consensus

In this section, I will explain a problematic case that leads us to use a majority
consensus. Figure shows an unrooted species tree, with many long branches, with length
L. I assume L is long enough that for my given number of gene trees, with high probability,
all gene trees will be topologically identical to the species tree. Note that for any number
of genes, there are branches long enough where discordance is highly unlikely (I give one
example below). Thus, I assume that for branches of length L, I have zero quartet trees that
conflict with them.

In my example, the distance of a to ¢ is L and a to b is 3L (note that in my analyses, |
only calculate branch length for internal branches). I will show that all-pairs can be misled to
give a smaller distance for a to b than a to c.

Recall The definition of distance matrices:

B+oa.t(a,b,u,v) abuv¢ QT
Dl [a,b] = (2.9)

B— f(t(a,b,u,v)) abuvec QT
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Djla,bl= Y  Djlab] (2.10)

ucL—{a,b,v}
D'la,b)= Y Diabl= Y  Dlabl (2.11)
veL—{a,b} uyveL—{ab}
/ J—
D"la,b] = max max(O,M). (2.12)
uyveL—{a,b} (0]

Also recall that for coalescent-based analyses, B =In3, o =1, f(x) = In(3 —2¢7*), and with

my use of add-half smoothing, Equation 2.9]simplifies to

freq(ab.uv) +0.5
n+1.5

D!, la,b] = —Inp(ab.uv) = —In( ) (2.13)

where n is the number of genes, and freq(ab.uv) is the number of genes with induced quartet
topology ab.uv. Using Equations and and considering all selections of anchors u

and v, I have

o= () (1) - (4 Y2t (i
0.5 )

+1.5

~=3(X|+2)In(
(2.14)

The first term comes from choosing one anchor from {u;,us,u3}, and choosing the other
anchors from {c}UX. In these cases, a and b are further from each other than the anchors,
and because of my assumption about L, the frequency of ab.uv is expected to be zero. The
second term comes from choosing both anchors from {c} UX; for these, the frequency of
ab.uv is expected to be n. Finally, the last term comes from choosing both anchors from the
set {uy,uz,us}, where once again, the expected frequency of ab.uv is zero for long enough L,

leading to the use of the pseudo count. For large enough n, I can approximate In (Zi(l)g) ~ 0.
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The same thing could be written for a and c:

== () (V) iz - () w605 ()65
0.5
n+1.5)

(2.15)
~—4(|X])In(

The first term comes from choosing an anchor from of the {u;,us,us,b}, and the other anchor
from X; here, for long enough L, frequency of ab.uv would be expected to be zero. The second
term comes from choosing both anchors from X, and the last term comes from choosing both
anchors from {uy,u;,u3,b}; in these cases I expect the frequency of ab.uv to be n.

Comparing the Equations and for |X| > 2, the distance between a and b
would be smaller than the distance between a and c. This clearly is in contradiction to my
tree, so DISTIQUE without the use of majority consensus, in this case, becomes misleading.
However, note that all branches with length L are assumed to generate no discordance, and
thus will be in the final tree.

Large L: Assume that L = 16 (in coalescent units) and I have 1000 gene trees. The
probability of having only topologies that agree with the species tree in all 1000 gene trees is
(1—2/3¢716)1000 — 0.99993. Thus, I expect all n gene trees to have that topology with very
high probability. The probability of having only the species tree topology for branches of
length 2L and 3L is even larger.

Consensus: Smoothing does not fix the larger problem of distinguishing between
long distances. For example, branches of length 12, 24, or 48 are all very likely to result in no
gene tree discordance given 1000 genes; thus, even with smoothing, it remains impossible
to distinguish between branches with these very different distances. This limitation makes
it impossible to compute distances that reflect the true topology from limited data when the
species tree includes adjacent long branches (resembling the saturation problem in phylogenet-

ics [106]). I can construct examples when all gene trees are likely identical, yet my smoothed
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distances are misleading (Section Fig.[2.2). However, long branches are easy to recover
because they appear in most gene trees. A simple majority rule (50%) consensus of gene trees
would return all long branches. Thus, I simply compute the majority consensus and resolve its
polytomies using DISTIQUE (Algorithms [2]and [3). Because the majority consensus is proved
not positively misleading under the MSC [54]], my method remains statistically consistent.
To resolve a polytomy, Algorithm 2] first assigns a cluster label to each branch pendant
to it, and then builds a tree using DISTIQUE with the cluster labels as leaves; this tree defines
a resolution of the polytomy. Given anchor species u, v from two distinct clusters, I compute
distances between other pairs of clusters A and B using Equation (2.5), defining the quartet
frequencies as: p(uv.AB) = m Y uca Ypep P(uv.ab). When all clusters in the consensus tree

are correct (expected asymptotically), p(uv.ab) values are identical; thus, all p(uv.ab) values

are empirical estimates of the same true value, and using their average is justified.

Choosing anchors

Algorithm [5|shows DISTIQUEs targeted sampling strategy for choosing a subset of
all possible anchor pairs. Let d; ...d, denote the degree of polytomies in the consensus tree,
indexed arbitrarily. For each polytomy i, I randomly partition its d; clusters into sets of size
two; if d; 1s odd, I randomly choose a cluster and pair it with the remaining cluster. Then, I
randomly choose one species from each cluster. This produces [%} pairs of anchors for each
polytomy i. The total number of anchors is m =Y} (%W = O(n) (Lemma . Each anchor
pair is used to resolve all polytomies on the path between them in the consensus tree. This
processes may be repeated several rounds (a user-specified input parameter).

Polytomies of degree 4 or 5 cannot be handled using the double anchored approach
because once two clusters are chosen as anchors, only two or three clusters remain which
cannot be resolved as unrooted trees. For these small polytomies, I always use all-pairs

distance matrices; thus, I choose all (g) or (;) possible pairs of clusters around the polytomy.
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I need O(n) anchors in this scenario as well (Lemma 3)).

Lemma 2. Given m species trees, each on n — 2 leaves and assuming the set of m trees is
complete, and each tree is binary and correct, a compatibility supertree generates the correct

tree.

Proof of Lemma 2] Imagine I didn’t and the supertree had a wrong internal branch. For every
quartet defined around that branch (selecting a leaf from each of the four sides around the
branch), by completeness, there is a tree 7; that has that quartet, and because 7; is correct and
binary, that quartet should be resolved correctly. Since I can argue this for all quartets around
the wrong branch, I get a contradiction where the branch is wrong but all quartets around
it are correct. Moreover, since my m trees are binary and complete, the supertree is binary.
Imagine it wasn’t and take an unresolved quartet around its polytomy; by completeness, that
quartet is at least in one 7;. Thus, the supertree does not refine input tree 7;, contradicting the
compatibility supertree requirement. Since the supertree has no wrong edges and is binary, it

is the correct tree. ]

Lemma 3. Given a species tree not necessarily fully resolved with n leaves, anchor-sampling

strategy in Algorithm 5] yeilds at most O(n) anchors per each round of anchor sampling.

Proof of Lemma[3] We have two types of polytomies; a polytomy is short if its degree is
smaller than 5, and otherwise it is called a large polytomy. My anchoring strategy is that
per each round of sampling I have [%] number of samples for a large polytomy, 6 samples
for a polytomy of degree d; = 4, and 10 anchors for a polytomy of degree d; = 5. Note that
a species has at most n — 2 internal nodes, n — 3 internal branches and n terminal (trivial)

branches. Also, each internal branch might be adjacent to at most two polytomies.

on

di<2x(n—3)4+n=3n—6, (2.16)

i=1
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where m is the number of internal nodes. In one extreme, let’s consider the case where all the
polytomies are large; then, the number of anchors required per each round of anchor sampling
is
m m
#anchors = Z Z ; <3n— 2.17)
i=1 i=1
which is clearly O(n). Now let’s assume that all the polytomies are small. The species tree

has at most n — 3 internal branches which might be in at most two small polytomies. So |

might have at most 2(n — 3) small polytomies, then
#anchors =2(n—3) x 10 (2.18)

where 10 in above equation is the maximum number of required samples for a short polytomy.
Finally, I might have a combination of small polytomies, and large polytomies and the number
of required anchors is at most sum of required anchors from Equations[2.17] and [2.18] which

is clearly O(n). O

Combining anchors

Once m anchor pairs are selected, DISTIQUE computes m double-anchored matrices
and then combines them using one of two methods.

Tree-sum: We first compute m trees, each on n — 2 leaves using the double anchored
method (Corollary [6) and then combine these m trees using a supertree method. Using a
compatibility supertree (1.e., one that given a set of compatible input trees, outputs a tree
that refines all input trees) would make the approach statistically consistent (Theorem [}
SOM). I also use the following approach to filter out outlier anchors. I compute an initial
supertree from m anchored trees, then find the RF distance between m trees and the supertree,
remove those with an RF distance at least two standard deviations larger than the mean, and

recompute the supertree.
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Distance-sum: The distance-sum approach creates a summary distance matrix and
runs neighbor joining on the summary matrix. The summary distance is simply the average
distance of each pair in the set of m double anchored matrices. Note that some of the m double
anchored matrices might not have a value for a given pair of leaves; I treat those as missing
values and ignore them when averaging values. The presence of missing values jeopardizes
my proofs of statistical consistency.

Let D}, and D;, be two double anchored matrices produced using two disjoint pairs
of anchors. If the two matrices are reduced to the n — 4 leaves common between them
(i.e., L' = L —{u,v,w,z}), I get two matrices that asymptotically converge to an additive
matrix for the same tree topology (Corollary [6)). The sum of two additive distance matrices
that correspond to the same tree topology is also additive for the same topology. Thus,
D;,|L'+ D} |L" is asymptotically additive for the correct species tree. This provides a
theoretical justification for my distance-sum approach. However, distances between four
anchors and other leaves are missing in one of the matrices, and thus, their correct placement
cannot be guaranteed.

If all (’2’) anchors are used, the distance-sum approach becomes equivalent to the
all-pairs approach and is provably statistically consistent (Theorem [5). On the other hand,
using only two pairs of anchors makes the placement of anchors dependent on averages of two
numbers, one of which is missing, a clearly problematic scenario. Choosing an intermediate
number of anchors, while insufficient for giving proofs of consistency, clearly reduces the
impact of missing values. For example, assume I have m anchors and each species is included
in at most only one of those anchors. The summary distance between each pair of leaves
becomes an average of m values, among which at most one may be missing. For large enough
m, I conjecture that the impact of that single missing value is negligible. In the results section,
I provide empirical evidence for this conjecture, but future work should explore theoretical

proofs. Due to its superior empirical performance, distance-sum is used by default in the
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DISTIQUE (see Algorithm [2|for all details).

Running time analysis:

Using all-pairs or all-pairs-max clearly require ®(n*k) time to build the distance
matrix and using the default O(n?) neighbor joining algorithm [238] would result in ®(n*k)
total running time. The running times of tree-sum and distance-sum depend on the selection
of anchors, and also the exact distance method and supertree method used. Building each
double anchored distance matrix requires @ (n?k); thus, building m matrices requires @ (n’mk).
Using a fast neighbor joining algorithm (e.g., FNJ [62], or NINJA [263]]), the running time
of distance method can be O(n?). Clearly, any function between ®(n’k) and ®(n*k) can be
obtained by adjusting m. DISTIQUE’s default strategy requires O(n) anchors and therefore
results in O(n’k) total running time. For the tree-sum approach, the running time of the
supertree method needs to be also added. MRL, which I use here, doesn’t have running time

guarantees, but ML methods tend to have average running time close to O(n?) [188].

2.2.7 Experimental setup

I use simulated and real datasets to evaluate the accuracy and scalability of DISTIQUE.
I measure species tree accuracy using False Negative (FN) rate, which is equivalent to

normalized RF distance [134] here because all estimated species trees are fully resolved.

Datasets

For biological analyses, I re-analyzed a dataset of 2022 supergene trees from an avian
dataset [[161, [105]]. I also use three sets of simulated datasets I used before: a 37-taxon
mammalian dataset [[160], a 45-taxon avian dataset [161], and datasets used for evaluating
ASTRAL-II [165]. The first two datasets are based on biological data and have a single

species tree topology, whereas the last dataset is simulated using SimPhy [[149] and has a

33



Table 2.3: Empirical statistics of simulated Avian and Mammalian datasets. Model condition
2X corresponds to the case where ILS is reduced by increasing the branch lengths (2 times
longer), and 0.5X represents the case where ILS is increased by reducing the branch lengths
(2 times shorter). In the same way, the model condition with 0.2X corresponds to the case
where ILS is reduced by dividing the branch lengths by five. Average Robinso-Foulds (RF)
distances between true gene trees and the model species tree are provided in AD fo species
tree. # gene trees shows the number of gene trees that are available for the corresponding
dataset and ILS. #base pairs represents the number of base pairs, and # replicates shows the
number of replicates for the corresponding dataset and ILS. In column Ref., the reference
paper for each dataset is provided. For the Mammalian with ILS level 0.2X, # replicates 5
and 10 are for the model conditions where # gene trees is 3200, and 1600 respectively. Also
for the Avian dataset with ILS level 1X, # replicates 10 is only for the model condition with
# gene trees 2000.

ILS A.D to # gene trees | # base pairs | # replicates | Ref.
species tree
2X 18% 200 500,true 20 [160]
Mammalian 1X 32% 200 500,,true 20 [160]
0.5X 54% 200 500,true 20 [160]
0.2X 79% 81)%(3 288:;1;)(())0 500’true 5,10,20 [160]
2X 35% 1000 500,true 20 [161]
Avian 1X w795 | 200300, 1000, 1 56 e 10,20 | [161]
2000

0.5X 59% 1000 500,true 20 [161]
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different species tree per replicate and has heterogeneous parameters. Avian and mammalian
datasets enable us to evaluate performance for relatively small numbers of species, varying
ILS and the number of genes. The amount of ILS is changed by multiplying or dividing
branch lengths by 2 or 5; shorter branches (0.2X and 0.5X) produce more ILS and longer
branches reduce ILS (Table[2.3)). I create two collections for these datasets, one where I fix
the number of genes (200 for mammalian and 1000 for avian) and vary the amount of ILS,
and a second collection, where I fix the amount of ILS (to very high or 0.2X for mammalian
and default 1X for avian) and vary the number of genes (200 to 3200 for mammalian and
200 to 2000 for avian). The simPhy dataset [[165] has two collections, and is simulated to
capture the range of reasonable biological datasets. In the simPhy-ILS collection, I fix the
number of species to 201 and show three levels of ILS, ranging from moderate (10 million
generations) to very high (500K generations), and for each case, I vary the number of genes
(50, 200, 1000). For each case, I have 100 replicates, half with a speciation rate of 10-% and
the other half with 10~7. In the simPhy-size, I fix ILS to moderate and speciation rate to

1075, and change the number of species from 10 to 500, with 50 replicates per dataset.

Methods

I compare various versions of DISTIQUE, described below, against each other, and
against ASTRAL-II [165], which is a quartet-based method, the ASTRID [255] (a new
implementation of the NJst algorithm [[141]), which is a distance-based method, and concate-
nation using RAXML [232] (CA-ML). ASTRAL and NJst are statistically consistent summary
methods and, like DISTIQUE, work on unrooted gene trees and species trees (most other
approaches such as MP-EST and STAR need rooted input). Also, these two are among the
most accurate summary methods [[165, 164} 255, 141} 220].

DISTIQUE: I explore variants of DISTIQUE, changing the distance matrix (com-

paring all-pairs, all-pairs-max, tree-sum, and distance-sum; see Algorithm , the number of
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anchoring rounds (2 to 8), and the use of consensus. To compare to other methods, I use the
default distance-sum DISTIQUE (Algorithm 2, with 2 or 8 rounds of anchoring. DISTIQUE
is implemented in python and uses the Dendropy library [242]] and uses the FastME [128]] as

its distance method (but I also tested PhyD* [49]).

2.3 Results

2.3.1 Comparison between DISTIQUE variants

I start by comparing all-pairs and all-pairs-max variants, each applied to either the
entire set of species or to polytomies of a 50% majority rule consensus (default), limiting my
study to the 37-taxon and 45-taxon avian and mammalian datasets where @ (n*k) methods
could run. On both datasets, a surprising pattern emerges. Without the use of consensus,
the error unexpectedly goes up with decreased ILS, a pattern that is more pronounced for
all-pairs-max (Figs. [2.3]and [2.4). As discussed before, I attribute this pattern to difficulties of
estimating long quartet lengths. When consensus is used within DISTIQUE, the accuracy
improves with decreased ILS, as expected (Figs. [2.3]and [2.4)). Depending on the level of ILS,
the consensus tree is unresolved for 25% to 95% of branches, leaving much to DISTIQUE
to resolve. Overall, all-pairs methods has better accuracy than all-pairs-max, a result that |
do not find surprising. Based on these results, hereafter, I only show results for DISTIQUE
applied to a majority consensus, and I omit all-pairs-max.

I compared the three algorithms, all-pairs, tree-sum, and distance-sum (the last two
with eight rounds of anchor sampling), and observed that the distance-sum is competitive
with all-pairs and outperforms tree-sum (Table 2.4)). The difference between all-pairs and
distance-sum was never more than 1%.

Distance-sum consistently outperformed tree-sum, by as much as 4% in some cases,
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Figure 2.3: Accuracy of different implementations of DISTIQUE for the Mammalian
dataset. This figure compares four versions of DISTIQUE: all-pairs-max on the consensus
(AMD-Cons.), all-pairs on the consensus (AAD-Cons.), all-pairs-max on the full dataset
(AMD-ALL), all-pairs on the full dataset (AAD-ALL). I also show the FN rate of the
unresolved consensus tree (black dashed line). (top) number of genes: 200, varying ILS;
(below) ILS: 0.2X, varying number fo genes. Mean and standard error of species tree error
is shown for true and estimated gene trees (500bp alignments). With very high ILS (0.2X),
the accuracy for all of the implementations of DISTIQUE are close. As ILS decreases, when
DISTIQUE is applied to the entire dataset, the error goes up, which is more pronounced
for all-pairs-max. I attribute this pattern to difficulties of estimating long quartet lengths.
When DISTIQUE is used to resolve polytomies in the consensus tree, the accuracy improves
with decreased ILS, as expected. Note that even with reduced ILS, the consensus tree on
estimated gene trees misses more than 25% of branches, and leaves some polytomies for
DISTIQUE to resolve.
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Figure 2.4: Accuracy of different implementations of DISTIQUE for the Avian dataset.
This figure compares four versions of DISTIUQE on the Avian dataset. Method labels are as
in Fig.[2.3] (top) number of genes: 1000, varying ILS; (below) ILS: 1X, varying number of
genes. Mean and standard error of species tree error is shown for true and estimated gene
trees (500bp alignments). Note that even with reduced ILS, the consensus tree misses more
than 30% of branches, and leaves some polytomies for DISTIQUE to resolve.
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Table 2.4: DISTIQUE variants on simulated datasets. Distance-sum and tree-sum are both
based on 8 rounds. For simPhy-size, all-pairs could not finish given two days of running
time for more than 100 species. Where there is at least 1% difference between methods, the
best method is shown in bold.

Dataset #genes | all-pairs tree-sum distance-sum
avian-0.5X 1000 0.10 0.11 0.11
avian-1X 1000 0.08 0.09 0.08
avian-2X 1000 0.05 0.08 0.06
mammalian-0.2X 200 0.11 0.13 0.11
mammalian-0.5X 200 0.06 0.12 0.07
mammalian-1X 200 0.04 0.08 0.04
mammalian-2X 200 0.02 0.04 0.02
simphySize-10 50 0.03 0.03 0.03

simphySize-10 200 0.02 0.02 0.02
simphySize-10 1000 | 0.02 0.02 0.02

simphySize-50 50 0.07 0.10 0.07
simphySize-50 200 0.04 0.07 0.04
simphySize-50 1000 | 0.03 0.04 0.04
simphySize-100 50 0.08 0.11 0.08
simphySize-100 200 0.05 0.06 0.05
simphySize-100 1000 | 0.03 0.05 0.04
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Figure 2.5: Impact of number of rounds of anchor sampling on accuracy. Dataset: Avian
simulated dataset with (top) 1000 genes and varying ILS, and (bottom) 1X ILS and varying
numbers of genes. The accuracy of DISTIQUE in its ®(n*) allPairs version is compared
against O(n*) double anchored with m = O(n) anchors and both tree-sum and distance-sum
strategies of combining multiple anchors with various numbers of rounds of sampling. For
tree-sum 2 rounds of sampling is somewhat better than one round, but beyond 2 rounds,
little improvements are observed. For distance-sum, further improvements are observed as
the number of rounds increases, but four rounds seems to give a reasonably good estimate
without increasing the number of sampling rounds too much.
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Figure 2.6: Impact of number of rounds of anchor sampling on accuracy. Dataset: Mam-
malian simulated dataset with (top) 200 genes and varying ILS, and (bottom) 0.2X ILS
and varying numbers of genes. The accuracy of DISTIQUE in its ®(n*) allPairs version is
compared against O(n?) double anchored with m = O(n) anchors and both tree-sum and
distance-sum strategies of combining multiple anchors with various numbers of rounds of
sampling. For tree-sum 2 rounds of sampling is somewhat better than one round, but beyond
2 rounds, little improvements are observed. For distance-sum, further improvements are
observed as the number of rounds increases, but four rounds seems to give a reasonably
good estimate without increasing the number of sampling rounds too much.
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Figure 2.7: Impact of distance method on accuracy. Dataset: Mammalian and aviand
simulated dataset with varying levels of ILS on both true and estimated gene trees. Each bar
graph is over results from different numbers of genes, ranging between 100 and 3200 for
mammalian, and 200 to 2000 for avian. The accuracy of DISTIQUE with various distance
methods is used. Methods used from the FastME suit: BioNJ, Neighbor-Joining, BaIME (-s),
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despite the fact that tree-sum is provably consistent and distance-sum has not been proved
consistent. Thus, I chose to set the default DISTIQUE implementation to distance-sum.

I next evaluated the impact of anchor sampling by changing the number of rounds of
targeted sampling between 1 and 8 on the avian and mammalian datasets (Figs. and [2.6).
The distance-sum method had substantial improvements when going from one to two rounds,
and generally much smaller improvements after that. I show results for both 2 and 8 rounds
when comparing DISTIQUE to other methods.

Finally, I checked the impact of the exact distance method used inside DISTIQUE
(Fig.[2.7)), using a variety of methods implemented inside FastME [128] and PhyD* [49] on
both mammalian and avian datasets. There were substantial variations of accuracy among
distance methods, especially on the avian dataset. PhyD* tended to have more error, and
among methods implemented in FastME, balanced minimum evolution (BME) with SPR

moves had the highest accuracy. I chose this option of FastME in the default DISTIQUE.

2.3.2 DISTIQUE versus other methods

SimPhy-size: On this simulated dataset, I compare running time and tree accuracy
across methods. Generally, all the methods I studied had similar patterns of accuracy on
the simPhy-size dataset, and the mean errors of different methods tended to be within the
standard error of each other (Fig [2.8A). According to a two-way ANOVA test with FDR
correction [23]] for multiple testing (n = 24; see caption of Table with o0 = 0.05, the error
rate of DISTIQUE-8 was statistically indistinguishable from both ASTRAL and ASTRID
(Table 2.5). In the few cases where the differences seemed substantial, for example on
500 species and 1000 genes, ASTRAL tended to be the best, followed by both versions of
DISTIQUE (but there were exceptions; e.g., 50 species and 1000 genes). Unlike the accuracy,
running times of summary methods were quite different (Fig.[2.9). ASTRID was by far the
fastest, followed by DISTIQUE-2 and DISTIQUE-8, and ASTRAL was the slowest. For
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Table 2.5: Two-way ANOVA test with FDR correction. A two-way ANOVA test with
FDR correction for multiple testing (n = 24) with oo = 0.05 was conducted to investigate
statistically significant differences between different methods. Values bellow o = 0.05
(statistically significant values) are shown in bold. Note that column effects of method shows
the p-values of the impact of the choice of methods (DISTIQUE-8 vs method specified
in column method). The column method vs ILS or # species shows p-values of effects of
different levels of ILS (for simPhy-ILS, avian, and mammalian) or different number of
species (for simPhy-size) on the relative errors of DISTIQUE-8 and the other method being
compared (ASTRID or ASTRAL). The last column shows the effects of varying numbers of
gene trees on the relative performance of the methods. FDR correction was applied on all
p-values shown in the table (thus, n = 24).

effects of method vs ILS method vs
dataset method .

method  or # species # gene trees
avian astral 0.904 0.191 0.991
avian astrid 0.004 0.904 0.991
mammalian  astral 0.025 0.904 0.991
mammalian  astrid 0.904 0.226 0.991
simPhy-ILS astral <1e®  0.001 0.039
simPhy-ILS astrid 0.966 0.001 0.904
simPhy-size astral 0.121 0.991 0.991
simPhy-size astrid 0.137 0.991 0.991
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example, with 500 species and 1000 genes, DISTIQUE-2 and DISTIQUE-8 ran in about 1.1
and 2.2 hours, while ASTRAL took 5 hours, and ASTRID took only 7.5 minutes.
SimPhy-ILS: On the simPhy-ILS dataset where the number of species is fixed to 201,
differences between various summary methods were generally small (Fig[2.8B), but overall,
ASTRAL was significantly better than DISTIQUE-8 (p < 0.001). However, DISTIQUE-8

and ASTRID were indistinguishable (Table [2.5). The magnitude of the difference between
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ASTRAL and DISTIQUE-8 significantly depended on the level of ILS (p = 0.001), where
with low or medium ILS levels, the two methods had a similar error, but with increased ILS,
ASTRAL outperformed DISTIQUE; the differences were more pronounced when I had fewer
gene trees (significant: p = 0.039; Table[2.5)).

Avian: On the avian dataset (Fig[2.11]A), ASTRID was generally the best method,
followed by DISTIQUE-8 (which was significantly worse; p = 0.004) and then ASTRAL;
CA-ML was the worst. Differences between ASTRAL and DISTIQUE-8 were not statistically
significant (Table [2.5]). The largest difference between DISTIQUE-8 and the best method was
for 0.5X ILS, where DISTIQUE-8 had 2.9% more error than ASTRID.

Mammalian: On this dataset (Fig ), overall, ASTRAL was the best method,
and was significantly better than DISTIQUE (p = 0.025). DISTIQUE and ASTRID were
overall statistically indistinguishable (Table[2.5)). The relative error of concatenation depended
on the level of ILS, which was much worse than summary methods for high levels of ILS, but

better for low levels of ILS.

2.3.3 Biological results

On the avian dataset, I ran ASTRAL, ASTRID, and DISTIQUE-8 and used both
bootstrapping [214]] and local posterior probability (pp) [210] to quantify branch support
(Figs. [2.12] and 2.13)). Bootstrap support was generally high, but the local pp was low
for many branches. DISTIQUE and ASTRID differed on three branches. Of these, one,
related to the first neoavan split, had high local pp support in ASTRID (0.98) but very
low local pp in DISTIQUE; the remaining conflicts had local pp below 0.58 in both trees.
ASTRAL and DISTIQUE differed in six branches, and all of these had local pp below
0.58 in DISTIQUE, and all but one also had low local pp (< 0.9) in ASTRAL. None of
these conflicting relationships have been well resolved in the literature. Interestingly, many

of conflicting branches with low local pp had high bootstrap support. It can be argued

47



T T T T T T
2X 200 400 800 1600 3200

Number of genes

A) avian avian
0.20
0.15 4
2]
()
2
©
o
E 0.10
0.05
0.00
T T T T T T T
0.5X 1X 2X 200 500 1000 2000
ILS Number of genes
B) mammalian mammalian
0.20
0.15
%]
]
o
Zo.10-
) D‘ E[i [[l M Eli
0.00 -
T T T
0.2X 0.5X 1X
ILS

ZASTHALZASTRID (NJst)-CA—ML-DISTIQUE @ rounds)-DISTIQUE (8 rounds)
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0.2X ILS, due to the large number of gene trees, running concatenation was not feasible.
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Figure 2.12: Species trees generated using DISTIQUE on Avian biological dataset [214].
Branches that are different between the DISTIQUE tree and both ASTRAL and ASTRID
trees are marked in red, while branches that are only different between ASTRAL and
DISTIQUE are marked with blue.

that conflicts are due to uncertainties resulting from insufficient data, but bootstrapping

misleadingly computes high support [210].

2.4 Discussion

I compared three statistically consistent summary methods, ASTRAL, ASTRID, and
DISTIQUE; overall, ASTRAL was at least as good as other methods on most datasets, but
ASTRID was occasionally the best. DISTIQUE was often as good as and never more than 3%

worse than the best method. The choice of the best method depended on the level of ILS and
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Figure 2.13: Species trees generated using ASTRID (NJst) and ASTRAL on Avian biologi-
cal dataset [214]. ASTRAL (left) and ASTRID (right) species trees. The branches that are
different between DISTIQUE species tree and both ASTRAL and ASTRID species trees are
marked with red, while branches that are only different between ASTRAL and DISTIQUE
are marked with blue.

the number of genes, suggesting when the level of ILS is expected to be very high, ASTRAL
might be the best choice. On the other hand, the running time of DISTIQUE grows more
slowly with increased numbers of genes; for datasets with large number of species and tens of
thousands of genes, DISTIQUE and ASTRID provide fast alternatives to ASTRAL.

Despite having strong competition in ASTRAL and ASTRID, I believe DISTIQUE
is a promising approach, for several reasons. Because of its speed, DISTIQUE can be used
for a very fast estimation of species trees, for example, as a starting point for an extensive
hill-climbing search. DISTIQUE can also generate a set of trees instead of a single tree, and
I plan to study whether these sets of trees can be utilized for defining the search space of
ASTRAL.

DISTIQUE is essentially a method for 1) defining distances based on quartets, and 2)
subsampling the space of all ®(n*) quartets. The first aspect of DISTIQUE can be replaced by
improved ways of defining distances, for example those that better handle gene tree estimation
error. Co-estimation of gene trees and the species tree [248] is a computationally challenging

problem in general. However, it is reasonable to think that a similar problem defined on
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quartets, and addressed using distances becomes easier, as some recent theoretical results
suggest [51, [199]. DISTIQUE provides a general way for using anchoring introduced in
this dissertation to implement novel distance-based gene tree species tree co-estimation in
a scalable fashion. Simpler approaches of taking into account gene tree uncertainty, for
example weighting various quartets according to coalescent expectations, might also result
in improvements. Finally, I note that DISTIQUE’s anchoring strategy can be paired with
site-based ILS methods such as SVDQuartets [47]], and more broadly for other tree inference

problems.

2.5 Conclusions

I introduced a general approach for computing tree leaf distances by inferring topolo-
gies and internal branch lengths for quartets of leaves. I used my novel anchoring to design
DISTIQUE, a new statistically consistent summary method for species tree estimation. DIS-
TIQUE has variants, with several strategies for choosing and combining anchors. The default
version of DISTIQUE requires O(nk) running time and is much faster than ASTRAL. In
terms of accuracy, DISTIQUE was nearly as accurate as ASTRAL with differences that were

rarely substantial.
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Algorithm 2 DISTIQUE distance sum algorithm. G is the set of input gene trees. sRnd deter-
mines the number of rounds of sampling anchors. The description of variables are provided
in Table Also the details of functions anchoredFrequencies, distance AroundPolyNodes,
and getClusterAnch are provided in Algorithm

function DISTIQUE-DISTANCE-SUM(G, sRnd)
consTree < consensus(G)
consTree < labelNodes(consTree)
(smallPoly,largePoly, clust Poly) < findPolytomies(conT ree)
polyNodes < smallPoly U largePoly
(anchPairsSmallPoly,allAnchPairs) < sampleAnchors(polyNodes,clustPoly, sRnd)
for all node < largePoly do
for all anchPair € allAnchPairs do
(c1,¢2) < getClusterAnch(anchPair, clust Poly[node))
if c; # ¢, then
(C,D) <—anchoredFrequencies(anchPair, G, clustPoly[node))
(anchDist ,anchNorm) <—distance AroundPolyNode(anchPair,C, D,
clust Poly[node))

totalAnchDist [node] <+ totalAnchDist [node] + anchDist
totalAnchNorm[node| < totalAnchNorm[node| + anchNorm

for all node € smallPoly do
for all anchPair € anchPairsSmallPoly[node] do
(C,D) <—anchoredFrequencies(anchPair, G, clustPoly[node))
anchDist <—distanceAroundPolyNode(anchPair,C, D, clust Poly|node))
totalAnchDist[node| < totalAnchDist [node] + anchDist
totalAnchNorm[node| < totalAnchNorm|node] 4+ anchNorm

for all node < totalAnchDist do
totalAnchDist[node| < totalAnchDist [node| [totalAnchNorm[node]
spTreelnode| < NeighborJ(totalAnchDistnode))

speciesTree <— consTree
for all node € postorderTraverse(speciesTree) do
if node € spTree then
speciesTree <—resolvePoly(speciesTree,spTree[node))

return speciesTree
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Algorithm 3 This algorithm describes details of functions anchoredFrequency, getCluster-
Anch, and distanceAroundPolyNodes used in Algorithm anchoredFrequency returns
frequency of observing quartets of the form cjc;|uv, where ¢, and ¢; are clusters corre-
sponding to chosen anchors around one polytomy. distance AroundPolyNode returns distance
between cluster u, and v. These distances will be used to infer a resolution of polytomy using
phylogeny estimation methods. getClusterAnch determines which clusters anchors belong to.
The extension of this algorithm is provided in Algorithm 4]

function ANCHOREDFREQUENCIES(anchPair, G, clusters)
(c1,¢2) <—getClusterAnch(anchPair, clusters)
C|
D]
for {i, j} € twoSubsets({1,2,...,|clusters|) do
ifie{ci,c2}Vje{ci,c,} then

DIi][j] <0
else
D[i][j] < |clusters[i]| X |clusters[j]| x |G|+ 1.5 > 1.5 is for smoothing by add-half
Cli][j] «+ 0.5 > 0.5 is for smoothing using add-half estimator
for g€ G do

g <—reroot(g, anchPair[0])
node < anchPari[l]
repeat
pre <— node
node <— node.parent
children < node.children
children < children — pre
for k € {1,2,...,|children|} do
Cy <—getTaxaUnderClusters(children[k|, clusters)
for {i, j} € twoSubsets({1,2,...,|clusters|) do
Clil[j] = ClL] + Celi] x Cel ]
if |neighbors| > 2 then
forz € {k+1,...,|children|} do
C, +getTaxaUnderClusters(children|z], clusters)
for {i, j} € twoSubsets({1,2,...,|clusters|) do
Di][j] = DIi)[j] = C:[i] x Gl j] = CLj) x Gel]
until node.parent == anchPair][1]
return (C,D)
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Algorithm 4 Extension of Algorithm

function DISTANCEAROUNDPOLYNODE(anchPair,C, D, clusters)
for {i, j} € twoSubsets({1,2,...,|clusters|) do
if ~(anchPair|0] € clusters|i] or anchPair[1] € clusters|i]) then
if —(anchPair|0] € clusters[j] V anchPair[l] € clusters[j]) then

anchDist i][j] < —n (C[i][j]/DL][j])
anchNormli][j] < 1
anchDist[j)[i] < —1n (C[{][j]/DL][j])
anchNorm/|j][i] < 1

return (anchDist,anchNorm)

function GETCLUSTERANCH( (anchPair,clusters)

c+A{}
foriec {1,2,..., length(clusters)} do
if anchPair|0] € clusters|i] then
¢ < ¢ U clusters|i]

return c
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Algorithm 5 Sample anchors algorithm. The variable polyNodes contains the polytomies
in the tree, and clustPoly contains labeled nodes around each polytomy and the list of taxa
under each cluster. Also the variable sRnd determines the number of sampling rounds around
each polytomy.

function SAMPLEANCHORS(polyNodes, clust Poly, sRnd)
allAnchors <+ ||
for all node € polyNodes do
clusters < clustPoly[node|
if length(clust Poly[node]) > 6 then
largeAnch <— sampleAnchLargePoly(clusters,sRnd)
allAnchors < allAnchors U largeAnch
else
anchSmallPoly[node] <—sample AnchSmallPoly(clusters)
allAnchors < allAnchors U anchSmallPoly[node]

return (anchSmallPoly,allAnchors)

function SAMPLEANCHLARGEPOLY(cluster, sRnd)
i+ 0
anchPairs < ||
C <+ {1,2,... length(cluster)}
while i < smpRnd do
setC +C
while length(serC)> 0 do
if length(setC)> 1 then
{u,v} + randChooseTwoLeaves(setC)
else
{u} < randChooseLeave(C — setC)
{v} < serC

{taxon1} <+ randChooseLeave(cluster|u])
{taxon2} <+ randChooseLeave(cluster|v))
anchPairs < anchPairs U {(taxonl,taxon2)}
setC + setC — {u,v}

return anchPairs
function SAMPLEANCHSMALLPOLY((cluster)
anchPairs < ||
fori e {0,1,.. length(cluster)} do
for j € {i+1,...length(cluster)} do

{taxon1} <-randChooseLeave(cluster|i])
{taxon2} <randChooseLeave(cluster]j])
anchPairs < anchPairs U {(taxonl,taxon2)}

return anchPairs
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Chapter 3

Fast coalescent-based computation of
local branch support from quartet

frequencies

Species tree reconstruction is complicated by effects of Incomplete Lineage Sorting
(ILS), commonly modeled by the multi-species coalescent model. While there has been
substantial progress in developing methods that estimate a species tree given a collection of
gene trees, less attention has been paid to fast and accurate methods of quantifying support. in
this dissertation, I propose a fast algorithm to compute quartet-based support for each branch
of a given species tree with regard to a given set of gene trees. I then show how the quartet
support can be used in the context of the multi-species coalescent model to compute i) the
local posterior probability that the branch is in the species tree and ii) the length of the branch
in coalescent units. I evaluate the precision and recall of the local posterior probability on a
wide set of simulated and biological datasets, and show that it has very high precision and
improved recall compared to multi-locus bootstrapping. The estimated branch lengths are

highly accurate when gene tree estimation error is low, but are underestimated when gene
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tree estimation error increases. Computation of both the branch length and the local posterior

probability is implemented as new features in ASTRAL.

3.1 Introduction

The multi-species coalescent model (MSC) of [191] has emerged as the standard
method used for reconstructing species trees in the presence of gene tree discordance due to
Incomplete Lineage Sorting (ILS) [[147,55]. Many methods have been developed to estimate
species trees under the MSC [90, 47, 161, [38]. The most scalable family of MSC-based
methods are based on a two-step process where gene trees are first estimated independently
for each gene and are then combined to build the species tree using a summary method.
Many of the summary methods are statistically consistent and thus converge in probability
to the true species tree as the number of input error-free gene trees increases; examples of
consistent methods include ASTRAL [[164, [165], BUCKYy-population [125]], GLASS [169],
MP-EST [[142], NJst and ASTRID [141,255], and STAR [143]. While some methods (e.g.,
MP-EST) can estimate branch lengths in coalescent units, others only infer the topology. The
traditional concatenation approach (where all genes are put together in a supermatrix) can
produce high support for incorrect branches [198, [122]], and the main goal of statistically
consistent summary methods is to address this shortcoming. However, despite the progress in
developing methods for species tree reconstruction, little attention has been paid to methods
of calculating support.

Bayesian methods [90, [139] readily provide support but remain computationally
challenging. Calculating support through bootstrapping [/0], while still computationally
expensive, is not prohibitively slow and is easily parallelizable. [215] proposed a multi-locus
bootstrapping (MLBS) procedure that produces bootstrap replicates by first resampling genes

and then sites within those sampled genes. [214] later studied the accuracy of the MLBS

57



approach in the context of distance-based tree reconstruction for 4-taxon trees and explored
other strategies where only genes or only sites were resampled. These earlier works did not
consider ILS as the cause of discordance; nor did they use summary methods. Nevertheless,
the community has adopted MLBS as a standard way of estimating support using ILS-based
summary methods; most biological studies using summary methods rely on site-only or
site/gene MLBS [227, 1264, 105, 189]].

Recently, [160] studied the reliability of MLBS support values as a measure of
accuracy in simulation studies, and documented both under-estimation and over-estimation of
support (for low and high support branches, respectively) using MP-EST [142] and supertree
methods such as MRP [190] and MRL [[174]. [160] also observed better species tree accuracy
when a summary method was run directly on ML gene trees, compared to running the summary
method on bootstrapped gene trees first and then taking a consensus. This observation led
to the conjecture that MLBS might give biased estimates of the support. Furthermore, [20]
found in simulation studies that false positive branches can sometimes have high MLBS
support and that many true branches tend to have low support. Obtaining low support for
true branches should not be a cause of concern if the lack of support is caused by insufficient
data; however, when low support is caused by underestimation, we need better methods of
quantifying support.

In this dissertation, I show that using properties of the MSC on four taxa (quartets), I
can derive support values that are more precise and more powerful than MLBS, and are much
faster to compute. Under the MSC, quartet trees do not have anomaly zones [7, 53], meaning
that the most probable gene tree is identical to the species tree for any quartet. Exploiting
this property, some summary methods break up gene trees into quartet trees. For example,
ASTRAL [[165], a summary method used in many recent studies [264, 126, (78,189, 185, 236,
10[], finds the species tree that shares the maximum number of induced quartet trees with gene

trees.
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I introduce a new method for computing support for species tree branches with regard
to a set of unrooted gene trees by calculating Bayesian posterior probabilities. My support
values, which I call local posterior probabilities, are computed based on gene tree quartet
frequencies. For each internal branch of the given species tree, I assume that the four sides of
the branch (Fig.[3.1)) are correct, and therefore three topologies are possible around that branch.
I introduce a fast algorithm to compute a quartet support for each of those three alternatives
in @(nl) time (where [ is the number of species and n is the number of genes). I then use the
quartet support for each alternative topology to derive the posterior probability that it is the
correct species topology. Besides producing measures of support, quartet frequencies can be
used to derive estimates of internal branch lengths in coalescent units.

My calculation of posterior probabilities is analogous to characterizing a biased die.
If I toss a three-faceted biased die n times, my belief in whether the die is biased towards
a certain side should depend on the number of tosses and also on the bias of the die (less
bias requires more tosses). Similarly, a short branch in the species tree will result in high
discordance, and will need many genes to resolve it with high confidence. On the other hand,
considering only the MSC and ignoring issues such as long branch attraction, long branches
can be easily reconstructed confidently even with few genes.

I show using simulated and empirical datasets that the local posterior probability esti-
mated by my approach is a reliable measure of accuracy. I show that very few highly supported
branches are incorrect. Moreover, with a sufficient number of genes, most correct branches
have high support. Importantly, I test my methods under conditions where assumptions of
my model are violated and show that it remains reliable. My method is available as part of
ASTRAL (https://github.com/smirarab/ASTRAL/), which now estimates species tree

topologies, branch lengths, and local posterior probabilities.
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A) Quadripartition . B) Tripartition

Figure 3.1: Quadripartitions and tripartitions. A) An internal branch (black, in the middle)
divides the set of leaves into a quadripartition. A quartet of leaves {1,2,3,4} induces a
quartet tree (in red) with two internal nodes that map to two nodes in the larger tree (here,
u and v). B) An internal node, here u, divides leaves into a tripartition; a selection of
two leaves from one side and one from each remaining side gives a quartet mapped to
that tripartition. Each quartet tree also maps to a second tripartition (v). C) An example
mapping between a quadripartition (e.g., from the species tree) and a tripartition (e.g.,
from a gene tree); 12 such mappings exist. Note that by finding all quartets of the form
(a,b,c,d);a€e ANY,be BNY,ce CNX,d € DNZ, I can find all quartets around the
quadripartition that are mapped to the tripartition with this mapping.

3.2 New Approaches

Definitions: Throughout this chapter, I only consider unrooted trees. Let L be the
set of [ leaves (i.e., taxa). Each branch of a tree T creates a bipartition on L, and I say that
each of the two partitions is a cluster in T. Each internal branch divides L into four clusters,
creating a quadripartition (Fig. [3.1)). Similarly, an internal node divides £ into three clusters,
creating a tripartition (Fig.[3.1). Any quartet ¢ of taxa induces a quartet tree  on 7. The two
internal nodes of ¢ correspond to two internal nodes in 7. When those two internal nodes are
the two sides of a single branch in 7', I say that the quartet g is around that branch. The set of
quartets around a given quadripartition can be built by enumerating all selections of one leaf
from each of its four clusters.

Problem statement: I am given a set of n gene trees evolved on an unknown true
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binary species tree according to the MSC model. My aim is to score a given internal branch

represented as a quadripartition Q to estimate:
1. the probability that Q is in the true species tree, assuming clusters of Q are each correct,
2. the length of Q in coalescent units, assuming Q is a correct branch in the species tree.

Assumptions: I assume evolution is tree-like and true gene trees differ from the
species tree only due to ILS, as modeled by the MSC. I also assume I am given an unbiased
sample of true gene trees. On real data, I need to instead estimate gene trees from sequence
data, and further, it is not always clear that my sample is unbiased, nor that gene trees are
generated by the MSC.

Importantly, I further assume that all four clusters around the branch I am scoring are
correct. This assumption, which I refer to as the locality assumption, makes my computations
tractable for large datasets. Similar assumptions have been made in past for fast calculation of
local support in the context of maximum likelihood (ML) tree reconstruction from sequence
data; e.g., aLRT in PhyML [86] and SH-like support in FastTree-II [188]. Note that to test my
method, I use data that violate the locality assumption and I also use estimated gene trees in

addition to true gene trees generated by the MSC.

3.2.1 Calculation of local posterior probability

Quartet trees: My approach is based on analyzing quartets defined around the branch
Q. For any quartet of leaves around Q, I have three possible topologies, which I will call
11, 1z, and £3. In the MSC model, the quartet topology found in the true species tree has the
highest probability of appearing in gene trees [/l], and the two alternative topologies have
identical probabilities. Furthermore, if the total branch length (in coalescent units) between

the two internal nodes of the quartet is d, the probability of the dominant quartet topology
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in gene trees is 6 = 1 — %e’d > %, and the probabilities of both alternative topologies are

1-6 _1,-d
5 — 3¢€ <

[OSI

I refer to the number of times #1,7,, and #3 are induced in gene trees as quartet
frequencies, shown as 71 = (ny,n;,n3); note Z? n;j = n. In the MSC model, conditioned on the
species tree, gene trees are independent; Thus, 77 can be modeled as a multinomial random
variable N, with parameters 0, 1;29, %, where 0 corresponds to the species tree topology, and
# to the alternative topologies. A similar model is used in the maximum pseudo-likelihood
approach of [[142] for triplets.

Multiple quartets: There are m = H‘f m; quartets around branch Q, where m; is the
size of a cluster of the quadripartition of Q. Note that I can rearrange clusters of Q to obtain
two alternative quadripartitions, which I call O, and Q3. Let i7; = (ny;,n;,n3;),1 <i < mbe
quartet frequencies for all m quartets around branch Q such that ny;, ny;, and n3; correspond
to the topologies Q, 0> and Qs, respectively.

Each #; can be modeled as a multinomial random variables N;, and N;s are identically
distributed. To use all 77; values, one approach is to assume they are also all independent,
and model (Y ny;,Y no;, Y n3;) as observations from a multinomial with m x n trials. The
independence assumption would clearly be incorrect; topologies of different quartets around
a branch heavily depend on each other (Fig. [3.2] shows an example). Quartets around a
branch are dependent even when the locality assumptions holds. A big problem with the
independence assumption is that it inflates confidence because the number of observations
(i.e., die tosses) becomes m x n instead of n, thereby greatly increasing posterior probabilities
(note m > [ — 3). Moreover, the dependence of various quartets on each other is intricate and
hard to model.

To avoid inflating posterior values by assuming independence, I take the opposite
conservative approach. I assume that a hidden random variable Z gives a single vector of

“true” quartet frequencies around Q and treat each N; as a noisy estimate of Z. Thus, Z follows
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Figure 3.2: Topologies of different quartets around a branch might heavily depend on each
other. In this example, species A and B and E are closer to each other than each of them
to C or D. Lets assume I observe topology of set of taxa A,B,C,D is T} = A,B|C,D in a
gene tree G, and the topology of set of taxa A, E,C,D is T, = A,E|C,D in G. In this case the
topology of set of taxa 73 = B, E|C, D is completely determined based on topologies 77, and
T». So it does not have extra information about the internal branch between them. To see
this, imagine putting B on each of the five branches of A, E|C, D. Two branches (pending to
C and B are not possible, because they contradict the other quartet topology. The other three
placements all results in the B, E|C, D topology.
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a multinomial distribution with 7 tries (irrespective of m) and N; = Z+Y for 1 < i < m where
Y is a noise term with zero expectation. In the die analogy, 1 assume the die is tossed n
times, and for each toss, I read the outcome m times, each time with some noise. Ideally, I
should have a noise model and compute the posterior with respect to the given N; values by
marginalizing over Z. However, a good noise model is not available and the resulting problem
becomes hard to solve. Instead, I treat the expected value of Z as an observed value, and
empirically estimate it by averaging:

m ..
. _Zlm”ﬂ for j € {1,2,3} (3.1)

At the end of this section, I will introduce an efficient ®(nl) algorithm to compute Z.

Lemma 4. Let (81,0,,03) denote parameters of the true multinomial distribution generating

Z. Note Z? 0; = 1 and the two lower ;s are identical, and recall z; corresponds to the topology

of Q.

o o L JIP(Z =281 =)o, (1)dt s
> — =7) = — .
61> 31Z=7) FZ=3 62

where fy is the prior PDF. The likelihood term is:
— -1 ,_
P(Z:Z|el :l’) :FIZI<T) 2 (33)
_ T(n+1) . T
where I' = FTe+1)’ and marginal probability is:
— 3 1
PZ=2)=Y | PZ=26;=0fe 1)
j=1713
St =t
:r; % w(T) i fo, (t)dt. (3.4)
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Proof. To prove Equation (3.2), one could use Bayes’ rule directly,

1 = _
1. . POI>1Z=3) _f%P(Z=2791=f)dt
PO >3lz=9= PZ=z P(Z=7)
%IP(Z: 7|01 = 1) fo, (¢)dt
- P(Z=2)

Equation (3.3) comes from Z being a multinomial distributed random variable given 6; =1 is

fixed and 0; > % (500, =03 = %) directly. To prove Equation (3.4),

)

_ 1 - 1
:P(Z:Z’el > §) —|—P(Z:Z|92 > 5\/93 > §)

_ 1 _ 1 _ 1
=P(Z=1/01 > 3) + P(Z=2/62> 3) + P(Z =263 > 3)

_ _ 1 _
P(Z=7)=P(Z=176; > 5) +P(Z=726; <

— W] =

]

Q is in the species tree iff 6; > %; thus, with Lemma and a prior I can compute the
posterior probability.

Prior: In absence of extra reliable information about the species tree topology, which
is the most common scenario, the use of an uninformative prior is justified. An uninformative
prior would require that the three topologies are equally likely (i.e., P(8; > %) =P(6; > %) =

P(03 > %) = %). Based on Theorem 3.3 from [231]], I can prove:

Lemma 5. If the species tree is generated using the Yule process with rate A, branch lengths

are exponentially distributed, and for t > %:

oy (£) = M31 63
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Proof. Under the Yule process with rate A, the branch lengths D are exponentially distributed
with rate 2, and the PDF of D is fp(x) = 2Xe~2M [231]]. Note that because of absence of
extra reliable information about the species tree topology, I use an uninformative prior, which
means all topologies are equally likely to be the dominant one (Pr(6; > %) = Pr(06; > %) =
Pr(063 > %) = %). Knowing that 8; = 1 — %e‘x isin [%, 1) as x goes from O to oo (j = 1,2,3),

and by using the transformation rule of random variables:

I use throughout the chapter as the prior (A = % gives a flat prior). Note that |
need that branch lengths in coalescent units follow properties of the Yule process; this can be
achieved if lengths measured by the number of generations follow the Yule process and N, is
constant for all branches.

Local posterior probability: I now conclude:

Theorem 7. Given 1) a set of n gene trees generated by the MSC on a model species
tree generated by the Yule process with rate A and 2) an internal branch represented by a
quadripartition Q where the four clusters around Q are each present in the species tree, let
7 = (z21,22,23) be the average quartet frequencies around Q (where z; corresponds to the

topology of Q); the local posterior probability that the species tree has the topology given by

Qis:
h(z1)

P(QIZ=7)= h(z1) +2%22h(zp) + 2%~ 21h(z3)

(3.7

for h(x) =B(x+ 1,n—x+2A)(1 —I%()H— 1,n—x+2A)). Here, B(a, ) is the beta function,

and / is the regularized incomplete beta function.
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Proof. With locality assumption, Z follows a multinomial distribution with parameters
(01,0,,03). Lack of anomaly zones for unrooted quartets, shown by [6] means that Q
is in the species tree iff 61 > % Thus, by Lemma 1 I can use , , and |b to
compute the local posterior probability of Q. By the assumption that (coalescent unit) branch
lengths in the species tree are generated by the Yule process, calculation of follows from
manipulating (3.2)), (3.3)), and (3.4)), as detailed in the following Using Lemma 1,

1 J1P(Z =781 =1)fo, (1)dt
P(91>§’Z=Z): : =

P(Z=7)
with likelihood term:
_ 1—1t
P(Z=761=1t)=It" (T)”_Zl
_ I'(n+1) . el
where I' = T’ and marginal probability:

In these equations Z is a multinomial random variable with parameters (61, 0,,03),
Z? 0; = 1 and the two lower ;s are identical, and recall z; corresponds to the topology of Q.

Using (3.4), and (3.2)),

JIP(Z =761 =1)fo, ()dt
LY3 Jy 8(ejin)fo,(0)dt

P(QIZ=7)=

Based on Lemma 2, and Equation [3.3| fo,(t) = A(3(1—¢))**"!, and P(Z =70, =1) =
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I'ts (%)"*Zf . So Equation simplifies to:

f%l (th(%y—m)x@u _t))zx_ldt
CE) (=G - )P a

pun [l (1 — -+l
3

PQIZ=7)=

= 3.9
Zj’.:lsz—nfll th(l _t)n—Zj—Fz}h—ldt ( )
3
Zzl—n(fol 1 (1 _ t)n—zl—l—zl—ldt _ fO% 21 (1 _ t)n—z1+2k—1dt)
- 1
2‘3:1 ZZj—n(fol l-Zj(l _ t)n—Zj—O—Zk—ldt _ f03 th(l _ t)n—zj'—i-Z?»—ldt)
With B(o, B) as beta function, and I, as the regularized incomplete beta function,
! A
B(x+1,n—x+2)\) = / (1 — )" w1y
0
and,
1
3z n—z;j+2h—1
B(x+ 1,n—x+ 201y (r-+1,n—x+24) = / £ (1 — )t A=y
0
then,
S h(z1)
P(Q|Z=37) = 3.10
(Q| Z) h(Zl)+222721h(zz)+223*21h(z3) ( )
where
h(x) =B(x+1,n—x+21)(1 —I%(x—I— l,n—x+2X)).
O

Examples: The local posterior probability (pp) is a function of the number of genes
and the quartet frequency of a branch. As Figure shows, a branch that appears in 40% of
gene trees has a low 66.1% pp if 50 gene trees given (and alternative topologies are equally
frequent); however, with 200 or 500 genes, the same branch will have 93.0% or 99.7% pp,
respectively. Thus, a high discordance branch where 60% of genes do not agree with the

species tree can still be resolved with high confidence given enough genes. Moreover, the

68



100%
95% -

other frequencies
— k-f; k-t
— 2 ' 2
k-, 3(k-f;)
—_= 4 2

# genes (k)
50
—— 200

— 500
—— 2000

local posterior probability
8 3
2 2

)

o , , " , !
e s 14 13 2/5 3I7 172 a5
normalized branch quartet frequency (f;/k)

0%

Figure 3.3: The local posterior probability of a branch as a function of its normalized
quartet support for varying numbers of genes. Red lines: alternative topologies have equal
frequencies (thus, conform to properties of the MSC for x greater than 1/3); Blue lines:
alternative topologies don’t have equal frequencies (contrary to the MSC).

posterior probability is affected not just by the frequency of the topology being scored, but
also by the frequency of the two alternatives. For example, if my branch of interest appears in
40% of gene trees, but a second alternative appears in three-quarters of the remaining genes

(i.e., 45% of genes), the branch with 40% frequency has only a 1.90% pp (Fig.[3.3).

3.2.2 Calculation of branch length

Given the true parameter 6 for a correct branch, its length in coalescent units [53] is

simply —In %(1 —0). Thus, I can prove:

Theorem 8. Under conditions of Theorem [/ and assuming the branch represented by Q is

in the species tree, the ML estimate for its length is — ln%(l — <1) and the MAP estimate is

—In %(1 - fr‘m) when z; > 5 and z; > ”+327‘, respectively; otherwise, ML=MAP= 0.

Proof. Assume D, branch length, is a random variable whose range is in [0 «). The ML
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estimate for the branch length is coming from:
dyy, = argmax Pz p(z1]x;n) (3.11)
x>0

where Pz p(z1]x;n) is the likelihood of D. Assuming that Q is the true topology, the likelihood

of D is proportional to:

2 1
Pz p(z1xin) o (1= 3e™) (3e7)" (3.12)

computing the log likelihood and removing the constants yields to

2
L(x;z,n):len(l—ge_x)—(n—zl)x. (3.13)
Note that
d’L(x;z,n) —Zl%e_x
= <0 3.14
dx? (1—3e )2 7 G-19)

so (3.13)) is a concave function. To find the maximum of (3.13)), I take its derivative and set it

to zero. Let’s name the solution as d

—X

dL(x;z,n) Zl%e
v 1- %e—x

—(n—2z1)=0. (3.15)

Due to concavity of (3.13), and condisering (3.11)) dy,; = max (O,d}. The solution of (3.15))

isd=—In(3(1-2)). Note thatd > 0if 3(1- L) <lorZL > 1 Sodj, =—-In(3(1-%))
if £

1 1 . x
€23, otherwise dy;; = 0.
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Given n gene trees, to find the MAP estimate I need to solve

DX/[AP = arg;naxfmz1 (X|Zl;n)
x>0 (316)
= argmaXPZI |D(Z1 ‘X)fD(X)
x>0

where fp(x) is a priori distribution for branch length.

The waiting time between the two consecutive speciation events is the length of the
interior edge between them. Assuming that my species tree is a Yule tree, each species has a
speciation rate A, and this waiting time is exponentially distributed with mean %» [231]. So
for the MAP estimate, I assume branch length D is exponentially distributed with rate 2A. In

this case the posteriori could be written as:

2 1

Taking log of (3:17)) and removing constants the function L'(x) is defined as

2
L'(x) =2z In(1— ge*’“) —(n—z1+2)). (3.18)
Note that
&L (x;zn)  —uze”
= <0, 3.19
dxz (1 — geix)z ( )

so (3.18)) is a concave function. To find the maximum of (3.18), I take its derivative and set it
to zero. Lets name the solution as d’
! 2 ,—x
dL ()C) <13¢€

= —(n— 2\) =0. 3.20
d.x 1 . %eix (n Zl + ) ( )

Due to concavity of (3.18) and following (3.16) the MAP estimate is dy;, , = max (O,cf’ ).
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Solving (3:20) d' = —In (3( —57))- Note that d>0if 3(1- woor) < lor2hr > 1. So,
diap=—1n (%(1 ) if oy > > , otherwise the MAP estimate is dj;, p = 0. O

3.2.3 Calculation of quartet support

I now discuss how Z defined in can be efficiently computed. Note that in the
worst case, there can be ®(I4) quartets around a single branch. Thus, simply enumerating all
n;; values and then getting the average can be very slow.

As noted before, each quartet around Q has each of its four leaves drawn from a
different cluster of Q. Recall also that internal nodes of a tree produce a tripartition, and as
[164] pointed out, any selection of two leaves from one side of the tripartition and one leaf
from each remaining side gives a quartet tree mapped to that tripartition (Fig. . Let y(Q)
and Y(R) give the set of quartet trees around a quadripartition and mapped to a tripartition,
respectively. Any quartet tree around Q that is induced by a gene tree will be mapped to two

internal nodes in that gene tree (Fig. [3.1)). Thus,
I & 'c
:-Z Z (RS) Nw(Q)| (3.21)
m : :

where R;, is a tripartition for node u in the gene tree g, and m is the number of quartets around
0.

I can efficiently compute the number of quartet topologies around Q that appear also
in a tripartition R (i.e., |W(R5) Ny(Q)|) without computing y(.) sets. I define a mapping
between clusters around Q to clusters in R: map two sister clusters in Q to a cluster in R,
and map the remaining two clusters in Q to the remaining two clusters in R (Fig.[3.1). For
example, let Q = AB|CD and R = X|Y|Z; a possible matching is to map A and Bto Y, C to
X, and D to Z. There are 12 such matchings between Q and R. For each matching, I can

compute the number of quartet trees around Q that appear in R by multiplying the sizes of the
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intersection of pairs of clusters in Q and R that are mapped to each other. By enumerating
all 12 matching and summing the resulting numbers, I get |W(R5) Nw(Q)|. Since finding the
intersection of two clusters requires O(/), computing would require O(/%n) running
time. However, I can do better. [165] have introduced a ®(nl) algorithm to compute a sum
similar to (3.21)) for scoring a tripartition, based on a postorder traversal of gene trees (instead
of analyzing each R} separately). This algorithm can be adopted here to compute (3.21)) in

O(nl) (see Fig. for the algorithm). Since scoring a tree requires scoring [ — 3 branches,

Theorem 9. Computing branch lengths and local posterior probabilities of a tree requires

O(I%n) time.

3.2.4 Other considerations

I implemented my methods in ASTRAL, using the Colt [96] package for numerical
computations. Handling missing data and unresolved gene trees requires extra care. When
gene trees have missing data, to compute (3.21)), instead of setting m to the number of quartets
around Q, I need to set it to the average number of quartets present in gene trees (i.e., %Zi’ Zj)-
Moreover, missing data can cause some genes to miss all quartets around Q; to account for
this, I allow a different n for each branch, and set it to the number of genes that include at
least one of the quartets around Q. To handle unresolved gene trees, similar to ASTRAL-II, I

need to score the quadripartition against all (‘31) tripartitions around a polytomy with degree d.

3.3 Materials and Methods

3.3.1 Datasets

I use both simulated and biological datasets.
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function FREQ(G,Q = (W,X)|(Y,Z))
02+ (W,Y)|(X,2)
03+ (W,2)|(X,Y)
f1<F(G,0)
2+ F(G,02)
3+ F(G,03)
m<«— (f14+ 2+ f3)/|G|
return (f1/m, f2/m, f3/m)
function F(G,0 = (W,X)|(Y,2))
r<20
S < empty stack
for g c Gdo
for u € postOrder(g) do
if u is a leaf then
(w,x,,2) <= (Wlul, X[u], Y [u], Z[u])
else
(C]],Clz, C13,C14> < pull from S
(C21,C22,C23,Co4) < pull from S
(w,x,y,2) <= (C11 +C21,C12+C2,C13+ C23,Ci4 + Co4)
(C31,C32,C33,C34) < (W[ =w, [ X[ = x, [V =y,[Z] = 2)
r<r+I(C)
push (w,x,y,z) to S
return r/2
function I(C)
return

Cio X Ca1 X C32 X C33+ €1 X Cyo X C32 X C33+ €2 X Ca3 X C30 X C31 +
Ci3 X G x C30 X C31 + C30 X Co1 X Cp2 x €13+ C31 X Cy0 x C12 X Cy3 +
C32 x Cp3 X Cyo X €1 + C33 X Cop X Cpp X Cy1 +Cpo X C31 X Cp2 x Co3 +
C11 X C30 X G2 X Ca3+ €y X C33 X Cp X Cp1 + €3 X C3 X Gy x Gy

Figure 3.4: Frequency calculation algorithm. Input is a set of gene trees G and a quadripar-
tition Q = (W, X)|(Y,Z) where each cluster (e.g., X) is a bitset indexed by the species (thus,
X[u] is 1 if leaf u is in X and otherwise is 0). Output is the quartet frequency for each of the
three topologies around that branch.
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Table 3.1: Properties of simulated datasets. /: number of species; n: maximum number
of genes (A-200 also has 50 and 200); R: number of replicates; /LS: average normalized
RF [134] distance (AD) between the true species tree and true gene trees; GE: AD between
true and estimated gene trees; SE: AD between true and ASTRAL species trees for A-200,
with 50, 200, and 1000 genes, respectively).

Cond. [ n R ILS GE SE

A-200 Low-ILS 201 1000 100 15% 25% 6%,4%,3%
A-200 Med-ILS 201 1000 100 34% 31% 9%,6%.4%
A-200 High-ILS 201 1000 100 69% 47% 19%,10%,6%
Avian  1500bp 48 1000 20 47% 31% 5%

Avian  1000bp 48 1000 20 47% 39% 6%

Avian  500bp 48 1000 20 47% 54% 8%

Avian  250bp 48 1000 20 47% 67% 15%

Simulated data

I use two sets of simulated datasets from previous publications: the 200-taxon dataset
(called A-200 here) from [165] and an avian dataset with 48 taxa from [[161]]. A-200 enables
us to test accuracy under heterogeneous conditions with many species, and the avian dataset
is used to compare local posterior against MLBS. For both datasets, gene trees are simulated
using the MSC, and their branch lengths are then adjusted to be in substitution units and to
deviate from the strict molecular clock. Sequence data are next simulated on the modified
gene trees using GTR+I", and ML gene trees are estimated from the data. On the avian dataset,
bootstrapped gene trees are also available. For both datasets, in addition to true species trees,
I have estimated species trees (ASTRAL and NJst on estimated gene trees, and concatenation
using ML). I show results for ASTRAL and true species tree here and show the rest in the
appendix.

A-200: The 201-taxon datasets (200 ingroups plus an outgroup, treated like other
taxa here) are simulated using SimPhy [149], and has three levels of ILS (Table [3.1)), with

true discordance that ranges from very low to very high (Fig. [3.5). Each replicate of the
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simulation has its own species tree, and the ILS level is controlled by changing the tree length
(500k, 2M, and 10M generations). [163] generated species trees using the Yule process with
two speciation rates (1076 and 10~/ per generation) for each tree length, but here I combine
the two rates into one dataset to get twice the number of replicates. SimPhy automatically
introduces deviation from the strict clock by drawing species, gene, and gene/species-specific
rate multipliers from predefined distributions. Similarly, the number of sites for each gene is
randomly chosen. See [[165] for details. ML Gene trees are estimated using FastTree-II [188]],
with a wide range of estimation error (Table 3.1 and Fig.[3.5). Species trees are estimated
based on all 1000 genes per replicate, or on subsets of 200 or 50 genes. The ASTRAL species
trees error for various datasets ranges between average 3% and 19% (Table [3.1]).

Avian: The avian dataset has 48 taxa, and is simulated to emulate the whole-genome
dataset of [103], possibly overestimating the true amount of ILS [161, [75]. Here, I use four
conditions, with 20 replicates that each includes 1000 genes, all simulated based on the
same avian-like species tree. My four conditions differ in terms of the number of sites per
gene (250bp, 500bp, 1000bp, or 1500bp), creating varying levels of gene tree estimation
error (Table [3.1). ML Gene trees are estimated using RAXxML [232], and 200 replicates of
bootstrapping are performed. Average ASTRAL species tree error ranges from 5% to 15%,
depending on the gene tree error (Table[3.1)). T used site-only MLBS to get BS support values.
A single branch in my true tree was extremely short (almost a polytomy, with a length of
107%). When discussing branch length accuracy, I ignore that branch; results including that

branch will also be shown for completeness.

Biological dataset:

I reanalyze four published datasets: a 103-taxon 424 gene plant dataset by [264], a
46-taxon 310 gene angiosperm dataset by [273], a 48-taxon 2022 (binned) supergene tree

dataset by [105], and a 201-taxon 256 gene avian dataset by [189].
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Figure 3.5: Properties of the A-200 dataset. (a) True gene tree discordance is shown,
measured as the RF distance between the true species tree and the true gene trees;
Three levels of ILS are created by changing tree length (10M, 2M, or 500K generations),
resulting in low, medium, and high discordance. The double pick is due to the fact that
in [[163] two different speciation rates are used, but here, I combine both speciation rates
into one larger dataset. Bottom: Gene tree estimation error, measured as the RF distance
between the true gene tree and the estimated gene tree. Note that the datasets with higher
ILS also tend to have higher gene tree error.
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3.3.2 Evaluation procedure

I study three questions in my evaluation:

e How accurate are branch lengths and support values when assumptions of my model

are met?
e How do violations of the model assumptions impact the result?
e How do local posterior probabilities compare to site-only MLBS?

To answer these questions, I use both true gene trees and estimated gene trees to score
both true and estimated species trees. For every internal branch in the species tree being
scored, I also score its two alternative topologies. For example, if branch AB|CD (Fig.
appears in the species tree, I also score AD|BC and AC|BD. In my estimations, I use the Yule
prior with fixed A = %, but note that the true A in my A-200 simulations ranges from 0.06 to
1.19.

With true species trees and true gene trees, all model assumptions are met. When
estimated gene trees are used instead of true gene trees, I violate the assumption that input
gene trees follow properties of the MSC model. When estimated species trees are scored, the
locality assumption is potentially violated (i.e., each of the four clusters around a branch may

be incorrect).

Measurement

Posterior: Despite the long-standing debate about correct interpretations of various
measures of support [207, 169, 93| 243]], biologists typically use support to judge branch
reliability. A common practice is to ignore branches below a certain threshold of support and
only interpret the remaining branches as biologically meaningful (0.95 for posterior and 70%

for bootstrap are often used). My evaluation procedure takes a similar approach; I use varying
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thresholds of support and count the number of true and false branches with support at least
equal to the threshold. For a threshold s, the measures I use are precision (the percentage of
branches with support > s that are correct), recall (the percentage of all true branches that
have support > s), and false positive rate (FPR) (the percentage of all false branches that have
support > s). I also draw the ROC curve (i.e., recall versus FPR).

MLBS and posteriors values are not directly comparable. Therefore, it is pointless
to compare the precision or recall of MLBS and posterior for a given threshold. Instead, I
use the ROC curve, which is agnostic to the exact interpretation of the threshold; it simply
shows which method results in a better trade-off between false negative and false positive
branches. Moreover, comparing to MLBS was only feasible on the avian dataset, where gene
bootstrapping was doable. On the A-200 dataset (300 replicates each with 1000 genes of 201
taxa) bootstrapping was not computationally feasible.

Branch length: I measure branch length accuracy by comparing true and estimated
lengths for each branch. Since this can be done only for correct branches, I measure branch
length accuracy for the true species tree topology. Given b branches, and letting w; and w;
indicate the true and estimated branch lengths, I use the logarithmic (log) error defined as

2 Y2 logo(wi) —log;o(w;)]. T also plot log of estimated versus true values. In addition, I

show the root mean squared error, defined as \/ % Y2 (w; —w;)2|. On Avian datasets, I compare

the error of MP-EST and ASTRAL.

3.4 Results

3.4.1 A-200 dataset

Posterior

True trees: When true species trees are scored with true gene trees, the precision of
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A) Precision and recall
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Figure 3.6: Accuracy of local posterior probability on the A-200 dataset with true species
trees. A) the precision and recall of branches with local posterior probability above a
threshold ranging from 0.9 to 1.0 using estimated gene trees (solid) or true gene trees
(dotted). B) ROC curve (recall versus false positive rate) for thresholds ranging from O to 1
(figure trimmed at 0.4 fpr). Columns show different levels of ILS (each with 100 replicates).
For each branch in each true species tree, all three alternatives are included in the analysis
(one correct branch and two wrong branches). Thus, a total of 198*3%100=59400 branches
are included for each model condition.
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branches with 0.99 pp or higher is 100% for all model conditions, and is at least 99.8% for
the 0.95 threshold (Table [3.2)). Thus, there are very few false positive branches that have high
local pp, a trend that continues if I further lower the threshold to 0.9 (Fig. 3.6). With the
0.95 threshold, the percentage of true branches that are recovered (recall) ranges from very
high (98.7%) for the model condition with low ILS and 1000 gene trees to moderate (55.0%)
for the most challenging dataset with high ILS and only 50 genes (Table[3.2). As desired,
increasing ILS and reducing the number of genes both reduce the recall while maintaining
high precision (Fig. [3.6)).

Estimated gene trees: When true species trees are scored on estimated gene trees
instead of true gene trees, precision slightly drops from 100% to between 98.4% and 99.8%.
The recall, however, is impacted more and is reduced by as much as 10% (Table and
Fig.[3.6). Thus, gene tree estimation error has a small impact on the precision but a substantial
impact on the recall.

The impact of the threshold is also interesting. Going from the 0.99 to 0.95 threshold,
as expected, recall improves (e.g., from 39% to 48% for high ILS, 50 genes) but reductions
in the precision are very small (at most 0.3%). Thus, a 95% threshold results in meaningful
improvements in the recall without substantially sacrificing the precision. The ROC curves
(Figs. and [3.6) further explore the tradeoff between increasing recall and allowing false
positive branches.

Estimated species trees: By scoring estimated species trees I study the impact of
violating the locality assumption. I show results for ASTRAL here, but similar results are
obtained with NJst and concatenation (Figs. [3.6]and [3.9).

Precision and recall are remarkably similar between ASTRAL and true species trees,
especially with estimated gene trees (Table [3.2). Comparing true species trees and ASTRAL
on estimated gene trees, the precision is reduced at most by 0.6% while the recall is sur-

prisingly increased, by up to 2.9%. The impact of violating locality assumptions is more
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Figure 3.7: Evaluation of local posterior probability on the A-200 dataset with ASTRAL
species trees. See Figures [3.6}{3.9]for other species trees. A) Precision and recall of branches
with local posterior probability above a threshold ranging from 0.9 to 1.0 using estimated
gene trees (solid) or true gene trees (dotted). B) ROC curve (recall versus false positive rate)
for varying thresholds (figure trimmed at 0.4 FPR). Columns show different levels of ILS.
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(dotted). B) ROC curve (recall versus false positive rate) for thresholds ranging from 0 to 1
(figure trimmed at 0.4 fpr). Columns show different levels of ILS (each with 100 replicates).
For each branch in each true species tree, all three alternatives are included in the analysis
(one correct branch and two wrong branches). Thus, a total of 198*3%100=59400 branches
are included for each model condition.
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Table 3.3: Branch length accuracy on the A-200 dataset. Logarithmic error (Log Err) and
root mean squared error (RMSE) are shown for true species trees scored with true gene trees
or estimated gene trees (Est. gt).

Log Err RMSE
Dataset n True gt Est. gt True gt Est. gt

LowILS 1000 0.10 0.42 5.57 6.75
LowILS 200 0.16 0.44 6.22 6.99
LowILS 50 0.25 0.48 6.84 7.29
Med ILS 1000 0.03 0.20 0.22 0.86
Med ILS 200 0.07 0.22 0.44 0.91
Med ILS 50 0.13 0.26 0.74 1.05
High ILS 1000 0.06 0.15 0.03 0.13
HighILS 200 0.11 0.18 0.07 0.15
HighILS 50 0.18 0.24 0.14 0.19

pronounced when true gene trees are used. Once again, precision is reduced (by as much
as 1.4%) and the recall is increased (up to 4.7%). Thus, moderate violations of the locality
assumption have minimal impact.

I note that in my analyses, deviations from the locality assumption are moderate
but realistic, as most ASTRAL trees have a relatively high accuracy (Table [3.1)). The least
accurate ASTRAL trees have 19% RF distance to the true species tree (50 genes and high
ILS), which means 81% of the clusters in the estimated tree remain correct. Nevertheless,
it is interesting that violating the locality assumption for up to 19% of clusters has minimal

impact on the precision and positive impact on the recall.
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Figure 3.10: Branch length accuracy on the A-200 dataset with Medium ILS. See Figs.
and [3.T1] for low and high ILS. The estimated branch length is plotted against the true
branch length in log scale (base 10). Blue line: a fitted generalized additive model with

smoothing [271].
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Figure 3.11: Branch length accuracy on the A-200 High ILS dataset.Estimated branch
length against true branch length is plotted in log scale (base 10). Line: fitted generalized
additive model with smoothing [271]).
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Figure 3.12: Branch length accuracy on the A-200 Low ILS dataset.Estimated branch length

against true branch length is plotted in log scale (base 10). Line: fitted generalized additive
model with smoothing .
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Branch Length

The accuracy of branch lengths is dramatically impacted by gene tree estimation error,
the number of genes, and the amount of ILS (Table [3.3). With 1000 true gene trees, the
logarithmic error is very low, ranging from 0.03 to 0.10 (which correspond to branches that on
average are respectively 7% or 25% shorter or longer than true branches). As the number of
genes is reduced, the logarithmic error predictably goes up, but with true gene trees, it never
exceeds 0.25. Moreover, with true gene trees, the error is largely unbiased, except perhaps for
very short or long branches that are hard to estimate correctly with a limited number of genes

(Figs.[3.10)and [3.1213.11T).

Branch length error dramatically increases when estimated gene trees are used. Low

ILS conditions are impacted the most by gene tree error (Table [3.3] and Fig. [3.12). For
example, with 1000 estimated gene trees and low ILS, log error is 0.42, corresponding to

estimated branches that are on average 2.6 times too short or long. Moreover, the error is

biased towards underestimation, especially for low ILS (Figs.[3.10} [3.12] and [3.11)). This

pattern is not surprising because as I will show, gene tree error tends to increase observed

gene tree discordance and branch lengths are a function of observed discordance.

3.4.2 Avian

On the avian dataset, I compare local posterior probabilities against branch support
generated using site-only MLBS with estimated gene trees and ASTRAL species trees. Here,
I also study the impact of increasing levels of gene tree estimation error by decreasing the

number of sites per gene from 1500bp to 250bp.
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3.4.3 Posterior and MLBS

The precision of local posterior probability is 100% for the 0.99 threshold, regardless
of the numbers of sites, but the recall ranges from 81% for the 1500bp model condition to
69% for 250bp (Table [3.4] and Figs. and[3.14)). Precision is at least 99.8% for the 0.95
threshold, and the recall is between 71.5% and 84.7%, depending on the model condition (an
improvement of 2% to 5% compared to the 0.99 threshold). Lowering the support threshold
all the way to 0.7 still retains at least 99.1% accuracy and increases the recall to between
78.3% and 91.4%. Therefore, the local posterior probabilities allow very few false positives
with high support but also miss some true positives (and thus may be conservative).

Nevertheless, local posterior probabilities are less conservative than MLBS support
values and have better recall. As the ROC curves show (Fig.[3.13)), for the same number of
false positives branches, local posterior probabilities result in better recall than MLBS. This
pattern is more pronounced for shorter alignments, which have increased gene tree error. For
example, for the 250bp model condition, if I choose a support threshold that results in 0.01
false positive rate, with local posterior values, I still recover 84% of correct branches, whereas
with MLBS, the same false positive rate results in retaining 70% of correct branches. Thus,

for a desired level of precision, better recall can be obtained using local posterior probabilities.

Branch Length

Branch length accuracy on the avian dataset was a function of gene tree estimation
error whether ASTRAL or MP-EST was used (Table [3.5). With true gene trees, branch length
log error was only 0.06, corresponding to branches that are about 14% shorter or longer
than the true branch. As gene tree estimation error increases with reduced number of sites
(see Table [3;1'] for gene tree error statistics), the branch length error also increases. Thus,

while 1500bp genes give 0.17 log error, 250bp genes result in 0.59 error, which corresponds
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Figure 3.13: Precision of local posterior probability on the Avian dataset with ASTRAL.
Precision of branches with local posterior probability above a threshold ranging from 0.9
to 1.0 based on MLBS and local posterior probability (PP) support values. Boxes show
different numbers of sites per gene (controlling gene tree estimation error).
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Table 3.5: Branch length accuracy for the avian dataset. Logarithmic error and root mean
squared error are shown for true species trees scored with true gene trees or estimated gene
trees with various numbers of sites using ASTRAL and MP-EST. An extremely short branch
with length 10~® was removed from the calculations, but error including that branch is
shown parenthetically.

Log Err RMSE
#sites  ASTRAL MPEST ASTRAL MPEST
True gt. 0.06 (0.10) 0.07 (0.11) 0.44 (0.44) 0.30(0.30)
1500 0.17 (0.20) 0.14 (0.18) 0.83(0.83) 0.70(0.70)
1000 0.22 (0.27) 0.22(0.25) 1.08 (1.07) 1.01 (1.00)
500 0.37(0.42) 0.42(0.46) 1.65(1.64) 1.65(1.64)
250 0.59 (0.63) 0.81(0.84) 2.25(2.24) 2.28(2.26)

to branches that are on average 3.9 times too short or long. Moreover, unlike true gene
trees, the error in branch lengths estimated based on estimated gene trees is biased toward
underestimation (Fig. [3.16), a pattern that increases in intensity with shorter alignments.
ASTRAL and MP-EST have similar branch length accuracy measured by log error
for highly accurate gene trees, but ASTRAL has an advantage with increased gene tree error
(Fig. Table [3.5)). Error measured by RMSE (which emphasizes the accuracy of long
branches) is comparable for the two methods, but MP-EST has a slight advantage given

accurate gene trees.

3.4.4 Biological datasets

For each biological dataset, I show MLBS support and the local posterior probabilities,
computed based on RAXML gene trees available from respective publications. I also collapse
gene tree branches with less than 33% bootstrap support and use these collapsed gene trees to
draw local posterior probabilities. For ease of discussion, I show local posterior probabilities
as percentages and refer to them simply as posterior or collapsed posterior (for values based

on collapsed gene trees). I discuss the confidence in important branches in each tree.
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Figure 3.16: ASTRAL branch length accuracy on the avian dataset. Log transformed
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model is fitted to the data. One branch with length 10~° is trimmed out here, but full results,
including MP-EST, is shown in Fig.[3.T7}
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Figure 3.19: ASTRAL tree on the 1KP dataset of (103 taxa and 424 genes). On
each branch, three support values are shown: BS (using site-only MLBS), local posterior
computed on fully resolved ML gene trees, and local posterior computed on collapsed ML
gene trees (removing branches with < 33% BS). Branches with no designation have 100%
support according to all three measures. Dotted/green lines (dashed/red lines): collapsing
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collapsed posterior is at least 10% higher than BS. Inset: ASTRAL tree with branch lengths
in coalescent units using collapsed genes (terminals lengths drawn arbitrarily). Pie-charts
(for selected edges): relative frequencies of the three quartet topologies around a branch in
collapsed gene trees.
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1KP: Three of the key relationships studied by [264] are the sister branch to land
plants, the base of the angiosperms, and the relationship among Bryophytes (hornworts,
liverworts, and mosses). In the ASTRAL tree, many branches have full support regardless
of the measure of the support used, but the remaining branches reveal interesting patterns
(Fig.[3.19). The sister relationship between Zygnematales and land plants receives a moderate
80% BS, but has 100% posterior. [264] also recovered this relationship by concatenation of
various data partitions. There are 12 other branches that have collapsed posteriors that are at
least 10% higher than BS (Fig.[3.19)); no branch has substantially higher BS than collapsed
posterior. Collapsed posterior for monophyly of Bryophytes and for Amborella as sister to
other angiosperms are 100% (compared to 97% and 93% BS, respectively).

When I collapse low support branches in gene trees, posterior goes up for several
branches: nine branches have improvements of 10% or more, and only two branches have
comparable reductions. An interesting case is Coleochaetales as sister to Zygnematales+land
plants, which has only 62% BS and 61% posterior, but has 100% collapsed posterior. Finally,
note that several branches have low posterior, even after collapsing.

My estimated branch lengths are short for several nodes. For example, the branch
that unites (Chloranthales+Magnoliids) and Eudicots has a length of 0.14 in coalescent units.
Other branches that have been historically hard to recover also tend to have short branches;
however, these are not necessarily extremely short branches that would implicate anomaly
zone (two adjacent branches below 0.1 will result in an anomaly zone [202]]). For example,
Bryophytes had a length of 0.29, and Zygnematales+land plants had a length of 0.28. These
values, while short, are not below the often-cited 0.1 threshold. Moreover, as my simulation
study showed, I caution that branch lengths tend to be underestimated because of gene tree
error and these numbers should be treated as lower bounds.

Angiosperms: [273] have used 310 genes to study the base of the angiosperm tree, a

question of intense debate [226] 279, 82, 220]]. Unlike the MP-EST tree by [273]], but similar
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Figure 3.20: Support on the angiosperm dataset. Three forms of support values are shown
for the angiosperm dataset of Xi et al [273]]. Evaluation of local posterior probability on the
A-200 dataset with secies trees. See Figures [3.6}{3.9for other species trees. A) Precision
and recall of branches with local posterior probability above a threshold ranging from 0.9
to 1.0 using estimated gene trees (solid) or true gene trees (dotted). B) ROC curve (recall
versus false positive rate) for varying thresholds (figure trimmed at 0.4 FPR). Columns show
different levels of ILS

to concatenation on this dataset and ASTRAL and concatenation on 1KP, the ASTRAL tree
recovers Amborella as sister to the rest of the angiosperms. This relationship has 75% BS,
but its posterior and collapsed posterior are 100% (Fig. [3.20). The length of this branch
is estimated to be 0.160, almost exactly matching the length estimated on the 1KP dataset
(0.156).

Avian (genomes): [105] used whole-genomes of 48 bird species to resolve long-
standing questions about relationships at the base of Neoaves. I reanalyzed their 2022
supergene trees (binned gene trees; see [161]]) using ASTRAL, which produced a tree with a

wall of short branches at the base of Neoaves (Fig.[3.21)); 12 branches are below 0.1 coalescent
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with less than 33% support collapsed. Branches marked with an asterisk (*) have 100%
support with all three measures. Bold: local support on collapsed gene trees is at least 10%
higher than MLBS support. Bold italic: local support on collapsed gene trees is at least 10%
lower than MLBS support. Dotted/green lines (dashed/red lines): collapsing low support
branches in gene trees increases (decreases) local posterior probability by at least 10%. Inset:
branch lengths in coalescent units. The length of terminal branches are drawn arbitrarily.

units, and another 11 are below 0.5. However, when low support branches in gene trees were
collapsed, branch lengths increase by a median of 0.23 units. Nevertheless, 11 branches
remain below 0.1, and another four branches are below 0.5. My results support the hypothesis
that avian big bang [66] gave rise to very short branches, but quantifying the exact lengths
remains difficult because of gene tree error.

Support values on the avian tree also revealed interesting patterns. Despite the large

number of supergene trees (2022), which should increase support (Fig. [3.3)), several key
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branches have low posterior. For example, the position of Hoatzin (arguably, the most difficult
avian order to place) and the two branches around it have collapsed posterior below 50% and
posterior below 75% (Fig.[3.21). Similarly, at the base of Neoaves, a clade containing land
birds, water birds, and Caprimulgiformes has full support, but the sister to this large group has
only 61% posterior and 80% collapsed posterior. However, other challenging relationships
have full support (e.g., falcons as sister to parrots+passerines, and seriema as sister to this
group, or a clade containing owls, eagles, and vultures). Thus, despite large number of input
trees, posterior probabilities reveal some uncertainty. Finally, on this dataset, unlike the 1KP
dataset, four branches have substantially lower posterior compared to BS, and posteriors are
higher than collapsed posteriors in some cases.

Avian (high sampling): [189]] used their dataset of 259 genes and 201 species to study
the avian tree with high taxon sampling. The ASTRAL tree reported by [[189] has low MLBS
(Fig. [3.22), and many branches remain poorly supported with posterior probabilities (the
median difference between BS and collapsed posterior was 0). Moreover, many of the most
interesting relationships are poorly supported. For example, the sister to parrots+passerine
has only 30% MLBS support, 83% local posterior support, and 0% collapsed posterior. These
low support values are encouraging because the sister to parrots+passerine is likely recovered
incorrectly in this tree, as most recent studies put falcons as sister to this group [[105, 240,
111} 1152]. Overall, despite its large taxon sampling, this dataset provides little resolution for
the early Neoaves radiation using ASTRAL because of the insufficient gene count for this
high level of ILS. Just like the avian genomic data, here I obtain a wall of short branches

around the assumed rapid radiation of Neoaves (Fig.|3.22).
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Figure 3.22: Support on the avian dataset of Prum et al. Three forms of support values
are shown. Inset: branch lengths in coalescent units (terminal lengths are drawn arbitrarily).
Collapsed clades had full support with all three methods for all branches.

104



3.5 Discussions

The local posterior probabilities introduced in this dissertation can be computed
quickly and without a need for extensive MCMC sampling or bootstrapping. Computing
posteriors for a species tree with 200 taxa and 1000 genes takes only 10 seconds and for
a dataset with 1000 taxa and 1000 genes, takes about three minutes on a laptop machine.
This extremely fast computation is possible only because of the two main assumptions of the
method: that true MSC-generated gene trees are given and the locality assumption (i.e., the
four clusters around each internal branch are present in the true tree). These assumptions can
both be violated on real data. Recognizing this fact, my simulations include conditions that
violate these two assumptions by introducing plenty of gene tree estimation error (ranging
from average RF distance of 25% to 67%) as well as species tree error (Table [3.1]and Fig.[3.5).

My method allows very few false positives with high support, a pattern that is retained
even with high levels of gene tree estimation error. It could be argued that my method is per-
haps too conservative and underestimates support. Nevertheless, local posterior probabilities
were less conservative than MLBS, the only viable alternative for large datasets. Despite
allowing very few false positives with high support, the method generally had high recall
(i.e., true branches with high support) except for very few genes for a given amount of ILS.
Reassuringly, increased gene tree estimation error only negatively impacted recall but retained
very high precision. While underestimation of support is not desirable, the abundance of false
branches with high support would be a more serious problem.

A practical question is at what threshold of support a branch can be judged reliable.
The answer depends on factors such as the false positive rate desired and the amount of gene
tree error. Nevertheless, it seems that the commonly used 0.95 threshold results in very high
precision while retaining moderately high recall. In my analyses, even lower thresholds (e.g.,

0.9 or even 0.7) give high precision, while increasing the recall.
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3.5.1 Gene tree estimation error

An interesting pattern was that with estimated gene trees (but not with true gene trees),
at a given threshold, support values are more precise for high ILS compared to low ILS
(Fig. [3.7A). I postulate this effect is related to the larger impact that gene tree estimation
error has on the total amount of observed discordance for low ILS compared to high ILS
conditions. Consistent with this explanation, I also observed a larger degradation of branch
length accuracy in going from true to estimated gene trees for low ILS conditions compared
to high ILS (Table [3.3).

The issue of gene tree estimation error is at the heart of why I saw a need for developing
this new method. Sets of site-resampled bootstrap gene trees tend to have increased levels of
discordance with regard to the species tree (and also among themselves) compared to MLL
gene trees, especially when each gene has a limited phylogenetic signal. Bootstrapped gene
trees have much higher rates of discordance than either true gene trees or ML gene trees
(Fig.[3.23). It is expected that bootstrapped replicates of a dataset result in noisier estimates
of parameters than ML; however, the added error by bootstrapping should not be biased. For
MLBS, the input to the summary method is not just a noisy dataset, but a biased one with
increased levels of discordance. I postulate this bias is the reason for the underperformance of
MLBS.

My method, on the other hand, does not require bootstrapping and uses the best
available gene trees (e.g., estimated ML gene trees). While ML gene trees are still biased
towards increased discordance (and hence reduced branch length), they are better than
bootstrapped gene trees (Fig[3.23). The downside of my approach is that gene tree uncertainty
is not considered directly. Thus, it was reassuring to see that my method remains precise with
high gene tree estimation error. To account for gene tree estimation error, one can collapse

the most poorly resolved branches in gene trees when computing support. As I show in
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Figure 3.23: Gene tree discordance for the avian dataset. I show the density plot of the
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and BS gene trees for fMy different model conditions.
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my analyses of biological data, this practice seems promising. However, I note that when
collapsing branches, one should be careful not to introduce bias, which can happen with
aggressive filtering. I choose to collapse branches with support below 33% (which can be
considered randomly resolved). Future work needs to further study the effect of collapsing
low support branches in gene trees on both branch length and support.

The impact of gene tree estimation error was most clear with estimates of the branch
length. The branch lengths produced by my method showed encouraging patterns (e.g.,
consistency across biological datasets); nevertheless, my estimated branch lengths are not
immune to underestimation that is seen often with other summary methods. Thus, I suggest
branch lengths from ASTRAL and other summary methods should be interpreted with care in

the presence of gene tree estimation error.

3.5.2 High support despite high discordance

An important observation, predicted by the theory but sometimes lost in the scientific
debate about discordance, is that high confidence for a correctly inferred relationship can
emerge even with high levels of discordance. As Figure [3.3|shows, a branch that appears in
only 40% of gene trees can still be resolved with high confidence if a sufficient number of
genes are available (e.g., around 500). For example, in the 1KP tree, the branch that puts
Zygnematales as sister to land plants appeared in only 49% of collapsed gene tree quartets and
the branch making Bryophytes monophyletic only appeared in 50% of them; both branches,
however, have a posterior of 1.0. I have implemented an option in ASTRAL to output the
percentage of gene tree quartets that agree with each of the three resolutions around a branch.
Pie charts in Figure give examples of these relative quartet frequencies.

A question that biologists often face is the number of genes required to resolve a
branch. The number of genes required to obtain high resolution and low false positive rates

depends on the model condition. With higher ILS, more genes are required, an observation
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that is not surprising. However, my method can be extended to estimate the number of genes

that might be required to resolve a tree (with an estimated level of ILS).

3.5.3 Limitations and future work

Promising approaches for incorporating gene tree uncertainty into local posterior
probabilities exist. For example, one can weight each gene tree quartet around a branch by its
SH-like support, BS, or advanced measures like concordance [[11]]. Moreover, comparing my
method against Bayesian co-estimation methods on small datasets where they can run will be
interesting. Furthermore, I did not investigate the impact of changing prior parameters (A); nor
did I explore other prior functions, such as Dirichlet distributions (conjugate to multinomial)
or birth-death processes. I leave these for future work.

I violated some but not all assumptions of my method in the experimental results.
The sequence evolution models used for simulation and inference were both GTR+I", but on
real data, model violations (e.g., compositional bias) can lead to biased estimates of gene
trees. Finally, all my simulated datasets had discordance that was generated only by ILS and
estimation error, and not other sources of true biological discordance, such as undetected
paralogy or horizontal gene transfer. Future work should further examine the impact of other

biological sources of discordance on the reliability of local posterior probabilities.
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Chapter 4

Testing for polytomies in phylogenetic

species trees using quartet frequencies

Phylogenetic species trees typically represent the speciation history as a bifurcating
tree. Speciation events that simultaneously create more than two descendants, thereby creating
polytomies in the phylogeny, are possible. Moreover, the inability to resolve relationships is
often shown as a (soft) polytomy. Both types of polytomies have been traditionally studied
in the context of gene tree reconstruction from sequence data. However, polytomies in the
species tree cannot be detected or ruled out without considering gene tree discordance. in this
dissertation, I describe a statistical test based on properties of the multi-species coalescent
model to test the null hypothesis that a branch in an estimated species tree should be replaced
by a polytomy. On both simulated and biological datasets, I show that the null hypothesis is
rejected for all but the shortest branches, and in most cases, it is retained for true polytomies.
The test, available as part of the Accurate Species TRee ALgorithm (ASTRAL) package, can
help systematists decide whether their datasets are sufficient to resolve specific relationships

of interest.
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4.1 Introduction

Phylogenies are typically modeled as bifurcating trees. Even when the evolution is
fully vertical, which it is not always [[19} [171]], the binary model precludes the possibility
of several species evolving simultaneously from a progenitor species [95]. These events
could be modeled in a multifurcating tree where some nodes, called polytomies, have more
than two children. True polytomies have been suggested for several parts of the tree-of-life
(e.g., [239,114]). Polytomies are also used when the analyst is unsure about some relationships
due to a lack of signal in the data to resolve relationships [251]. The terms hard and soft
polytomies are used to distinguish between these two cases [146], with a soft polytomy
reserved for the case where relationships are unresolved in an estimated tree and a hard
polytomy for multifurcations in the true tree (Fig. [4.1)). Distinguishing the two types of
polytomies is not easy. Moreover, the distinction between soft and hard polytomies can be
blurred. The difficulty in resolving relationships increases as branches become shorter. In
the limit, a branch of length zero is equivalent to a hard polytomy, which is not just difficult
but impossible to resolve. Regardless of abstract distinctions, a major difficulty faced by
systematists is to detect whether specific resolutions in their inferred trees are sufficiently
supported by data to rule out a polytomy (e.g., see [48}239]).

For any branch of a given species tree, I can pose a null hypothesis that the length
of that branch is zero, and thus, the branch should be removed to create a polytomy. Using
observed data, I can try to reject this null hypothesis, and if I fail to reject, I can replace
the branch with a polytomy. The resulting polytomy is best understood as a soft polytomy
because the inability to reject a null hypothesis is never accepting the alternative hypothesis.
The inability to reject may be caused by a real (i.e., hard) polytomy, but it may also simply be
due to the lack of power (Fig.[d.1). in this dissertation, I present a new test with polytomy as

the null hypothesis for multi-locus datasets.
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The idea of testing a polytomy as the null hypothesis and rejecting it using data has
been applied to single-locus data [[103} 259]. Likelihood ratio tests against a zero-length
branch have been developed (e.g., Swofford—Olsen—Waddell-Hillis (SOWH) test [246]])
and are implemented in popular packages such as Phylogenetic Analysis Using Parsimony
(PAUP*) [245]. Treating polytomies as the null hypothesis has been pioneered by Walsh et
al. who sought to not only test for polytomies but also to use a power analysis to distinguish
soft and hard polytomies [259]. Appraising their general framework, Braun and Kimball [34]]
showed that the power analysis can be sensitive to model complexity (or lack thereof). Perhaps
most relevant to my work, Anisimova et al. presented an approximate but fast likelihood
ratio test for a polytomy null hypothesis [12]; their test, like what I will present looks at each
branch and its surrounding branches while ignoring the rest of the tree.

Existing tests that treat pose a polytomy as the null hypothesis assume that the
sequence data are generated on a single tree, as do Bayesian methods of modeling poly-
tomies [133]. Therefore, these methods test whether a gene tree includes a polytomy [222].
However, the species tree can be different from gene trees and the discordance can have
several causes, including gene duplication and loss, lateral gene transfer, and incomplete
lineage sorting [56} [147]. Arguably, the question of interest is whether the species tree
includes polytomies. Moreover, we are often interested to know whether we should treat the
relationship between species as unresolved given the amount of data at hand. These ques-
tions cannot be answered without considering gene tree discordance, an observation made
previously by others as well [222, [187]]. For example, Poe and Chubb [187]], in analyzing an
avian dataset with five genes, first looked for zero-length branches in the gene trees using the
SOWH test [246] and found evidence that some gene trees may include polytomies. However,
they also tested if the pairwise similarity between gene trees was greater than a set of random
trees and it was not. Their test of gene tree congruence, however, was not with respect to any

particular model of gene tree evolution.
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A major cause of gene tree discordance is a population-level process called incom-
plete lineage sorting (ILS), which has been modeled by the multi-species coalescent (MSC)
model [191}1178]. The model tells us that that likelihood of ILS causing discordance increases
as branches become shorter; therefore, any test of polytomies should also consider ILS. The
MSC model has been extensively used for reconstructing species trees using many approaches,
including Bayesian co-estimation of gene trees and species trees [90, [139] and site-based
approaches [47,138]. A popular approach (due to its scalability) is the summary method, where
I first reconstruct gene trees individually and then summarize them to build the species tree.
Many approaches that model ILS rely on dividing the dataset into quartets of species. These
quartet-based methods (e.g., the summary method ASTRAL [164, 165, 278]], the site-based
method SVDQuartets [47], and a hybrid method called Bucky-Quartet [[125]) rely on the
fact that for a quartet of species, where only three unrooted tree topologies are possible, the
species tree topology has the highest probability of occurring in unrooted gene trees under the
MSC model (Fig. 4.1).

Relying on the known distribution of quartet frequencies under the MSC model, I
previously introduced a way of computing the support of a branch using a measure called
local posterior probability (localPP) [210]. in this dissertation, I further extend the approach
used to compute localPP to develop a fast test for the null hypothesis that a branch has
length zero. Under the null hypothesis, I expect that the three unrooted quartet topologies
defined around the branch should have equal frequencies [7]. This can be rigorously tested,
resulting in the approach I present. Similar ideas have been mentioned in passing previously
by Slowinski [222] and by Allman et al. [[/] but to my knowledge, these suggestions have
never been implemented or tested. The statistical test that I present is implemented inside
the ASTRAL package (option -t 10) since version 4.11.2 and is available online at https:

//github.com/smirarab/ASTRALL

113


https://github.com/smirarab/ASTRAL
https://github.com/smirarab/ASTRAL

a) True gene tree distributions

A D A B A B
. 13 13 113
True species tree
B c C D D C
A hard polytomy F
- A D A B A B
0.76 0.12 0.12
B E D E E D
B (o} D E
A E A D A E
0.4 0.3 0.3
D F E F F D
Estimated gene tree distributions
b A D A B A B
) 103 99 98 0.4
0.3

p-value=0.93>a

B cc D D c fo02 not rejected
Estimated species tree ) , , 01
x %= (103-100//100+(99-100)°/100+(98-100)°/100 0.0
A soft polytomies 0 5 102 15 20
i \ X
/ \ A D A B A B
y0.015 0.08y 215 a9 P
0.86
2 03 p-value=0.0<a
B E D E E D 20.2 rejected
4]
c D E 0.1
¥ 2= (215-100)%/100+(39-100/%/100+(46-100/2/100 0.0
0 50 100 150 200
X2
A E A D A E o4
116 100 84 ’
2z 038 p-value=0.08>a
D FE F F D § 0.2 not rejected
0.1
2 2 2 2 00/ L— T
x %= (116-100) %/100+(100-100)%/100+(84-100)°/100 ==
2
X

Figure 4.1: A statistical test of polytomies. (a) I show an example true species tree with a
hard polytomy and two branches with CU lengths 1 and 0.1 (left), and the expected quartet
gene tree fractions for three selected quartets based on the MSC model (right). The first
quartet is around a true (hard) polytomy and has % fraction expected for all three alternative
topologies. (b) An estimated species tree with estimated CU branch lengths (left) and a
hypothetical set of quartet tree frequencies counted from 300 hypothetical gene trees (right).
Below each set of quartets, I show the computation of the y test statistic, and show where
it falls on the 2 distribution with DF = 2; the vertical blue line shows the computed %>
based on given counts and the shaded red areas inside distributions show the area under
the y? distribution corresponding to the p-value. The null hypothesis is not rejected for the
branch corresponding to the true polytomy (a true negative) or the short 0.1 CU branch (a
false negative); these branches (dotted lines in the species tree) can be replaced with soft
polytomies. CU: Coalescent unit; MSC: Multi-species coalescent. DF: Degrees of freedom
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4.2 Materials and Methods

4.2.1 Background

An unrooted tree defined on a quartet of species {a,b,c,d} can have one of three
topologies (Fig. ): t1 = ab||cd (i.e., a and b are closer to each other than ¢, and d),
ty = ac||bd, or t3 = ad||bc. Consider an unrooted species tree ab||cd where the internal
branch length separating species a and b from ¢ and d is x in coalescent units (CU), which
is the number of generations divided by the haploid population size [56]]. Under the Multi
Species Coalescent (MSC) model, each gene tree matches the species tree with the probability

p1 = 1—%e_x

and matches each of the two alternative topologies with the probability
p2=p3 = %e‘x [7]. Given true (i.e., error-free) gene trees with no recombination within
a locus but free recombination across loci, frequencies ny,nz,n3 of gene trees matching
topologies t1,1,t3 will follow a multinomial distribution with parameters p1, p2, p3 and with
the number of trials equal n = nj + ny + n3. Clearly, for a species tree with N > 4 species,
the same results are applicable for any of the (IX ) selections of a quartet of the species with x

defined to be the branch length on the species tree restricted to the quartet (see Fig. .| for

examples).

4.2.2 A statistical test of polytomy

A true polytomy is mathematically identical to a bifurcating node that has at least one
adjacent branch with length zero; the zero-length branch can be contracted in the binary tree
to introduce the polytomy (e.g., compare branches P4 — P6 in Fig. 4.2 to the multifurcating
tree), If the true species tree for a quartet of taxa has a polytomy (i.e., x = 0), then all gene
tree topologies are equally likely with p1 = p» = p3 = % Thus, if I had the true p; values, I

would immediately know if the species tree has a polytomy. However, I can never know true
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pi parameters; instead, I have observations ny,n;,n3 with E(n;) /n = p;. Luckily, multinomial
distributions concentrate around their mean. As the number of genes increases, the probability
of quartet frequencies deviating from their mean rapidly drops; for example, according to
Hoeftding’s inequality, the probability of divergence by € drops exponentially and is no more
than 2¢~2€"., This concentration gives us hope that even though I never know true p; values
from limited data, I can design statistical tests for a p = % null hypothesis. For an internal

branch B in a bifurcating species tree, consider the following

Null hypothesis: The length of the internal branch B is zero; thus, the species tree has a

polytomy.

To test this null hypothesis, I can use quartet gene tree frequencies given three

assumptions.
Al. All positive length branches in the given species tree are correct.

A2. Gene trees are a random error-free sample from the distribution defined by the MSC

model.
A3. Thave n > 10 gene trees with at least a quartet relevant to B.

A1, which I have previously called the locality assumption [210], can be somewhat relaxed.
For each bipartition (i.e., branch) of the true species tree, either that bipartition or one of its
NNI rearrangements should be present in the given species tree.

I now describe expectations under the null hypothesis. With start with the N =4
case. By the A2 assumption, frequencies np,n,,n3 follow a multinomial distribution with
parameters (p1, p2, p3,n). Under the null hypothesis p; = pr = p3 = % Thus,under the null,

o (m—n/3)* (m—n/3)*  (n3—n/3)

L= n/3 * n/3 + n/3 @1
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is asymptotically a chi-squared random variable with 2 degrees of freedom [276]. This
chi-squared approximation for three equiprobable outcomes is a good approximation when
n > 10 [1150 276, 193], hence my assumption A3. For smaller n’s an exact calculation of the
critical value is required [193]], but I simply avoid applying my test for n < 10. Given the
chi-squared random variable as the test statistic, I can simply use a Pearson’s goodness-of-fit
statistical test. Thus, the p-value is the area to the right of the 7 test statistic (Eq. under
the probability density function of the chi-square distribution with two degrees of freedom
(Fig.[@d.1b). This integral is available in various software packages, including the Java package
colt [96], which I use.

With N > 4, T apply the test described above to each branch of the species tree
independently. For each branch B, I will have multiple quartets around that branch. I say that
a quartet of species {a,b,c,d} is around the branch B when it is chosen as follows: select
an arbitrary leaf a from the subtree under the left child of B, b from the subtree under the
right child of B, ¢ from the subtree under the sister branch of B, and d from the subtree under
the sister branch of the parent of B (this can be easily adopted for a branch incident to root).
Note that by assumption Al (and its relaxed version), the length of the internal branch of
the unrooted species tree induced down to a quartet around ‘B is identical to the length of
B. Thus, under the null hypothesis, for any quartet around B, I expect that the length of the
quartet branch should be zero. Thus, any arbitrary selection of a quartet around the branch

would enable us to use the same exact test I described before for N = 4.

Computing and summarizing quartet frequencies

Following the approach I previously used for defining localPP [210], I can also use all

quartets around the branch. More precisely, let n; j for 1 <i < 3,1 < j <n be the number of

ni,j

quartets around the branch B that in gene tree j have the topology #; and let f; ; = TNt
5] 5J 5]
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Then, I define

n

=Y fii= % i) 4.2)
£

=1 4N

Given these n; values, I use the x> test statistic as defined by Equation just as before.

While I use Equation .2) mostly for computational expediency, my approach can be
justified. Let x; j ¢, 1 <i<3,1 < j<n,1<k<mbeanindicator variable that is 1 if and only
if the quartet k around the branch B has the topology #; in gene tree j. Let m;x =} ;x; j x be
the number of gene trees where a quartet k has the topology #;. Note that any quartet k£ around
B can be chosen; thus, my hypothesis testing approach would work if I define n; = m; ;. for
any k and use those n; values in Equation @ In particular, the quartet with the median m;  is
a valid and reasonable choice. Moreover, note that if all gene trees are complete, Equation[4.2]
simplifies to n; = meany m; ;. I further assume that in the (unknown) distribution of m; ;. values,
the mean approximates the median. Thus, I approximate n; = mean(m; ) ~ median (m; x ).
I use this approximation because, as it turns out, computing the mean is more computationally
efficient than using the median.

It may initially seem that computing the n; values requires computing f; ; values, which
would require O(N*n) running time. This would be too slow for large datasets. Computing
the median quartet score also requires O(N*n). However, the mean quartet score can be
computed efficiently in O(N?#n) using the same algorithm that I have previously described for
the localPP [210]. I avoid repeating the algorithm here but note that it is based on a postorder
traversal of each gene tree and computing the number of quartets shared between the four
sides of the branch B and each tripartition defined by each node of each gene tree. This
traversal is adopted from ASTRAL-II [163]].

When gene trees have missing data, the definition of f; ; naturally discards missing
quartets. Similarly, if the gene tree j includes a polytomy for a quartet, it is counted towards

neither of the three n; ; values and so, is discarded. Then, Equation [4.2] effectively assigns
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a quartet k missing/unresolved in a gene tree j to each quartet topology i proportionally to
the number of present and resolved quartets in the gene tree j with the topology i; in other
words, a missing x; j  is imputed to Y'x x; j x/m; where m; is the number of quartets present
and resolved in the gene tree j. A final difficulty arises when none of the quartets defined
around B are present or if all of the present ones are unresolved in a multifurcating input gene
tree. When this happens, I discard the gene tree for branch ‘B, reducing the number of genes n.
Thus, the effective number of genes (i.e., effective n) can change from one branch to another
based on patterns of gene tree taxon occupancy and resolution. Note that the A3 assumption

is with respect to this effective number of gene trees and not the total number.

4.2.3 Evaluations

I examine the behavior of my proposed test, implemented in ASTRAL 5.5.9, on
several simulated and empirical datasets on conditions that potentially violate assumptions
Al and A2.

The empirical datasets are a transcriptomic insect dataset [212], a genomic avian
dataset [105] with “super’” gene trees resulting from statistical binning [[161]], two multi-loci
Xenoturbella datasets by Rouse et al. [203]] and Cannon ef al. [43], and a transcriptomic plant
dataset [264] (Tabled.1). Since in the empirical data, the true branch length or whether a node
should be a polytomy is not known, I will report the relationship between the estimated branch
lengths and p-values. I will also randomly subsample gene trees to test how the amount of
data impacts the ability to reject the null; for this, I focus on selected branches that have been

difficult to resolve in the literature.

Simulated Datasets with Polytomies (S12A and S12B)

I simulated two datasets starting from two fixed species trees with 12 species (S12A:

Fig[4.2h, S12B: Fig[d.2b). For both species trees, the tree height is 1.6M generations and
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Table 4.1: Datasets. ref: the first publication to produce the dataset, max height (known
only for simulated dataset): the height of the tree in number of generations (population
size fixed to 2 x 10°), N: number of species, n: the maximum number of genes, R: number
of replicates, gs: average ASTRAL quartet score as a measure of gene tree discordance;
computed using the true species tree and true gene trees for simulated and the estimated
species tree and estimated gene trees for the biological datasets, GE: average distance
between true and estimated gene trees (known for simulated dataset).

Type Dataset ref max height N n R qs GE
Aves [105] 48 2022 1 0.64
insect [212] 144 1478 1 0.72
Biological plant [264] 103 844 1 0.89
Xenoturbella  [203]] 26 393 1 0.50
Xenoturbella  [43]] 78 212 1 0.55
S12A new 1.6M 12 1000 50 0.82 36%
S12B new 1.6M 12 1000 50 0.68 35%
Simulated  S201 [165] 10M 201 1000 100 094 25%
S201 [165] 2M 201 1000 100 0.72 31%
S201 [165] 500K 201 1000 97 049 47%

the population size is 2 x 10°; thus, the tree height is 8 CU. The SI12A species tree has
two polytomies, each with three children, in addition to a short branch (PO) of length 0.2
coalescent units. The S12B tree has a polytomy with five children. For both S12A and S12b,
Simphy [[149] is used to simulate 50 replicates, each with 1000 gene trees. After generating
the true gene trees, I used Indelible [72]] and the GTR+I" model of sequence evolution to
simulate 250bp sequences down the gene trees. The GTR+I" parameters are drawn randomly
from Dirichlet distributions used in the ASTRAL-II paper (parameters are estimated from a
collection of biological datasets [[165]). I then used FastTree2 [188] to estimate gene trees
from the sequence data. Both datasets have around 35% gene tree error, measured as the
average RF distance between true and estimated gene trees (Table §.1)).

On this datasets, I score an arbitrary resolution of the true multifurcating species trees.
Therefore, I can have both false positive errors (incorrectly rejecting the null for a polytomy)

and false negative errors (failing to reject the null for a positive-length branch). I vary the
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number of genes between 20 and 1000 by randomly subsampling them and examine the
distribution of p-values across all 50 replicates for each interesting branch using both true

and estimated gene trees.

Simulated Datasets without Polytomies (S201)

I use a 201-taxon simulated dataset previously generated [165) 210]]. Species trees
are generated using the Yule process with a maximum tree height of 500K, 2M, or 10M
generations and speciation rates of 1076 (50 replicates per model condition) and 10~ (another
50 replicates). The population size is fixed to 2 x 10° in all datasets. Thus, I have three
conditions, each with 100 replicates and each tree includes 198 branches (59,400 branches
in total). Branch lengths have a wide range (as I will see). The estimated gene trees on this
dataset have relatively high levels of gene tree error (Table 4.1)). Each replicates has 1000
gene trees, which I also randomly subsample to 50 and 200.

In this dataset, the true species trees are fully binary and therefore, the null hypothesis
is never correct. Any failure to reject the null hypothesis is a false negative error. The inability
to reject the null hypothesis should never be taken as accepting the null hypothesis because
it can. simply indicate that the available data is insufficient to distinguish a polytomy from
a short branch. An ideal test should be able to reject the null for long branches. However,
for very short branches, failing to reject the null would be the expected behavior. It is worth
contemplating the meaning of super short branches. For a haploid population size of 10°, a
branch length of 10~* CU corresponds to only ten generations. One can argue that such short
branches, for most practical purposes, can be considered a polytomy. Thus, false negative

errors among super short branches could perhaps be tolerated.
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Figure 4.2: S12 datasets: true species trees and p-value distributions. For S12A (a) and
S12B (b), I show the true multifurcating species trees in coalescent units (left) and an
arbitrary resolution of the species tree used to test for polytomies (right). Branches P1,
P2, and P4-P6 (red) represent arbitrary resolutions for which the null hypothesis is correct.
Branches PO, P3, and P7 (yellow) are selected as examples for which the null hypothesis is
incorrect. (c—f) The p-value distributions are shown as empirical cumulative distribution
functions (ECDF) where the x-axis shows the p-value x and the y-axis shows the percentage
of the replicates (out of 50) with a p-value < x. Results are shown for four selected branches
of S12A (c,d) and S12B (e,f) for both true gene trees (c,e) and estimated gene trees (d,f) with
varying numbers of gene trees (line colors). Dashed vertical red line shows p-value= 0.05.
In red boxes, the intersection of the vertical line with each line shows the false positive rate.
In yellow boxes, the intersection of the vertical line with each line shows one minus the false
negative rate.
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4.3 Results

4.3.1 Simulated datasets

I focus my discussions on o = 0.05, but I show full distributions of p-values in many
places.

S12A and S12B

On the S12A tree, P1 and P2 are zero-length branches and therefore, the test should
ideally fail to reject the null hypothesis for them. As desired, when true gene trees are used,
p-values are uniformly distributed (Fig.[4.2c; note the linear empirical cumulative distribution
functions for P1 and P2 with true gene trees). For example, the null hypothesis is rejected for
4% of replicates with 1000 gene trees. As expected, since the null is correct, the false positive
rate does not increase as I increase the number of gene trees. Switching to estimated gene
trees universally increases false positive errors (Fig[4.2ld). For example for P1, I reject the
null hypothesis in 12% of replicates using 1000 gene trees. The most severe case of false
positive error rates occurs for branch P2, where 24% of replicates are rejected with 1000 gene
trees. Thus, gene tree errors can, in fact, increase the false positive error rates, but the extent
of the increase depends on the length of branches surrounding the tested branch.

On the S12A tree, I also examine two binary positive-length branches: PO, which is
short (0.2 CU length) and the parent of a polytomy, and P3 (1 CU), which is longer and the
child of a polytomy. On these, I desire that the null hypothesis should get rejected. The P3
branch is easily rejected in all replicates using true gene trees. With estimated gene trees,
given 50 genes or more, the null is rejected in almost all cases, and is rejected in 66% of
replicates with 20 genes. Thus, the power to reject this moderate length branch (corresponding
to 2 x 10° generations) is very high. For PO, which is rather short, the ability to reject the

null hypothesis depends on the number of genes and similar to other branches, the power is
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higher for true gene trees. The false negative rates decrease as the number of genes increases;
using 1000 gene trees, the null is rejected in all replicates with true gene trees and in 86%
of replicates with estimated gene trees. Overall, the false negative rate is a function of the
number of genes, the length of the branch, and gene tree error, as expected.

The S12B tree shows broadly similar results as S12A (Fig[4.2kf) but some differences
are noteworthy. On the zero-length branches (P4, PS5, and P6), as desired, the test fails to
reject the null. However, false positives rates are a bit lower than expected by chance when
true gene trees are used. For example, at o = 0.05, I barely ever reject the null hypothesis
for either of these three branches. These lower than expected false positive rates may be due
to the fact that each branch is considered independently in my test, but P4, PS5, and P6 are
very much dependent (they all resolve one high degree polytomy). Even using estimated gene
trees, the false positive rate remains low. With estimated gene trees, for P4, I reject the null in
4% of replicates when I use 1000 gene trees and I never reject the null hypothesis otherwise
(Fig[4.2f). For P5 and P6, the false positive rates is at most 8% and 4% with 1000 genes.
While the false positive rates remain low with estimated gene trees, the rate seems to slightly
increase with increased numbers of gene trees. Alongside the zero-length branches, I also
study the branch P7 (length: 2 CU), which is adjacent to the polytomy. For this relatively
long branch, I always reject the null hypothesis with true gene trees. With estimated gene
trees, the false negative rate is only 16% with 20 gene trees and gradually drops to 0% at 200

genes or more.

S201

On the S201 datasets, I can only have false negative errors. I bin branches according
to the log of their CU length into 20 categories and compute the percentage of branches that
are rejected according to my test with o = 0.05 per bin (Fig [4.3). The false negative rate

mostly depends on three factors: 1) the branch length, 2) the number of genes, and 3) whether
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true or estimated gene trees are used. The impact of all three factors is consistent with what
one would expect for a reasonable statistical test. For the longest branches (e.g., > 1.5 CU),
the null hypothesis is rejected almost always even with as few as 50 genes and with my highly
error-prone estimated gene trees. Using the true gene trees instead of estimated gene trees
increases the power universally. For example, with 50 true gene trees, branches as short as
0.6 CU are almost always rejected. Interestingly, the difference between estimated and true
gene trees seems to reduce as the number of genes increase.

Reassuringly, as the number of genes increases, the power to reject the null hypothesis
also increases. Thus, with 1000 genes, branches between 0.1-0.2 CU are rejected 99.9% of
the times with true gene trees and 90.0% of the times with estimated gene trees. Branches
below log(7/6) = 0.15 are considered very short and can produce the anomaly zone [55}53].
Branches in the 0.05-0.15 CU range are rejected 90.4% and 67.4% of times with 1000 true

and estimated gene trees, respectively.

4.3.2 Biological dataset

On the biological datasets, the ability to reject the null hypothesis depends on the
branch length and the effective number of gene trees (Figure d.4)). Most branches with the
estimated length greater than 0.1 CU had p < 0.05. Datasets with more than a thousand genes
(Aves and insects) had higher resolution and have p < 0.05 for branches with the estimated
length as lows as 0.035 CU. Yet in all datasets except the Aves (where all gene trees include
all species) there are some ranges of branch length (often above 0.1 CU) where I am able
to reject the null hypothesis for some branches but not for the others. This cannot be just
due to random noise because estimated (not the unknown true) branch length is shown and
two branches with the same length, have identical n;/n values. Instead, the reason is that the
effective number of genes changes from one branch to another because some gene trees may

not include enough species to define a quartet around some branches. The effective number
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of genes can also decline due to a lack of gene tree resolution, but this does not happen in my
datasets, which include only binary gene trees (I will revisit this in the discussion section).

To further test the impact of the number of genes, for each dataset, I randomly
subsampled gene trees (1% — 100% but no less than 20 gene trees) to find out how many
genes are needed before I am able to reject the null hypothesis. I repeat this subsampling
procedure 20 times, and show the average p-values across all 20 runs (Figures and [4.6).
In these analyses, I focus on selected branches of each empirical dataset. Note that in some
downsampled datasets, occasionally branches have an effective number of genes that is
smaller than 10, violating my assumption A3; I exclude these branches.

For the avian datasets, 6 branches in the species tree could not be rejected as a
polytomy at o = 0.05 even with all super gene trees (Figure [4.5h). These mostly belong to
what has been called the wall-of-death [109], a hypothesized rapid radiation at the base of
Neoaves [[105, [180]. In subsampling super gene trees, I highlight seven selected branches
(labeled A—G) as shown in Figure d.5p. Interestingly, when I subsample super gene trees,
several distinct patterns emerge for various branches. Most branches are easily rejected as a
polytomy even with a small fraction of the data (e.g., C). For some shorter branches (e.g., G
and B) rejecting a polytomy requires hundreds of super gene trees. Yet for others (e.g., D and
perhaps F), I cannot reject the polytomy with the full dataset, but the pattern suggests that if I
had more super gene trees, [ may have been able to reject them as a polytomy. Finally, for
some branches (e.g., A and G), increasing the number of genes does not lead to a substantial
decrease in the p-value, suggesting that increasing the number of input trees may not be
sufficient to resolve them.

For the insect dataset I focus on 6 clades, Holometabola, Acercaria+Hymenoptera,
Hexapoda, Orthopteroidea, Pterygota, and Psocodea+Holometabola; these all have been
classified as having fairly strong support from the literature [212]], indicating that they enjoy

robust support in the literature but some analyses reject them. As I reduce the number of
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Figure 4.5: Polytomy test results on avian dataset. (a) ASTRAL species tree using binned
ML gene trees. p-values greater than zero are reported on the branches, branches with
p > 0.05 are shown in red. (b) change in p-value with respect to the number of genes for the
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129



a) Insects
0.8
0.6
o)
=
g 0.4
Q
0.2
0.0
0 500 1000 1500
Number of genes
Holometabola Hexapoda Pterygota
-~ Acercaria+Hymenoptera —- Orthopteroidea <~ Psocodea+Holometabola
b) Plants
0.6
So4
[
i
Q
0.2
B o e
0.0
200 400 600 800
Number of genes
Base of Angiosperms - Land plants+Zygnematales
- Bryophytes Land plants+Zygnematales+Cole.
Coniferales
C) Xenoturbella (Cannon et. al.) Xenoturbella (Rouse et. al.)
0.75

0.00

50 100 150 200 100 200 300 400
Number of genes

Bilateria = Deuterostomia - Nephrozoa

Figure 4.6: Polytomy test results for selected branches of (a) insects (b) plants, and (c) two
Xenoturbella datasets. I used ASTRAL species trees with the varying number of gene trees
sampled uniformly at random (1%, 2%.. .., 100% of gene trees but no less than 20) repeated
20 times. I show average p-values (y-axis) versus the number of gene trees (x-axis). Solid
horizontal line shows p-value= 0.05. Cases with effective n below 10 are excluded; for
plants and Xenoturbella, 1 omit 1-4% because most replicates have n < 10.
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genes, just like the avian dataset, I see three patterns (Figure 4.6p). For clades Holometabola,
Acercaria+Hymenoptera, and Orthopteroidea, I get p < 0.05 even with fewer than 100 genes
and for Pterygota with around 250 genes. I am not able to reject the null hypothesis for
Psocodea+Holometabola with all gene trees, but the decreasing p-values suggest that this
resolution could perhaps be resolved if I had several hundred more loci. The support for
Hexapoda never decreases as I use more genes, suggesting that the relationship between
insects and their close relatives (Collembola and Diplura, both considered insects in the past)
may remain unresolved if I simply increase the number of genes. For this deep (around
450M years old) and undersampled node, p-values may fail to reduce either because of a true
polytomy or because gene trees are estimated with high (perhaps biased) error.

In remaining datasets (plants and Xenoturbella), all important branches that I studied
saw decreasing p-values as the number of gene trees increase (Figure 4.6b). In the plant
dataset, having around 400 genes seems sufficient for most branches of interest, including
the monophyly of Bryophytes and the resolution of Amborella as sister to all the remaining
flowering plants. The branch that puts Zygnematales as sister to land plants is rejected as
a polytomy with about 350 genes. However, the correct relationship between Chara and
Coleochaetales remains hard to resolve. Even with the full dataset, a polytomy is not rejected,
though the decreasing p-values point to the possibility that this relationship would have been
resolved had I had more genes.

The Xenoturbella datasets both have three focal branches, surrounding the position of
Xenacoelomorpha. The branch labeled Bilateria, which has Xenacoelomorpha and Nephrozoa
as daughters branches in both papers, can be resolved at o0 = 0.05 with as few as 50 (Cannon)
or 100 (Rouse) gene trees (Figure d.6c). However, pinpointing the position of Xenacoelomor-
pha also depends on the branch labeled Nephrozoa, which puts Xenacoelomorpha as sister to
a clade containing Protostomia and Deuterostomia. The null hypothesis that this branch may

be a polytomy is not rejected in either dataset, but a pattern of decreasing p-values with more
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loci can be discerned. Thus, both datasets are best understood as leaving the relationships
between Protostomia, Xenacoelomorpha, and the rest of Deuterostomia as uncertain with
some evidence that Xenacoelomorpha is at the base of Nephrozoa. Remarkably, patterns of
difficulty in resolving branches are similar across the two independent datasets with different

taxon and gene selection.

4.4 Discussion

I introduced a new test for rejecting the null hypothesis that a branch in the species
tree should be replaced by a polytomy. Unlike existing tests, my new test considers gene tree
discordance due to ILS, as modeled by the MSC model. In several simulations, I showed that
the test behaves as expected. The null hypothesis is often retained for true polytomies and
is often rejected for binary nodes, unless when the true branch lengths are very short. The
power to reject the null hypothesis for binary relationships increases with longer branches or
with more gene trees and is reduced with gene tree estimation error. Gene tree error can also,

in some cases, increase the false positive rate.

4.4.1 Power

Overall, even when I have 1000 genes, it is rare that I can reject the null for branches
shorter than 0.03 CU. A branch of length 0.03 corresponds to 6000 generations in my
simulations. One can argue that failing to resolve a branch that corresponds to such short
evolutionary times (roughly 60K years with a generation time of 10 years) can perhaps be
tolerated. Mathematically, given a sufficiently large unbiased sample of gene trees, even
infinitesimally short branches can be distinguished from a polytomy. In practice, however,
extremely short branches should be treated with suspicion as my input gene trees invariably

are not perfect samples from the MSC distribution.
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Figure 4.7: Impact of the number of genes on p-value (a) The p-value computed for the
different number of gene trees (x-axis) for four different short branch lengths (colors) when
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genes (y-axis) to reject the null hypothesis with a p-value of 0.05 or 0.01 for various branch
lengths (x-axis) assuming that the observed frequencies match the expected frequencies.
Note that the x-axis scales with )%

In my biological analyses, I saw that subsampling genes and tracking trajectories of
the p-value may be helpful in predicting the number of required genes to resolve a branch.
The approach I presented can be used in other biological data as well. However, I caution that
such predictions should be interpreted with the limitations of my proposed test in mind. Many
factors such as gene tree error and other sources of discordance can contribute to deviations
from MSC, and such deviations may render the predictions inaccurate. But if such predictions
are to be made, a natural question arises: How does the number of genes impact the power?

I can easily compute the required number of genes for rejecting the null hypothesis
assuming the expected frequencies match observed frequencies (Fig. 4. 7n). For example,
while for a branch of length 0.1 CU I only need ~300 genes before I can reject it as a polytomy,
for a branch of length 0.02 (i.e., 5 times shorter), I need ~7500 genes (i.e., 25 times more).
For a quartet species tree, n| > max(ny,n3) with arbitrarily high probability if the number of

loxgzN [216]. More broadly, the number of genes required for correct species

genes grows as

tree estimation using ASTRAL is proven to grow proportionally to logN and to x~2 [216].
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Similarly, for any given branch length, I can numerically compute the minimum number of
required genes to obtain a given p-value (e.g., 0.05). Assuming the observed frequencies
match the expectations, I observe that the required number of genes grows linearly with é
(Fig. @.7b). In fact, Figure gives us a way to estimate the level of “resolution” that a
dataset can provide. For example, 300 genes can reject the null for branches of ~0.1 CU but
if I quadruple the number of genes to 1200, my resolution is increased two-folds to branches
of ~0.05 CU. Note that gene tree error would increase these requirements and hence these
should be treated as ballpark estimates. These estimates also assume I have N = 4 species.

The test I presented has no guarantees of maximal power. Other tests, such as
likelihood ratio, may be more powerful. Moreover, it can be argued that my test is conservative
in how it handles N > 4. When multiple quartets are available around a branch, I use their
fraction supporting the ‘B topology as the contribution of that gene to n;. Thus, whether
I have one quartet or a hundred quartets, I count each gene tree as one observation of my
multinomial distribution. This is the most conservative approach to deal with the unknown
dependencies between quartets. The most liberal approach would consider quartets to be
fully independent, increasing the degrees of the freedom of the chi-square distribution to 2m
instead of 2. Such a test would be more powerful but would be based on invalid independence
assumptions that may raise false positive rates. An ideal test would need to model the intricate
dependence structure of quartets, a task that is very difficult [65].

Finally, note that my test of polytomy relates to branch lengths in coalescent units.
A branch of length zero in coalescent units will have length zero in the unit of time (or
generations) if I keep the population size fixed. Mathematically, I can let the population size
grow infinitely. For a mathematical model where the population size grows asymptotically
faster than the time, one can have branches that converge to zero in length even though the
branch length in time goes to infinity. This is just a mathematical construct with no biological

meaning. Nevertheless, it helps to remind us that a very short branch in the coalescent unit
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(which my test may fail to reject as a polytomy) may be short not because the time was short
but because the population size was large. Branches between 0.1 and 0.2 CU were not rejected
as a polytomy by my test ~10% of times even with 1000 genes. A length of 0.1 CU can

correspond to 10M generations if the haploid population size is 100M.

4.4.2 Divergence from the MSC model and connections to localPP

The p-value from my proposed polytomy test has a close connection to the localPP
branch support. Both measures assume the MSC model and both are a function of quartet
scores (i.e., n;/n). As the quartet score of the species tree topology and the number of genes
increases, both localPP and 1 — p-value increase (Fig. [4.8p). When localPP of a branch is
close to 1.0, the polytomy null hypothesis is always rejected. However, the two measures are
not identical. Interestingly, there are some conditions where localPP is higher than 0.95 but
the polytomy null hypothesis is not rejected at the 0.05 level (Fig. d.8p). When the frequencies
follow expectations of the MSC model, 1 — p-value of the polytomy test is smaller than the
localPP.

It is important to remember that my test relies on the properties of the MSC model. If
observed quartet frequencies diverge from the expectations of the MSC model systematically
(as opposed to by natural variation), the behavior of my proposed test can change. For
example, if n; is substantially larger than n3, rejecting the null hypothesis becomes easier
(Fig. .8pb). This should not come as a surprise because this type of deviation from the MSC
model makes the quartet frequencies even more diverged from % than what is expected under
the MSC model. On real data, several factors can may contribute to deviations from MSC.
For example, incorrect homology detection in real datasets is possible (e.g., see [230] for
possible homology issues with the avian dataset) and can lead to deviations.

Another source of deviation is gene flow, which can impact the gene tree distributions.

Solis-Lemus et al. have identified anomaly zone conditions where the species tree topology
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Figure 4.8: The polytomy test versus localPP. For various branch lengths (x-axis; log scale)
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and 1 — p-value of the polytomy test (solid line). (a) The quartet frequencies follow MSC

expectations: "L =1 — g 2 =10 = ége_x (b) The quartet frequencies diverge from the
MSC expectations so that n is 20% larger than n3. 7t =1 — 2 e 2= 161 % R = %%e‘x

(c,d) quartet frequencies follow the MSC+gene ﬂow model, as analyzed by Solis-Lemus
et al. [225]]. For a species tree with a hybridization at the base (see Fig. 2 of [225]) with
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The dotted horlzontal gray line shows p- Value 0.05.
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has lower quartet frequencies compared to the alternative topologies [225]]. Since the localPP
measure does not model gene flow, under those conditions, it will be misled, giving low
posterior probability to the species tree topology in the presence of gene flow (Fig. @.8c). For
example, if A = 0.1 (meaning that 10% of genes are impacted by the horizontal gene flow),
for branches of length 0.1 or shorter, localPP will be zero. The presence of the gene flow also
impacts the test of the polytomy. For the species tree defined by Solis-Lemus et al. (Fig. 1 of
[225]), when internal branches are short enough, there exist conditions where the gene flow
and ILS combined result in quartet frequencies being equal to % for all the three alternatives.
It is clear that my test will not be able to distinguish such a scenario from a real polytomy
(Fig. @.8kd). One is tempted to argue that perhaps high levels of gene flow between sister
branches should favor the outcome that the null is not rejected. However, this argument fails
to explain the observation that for any value of A, the null hypothesis is retained only with very
specific settings of surrounding internal branch lengths (Fig.[4.8cd ). Thus, I simply caution

the reader about the interpretation when gene flow and other sources of bias are suspected.

4.4.3 The effective number of gene trees

It is important to note that the effective number of gene trees (effective-n) can change
across branches of the same species tree. Missing data can reduce the number of genes that
have at least one taxon from a quartet defined around the branch of interest. In my biological
datasets, various branches of the same dataset often have a wide range of effective n (Fig|.9),
especially for the two transcriptomic datasets (insects and plants) with lots of missing data.
The only exception is the avian dataset, where my super gene trees always include all the taxa.

A second factor that can reduce the effective n is multifurcations in input gene trees.
If all the quartets around a branch are unresolved in an input gene tree, that gene tree does
not count towards the effective n. My biological datasets had binary gene trees. However, as

recently shown [278]], removing branches with very low support can help addressing gene
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is shown as a red horizontal line. (b) ASTRAL-III species tree estimated based on 14,446
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tree error. To demonstrate this, I revisit the avian dataset. The purpose of using super gene
trees instead of normal (unbinned) gene trees was to reduce the gene tree estimation error.
Alternatively, one can simply remove branches with support at or below a certain threshold
in gene trees and use the resulting tree as input to ASTRAL [278]. With this procedure
and the support threshold set to 10%, I generated a new ASTRAL tree based on all 14,446
unbinned gene trees from the avian dataset [[105) [161]] (Fig [4.9b). The resulting tree was
largely congruent with the ASTRAL tree on super gene trees and with reference phylogenies
form the original publication [105].

I tested how the effective n and p-values change as a result of contracting low support
branches. Simply contracting branches with 0% support reduces the median effective n
from 13,791 to 10,523. Further contracting branches with support up to 3% — 75% gradually
reduces the effective n all the way to a median of 610 (Fig4.9c). The p-values tend to decrease
as I increase the threshold for contraction (Fig[4.9b). Several branches fail to reject the null
hypothesis regardless of the threshold chosen. Others reject the null hypothesis with lower
levels of contraction but not with the higher levels, showing that the reduced effective n can
reduce the power. For one branch, interestingly, the null is not rejected if I contract up to 0%
and 3% support or if I contract up to 75%, but is rejected otherwise. This pattern may have a
subtle explanation. With gene trees that include low support branches (up to 3%), I am unable
to reject the null hypothesis perhaps because gene tree error creates a uniform distribution of
quartets around this branch. As I further remove low support branches from the gene trees, |
start to see quartet frequencies that favor the ASTRAL resolution perhaps because noise is
removed and the actual signal can be discerned. Finally, with aggressive filtering of gene tree
branches, effective n becomes so low that the test simply does not have the power to reject the
null. These interesting patterns suggest that dealing with gene tree error by contracting low
support branches may be possible, but the choice of the best threshold is not obvious. Future

studies should further consider this question.
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4.4.4 Interpretation

In the light of the dependence of my test on the MSC properties, I offer an alternative
description of the test. A safe way to interpret the results of the test, regardless of the causes

of gene tree discordance, is to formulate the null hypothesis as follows.

Null hypothesis: The estimated gene tree quartets around the branch B support all three

NNI rearrangements around the branch in equal numbers.

This is the actual null hypothesis that I test. Under my assumptions, this hypothesis is
equivalent to branch B being a polytomy. Under more complex models, such as gene flow +
ILS, this null hypothesis holds true for polytomies but also for some binary networks.

The judicious application of my test will preselect the branches where a polytomy null
hypothesis is tested and examines the p-value only for those branches. When many branches
are tested, one arguably needs to correct for multiple hypothesis testing, further reducing the
power of the test. Corrections such as Bonferroni or FDR [23]] can be employed (but I did
not apply them in my large scale tests that did not target specific hypotheses). However, note
that even though I formulate the polytomy as a null hypothesis, in reality, I expect that in
most cases the branch has positive branch length. Thus, I expect to reject the null often, in
contrast to usual applications of the frequentist test. The analyst should specify in advance
the branches for which a polytomy null hypothesis is reasonable. This adds subjectivity,
but such problems are always encountered with frequentist tests, and mine is no exception.
My test also suffers from all the various criticisms leveled against the frequentist hypothesis

testing [9]] and the interpretation has to avoid all the common pitfalls [81].
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4.5 Conclusions

I presented a statistical test, implemented in ASTRAL, for the null hypothesis that a
branch of a species tree is a polytomy given a set of gene trees. My test, which relies on the
properties of the multi-species coalescent model, performed well on simulated and real data.
As expected, its power was a function of branch length, the number of genes, and the gene

tree estimation error.
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Chapter 5

Fragmentary gene sequences negatively
impact gene tree and species tree

reconstruction

Species tree reconstruction from genome-wide data is increasingly being attempted,
in most cases using a two-step approach of first estimating individual gene trees and then
summarizing them to obtain a species tree. The accuracy of this approach, which promises
to account for gene tree discordance, depends on the quality of the inferred gene trees.
At the same time, phylogenomic and phylotranscriptomic analyses typically use involved
bioinformatics pipelines for data preparation. Errors and shortcomings resulting from these
preprocessing steps may impact the species tree analyses at the other end of the pipeline. In
this article, we first show that the presence of fragmentary data for some species in a gene
alignment, as often seen on real data, can result in substantial deterioration of gene trees, and
as a result, the species tree. We then investigate a simple filtering strategy where individual
fragmentary sequences are removed from individual genes but the rest of the gene is retained.

Both in simulations and by reanalyzing a large insect phylotranscriptomic data set, we show
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the effectiveness of this simple filtering strategy.

5.1 Introduction

Genome-scale reconstruction of species trees has become the standard practice in
phylogenetics. A typical phylogenomic analysis starts by sequencing hundreds to thousands
of loci using one of several sequencing strategies (e.g., transcriptomics, targeted amplicon
sequencing, hybrid enrichment, etc.). Data from multiple loci may be then concatenated
together to build a supermatrix, which is then analyzed using standard phylogenetic methods
such as maximum likelihood (ML). The concatenation approach ignores potential discordance
between gene trees and the species tree [[147,156]], and has been proven statistically inconsistent
[198] under the multi-species coalescent (MSC) model [178,191]. An alternative approach,
gaining in popularity, is to first estimate a gene tree for each locus (independently from other
loci) and to then combine the gene trees using a summary method [60]. Several existing
summary methods have been proven statistically consistent under the idealized conditions
when gene trees are considered error-free; examples of summary methods used in practice
include ASTRAL [164, [165]], STAR [143]], NJst/ASTRID [141} 255]], and MP-EST [142].
While alternative approaches such as co-estimation [90, [139] and site-based MSC-based
methods [38, 47]] exist, these methods have been less frequently used, perhaps due to their
computational requirements [280, 21].

Despite their growing application to real data [[105, 264, 203, |189], the accuracy of
summary methods is directly impacted by the accuracy of the input gene trees [160, 180} 229,
199, 274]. A well-studied source of gene tree estimation error (or uncertainty) is statistical
noise due to lack of phylogenetic signal in short loci [161, [274]]. This has motivated the
development of methods for detecting and removing low signal genes [207, 274] or binning

of loci to larger units [161, 20]. However, other factors, such as long branch attraction
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and missing data may also impact gene tree accuracy [229, [75]], and these have been less
thoroughly studied (but see [140, 61]).

The effect of missing data on the accuracy of single-locus or supermatrix tree re-
construction has been thoroughly studied [[130, 268, 218, 184, 267]]. In a summary method
pipeline, missing data come in two forms, as previously noted by [97]. A species may be fully
missing from some of the loci; I refer to this scenario (type I in [97]) as missing tips and to
the patterns of presence/absence resulting from it as taxon occupancy. Alternatively, a species
may be present with only partial data for some of the loci, and I refer to this scenario as
fragmentary data (type Il in [97]). These two forms of missing data may have very different
impacts on the species tree reconstruction. Missing tips may negatively impact the summary
method when the species tree is being inferred from a set of taxonomically incomplete (partial)
gene trees, whereas, fragmentary data may negatively impact the gene tree inference step
[97,219]]. While some studies have examined the impact of missing tips on summary methods
[98, 272, [100]], to my knowledge, only [97] have examined impacts of both types of missing
data.

Current high-throughput genomic sequencing methods vary considerably in the size
of the raw sequencing reads they generate, with there generally being a positive relationship
between read length and the error rate in the sequence [170]]. Sequence assembly (generating
larger contigs) also varies greatly in efficiency and accuracy, and most applications, due
to computational difficulty, rely on heuristics [131]. High-quality sequence generation and
assembly also can be compromised by challenges with organism size and availability, particu-
larly for highly diverse taxa of small body size such as insects [195]. Finally, transcriptomic
datasets [264, [166]] can have length variation in the assembled genes because of alternative
splicing and the coverage of individual genes may also be affected by expression levels. Thus,
phylogenomic and phylotranscriptomic studies that strive to provide thorough taxon sampling

of diverse lineages at a reasonable cost often contain fragmentary data, at least for a subset
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Gene 1 Gene 2 Gene 1 Gene 2

Species 1 AC-——--- ACCGATA = Species 1 -————-—- ACCGATA
Species 2 ACCGITA ACCGATA Species 2 ACCGITA ACCGATA
Species 3 CCCGTAA ACCGATA Species 3 CCCGTAA ACCGATA

Figure 5.1: Example of filtering fragments from the concatenation alignment. Removing
the fragmentary sequence Species 1 from Gene 1 only increases fragmentation without
introducing any obvious benefit.

of the taxa. Since fragmentary data may negatively impact both the gene alignment [175]]
and gene tree estimation [[130,|97], it is important to study effects of fragmentary data on the
species tree reconstruction and ways to ameliorate the impacts.

One approach to deal with negative impacts of fragmentation, used in some phylotran-
scriptomic studies [264]], is to remove each species from those genes where it is fragmentary.
Filtering fragmentary data creates missing tips and thus presents a trade-off between frag-
mentation and taxon occupancy. Because of this trade-off, it is not clear whether filtering
fragmentary data is overall beneficial to the accuracy; if indeed beneficial, it is not clear what
level of filtering is warranted. Note that a similar trade-off does not face a concatenation
analysis because no gene tree is ever estimated in such analyses and removing fragmentary
sequences while keeping the respective genes only creates more missing data (Fig. [5.1)
without any obvious benefit (except perhaps in the alignment step).

in this dissertation, I study effects of fragmentary data on species and gene tree recon-
struction using summary methods. In line with observations of [97], but using simulations in
addition to real data, I demonstrate the negative impact of fragmentary data. Unlike [97] who
deal with fragmentary data by removing genes that show low phylogenetic signal, I study the
strategy of filtering specific species from individual genes. Given a filtering threshold (e.g.,
20%), I remove from each gene alignment any species that has non-gap characters in less than
the given threshold (e.g., 20%). This form of filtering retains the gene and can arguably result
in better utilization of the data because the non-fragmentary sequences are retained.

I test my proposed filtering method on an insect dataset and corroborate my findings
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in simulations.

I studied an empirical transcriptomic dataset of insects consisting of 1478 protein-
coding genes of 144 taxa, where 27% of the alignment is gaps [166]]. In 90% of the genes,
there are 115 to 141 species present, and aligned protein coding sequences were between 134
and 890 amino acids in 90% of the genes.

Insects represent a species-rich lineage of organisms with generally small body size
and can be challenging for production of high-quality phylogenomic data due to the difficulty
of obtaining sufficient tissue (and thus DNA) for tiny, rare taxa required for full taxon
representation. The insect lineage contains within its history several questions of broad
evolutionary and scientific interest beyond its high species diversity, such as the evolution of
wings and flight, various forms of metamorphosis, and multiple origins of social behavior
[[166]]. Thus, for reconstructing the history of insects in sufficient detail to draw conclusions
about biological questions of interest, a relatively full taxon sampling from all insect groups
was desired. Transcriptomic data were used as an achievable way of providing such taxon
representation with comparative genomic data for phylogeny estimation. Transcriptomic data
typically include a large number of genes, but with the cost of having significant amounts of
fragmentary data. [166] used concatenated analysis rather than coalescent-based gene tree
summary methods, presumably because of the highly variable quality of the individual gene
trees. The large size of this dataset and the high amount of fragmentary data make it especially
well-suited for my analyses. In addition, the insect phylogeny has received considerable
attention over the years, so that [ have some prior expectation of relationships among some
lineages, providing a perspective on the accuracy of the phylogenetic results.

In simulations, I study impacts of fragmentary data and the filtering strategy on the
accuracy of gene trees and consequently the accuracy of the species trees. My simulated
dataset (see Methods) simulates gene tree discordance due to ILS and I use estimated gene

trees (with error); I also randomly inject fragmentation in gene alignments with patterns that
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emulate the biological insect dataset. I infer gene trees from the original sequences, unfiltered
alignments, and alignments after filtering fragments (thresholds: 10% — 80%) using both
RAxML [232] and FastTree2 [188]]. I infer species trees using ASTRAL-II [[165] using 50,

200, or 1000 gene trees.

5.2 Results

I start with a simulation study and then analyze the empirical insect dataset.

5.2.1 Simulation Results

Impact on gene trees

Comparing the original datasets that include no fragmentation (orig-seq) and those
with injected fragmentation (no-filtering) shows that the presence of fragmentary data dramat-
ically increases gene tree error (Fig.[5.2)), as measured by the average normalized Robinson-
Foulds distance (NRF) between true gene trees and the estimated gene trees. However,
progressively applying more aggressive filtering gradually decreases gene tree error (Fig.
and the extent of improvements depends on the filtering threshold (p < 107>; ANOVA). With
no filtering, the NRF distance is as high as 0.44 for FastTree and 0.39 for RAXxML. Filtering
fragmentary data gradually reduces the NRF distance. At the 75% threshold, the average NRF
distance is reduced to 0.30 or 0.28, respectively, for FastTree and RAXxML, which is only
slightly lower than the average NRF error with no fragmentation (0.27 or 0.25, respectively)
but these small differences are still statistically significant (p < 107>). Overall, RAXML gene
trees are significantly more accurate than FastTree trees (p < 107°). Note that to compute
the NRF distance, true and estimated trees are restricted to the same set of leaves, normalizing
by the remaining branches; as Figure [5.3] demonstrates, reductions in the NRF after filtering

cannot be attributed to the shrinking leaf set due to filtering.
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Figure 5.2: NRF distances between true and estimated gene trees in the simulated dataset.
The x-axis shows the filtering thresholds; from left to right, more aggressive filtering is
applied. Leftmost boxes are for no filtering and the rightmost boxes are for gene trees in
absence of fragmentary data. For each threshold, box plots and average distances (red line)
over 48 replicates are shown.

Impact on the species tree

Regardless of the number of genes, adding fragmentation to the data increases the
NRF distance between true and estimated species trees (Fig. [5.4p) significantly (p = 0.00014
for RAXML and p < 10> for FastTree). For example, with 1000 genes, the average species
tree NRF distance increases from 0.030 with no fragmentation to 0.057 (90% increase) with
fragments and no filtering for FastTree gene trees and from 0.023 to 0.037 (60% increase) for
RAXML gene trees.

Filtering fragmentary data has non-monotonic impacts on the species tree error
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(Fig.[5.4p). As the filtering threshold increases, the average species tree estimation error
initially tends to drop but eventually starts to increase again. The optimal threshold depends
on the number of genes and in most conditions varies between 25% and 33% (Table [5.1).
Limiting myself to all thresholds up to 33%, I observe that the accuracy of the species tree
tends to gradually improve as a result of increased filtering when at least 200 genes are avail-
able; however, improvements are statistically significant only with 1000 genes (p = 0.00461
and p = 0.0417, respectively for FastTree and RAXxML) and not for 200 (p = 0.102, and
p = 0.314, for FastTree and RAxML). With 1000 genes, filtering is never worse than no
filtering, even with extremely aggressive filtering. At the 50% threshold, the NRF distance
reduces from 0.037 to 0.028 for RAXML gene trees and from 0.057 to 0.036 for FastTree

trees.

Gene tree versus species tree error

Reducing gene tree error by increased filtering is only beneficial to the species tree
estimation when taxon occupancy is not dramatically sacrificed (Fig.[5.4p). As I go from no
filtering to filtering up to 33%, the species tree error and gene tree error both tend to decrease
at first. Further increases in the filtering threshold continue to reduce the gene tree error, but
those reductions don’t always translate to improvements in species tree error, and in fact, can
increase it. This is perhaps partly because improvements in gene tree error eventually become
small with each increase in the filtering threshold. More importantly, the taxon occupancy
continues to decrease with more filtering and lack of occupancy may offset the benefits of
reduced gene tree error. The average taxon occupancy drops from 88% to 77% and then to

65% as I increase the filtering threshold from 33% to 50% and then to 66%.
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Table 5.2: Significant clades in the insect phylogeny with references to evidence supporting
them. Letter codes refer to red-labeled nodes in Figure except node I that is missing
in my final species tree but present in the [166] final concatenation tree. The evidence
from the literature fall into three groups. Strong: virtually always recovered in previous
phylogenetic studies and not controversial based on comparative morphology Fairly strong:
often recovered by phylogenomic studies but either not clearly supported by morphology or
sometimes another well-supported alternative exists. Weak: either controversial based on
comparative morphology or seldom strongly supported by any analysis.

Code Clade composition Evidence Selected references

A Mecoptera+Siphonaptera Fairly strong | [266]]
Diptera+

B (Mecoptera+Siphonaptera) Strong ILI9: 1266, [24]

C Trichoptera+Lepidoptera Strong (120, 117]

B/C Clades B+C Strong 266, 126, 125]]
Neuropterida+ .

D (Coleoptera+Strepsiptera) Fairly strong | [266, 24,[176, 33]

p/p/c | Holometabola minus Fairly strong | [209, [167,[155,92]
Hymenoptera

E Holometabola (Endopterygota) Strong [266} 24, (176, 1252]]

F Hemiptera+Thysanoptera Fairly strong | [25]

G Acercaria+Hymenoptera Fairly strong | [25]
Mantophasmatodea+ .

H Grylloblattodea Fairly strong | [250,142,1269]

I Clade H+(Embiidina+Phasmida) | Weak LL66] but not in the final

species tree of this study

J Polyneoptera (Orthopteroidea) Fairly strong | [275, 102} [132]

K Neoptera Strong (17, 113

L Pterygota (winged insects) Strong [[118, 183} 188L 113} 262]

M Zygentoma+Pteygota Fairly strong | [28163)113]

N Insecta Strong 281163, 1113, 91]

P Psocodea+Holometabola Weak Only supported b.y [166]

and weakly by this study
Ingroup | Hexapoda Fairly strong | [112} 113,84} 1158, 194]

5.2.2 Empirical Results

Reconstructed ASTRAL-II insect trees (Figs. [5.10-[5.17) change in topology and

support based on my choice of gene tree estimation method (RAxML versus FastTree) and

the treatment of fragmentary data. Before presenting results in detail, I start by describing my

approach in judging accuracy on the biological dataset.
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Evaluation and expected relations

In order to gain some indication of how accurate the species tree results are, I first
surveyed some relationships that have been previously considered to be well established
on the basis of evidence, and also identified those that have been previously found but not
consistently supported (Table[5.2). Among the former are the monophyly of Hexapoda among
the Pancrustacea, monophoply of “true insects”, monophyly of the Dicondylia (Zygentoma +
Pterygota), monophyly of Pterygota, monophyly of Neoptera, monophyly of Holometabola,
monophyly of Antliophora (Diptera + Mecoptera + Siphonaptera) and monophyly of Am-
phiesmenoptera (Trichoptera + Lepidoptera). Among the latter are the monophyly of the
Paleoptera (Ephemeroptera + Odonata), monophyly of the Polyneoptera, sister groups re-
lationships between the Grylloblattodea and Mantophasmatodea, between Hemiptera and
Thysanoptera, and between Coleoptera and Strepsiptera, and the position of Hymenoptera as
sister to the remaining holometabolous orders. [166] found two other relationships without
previous strong support: the sister group relationship between Psocodea and Holometabola,
and a clade containing Mantophasmatodea + Grylloblattodea plus Embiidina + Phasmida. I
discuss my results in the context of these prior expectations and findings.

In addition to judging the quality of the species tree based on prior evidence, |
also study the impact of the filtering on taxon occupancy, gene tree bootstrap support, and
evolutionary diameter of the gene trees, measured by the tip-to-tip distance. A reduced taxon
occupancy is clearly undesirable (even if inevitable). Reduced gene tree bootstrap support
can be interpreted as a sign of increased uncertainty about gene trees and perhaps increased
error. An increase in the evolutionary distance can be indicative of artificially long branches

that can be inferred as a result of fragmentary data [130].
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Occupancy

Filtering fragmentary data affects the taxon occupancy of different orders and species
unevenly (Fig.[5.6a and Fig.[5.5)). Here, I measure occupancy of a clade by the percent of
genes that have at least one of the species from the specific clade. Almost all clades have at
least 50% occupancy, regardless of the threshold selected. However, the occupancy of clades
for the filtering thresholds of 20% to 33% are similar, with a considerable drop at 50%, and a
dramatic drop at 66% filtering or higher. At 50% filtering, the occupancy is above 70% for all

orders.

Gene trees

Filtering more fragmentary data improves gene tree bootstrap support for both RAXML
and FastTree (Fig.[5.6b). For example, with no filtering, the number of branches with 100%
support in RAXML gene trees is only 5% but gradually increases to 12% with the highest level
of filtering (i.e., 80% threshold). Similarly, the median branch bootstrap support for RAXxML
(or FastTree) gene trees is 37% (29%) with no filtering but gradually increases to 48% (48%)
with 80% filtering. Conversely, the number of branches with less than 33% support decreases
from 47% (53%) with no filtering to 38% (39%) with 80% filtering (Fig.[5.6b). Overall, both
RAXxML and FastTree gene trees improve in their bootstrap support, but the improvements
are larger for FastTree.

The increased bootstrap with increased filtering can be attributed to the negative
impact of fragmentary sequences on estimated gene trees (both ML and bootstrap replicates).
Fragmentary sequences and their treatment as ambiguous data tend to result in long branches
in an ML estimation [130]. Consistent with this expectation, I observe that filtering out
fragmentary data consistently reduces the evolutionary diameter (Figs. 5.6 and of gene

trees, indicating that fragments may result in long branches. This reduction in evolutionary

153



diameter coincides with increasing gene tree bootstrap support (Fig. [5.6c). In the case of
bootstrap replicates used to estimate support, the problem of fragmentation is exacerbated by
the resampling of sites, which may leave no or few sites with any non-gap characters. Finally,
note that the perceived improvements in gene trees support and evolutionary diameter come
at the cost of reduced taxon occupancy (Figs. [5.6f).

Overall, the occupancy plot (Fig. [5.6p), gene tree statistics (Fig. [5.6bc), and my
simulations (Fig.[5.4p) lead us to favor thresholds between 20% and 50%. In the rest of the
discussion, while I will continue to discuss all thresholds, where I need only one threshold, I

will use 50% as the default (I return to this choice in the discussion section).

Species trees

With all fragments included, the ASTRAL tree inferred from FastTree gene trees
fails to recover a number of relationships (Fig.[5.8h): the monophyly of Hexapoda (ingroup),
monophyly of Dicondylia (M), monophyly of Pterygota (L), monophyly of Neoptera (K),
monophyly of Thysanoptera + Hemiptera + Psocodea + Holometabola (G), and monophyly of
Neuropteroidea (D). As filtering of fragments increases (moving left to right in Fig. [5.8p), the
species tree improves, so that monophyly of Hexapoda (Ingroup), Dicondylia (M), Neoptera
(K), and Thysanoptera + Hemiptera + Psocodea + Holometabola (G) are recovered, albeit not
strongly so in the case of Neoptera and Hexapoda. ASTRAL run using FastTree gene trees
never recovers the monophyly of Pterygota (L) and monophyly of Neuropteroidea (D), which
have fairly strong support in the literature (Table[5.2). Neither does it recover the Psocodea
+ Holometabola clade (P) or the I node found by [166]], which don’t have strong support in
prior analyses. Some expected clades, especially within Holometabola, always had strong
support no matter how much filtering was done (Fig.[5.9).

In contrast, when RAXML gene trees are used, the only strong relationship that is not

recovered is the monophyly of Hexapoda (Fig. [5.8ab). Any level of filtering would result
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in a monophyletic Hexapoda, showing that even for RAXML gene trees, correct handling
of fragmentary data can improve the species tree topology. Moreover, even though the
species tree topology inferred from RAXxML gene trees is relatively robust in the presence
of fragmentary data, the ASTRAL estimated branch lengths increase with filtered gene trees
(Fig.[5.6[). Since coalescent unit branch lengths tend to be underestimated [210, [161], the
increased branch lengths are likely to be more accurate. I note that my simulations corroborate
that coalescent unit branch lengths are under-estimated and show a strong positive correlation
between gene tree accuracy and estimated branch lengths (Fig. [5.18).

My final ASTRAL tree (Fig.[5.8b) using RAXML gene trees and 50% filtering includes
all major clades with prior support in the literature, and all but two of them (monophyly of
Hexapoda, and Psocodea + Holometabola) had full support. Interestingly, [166] found a clade
of Embiidina, Phasmida, Grylloblattodea and Mantophasmatodea (I) that my final tree does
not recover, but this clade has little historical support; it will be interesting to see if this clade

is supported by further studies.

Gene tree species tree discordance

As a final evidence that gene tree accuracy has improved, I demonstrate that after
filtering, both RAXML and FastTree gene trees show reduced discordance. Overall, the
amount of gene tree discordance with the species tree reduces substantially as I increase
filtering, especially up to the 66% threshold (Fig.[5.6¢). These reductions are the reason for
the reduced coalescent unit branch lengths (Fig.[5.6[d). Similarly, the overall ASTRAL quartet
score (proportion of gene tree quartets found in the species tree) increases as more filtering is
applied (Table[5.3).

To further break down patterns of discordance, we compare support for major clades
(orders plus clades shown in Table in my gene trees before and after filtering (Fig[5.19).

Before filtering, many of the insect orders receive surprisingly little support in my gene trees.
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Table 5.3: ASTRAL quartet scores on the biological insect dataset for RAXML and FastTree
gene trees using different filtering thresholds.

FastTree RAxML

20 0.6742  0.7173
25 0.6795  0.7190
33 0.6828  0.7194
50 0.6899  0.7159
66 0.6914  0.7091
75 0.6893  0.7044
80 0.6886  0.7014

no-filtering  0.6625  0.7131

For example, with RAXML (or FastTree) gene trees, 13 (or 14) out of 26 orders are recovered
in less than half of the gene trees, and only 6 orders are recovered in at least three-quarters
of the gene trees. Moreover, most gene trees have low support and cannot strongly reject or
support the monophyly of these orders. However, the 50%-filtered gene trees show strong
support for most orders. Only 7 orders are recovered in fewer than half of these gene trees,
and the number of orders supported by at least three-quarter of the genes increases to 13 and
11, respectively for RAXML and FastTree. As an example, before filtering, 35% (28%) of
RAxML (FastTree) genes recovered Lepidoptera as a monophyletic clade, and only 15% (9%)
have high bootstrap support, whereas, after filtering, 64% (62%) recover it and 47% (44%)
have high support. While Lepidoptera has one of the biggest changes, patterns across all
orders consistently point to reduced discordance. Major clades (other than orders) also have

increased support and substantial reduction in highly supported discordance.
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5.3 Discussion

5.3.1 Impacts of fragments

I showed that fragmentary data can have substantial negative impacts on gene trees
and consequently species trees estimated in a summary method pipeline. These results
build on previous studies of weak phylogenetic signal, the resulting high gene tree error
(or uncertainty), and species tree error [161, 180, 207, [274]. It is important to note that
fragmentation not only weakens the signal, but it may also create biases in an ML analysis
[130].

The harmful impact of fragmentation was previously observed by [97]. My results
corroborate their observation. However, I propose a very different solution. Unlike their
solution of removing the entire gene, which can lead to loss of otherwise useful signal and
perhaps a non-random sample of genes [99], I propose removing specific problematic taxa.
Importantly, I observed that trading off decreased taxon occupancy with decreased levels
of fragmentation (type I versus type II in the terminology of [97]) is beneficial, but only
to a point; excessive filtering can also impact the accuracy of the species tree by creating
missing data in gene trees. The amount of improvement depended on the number of genes,
and filtering did not seem useful when only a small number of genes was available. The
reductions in gene tree error were substantial (e.g., from 0.39 to 0.28); improvements in
species tree topological accuracy may be considered small in magnitude (0.01-0.02 NRF), but
I note that the error is reduced by a quarter of the original error, and that, these improvements
come at no extra cost. I further note the improvements in species tree branch lengths.

Consistent with the literature [98,,272}[100], my results indicate that summary methods
are somewhat robust to missing data, but I also show that this robustness has limits as seen

by [97]. In the context of a single maximum likelihood analysis, [267] observed that the
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absence of enough data, and not the presence of missing data per se, can cause inaccuracy.
Importantly, I do not filter entire genes because they miss some taxa or because they have
some fragmentary sequences. Prior research suggests aggressive filtering of entire genes with
missing data can be harmful [99, 236]. My results do not conflict with those studies and my
filtering approach is in fact motivated by their observations.

Finally, I observe that the number of genes has the strongest effect on the species tree
error. Therefore, removing genes is not desirable. Instead, when possible, increasing the
number of genes may improve the species tree topological accuracy even in the presence of

fragments.

Filtering threshold

The best choice of the filtering thresholds will always depend on the dataset. However,
my analyses suggest a possible way forward for systematists. Since ML tools such as FastTree
can easily compute many hundreds of gene trees quickly and relatively accurately, one can
examine different thresholds empirically. By changing the threshold, reestimating gene trees,
and computing occupancy (g), average gene tree support (p), and evolutionary diameter (d)
(e.g., as in Figs [5.6bc), analysts can look for thresholds that reduce occupancy minimally
while increasing support or decreasing long branches substantially. This involves making
trade-offs and the best way of making such trade-offs requires further analyses.

Some simple rule-of-thumbs could be designed, and Table gives several rules
and applies them to the insect datasets. For example, I can simply use the threshold that
maximizes pg/d. Another simple rule is using pg, which would emphasize occupancy and
support equally. Based on the belief, backed by the literature, that that reduced occupancy is
less damaging than high gene tree error, I can use p?g to weight bootstrap support more than
occupancy. Finally, one can pick the threshold that gives the highest p given that ¢ is above

a threshold (say, 70%). On the insect dataset, these rules selected thresholds between 20%
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and 50% for RAXML gene trees (Table [5.4)). Since the 50% threshold was chosen the most
often, I chose to use it as my default threshold. On the simulated dataset, for FastTree gene
trees, where I could perform bootstrapping, several of my rules (e.g., p>q and %) tend to
select thresholds between 20% and 50% (Fig. [5.21); these match the optimal thresholds for
FastTree simulations (Fig. [5.4).

Even though these rules seem to pick reasonable thresholds on my insect data, whether
any of them performs well on a wide range of datasets remains unclear and require future
studies. Moreover, filtering in general, and the use of bootstrap support in particular, could
always add a bias, and thus, I do not suggest using thresholds that are varied from gene to
gene.

Finally, if some relationships are judged very strong by prior evidence, detecting
whether one recovers them may also prove useful, though this strategy should be used
judiciously to avoid confirmation bias. In absence of extensive analysis, thresholds 25% —
50% seemed reasonable in my simulated and empirical analyses and may prove useful as a

default for other analyses.

RAXML versus FastTree

While the choice of the ML method for inferring gene trees was not the focus of my
study, my simulation analyses showed a clear advantage in using RAXML versus FastTree.
Moreover, on the biological dataset, using RAXML (with automatic model selection) rather
than FastTree (with a fixed model) led to further improvements in the species tree, recovering
the monophyly of Neuropteroidea (node D) and Pterygota (node L), both of which have strong
evidence from the literature. It is also interesting that the support for Neoptera (Node K)
and the tentative sister-group relationship of Psocodea and Holometabola found by Misof
et al.’s concatenation results (node P) were increased using RAXML gene trees. Overall,

simulations and real data indicate that not only gene trees are less accurate when estimated
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using FastTree, but also, the ASTRAL species trees inferred from FastTree gene trees are
less accurate than those inferred from RAXxML gene trees. Interestingly, FastTree gene trees
consistently have reduced branch lengths compared to RAXML trees on the biological dataset
(Fig.[5.6c), perhaps because of FastTree’s extensive use of the minimum evolution criteria (in
addition to maximum likelihood). Finally, I note that FastTree does not allow for extensive
model selection (for proteins), a fact that on biological (but not simulated) datasets could
further contribute to its inaccuracies.

A previous independent simulation study by [138] had concluded that the two methods
are essentially identical in terms of accuracy. The opposing conclusion drawn by [138] and
my study may be related to simulation conditions. My study considers conditions that include
short branches prone to ILS but includes no alignment error; in contrast, [138]] use datasets
originally simulated to study alignment accuracy and include very divergent sequences (at least
50% average p-distance between sequences). To my knowledge, mine is the first simulation
study to show that RAXML gene trees are more accurate, and I believe, the results should
discourage analyses that rely solely on FastTree. While many practitioners have perhaps
already suspected that the much slower RAXxML algorithm is more accurate under some
conditions, the results shown here provide direct comparative evidence.

Despite the difference in accuracy, impacts of fragmentation had broadly similar
patterns, regardless of the gene tree method used. Therefore, I believe for exploratory
analyses of a dataset, the use of FastTree is justified whereas final analyses used to infer the
species tree are more reliable when based on the RAXML gene trees. Future work should test
if using Bayesian methods for estimating gene trees would similarly improve the species tree

accuracy.
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Insect phylogeny

As the debate between concatenation and summary methods pipelines continues
[61} 220, 228l 273]], I note that [[166] had only used concatenation in their analyses. My final
ASTRAL tree using RAXML gene trees is highly congruent with the concatenation tree of
[166]. This result has several implications for insect phylogeny. Overall, it supports nearly
all of the results of their concatenation analysis with respect to the major events in insect
evolution, using a different analysis strategy. Where their final tree showed relationships
with weak support, generally mine did as well, indicating that some results may require
further effort to resolve with confidence. It is likely that with the generation of phylogenomic
data with lower fragmentation (e.g., using full genomes instead of transcriptomes), gene tree

summary methods will be able to improve upon the results of both studies.

5.3.2 Methodological limitations

It is important to note that even in the final RAXML gene trees, extensive gene tree
discordance remains, and some of the discordance is highly supported (Fig[5.19). The
presence of highly supported discordance can in principle favor summary methods over
concatenation. However, I note that my analyses that included fragments produced results
that strongly conflicted with strong evidence from the prior literature. Thus, the choice is not
only between concatenation and summary methods but more broadly about choosing data
generation methods and tailoring the analysis pipeline to the data. Summary methods can only
produce good results when provided with good gene trees and removing fragmentary data and
other sources of the error are essential to that goal. In this chapter, [ demonstrated negative
impacts of fragmentary data and sub-optimal gene tree estimation methods. However, several
other sources of error were not addressed.

Even after filtering, the proportion of genes that fail to recover major insect orders
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remains arguably high. It is likely that gene tree error persists even after filtering. One major
cause of the remaining discordance is likely the lack of strong signal in gene trees. In addition
to insufficient signal, my models of sequence evolution are likely violated in many ways,
especially when I consider 400+ million years of evolution, as I did here. Factors that include
convergent effects of strong selection or unexpectedly high sensitivity to individual sites [217]
may lead to systematic biases. Finally, even when the gene tree discordance is real, it may be
due to factors other than ILS, including incorrect detection of orthology. Future work should

explore improved scalable methods of dealing with these difficulties.

5.4 Materials and Methods

5.4.1 Analysis pipeline for insect dataset

I used the amino acid sequence data provided by [166] as “Supplementary 7”.

Filtering strategy: In real data, gaps can appear for two reasons: insertions and
deletions (as inferred by an alignment algorithm) and missing data. My goal is to filter out
sequences that are fragmentary (partially sequenced or assembled) but I don’t wish to remove
sequences due only to indels. Defining what is a fragmentary sequence is complicated by
the presence of gappy sites. Also, very gappy sites increase running time but provide little
signal to the maximum likelihood analyses, which treat them as missing data (and not as
indel signal). To address both issues, before identifying fragmentary sequences, I first remove
extremely gappy sites, defined as those with more than 90% gaps. While this filtering can
remove photogenically informative indels, I note that indels are not incorporated in models of
sequence evolution used in my gene tree estimation tools. I then remove species that have less
than 20% (1/5), 25% (1/4), 33% (1/3), 50% (1/2), 66% (2/3), 75% (3/4), or 80% (4/5) amino-

acids (i.e., characters other than gaps). In order to filter sequences, I use a tool called seqtools,
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implemented as part of the PASTA [[163]] package. After filtering sequence, I re-estimate gene
trees, but [ keep the same alignment. In order to track the occupancy and bootstrap support, |
use in-house scripts, available online https://github.com/esayyari/discoVista.
Gene trees: After each round of filtering, gene trees are estimated using FastTree2
[188] using its default amino acid substitution model, which is JTT [[108]] or RAXML [232]
with the automatic amino acid model selection.
To infer my bestML gene trees, I use RAXML [232], version 8.2.9 with 10 runs of

inference using different starting trees.
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Figure 5.3: Impacts of using the NRF distance. The distribution of the NRF distance is
shown for four sets of gene trees (two for RAXML and two for FastTree). “no-gap”: shows
the NRF of the original estimated gene trees before addition of any fragmentations and
computed on the full set of 101 taxa. “50” and “80”: I restrict the leafset of the original gene
trees to be the same as the leafset of gene trees estimated on filtered gene sequences with a
50% (orange) or 80% (purple) filtering threshold. If NRF was sensitive to taxa present or
if reductions in NRF after filtering of fragments were due to the removal of difficult edges
and/or introduction of long branches, I would expect that the restricted case should have
lower NRF than the original. Instead, I see very similar NRF between full trees and the
trees on taxon sets that match the filtered gene trees. I conclude improvements in gene tree
accuracy in Figure @ are not related to the way NRF distance is defined and computed.
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Figure 5.4: Species tree error in simulation datasets. a) NRF error of estimated ASTRAL
species trees for different numbers of genes (boxes) and varying filtering thresholds (x-axis)
with both RAXxML and FastTree gene trees. The horizontal lines indicates the error rate of
ASTRAL in the absence of fragmentary data. The error bars in these figures indicate the
standard errors around the average. b) Correlation between the gene tree and the species tree
error. The y-axis shows the average species tree error (NRF distance) and x-axis shows the
NREF distance between true and estimated gene trees. Color shades represent the average
occupancy of species, and fragmentary filtering thresholds are noted next to the dots. Results
from RAxXxML and FastTree gene trees are distinguished by dot shape.
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Figure 5.5: Occupancy of species in insects dataset. This figure shows the occupancy of
species for insects dataset when different filtering thresholds applied. For e.g. filtering
threshold of 50 means, species that has less than 50 percent of their sequence length as
non-fragmentary data will be removed before estimating gene trees. With bigger thresholds,
more species will be filtered out, and the species have lower occupancy.
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Figure 5.6: Impacts of filtering on the biological insect dataset. a) Occupancy of major
clades after filtering fragmentary data with various thresholds (colors). b) Distribution of
average BS values for different filtering thresholds. I show the percent of branches that
have BS value of 0% (dark purple), less than 33%, (light purple), more than 75% (light
green), and 100% (dark green). c) Average gene tree bootstrap support (y-axis) versus
average (over genes) of average (over leaves) of root-to-tip distances (x-axis) with different
filtering thresholds (text next to the dots). I use color to represent the average occupancy,
where darker colors represent lower average occupancies. Average of maximum tip-to-tip
distances (evolutionary diameter) shows similar patterns (Fig.[5.7). d) Coalescent unit branch
lengths computed by ASTRAL. Each dot corresponds to a branch and its coalescent unit
length is shown when estimated from unfiltered gene trees (x-axis) or 50% filtered gene
trees (y-axis). Several branches (25 for FastTree and 13 RAxML) that were not shared
between the two trees are removed. A line is fitted to all the points corresponding to each
method, and the dashed line shows the unity line. e) Discordance of gene trees with various
filtering thresholds (x-axis) versus the corresponding ASTRAL species tree. Boxplots show
distributions of the proportion of species tree branches not found in gene trees.
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a) Summary of all ASTRAL trees b) Final ASTRAL tree (RAXML-50%)
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Figure 5.8: ASTRAL species trees. (a) Recovery of important clades in ASTRAL species
trees with various filtering thresholds (see Figs.[5.10|-[5.17|for trees), represented by columns.
Rows show important clades A to P (Table[5.2). The blue-green indicates monophyly of
a clade, and the spectrum of blue to green colors show ASTRAL localPP support values
[210]. Red, indicates strong or weak rejection of a clade. Weak rejection is defined as a
clade that is absent from a tree but is compatible with the tree if branches below 95% support
are contracted. See Figure [5.9|for more clades. (b) The ASTRAL species tree using 1478
RAXML gene trees with the 50% filtering threshold.
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P according to Table[5.2] The blue-green indicates monophyly of a clade, and the spectrum
of blue to green colors show ASTRAL localPP support values [210]. Red, indicates strong
or weak rejection of a clade. Weak rejection is defined as a clade that is absent from a tree
but is compatible with the tree if branches below 95% support are contracted.
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Figure 5.13: ASTRAL species tree with the filtering thresholds of 10% on sites, and 33%

on species on 1478 genes.
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Figure 5.14: ASTRAL species tree with the filtering thresholds of 10% on sites, and 50%

on species on 1478 genes.
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Figure 5.16: ASTRAL species tree with the filtering thresholds of 10% on sites, and 75%

on species on 1478 genes.
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Figure 5.17: ASTRAL species tree with the filtering thresholds of 10% on sites, and 80%

on species on 1478 genes.
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Figure 5.19: Distribution of clade supports for no-filtering and 50%-filtered gene trees. The
proportion of (a) RAXML and (b) FastTree gene trees supporting or rejecting each clade is
shown. Branches with bootstrap support value 75% and higher (lower) are considered highly
(weakly) supported; “Weakly Reject” refers to gene trees that don’t recover a clade but are
compatible with it once low support branches are contracted; “Strongly Reject” are clades
that remain incompatible even after contracting low support branches. Two red horizontal
lines mark 50% and 75% support marks.
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Figure 5.20: Correlation of average ASTRAL species tree branch lengths and average gene
tree error (RF distance) when different number of RAXML or FastTree gene trees (50, 200,
or 1000 ) are used. The true average species trees internal branch length is 1.55. Thus, all
methods underestimate branch lengths, but filtering reduces the underestimation.
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Unlike FastTree, RAXML implements many protein substitution models and it can
find the best scoring protein-coding substitution model [188} 232]]. T used RAXML’s automatic
model selection approach; numbers of genes with various models are shown in Table [5.5]
When several species have identical sequences for a gene, I keep only one of them (i.e.,
remove redundant ones) in my RAXML runs and add the removed species back to the final
inferred gene tree as a polytomy.

For performing gene tree bootstrapping using FastTree, I first generate bootstrap
sequences using RAXML and then run FastTree on those to estimate the bootstrapped gene
trees. I then draw those bootstrap gene trees on ML gene tree branches using the newick utility
[110]. For RAXML gene trees, I use the rapid bootstrapping option on reduced sequences
(after removing identical sequences). After gene tree estimations, I add back the identical
species and draw these bootstrap gene trees on the best ML gene trees (RAxML) following
the same procedure using the newick utility.

Species trees: I use ASTRAL-II to estimate the species trees summarizing gene trees

with at least 4 taxa left after filtering.

5.4.2 Simulation procedure

I use one model condition of a previously simulated dataset from [165] with 100
ingroup taxa and one outgroup. For each of the 50 replicates in this dataset, Simphy [149]
was used to simulate a species tree according to the Yule model, and then 1000 gene trees
were simulated using the MSC model which captures ILS. The dataset has moderate levels of
ILS; the average distance between true gene trees and true species trees is 0.33. I subsampled
genes to create three different datasets with 50, 200, or 1000 genes. DNA sequences of
varying length (Fig. [5.21)) were simulated down the gene trees using Indelible [72] with
GTR parameters and stationary distributions estimated from published biological datasets, as

detailed by [165]. Note that simulated sequences did not include any indels and thus were
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already aligned. [1635]] suggested removing two replicates that include almost no phylogenetic
signal, and I use the same strategy, leaving us with 48 replicates. This creates my unfiltered
base dataset.

Adding fragmentation: I add fragmentation to my complete simulated dataset using
a procedure that seeks to emulate patterns of fragmentation in the insect biological dataset.
1) For each replicate, I order species in the biological dataset and the simulated dataset with
respect to the tip-to-root distances. 2) I randomly select 100 of the biological species and
map them to the simulated species with the same position in the order. The main outgroup
(Ixodes scapularis) in the biological and simulated datasets always map to each other. 3) For
each replicate in the simulated dataset, I randomly sample (with replacement) 1000 genes in
the insect datasets that have at least 101 species, including the main outgroup. 4) For each
species in each simulated gene, I compute the portion of gap sites in the corresponding gene
alignment for the corresponding species in the biological data, and remove the same portion
of sites in the simulated dataset at random positions. When a species is missing from a gene
in the biological dataset, I use the same species from another randomly chosen gene.

Filtering fragments: Although my simulated data do not include indels, injected
fragments can create sites that are almost entirely gaps; these sites increase running time but
include minimal signal. We, therefore, remove sites with more than 90% gaps, removing
between 0.0% and 2.0% (median: 0.1%) of the total number of characters in all sequences. I
then remove from each gene any species that has less than a certain fraction (e.g., 10% — 80%)
of the full gene. For example, at 10%, I remove only sequences that have 90% or more gaps.

Gene trees and species trees: For each threshold, after filtering, I estimate gene trees
using both RAXML [232]] version 8.2.9 with two starting trees and FastTree [188]] version
2.1.9 Double precision using the GTR+I" model of sequence evolution [249]. I infer the
species tree using ASTRAL-II [[165] version 4.11.1, which is a commonly used summary

method. I build species trees using all 1000 genes or using randomly chosen subsets of 200 or
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50 genes.

5.4.3 Statistical tests

All p-values reported are computed using the Analysis of variance (ANOVA) tests.
For impacts on gene trees, I use the gene tree method (RAXxML vs FastTree) and filtering
thresholds as independent variables. For species tree, to study the impact of presence/absence
of fragments, I only include species trees of orig-seq and no-filtering, and use a binary variable
to encode it and use another variable for the number of genes. To study the impact of filtering
with sufficiently small thresholds, I restrict the data to those with up to 33% filtering and I use

the filtering threshold as a numerical independent variable.
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Chapter 6

DiscoVista: interpretable visualizations

of gene tree discordance

Phylogenomics has ushered in an age of discordance. Analyses often reveal abundant
discordances among phylogenies of different parts of genomes, as well as incongruences
between species trees obtained using different methods or data partitions. Researchers are
often left trying to make sense of such incongruences. Interpretive ways of measuring and
visualizing discordance are needed, both among alternative species trees and gene trees,
especially for specific focal branches of a tree. Here, I introduce DiscoVista, a publicly
available tool that creates a suite of simple but interpretable visualizations. DiscoVista helps

quantify the amount of discordance and some of its potential causes.

6.1 Introduction

The age of phylogenomics, once hoped to be the end of incongruence in phyloge-
netic analyses [200], has turned out to be ripe with incongruence [106]] and methodological

difficulties.
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The long-understood theoretical concerns about gene tree incongruence due to incom-
plete lineage sorting (ILS) [147] have been implicated in many studies (e.g., [105} 264, 2411)).

While methods that seek to address gene tree incongruence have been developed, no
consensus has emerged as to the choice of the best methodology (e.g., [61,1229]). Nevertheless,
phylogenomics studies have to at least consider the possibility of gene tree incongruence and
its impacts, a feat made difficult by the noisy estimates of gene trees [229, [180, 160, 210].
Moreover, in some cases, the incongruence itself may be of interest [87]]. Even ignoring gene
tree discordance, choices of models to apply to the sequences, delineation of data partitions,
alignment techniques, or simply software packages used to analyze the data have all proved
consequential (e.g., [106} 105, 264, 201, 183} 281]).

These difficulties have compelled some researchers to use several alternative models
and methods and then test the sensitivity of results to such choices. Occasionally, analysts
choose to also perturb the set of species included, and they often run analyses on different
partitions of the data. The analyst hopes for congruence between various analyses that would
indicate rubustness of the results to assumptions, but often observes differences. Ideally, the
results of all analyses should be published, to convey the existence of incongruence in results
to the reader.

As long as incongruence remains an important force in phylogenetics, I need in-
terpretable ways to measure and visualize the discordance between species tree estimates
resulting from different analytical method and assumptions, and also between gene trees and a
summary species tree. Sophisticated tools have been developed to visualize discordance. For
example, DensiTree [31]] overlays trees on top of each other to create a phylogenetic cloud,
and SplitsTree [101] conveys incongruence by producing a network while keeping some of
the tree-like structure. These tools create creative and striking indicators of discordance. Yet
it is often hard to interpret the meaning of such figures in measurable ways. I believe that

in addition to these methods, phylogenomics will benefit from simple, interpretable, and
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Table 6.1: Description and examples for different DiscoVista analyses

Analysis Name Shows ... Examples

Species tree compatibility z(f)I;g:z:tii:siliiltlys;i(f?;sairioupS Figs. , and
Gene tree compatibility z(f)rsriizltii:siliirtlygc;i?;zleSgroups Figs. , and
Branch quartet frequencies gl:;rliehtefsre(:)c;uﬂelr;csi;Z;rf}(;l{[rrlgeimportant Figs. and

GC content GC content of each codon position Figs.|6.5

easy-to-perform visualizations that help systematists to identify discordance and its potential
causes.

in this dissertation, I introduce DiscoVista, a tool that creates a series of simple yet
powerful visualizations of discordance. DiscoVista is a command-line tool and relies on
several other packages, including Dendropy [242], ape [179], newick utilities [[110], the
ggplot package [265], and ASTRAL [210]. The code, a Docker [29] virtual image (for
easy installation), and examples are available online at https://github.com/esayyari/
DiscoVista.

DiscoVista can generate several visualizations (Table[6.1) that summarize gene tree
discordance and discordance among species trees, show taxon occupancy, and show sequence
statistics such as GC content. DiscoVista strives for interpretability. In many analyses, not all
branches in a phylogenetic tree are equally important because questions of interest typically
concern several hypotheses surrounding the relationships between focal groups. Visualizing
discordance with respect to only these focal relationships simplifies interpretation. Assessing
hypotheses concerning these larger subsets of the species helps in answering the downstream
biological questions of interest. Thus, DiscoVista allows researchers to define focal groups of

taxa and evaluate discordance relevant to those groups.
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6.2 Results

I apply DiscoVista on three datasets to demonstrate its output visualizations. The
exact commands for generating example figures are given in the appendixs.

Datasets The position of Xenacoelomorpha among deep branches of the Metazoan
phylogeny has proved challenging to resolve, with two prevailing hypotheses. One hypothesis
puts Xenacoelomorpha as sister to all other Bilateria, while the other hypothesis puts them
inside Deuterostomia, implying a dramatic loss of complexity. Intriguingly, these marine
worms are bilaterally symmetrical but lack several other features compared to most other
bilaterians. Two independent and simultaneous studies by [203]] and [43] have focused on
the position of Xenacoelomorpha in the tree of life. These two studies used different (but
overlapping) set of species and each analysis used several reconstruction methods. The two
papers come to the same conclusion, putting Xenacoelomorpha as the sister to all other
Bilateria. The final results of [43] is based on 78 species and 212 orthologous genes with
average per taxon occupancy of 80%. Their paper includes alternative analyses based on
several subsets of taxa and reconstruction methods. The dataset by [203] includes 26 species
and 1178 genes (including four Xenoturbella species) with average gene occupancy of 70%.
They also report alternative trees using concatenation and ASTRAL (run on 393 genes with
80% occupancy). Although these two datasets used different set of taxa, by focusing on focal
splits, DiscoVista can generate visual comparisons of results across both datasets (Figs. [0.§]
and [6.9).

As a second example, I show DiscoVista results on a phylotranscriptomic dataset
of 103 plants [264] in the appendix (Figs. [6.1]—[6.5). This dataset comes with both DNA
and AA sequences, allowing us to show additional figures that could not be built for the
Xenacoelomorpha datasets.

Split definitions A central input to DiscoVista is a split definitions file where the user
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Angiosperm
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Ambore”a/Nuphar -- - - -
Bryophytes
Bryophyta
Bryophyta/Tracheophytes
Bryophyta/Tracheophytes/Anthocerophyta
Bryophyta/Marchantiophyta/Tracheophytes
Bryophyta/Marchantiophyta
Bryophyta/Marchantiophyta/Anthocerophyta
Tracheophytes 1
Anthocerophyta/Tracheophytes -
Coniferales/Gnetales
Gnetales |
Gnetales/Pinaceae -

Angiosperms minus Amborella
Gymnosperms 1
Sister to land plants

Angiosperms
Eudicots/Magnoliids
Eudicots/Magnoliids/Chloranthales
Magnoliids/Chloranthales
Magnoliids/Chloranthales/Monocots
Monocots/Eudicots
Monocots/Magnoliids
Angiosperms minus Amborella and Nuphar
Coniferales -|
Zygnematophyceae 1
Coleochaetales
Zygnematophyceae/LandPlants 1
Chara/LandPlants
Coleochaetales/LandPlants
Coleochaetales/Chara/LandPlants
Chara/Coleochaetales
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Figure 6.1: DiscoVista Specie tree analysis on 1kp dataset: Rows correspond to major
orders and clades, and columns correspond to the results of different methods reported in two
different closely related datasets. The spectrum of blue-green indicates amount of MLBS
values for monophyletic clades. Weakly rejected clades correspond to clades that are not
present in the tree, but are compatible if low support branches (below 90%) are contracted.
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Figure 6.2: DiscoVista Specie tree analysis on 1kp dataset: Rows correspond to major
orders and clades, and columns correspond to the results of different methods reported in two
different closely related datasets. Weakly rejected clades correspond to clades that are not
present in the tree, but are compatible if low support branches (below 90%) are contracted.
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Figure 6.3: DiscoVista analyses on 1kp dataset a) occupancy analysis on the 1kp dataset over
each individual species for two model conditions. FNA2AA-f25: amino acid sequences back
translated to DNA, and sequences on long branches (25X median branch length) removed;
FNA2AA-filterlen33: amino acids sequences back translated to DNA, and fragmentary
sequences removed (66% gaps or more). b) occupancy analysis of major clades in the 1kp
dataset and the same model conditions as (a).

can combine taxa into groups of interest and give names to the groups (see supplementary
material for details). Each split is a bipartition of the taxa into two groups and corresponds to
an edge in an unrooted tree. The user can specify one side of a split (which would be a clade
if the side that doesn’t include the root is given). With careful definition of splits, alternative
hypotheses of interest could be specified. For my two empirical datasets, [ am considering
focal groups of species from original publications [203],43], as shown partially in Table[6.2]
(see Figs.[6.6)and [6.7] for full definitions).

i) Species tree compatibility This visualization shows whether focal splits are sup-
ported, weakly rejected, or strongly rejected by different analyses. The inputs are a set of
species trees in newick format, a support threshold, and the splits definition file; the output
is a heat map. For each focal split and for each species tree, if the split is compatible with
the tree, the corresponding cell is in shades of blue/green, and the spectrum of blue-green
color indicates the branch support (any measure of support, including the bootstrap support,
Bayesian posterior probability, or localPP [210] values could be used.) A split is considered

weakly rejected if it is incompatible with the fully resolved species tree, but is compatible
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Figure 6.4: Example DiscoVista visualizations of gene tree discordance on the lkp
dataset [264]]. Branch quartet frequencies graphs. Bars show the frequencies of observing
the three quartet topologies around focal branches of the ASTRAL species tree among the
main trimmed gene trees of the 1kp dataset. Each internal branch has four neighboring
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corresponding branch on the associated cartoon tree (also generated by DiscoVista). On the
x-axis the exact definition of each quartet topology is shown using the neighboring branch
labels separated by “#”.
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Clade Name Clade Definition Section Letter ~ Components Show
Ambulacraria "Anneissia japonica+""Strongylocentrotus purpuratus"'+""Saccoglossus kowalevskii"" None None 1
Ecdysozoa "Drosophila melanogaster+""Peripatopsis capensis"'+""Priapulus sp""" None None 1
Xenoturbella "Xenoturbella bocki+""Xenoturbella profundus"" None None 0
[Acoelomorpha "Hofstenia miamia"™" None None 0
Spiralia "Capitella teleta+""Lottia gigantea""'+""Baseodiscus unicolor+""Macrodasys sp"'+ None None 1

""Phoronis vancouverensis"'+""Loxosoma pectinaricola'+""Adineta ricciae"'+

""Gnathostomula paradoxa"'+"'Schmidtea mediterranea™"
Xenacoelomorpha  "Hofstenia miamia+""Xenoturbella profundus""'+"'Xenoturbella bocki™" None None 1
Chordata None None 1
All "Gnathostomula paradoxa+"'Schmidtea mediterranea™'+""Priapulus sp"'+ None None 0

""Xenoturbella profundus™'+"'Branchiostoma floridae""+""Phoronis vancouverensis"'+

""Macrodasys sp"'+""Gallus gallus™'+""Strongylocentrotus purpuratus"'+

""Amphimedon queenslandica™'+""Loxosoma pectinaricola""+"'Capitella teleta""+

""Homo sapiens""+""Adineta ricciae""+"'Xenoturbella bocki""+

""Peripatopsis capensis"'+""Hofstenia miamia™'+""Baseodiscus unicolor""+

"Saccoglossus kowalevskii"'+""Nematostella vectensis"'+""Anneissia japonica™'+

""Mnemiopsis leidyi""+""Drosophila melanogaster"'+""Trichoplax adhaerens™'+

"L ottia gigantea"'+"'Ciona intestinalis""
Protostomia Spiralia+Ecdysozoa None Spiralia+Ecdysozoa 1
Deuterostomia Ambulacraria+Chordata None None 1
Nephrozoa Protostomia+Deuterostomia None Protostomia+Deuterostomia 1
Bilateria Nephrozoa+Xenacoelomorpha None Nephrozoa+Xenacoelomorpha 1
Xenambulacraria(C1) Ambulacraria+Xenacoelomorpha None None 1
C2 Chordata+Xenambulacraria(C1) None None 1
Bilateria(C3) C2+Protostomia None None 0
D2 Xenacoelomorpha+Deuterostomia None None 1
Bilateria(D3) D2+Protostomia None None 0
Xenambulacraria(E1) Xenoturbella+Ambulacraria None None 1
E2 Chordata+Xenambulacraria(E1) None None 1
E3 Protostomia+E2 None None 1
Entoprocta "Loxosoma pectinaricola"" None None 0
Outgroup All-Bilateria None None 0

Figure 6.6: Complete split definitions for the Xenoturbella dataset of [203].

Table 6.2: An example split definition file for the two Xenoturbella datasets; several lines
on top define base splits and are left blank here, but see the full files in Figures @ and @

Cluster Name Definition

Ambulacraria

Ecdysozoa

Acoelomorpha

Spiralia

Xenacoelomorpha

Chordata v

Protostomia Spiralia+Ecdysozoa
Deuterostomia Ambulacraria+Chordata
Nephrozoa Protostomia+Deuterostomia
Bilateria Nephrozoa+Xenacoelomorpha
Xenambulacraria(C1) | Ambulacraria+Xenacoelomorpha
C2 Chordata+Xenambulacraria(C1)
Bilateria(C3) C2+Protostomia

D2 Xenacoelomorpha+Deuterostomia
Bilateria(D3) D2+Protostomia
Xenambulacraria(E1) | Xenoturbella+Ambulacraria

E2

Chordata+Xenambulacraria(E1)

E3

Protostomia+E2
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Clade Name
Xenoturbella
Acoelomorpha

Ambulacraria
Entoprocta
Ecdysozoa
Chordata

Spiralia

Xenacoelomorpha

Deuterostomia

All

Protostomia
Nephrozoa
Bilateria

Clade Definition Section Letter ~ Components
"Xenoturbella bocki"" None None
"Diopi u pharyngeus+"'Diopi: us longitubus""+""Hofstenia miamia""'+ None None

a pulchra"'+""Eumecyr um macrobursalium™'+""Convolutriloba macropyga"'+

""Childia submaculatum’
"Dumetocrinus sp+"'Labidiaster annulatus™'+""Astrotomma agassi:
""Strongylocentrotus purpuratus"'+"'Cept iscus gracilis"'+""Sat
""Ptychodera bahamensis""+""Schizocardium braziliense""
"Loxosoma pectinaricola+""Barentsia gracilis"" None None
Priapulus caudatus+""Halicryptus spinulosus"'+""Peripatopsis capensi

""Drosophila melanogaster"'+"'Daphnia pulex"'+""Strigamia maritima"'+"'Ixodes scapularis™" None None
"Branchiostoma floridae+"'Botryllus schlosseri""+"'Ciona intestinalis""+""Homo sapiens"'+ None None

""Gallus gallus""+"'Petromyzon marinus""

"Crassostrea gigas+"'Lineus longissimus""'+""Cephalothrix hongkongiensis"'+""Helobdella robusta™'+ None None

omatoceros lamarckii"'+"'Capitella teleta"'+" Adineta ricciae""+""Adineta vaga""+

rachionus calyciflorus"'+""Lepidodermella squamata""+""Macrostomum lignano™'+

Taenia pisiformes"'+""Schistosoma mansoni"'+

'+""Megadasys sp"'+""Macrodasys sp""'+""Membranipora membranacea"'+

""Loxosoma pectinaricola""+""Barentsia gracilis"'+""Phoronis psammophila"'+"'Terebratalia transversa™'+

""Hemithiris psittacea""+""Novocrania anomala™'+""Leptochiton rugatus"'+""Lottia gigantea™"
"Xenoturbella bocki+"'Diopisthoporus gymnopharyngeus"'+"'Diopisthoporus longitubus™'+ None None
""Hofstenia miamia""+""Isodi pulchra""+""EL y mum macr ium"'+
""Convolutriloba macropyga™'+""Childia submaculatum"'+""Ascoparia sp"'+""Meara stichopi
""Sterreria sp""+""Nemertoderma westbladi""

"Dumetocrinus sp+"'Labidiaster annulatus"'+""Astrotomma agassizi""+"'Leptosynapta clarki"'+
""Strongylocentrotus purpuratus"'+"'Cept iscus gracilis"'+""Saccoglossus mereschkowskii""'+
""Ptychodera bat is""+""Schizocardium braziliense""+"'Branchiostoma floridae""'+

" ""+""Homo sapiens""+""Gallus gallus""+

Leptosynapta clarki"'+ None None
jlossus mereschkowskii""+

""Schmidtea mediterranea’

e

None None

""Botryllus schlosseri""+"'Ciona intestinalis’
"Petromyzon marinus'
"Cliona varians+""Salpingoeca rosetta""'+""Xenoturbella bocki"'+"'Branchiostoma floridae""'+ None None
""Botryllus schlosseri""+""Macrodasys sp"'+""Membranipora membranacea""'+"'Petromyzon marinus"'+
""Eumecynostomum macrobursalium""'+""Pomatoceros lamarckii""'+"" Astrotomma agassizi"'+

i annulatus""+""Macr um lignano""'+""Peri i is""+""Hofstenia miamia""+
is""+""Phoronis psammophila"'+"'Adineta vaga"'+""Priapulus caudatus""+
Lottia gigantea™'+""Euplokamis dunlapae"'+""'Schizocardium braziliense™'+""Sycon ciliatum""+
Halicryptus spinulosus""+""Ptychodera bahamensis""'+""Cephalothrix hongkongiensis™"
Leucosolenia complicata""'+"'Strongylocentrotus purpuratus"'+"'Diopisthoporus longitubus""+
""Capitella teleta"'+""Leptochiton rugatus"'+""Novocrania anomala"'+"'Crassostrea gigas""+

Lepidodermella squamata"'+""Helobdella robusta""'+"'Oscarella carmela"'+""Ixodes scapularis"'+
Mnemiopsis leidyi""+"'Stomolophus meleagris""+"'Ciona intestinalis""'+"'Nemertoderma westbladi""+
'Schmidtea mediterranea™'+""Ascoparia sp"'+"'Strigamia maritima™'+"'Brachionus calyciflorus"'+
""Convolutriloba macropyga"'+""Monosiga brevicollis"'+""Terebratalia transversa""+
""Loxosoma pectinaricola""+""Meara stichopi""+""Lineus longissimus""+""Hemithiris psittacea"'+
'Childia submaculatum"'+""Adineta ricciae""+"'Daphnia pulex"'+"'Taenia pisiformes""'+
""Prostheceraeus vittatus"'+"'Megadasys sp""+""Nematostella vectensis"'+""'Schistosoma mansoni""'+
i cavolinii""+""'Di phila melanogaster""'+"'Isodiametra pulchra™'+"'Leptosynapta clarki""+

Homo sapiens""+""Barentsia gracilis""+""Craspedacusta sowerby""+"'Gallus gallus""'+
'‘Amphimedon queenslandica™'+"'Saccoglossus mereschkowskii""+"' Trichoplax adhaerens"'+
Diopisthoporus gymnopharyngeus"'+"'Di i sp"'+"'P! lia bachei""+
""Aphrocallistes vastus""'+""Acropora digitifera"'+""Agalma elegans""'+"'Sterreria sp""

Spiralia+Ecdysozoa None Spiralia+Ecdysozoa
Protostomia+Deuterostomia None Protostomia+Deuterostomia
Nephrozoa+Xenacoelomorpha None Nephrozoa+Xenacoelomorpha

Xenambulacraria(C1) Ambulacraria+Xenacoelomorpha None None

c2
Bilateria(C3)
D2

Bilateria(D3)

Chordata+Xenambulacraria(C1) None None
C2+Protostomia None None
Xenacoelomorpha+Deuterostomia None None
D2+Protostomia None None

er ia(E1) Xenoturk i None None

E2
E3

Chordata+Xenambulacraria(E1) None None
Protostomia+E2 Ngne None

Show

e O = O o

Figure 6.7: Complete split definitions for the Xenoturbella dataset of [43].
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Figure 6.8: Species tree discordance and occupancy. a) DiscoVista Specie tree analysis.
Rows correspond to focal splits, and columns correspond to alternative species trees reported
in two papers [203] 43]]. The spectrum of blue-green indicates support values for splits
compatible with a tree. Note that support values are of different types (Bayesian posterior,
concatenation bootstrap support, and multi-locus bootstrap support) and thus may not be
directly comparable. Weakly rejected splits correspond to splits that are not present in the
tree, but are compatible if low support branches (below 90%) are contracted. In [203],
RAXxML70_1178, RAXxML80_393, and RAXML90 are results of concatenation analyses on
genes with average occupancy of 70%, 80%, and 90% respectively. For [43]], RAXML_212,
RAXML_212_Acoelomorpha, RAXML_336, and RAXxXML_881 are concatenation analyses on
212 orthologus genes of 78 species, 212 orthologus genes after removing Acoelomorpha,
336 orthologus genes on 56 selected species, and 881 orthologus genes on 77 species,
respectively. The ASTRAL_212 is the species tree estimated using ASTRAL and 212
orthologus genes of 78 species. b,c) The occupancy map of 393 (b) and 212 (c) gene
alignments of [203] (b) and [43]] (¢) with average occupancy of 80% in both datasets. The
spectrum of green color shows the gene length, and the white color indicates missing data.
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with the tree when branches with support values below the input threshold (e.g., 75% BS)
get contracted. Compatibility is a concept that I find useful for measuring discordance in an
interpretable way. A split is compatible with an unrooted tree if it is compatible with all splits
of that tree and can therefore be added to that tree; compatibility can be easily and efficiently
checked [260]. Let two splits be A|B and C|D; then, the two splits are compatible if and only
if one of the four pairwise intersections ANC, AN D, BNC, or BN D is empty.

On the empirical datasets, the species tree compatibility figures (Fig. [6.8a) show
several patterns. The two datasets produce largely congruent results, with only minor differ-
ences. In the [203] dataset, aggressive filtering of genes based on their occupancy negatively
impacts concatenation trees in terms of BS support and the recovery of some clades (e.g.,
Chordata). Consistent with literature [160], ASTRAL run on maximum likelihood gene trees
(bestML) seems more accurate than ASTRAL run on the bootstrap replicates (MLBS) gene
trees (impacting the recovery of Chordata).

ii) Occupancy analysis Missing data is common in phylogenomics, and common
filtering practices can further increase the amount of missing data with potential impact on
downstream analyses (e.g., [97, [148]]). DiscoVista can visualize the taxon occupancy for
individual species or for groups of taxa; taxon occupancy is defined as the fraction of gene
alignments that have at least one of the species from a group. The inputs to this analysis are
a set of sequence alignment files (FASTA format), and a species annotation file; the output
is a line plot of the occupancy per species or per group. DiscoVista can also visualize taxon
occupancy as a heatmap that shows the presence/absence of species in gene alignments, and
for those present, uses color shades to indicate their non-gapped sequence length compared to
the other sequences of the same gene.

On the empirical [203]] dataset, the occupancy plots immediately reveal how Xeno-
turbella bocki has low occupancy (Fig. [0.8b), appearing only in a handful of genes. However,

the negative impacts of this low occupancy may be ameliorated by the high occupancy of
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the other two Xenacoelomorpha species, Xenoturbella profoundus and Hofstenia miamia.
Patterns of occupancy do not vary widely on this dataset. On the Cannon dataset, in contrast,
some genes have lower levels of occupancy than others (from left to right in Fig. [6.8k). Just
like the Rouse dataset, several species have very low occupancy (e.g., Astrotomma agas-
sizi, Cephalodiscus gracilis, Sterreria sp.). However, Xenoturbella bocki, which is the only
Xenacoelomorpha species in this dataset, has high occupancy and appears in most of the
genes.

iii) Gene tree compatibility This visualization simply depicts the portion of gene
trees supporting or rejecting each focal split. The inputs are one or several collections of gene
trees, the split definition file, and a support threshold. For splits that are compatible with
gene trees, branches with bootstrap support values above (below) a threshold are considered
as highly (weakly) supported. Splits that are not compatible with the original tree but are
compatible with the tree if branches with low support values get contracted are considered as
weakly rejected splits, and those that are not compatible even after contracting low support
branches are considered strongly rejected. By default, gene trees that miss one side of the
split completely are removed from the analysis. The figure can also be created such that genes
that completely miss one side of the split (or completely miss a user-defined subset of a side
of the split) are marked as “missing” (Fig. [6.10).

On the empirical datasets, these figures reveal high levels of gene tree discordance
(Fig.[6.9n). Although ASTRAL species trees on maximum likelihood gene trees are mostly
congruent in both datasets and with concatenation results, gene trees show high amounts
of discordance, and none of the major splits are recovered in most gene trees (Fig. [6.9).
However, for all of the focal splits, the majority of the gene trees are compatible with the
species tree after contracting low support branches (below 75%). Interestingly, maximum
likelihood gene trees in [203]] show somewhat less discordance with major species tree splits

compared to those in [43]].
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Figure 6.9: Gene tree discordance figures. a) Gene tree compatibility. This figure shows the
portion of RAXML genes for which focal splits (x-axis) are highly (weakly) supported or
rejected. Weakly rejected splits are those that are not in the tree but are compatible if low
support branches (below 75%) are contracted. b) Frequency of three topologies around focal
internal branches of ASTRAL species trees in both datasets. Main topology is shown in red,
and the other two alternative topologies are shown in blue. The dotted line indicates the 1/3
threshold. The title of each subfigure indicates the label of the corresponding branch on the
tree on the right (also generated by DiscoVista). Each internal branch has four neighboring
branches which could be used to represent quartet topologies. On the x-axis the exact
definition of each quartet topology is shown using the neighboring branch labels separated
by “#”.
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Figure 6.10: Gene tree analysis on 1kp dataset: The portion of RAXxML genes for which
important clades (x-axis) are highly (weakly) supported or rejected for three model conditions
of the 1kp dataset. FAA-filterlen33: gene trees on amino acids sequences, and fragmentary

sequences removed (66% gaps or more) FNA2AA-f25: amino acid sequences back translated

to DNA, and sequences on long branches (25X median branch length)removed; FNA2AA-
filterlen33: amino acid sequences back translated to DNA, and fragmentary sequences

removed (66% gaps or more). Weakly rejected clades are those that are not in the tree but

are compatible if low support branches (below 75%) are contracted
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Figure 6.11: Gene tree analysis on 1kp dataset: The number of RAXML genes for which

important clades (x-axis) are highly (weakly) supported or rejected or are missing of three
are not in the tree but are compatible if low support branches (below 75%) are contracted.

model conditions (same as[6.10) of the 1kp dataset. Weakly rejected clades are those that



iv) Branch quartet frequencies Every internal branch of a species tree divides the
tree into four parts, and thus, at least one quartet tree (often many) can be mapped uniquely
onto that branch. For a given branch, assuming (a) the branch is correct (b) the only source
of discordance between gene trees and species tree is ILS, and (c) there is no gene tree
estimation error, the multi-species coalescent (MSC) model has specific expectations about
these quartets [7]. The probability of a gene tree quartet tree matching the species tree
topology (p > %) is higher than probability of matching the two alternatives, and the two
alternatives have equal probabilities (g = 1_717 < %). Visualizing the empirical frequency of
quartets around each branch can serve two purposes: it gives an interpretable measure of
discordance specific to that branch [210], and one can check whether the assumptions of ILS
are met. If the discordance is purely due to ILS, then one would expect the second and the
third hypotheses to have similar frequencies (close to g). Lack of this pattern can have many
causes, including hybridization [2235]]. Finally, note that if the length of a species tree branch
in coalescent units [/] is d, then for quartets around it, p =1 — %e*d, and thus, the quartet
frequencies also convey information about the branch length. In the limit, ford =0 (e.g., a
polytomy) one would expect all three frequencies to be close to % and p=qg= % can be tested
as a null hypothesis [211].

In this visualization, for every focal split, a bar graph shows the quartet frequencies
around that branch. Moreover, a cartoon tree is generated where leaves are the large groups
of taxa collapsed into single leaves and branches are labeled consistently with the bar graph.
Inputs to this analysis are a set of gene trees, a species tree, an annotation file that maps each
species to a named group and thus defines leaves of the cartoon tree and by extension, the
focal splits.

The portion of quartets around three focal branches of the ASTRAL species trees
in my empirical studies show why some branches have been controversial (Fig.[6.9p). For

Nephrozoa (branch labeled as “8”) and Deuterostomia (labeled as “9”), the relative frequency
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of main topologies are extremely close to 1/3 in both studies. This high level of gene
tree discordance around these two branches is likely caused by a combination of high true
discordance and also gene tree estimation error; irrespective of which is more prevalent,
the high discordance reveals a cause of difficulties faced in resolving these relationships.
Interestingly, the portion of quartets for alternative topologies in [203]] follow the expectations
of the MSC theory quite well (i.e., second and third topologies have very close frequencies);
the same cannot necessarily be said of the [43] gene trees.

v) GC content Commonly used models of sequence evolution are stationary and
assume that all species have identical base composition. This assumption is often violated in
gene coding sequences, especially in the third codon position [[106]. While non-stationary
models [32] and tests of divergence from stationarity [2] exist, simply visualizing GC content
of different codon position for different extant taxa can help in judging non-stationarity and
in deciding whether a GTR analysis is appropriate for some or all of the data [[105} 264].
DiscoVista generates box plots (distributions) or dot plots (averages) of GC content of each
codon position, as well as all three codon positions, for each species. The input to this analysis
is a set of gene coding sequences in FASTA format.

The two Xenacoelomorpha datasets did not release DNA sequences and therefore, 1
could not compute their GC content. Nevertheless, examples of the GC content figures could
be seen for the plant dataset (Fig.[6.5]). These figures immediately show that assumptions of
equal base frequencies are violated. They also show that the variations in the GC content are
mostly concentrated in the third codon position. The GC content levels for the second codon
position, and to a lesser degree the first codon position, do not vary much across species.
These results favor the removal of the third codon position when building gene trees or in
concatenation analyses.

To summarize, DiscoVista provides a useful tool for visualizing several patterns of

discordance, missing data, and GC variations in phylogenomic datasets.
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Chapter 7

TADA

Learning associations of traits with the microbial composition of a set of samples is
a fundamental goal in microbiome studies. Recently, machine learning methods have been
explored for this goal, with some promise. However, in comparison to other fields, microbiome
data is high-dimensional and not abundant; leading to a high-dimensional low-sample-size
under-determined system. Moreover, microbiome data is often unbalanced and biased. Given
such training data, machine learning methods often fail to perform a classification task with
sufficient accuracy. Lack of signal is especially problematic when classes are represented in
an unbalanced way in the training data; with some classes under-represented. The presence
of inter-correlations among subsets of observations further compounds these issues. As a
result, machine learning methods have had only limited success in predicting many traits from
microbiome. Data augmentation consists of building synthetic samples and adding them to
the training data and is a technique that has proved helpful for many machine learning tasks.
In this dissertation, I propose a new data augmentation technique for classifying phenotypes
based on the microbiome. My algorithm, called TADA, uses available data and a statistical
generative model to create new samples augmenting existing ones, addressing issues of low-

sample-size. In generating new samples, TADA takes into account phylogenetic relationships
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between microbial species. On two real datasets, I show that adding these synthetic samples
to the training set improves the accuracy of downstream classification, especially when the

training data have an unbalanced representation of classes

7.1 Introduction

Understanding the impact of the composition of the microbiome on clinically-relevant
traits 1s a major promise of microbiome profiling [[172] using both 16S [79] and metage-
nomic sampling [256]. The goal is to understand how the composition of species, or genes,
in a microbial community such as human gut impacts phenotypes of interest such as obe-
sity (e.g., [254]). The relationship between microbial composition and traits, however, is
complex and hugely variable, from person to person [52] and from one time to another
[44.773]. As a result, microbial communities have been hard to model [258] using traditional
sample differentiation methods [181} [123]].

Machine learning (ML) methods have proved capable of capturing complex rela-
tionships in many fields, such as vision and speech recognition. As a result, researchers
have pointed out the potential of ML models to capture complexities of the microbiome
[114]. Many researchers (e.g., [233, 208]]) have formulated understanding microbiome as
a classification task: given is a set of samples, each consisting of a set of sequences from
various microorganisms, and each sample is labeled by a trait of interest (e.g., lean or obese);
a model is learned to predict these labels and classify unlabeled (new) samples. Some studies
have shown promise in achieving an accurate classification of clinically relevant traits using
microbiome (e.g., [, 71} 22]).

The number of samples available for training an ML algorithm has tremendous effects
on the accuracy of the model. Tuning a large number of parameters of a classifier or regression

method using a small dataset can lead to overfitting and poor generalization to new samples.
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Impacts of overfitting are particularly severe when I have an unbalanced distribution of class
labels or hidden confounding factors in training datasets (e.g., [[121}, 146} 435]).

The number of microbiome samples, compared to applications like vision and speech
recognition, is relatively small. For example, ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC-2010) involved the classification of 1.2 million high-resolution images
into 1000 different classes [204], whereas, one of the largest microbiome datasets, the
American Gut Project (AGP) [153]], includes 14,794 samples, has only self-reported labels,
and is heterogeneous (e.g., only 1,942 samples are omnivores of age between 20 and 80
with no self-reported disease or antibiotic usage). For classifying specific traits, AGP has
even fewer samples (e.g., only 262 samples report having inflammatory bowel disease).
Moreover, the representation of traits of interest is often not balanced, and the distribution
of the labels often is not even close to the larger population (e.g., targeted datasets are often
over-represented in the diseased state and short on healthy samples). Biases are further
compounded by the natural variability of microbiome and auto-correlation between labels
due to hidden or nuisance variables, which abound. These difficulties have lead to diminished
hope for the generalization of methods [247].

Perhaps the ultimate goal should be gathering more (and less biased) labeled samples
for training, a task that will progress only slowly, especially given difficulties of combining
datasets gathered with various lab protocols [261, [127]. An alternative that has has been
explored extensively in recent years by the ML community is data augmentation. The idea
is to create artificial labeled samples algorithmically and add them to the training data. For
example, two widely-used methods, SMOTE [46] and ADASYN [89] seek to reduce biases
introduced by unbalanced distributions of labels using a k-NN clustering of samples and
combining points in the same cluster. Beyond these generic methods, which do not seek to
capture domain knowledge, augmentation has the potential to combine the power of black-box

ML models and biologically-motivated generative statistical models.
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In this dissertation, I propose a new data augmentation technique for microbiome data,
called Tree-based Associative Data Augmentation (TADA). The main ideas behind TADA
are two-fold. i) Each observed sample captures the underlying microbiome only imperfectly,
and hence, a variation of the sample could have easily been observed, ii) such variations
are constrained by the phylogenetic relationships between species [150]], which underlie the
sequence similarity and microbial diversity [177,257]]. Thus, TADA generates new samples
while considering the evolutionary relationships between organisms. Furthermore, I do not
stop at just increasing the number of samples. As I will show, it is crucial to deal with
unbalances and biases in the training data. In deciding what samples to add, TADA can also
remove unbalances in the data with respect to both observed and hidden variables (which
I seek to approximate using clustering). I test TADA on two datasets with various biases
added to the training dataset. I show that two leading ML models (random forests and neural
networks) fail to perform well on unbalanced and biased samples. I also show that data
augmentation improves the accuracy, marginally but meaningfully for balanced datasets and

dramatically in the presence of unbalanced training sets.

7.2 The TADA method

7.2.1 Background and Notations

The training data used in microbiome classification is an operational-taxonomic-unit
(OTU) table X. The rows of the table correspond to a set of m samples, often one per
individual, § = {s1,s2,...,5,} and the columns correspond to features. Features can be
defined in various ways, but for simplicity, I focus on a specific form. My features are a set of
n OTUs (e.g., representing species), {01,02,...,0,}. Each cell of the matrix gives the number

of times an OTU is observed in a sample. The counts in each row can also be normalized so
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that they add up to one. In addition to the OTU table, I need a class label y; for each sample s;.
The class labels correspond to phenotypes (e.g., healthy versus diseased or lean versus obese)
that I seek to classify using the microbiome.

The OTUs have a corresponding sequence, for example from the marker genes like
16S rRNA. These sequences may be obtained using a number of approaches, including
the traditional OTU picking methods [S8, 213]] or sub-operational-taxonomic-unit (sOTU)
methods [8, 41,/59]]. Depending on the method, the exact meaning of OTUs changes; however,
they always correspond (at least in approximation) to microorganisms that constitute the

sample.

7.2.2 Generative model used in TADA

Data augmentation seeks to add to the training set new samples that could have been
seen but are not seen. TADA achieves this using a generative model to create synthetic

samples distributed around existing samples. TADA models two types of variations.

e True variation (TV). From one individual to another, even among those with the same
phenotype, the true proportions of different OTUs in the microbiome change. These
variations may be due to confounding factors (i.e., hidden variables) or natural biological
variation among people. Moreover, the microbial composition for each person may also

change through time. Thus, samples have true biological variation.

e Sampling variation (SV). Environmental sequencing takes a random (but not necessarily
uniformly random) subsample of the true diversity, creating additional variation around
the true proportions. Moreover, sequencing adds errors and ambiguity that further

increase variation.

Of the two forms of variation, true variation is much harder to model statistically. Confounding
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Figure 7.1: (a) A phylogeny 7 with branch lengths (¢,), OTUs at leaves (0;), and internal
node indices. (b) The hierarchical graphical model used to generate new samples. (c) The
augmentation procedure. First, each sample is mapped to the phylogeny, then I estimate
parameters of the model for each sample s; (or a collection of samples; see Figure [7.2)),
and then generate new samples using the generative model. The augmented samples are
concatenated with the original samples for training the classifier (e.g., RF or NN).

factors are mostly unknown as are the source of natural or temporal variations. However, a
major source of inter-correlation, the phylogenetic structure, can be inferred and modeled.
Phylogenetic structure. Microorganisms that make up a sample are all descendants
from a common ancestor, as captured by their phylogenetic tree. The shared evolutionary
history creates a dependence between OTUs, and a phylogenetic tree can represent the
relationships (in its topology) as well as the distance between the species. Close phylogenetic
relationships between OTUs corresponds to closeness in the sequence space and perhaps also
in functional roles. Both forms of variation are likely influenced by the phylogeny. True
variation can be phylogenetic because phylogenetically similar organisms may interchange
easily, though I note that this is far from a universal rule; strain-variation may have a large
impact on the function. Sampling variation is impacted because algorithms for creating OTU

tables are prone to merge or confuse OTUs that are close phylogenetically.

212



TADA uses an inferred binary phylogenetic tree (details are given in Section|[/.3.4)),
called 7, with leaves labeled by OTUs 0y .. .0, (Fig.[7.1p). I index internal nodes of 7 from
1 (for the root) to n — 1 and refer to the length of the edge above node u by #,. Using a simple
O(n) algorithm (Algorithm |§[) I compute d,: the average length of the path from each leaf

under the left child of u to each leaf under the right child of u.

Algorithm 6 Algorithm to compute the average tip-to-tip distances of tree. Length of each
node is defined as the length of the edge above it.

1: procedure AVERAGE_TIP_TO_TIP(‘T)

2 for u € postorder traversal of 7 do

3 if u is a leaf then

4: unum = 1

5: u.avg =0

6 u.sum =0

7 else

8 v, w = left and right children of u

9: u.num = y.num + w.num

10: u.avg = (w.sum X v.num + v.sum X w.num)/(v.num Xw.num) +f, +1,
11: u.sum = v.sum + w.sum + £, X v.num + f,, X w.num

12: return 7

Generative model: the base model

I design a hierarchical generative model to capture both sources of variation and the
phylogenetic auto-correlation. The model has three sets of parameters: i) the phylogeny, 7,
and its branch lengths (and, thus, d,,’s), with the two nodes below each node u arbitrarily
labeled as left (1) and right (r), ii) aset M = {u; ...up—1}, 0 < u, < 1, each corresponding to
an internal node of the phylogenetic tree, iii) the total sequence count N. In addition to these
parameters, I define for each node, a value v, = f(d,) where f can be any monotonically
increasing function.

My generative hierarchical model (Fig.[7.1p) is defined recursively, starting at the root

and traversing the tree top-down. Algorithm [/|shows this model generates ¢ individuals and k&
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new samples for each individual (k X g in total), each with N sequences. The true variation
is modeled using a Beta distribution and the sample variation using a Binomial distribution.
I use the u,v parameterization of the Beta distribution (as opposed to the standard o, 3
parameterization). For each node u, I have the parameter p,, which gives the population-wide
portion of sequences under the node u that fall under the left subtree of u. A draw from the
Beta distribution gives us pfl: the true portion of sequences that go to the left subtree in the
underlying microbiome. Then, a draw from the Binomial distribution gives the actual observed
count and models the variation due to sampling (sequencing) around the true proportion p,.

In this model, the true variance is inversely proportional to the square root of phylo-

genetic distance. In the parameterization of the Beta distribution used here, the mean is u

p(1—p)

and the variance is vl

. By setting the v parameter of Beta to a monotonically increasing
function of d,,, I make sure that the variance increases closer to the tips of the tree (where d,,
is small), and decreases towards the root (where d,, is high). The choice of the exact function
f (see Section is arbitrary. However, the fact that variance should be higher closer to
tips has a biological justification. Closer to the leaves of the tree, microbial organisms become
more similar and therefore more likely to be able to replace each other in an environment or

be confused with each other. Conversely, the microbial composition becomes more stable

close to the root of the tree.

Algorithm 7 TADA sample generation procedure.
1: for individual 1 <i<gdo
2 for node u in preorder traversal of 7 do
3 Draw p!, ~ Beta(u,,v.,)
4 for 1 <j<kdo
5: c1 <N % Index 1 refers to the root node
6
7
8
9

for internal node u with children / and r in preorder traversal do
Draw ¢; ~ Binomial(p!,,c,)
Output ¢,,,...,¢,, as a new sample and normalize if needed.
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Generative model: mixtures

The model described above is limited in a fundamental way: it assumes all samples
are generated from the same underlying distribution. Therefore, it completely ignores the
fact that individuals belong to several classes (the identification of which is the goal) and
that within each class, confounding factors may create further structure among samples. For
example, I may have healthy and diseased samples for my main classes, and for each of those,
samples may be further differentiated based on age, gender, weight, or other factors (which,
may not be known). Thus, the phenotype structure of samples is not modeled.

To capture the phenotype structure, I use a mixture model. The population is assumed
to be divided into clusters, each with its own M parameters, but all sharing the same phylogeny.
Clusters can correspond to class labels, confounding factors, or a mixture of the two. In the
generative process, each sample is first assigned to a cluster, according to cluster probabilities,

and then the procedure described above is followed.

7.2.3 Data augmentation procedure

Assuming the training data come from my generative model, I can design parameter
estimators and use the estimated parameters to generate new data. In fact, a model-based
approach (coupled with the mixture model), in principle can also infer the class labels.
However, on typical microbiome training datasets, the total number of mixture components
is likely large, and the model has a large number of parameters. Thus, parameter estimation
using these complex models will be underpowered. Moreover, despite a large number of
parameters, the model does not come close to capturing all the biological complexity of
microbiome. Thus, instead of using the generative model for inference, I use it only as a tool
for data augmentation for training ML models.

Based on the hierarchical model, I design two versions of TADA, which vary in
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their ambition, ranging from capturing only sampling variation to capturing both sources of
variation and confounding factors. The more ambitious versions include more parameters,
and this reliance on more parameters makes them vulnerable when applied to limited datasets.

TADA-SV: This version only captures sampling variation and has a single user setting:
a number k. For each training sample s, I first estimate p!, in my training set independently
from other samples (assuming samples are unlinked). Then, for each sample, kK new samples
are generated and added to the training set using the fixed p/, following Algorithm (setting
g = 1 and starting in line[d). Thus, this method is only drawing from the Binomial component
of my Hierarchical model and ignores the rest. To estimate p! from a single sample s;, T
use the total count of sequences that fall to the left of the node u in s;, normalized by the
total count of sequences below u. As proved in Lemmal|6] this estimator gives the joint ML

estimate for all pfl values (treated as parameters of the binomial) over the entire tree.

Lemma 6. Consider the phylogeny 7 on the OTU set S. For each internal node u of T, let
C" be random variable giving the number of observed sequences contained under the node
u and let c* be the observed value of C* for one sample. Assume C'*) ~ Bin(p,,C*) where
where (u) is the left child of u and let C"*) = C* — C'*) where r(u) is the right child of u.
The joint maximum likelihood estimate of all p,, values is given by

A AW )

) (7.1)

(p’\lw"vp’\u?"'vp’\n*l) :< cl

Proof. Consider a sample with the count vector X = (x1,x2,...,X,) at the leaves of the tree.
Recall the root is indexed 1 and thus Y7, x; = c!. Let path" indicate the path from the leaf

node v to the node u. The likelihood of observing the count vector x = (x1,x2,...,X,) given
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the phylogeny 7, and the conditional probability vector p = (py,...py,...,Pn—1) €quals

LX =150 ,%0);P={(P1s--sPu--sPn—1,Pns--»Putn—1,---Pn—2,T) =
n (7.2)

rexeHIIC ITT po™

i=1 kepath!

where pyie—1 = 1— pe, and T'(X ,cl) is a normalization function that doesn’t depend on
the conditional probability vector p. Consider the left child of the root, /(1), and recall the
probability of sequences falling below it is p;. All the root-to-leaf paths descending from /(1)
have the branch connecting the root to /(1); thus, for these, the probability p; is multiplied
each time. A similar argument works for the right child of the root with the probability 1 — p;.

So the likelihood could be written as

n

£062, ) =G0 TT )G Eeen ) (1 — py) Bt =) =

i=1 kepalhfr(l’i)

L2, T L2, T).(p1)" (1= p1)” "
where [r(1,i) =I(1) for leaves under the left child of 1 and Ir(1,i) = r(1) for leaves under
the right child of 1, a(u) is the set of leaves under the node u, and P! and P" indicate the
left and right subtrees of the root. This means I could compute the £L(x;P,T) as the product
of the likelihood of the left subtree, the likelihood of the right subtree of the root, and the
probability of observing a total of ¢! (1) counts for the 77,

Note that p; (same is true for 1 — p;) does not contribute to the likelihood of 7" or
7" and, hence, to find p1 I could consider £(x;P,T").L(x;P,T") as a constant and ignore.

Instead of maximizing the (p; )Cl(l) (11— pl)cl —'" I could maximize log of this function

F(W e pr) = dWlog(pr) + (! = D) log(1 — py)
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and, hence
A

pr="F
C

This gives us p; for the edges descending from the root. I can use the same argument

recursively and compute other probabilities as

()

CM

]

Corollary 10. Consider Lemma [6] and the likelihood of observing the count vector x =
(x1,x2,...,x,) given the phylogeny 7, and the conditional probability vector p on all leaves
(left subtrees) of the phylogeny 7. Equation[7.2]is the likelihood of a multinomial distribution

leaf _ (plleaf’plzeaf leaf

with probabilities p yoooyPn ). In this equation

=TI m

kepath°”

TADA-TVSV-C: This version captures both sampling and true variation and option-
ally also confounding factors. The method has three user settings: k, g, and C. I first cluster
samples 51 ...s, into C groups per classification label based on the training data X using
any clustering method of choice (see my default choice in Section [7.3.4). These clusters
correspond to components of the mixture model I described before; note that instead of using
a complex parameter-rich model-based inference of mixture components, I use a clustering
method to approximate the components. The hope is that the clustering based on X captures
the hidden phenotype structure, at least partially. The choice of C controls the level of com-
plexity and therefore the number of parameters. For example, acknowledging the difficulty of

finding the phenotype structure, I explore the extreme setting of C = m where each sample in
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my training set belongs to its cluster and therefore is unlinked from others, just like SV. I also
explore other settings of C, including C = 1.

After clustering, I first estimate M parameters per each cluster using a method of
moments. The estimator, as shown in Lemma(7] simplifies to computing the sum of counts
on the left child of each node u across all samples of the cluster, normalized by the sum of
the counts under the node u. Then, for each cluster, I generate g new individuals and k new
samples per individual (thus, k x ¢ in total). To do so, I follow the generative procedure given

in Algorithm

Lemma 7. Consider the phylogeny 7 on the OTU set § and samples s1,...,s,,. Let the total
number of sequences in each sample be C = {c%,c% ...,cL}. Assume that the probability
of observing a sequence from a species under the left subtree of the node u follows a beta
distribution p!, ~ Beta(u,,v,) where v, is a fixed parameter which depends only on the
phylogeny, 7, and is therefore given, and u, € M is a parameter shared between all samples.
Assume that the number of observed sequences contained under the left subtree of u given p/,
follows a binomial distribution C!(*) ~ Bin(pl,,c"). Then, the method of moments estimate
for y, is

w I(u)
j=1¢

si=y (7.3)

My = W U
j=1€j

where [(u) is the left subtree of u, and ¢ is the number of observed sequences contained

under u in the sample s;.

Proof. Consider the new random variable 37, Cé(u)

E[

-

I(u u [(u Y Hu
C)"1= LRI = L) =
J= 1=

w l w
lEplu [C?pu] = My Z] C?
= ]:

~
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and hence having

u— w u

7.2.4 Balancing

So far, I have generated a fixed number of new samples per input training sample.
However, by generating a different number of samples per input sample, I can use augmenta-
tion for balancing (or otherwise adjusting) my input training set in terms of the distribution
of labels. As I will show, lack of balance between representation from different phenotype
classes (e.g., the training labels) can degrade the accuracy of ML methods. TADA, therefore,
can also be run with balancing (Fig.[7.2). In this mode, training data are first divided into sev-
eral groups; these groups can be based on classification labels, the result of clustering training
points, or a combination. I then choose the number of extra samples generated per sample
(e.g., k and g) such that all groups have the same number of samples after augmentation. |

will test two modes.

e TADA-Balance adds exactly as many new samples as necessary (and not any more) so

that all groups have the same total number of samples.

e TADA-Balance++ not only makes all groups balanced in size but also increases the total
number of samples for all groups, so that the largest group has g times more samples

than before augmentation.
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Figure 7.2: In the clustering scenario, I first group samples using k-means clustering applied
to the Bray-curtis distances between samples. I then generate new samples for each group
separately.

221




7.3 Experimental setup

7.3.1 Datasets

I use two datasets, both based on 16S profiling of gut microbiome.

Gevers. As my main dataset, [ use a dataset by [77] (publicly available on Qiita [80];
study ID 1939), which the authors put together to study the impact of the microbiome on the
Inflammatory Bowel Disease (IBD). This study has 1,359 samples, has been gathered in a
clinical setting, is carefully curated, and has reliable class labels. I filtered out samples from
people on antibiotics, with less than 10,000 16S sequences. Before running my experiment,
I also removed 9 outliers and any OTUs with total counts across all samples below 3. This
leaves us with 647 diseased samples and 243 healthy samples, gathered using either biopsy or
stool. [7'7] were able to find a clear indication that IBD changes the microbiome composition,
and thus, ML methods should be able to achieve reasonable classification accuracy on this
dataset.

BML. In addition, I use the American Gut Project (AGP) [[153]]. This dataset has only
self-reported labels and is gathered by crowdsourcing instead of a clinical setting. Thus, it
is less curated than the Gevers dataset, though authors have taken several quality control
steps. With an understanding of the shortcomings, I use the AGP data to test my method on a
phenotype other than IBD. I classified the self-reported body mass index (BMI) phenotype
categorized into 1,360 lean vs. 582 overweight samples (cutoff at BMI: 25). Similar to Gevers
dataset, I further filtered this dataset to control for many factors that might affect microbiome
composition. These factors include diet (I keep omnivore samples), ethnicity (Caucasian),
country (USA), disease (healthy), antibiotics (no antibiotic usage in the past year), and age
(between 20 to 70). I also filtered samples with less than 1,000 de-noised reads, one outlier,

and I removed OTUs with total counts across all samples below 4.
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7.3.2 Experiments

E1. On both Gevers and AGP datasets, I compare TADA, in its two settings, against
ADASYN and SMOTE, and the baseline approach where no augmentation is performed. In
this experiment, I use all the data for training and testing in a cross-validation setting (see
evaluation procedure below) performed using the held-out original samples. E2. I next test
the impact of balancing by generating unbalanced training data. I created datasets such that
1/10,1/5, or 1/3 of both the training and testing data are from healthy/overweight individuals. I
created two versions of this unbalanced dataset. In the first version (E2-fix), I used a fixed
number (243 for IBD and 582 for BMI) training samples for all three ratios to test the impact
of the ratio without changing the training size. Here, the testing sets are chosen to match the
ratio in the training set but have a larger total sum (the maximum possible in each case). I also
created a version (E2-max) only for the IBD dataset with the maximum possible training size
for each ratio. To do this, I removed the minimum possible number of samples from healthy
(for 1/10 and /5 ratios) or diseased (for !/3) so that I obtain the desired ratios; this leaves us
with 574 training samples for !/10, 646 for ! /5, and 587 for !/3. Once again, the testing sets are
chosen to match the training set in ratio. E2-max enables us to make sure results on E2-fix
hold if training datasets are as large as possible. Here, in addition to no-augmentation, |
compare TADA-Balance(++) to ADASYN, SMOTE, and a simple balancing strategy that
reduces the number of diseased samples to match the healthy count by random downsampling.
E3. While E2 is to test lack of balance, E3 is concerned with biases in the composition of
classification labels in the training dataset. In E3, I use the !/5 dataset of E2-fix for training,
but for the testing set, I choose samples such that /5, 1/2, or 4/5 are healthy (achieved by
randomly removing diseased cases until the desired ratio is achieved). Thus, the last two

cases have a different composition of labels between training and testing datasets.
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7.3.3 Evaluation procedure.

For measuring classification accuracy, I rely on the Area Under the Curve (AUC) of
Receiver Operating Characteristic (ROC). The AUC measure is computed by exploring differ-
ent cutoffs for the threshold used internally in each classification method, hence exploring the
trade-off between precision and recall. AUC is the standard method used for measuring the
accuracy of ML classification because it does not depend on arbitrary sensitivity/specificity
trade-offs.

All of my tests are based on a cross-validation strategy, repeated several times to get a
total of 20 evaluations of AUC. I report the mean and standard error of AUC across the 20
replicates. In E1 and E2-max, I use 5-fold cross-validation, repeated 4 times. In E2-fix and
E3, T use 3-fold validation for the !/3 setting, 5-fold validation for !/5, and 10-fold validation,
for 1/10, each repeated enough to get 20 replicates. The augmented samples are only added to

the training data, and testing is done using the held-out samples from the original datasets.

7.3.4 Method details

OTU and phylogeny. I use Deblur [8] to extract error-corrected (de-noised) sequences
from each sample and take each resulting sequence as an OTU. I then use SEPP [162,1104]
to insert OTUs onto a backbone phylogeny of GreenGenes [37]; removing the backbone
sequences and randomly resolving the remaining polytomies gives us a binary tree on the
OTUs observed in the samples. I use this tree as 7.

TADA. I implemented TADA in python using Dendropy [242] for manipulating
phylogenies, biom-format [[154] for processing OTU tables, scikit-learn [182] for machine
learning methods, and scikit-bio for computing distances between microbiome samples. In all
the analyses, I use f(d,) = 100+/d,,. The choice of the square root is arbitrary but is motivated

by wanting a slower than linear reduction in variance closer to the tips (where d,, < 1); the

224



constant 100 ensures the variance of Beta is not extremely high and had little impact on results
in my initial tests on a different dataset. To cluster samples, I use the k-means method [[15]]
applied to the Bray-Curtis [156] distances between samples computed from the normalized
matrix X. In all analyses, unless specified, I set k =5 for TADA-SV and k =1, =5 for
TADA-TVSV-C (my initial experiments showed marginal improvements with increased k
or g; see Fig.[7.3)). For TADA-Balance++, I set k = 50 for TADA-SV and k = 1 and g = 50
for TADA-TVSV-C. For TVSV, I will explore five settings of C, the number of clusters:
1,4,8,40, and m. In order to avoid zero counts, I add the pseudocount 5/x to the count of all
OTUs for all samples (n ~ 10* for IBD and ~ 2 x 10* for BMI).

ADASYN/SMOTE. I use ADASYN and SMOTE implemented in the imbalanced-
learn package (ver. 0.4.3) [129]]. I use the normalized counts of OTUs (so that values in
each row of X add up to 1) as inputs. I use k = 5 (default value) for the k-nearest neighbor
clustering step of these methods. Both methods allow us to set the number of samples I want
to generate from each class.

ML. I use two ML methods: random forests (RF) [35] and neural networks (NN),
both as implemented in the scikit-learn package [182] (ver. 0.20). I use RF because of its
superior performance on previous studies of microbiome (e.g., [233]). I set the number of
trees for RF to 2000 and use default options otherwise. For NN, I use Multi-layer Perceptron
classifier, MLPC. My MLPC had two layers with dimensions 2000 and 1000, respectively,
with an early stopping rule. For the other parameters of MLPC, I used the default options. I

use the normalized counts of OTUs as input features.
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Figure 7.3: Impact of the choice of k and ¢g. On El, I show results with different augmenta-
tion levels. Area Under Curve (AUC) is shown for both Neural Networks(NN) and Random
Forest (RF) classifiers and on both Gevers IBD dataset and AGP BMI dataset. Colors show
kx g (setto 1,5, 20, or 50). For SV, g =1 in all cases. For TVSV, k = 1, except for the case

where k X g = 25, where, k =g =5.
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Figure 7.4: Results on E1. Area Under Curve (AUC) is shown for both Neural Networks
(NN) and Random Forest (RF) classifiers and on both Gevers IBD dataset and AGP BMI
dataset. I compare training on original dataset with no augmentation, SMOTE, ADASYN
and using both SV and TVSV versions of TADA. For TVSV-C, I set the number of clusters,
C,t0 1,4, 8, 40, or m (number of samples). I used ADASYN and SMOTE with their default
settings. I show mean (dots) and standard error over 20 replicates. For TADA-SV, I show
both k = 5 and k = 50, and for TADA-TVSV-m, I show both g =5 and ¢ = 50 with k = 1;
see Fig. [7.3)for other ¢ and £.
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7.4 Results

7.4.1 El: complete datasets

I start with the E1 experiment where all the data are used (Fig. [7.4).

On the Gevers IBD dataset, the accuracy of ML methods, as measured by AUC,
is reasonably high (mean AUC > 0.8, both for NN and RF) even without augmentation.
Nevertheless, TADA is able to increase the mean accuracy for both NN and RF. For example,
for RF, the AUC improves from 0.857 to 0.890 with TADA-TVSV-m (¢ = 50) and the
difference is statistically significant according to a paired t-test (p < 107>). This improvement,
while not large in magnitude, corresponds to a 23% reduction in the gap compared to the
ideal AUC =1 and therefore is substantial. In contrast, ADASYN and SMOTE result in
much smaller improvements (mean AUC <0.87); these improvements are not statistically
significant for ADASYN (p = 0.15) but are significant for SMOTE (p = 0.0003).

For BMI classification using the AGP dataset, the AUC was generally low in the
absence of augmentation (mean <0.72 for both methods), perhaps reflecting the heterogeneous
nature of the AGP dataset or the difficulty of classifying BMI into two categories based on
the microbiome. Data augmentation using TADA-TVSV increases the accuracy for RF;
for example, the AUC is increased to 0.73 using TADA-TVSV-m, and this improvement
is statistically significant (p < 107>). Here, ADASYN reduces accuracy while SMOTE
helps accuracy insignificantly (p = 0.18) and not as much as TADA. Unlike RF, NN is not
helped by TADA-SV, and TADA-TVSV-m gives only a statistically insignificant improvement
(p = 0.35). Both ADASYN and SMOTE reduce the accuracy.

Comparing different numbers of clusters (C) for TVSV-C, I observe an interesting
pattern. Increasing the number of clusters improves AUC consistently, and the trend is

especially apparent for RF. The highest accuracy is obtained by either TVSV-40 or TVSV-m
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Figure 7.5: Results on the E2-fix dataset. Training dataset is randomly subsampled to
create unbalance: healthy (for IBD) and overweight (for BMI) samples constitute !/10 (10-
vs-90), 1/5 (20-vs-80), or 1/3 (33-vs-66) of the samples for borh the training and testing
sets. I compare AUC on the original training set (no augmentation); the over-represented
class downsampled to match the number of under-represented class (downsampling); and,
augmentation using SMOTE, ADASYN, and TADA. Methods are run in two ways: TADA-
Balance just adds samples to the healthy class to balance labels; TADA-Balance++ adds
both healthy and unhealthy samples to make them balanced and to increase the total number
of samples by 50X.
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where a single sample (for m) or a handful of samples (for 40) constitute a cluster. Based
on these results, I focus only on TVSV-m for E2 and E3. Interestingly, the accuracy of
the simpler model, SV, is very close to TVSYV, except perhaps on the BMI dataset with NN.

Finally, increasing k or g and also using k = g = 5 tends to improve accuracy, albeit marginally

(Fig.[7.3).

7.4.2 [E2: unbalanced class labels

The power of TADA becomes evident when the classes have an unbalanced represen-
tation (Fig. [7.5). By making the representation of the two labels unbalanced, I observe that
the accuracy of ML methods degrades quickly. In E2-fix, I see a sharp drop in AUC of both
ML methods as the level of unbalance increases (Fig.[7.5)). For example, on the IBD dataset,
RF with no augmentation goes from AUC = 0.8 with !/3 healthy samples to AUC = 0.7 when
1/10 are healthy. Similarly, on BMI, AUC goes down from 0.66 in the ! /3 case to AUC = 0.54
when !/10 are overweight. Simply down-sampling the number of over-represented class to
match the other label by random removals increases AUC despite training from a smaller
dataset. This improved accuracy further underscores the detrimental impact of a lack of
balance.

Large improvements in AUC are obtained when I use TADA to balance the rep-
resentation from the two groups. For example, on the IBD dataset, the AUC of RF with
TADA-SV-Balance is > 0.8 even when the original training data (i.e., before augmentation)
has only !/10 healthy individuals. Similar levels of improvement are observed for BMI. Across
both datasets, improvements in accuracy can be as large as 0.11 points for RF and 0.29 points
for NN. Thus, TADA-Balance can largely erase the negative impacts of unbalance in the
original training dataset. Like E1, here, TADA-SV and TVSV-m perform similarly.

More interestingly, using TADA-Balance++ results in additional improvements be-

yond TADA-Balance. For example, for IBD, the AUC in the !/5 healthy case goes from
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0.81 with TADA-SV-Balance to 0.83 with TADA-SV-Balance++ with RF (statistically sig-
nificant: p = 0.00004). The improvements of Balance++ over Balance are consistent with
improvements of TADA over no augmentation observed in E1.

The two standard methods, SMOTE and ADASYN, have mixed performance. I
start with RF on the IBD dataset. With the Balance version, both methods improve AUC
substantially only for the !/i0 healthy case but they fail to outperform downsampling. In the
1/5 healthy case, they result in small improvements and in the !/3 healthy case they reduce
AUC compared to no augmentation. The Balance++ versions of both methods, however,
consistently improve AUC. Nevertheless, with 1/10 or 1/5 healthy, TADA-SV outperforms
both methods (p < 0.007 in all four comparisons) whereas with 1/3, TADA-SV and both
methods are statistically indistinguishable (p > 0.16 in both comparisons). Similar patterns
are observed for BMI with RF. With NN (which has much lower AUC than RF) SMOTE,
ADASYN, and TADA have similar accuracy in all conditions.

The positive impact of balancing on E2-fix is not merely due to its small training set.
On E2-max, which has roughly double the training set size of E2-fix, TADA continues to
improve accuracy over no augmentation and other methods, especially for ! /10 and !/5 levels
of unbalance (Fig. [7.6). Compared to E2-fix, AUC is improved for all methods in E2-max, as
expected due to the larger training set. Here, downsampling and SMOTE/ADASYN-Balance
stop increasing accuracy for RF.

Note that before augmentation, the composition of class labels in the testing set
matches that of the training set. Thus, the reductions in accuracy for unbalanced data without
augmentation are not due to a biased distribution of labels in the training set. In fact, after
balancing using TADA, the distribution of labels between training and testing data will not

match, making the high accuracy of balanced results even more noteworthy.
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Figure 7.6: Results on the E2-max dataset. Settings similar to Figure
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7.4.3 E3: biased class labels

Focusing on the IBD data, I next test the impact of not just unbalanced but also
biased sampling by fixing training set to have !/5 healthy (for IBD) but changing the relative
representation in testing data. Interestingly, including bias does not further reduce the accuracy
in substantial ways (Fig. . However, in the biased scenario, I continue to see dramatic
improvements obtained by TADA compared to no-augmentation, down-sampling, and to
less extent, SMOTE and ADASYN. Thus, for unbalanced training data, augmentation can

improve the accuracy regardless of whether the testing data has the same label distribution.

7.5 Discussions and conclusions

I described a new data augmentation method to generate artificial samples for augment-
ing the training set of ML methods for phenotype classification from microbiome samples.
My method, TADA, combines the power of statistical generative models that incorporate
phylogenetic knowledge with the flexibility of black-box ML methods. I tested my method
for two phenotypes (IBD and BMI) and using one type of microbiome data, namely 16S. My
results showed that TADA improved the classification accuracy and the improvements were
dramatic when the samples were unbalanced in terms of the distribution of class labels.

I emphasize that the unbalance in training data is not a corner case; in microbiome
data, unbalance is the rule, not the exception. Often, microbiome datasets gathered in clinical
settings are short on control (i.e., healthy) cases, especially when compared to the larger
population. My results clearly demonstrate that ML methods fail to train well on unbalanced
data. While I focused on AUC, it is instructive also to examine the percentage of times a
method makes the correct classification call. With !/i0 or !/5 unbalance levels, the trained

ML model is mostly useless because it classifies all testing samples as diseased, achieving
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artificially high levels of correct classification (Fig. despite low AUC (Fig.[7.9); i.e.,
here, ML models just match a no-skill classifier and are, thus, grossly overfit. Balancing
augmentation helps to alleviate this issue, as evident in increased AUC values. Nevertheless,
balancing changes the prevalence of labels and needs to be done with care. Overall, my results
provide a cautionary note on applying ML methods for unbalanced labels and are a reminder
that clinical applications of ML to microbiome are fraught with dangers and can benefit from

further improvements in the methodology.
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Figure 7.8: Percentage of correct classification on the E2-fix IBD dataset. Figure settings
are similar to Figure [7.5]but I show percentage of correct classifications instead of AUC.
Red line shows the accuracy achieved by simply guessing the healthy label each time.

My results did not show a consistent difference between SV and TVSV generative
models across all dataset. The more complex model, TVSYV, was slightly more accurate
on the BMI dataset but did not manage to outperform SV on IBD. TVSV seeks to capture
variability due to biological sources and adds more variance than SV. The failure of TVSV
to provide a substantial improvement over SV only on the IBD dataset may indicate that for

some datasets (perhaps more carefully curated) the biological variance is already sufficiently
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captured. But it could also indicate that the variance generated using my hierarchical Beta
model, fails to emulate biological variance in a meaningful way. Beta is a powerful model to
capture the distribution of proportions, especially when distributed around a center (or the
two extremes) but biological distributions may not fit Beta. Moreover, I make conditional
independence assumptions on the phylogenetic tree, which may not match the biology (e.g.,
due to horizontal gene transfer).

My results indicated that clustering samples and using the mixture model could reduce
accuracy if the clusters are big and is neutral or only slightly beneficial when clusters are
small (Fig.[7.4). Thus, sample augmentation was most effective when applied to individual
samples or small clusters. It may be that with the small sample sizes that I have and large
numbers of confounding factors, samples are so varied that only one or a handful of data
points are available per component of the mixture model. Thus, it is possible that as the
size of the training datasets increase, the mixture model starts to outperform the TVSV-m
consistently. Thus, for existing small datasets, using TVSV-m is a safe choice, but in the
future, as more data become available, this question needs to be revisited.

The framework I described for combining generative models and ML methods can be
extended beyond the exact generative models I used. My specific generative model combines
a Binomial and a Beta distribution, with one learned parameter (u) and one parameter fixed
based on the phylogeny (v). The method I used to choose the fixed v (inversely related to
the variance) relies on the phylogenetic knowledge, incorporated as the mean divergence
below each node (similar to the Fsr measure). I selected a particular function f, but note
that my choice is without strong theoretical underpinnings. Future work should explore more
principled choices, deriving the function f as a result of a dispersion process running along
the branches of the phylogeny (e.g., a Poisson model). These future attempts could also
explore the [18]] model, which also is based on a similar Beta model and the Fsr measure.

A natural extension of my generative model is to let v be learned from the data instead
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of using the phylogeny. In fact, I have derived the necessary parameter estimators for such a
model using the method of moments (see Appendix A.2). However, using this model will
double the number of parameters and will rely less on the known phylogenetic knowledge.
My initial tests (Fig. indicate this more parameter-rich model fails to perform well on
my two test datasets. However, if substantially larger training sets are available in the future,
this method should be revisited. Another natural extension is to use Dirichlet+Multinomial
instead of Beta+Binomial to allow multifurcating trees. Finally, instead of assuming all g,
and v,, parameters are separate parameters, they can be considered random variables drawn

from another distribution with appropriate hyperparameters.

7.5.1 Using a Beta-Binomial distribution with two parameters

Following Lemma 7} instead of using a v, which only depends on the phylogeny 7,
I could use a model where (y,,Vv,) both depend only on class/cluster label y. In this model
for each internal node u of the phylogeny, the probability of observing a species on the left
subtree of u follows a beta distribution, (i.e. p{t ~ Beta(uy,Vv,)), and the number of observed
sequences contained under the left subtree of node u follows a binomial distribution (i.e.
) ~ Bin(py,c"), where ¢" is the total number of sequences under the node u). In this

section, for the ease of calculation, I use the other formulation of the beta distribution, i.e.

(xLl
Oy +Bu°

pl, ~ Beta(a,,B,), where u, = and the relationship between v, u,, and the variance
of the beta distribution is given in Section and hence these notations are interchangeable.
Now, using method of moments, I could estimate o, and B, from the class-y samples as

follow
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Figure 7.9: Computing v from data versus fixing it using the phylogeny. Using the method
of moments described in Section [7.5.1] I estimate both y, and v, from data (instead of

fixing v,, from phylogeny as in my main results). I call the resulting method TADA-TVSV*,
Results on the E1 dataset indicate that computing v,, from variance of the data not only fails

to improve accuracy, but can even reduce it.
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where M, and Q, are the first and second moments of the observed sequences contained
under the left child of the node u in 7. In a special case where the total number of observed
sequences contained under the node u are all the same (i.e. ¢ =c{ =c) =... =c}), the
distribution becomes the beta-binomial distribution, ¢ = c,(ll), and (c*)? = cﬁf). In this case,

the MOM) and BMOM) equal [253]

gMoM) _ "M, —Qu (7.10)
(& — M, — 1) + M,
B(MOM) B (¢ = My,)(c" — %u) (7.11)

Proof. Consider the internal node u of the phylogeny 7. Based on my model, Cf W)

239



Bin(cY, pl,), where p!, ~ Beta (o, By)

pl, ~ Beta(ou,,By) (7.12)

! ~ Bin(ct, pu) (7.13)

l(u)s.

I will compute the expected value for the weighted average of random variables C;
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where I call the empirical value for the E[V%lezl Cf(u)] as Q=Y 1 (ci("))z. Using the

i=1w

method of moments and using the following equations I could compute the estimates for o

and
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In order to evaluate the performance of these estimators, I used simulations, where
’s and counts (c*’s) are generated from known beta and binomial distributions respectively
(Figure S1). Figure S4 shows results of these estimators on the IBD dataset.

I observed that RF had somewhat higher accuracy than NN in my experiments. This
observation is in line with some previous studies (e.g., [233]), which have demonstrated
similar results. However, I note that with augmentation, NN comes much closer to the
accuracy of RF. I also note that I have not fine tuned the NN models. Thus, it is possible
that NN, perhaps in the form of smaller networks or conversely deeper networks along with
regularization techniques could outperform RF. In particular, deep learning requires large
training samples. It is conceivable that deep learning methods paired with augmented data
can in the future outperform ensemble methods such as NN in the future.

Other steps of TADA could also be changed. For example, for the phylogenetic

inference, instead of placement on a common backbone tree, a de novo inference may be
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feasible using scalable phylogenetic inference methods. Clustering of samples can also
be done using more complex methods designed for microbiome, such as phylogeny-based
methods like weighted/unweighted Unifrac distances [[145,[144] and compositional methods
like Aitchison’s distance [3} 4]]. Finally, as features for the ML training, I used OTUs as
obtained using the Deblur algorithm (i.e., de-noised sequences). However, extracting features
can also follow more complex methods, perhaps using those that include the phylogenetic
knowledge (e.g., [S, [168]).

My studies show potential for improving the generalization of ML methods. I tested
only two datasets, each with only two categories. Future work should explore applications
of TADA to more phenotypes, including multi-labeled ones. Also, nothing in the method
limits it to gut or human microbiome; the same method should be explored on other types
of environments. Future experiments should also explore training models on a dataset and
testing on a separate dataset produced by a different lab; perhaps augmentation can also help
reduce batch effects, which are notoriously difficult to deal with in microbiome modeling.
Finally, I focused on 16S profiling. However, phylogenetic placement methods for shotgun
metagenomic samples also exist (e.g., TIPP [[173]]); future work should explore the application

of TADA to metagenomic data.
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Appendix A

Anchored distances for quartet-based
estimation of phylogenetic trees and

applications to coalescent-based analyses

A.1 Commands and version numbers

We used ASTRAL version 4.7.8 to find the species trees from gene trees:

java —Xmx2000M —jar astral .4.7.8.jar —i [GENE TREES] —o
[OUTPUT SPECIES TREE]

The ASTRID (NJst) results were produced using the following command:

python ASTRID.py —1i [GENE TREES] —m [fastme2] —o
[OUTPUT SPECIES TREE] —c [CACHE]

CACHE is the distance matrix produced by ASTRID.

For DISTIQUE-allpairs we used the following command:

python distique .py —a [mean] —g [GENE TREES] —m [prod] -—o
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[OUTPUT DIR] —t[1]
For DISTIQUE-allpairs-max we used the following command:

python distique .py —a [mean] —g [GENE TREES] —m [min] —o
[OUTPUT DIR] —t[2]

Here the flag a specifies which averaging method to use the partial quartet tables from
complete quartet tables around each polytomy.

For tree-sum we used the following command:

python distique.py —g [GENE TREES] —o [OUTPUT DIR] —n
[# rounds of anchoring] —t[4]

For distance-sum we used the following command:

python distique .py —g [GENE TREES] —o [OUTPUT DIR] —n
[# rounds of anchoring] —t/[3]

Finally the flag # determines which method to use for inferring.
For comparison and computing false negative missing branches we used the command

available at https://github.com/smirarab/global/tree/master/src/shell:

compareTrees . missingBranch [SPECIES TREE]
[ESTIMATED SPECIES TREE]
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Appendix B

Supplementary Material for “Fast
coalescent-based computation of local
branch support from quartet

frequencies”
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B.1 Commands and version numbers

B.1.1 ASTRAL

We used ASTRAL version 4.9.1 available at https://github.com/smirarab/
ASTRAL/tree/posteval for scoring. We also used ASTRAL version 4.9.8 for comput-
ing the branch lengths of the trees. To have posterior probabilities of branches of main species

tree and 2 other alternatives we used:

java —Xmx2000M —jar astral .4.9.1.jar —1 [GENE TREES] —q
[SPECIES TREE] —t 4

To compute the branch lengths of main species tree we used the MAP estimate with the

command:

java —Xmx2000M —jar astral .4.9.8.jar —1 [GENE TREES] —q
[SPECIES TREE] —t 2

Users can find the most updated code available at https://github.com/smirarab/ASTRAL/.
To score and compute the branch lengths, and local posterior probabilities of inferred species

tree one can use:

java —Xmx2000M —jar astral .4.10.0 —i [GENE TREES] —q
[SPECIES TREE] —t 3

B.1.2 MP-EST

MP-EST version 1.5 was used for estimating branch lengths on a fixed topology. We
used a custom shell script to run MP-EST 2 times with different random seed numbers and
take the tree with the highest likelihood. The shell script is available at https://github!

com/smirarab/global/tree/master/src/shelll
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Appendix C

Supplementary Material for “DiscoVista:
interpretable visualizations of gene tree

discordance”

C.1 Structure of parameter files

splits definitions: The splits definition file has 7 columns separated with tabs. In
the first column split names are listed, in the second column the species or other splits that

[I3R2)

define this split are listed separated with “+” or signs. “+4” signs are used to add splits
and species, and “-” signs to subtract species or splits. In the third column (you might leave
this column blank) a name can be defined that is used to specify the part of the tree that the
splits belongs to, e.g. 1-Base, or Base. Forth column defines splits components where in the
absence of any of them splits is considered as missing. The fifth column indicates whether
the split should be shown in the species tree (gene trees) analysis. The sixth column is used to

define components from the other side of the split, where in the absence of any of them the

split is considered as missing. Note that if you leave this column blank, “All” minus this split
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will be considered as the other side component. The last column is used to add any comments
to this file. Also note that, a split with the name “All” should be defined which consists of all
the species names in your analysis.

Annotation file: In this file, there should be a row for each species. The first column
of the annotation file specifies the name of species, and the second column defines the split

that this species belongs to. Columns are separated by tab.

C.2 Installation, Commands, and Usage

In order to install DiscoVista from source please refer to https://github.com/
esayyari/DiscoVista. DiscoVista relies on different R, python , some C packages, as well
as ASTRAL. In order to make the installation easier we also provide a docker image available
at https://hub.docker.com/r/esayyari/discovista/. In order to use this image, after

installing docker, it is sufficient to download it using the following command:

docker pull esayyari/discovista

Now, you would run different analyses using the following command:

docker run -v <absolute path to data folder>:/data
esayyari/discovista discoVista.py [OPTIONS]

Species discordance analysis: For this analysis you need the path to the species
trees folder, the clade definitions, the output folder, and a threshold. For more information
regarding the structure of the species tree folder please refer to https://github.com/

esayyari/DiscoVista. Then you would use the following command using docker:

docker run -v <absolute path to data folder>:/data esayyari/discovista
discoVista.py -m 0 -p <path to species trees folder> -t <threshold>
-c <path to split definition> -o <output folder> -y

<model condition ordering file> -w <splits ordering file>
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Discordance analysis on gene trees: For this analysis you need the path to the gene
trees folder, the clade definitions, the output folder, and a threshold. For more information
regarding the structure of the gene trees folder please refer to https://github.com/

esayyari/DiscoVista. Then you would use the following command with docker:

docker run -v <absolute path to data folder>:/data esayyari/discovista
discoVista.py -m 1 -p <path to gene trees folder> -t <threshold> -c
<path to split definition> -o <output folder> -w <splits ordering file>

GC content analysis: For this analysis you need the path to the coding alignments
(in FASTA format) with the structure described in more details at https://github.com/
esayyari/DiscoVista, and the output folder. You would use the following command in

docker:

docker run -v <absolute path to data folder>:/data esayyari/discovista
discoVista.py —-m 2 -p <path to alignments folder> -o <output folder>

Occupancy analysis: For this analysis you need the path to the alignments (in FASTA
format) with the structure described in more details at https://github.com/esayyari/

DiscoVista, and the output folder. Then you can use this command with the docker:

docker run -v <absolute path to data folder>:/data esayyari/discovista
discoVista.py -p $path -m 3
-a <path to annotation file> -o <output folder>

Relative frequencey analysis: For this analysis you need the path to the gene trees
and species tree folder (structure described on the Github), annotation file, outgroup clade

name, output folder. Using docker you would do this analysis with the following command:

docker run -v <absolute path to data folder>:/data esayyari/discovista
discoVista.py -p S$path -m 5
-a <path to annotation file> -o <output folder>

If desired, the cartoon tree can be shown rooted, requiring the name of the outgroup

as input (e.g. Base or Outgroup).

docker run -v <absolute path to data folder>:/data esayyari/discovista
discoVista.py -p $path -m 5 -a <path to annotation file> -o
<output folder> —-g <outgroup clade name>
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