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Monotone dynamical systems 241
0. Introduction

This chapter surveys a restricted but useful class of dynamical systems, namely, those
enjoying a comparison principle with respect to a closed order relation on the state space.
Such systems, variously called monotone, order-preserving or increasing, occur in many
biological, chemical, physical and economic models.

The following notation will be used. Z denotes the set of integers; N= {0, 1, ...}, the
set of natural numbers; N is the set of positive integers, and R is the set of real numbers.
For u, v € R” (= Euclidean n-space), we write

usv < u; <y,
Uu<v << u;<v, uU#v,
ULy < u; <v,

where i =1, ..., n. This relation < is called the vector order in R”".
The prototypical example of monotone dynamics is a Kolmogorov model of cooperating
species,

% =xGi(x), x>0, i=1,...,n 0.1

in the positive orthant R’} = [0, c0)”", where G : R}, — R”" is continuously differentiable.
x; denotes the population and G; the per capita growth rate of species i. Cooperation
means that an increase in any population causes an increase of the growth rates of all the
other populations, modeled by the assumption that 3G; /9x; 2 0 for i # j. The right-hand
side F; = x;G; of (0.1) then defines a cooperative vector field F : R" — R", meaning that
0F;/oxj = 0fori # j.

Assume for simplicity that solutions to Eq. (0.1) are defined for all # > 0. Let @ =
{®,:R} — R’} };>0 denote the resulting semiflow in R’ that describes the evolution of
states in positive time: the solution with initial value u is given by x(¢) = @,(u). The key to
the long-term dynamics of cooperative vector fields is an important differential inequality
due to Miiller [148] and Kamke [91]. )

u<vandr 20 — &,(u) < P,(v).

In other words: The maps @, preserve the vector order. A semiflow @ with this prop-
erty is called monotone. Monotone semiflows and their discrete-time counterparts, order-
preserving maps, form the subject of Monotone Dynamics.

Returning to the biological setting, we may make the assumption that each species di-
rectly or indirectly affect all the others. This is modeled by the condition that the Jacobian
matrices G’ (x) are irreducible. An extension of the Miiller-Kamke theorem shows that in
the open orthant IntR", the restriction of @ is strongly monotone: If u, v € IntR”, then

u<vandt>0 = &) K d®W).

A semiflow with this property is strongly monotone.
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Similar order-preserving properties are found in other dynamical settings, including de-
lay differential equations and quasilinear parabolic partial differential equations. Typically
the state space is a subset of a (real) Banach space ¥ with a distinguished closed cone
Y+ C Y. An order relation is introduced by x > y ¢ x — y € Y4. When Y is a space of
real valued functions on some domain, Y. is usually (but not always) the cone of functions
with values in Ry := [0, 00). When Y = R”, the cooperative systems defined above use
the cone R

Equations (0.1) model an ecology of competing species if 8G;/dx; < 0 fori # j. The
resulting vector field K with components K; = x; G; is not generally cooperative, but its
negative F = —K is cooperative. Many dynamical properties of the semiflow of K can be
deduced from that of F, which is monotone.

We will see that the long-term behavior of monotone systems is severely limited. Typical
conclusions, valid under mild restrictions, include the following:

o If all forward trajectories are bounded, the forward trajectory of almost every initial

state converges to an equilibrium.

o There are no attracting periodic orbits other than equilibria, because every attractor

contains a stable equilibrium.

o In R3, every compact limit set that contains no equilibrium is a periodic orbit that

bounds an invariant disk containing an equilibrium.

o In R?, each component of any solution is eventually increasing or decreasing.

Other cones in R” are also used, especially the orthants defined by restricting the sign
of each coordinate. For example, a system of two competing species can be modeled by
ODEs

yi=yiHi(y);, » =20 i=12

with 3H; /dy; < 0 for i # j. The coordinate change x; = yi, X2 = —y; converts this into
a cooperative system in the second orthant K defined by x1 > 0 2> x. This system is thus
both competitive and cooperative, albeit for different cones. Not surprisingly, the dynamics
are very simple.

In view of such powerful properties of cooperative vector fields, it would be useful to
know when a given field F in an open set D C R" can be made cooperative or competitive
by changing coordinates. The following sufficient condition appears to be due to DeAngelis
et al. [39]; see also Smith [193], Hirsch [74]. Assume the Jacobian matrices [a;;(x)] =
F’(x) have the following two properties:

(1) (Sign stability) If i # j then a;; does not change sign in D;

(2) (Sign symmetry) a;ja;; = 0in D.

Let I" be the combinatorial labeled graph with nodes 1,...,n and an edge e;; join-
ing i and j labeled oj; € {+, —} if and only if i 5 j and there exists p € D such that
sgna;;j(p) = 0;; # 0. Then F is cooperative (respectively, competitive) relative to some
orthant if and only if in every closed loop in I' the number of negative labels is even
(respectively, odd).

Order-preserving dynamics also occur in discrete time systems. Consider a nonau-
tonomous Kolmogorov system x; = x; H;(¢,x), where the map H := (Hy,...,Hp):
R x R" — R" has period 7 > 0 in . Denote by T :IR’_;_ — ]Rﬁ_ the Poincaré map, which
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to x € R} assigns y(r) where y(t) denotes the solution with initial value x. Then T is
monotone provided the 3 H; /dx; > 0 for i # j, and strongly monotone in the open orthant
when these matrices are also irreducible. Most of the results stated above have analogs
for T.

Convergence and stability properties of several kinds of order-preserving semiflows are
developed in Sections 1 and 2, in the setting of general ordered metric spaces. Section 3
treats ODEs whose flows preserve the order defined by a cone in R”. Delay differential
equations are studied in Section 4. In Section 5 we present results on order-preserving
maps. The final section applies the preceding results to second order quasilinear parabolic
equations.

1. Strongly order-preserving semiflows

This section introduces the basic definitions and develops the main tools of monotone
dynamics. Several results on density of quasiconvergent points are proved, and used to
establish existence of stable equilibria.

1.1. Definitions and basic results

The setting is a semiflow @ = {@;}o</<o in a (partially) ordered metric space that pre-
serves the weak order relation: x < y implies @, (x) < @;(y). Such semiflows, called
monotone, have severely restricted dynamics; for example, in R” with the vector ordering
there cannot be stable periodic orbits other than equilibria. But for generic convergence
theorems we need semiflows with the stronger property of being “strongly order preserv-
ing,” together with mild compactness assumptions. In later sections we will see that these
conditions are frequently encountered in applications. The centerpiece of this section is the
Limit Set Dichotomy, a fundamental tool for the later theory.

1.1.1. Ordered spaces Let Z be a metric space and A, B C Z subsets. The closure of A is
denoted by A and its interior by Int A. The distance from A to B is defined as dist(A, B) :=
infyea pep d(a,b). When B is a singleton {b} we may write this as dist(4, b) = dist(b, A).

X always denotes an ordered space. This means X is endowed with a metric d and an
order relation R C X x X. As usual we write x < y to mean (x, y) € R, and the order
relatton is:

(i) reflexive: x < x forall x € X,

(ii) transitive: x < y and y < z implies x < z,

(iii) antisymmetric: x < y and y < x implies x = y.
In addition, the ordering is compatible with the topology in the following sense:

(iv) ifx, - x and y, - y as n — oo and x, < yu, then x < y.
This is just to say that R is a closed subset of X x X.

We write x < y if x < y and x # y. Given two subsets A and B of X, we write A <
B (A < B) when x <y (x < y) holds for each choice of x € A and y € B. The relation
A < B does not imply “A < Bor A= B"!
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The notation x < y means that there are open neighborhoods U, V of x, y respectively
such that U < V. Equivalently, (x, y) belongs to the interior of R. The relation <, some-
times referred to as the strong ordering, is transitive; in many cases it is empty. We write
x >y tomean y < x, and similarly for > and >>.

We call X an ordered subspace of an ordered space X' if X C X’, and the order and
topology on X are inherited from X’. When this is this case, the relation u < v for points
u, v € X means the same thing whether # and v are considered as points of X, or points
of X’. But there are simple examples for which 4 < v is true in X !, yet false in X.

Let X be an ordered space. The lower boundary of a set U C X is the set of points x in
the boundary of U such that every neighborhood of x contains a point y € U with y > x.
The upper boundary of U is defined dually.

Two points x,y € X are order related if x <y or y < x; otherwise they are unrelated.
A subset of X is unordered if it does not contain order related points. The empty set and
singletons are unordered.

The (closed) order interval determined by u, v € X is the closed set

[, v]=[u,vlx :={xeX: u<x v}
which may be empty. The open order interval is the open set
[[,v]l={xeX: u < x K v}.

A subset of X is order bounded if it lies in an order interval, and order convex if it contains
[u, v] whenever it contains u and v.

A point x € X is accessible from below if there is a sequence X, — X with x,, < x; such
a sequence is said to approximate x from below. We define accessible from above dually,
that is, by replacing < with >. In most applications there is a dense open subset of points
that are accessible from both above and below.

The supremum sup S of a subset § C X, if it exists, is the unique point a such thata > S
and x > S = x > a. The infimum inf S is defined dually, i.e., substituting < for >. A max-
imal element of S is a point @ € S such that x € S and x > a implies x = a. A minimal
element is defined dually.

The following basic facts are well known:

LEMMA 1.1. Assume the ordered space X is compact.
(i) Every sequence in X that is increasing or decreasing converges.
(i) If X is totally ordered, it contains a supremum and an infimum.
(iii) X contains a maximal element and a minimal element.

PROOF. (i) If p and g denote subsequential limits, then p < ¢ and g < p, hence p =g¢q.
(ii) For each x € X, the set By := {y € X: y > x} is compact, and every finite family

of such sets has nonempty intersection because X is totally ordered. Therefore there exists

a €, Bx. and clearly a = sup X. Similarly, inf X exists. )
(iii) Apply (ii) to a maximal totally ordered subset (using Zorn’s lemma). O
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An ordered Banach space is an ordered space whose underlying metric space is a Banach
space Y, and such that the set Y4 = {y € Y: y > 0} is a cone, necessarily closed and
convex. Thus Y. is a closed subset of ¥ with the properties:

Ry Yy CYy, Yi+Yy CYy, Yy n (=Y ={0}

We always assume Yy # {0}.

When IntY, is nonempty we call Y a strongly ordered Banach space. In this case
xLysoy—xelhty,.

The most important examples of ordered Banach spaces are completions of normed vec-
tor spaces of real-valued functions on some set £2, with the positive cone corresponding to
nonnegative functions. This cone defines the functional ordering. The simplest case is ob-
tained from 2 = {1,2,...,n}: here Y =R”" and Y =R, the standard cone comprising
vectors with all components nonnegative. For the corresponding vector ordering, x <y
means that x; < y; for all i. Other function spaces are used in Sections 4 and 6.

When Y is an ordered Banach space, the notation X C Y tacitly assumes that X is an
ordered subspace of Y (but not necessarily a linear subspace).

A subset S of an ordered Banach space is p-convex if it contains the line segment
spanned by u, v whenever 4, v € S and u < v.

1.1.2. Semiflows All maps are assumed to be continuous unless the contrary is indicated.
A semiflow on X isamap ¥ :R4 x X — X, (t, x) = ¥;(x) such that:

Yo(x) =x, Y (P () =¥gs(x) (1,520, x € X).

Thus ¥ can be viewed as a collection of maps {¥;};cr, such that ¥y is the identity map
of X and ¥; o ¥, = W, and such that ¥ (x) is continuous in (¢, x).

A flow in a space M is a continuous map ¥ :R x M — M, written ¥ (¢, x) = ¥, (x),
such that

Yox)=x, W (¥E)=¥x) (¢seRxeX).

Restricting a flow to Ry x M gives a semiflow. A C! vector field F on a compact mani-
fold M, tangent to the boundary, generates a solution flow, for which the trajectory of x is
the solution x(t) to the initial value problem du/dt = F(u), u(0) = x.

The trajectory of x is the map [0, 00) — X, 1 > ¥;(x); the image of the trajectory is
the orbit O(x, ¥), denoted by O(x) when ¥ is understood. When O(x) = {x} then x is
an equilibrium. The set of equilibria is denoted by E.

x and its orbit are called T-periodic if T > 0 and Wr(x) = x; such a T is a period of x.
In this case ;.7 (x) = ¥, (x) forallr > 0, so O(x) =¥ ([0, T] x {x}). A periodic point is
nontrivial if it is not an equilibrium.

A set A C X is positively invariant if ;A C A for all t > 0. It is invariant if ;A = A
for all ¢ > 0. Orbits are positively invariant and periodic orbits are invariant.

A set K is said to attract a set S if for every neighborhood U of K there exists tg > 0
such that ¢ > tg = ¥;(S) C U; when S = {x} we say K attracts x. An attractor is a non-
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empty invariant set L that attracts a neighborhood of itself. The union of all such nejgh-
borhoods is the basin of L. If the basin of an attractor L is all of X then L is a global
attractor.

The omega limit set of x € X is

o) =wlx,¥):= ﬂ U v (x).

12052t

This set is closed and positively invariant. When ‘O(x) is compact, w(x) is nonempty,
compact, invariant and connected and it attracts O (x) (see, e.g., Saperstone [175]).

A point x € X is quasiconvergent if w(x) C E; the set of quasiconvergent points is
denoted by Q. We call x convergent when w(x) is singleton {p}; in this case P,(x) —
p € E. We sometimes signal this by the abuse of notation w(x) € E. The set of convergent
points is denoted by C.

When all orbit closures are compact and E is totally disconnected (e.g., countable),
then Q = C; because in this case every omega limit set, being a connected subset of E,
is a singleton. For systems of ordinary differential equations generated by smooth vector
fields, the Kupka—Smale theorem gives generic conditions implying that E is discrete (see
Peixoto [157]); but in concrete cases it is often difficult to verify these conditions.

1.1.3. Monotone semiflows A map f: X1 — X2 between ordered spaces is monotone if
x<y = fE<fO),
strictly monotone if
x<y = [fx)<fO,
and strongly monotone if
x<y = fER)LfO-
Let @ denote a semiflow in the ordered space X. We call @ monotone or strictly
monotone according as each map @, has the corresponding property.
We call @ strongly order-preserving, SOP for short, if it is monotone and whenever
x < y there exist open subsets U, V of x, y respectively, and #p > 0, such that

Dy (U) < Prp (V).

Monotonicity of ¢ then implies that @, (U) < @,(V) for all ¢t > 1g.
We call @ strongly monotone if

x<y, 0<t = &) KLP(y)
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and eventually strongly monotone if it is monotone and whenever x < y there exists fo > 0
such that

tzty = &) LD ().

This property obviously holds when @ is strongly monotone. We shall see in Section 6 that
many parabolic equations generate SOP semiflows in function spaces that are not strongly
ordered and therefore do not support strongly monotone semiflows.

Strong monotonicity was introduced in Hirsch [68,69], while SOP was proposed later
by Matano [133,134] and modified slightly by Smith and Thieme [197,199]. We briefly
explore the relation between these two concepts.

PROPOSITION 1.2. If & is eventually strongly monotone, it is SOP. If X is an open subset
of a Banach space Y ordered by a cone Y., ® is SOP and the maps @;: X — X are open,
then @ is eventually strongly monotone. In particular, & is eventually strongly monotone
provided Y is finite-dimensional, ® is SOP and the maps &, are injective.

PROOF. If x < y and & is eventually strongly monotone, , then there exists 7o > 0 such that
@y, (x) K Py (y). Take neighborhoods U of &y, (x) and V of ®,,(y) such that U< V By
continuity of @,,, there are neighborhoods U of x and V of y such that &, (U) C U and
@, (V) C V. Therefore, D (U) < @4(V) so @ is SOP.

Suppose that X C ¥ is open and ordered by Y4 and @ is SOP. If x <y and U, V are
open neighborhoods as in the definition of SOP, the inequality @,(U) < @, (V) together
with the fact that @;(U) and &, (V) are open in Y imply that @, (x) < @;(y). O

The following very useful result shows that the defining property of SOP semiflows,
concerning points x < y, extends to a similar property for compact sets K < L:

LEMMA 1.3. Assume & is SOP and K, L are compact subsets of X satisfying K < L.
Then there exists real numbers t; > 0, € > 0 and neighborhoods U,V of K, L respectively
such that

t2t; and 0<s<e = D (U) < Pi(V).

PROOF. Let x € K. For each y € L there exist 7, > 0, a neighborhood Uy, of x, and a
neighborhood V), of y such that &;(Uy) < &,(Vy) for ¢t =1y since @ is strongly order
preserving {Vy}ye L is an open cover of L, so we may choose a finite subcover: L C

1 Vy = V where y; e L, 1 <i <n. Let U, = (Mi=1 Uy;» which is a neighborhood
ofx and let £y = maxigign by, - Then CD (Ux) C @7(Uy,) < P3(Vy,), so cD,(Ux) < D (Vy,)
for t > f,. It follows that

t2f = @(U:) <o (V).
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Extract a finite subcover {U, ;} of K from the family {l7x}. Setting U :=| j Uy ; O K and
11 :=maxigjgm fx;» we have

t2n = o) =] (T;) <o (V).
i

In order to obtain the stronger conclusion of the lemma, note that for each z € K there ex-
ists €; > 0 and a neighborhood U, of z such that @ ([0, ;) x W,) C U. Choose z1, ..., zm
in X so that K C |J; Uéj. Define U’ = J; Uz’j and € =minj{e;;}. Ifxre U/ and 0 < s <€
then x € Uz’j for some j so @;(x) € U. Thus @ ([0, €) x U’) C U so &,(U’) C U. It fol-
lows that @4, (U’) C &,(U) < D;(V) fort 21,0< s <e. O

Several fundamental results in the theory of monotone dynamical systems are based on
the following sufficient conditions for a solution to converge to equilibrium.

THEOREM 1.4 (Convergence Criterion). Assume ® is monotone, x € X has compact orbit
closure, and T > 0 is such that @1 (x) > x. Then w(x) is an orbit of period T . Moreover,
% is convergent if the set of such T is open and nonempty or ® is SOP and Dr(x) > x.

PROOF. Monotonicity implies that Pt (x) 2 Py (x) forn =1,2, ... and therefore
@7 (x) — p asn — oo for some p by the compactness of the orbit closure. By continuity,

ra1(p) = Prar( lim D (x))

= lm Pei1)74:(x)

= lim & (D117 (%))
= &;(p)

for all t > 0. Hence p is T-periodic.

To prove w(x) = O(p), suppose t; — oo and Py (x) > q € w(x) as j — oo, and write
tj =n;T +r; where n; is a natural number and 0 < r j < T. By passing to a subsequence
if necessary, we may assume that r; — r € [0, T]. Taking limits as J — oo and noting that
nj — 00, we have by continuity:

lim @ (x) = lim &, (lim @7 (x)) =lim &, (p) = B, (p) =q.

Therefore w(x) C O(p), and the opposite inclusion holds because P € w(x). This proves
the first assertion of the theorem.

Suppose @;(x) > x for all ¢ in a nonempty open interval (T — ¢, T + €). The first as-
sertion shows that w(x) is an orbit O(p) of period T for every 1 € (T —€,T +¢). All
elements of O(p) have the same set G of periods; G is closed under addition and contains
(T—¢€,T+e€).If0<s <eandt >0 then

Pris(p) = D1 (P5 () = D1 (D17 (P)) = @4 ().
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Hence [0, ¢) C G and therefore G = R4, which implies p € E. This proves the second
assertion.

If &7(x) > x and @ is SOP then there exist neighborhoods U of x and V of &r(x)
and #p > 0 such that @, (U) < P, (V). It follows that @, (x) < P47 +e(X) for all € suffi-
ciently small. The previous assertion implies w(x) = p € E. g

1.2. Nonordering of omega limit sets
The next result is the first of several describing the order geometry of limit sets.

PROPOSITION 1.5 (Nonordering of Periodic Orbits). A periodic orbit of a monotone semi-
flow is unordered.

PROOF. Let x have minimal period s > 0 under a monotone semiflow @. Suppose x <
z € O(x). By compactness of O(x) there is a maximal y € O(x) such that y >z > x. By
periodicity and monotonicity y = @;(x) < @,(y), t > 0, hence y = &,(y) by maximality.
Therefore ¢ is an integer multiple of s, so x = ¢;(x) =y, implying x = z. O

The following result, which implies (1.5), is a broad generalization of the obvious fact
that for ODEs in R, nonconstant solutions are everywhere increasing or everywhere de-
creasing. Let J C R be an interval and f : J — X amap. A compact subinterval [a,b] C J
is rising for f provided f(a) < f(b), and falling if f(b) < f(a).

THEOREM 1.6. A trajectory of a monotone semiflow cannot have both a rising interval
and a falling interval.

This originated in Hirsch [67], with improvements in Smith [194], Smith and Walt-
man [203]. An analog for maps is given in Theorem 5.4.

PROOF. Let & be a monotone semiflow in X and fix a trajectory f:[0,00) = X, f(¢) :=
®,(x). Call an interval [d, d'] weakly falling if f(d) > f(d"). Monotonicity shows that
when this holds, the right translates of [d, d']—the intervals [d + u, d’ + u] with u > 0—
are also weakly falling.

Proceeding by contradiction, we assume f has a falling interval [a, @ + r] and a rising
interval [c, ¢ 4 ¢]. To fix ideas we assume a < ¢, the case ¢ < a being similar. Define

b= sup{t elc,c+ql: fFOYL flo), s:=c+q —b}.
Then [b, b + 5] is a rising interval in [¢, ¢ + ¢], and
b<t<b+s = f@)£fb). (1.1)

Claim 1: No interval {b — 1, b] is weakly falling. Assume the contrary. Then (i) [ > s,
and (ii) [b — (I — s), b] is weakly falling. To see (i), observe that f (b + 1) < f(b) because
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[b,b + 1] is a right translate of [b — [, b]; hence ] < s would entail b < b +1< b + s,
contradicting (1.1) with t =b + . To prove (ii), note that right translation of [» — [, b]
shows that [b — [ + s, b + 5] is weakly falling, implying f(b— ( — 5)) = f(b +5) >
f(D); hence [b — (I — ), b] is falling. Repetition of this argument with [ replaced by
I —s,1—2s,...leads by induction on n to the absurdity that ! — ns > s foralln € N,

Claim 2: r > 5. For f(b+r) < f(b) because [b, b + r] is falling, as it is a right trans-
late of [a, a + r]. Therefore r > s, for otherwise b < b +r < b + s and (1.1) leads to a
contradiction.

Asb+s > a+r, we can translate [a, a + r] to the right by (b + 5) — (@ + r), obtaining
the weakly falling interval [6 + s — r, b -+ s]. Note that b + s — r < b by Claim 2. From
fh+s—r)= f(b+s)> f(b)] we conclude that [b — (r — s), b] is falling. But this
contradicts Claim 1 with [ =r — 5. O

LEMMA 1.7. An omega limit set for a monotone semiflow ® cannot contain distinct points
x,y having respective neighborhoods U, V such that &, U < &,V for some r > 0.

PROOF. We proceed by contradiction. Suppose there exist distinct points x, y € w(z) hav-
ing respective neighborhoods U, V such that &, U < @,V for some r > 0. Then w(z) is
not a periodic orbit, for otherwise from @,(x) < @,(y) we infer x < y and hence x < y,
violating Nonordering of Periodic Orbits.

There exist real numbers a < b < ¢ be such that @,(z) e U, P (z) € V, D.(2) € U.
Therefore the properties of , U and V imply

D11 (2) < Dp1r(2), Pp+r(2) 2 Petr(2).

As w(z) is not periodic, the semiflow is injective on the orbit of z; hence the order relations
above are strict. But this contradicts Theorem 1.6. O

It seems to be unknown whether omega limit sets of monotone semiflows must be un-
ordered. This holds for SOP semiflows by the following theorem due to Smith and Thieme
[197, Proposition 2.2]; the strongly monotone case goes back to Hirsch [66]. This result is
fundamental to the theory of monotone semiflows:

THEOREM 1.8 (Nonordering of Omega Limit Sets). Ler w(z) be an omega limit set for a
monotone semiflow .

(i) No points of w(z) are related by <.

(i) If w(2) is a periodic orbit or @ is SOP, no points of w(z) are related by <.

PROOF. Assume x,y € w(z). If w(z) is a periodic orbit then x, y are unrelated (Proposi-
tion 1.5). If x «C y or x <y and @ is SOP, there are respective neighborhoods U, V of x,
y such that @, (U) < ©,(V) for some r > 0; but this violates Lemma 1.7. O

COROLLARY 1.9. Assume ® is SOP.
(i) If an omega limit set has a supremum or infimum, it reduces to a single equilibrium.
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(1) If the equilibrium set is totally ordered, every quasiconvergent point with compact
orbit closure is convergent.

PROOF. Part (i) follows from Theorem 1.8(ii), since the supremum or infimum, if it exists,
belongs to the limit set. Part (ii) is a consequence of (i). [l

1.3. Local semiflows

For simplicity we have assumed trajectories are defined for all ¢ 2> 0, but there are occasions
when we need the more general concept of a local semiflow in X. This means a map
v 2 — X, with £ C [0, co) x X an open neighborhood of {0} x X, such that the maps

U:D, = X, x> W (i, x) 0Lt <o0)

satisfy the following conditions: D, is an open, possibly empty set in X, ¥ is the identity
map of X, and ¥y, = ¥; o ¥ in the sense that Dy4, = D; N lI/,"l(Ds) and ¥4, (x) =
W (W (x)) for x € Dgy.

The trajectory of x is defined as the map

Ii—> X, t— ¥ (), wherel,={teRy: xe D}

The composition law implies I, is a half open interval [0, 1;); we call 7, € (0, oo] the
escape time of x. It is easy to see that every point with compact orbit closure has infinite
escape time. Thus a local semiflow with compact orbit closures is a semiflow. In dealing
with local semiflows we adopt the convention that the notations ¥, (x) and ¥;(U) carry the
assumptions that ¢ € I, and U C D;. The image of I, under the trajectory of x is the orbit
O (x). The omega limit set w(x) is defined as w(x) = ﬂrel,, O, (x)).

A local flowisamap @ : A — X where A C R x X is an open neighborhood of {0} x X,
and the (possibly empty) maps

D —> X, x> 0O@(,x) (oot <)

satisfy the following conditions: ®q is the identity map of Dg := X, &; is a homeomor-
phism of D; onto D_; with inverse @_;, and

x€(@)7'D, = 6,00,(x)=0ry(x).
© is a flow provided D; = X for all ¢.
The set J, := {t € R: x € D;} is an open interval around 0. The positive and negative
semiorbits of x are the respective sets

yt@) =yt 0):={60,x): te Jy,t >0},

y (x) =y (x,0):= {@,(x): teJy,t O}.
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The time-reversal of © is the local flow © defined by & (t,x)=0O(-—t,x).

The omega limit set w(x) (for @) is defined to be w(x) = (Mre Lt 30 O (W (x)). The
alpha limit set a(x) = a(x, @) of x is defined as the omega limit set of x under the time-
reversal of @7,

Let F be a locally Lipschitz vector field F on a manifold M tangent along the boundary.
Denote by ¢ > u(t; x) the maximally defined solution to &z = F(u), (0, x) = x. There is a
local flow @F on M such that @, (x) = u(t; x). The time-reversal of ®F is ®~F . When M
is compact, ®F is a flow. If we assume that F, rather than being tangent to the boundary,
is transverse inward, we obtain a local semiflow.

Our earlier results are readily adapted to monotone local semiflows. In particular, omega
limit sets are unordered. Theorems 1.8 and 1.6 have the following extension:

THEOREM 1.10. Let ¢ be a monotone local semiflow.

() No trajectory has both a rising and a falling interval.

(b) No points of an omega limit set are related by <, or by < if ® is SOP.

(¢) The same holds for alpha limit sets provided & is a local flow.
PROOF. The proofs of Theorems 1.6 and 1.8 also prove (a) and (b), and (c) follows by
time reversal. O
1.4. The limit set dichotomy

Throughout the remainder of Section 1 we adopt the following assumptions:

(H) @ is a strongly order preserving semiflow in an ordered space X, with every orbit
closure compact.

Our goal now is to prove the important Limit Set Dichotomy:
If x <y then either w(x) < w(y), or w(x) = w(y) C E.

LEMMA 1.11 (Colimiting Principle). Assume x < y, ty — 00, &, (x) > p and O, (y) >
pask—oco.Then pe E.

PROOF. Choose neighborhoods U of x and V of y and #9 > 0 such that Dy, (U) < Py (V).

Let § > O be so small that {P;(x): 0 < s <3} C U and {Ps(y): 0< 5 <8} C V. Then
P (x) < .(y) whenever tg < r, s < tg + 5. Therefore,

Pr—tp(Ps (X)) < Pty (P1, (1)) = P () (1.2)

forall s € [tp, fo + 8] and all large k. As

Pyt (‘ps (x)) =Ps_y (¢tk (x)) =, (¢tk (x)) s
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where r =5 — 1y € [0, 8] if 5 € [19, tg + 8], we have

D, (P (%)) < Py ()

for large k£ and r € [0, §]. Passing to the limit as k — oo we find that @,(p) < p for
0<r <4.1f, in (1.2), we replace ®;(x) by @;,(x) and replace P, (y) by P;(y), and argue
as above then we find that p < @,(p) for 0 < r < 4. Evidently, @, (p) = p,0<r < § and
therefore forall r > 0,s0 p€ E. O

THEOREM 1.12 (Intersection Principle). If x <y then w(x) Nw(y) CE. If pew(x) N
w(y) and ty — oo, then @, (x) — p if and only if D, (y) — p.

PROOF. If p € w(x) N w(y) then there exists a sequence tx — oo such that &, (x) —> p
and @, (y) - g € w(y), and p < g by monotonicity. If p < g then we contradict the
Nonordering of Limit Sets since p, g € w(y). Hence p = q. The Colimiting Principle then
implies p € E. O

The proof of the next result has been substantially simplified over previous versions.

LEMMA 1.13. Assume x <y, ty — o0, @y (x) = a,and Py (y) > bask — o0. Ifa<b
then O(a) < b and O(b) > a.

PROOF. The set W := {r > 0: @,(a) < b} contains 0 and is closed. We prove W = [0, 00)
by showing that W is also open. Observe first that if # € W, then &, (a) < b. For equality
implies b € w(x) Nw(y) C E, and then the Intersection Principle entails &, (x) — b,
giving the contradiction a = b.

Suppose ¢ € W is positive. By SOP there are open sets U, V with ®;(a) € U, b € V and
t; > 0 such that @, (U) < @;(V) for ¢t > #;. There exists & € (0, £/2) such that &;(a) € U
for |s —#] < 8, so we can find an integer « > 0 such that @;(P,, (x)) € U fork > k. Choose
ko = « such that q)’ko (y) € V. Then we have ¢,+s+,k0 x) < ¢,+,k0 (y) for t > t;. Setting
! =ty — ty, for large k in this last inequality yields @y4,(x) < @, () for large k. Taking
the limit as k — oo we get ®;(a) < b for [s — 7] < 8. A similar argument in the case f =0
considering only s € [0, 8] gives the previous inequality for such s. Therefore, W is both
open and closed so W = [0, co). This proves O(a) < b, and O(b) > a is proved dually. (]

LEMMA 1.14 (Absorption Principle). Let u,v € X. If there exists x € w(u) such that
x < w(v), then wu) < w(v). Similarly, if there exists x € w{(u) such that w(v) < x, then
w) < w(u).

PROOF. Apply Lemma 1.3 to obtain open neighborhoods U of x and V of w(v) and #5 > 0
such that

rzty = @ (U) <P (V),
hence @, (U) < w(v) since w(v) is invariant. As x € w(u), there exists #; > 0 such that
P, (1) € U. Hence for @y (u) < w(v), and monotonicity implies that Py yr () <
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w(v) for all s > 0. This implies that w(u) < w(v).If z € w ) Nw(v) then z =supw(u) =
inf w(v), whence {z} = @(u) = @(v) by Corollary 1.9(ii). But this is impossible since
x < w(v) and x € w(u), so we conclude that w(u) < @ (v). O

LEMMA 1.15 (Limit Set Separation Principle). Assume x <y,a <b and there is a se-
quence ty, — 0o such that @, (x) — a, Py (y) — b. Then w(x) < o (y).

PROOF. By Lemma 1.13, O(a) < b, and therefore w(a) < b. If b € w(a) then Corol-
lary 1.9 implies that w(a) = b € E. Applying the Absorption Principle with u =x, v =a,
x = a, we have a € w(x), a < w(a) = b which implies that w(x) < w(a). This is impos-
sible as w(a) C w(x). Consequently, w(a) < b. By the Absorption Principle again (with
u=a, v=1y), we have w(a) < w(y). Since w(a) C w(x), the Absorption Principle gives
wx) <o(y). )

We now prove the fundamental tool in the theory of monotone dynamics, stated for
strongly monotone semiflows in Hirsch [66,68].

THEOREM 1.16 (Limit Set Dichotomy). If x <y then either
(a) w(x) <w(y),or
() o(x)=w(y) CE.
If case (b) holds and ty — oo then ®y (x) = p if and only if @ (y) —> p.

PROOF. If w(x) = w(y) then w(x) C E by the Intersection Principle, Theorem 1.12,
which also establishes the final assertion. If @ (x) # w(y) then we may assume that there
exists ¢ € w(y) \ w(x), the other case being similar. There exists #; —> oo such that
&, (y) — g. By passing to a subsequence if necessary, we can assume that @, (x) —
p € w(x). Monotonicity implies p < ¢ and, in fact, p < ¢ since q ¢ w(x). By the Limit
Set Separation Principle, w(x) < @(y). a

Among the many consequences of the Convergence Criterion is that a monotone semi-
flow in a strongly ordered Banach space cannot have a periodic orbit y that is attract-
ing, meaning that y attracts all points in some neighborhood of itself (Hadeler [55],
Hirsch [69]). The following consequence of the Limit Set Dichotomy implies the same
conclusion for periodic orbits of SOP semiflows:

THEOREM 1.17. Let y be a nontrivial periodic orbit, some point of which is accessible
from above or below. Then y is not attracting.

The accessibility hypothesis is used to ensure that there are points near p that are order-
related to p but different from p. Some such hypothesis is required, as otherwise we could
simply take X = y, and then y is attracting!

PROOF. Suppose y C W attracts an open set W. By hypothesis there exists p € y and
x € W such that x > p or x < p and w(x) = y. To fix ideas we assume x > p. Then
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p € w(x), so the Limit Set Dichotomy implies p € E. Hence the contradiction that y
contains an equilibrium. O

It turns out that the periodic orbits ¥ considered above are not only not attracting; they
enjoy the strong form of instability expressed in the next theorem.

A set K C X is minimal if it is nonempty, invariant, and every orbit it contains is dense
inX.

THEOREM 1.18. Let K be a compact minimal set that is not an equilibrium, some point
of which is accessible from below or above. Then there exists § > 0 with the following
property: Every neighborhood of K contains a point x comparable to some point of K,
such that dist(®,(x), K) > & for all sufficiently large t.

PROOF. We may assume there exists a sequence ¥, — p € K with X, > p. Suppose
there is no such J. Then there exist a subsequence {x,} and points y, € w(x,) such that
Y» = g € K. Minimality of K implies w(p) = w(g) = K. Since x, > p, the Limit Set
Dichotomy implies w(x,) = @ (p); therefore y, > K, so g > K. It follows that ¢ = sup K,
and Corollary 1.9 implies the contradiction that K is a singleton. d

A stronger form of instability for periodic orbits is given in Theorem 2.6.

1.5. Q is plentiful

One of our main goals is to find conditions that make quasiconvergent points generic in
various senses. The first such results are due to Hirsch [66,73]; the result below is an
adaptation of Smith and Thieme [199, Theorem 3.5].

We continue to assume @ is an SOP semiflow with compact orbit closures.

A rotally ordered arc is the homeomorphic image of a nontrivial interval I C R under a
map f:I — X satisfying f(s) < f(t) whenevers,z €/ and s <.

THEOREM 1.19. If J C X is a totally ordered arc, J \ Q is at most countable.

Stronger conclusions are obtained in Theorems 2.8 and 2.24.
The following global convergence theorem is adapted from Hirsch [73, Theorem 10.3].

COROLLARY 1.20. Let Y be an ordered Banach space. Assume X C Y is an open set,
a closed order interval, or a subcone of Y. If E = {p}, every trajectory converges to p.

PROOF. If X is open in Y, there exists a totally ordered line segment J C X and quasi-
convergent points u, v € J with u < x < v, by Theorem 1.19. Therefore &;(u) — p and
®;(v) — p, so monotonicity and closedness of the order relation imply &;(x) — p.

If X = [a, b], the trajectories of @ and b converge to p by the Convergence Criterion 1.4,
and the previous argument shows all trajectories converge to p. Similarly if X is a subcone
of Y. +- 0
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PROOF OF THEOREM 1.19. Let W = & ([0, 00) x J). Continuity of ¢ implies that W is
a separable metric space which is positively invariant under @. Therefore we may as well
assume that X is a separable metric space.

‘We show that if x € J and

, infldist(w(x), 0(»)): y € J, ¥ #x}=0,

then x € Q. Choose a sequence x, € J, X, 7 x such that dist(w (x), w(x,)) — 0. We may
assume that x, < x for all n. Taking a subsequence, we conclude from the Limit Set Di-
chotomy: Either some w (x,) = w(x), or every w(xy) < w(x).

In the first case, x € Q. In the second case, choose y, € w(xn), Zn € w(x) such that
d(yn, zn) — 0. After passing to subsequences, We assume yp,Zn —> Z € w(x). Because
yn < 0(x), we conclude that z < w(x). As z € w(x), Corollary 1.9 implies w(x) = {z}.
Hence x € Q in this case as well.

It follows that for every x € J \ Q, there exists an open set Ux containing @ (x) such that
U, Nw(y) = @ for every y € J \ {x}. By the axiom of choice we get an injective mapping

J\NQ— X, x> prew(x)CUx.

The separable metric space X has a countable base B. A second application of the axiom
of choice gives a map

JNQ—B, x> V,CUs, px€Vx.

This map is injective. For if x, y are distinct points of J \ Q, then V; # V,, because Vi,
being contained in Uy, does not meet w(y); but py € V, N w(y). This proves J\Qis
countable. O

Let ¥ be an ordered Banach space and assume X C Y is an ordered subspace (not nec-
essarily linear). When Y is finite-dimensional, Theorem 1.19 implies X \ Q has Lebesgue
measure zero, hence almost every point is quasiconvergent. For infinite-dimensional Y
there is an analogous result for Ganssian measures (Hirsch [73, Lemma 7.7]). The next
result shows that in this case @ is also plentiful in the sense of category.

A subset of a topological space S is residual if it contains the intersection of countably
many dense open subsets of S. When § is a complete metric space every residual set is
dense by the Baire category theorem.

The assumption on X in the following result holds for many subsets of an ordered Ba-
nach space, including all convex sets and all sets with dense interior.

THEOREM 1.21. Assume X is a subset of an ordered Banach space Y, and a dense open
subset Xo C X is covered by totally ordered line segments. Then Q is residual in X.

PROOF. It suffices to show that the set Q1 := QU (Y \ Xo) is residual in Y. Note that
Y\ Q1 =Xp\ Q.Let L CY be the 1-dimensional space spanned by some positive vector.
Every translate y + L meets ¥ \ Q1 in a finite or countably infinite set by Theorem 1.19,
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hence (y + L) N Q1 is residual in the line y + L. By the Hahn-Banach theorem there
is a closed linear subspace M C Y and a continuous linear isomorphism F: Y~ M x L
such that F(x + L) = {x} x L for each x € M. Therefore F(Q1) N ({x} x L) is residual
in {x} x L for all x € Xo, whence F(Q)) is residual in M x L by the Kuratowski—Ulam
Theorem (Oxtoby [154]). This implies Q; is residualin Y. a

Additional hypotheses seem to be necessary in order to prove density of Q in general
ordered spaces. The next theorem obtains the stronger conclusion that Q has dense interior.
A different approach will be explored in Section 2.

A point x is doubly accessible from below (respectively, above) if in every neighborhood
of x there exist f, g with f < g < x (respectively, x < f < g).

Consider the following condition on a semiflow satisfying (H):

(L) Either every omega limit set has an infimum in X and the set of points that are
doubly accessible from below has dense interior, or every omega limit set has a
supremum in X and the set of points that are doubly accessible from above has
dense interior.

This holds when X is the Banach space of continuous functions on a compact set with the
usual ordering, for then every compact set has a supremum and infimum, and every point
is doubly accessible from above and below.

THEOREM 1.22. If (L) holds, then X \ Q C IntC, and Int Q is dense.

The proof is based on the following result. For p € E define C(p) :={z € X: w(z) =
{p}}. Note that C = | ,c g C(p).

LEMMA 1.23. Suppose x € X \ Q and a = inf w(x). Then w(a) = {p} with p < w(x),
and x € Int C(p) provided x is doubly accessible from below.

PROOF. Fix an arbitrary neighborhood M of x. Note that a < w(x) because w(x) is
unordered (Theorem 1.8). By invariance of «(x) we have @;a < w(x), hence @;a < a.
Therefore the Convergence Criterion Theorem 1.4 implies w(a) is an equilibrium p < a.
Because p < w(x), SOP yields a neighborhood N of w(x) and s > 0 such that p < &, N
for all t > 5. Choose r > 0 with &;x € N fort > r. Then p < ¢;x if t > r + 5. The set
V = (®y45)"L(N) N M is a neighborhood of x in M with the property that p < @,V for
all t > r + 2s. Hence:

uecV — p<Lo). (1.3)

Now assume x doubly accessible from below and fix y;, y € V with y; <y < x. By the
Limit Set Dichotomy @ (y) < w(x), because w(x) ¢ E. By SOP we fix a neighborhood
U CV of y; and # > 0 such that @, u < @,y for all u € U. The Limit Set Dichotomy
implies @ (1) = w(y) or w(u) < w(y); as w(y) < w(x), we therefore have:

uel = o) <ow@). (1.4)
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For all u € U, (1.4) implies w(u) < w(a) = {p}, while (1.3) entails p < w(u). Hence
U C C(p) N M, and the conclusion follows. O

PROOF OF THEOREM 1.22. To fix ideas we assume the first alternative in (L), the other
case being similar. Let X¢ denote a dense open set of points doubly accessible from below.
Lemma 1.23 implies Xo C Q UIntC C Q U Int Q, hence the open set Xg \ IntQ lies
in Q. This prove Xo \IntQ c IntQ, so Xo \ Int Q = @. Therefore Int 0 D Xg, hence
ImtQg>Xo=X. O

EXAMPLE 1.24. An example in Hirsch [73] shows that generic quasiconvergence and the
Limit Set Dichotomy need not hold for a monotone semiflow that does not satisfy SOP. Let
X denote the ordered Banach space R? whose ordering is defined by the “ice-cream” cone
Xy={xeR x3>, /xlz + x%}. The linear system x] = —x, xj = x1, x; =0 generates a
flow @ with global period 27 which merely rotates points about the x3-axis. Evidently X,
is invariant, so linearity of ¢ implies monotonicity. On the other hand, & is not strongly
order preserving: If a = (1,0, 1) (or any other point on 3Y; except the origin 0), SOP
would require @;(a) > 0 for t > 0 because @, is a homeomorphism, but this fails for all
t > 0. The Limit Set Dichotomy fails to hold: Fora = (1, 0, 1) and b = (2, 0, 2) itis easy to
see that a < b (for the ordering defined by X ;) and w(a) Nw(b) = @, but w(a) £ w(b). As
E =C = Q={x: x1 = x3 =0} and most points belonging to periodic orbits of minimal
period 27, quasiconvergence is rare. In fact, the set of nonquasiconvergent points—the
complement of the x3-axis—is open and dense. It is not known whether there is a similar
example with a polyhedral cone.

1.6. Stability in normally ordered spaces

We continue to assume the semiflow @ is SOP with compact orbit closures.

The diameter of a set Z is diam Z := sup, .7 d(x, y).

We now introduce some familiar stability notions. A point x € X is stable (relative to
R C X)if for every € > 0 there exists a neighborhood U of x such that diam &,(UNR) < ¢
for all ¢+ > 0. The set of stable points is denoted by S.

Suppose xg is stable. Then omega limit sets of nearby points are close to w(xp), and if
all orbit closures are compact, the map x — w(x) is continuous at xg for the Hausdorff
metric on the space of compact sets.

x is stable from above (respectively, from below) if x is stable relative to the set of
points > x (resp., < x). The set of points stable from above (resp., below is denoted by S,
(resp., S_).

The basin of x in R is the union of all subsets of R of the form VN R where V C X is
an open neighborhood of x such that

lim diam@;(VNR) =0.
=00

Notice that @ (x) = w(y) for all y in the basin.
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If the basin of x in R is nonempty, we say x is asymptotically stable relative to R. This
implies x is stable relative to R. If x is asymptotically stable relative to X we say x is
asymptotically stable. The set of asymptotically stable points is an open set denoted by A.

x is asymptotically stable from above (respectively, below) if it is asymptotically stable
relative to the set of points > x (resp., < x). The basin of x relative to this set is called the
upper (resp., lower) basin of x. The set of such x is denoted by A.. (resp., A_).

Note that continuity of @ shows that asymptotic stability relative to R implies stability
relative to R. In particular, A C S, AL C Sy and A_ CS_.

These stability notions for x depend only on the topology of X, and not on the metric,
provided the orbit of x has compact closure.

The metric space X is normally ordered if there exists a normality constant « > 0 such
that d(x, y) < «d(u, v) whenever u,v € X and x, y € [u, v]. In a normally ordered space
order intervals are bounded and the diameter of [, v] goes to zero with d (u, v). Many com-
mon function spaces, including L? spaces and the Banach space of continuous functions
with the uniform norm, are normally ordered by the cone of nonnegative functions. But
spaces whose norms involve derivatives are not normally ordered. Normality is required in
order to wring the most out of the Sequential Limit Set Trichotomy. The propositions that
follow record useful stability properties of SOP dynamics in normally ordered spaces.

PROPOSITION 1.25. Assume X is normally ordered.
(a) x € Sy (respectively, S_) provided there exists a sequence y, — x such that y, > x
(resp., yn < x) and limy,_, o0 SUP,. o d (P (x), P: (yn)) =0.
(b) x € S provided x € S+ N S_ and x is accessible from above and below.
(¢c) x € A provided x € Ay N A_ and x is accessible from above and below.
(d) Supposea <bandw(@) =w(b).Thenac Ay andbe A_.Ifa<x <bthenxc A
and the basin of x includes [a, b] \ {a, b}.

In particular, (d) shows that an equilibrium e is in A if x > e and &;(x) — e (provided
X is normally ordered); and dually for A_.

PROOF. We prove (a) for the case y, > x. Given ¢ > 0, choose m and 7y so that
t>tg = d(®:/(x), P (m))<e.

By SOP there exists a neighborhood W of x and #; > fy such that
t>h, veW = &) <Pi(ym).

Fixing t;, we shrink W to a neighborhood W, of x so that
0<r<t, veWe = d(Di(x), (V) <ke,

where « > 0 is the normality constant. If x < v € W, and ¢ > #; then &;(x) < P;(v) <
@, (ym), and therefore

t>t, x<veW. = d(P(x), P:(v)) < xd(P(x), D (ym)) < ke.
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Hence we have proved

O<t<oo,veWe = d(P(x), D)) <ke.
As € is arbitrary, this proves x € S4.

To prove (b), let u,, v, — x with u, < x < v,. Because x € §;. N S_, for any € > 0 there
exists § > 0 such thatif d(y, x) <8 and y < x or y > x, then sup,. o d(P(y), :(x)) <€.
Choose k& such that d (ug, x) < § and d(vg, x) < 8. By SOP there is a neighborhood W, of
x such that @, (u;) < @, (W) < D, (vg) for sufficiently large ¢. Normality implies that for
such ¢,

i1 diam &, (W.) < (P, (ui), P (vk))
< d(®;(up), D1 (x)) +d(Pr(x), Pr(wp)) < 2.

As « is constant and e is arbitrary, this proves x is stable.
The proofs of (c) and (d) are similar. O

PROPOSITION 1.26. Assume X is normally ordered, p € E, and {K,} is a sequence of
nonempty compact invariant sets such that K,, < p and dist(K,,, p) — 0. Then:

(a) p is stable from below.

(b) If z is such that w(z) = p, then z is stable from below.
In particular, if p is the limit of a sequence of equilibria < p then p is stable from below.

PROOF. (a) Given € > 0, fix m such that dist(K,,, p) < €. By Lemma 1.3 there is a neigh-
borhood W of p and #y > 0 such that t > 1 = ®,(W) > K, and therefore

t>1, veW, p>v = d(®(p), P:(v)) <kd(Pr(p), P1(Km)) S ke
Pick a neighborhood W, C W of p so small that

0<1<tg, veWe = d(Di(p), D:(v)) <ke.
Then

O0<t<o0, veW,v<p = d(¢,(p),¢,(v)) < KE€.
This proves p € S—, because € is arbitrary.

(b) Choose a neighborhood U of z and #; > 0 such that &, (U) C W. Assume

yeU, y<z.If t 2t + t, then K, < P1(y) € ¢,(2), and therefore by normal-
ity, d(®;(3), D;(2)) < w dist(Ky, D:(2)). As P,(z) — p, there exists £ > | + fp such

that

t2t, = d(@:(y), P:(2)) <k dist(Km, p) < ke.
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Fix this #;. By continuity of @ there is a neighborhood Uy C U of z so small that
0<1<n = d(P:(y), D:1(2)) <

As € is arbitrary, this implies 7 € S_. ]

1.7. Stable equilibria in strongly ordered Banach spaces

In spaces-that-are not normally ordered we cannot directly use the results of the previous
subsection to characterize stable equilibria. For strongly monotone semiflows in strongly
ordered Banach spaces we work around this by introducing a weaker norm that makes the
order normal, and for which the semiflows are continuous and SOP. This permits use of the
earlier results.

Let Y be a strongly ordered Banach space. The order topology on Y is the topology
generated by open order intervals. An order norm on the topological vector space Y is
defined by fixing # >> 0 and assigning to x the smallest ¢ such that x € [—eu, eu]. It
is easy to see that Y is normally ordered by the order norm, with normality constant 1.
Every order neighborhood of p in Y contains [ p — €u, p + €u] for all sufficiently small
numbers € > 0. For example, ¥ = C (10, 1]) with the usual C1-norm and with Y, the cone
of nonnegative functions is strongly ordered but not normally ordered; putting u := 1, the
order norm becomes the usual supremum.

The induced topology on any subset Z C Y is also referred to as the order topology,
and the resulting topological space is denoted by Z. A neighborhood in 7 is an order
neighborhood.

Every open subset of Z is open in Z, i.e., the identity map of Z is continuous from Z
to Z. Therefore Z = Z as topological spaces when Z is compact. As shown below, if ¥ is
a monotone local semiflow in Z, it is also a local semiflow in Z, denoted by v. Evidently
¥ and ¥ have the same orbits and the same invariant sets.

LEMMA 1.27. Let ¥ be a monotone local semiflow in a subset X of a strongly ordered
Banach space Y , that extends to a monotone local semiflow in an open subset of Y . Then:
(a) ¥ is a monotone local semiflow.
(b) If ¥ is a strongly monotone, then @ is SOP.

PROOF. It suffices to prove (a) and (b) when X is open in Y, which condition is henceforth
assumed

7 is monotone because ¥ is monotone. To prove continuity of lI/ let N =[[a,b]ly NX
and (7, xo) € 72 L(N). As the latter is openin Ry x X, there exists ¢ > 0 and U, an open
neighborhood of xg in X, such that

f

[to—e.to+e)NRL] x U Cc F~H().

We may choose u, v € U such that x € [[u, vly. If z € [[u, v]]y N X and |t — t0| < € then
by monotonicity and i, v € U we have a < lI/, ) < '1/, () < lP,(v) <« b. Thus,

[(to— €, t0+€) NRL] x ([[w, v]ly N X) C (),
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proving the continuity of 7

Assume x,y € X, x < y and let 79 > 0 be given. By strong monotonicity of ¥ there are
respective open neighborhoods U, V C X of x, y such that ¥ (U) < ¥, (V) (see Proposi-
tion 1.2). €hoose w, u, v,z € X suchthat u, w € U, v,z € V and

w<Lx Ly, LS ASE4

so that [[w, u]ly N X and [[v, z]]y N X are order neighborhoods in X of x, y respectively.
Monotonicity of ¥ implies

@, ([w, ully N X) < ¥, ([[v, 2]y N X). O

An equilibrium p for ¥ :RY x X — X is order stable (respectively, asymptotically
order stable if p is stable (respectively, asymptotically stable) for .

PROPOSITION 1.28. Let ¥ be a monotone local semiflow in a subset X of a strongly or-
dered Banach space Y, that extends to a monotone local semiflow in some open subset
of Y. Assume p is an equilibrium having a neighborhood W that is attracted to a com-
pact set K C X. If p is order stable (respectively, asymptotically order stable), it is stable
(respectively, asymptotically stable).

PROOF. Suppose p is order stable and let U be a neighborhood of p. As K = K, there is
a closed order neighborhood Ny of p such that No N K C U N K. By order stability there
exists an order neighborhood Nj of p such that O(N;) C Np. Compactness of Ng N K
implies there is an open set V D K there is an open set V O K such that NoN'V C U.
Because K attracts W, there is a neighborhood U, C W of p and r 2> 0 such that

t2r = WYl CV.

By continuity of ¥, at p = ¥,.(p) there is a neighborhood Uz C U, of p such that
0r<r = YUz CV.

and thus O(U3) C V. Therefore N1 N Uz is a neighborhood of p such that
OWN1NU3) COND)NOWU3) CNoNV CU.

This shows p is stable.

Assume p is asymptotically order stable and choose an order neighborhood M C X of
p that is attracted to p by ¥ . We show that M N W is in the basin of p for ¥. Consider
arbitrary sequences {xz} in M N W and 7 — oo in [0, 00). Fix u 3> 0. By the choice of M
there are positive numbers €; — 0 such that

P — €t LW (xp) K p + €pu.

This implies ¥, (xz) — p in X, because the order relation on X is closed and {¥;, (x)} is
precompact in X by the choice of W and compactness of K. O
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1.8. The search for stable equilibria

The following results illustrate the usefulness of a dense set of quasiconvergent points.
@ denotes a strongly order preserving semiflow in X; Hypothesis (H) of Section 1.4 is still
in force.

PROPOSITION 1.29. Assume Q is dense. Let p, q € E be such that p < q, p is accessible
from above, and q is accessible from below. Then there exists z € X satisfying one of the
following conditions:

(@) p<z<gq,and &,(z) > p or P:(z) ~> q;

M) p<z<qgandzeE,

() z>pand pe O(2),orz<qand q € 0(z).

PROOF. By SOP there are open neighborhoods U, V of p, g respectively and 7o 2> 0 such
that @,U < @,V for ¢ > ty. Choose sequences x, — p in U and y,, — ¢ in V with p < x,,,
Yo <q.Weassume p ¢ O(x,) and g ¢ O (y,)), as otherwise (c) is satisfied. Then

12ty = p<Pi(xy) <P(yn) <q.

Choose open neighborhoods Uy, W, V) of p, &4 (y1), g respectively such that for some
t 2o

t2h = O;/(U) € O:(W) < D (V).

Choose w € Q N W and a sequence sy — 00, s¢ 2 1 such that @, (w) — e € E. Fix m so
large that x,, € U1, y;, € V1. Then for sufficiently large %,

P <Py (xp) < Dy (w) < Dy, (ym) < q.

It follows that p < e < g. If e = p or g then w(Py (w)) = p or g by the Convergence
Criterion 1.4, giving (a) with z = &, (w). Therefore if (a) does not hold, (b) holds with
z=e. O

The assumption in Proposition 1.29 that Q is dense can be considerably weakened,
for example, to p (or ¢) being interior to ‘0: Assume y1 € IntQ and set w = D, (wo),
woe(IntQ) NP Sk_l (W), etc. In fact, density of Q can be replaced with the assumption
that p or g lies in the interior of the set Qy of points x such that there is a sequence x; — x
with lim;_, o0 dist(w (x;), E) = 0. Clearly Qg is closed and contains Q, so density of Q
implies Qs = X. ;

THEOREM 1.30. Suppose X is normally ordered and the following three conditions hold:
(@) Q is dense; -
(b) if e € E and e is not accessible from above (below) then e = sup X (e = inf X);
(c) there is a maximal totally ordered subset R C E that is nonempty and compact.
Then R contains a stable equilibrium, an asymptotically stable equilibrium if R is finite.
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PROOF. By Lemma 1.1, sup R (inf R) exists and is a maximal (minimal) element of E.
We first prove that every maximal equilibrium ¢ is in Ay. This holds vacuously when
g = sup X. Suppose g # sup X. If ¢ is in the orbit of some point > g then g € A, by
Propositien 1.25(d). Hence we can assume:

120, y>9 = D,(y)>q.

By hypothesis we can choose y > ¢g. By SOP there is an open neighborhood U of ¢
and s > 0 such that @;(y) > &;(U). By hypothesis we can choose z € U such that
D5 (y) # Ps(z) and z > q. Set x = P;(y), x1 = P;z. Then x; > x1 > q, By SOP and
the assumption above there is a neighborhood V;, of x; and ¢y > 0 such that

t>19 = q<Pi(x1) <D (V2).

Choose v e V2N Q. Then g < @,(v) for t 2 1y, hence ¢ < w(v) = w(P;(v)) C E. There-
fore @;(v) — g by maximality of ¢, so and Proposition 1.25(d) implies g € A, as re-
quired. The dual argument shows that every minimal equilibriais in A_.

Assumption (c) and previous arguments establish that ¢ = sup R and p = inf R satisfy
p<gqandgeA;,peA_.

Suppose p = g; in this case we prove g € A. As ¢ is both maximal and minimal in E,
we have g € Ay N A_. If g is accessible from above and below then ¢ € A by Proposi-
tion 1.25(b). If g is not accessible from above then by hypothesis g = sup X, in which case
the fact that g € A implies g € A. Similarly, g € A if g is not accessible from below.

Henceforth we assume p < g. As R is compact and R N S_ # @ because p € R, it fol-
lows that R contains the equilibrium r := sup(R N S_). Note that r € S_, because this
holds by definition of 7 if r is isolated in {r € R: r’ < r}, and otherwise r € S_ by Propo-
sition 1.26(a). If r = g a modification of the preceding paragraph proves g € S.

Henceforth we assume r < g; therefore r is accessible from above.

If r is not accessible from below then r = p = infX so r € S and we are done; so
we may as well assume r is accessible from below as well as from above. If r is the
limit of a sequence of equilibria > r then r € S;. by the dual of Proposition 1.26, hence
r € S by Proposition 1.25(b). Therefore we can assume R contains a smallest equilibrium
r1 > r. Note that r; ¢ S_ by maximality of r. We apply Proposition 1.29 to r, r1: among
its conclusions, the only one possible here is that z > r and @,(z) — r (and perhaps r €
O(2)). Therefore r € S, by Proposition 1.25(a), whence r € § by 1.25(b). When R is
finite, a modification of the preceding arguments proves max(RN A_) C A. |

Assumption (b) in the Theorem 1.30 holds for many subsets X of an ordered Banach
space Y, including open sets, subcones of Y, closed order intervals, and so forth. This
result is similar to Theorem 10.2 of Hirsch [73], which establishes equilibria that are merely
order stable, but does not require normality.

Assumption (c) holds when E is compact, and also in the following situation: X C ¥
where Y is an L? space, 1 < p < 00, and E is a nonempty, closed, and order bounded
subset of X; then every order bounded increasing or decreasing sequence converges.
If (c) holds and some @; is real analytic with spatial derivatives that are compact and
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strongly positive operators, then R is finite. This follows from the statements and proofs of
Lemma 3.3 and Theorem 2 in Jiang and Yu [90].

For related results on stable equilibria see Jiang [86], Mierczynski [138,139], and
Hirsch [69].

THEOREM 1.31. Let @ be a semiflow in a subset X of a strongly ordered Banach space Y ,
that extends to a strongly monotone local semiflow in some open subset of Y. Assume hy-
potheses (a), (b), (c) of Theorem 1.30 hold, and every equilibrium has a neighborhood
attracted to a compact set. Let R C E be as in 1.30(c). Then R contains a stable equilib-
rium, and an asymptotically stable equilibrium when R is finite.

PROOF. Our strategy is to apply Theorem 1.30 to the semiflow P i in X (see Section 1.7).
Give X the metric connng from an order norm on ¥; this makes X is normally ordered.
Lemma 1.27 shows that @ is SOP. Therefore R contains an equilibrium p that is stable
for @, by Theorem 1.30. This means p is order stable for @, whence Proposition 1.28
shows that p is stable for ¢. The final assertion follows similarly. |

Stable equilibria are found under various assumptions in Theorems 2.9, 2.10, 2.11, 2.26,
3.14, 4.12.

2. Generic convergence and stability
2.1. The sequential limit set trichotomy
Throughout Section 2 we assume Hypothesis (H) of Section 1.4:

@ is a strongly order preserving semiflow in an ordered space X, with all orbit clo-
sures compact.

The main result is that the typical orbit of an SOP semiflow is stable and approaches the set
E of equilibria. Existence of stable equilibria is established under additional compactness
assumptions.

The index # runs through the positive integers.

A point x is strongly accessible from below (respectively, above) if there exists a se-
quence {y,} converging to x such that y, < y,+1 < x (resp., ¥, > Yn+1 > X). In this case
we say {yn} strongly approximates x from below (resp., from above).

The sequence {x,} is omega compact if | J,, w(x,) is compact.

Define sets BC, AC C X as follows:

x € BC < x is strongly accessible from below by an omega compact
sequence,

x € AC <= x is strongly accessible from above by an omega compact
sequence.
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In this notation “B” stands for “below,” “A” for above, and “C" for “compact.”
We will also use the following condition on a set W C X:

(C) Every sequence {w,} in W that strongly approximates a point of W from below or
above is omega compact.
]

This does not assert that any point is strongly accessible from below or above. But if every
point of W is accessible from above and W satisfies (C), then W C AC; and similarly for
BC.

The next two propositions imply properties stronger than (C). Recall thatamap f : X —
X is completely continuous provided f (B) is compact for every bounded set B C X; and f
conditionally completely continuous provided f(B) is compact whenever B and f(B) are
bounded subsets of X.

The orbit of any set B C X is O(B) =, @:(B).

PROPOSITION 2.1. Assume the following two conditions:
(a) every compact set has a bounded orbit, and
(b) D is conditionally completely continuous for some s > 0.
If L C X is compact, then | J,.; w(x) is compact and this implies X has property (C).

PROOF. O(L) is abounded set by (a), and positively invariant, so (b) implies compactness
of @;(O(L)). As the latter set contains w(x) for all x € L, the first assertion is proved. The
second assertion follows from precompactness of {x,}. g

PROPOSITION 2.2. Assume W C X has the following property: For every x € W there is
a neighborhood Uy C X and a compact set My that attracts every point in Uy. Then O (x)
is compact for every x € W, and | ey, @(y) is compact. If z, — x € W then | J,, @ (z,)
is compact, therefore W has property (C).

PROOF. Itis easy to see that O(x) is compact and Uye v, @(¥) is compact because it lies
in M. Fix k > 0 such that z,, € U, for all n > k. Then

Jeen= | w@)uM,,

1<ngk

which is the union of finitely many compact sets, hence compact. Condition (C) follows
trivially. ]

The key to stronger results on generic quasiconvergence and stability is the following
result of Smith and Thieme [197]:

THEOREM 2.3 (Sequential Limit Set Trichotomy). Let {X,} be an omega compact se-
quence strongly approximating z € BC from below. Then there is a subsequence {x,} such
that exactly one of the following three conditions holds:
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(a) There exists ug € E such that
w(xn) < w(xn+1) < 0(z) = {uo}
and
nlinolo dist(w(x4), ug) = 0.

In this case z € C.
(b) There exists uy =sup{u € E: u < w(z)} and

w(xn) = {u1} < w(2).

In this case z € IntC. Moreover z has a neighborhood W such thatif w e W, w < z
then @,(w) — u and 9;(w) > uy for sufficiently large t.

©) wx)=w(@)CE.
In this case z € Int Q. Moreover w(w) = w(z) C E for every w < z sufficiently
near z.

Note that z is convergent in (a), and strongly accessible from below by convergent points
in (b). In (c), z is quasiconvergent and strongly accessible from below by quasiconvergent
points.

If z € AC there is an analogous dual result, obtained by reversing the order relation in X.
Although we do not state it formally, we will use it below. If z € AC N BC then both results
apply. See Proposition 3.6 in Smith and Thieme [197].

PROOF OF THEOREM 2.3. By the Limit Set Dichotomy 1.16, either there exists a positive
integer j such that w(X,) = w(X,y) for all m,n > j, or else there exists a subsequence
{X»;} such that  (%y;) < @(Xp,,,) for all i. Therefore there is a subsequence {x,} such that
w(xp) < w(x,41) for all n, or w(x,) = w{x,+1) for all n.

Case I w(xy) < w(x,41). We will see that (a) holds. The Limit Set Dichotomy 1.16
implies w(x,) < w(z). In fact, that @ (x,,) < w(z). Otherwise w (xx) Nw(z) # O for some k,
and the Limit Set Dichotomy implies the contradiction @ (x;) = w(2) 2 © (Xg+1) > w{xk).

Define K = | J w(x,), a nonempty compact invariant set. Consider the set

A={y: y=n1_i_)rr°1°y,,, ynea)(xn)} CK.

Clearly A is invariant and closed, and compactness of K implies A is compact and non-
empty. We show that A is a single equilibrium. Suppose y, v € A, so that y, — ¥, vy = v
with y,, v, € w(x,). Since y, < vp4+1 and v, < yp41, wehave ySvandv < y,sov=y.
Thus we can set A = {up}, and invariance implies ug € E.

The definition of A and compactness of K imply lim,_, o dist(w(x,), ug) = 0. From
w(Xy) < 0(Xp41) < ©(z) we infer

(%) <ug < (2).
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If up € w(z) then w(z) = {ug} by Corollary 1.9, yielding (a).

We show that ug < w(z) gives a contradiction. Choose a neighborhood W of w(z) and
to 2 0 such that up < @, (W) for all ¢ > 7o (by Lemma 1.3). There exists #; > 0 such that
&;,(z) € W, and by continuity of @;, there exists m such that @, (x,,) € W. It follows
that g < @ (x,) for t > to + t1. As ug € E, we have uy < w(x,,). But this contradicts
@ (X)) <:wmg. Thus (a) holds in Case L.

Case II: w(xy) = w(xp+1) C E. Since x,, < z, the Limit Set Dichotomy implies that ei-
ther w(x,) = w(z), which gives (c), or else w(x,) < w(z), which we now assume. Choose
an equilibrium u; € w(x1). By Lemma 1.3 there exists an open set W containing w(z) and
to 2> 0 such that u; < &,(W) for all ¢ > 7). Arguing as in Case I, we obtain w1 < @;(x,,)
for some m and all large ¢. Since u; € w(xy,), it follows that @ (x,,) = u; by Corollary 1.9,
and therefore w(x,) = {u1} as asserted in case (b). Finally, if u € E and u < w(z), we
argue as above that w(x,,) > u for some m, which implies u; > u.

To prove z € Int @, use SOP to obtain a neighborhood U, of x,, such that &, (x,_1) <
D (Uy) < D1 (xn+1) for all large ¢, implying U, C Q. A similar argument proves the anal-
ogous assertion in (b). O

The following addendum to the Sequential Limit Set Trichotomy provides important
stability information. In essence, it associates various kinds of stable points to arbitrary
elements z € BC:

PROPOSITION 2.4. Assume X is normally ordered. In cases (a), (b) and (c) of the Sequen-
tial Limit Set Trichotomy, the following statements are valid respectively:
(a) z and ug are stable from below;
(b) z is not stable from below, w(z) is unstable from below, and u; is asymptotically
stable from above;
(¢) z is asymptotically stable from below, and z € A.

PROOF. (a) follows from Proposition 1.26(a) and (b).

(b) The first two assertions are trivial. To prove u; € A, take w = x,, for some large n
in the last assertion of (b) and apply 1.25(d) with @ = u.

(c) follows from 1.25(d), taking b = z. O

We expect in real world systems that observable motions are stable trajectories. Our next
result implies stable trajectories approach equilibria.

PROPOSITION 2.5. SN(BCUAC) C Q.

PROOF. When z € SN(BCUAC), only (a) and (c) of the Sequential Limit Set Trichotomy
are possible, owing to continuity at z of the function x ++ w(x). Inbothcasesz € ¢. O

The inclusion § C Q suggests trajectories issuing from nonquasiconvergent points are
unlikely to be observed; the next result implies that their limit sets are, not surprisingly,
unstable. There are as many concepts of instability as there are of stability, but for our
purposes the following very strong property suffices: A set M C X is unstable from above
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provided there is an equilibrium # > M such that w(x) = {u}ifu > x > y, y € M. Such an
equilibrium u is unique, and SOP implies it attracts all points < u in some neighborhood
of u. Unstable from below is defined dually.

THEOREM 2.6. Assume z € BC \ Q (respectively, z € AC \ Q). Then w(z) is unstable
from below (resp., above).

PROOF. To fix ideas we assume z € BC \ Q. Then there exists a sequence x, — z and
an equilibrium %; as in conclusion (b) of the Sequential Limit Set Trichotomy. Suppose
Uy <x <y,y€w(z). SOP implies there exist open sets W, and W, containing x and y,
respectively, and #y = 0, such that &,(W,) < D, (Wy) for all ¢ > 1g. As D;(z) € W, for
some large s, by continuity ®;(x,) € Wy for some large n. Thus u; < @ (x) < Pr45(xp)
for all ¢ > fp. Letting ¢ — oo and using the fact that w(x,) = {1}, we find that w(x) =

{ur}. O

A set is minimal if it is nonempty, closed and invariant, and no proper subset has these
three properties. Every positively invariant nonempty compact set contains a minimal set
(by Zorn’s Lemma). A minimal set containing more than one point is called nontrivial.

COROLLARY 2.7. A compact, nontrivial minimal set M that meets BC (respectively, AC)
is unstable from below (resp., above).

PROOF. Suppose z € M N BC. The assumptions on M imply M = w(z) and M N E = (.
Therefore z € BC \ @, and instability follows from Theorem 2.6. O

When X is a convex subset of a vector space, an alternative formulation of Theorem 2.6
is that w(z) belongs to the upper boundary of the basin of attraction of the equilibrium u.
Corollary 2.7 implies that periodic orbits are unstable. Theorem 2.6 is motivated by Theo-
rem 1.6 in Hirsch [79].

The following sharpening of Theorem 1.19, due to Smith and Thieme [199], is an im-
mediate corollary of the Sequential Limit Set Trichotomy.

THEOREM 2.8. If J C X is a totally ordered arc having property (C), then J \ Q is a
discrete, relatively closed subset of J; hence it is countable, and finite when J is compact.

PROOF. Every limit point z of J \ Q is strongly accessible from above or below by a
sequence {X,} in J \ Q. As Property (C) implies J C BC U AC, there is a sequence {x,}
satisfying (a), (b) or (c) of Theorem 2.3 (or its dual result), all of which imply Xn € Q.
Thus J \ Q contains none of its limit points, which implies the conclusion. a

The following result sharpens Theorems 1.30 and 2.8:

PROPOSITION 2.9. Assume X is normally ordered and every point is accessible from
above and below. Let J C X be a totally ordered compact arc having property (C), with
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endpoints a < b such that w(a) is an equilibrium stable from below and w(b) is an equi-
librium stable from above. Then J contains a point whose trajectory converges to a stable
equilibrium.

PROOF. Denote by C, (respectively: C, C_) the set of convergent points whose omega
limits belong to § (resp.: to S4, S-). Then C4 N C_ = C; by Proposition 1.25(b).

Setsup(JNC_)=zeJ.

Case 1: z ¢ C_. Then z > a. Choose a sequence x| < xp < --- < z in J N C_ such that
Xn — z. By the Sequential Limit Set Trichotomy 2.3 it suffices to consider the following
three cases:

(a) There exists ug € E such that

@ (xn) < w(xpy1) < 0(z) = {uo}.

This is not possible, because ug € S_ by Proposition 2.4(a), yielding the contradic-
tionze C_.
(b) There exists u; =sup{u € E: u < w(z)}, and for all n we have

o (xn) = {u1} < w(2).

Now 2.4(b) has u1 € S, hence x,, € C... Therefore x, € C4 NC_ = Cj, as required.

() w(xp) =w(z). This is not possible because x, € C_ and w(z) = w(x,) implies the

contradiction z € C_.
Thus (b) holds, validating the conclusion when z ¢ C_.

Case 2: z € C_. If z=b then z € C. N C_ = C; and there is nothing more to prove.
Henceforth we assume z < b.

The closed subinterval X C J with endpoints z, b satisfies the hypotheses of the theo-
rem. Set inf(K N Cy) = w € K. The dual of the reasoning above shows that if w ¢ C,.
then the conclusion of the theorem is true.

From now on we assume w € C. If w = z there is nothing more to prove, so we also
assume w > z. Let L C K be the closed subinterval with endpoints w and z. Let {X,} be a
sequence in L converging to w from below.

One of the conclusions (a), (b) or (c) of 2.3 holds. Referring to the corresponding parts
of 2.4, we see in case (a) that w(w) is an equilibrium i that is stable from below; but
w > z, so this contradicts the definition of z. If (b) holds, w(%,) is an equilibrium & stable
from above. But X, < w, so this contradicts the definition of w. In case (c) we have for all
n that w(x,) = w(w), which is an equilibrium stable from above. But X, < w for n > 1,
again contradicting the definition of w. O

In the following result the assumption on equilibria holds when & has a global compact
attractor.

PROPOSITION 2.10. Assume X is an open subset of a strongly ordered Banach space,
@ is strongly monotone, and every equilibrium has a neighborhood attracted to a compact
set. Let J C X be a totally ordered compact arc, with endpoints a < b such that w(a) is
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an equilibrium stable from below and w(b) is an equilibrium stable from above. Then J
contains a point whose trajectory converges to a stable equilibrium.

PROOF. Apply Proposition 2.9 to the to the SOP semiflow ® in the normally ordered
space X (see Section 1.7), to obtain an equilibrium p that is stable for ®@. This means p is
order stable for @, hence stable for ¢ by Proposition 1.28. O

COROLLARY 2.11. Let X be a p-convex open set in an ordered Banach space Y . Assume
@ has a compact global attractor. Suppose that either Y is normally ordered, or Y is
strongly ordered and @ is strongly monotone. Then:

(1) There is a stable equilibrium.

(i) Let u,v € X be such that u < v and there exist real numbers r,s > 0 such that

u < Dr(u), Ds(v) < v. Then there is a stable equilibrium in [u, v].

In case (ii) with Y normally ordered, the hypothesis of a global attractor can be replaced
the assumption that the line segment joining u to v from satisfies condition (C).

PROOF. We first prove (ii). Monotonicity shows that w(x) C [, v] for all x € [, v]. The
Convergence Criterion implies

D;(u) —>ac ENfu,v], D,(v) >be ENu,v].

We claim thata € S and b € S, and a € § is stable if @ = b. When Y is normal this fol-
lows from Propositions 1.25(b) and (d), and it is easy to prove directly when & is strongly
monotone. Suppose a < b. By p-convexity and Theorems 2.9 and 2.10, the line segment
from a to b lies in [, v] N X and contains a point whose x such that w(x) is a stable
equilibrium z. As noted above, z € [u, v].

We prove (i) by finding # and v as in (ii). By Theorem 2.8 and compactness of the
global attractor, there is a minimal equilibrium p and a maximal equilibrium g > p. As X
is open, it contains a totally ordered line segment J < p. By Theorem 1.19 J contains a
quasiconvergent point u < p. As w () < p, minimality of p implies ®;(u) — p. Similarly
there exist v > g with @ (v) — ¢. It follows from SOP that u < @, (u), P, (v) < v for some
r,s >0. O

For strongly monotone semiflows, the existence of order stable equilibria in attractors
was treated in Hirsch [68,69,73].

2.2. Generic quasiconvergence and stability
i

The following result adapted from Smith and Thieme [197] refines Theorems 1.22
and 1.21: -

THEOREM 2.12. (i) ACUBC C Int QU C. Therefore if AC U BC is dense, so is Q.
(i) (Int AC) U (Int BC) C Int Q. Therefore if (Int AC) U (Int BC) is dense, so is Int Q.
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PROOF. Every z € BC is the limit of an omega compact sequence X1 <xz <--- such that
(a), (b) or (c) of the Sequential Limit Set Trichotomy Theorem 2.3 holds,and z e Int QU C
in each case; the proof for AC is similar.

To prove (i), assume z € Int BC. If (a) holds for every point of a neighborhood W of z,
then W C C, whence z € Int Q. If there is no such W, every neighborhood of z contains a
point forrwhich (b) or (c) holds, hence z € Int Q. Similarly for z ¢ Int AC. O

The next result extends Theorems 8.10 and 9.6 of Hirsch [73] and Theorem 3.9 of Smith
and Thieme [197]:

THEOREM 2.13. Assume X is normally ordered and Int(BC U AC) is dense. Then AU
Int C is dense.

PROOF. We argue by contradiction. If A UIntC is not dense, there exists an open set U
such that

UNA=0=UNIntC.

Suppose z € U N BC, and let {x,} be a sequence in U strongly approximating z from
below. Conclusion (b) of the Sequential Limit Set Trichotomy 2.3 is not possible because
z¢ IntC, and conclusion (c) is ruled out because z ¢ ‘A (see Proposition 2.4(c)). Therefore
conclusion (a) holds, which makes z convergent; likewise when z € U N AC. Thus we have
CHOUN(BCUAC),solntC DU NInt(BCU AC). But the latter set is nonempty by the
density hypothesis, yielding the contradiction U NIntC £ 0. ]

The following theorem concludes that generic trajectories are not only quasiconvergent,
but also stable. Its full force will come into play in the next subsection, under assumptions
entailing a dense open set of convergent points.

THEOREM 2.14. If X is normally ordered and Int(BC N AC) is dense, then Int(Q N S) is
dense.

PROOF. Int Q is dense by Theorem 2.12. To prove density of Int S, it suffices to prove that
if z € Int(BC N AC), then every open neighborhood U of z meets IntS. We can assume
7 ¢ A because A C IntS. Let {x,} be an omega compact sequence strongly approximating
z from below. Suppose (b) or (c) of the Sequential Limit Set Trichotomy 2.3 holds. Then
xm € U for m 2 myp. Fix m 2 mo. It follows from Proposition 1.25(d) (with @ = xp, x =
Xm+1> b = Xm42) that x,n41 € A, hence z € A; this is proved similarly when {x,} strongly
approximates z from above.

Henceforth we can assume z belongs to the open set W =Int(BC N AC) \ A, and conse-
quently that there are omega compact sequences {xn}, {yn} strongly approximating z from

_below and above respectively, for which Theorem 2.3(a) and its dual hold respectively.

Then Proposition 1.26 implies z € S+ N S—, whence z € S by Proposition 1.25(b). Thus
the open set W is contained in IntS, and we have proved IntS is dense. It follows that
Int S NInt Q is dense. O
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2.3. Improving the limit set dichotomy for smooth systems

The aim now is to strengthen the Limit Set Dichotomy with additional hypotheses, espe-
cially smoothness, in order to obtain the following property:

(ILSD) A semiflow satisfies the Improved Limit Set Dichotomy if x| < x; implies that
either
(@) w(x1) <w(xy),or
M) wx)=wx)=ecE.

We begin with some definitions.

Let X be a subset of the Banach space Y. A map f : X — Y is said to be locally C! ar
p € X if there exists a neighborhood U of p in X and a continuous quasiderivative map
f':U — L(Y), where L(Y) is the Banach space of bounded operators on Y, such that

f@x) = fxo) = f'(x0)(x ~x0) + ¢ (x, x0)[x —x0l, x,x0€U

with ¢ (x, xo) — 0 as x — xo. The following result gives a setting where the quasideriva-
tive is uniquely determined by f. We denote the open ball in ¥ of center p and radius r by
By(p,r):={yeY:|y—pl<r}

LEMMA 2.15. Let p € X C Y where Y is a strongly ordered Banach space. Assume
f:X— Y islocally C! at p, and suppose that either By (p,r)NY; C X or By(p,r)N
(=Y) C X for somer > 0. Then f'(p) is uniquely defined.

PROOF. Suppose By(p,r) N Y, C X, the other case being similar. Fix w > 0 and let
yeY. Asw+y/n:=k, 20forlargen, y=n(k, —w)soY =Y, —~Y,.
Assume

f&) = f(P)=Ax —p)+é(x, p)lx — pl=B(x — p) + ¥ (x, p)lx — pl,

where A, B € L(Y) and ¢, ¥ — 0 as x — p in X. It suffices to show that Av = Bv for all
v = 0. The segment x = p + sv € X for all small s > 0. Inserting it in the formula above,
dividing by s, and letting s — O yields the desired result. O

Let @ be a monotone semiflow on the subset X of the strongly ordered Banach space Y.
Concerning X and the set of equilibria E, we assume the following condition on the pair
¥, X):

(OC) Either X is an order convex subset of Y or E C Int X. For each e € E there exists

r > 0 such that either By (e,r) N Y1 C X or By(e,r) N (—Y;) C X. -

This relatively minor restriction is automatically satisfied if X is an open set, an order
interval, or the cone Y. The second assertion of (OC) trivially holds if E C Int X.
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We will also assume the following two conditions hold for some 7 > 0. A compact,
strongly positive linear operator is called a Krein—Rutman operator.

M) x1 <x2=> Pr(x1) € Pr(x2)
(D*) @, is locally C! ateach e € E, with &’ (e) a Krein-Rutman operator.

t
As motivation for (D*), consider the case that X is an open set in ¥ and @, is C U (i
xe€X,ye¥Yy,h>0,andx+hy € X, then (@, (x+hy) — P (x))/h = 0 by monotonicity;
on taking the limit as & — 0, we get @, (x)y > 0. Consequently, ®.(x)Y; C Y., and
hence the assumption that @/ (x) is strongly positive is not such a severe one. Typically,
one usually must verify it anyway to prove that @ is strongly monotone.
Observe that (M) implies that & is strongly order preserving on X.

THEOREM 2.16 (Improved Limit Set Dichotomy). Let @ be a monotone semiflow on a
subset X of the strongly ordered Banach space Y for which (OC), (M), and (D*) are
satisfied. Then (ILSD) holds.

In particular, (ILSD) holds if X is open, the semiflow @ continuously differentiable and
strongly monotone, and the derivative @;(e) is a Krein—Rutman operator at each e € E.
Before giving the proof, we explore the spectral and dynamical implications of (D¥).

2.3.1. The Krein—-Rutman theorem The spectrum of a linear operator A:Y — Y is de-
noted by Spec(A). When A is compact (i.e., completely continuous), Spec(A) consists of
a countable set of eigenvalues and perhaps 0, and the eigenvalues have no accumulation
point except possibly 0.

Let p(A) be the spectral radius of A, that is, p(A) = max{|A|: A € Spec(A)}. Denote
the null space of A by N(A) and the range by Im(A).

The set KR(Y) of Krein—Rutman operators on Y is given the metric induced by the
uniform norm.

THEOREM 2.17 (Krein—Rutman). Let A € KR(Y) and set r = p(A). Then Y decomposes
into a direct sum of two closed invariant subspaces Y1 and Yy such that Y1 = N(A—rl) is
spanned by z > 0 and Y, N Y4 = {0}. Moreover, the spectrum of A\Y» is contained in the
closed ball of radius v < r in the complex plane.

See Krein and Rutman [104], Tak4¢ [214] or Zeidler [244] for proofs.
It follows that each A € KR(Y) has a unique unit eigenvector z(A) € Y, and z(A) €
IntY,, Az(A) = p(A)z(A).

LEMMA 2.18. p(A) and z(A) are continuous functions of A € KR(Y).

PROOF. The upper semicontinuity of the spectral radius follows from the upper semi-
continuity of the spectrum as a function of the operator (Kato [92]). The lower semi-
continuity follows from the lower semicontinuity of isolated parts of the spectrum (Kato
[92, Chapter IV, Theorem 3.1, Remark 3.3, Theorem 3.16]). Let P4 be the projection
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onto N(A) — p(A)I) along Im(A — p(A)I). Continuity of A — P4 is proved in [92,
Chapter IV, Theorem 3.16]. Let A, — A in KR(Y) and set z,, = z(A,), z = z(A). Then
(I — Pa))zp = (Pa, — Pa)zy — 0 as n — 00, and {Paz,} is precompact, so {z,} is pre-
compact. If z,, — u for some subsequence, then

Pau=lm Ay, z,, =limp(Ay;)zn; = p(Adu.
Uniqueness of the positive eigenvector for A (Theorem 2.17) implies u =z and z, — z. O

For technical reasons it is useful to employ a norm that is more compatible with the par-
tial order. If w € Int Y. is fixed, then the set U = {y € Y: —w « y < w} is an open neigh-
borhood of the origin. Consequently, if y € ¥, then there exists fg > 0 such that ty ! yeU,
hence, —fow <« y < row. Define the w-norm by

lylly =inf{r > 0: —rw <y < tw}.

Since w € IntY,, there exists § > 0 such that for all y € Y \ {0} we have w & 8[—% eY,.
Thus

Iyl <871yl

holds for all y € Y, implying that the w-norm is weaker than the original norm. In fact,
the two norms are equivalent if ¥ is normal, but we will have no need for this result. See
Amann [6] and Hirsch [73] for more results in this direction. It will be useful to renormalize
the positive eigenvector z(A) for A € KR(Y). The next result says this can be done contin-
uously. Continuity always refers to the original norm topology on Y unless the contrary is
explicitly stated.

LEMMA 2.19. Let Z(A) = z(A)/||z(A)llw and B(A) = sup{B > 0: Z(A) > Bw}. Then
B(A) >0, Z(A) 2 B(A)w, and the maps A — Z(A) and A — B(A) are continuous on
KR(Y).

PROOF. Since the w-norm is weaker than the original norm, the map A — ||z(A)||, is
continuous. This implies that Z(A) is continuous in A. It is easy to see that S(A4) > 0. Let
€ > 0 satisfy 2¢ < B(A) and let A, — A in KR(Y). Then —ew < Z(A) — Z(A,) < ew for
all large n by continuity of Z and because the w-norm is weaker than the original norm.
Therefore, Z(A,) = Z(An) — Z(A) + Z(A) = (B(A) — €)w, so B(A,) > B(A) — ¢ for
all large n. Similarly, Z(A) = Z(A) — Z(An) + Z(A,) = (B(An) — €)w for all large n,
s0 B(A) = B(An) — € for all large n. Thus, B(A) — e < B(A,) < B(A) +¢ holds for all
large n, completing the proof. a

The key to improving the Limit Set Dichotomy is to show that the omega limit set
of a point x that is quasiconvergent but not convergent, is uniformly unstable in the lin-
ear approximation. The direction of greatest instability at ¢ € w(x) is the positive direc-
tion z(e) := z(P.(¢)). The number p(e) := p(PDL(e)) gives a measure of the instability.
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Nonordering of Limit Sets means that positive directions are, in some rough sense, “trans-
verse” to the limit set. Thus our next result means that the limit set is uniformly unstable
in a transverse direction.

LEMMA 2.20. Assume (D*). Let x be quasiconvergent but not convergent. Then p(e) > 1
forall e € w(x).

PROOF. Fix e € w(x). Since w(x) is connected, e is the limit of a sequence {e,} in w(x) N
U \ {eo}, where U is the neighborhood of e in the definition of @, is locally C ! at e. Then

00— en = P (€) — Dr(en) = PL(e)(e — en) +0(le — enl),
where o(|e — ex])/le — en| = 0 as n — 00. Put v, = (e —e,)/|e — en|. Then
Up=®L(@vy +10, Tm—>0, n-—oo.

The compactness of ®, (¢) implies that v, has a convergent subsequence vy, ; passing to the
limit along this subsequence leads to v = @/ (e)v for some unit vector v. Thus p(e) 2 L.
If p(e) = 1, then the Krein—Rutman Theorem implies v = rz(e) where r = £1. Conse-
quently,

(e —en;)/le — en;| > rz(e)

as i — o0o. It follows that e < e,; or e 2> €y, for all large i, contradicting the Nonordering
of Limit Sets. a

PROOF OF THEOREM 2.16. By the Limit Set Dichotomy (Theorem 1.16), it suffices to
prove: If x| < x7 and w(x)) = w(x2) = K C E, then K is a singleton. K is compact and
connected, unordered by the Nonordering of Limit Sets, and consists of fixed points of @;.
Arguing by contradiction, we assume K is not a singleton.

Set v, = Ppe (x1), Un = Ppr(x2). Then dist(K, up) = 0 and dist(K,v,) > O as n —
00. Moreover (M) and the final assertion of the Limit Set Dichotomy imply

un—‘vn>>0, un’—vn_>0.
Fix w > 0 and define real numbers
op=supfeeR: @ 20, aw S uy — un}.

Then o, > 0 and &, — 0.

To simplify notation, define $: X — X by S(x) := ®;(x). Choose ¢, € K such that
v, — en — 0 as n — 00. By Lemma 2.20, local smoothness of ¢, and compactness of K,
there exists 7 > 1 such that p(e) > r forallee K. Letz, = Z (en) be the normalized
positive eigenvector for S'(en) = PL(en) s0 l1znllw =1 and z, €< w. By Lemma 2.19, there
exists € > 0 such that B(e,) = € for all n. In particular, w 2> 2z, > ew for all n.
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Fix a positive integer / such that rle > 1.

For each e € K, by (D*) we can choose an open neighborhood W, of ¢ in X and a
continuous map S : W, — L(Y) such that for x, xo € W, we have

Sx — Sxo = ' (x0)(x — x0) + ¢ (x, x0)|x — xol, xli)rg0¢(x,xo) =0.

Putting xo = ¢ and estimating norms, one easily sees that there exists a,convex open neigh-
borhood U, C W, of e such that S*(U,) C W, for 1 < i <. Furthermore, a simple induc-
tion argument implies that St is locally C! at e with quasiderivative

(S :U» L), (Y x)=8(5"x) o8 (52x) 0 05 x).
By compactness of K there is a finite subset {e1,...,e,} C K such that the sets U,
cover K. SetUj=U,;, W; = We;. Then

v
kclJu;, Swpcw; a<i<,
j=1

and for z, zo € U;
§'(2) — ' o) = (5') (20} (2 — 20) + 1,5 (2, 20)lz = 20, lim 1,5(z, 20) =0,

and the usual chain rule expresses (S')’ in terms of §'.

By (OC), either X is order convex in ¥ or E C IntX. In the order convex case, from
vy & U, + o, w < u, we infer that v, + sa,w € X for all s € [0, 1]. Since v, — e, — 0,
v, — Uy — 0, and &, = 0, for sufficiently large n there exists j(n) € {1, ..., v} such that
Uy contains the points vy, up, ey, and v, + s, w for all s € [0, 1]. When E C Int X the
same conclusion holds, and we can take U;, V; to be openin Y.

Lemma 2.15 justifies the application of the fundamental theorem of calculus to the map
[0,1]1= X,s— S (vy + s, w), leading to

S + @aw) — 8 (vn) = (8" (en) (@nw) + 8y

and
1
Sy =A [(Sl)/(v,, + no,w) — (SI)'(e,,)]w dn.

Using that v, + o, w — e, — 0, K is compact, and (S?)’ is continuous, it is easy to show
that

Jim max [[(5') (v +naww) = (') (en)]w| =o0.
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It follows that dy, := [|8,[l, — 0 as n — co. Because w > z, > ew > 0 and by =2 —dyw,
for sufficiently large n we have:

S (W + anw) = 5" (wa) > [(8) (en) Jotnw — atndyw

—/

S’(en)]loznw —apd,w

—~

oz, — opdpw
1)

—dp)oyw

and therefore
tny1 =8 (up) = S (Vg + ctpw) > vy + ctyw = vpyy + apw.

Thus o, w < uyy; — vyay, so the definition of o,y implies a7 > «, > 0 for all suffi-
ciently large n. Therefore the sequence {;};en » Which converges to 0, contains a nonde-
creasing positive subsequence {a; 4/} xen, - This contradiction implies K is a singleton. (]

A drawback of the Improved Limit Set Dichotomy, Theorem 2.16, is that the topology
on X comes from a strongly ordered Banach space Y D X, severely limiting its application
to infinite-dimensional systems. The following extension permits use of (ILSD) in more
general spaces:

PROPOSITION 2.21. Ler X!, X be ordered spaces such that X'  X° and the inclusion
map j: X' < XY is continuous and order preserving. For k =0, 1 let ®* be a monotone
semiflow on X* with compact orbit closures. Assume for all t > 0 that ¢t0 maps X° con-
tinuously into X', and ®P| X! = @] If (ILSD) holds for &', it also holds for @°.

PROOF. Denote the closure in X* of any S ¢ X* by CiS. For k € {0, 1} and x € X*, let
Ok (x) and w (x) respectively denote the orbit and omega limit set of x.

The hypotheses imply that the compact set CyOg(x), which is positively invariant for
@Y, is mapped homeomorphically by @? onto C; 01 (y) C X!, which is positively invariant
for ®1. As @° and ®! coincide in X 1 we see that wo(x) = wy (y) as compact sets. Hence
@9 and @' have the same collection of omega limit sets, which implies the conclusion. O

THEOREM 2.22 (Improved Sequential Limit Set Trichotomy). Assume (ILSD). Let {x,}

be a sequence approximating z € BC from below, with U, @ (&,) compact. Then there is a

subsequence {x,} such that exactly one of the following three conditions holds forall n:
(a) There exists ug € E such that

0 (Xn) < 0(Xp11) < @(2) = {ug}
and

lim dist(e(x,), ug) =0.
n—o0
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(b) There exists uy =sup{u € E: u < w(z)}, and
w(xn) = {u1} < w(2).

In this case 7 € Int C. Moreover z has a neighborhood W such thatifw e W, w <z
then @;(w) — u1 and O,(w) > uy for sufficiently large t.
(c) There exists uz € E such that w(x,) = w(xo) = u2.

Note that z is convergent in (a), strongly accessible from below by convergent points
in (b), and convergent in (c¢’).

PROOF. Conclusions (a) and (b) are the same as in the Sequential Limit Set Trichotomy,
Theorem 2.3. If 2.3(c) holds, then (¢) follows from (ILSD). O

PROPOSITION 2.23. Assume (ILSD). If x € BC \ C then w(x) is unstable from below. If
x € AC\ C then w(x) is unstable from above.

PROOF. This is just Theorem 2.6 if x ¢ Q. If x € BC N (Q \ C), we must have conclu-
sion (b) of Theorem 2.22. This provides u1 € E such that w(x,) = {u1} for all n, and the
remainder of the proof mimics that of Theorem 2.6. O

A consequence of Proposition 2.23 is that if x € BC N AC is nonconvergent, then o (x)
lies in both the upper boundary of the basin of attraction of an equilibrium u¢ and the lower
boundary of the basin of attraction of an equilibrium vy, where ug < L < vo. Thus w(x)
forms part of a separatrix separating the basins of attraction of ug and vo.

2.4. Generic convergence and stability

The following result concludes that the set C of convergent points is dense and open in
totally ordered arcs:

THEOREM 2.24. Assume (ILSD) and let J C X be a totally ordered arc having prop-
erty (C). Then J \ C is a discrete, relatively closed subset of J; hence it is countable, and
finite when J is compact.

PROOF. The proof is like that of Theorem 2.8, using the Improved Limit Set Tri-
chotomy 2.22 instead of the Sequential Limit Set Trichotomy 2.3. O

‘

We can now prove the following generic convergence and stability results:

THEOREM 2.25. Assume (ILSD).
(a) ACUBC CcIntCUC. In particular, if AC U BC is dense, so is IntC is dense.
() IfInt(BC N AC) is dense and X is normally ordered, then Int(C N S) is dense.
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PROOF. The proof of (a) is similar to that of Theorem 2.12: take p € X \IntC and use the
Improved Limit Set Trichotomy (Theorem 2.22), instead of the Limit Set Trichotomy, to
show that p € IntC U C. Conclusion (b) follows from (a) and Theorem 2.14. O

THEOREM 2.26. Assume X is a subset of a strongly ordered Banach space Y, and a dense
open subset of X is covered by totally ordered line segments. Let (M) and (D¥) hold. Then:
(a) The set of convergent points has dense interior.
(b) Suppose Y is normally ordered. Then the set of stable points has dense interior.
(c) Assume Y is normally ordered; X is open or order convex or a subcone of Yi;
and every closed totally ordered subset of E is compact. Then there is a stable
equilibrium, and an asymptotically stable equilibrium when E is finite.

PROOF. The assumption in (a) implies BC N AC has dense interior and condition (OC)
holds. Therefore the Improved Limit Set Dichotomy (ILSD) holds by Theorem 2. 16, so (a)
and (b) follow from Theorem 2.25(a). Conclusion (c) is a consequence of (a) and Theo-
rem 1.30. O

As most orbits with compact closure converge to an equilibrium, it is natural to inves-
tigate the nature of the convergence. It might be expected that most trajectories converg-
ing to a stable equilibrium are eventually increasing or decreasing. We quote a theorem
of Mierczyniski that demonstrates this under quite general conditions for smooth strongly
monotone dynamical systems, including cases when the equilibrium is not asymptotically
stable in the linear approximation. Mierczyrski assumes the following hypothesis:

(M;) X is an open set in a strongly ordered Banach space Y. ® is C! on (0,00) x X
and strongly monotone, ®/(x) is strongly positive forall 7 > 0, x € X, and @1 (x)
is compact.

The following local trichotomy due to Mierczynski [138] builds on earlier work of
Polacik [161]:

THEOREM 2.27. Assume (M}). Then each equilibrium e satisfying p(¢>i(e)) < 1 belongs
to a locally invariant submanifold X, of codimension one that is smooth and unordered
and has the following property. If im;_ oo 1 (x) = e, there exists to > 0 such that one of
the following holds as t — 00, t 2 to:
(i) D:(x) decreases monotonically to e;
(i) @;(x) increases monotonically to e;
(iii) @,(x) € X,.

Mierczyfiski also provides further important information: The trajectories in cases (i)
and (ii) lie in curves tangent at e to the one-dimensional principle eigenspace Y; of ®|(e)
described in the Krein—-Rutman Theorem 2.17. The hypersurface X, is locally unique in a
neighborhood of e. Its tangent space is the closed complementary subspace Y», hence X,
is transverse to z = z((b{(e)) > 0 at e. Strong monotonicity implies that when (i) or (i1)
holds, e is asymptotically stable for the induced local flow in X, even when ¢ is not stable.
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2.4.1. Background and related results Smith and Thieme [197,199] introduced the com-
pactness hypothesis (C) and obtained the Sequential Limit Set Trichotomy. This tool
streamlines many of the arguments and leads to stronger conclusions so the presentation
here follows [197,199]. Tak4& [210] extends the compactness hypothesis, which leads to
additional stability concepts.

The results of Smith and Thieme [199] on generic convergence for SOP semiflows were
motivated by earlier work of Polagik [160], who obtained such results for abstract semi-
linear parabolic evolution systems assuming less compactness but more smoothness than
Smith and Thieme.

The set A of asymptotically stable points can be shown to be dense under suitable hy-
potheses. See, e.g., Hirsch [73, Theorem 9.6]; Smith and Thieme [197, Theorems 3.13
and 4.1].

Hirsch [69] shows that if K is a nonempty compact, invariant set that attracts all points
in some neighborhood of itself, then K contains an order-stable equilibrium.

It is not necessary to assume, as we have done here, that the semiflow is globally de-
fined, that is, that trajectories are defined for all # > 0; many of the results adapt to local
semiflows. See Hirsch [73], Smith and Thieme [199].

3. Ordinary differential equations

Throughout this section R” is ordered by a cone K with nonempty interior. Our first objec-
tive is to explore conditions on a vector field that make the corresponding local semiflow
monotone with respect to the order defined by K. It is convenient to work with time-
dependent vector fields. We then investigate the long-term dynamics of autonomous vector
fields f that are K-cooperative, meaning that K is invariant under the forward flow of
the linearized system. These results are applied to competitive vector fields by the trick of
time-reversal. In fairly general circumstances, limit sets of cooperative or competitive sys-
tems in R” are invariant sets for systems in R”~!. This leads to particularly sharp theorems
forn =2 and 3.

A cone is polyhedral if it is the intersection of a finite family of closed half spaces. For
example, the standard cone R’} is polyhedral, while the ice-cream cone is not.

The dual cone to K is the closed cone K* in the dual space (R”)* of linear functions on
R”", defined by

K*={re (R")": A(K) >0].

To A € K* we associate the vector a € R” such that A(x) = {a, x) where (a, x) denotes the
standard inner product on R”. Under this association K* is canonically identified with a
cone in R”, namely, the set of vectors a such that a is normal to a supporting hyperplane
H of K, and a and K lie in a common halfspace bounded by H.

We use the following simple consequence of general results on the separation of two
closed convex sets:

xeK <= Ax)=0 (LeK™).
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See, e.g., Theorem 1.2.8 of Berman et al. [18].
PROPOSITION 3.1. Ifx € K, then x € IntK if and only if A(x) > 0 forall & € K*\ {0}.

PROOF. Suppose x € IntK, A € K*\ {0}, and v € X satisfies A(v)#0.Thenx +evek
for sufficiently small € > 0, so

Ax T ev)y=A(x) £ er(v) >0,

implying that A(x) > 0.

To prove the converse, assume 1(x) > 0 for all functionals 4 in the compact set I” =
{A e K*: Al =1}. Asinflu(x): e I'} > 0, continuity of the map (x, 1) > A(x) implies
u(y) > O for all y in some neighborhood U of x and all 4 € I'. If A € K* then IM~xer
and therefore A(y) > O for all y € U. This proves U C K. O

An immediate consequence of Proposition 3.1 is that if x € 3K, then there exists a
nontrivial A € K* such that A(x) =0.

3.1. The quasimonotone condition

Let J C R be a nontrivial open interval, D C R” an opensetand f:J x D — R" a locally
Lipschitz function. We consider the ordinary differential equation

x' = f@, x). CAY

For every (t9, xo) € J x D, the initial value problem x(zy) = x has a unique noncontinu-
able solution defined on an open interval J(fy, xo) C R. We denote this solution by t >
x(#, 10, x0). The notation x (¢, 79, xo) will carry the tacit assumption that (f, x¢0) € J x D
and 1 € J (to, x0). For fixed s9, #y the map xq > x(sg, to, x0) is a homeomorphism between
open subsets of R”, the inverse being xq > x(fg, 5o, x0).

System (3.1) is called monotone if xo < x1 == x(z, 19, x0) < x(t, to, x1).

The time-dependent vector field f : J x D — R” satisfies the quasimonotone condition
in D if for all (¢, x), (t,y) € J x D and ¢ € K* we have:

QM) x <y and ¢ (x) = ¢ (y) implies ¢ (£ (¢, x)) < S (£ (z, ).

The quasimonotone condition was introduced by Schneider and Vidyasagar [177] for
finite-dimensional, autonomous linear systems and used later by Volkmann [224] for non-
linear infinite-dimensional systems. The following result is inspired by a result of Volk-
mann [224] and work of W. Walter [227]. See also Uhl [221], Walcher [226].

THEOREM 3.2. Assume f satisfies (QM) in D, tg € J, and xg,x1 € D. Let < denote
any one of the relations <, <, <. If xo < x1 then x(t, tg, x0) < x(t, 19, x1), hence (3.1) is
monotone. Conversely, if (3.1) is monotone then f satisfies (QM).
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PROOF. Assume that x(t, to, x;), i =0, 1 are defined for 7 € [to,21]and xg < x1. Let v > 0
be fixed and define x, := x; + ev and Je(t,x) = f(t,x) + ev for € > 0. Denote by
x(r) := x(¢, to, xo) and let ye(t) := x(z, to, xe, €) denote the solution of the initial value
problem x'(¢) = f.(t, x), x(to) = Xe. It is well known that y. (¢) is defined on [to, 11] for
all sufficiently small €. We show that x(t) K ye(t) for tg <t <ty and all sufficiently small
€ > 0. If not, then as x () < y. (o), there would exist € > 0 and s € (t0, t1] such that
x(2) L ye(t) fortg <t < s and ye(s) ~ x(s) € K. By Proposition 3.1, there exists a non-
trivial ¢ € K* such that ¢ (y.(s) — x(s)) = O but (ye(t) —x(@)>0fortg <t <s. It
follows that

d
a;[qb(ye 0) -¢(x®)]| <o,

=

hence

B(f (5, 5¢(5))) < D(F (5, 7)) + €p () = b (fe (s, e ())) < o(f (s, x(5))),

where the last inequality follows from the one above. On the other hand, by (QM) we have

B(f (5. ¥e(®))) = p(f (5, x(5))).

This contradiction proves that x () < Ye(t) for to <t < 1 and all small € > 0. Since
Ye(t) = x(t, 10, xc, €) = x(2, fo, x1) as € — 0, by taking the limit we conclude that
x(¢, tp, x0) < x(¢, 19, x1) for HESEYR

Fix ty and t € J(ty, xg). As the map h : xo > x(t, 19, xp) is injective, from xg < X1
we infer x(z, t9, x9) < x(t, 9, x1). Note that h(D N [xg,x1]) C [x (2, to, x0), x (£, 19, x1)].
Therefore the relation xg < x; implies Int D N [xg, x1] # @. Injectivity of z and invariance
of domain implies Int[x (¢, 9, xp), x (¢, to, x1)1 # @, which holds if and only if x (¢, to, x9) <
x(¢, t, x1).

Conversely, suppose that (3.1) is monotone, to € J, x0,x1 € D with xg < x; and
¢ (x0) = ¢ (x1) for some ¢ € K*. Since x(z, 1, x0) < x(1, 10, x1) for £ > 15 we conclude
that di,db[X(t,to,xl) — x(t, 19, x0)l:=1, > 0, or $(f (10, x1)) > ¢(f (20, x0)). Thus (QM)
holds. (Il

Theorem 3.2 has been stated so as to minimize technical details concerning the domain
J x D by assuming that J and D are open. In many applications, D is a closed set, for
example, D = K or D = [a, b] where a < b. The proof can be modified to handle these
(and other) cases. If D =K and KX is positively invariant for (3.1), the proof is unchanged
because whenever x € D then x + ev € D for small positive €, and because K is also
positively invariant for the modified equation. If D = [a, b], then the result follows by
applying Theorem 3.2 to f|J x [[a, b]] and using continuity.

A set § is called positively invariant under (3.1) if S C D and solutions starting:in § stay
in §, or more precisely:

(to,x0)€J xS and teJ(tg,xp), t=tg — x(t, tg, xg) € S.
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It will be useful to have the following necessary and sufficient condition for invariance
of K:

PROPOSITION 3.3. The cone K is positively invariant under B ifandonlyif K C D
and for each t € J
(P) LeK*, x €dK, A(x) =0=> A(f(t,x)) > 0.

PROOF. The proof that (P) implies positive invariance of K is similar to that of Theo-
rem 3.2. Given x; € K, we pass immediately to x. 3> x; and the solution ye(?) of the
perturbed equation defined in the proof of Theorem 3.2 and show that Ye(t) > 0 for
fo <t < 11 by an argument similar to the one used in the aforementioned proof. The result
x(t,to, x1) 2 0 for t > 19 is obtained by passage to the limit as € — 0. The converse is also
an easy modification of the converse argument given in the proof of Theorem 3.2. ]

Since we will have occasion to apply (P) to systems other than (3.1), it will be convenient
to refer to (P) by saying that (P) holds for f:J x D — R" where K C D. Hypothesis (P)
says that the time-dependent vector field £ (¢, x) points into K at points x € K.

Let A(t) be a continuous n X n matrix-valued function defined on the interval J con-
taining # and consider the linear initial value problem for the matrix solution X:

X' =A®MX, X)) =1 3.2)
Observe that (P) and (QM) are equivalent for linear systems; therefore we have:

COROLLARY 3.4. The matrix solution X (t) satisfies X(1)K C K Jor t >ty if and only
if for all t € J, (P) holds for the function x — A(t)x. In fact, (P) implies that X (t) maps
K\ {0} and Int K into themselves for all t > 1.

A matrix A is K-positive if A(K) C K. Corollary 3.4 implies that X () is K-positive
for t > 1y if (P) holds.

If for every r € J, there exists & € R such that A + a7 is K -positive, then (P) holds
for A. Indeed, if A € K* satisfies A(x) = O then application of A to (A + al)x > 0 yields
that A(A(t)x) > 0. The converse is false for general cones but true for polyhedral cones by
Theorem 8 of Schneider and Vidyasagar [177]. See also Theorem 4.3.40 of Berman and
Neumann [18]. Lemmert and Volkmann [118] give the following example of a matrix

0 01
A= [o 0 0]
1 00
which satisfies (P) for the ice-cream cone above but A + o7 is not K -positive for any «.

Recall that the domain D is p-convex if for every x,y € D satisfying x < y the line
segment joining them also belongs to D. Let %(I, x) be continuous on J x D. We say
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that f (or system (3.1)) is K-cooperative if for all t € J, y € D, (P) holds for the function
x— QJ:(:‘, ¥)x. By Corollary 3.4 applied to the variational equation
ax pp

a
X't = a—f(t,x(t, to,%0))X, X(to) =1
x
we conclude that if f is K-cooperative then X (t) = E?T"O(t, tg, xp) is K-positive.

THEOREM 3.5. Let gé(t,x) be continuous on J x D. Then (QM) implies that f is
K -cooperative. Conversely, if D is p-convex and f is K -cooperative, then (QM) holds.

PROOF. Suppose that (QM) holds, x € D, h € 3K, and ¢ € K* satisfies ¢ (h) = 0. Since
x < x + ¢h and ¢(x) = ¢(x + €h) for small € > 0, (QM) implies that ¢(f(,x)) <
@(f(t, x +€h)). Hence,

f(t,x-l—eh)—f(t,x))

€

o<

and the desired result holds on taking the limit € — 0.
Conversely, suppose that f is K-cooperative and D is p-convex. If x, y € D satisfy
x £ y and ¢ (x) = ¢ (y) for some ¢ € K*, then either ¢ =0 or y — x € K. Consequently

1 af
(f(t, )~ f(t,x)) =/(; ¢(a—x(t,sy+(1 —S)x)()’*x)>dS>0

because the integrand is nonnegative. O

If for each (¢, x) € J x D there exists « such that (%(r, x) +al) is K-positive, then f
is K-cooperative. This is implied by the remark following Corollary 3.4.

In the special case that K = R" , the cone of nonnegative vectors, it is easy to see by
using the standard inner product that we may identify K* with K. The quasimonotone
hypothesis reduces to the Kamke—Miiller condition [91,148]: x < y and x; = y; for some i
implies f; (¢, x) < fi{t, y). This holds by taking ¢ (x) = (e;, x) (e; is the unit vector in the
x;-direction) and noting that every ¢ € K* can be represented as a positive linear combi-
nation of these functionals. If f is differentiable, the Kamke—Miiller condition implies

a—fi(t,x) =0, i#]. (3.3)
0x;

Conversely, if %;(t, x) is continuous on J x D, (3.3) holds and D is p-convex,lthen the
Kamke-Miiller condition holds by an argument similar to the one used in the proof of the
converse in Theorem 3.5.

Stern and Wolkowicz [206] give necessary and sufficient conditions for (P) to hold for
matrix A relative to the ice-cream cone K = {x € R": xl2 + x% + -+ x,%_l < x,%, x, =2 0}.
Let Q denote the n x n diagonal matrix with first # — 1 entries 1 and last entry —1. Then
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(QM) holds for A if and only if QA 4 AT Q 4+« Q is negative semidefinite for some o € R.
Their characterization extends to other ellipsoidal cones.

3.2. Strong monotonicity with linear systems

In this section, all matrices are assumed to be square. Recall that the matrix A is strongly
positive if A(K \ {0}) C Int K. We introduce the following milder hypothesis on the ma-
trix A, following Schneider and Vidyasagar [177]:

(ST) Forall x € 3K \ {0} there exists v € K* such that v(x) =0 and v(Ax) > 0.

The following result for the case of constant matrices was proved by Elsner [44], answer-
ing a question in [177]. Our proof follows that of Theorem 4.3.26 of Berman et al. [18].

THEOREM 3.6. Let the linear system (3.2) satisfy (P). Then the fundamental matrix X (t1)
is strongly positive for t| > 1t if there exists s satisfying to < s <ty such that (ST) holds
for A(s).

PROOF. Observe that the set of all s such that (ST) holds for A(s) is open. If the result
is false, there exists x > 0 such that the solution of (3.2) given by y(t) = X (t)x satisfies
y(t1) € 3K \ {0}. By Corollary 3.4, y(t) > 0 for t > to and y(t) € 0K for 1o <t < 1. Let
s € (19, 11] be such that (ST) holds for A(s). Then there exists v € K* such that v(y(s)) =0
and v(A(s)y(s)) > 0. Asve K* and y(t) € K, h(t) :==v(y(t)) = 0 for 1o < 1 < 1. But
h(s) =0and %l,=sh(z‘) = v(A(s)y(s)) > 0 which, taken together, imply that (s — 8) <0
for small positive 8, giving the desired contradiction. |

If (3.2) satisfies (P) and if x € 3K then for all ¢ € K* such that ¢(x) = 0 we have
$#(A()x) > 0. Hypothesis (ST) asserts that if x # 0 then ¢ (A(f)x) > 0 for at least one
such ¢. Berman et al. [18] refer to (ST) (they include (P) in their definition) by saying
that A is strongly K -subtangential; while we do not use this terminology, our notation is
motivated by it.

An example in [18] shows that (P) and (ST) are not necessary for strong positivity. Let
K be the ice-cream cone K = {x € R3: x% + x% < x32, x3 > 0} and consider the constant
coefficient system (3.2) with matrix A given by

0 1 0
A= [_1 o 0]
0 0 O
An easy calculation shows that (x12 + x%)’ = —2x§ so it follows easily that K is pos-
itively invariant, hence (P) holds by Corollary 3.4. The solution satisfying x(0) =
(cos(8), sin(@), 1)T € 3K satisfies x(¢) € IntK for + > 0 since the calculation above

and the fact that xo(f) can have only simple zeros implies that xl2 + x% is strictly
decreasing while x3 remains unchanged. The linear functional v, defined v(x) :=
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(—cos(@), —sin(d), 1)x belongs to K* by an easy calculation and satisfies v(x(0)) = 0.
It is unique, up to positive scalar multiple, with these properties because K is smooth so
its positive normal at a point is essentially unique. But v(Ax(0)) = sin®(9) vanishes if
6 =0, 7. Therefore (ST) fails although X (¢) is strongly positive for ¢ > 0.

Theorem 3.6 leads to the following result on strong monotonicity for the nonlinear sys-
tem (3.1).

LEMMA 3.7. Assume D is p-convex, %ﬁc—p(t,x) is continuous on J X D and f is
K -cooperative. Let xo,x1 € D satisfy xo < x1 and t > to with t € J(tg, x0) N J (t0, x1)-
If there exists yo on the line segment joining xo to x1 and r € [to, t] such that (ST) holds
Jor %(r, x(r, tg, yo)) then

x(ti t07x0) <<x(ty t(),XI).

PROOF. First, observe that for yp on the segment it follows that t € J(fg, yo). We apply
the formula

1 ax
X(t,to,x1)—x(f,t0,XO)=/(; a—xo(f,to,sm+(1—S)xo)(x1—XO)ds,

where X (¢) = g;—o (¢, to, yo) is the fundamental matrix for (3.2) corresponding to the matrix

A(t) = % (t, x(¢, to, yo)). The left-hand side belongs to K \ {0} if xg < x1 by Theorems 3.5
and 3.2 but we must show it belongs to Int K. For this to be true, it suffices that for each
t > to there exists s € [0, 1] such that the matrix derivative in the integrand is strongly pos-
itive. In fact, this derivative is K -positive by Corollary 3.4 for all values of the arguments
with ¢ > 1o, so application of any nontrivial ¢ € K* to the integral gives a nonnegative
numerical result. If there exists s as above, then the application of ¢ to the integrand gives
a positive numerical result for all s near s by continuity and Proposition 3.1 and hence

the integral belongs to Int K by Proposition 3.1. By Theorem 3.6, ;—;‘0 (¢, to, yo) is strongly

positive for ¢ > fp if (ST) holds for A(r) = %}é(r, x(r, 19, yo)) for some r € [tg, ¢]. But this
is guaranteed by our hypothesis. a

THEOREM 3.8. D is p-convex, g%(t, x) is continuous on J x D, and f is K-cooperative.
Suppose for every xo, x| € D with xo < x1 and ty € J, there exists yo on the line segment
Joining the x; such that (ST) holds for %(l‘o, yo). If x0, x1 € D, xo < x1, and t > to then

t € J(to,x0) N J(to,x1) = x(t, 10, %0) K x(t, 10, x1).
PROOF. This is an immediate corollary of Lemma 3.7. ' O
As the main hypothesis of Theorem 3.8 will be difficult to verify in applications, the
somewhat stronger condition of irreducibility may be more useful because there is a large

body of theory related to it [18,19]. We now introduce the necessary background. A closed
subset F of K that is itself a cone is called a face of K if x € F and 0 < y < x (inequalities
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induced by K) implies that y € F. For example, the faces of K = R, are of the form {x €
RY: x; =0, i € I} where I C {1,2,...,n}. For the ice-cream cone K = {x € R": xl2 +
x% + -4 x,%_l < x,%, X, = 0}, the faces are the rays issuing from the origin and passing
through its boundary vectors. A K -positive matrix A is K -irreducible if the only faces F of
K for which A(F) C F are {0} and K. The following is a special case of Theorem 2.3.9 in
Berman and Neumann [18]; see Berman and Plemmons [19] for proofs. These references
contain additional related results.

THEOREM 3.9. Let A be an n x n K -positive matrix. Then the following are equivalent.
(i) A is K-irreducible;
(ii) No eigenvector of A belongs to 9K
(iii) A has exactly one unit eigenvector in K and it belongs to Int K ;
Gv) (I + A" 1K\ {0}) CIntK.

The famous Perron—Frobenius Theory is developed for K-positive and K -irreducible
matrices in the references above. In particular, the spectral radius of A is a simple eigen-
value of A with corresponding eigenvector described in (iii) above.

Below we require the simple observation that if A is K-positive, then the adjoint A* is
K*-positive. Indeed, if v € K* then (A*v)(x) = v(Ax) >0 forall x € K so A*v € K*.
The next result is adapted from Theorem 4.3.17 of Berman et al. [18].

PROPOSITION 3.10. Let A be an n x n matrix and suppose that there exists o € R such
that B := A + al is K-positive. Then B is K -irreducible if and only if (ST) holds for A.

PROOF. Suppose that B = A + a1 is K-positive and (ST) holds. If Ax = Ax for some
A € R and nonzero vector x € 3K then there exists v € K* such that v(x) = 0 and
v(Ax) > 0. But v(Ax) = Av(x) = 0. Consequently, no eigenvector of B belongs to 4K
so by Theorem 3.9, B is K -irreducible.

Conversely, suppose that B is K-positive and K-irreducible. Let x € 3K, x # 0 and
let v € K* satisfy v # 0 and v(x) = 0. By Theorem 3.9, C := B + I has the property
that C*~! is strongly positive so v(C"1x) > 0. As C is K-positive, v(C"x) > 0 for
r=1,2,...,n — 1. Because v(x) = 0, we may choose p € {1,2,...,n — 1} such that
v(CPx) > 0butv(CP~lx)=0.Let v = (C*)P~y. Then ¥ € K*, ¥(x) = 0and ¥(Cx) > 0.
But then A satisfies (ST) because ¥(Ax) = v(Cx) > 0. O

Motivated by Proposition 3.10, we introduce the following hypothesis for matrix A.
(CI) There exists o € R such that A + «af is K-positive and K -irreducible.

In the special case that K =R", n > 2, matrix A satisfies (CI) if and only if a;; > 0 for
i # j and there is no permutation matrix P such that

rip_ [B O
PAP—[C D],
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where B and D are square. This is equivalent to the assertion that the incidence graph of
A is strongly connected. See Berman and Plemmons [19].
The following is an immediate consequence of Theorem 3.8.

COROLLARY 3.11. D is p-convex, %’;(t, x) is continuous on J x D and f is K-
cooperative. Suppose that for every xo, x1 € D with xo < x1 and ty € J, there exists yo on
the line segment joining the x; such that (CI) holds for %(to, yo). If x9,x1 € D, xg < X1,
and t > tgy then

te J(t, xo) N J(to, x1) = x(t,t0,x0) KL x(£, 10, X1).

PROOF. If (CI) holds then, by Proposition 3.10, (ST) holds for g—§— (t, x), so the conclusion
follows from Theorem 3.8. O

Corollary 3.11 is an improvement of the restriction of Theorem 10 of Kunze and
Siegel [111] to the case that K has nonempty interior; their results also treat the case
that K has empty interior in R” but nonempty interior in some subspace of R"”. Walter
[228] gives a sufficient condition for strong monotonicity relative to K = R’} which does
not require f to be differentiable.

For polyhedral cones it can be shown that matrix A satisfies (P) and (ST) if and only if
there exists & € R such that A + « is K-positive and K -irreducible. See Theorem 4.3.40
of Berman et al. [18]. For the case of polyhedral cones, therefore, Corollary 3.11 and
Theorem 3.8 are equivalent.

3.3. Autonomous K -competitive and K -cooperative systems

Our focus now is on the autonomous system of ordinary differential equations
x'= f(x), (3.4)

where f is a vector field on an open subset D C R”; all vector fields are assumed to
be continuously differentiable. We change our notation slightly to conform to more dy-
namical notation, denoting x(z, 0, xg) by @;(x), where @ denotes the dynamical system
(=local flow) in D generated by f discussed in Section 1. The notation ¢, (x) carries the
tacit assumption that ¢ € I, the open interval in R containing the origin on which the tra-
jectory of x under @ is defined. The positive semiorbit (respectively, (negative semiorbit)
of x is y ¥ (x) := {®,(x): t € ¢ > 0} (respectively, y ~(x) := {®,(x): t < 0}). The limit sets
of x can be defined as

o@=lJe:x, aem=Jow.

12012t 10Tt

We call f and Eq. (3.4) K-competitive in D if the time-reversed system

x = —fx)
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is K -cooperative. When K is the standard cone R, f is competitive if and only if
0fi/ox; <0 fori #j. Therefore if f is K -competitive with local flow @, then —f is
K -cooperative with local flow @, where @,;(x) = ®_;(x); and conversely. Thus time-
reversal changes K-competitive systems into K-cooperative ones, and vice-versa. This
fact will be exploited repeatedly below.

In the remainder of Section 3 we assume R” is ordered by a cone K C R” with nonempty
interior.

A map is locally monotone if every point in its domain has a neighborhood on which the
map is monotone. A local flow or local semiflow @ is locally monotone if & is a locally
monotone map for all ¢ > 0. Locally strongly monotone is defined similarly.

THEOREM 3.12. Let f be a K -cooperative vector field in an open set D C R", generating
the local flow @. Then @ is locally monotone, and monotone when D is p-convex.

PROOF. If D is p-convex, monotonicity follows from Theorem 3.2 (with f (¢, x) := f(x)).
Suppose D is not p-convex. Denote the domain of @, by D;.

We first claim: For every p € D there exists T > 0 and a neighborhood N C D, such
that @;|N is monotone if ¢ € [0, T]. But this is obvious since by restricting f to a p-convex
neighborhood of p, we can use Theorem 3.2.

Now fix pe€ D and let J(0, p) N [0,00) =[0,r), 0 < r € o0. Let I, be the set of all
nonnegative s € [0, r) such that there is a neighborhood U; of p, contained in Ds, such
that @,|U; is monotone for each ¢ € [0, s]. The previous claim implies that [0, 7] C I »
and, by its definition, I, is an interval. Furthermore, straightforward applications of the
previous claim establish that I}, is both an open and a closed subset of [0, r). It follows that
I, =1[0,r). O

The next theorem gives a sufficient condition for strong monotonicity. Define G(f) to
be the set of x € D such that (ST) holds for A = f/(x). Note that x € G(f) provided (CI)
holds for A = f’(x), by Proposition 3.10. If K = R%, a sufficient condition for x € G(f)
is that f’(x) is an irreducible matrix with nonnegative off-diagonal entries.

THEOREM 3.13. Let f be a K-cooperative vector field in an open set D C R”, generating
the local flow @. Assume D \ G(f) does not contain any totally ordered line segment
(which holds when D\ G(f) is zero dimensional). Then @ is locally strongly monotone,
and strongly monotone when D is p-convex.

PROOF. Suppose D is p-convex, in which case @ is monotone by from Theorem 3.2. By
Theorem 3.8, @ is strongly monotone.

When D is not p-convex, @ is locally monotone by Theorem 3.12, and the previous
paragraph implies @ is locally strongly monotone. a

The proof of Theorem 3.13 can be adapted to cover certain noniopen domains D, such
as an order interval, a closed halfspace, and the cone K; see the discussion following the
proof of Theorem 3.2.
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Theorem 3.8 implies that @ is strongly monotone provided D is p-convex and f satisfies
the autonomous version of condition (ST) of Section 3.2, namely:

(ST*) For all u € D,x € 3K \ {0} there exists v € K* such that v(x) = 0 and
v(f'(u)x) > 0.

Without p-convexity of D, condition (ST*) yields local strong monotonicity.

3.4. Dynamics of cooperative and competitive systems

We continue to assume R” is ordered by a cone K having nonempty interior; all notions
involving order refer to that defined by K. For this section, the terms “competitive” and
“cooperative” are tacitly understood to mean “K-competitive” and “K -cooperative,” and
monotonicity refers to the ordering defined by K.

We first apply results from Section 2 to obtain a generic stable convergence theorem for
cooperative vector fields.

Let & denote the local flow generated by a vector field f on D C R”. We assume D
is p-convex throughout this section without further mention. When @;(x) is defined for
all (¢, x) € [0,00) x D, as when all positive semiorbits have compact closure in D, the
corresponding positive local semiflow @7 is a semiflow. To @ we associate C, S and E,
denoting respectively the sets of convergent, stable and equilibrium points for o,

THEOREM 3.14. Let f be a cooperative vector field on an open set D C R", generating
a local flow @ such that:
(a) Every positive semiorbit of & has compact closure in D;
(b) Condition (ST*) above is satisfied, and D = AC U BC.
Then @ has the following properties:
(i) C N S contains a dense open subset of D, consisting of points whose trajectories
converge to equilibria;
(i) If E is compact there is a stable equilibrium, and an asymptotically stable equilib-
rium when E is finite.

PROOF. Assumption (ST*) makes @ strongly monotone. The hypothesis of Theorem 2.26,
with X = D, is fulfilled: D is normally ordered and D = BC U AC. Therefore Theo-
rem 2.26 implies the conclusion. O

Theorem 3.14, like Theorem 3.13, holds for some more general domains D, including
relatively open subsets of V where V denotes a closed halfspace, a closed order interval,
or the cone K. '

One of the main results of this subsection is that n-dimensional competitive and cooper-
ative systems behave like general systems of one less dimension. Theorems 3.21 and 3.22
illustrate this principle for n = 2 in a very strong form. In higher dimensions the principle
holds for compact limit sets. The key tool in proving this is the following result due to
Hirsch [67]:
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THEOREM 3.15. A limit set of a competitive or cooperative system cannot contain two
points related by <.

PROOF. By time reversal, if necessary, we assume the system is cooperative, hence the
local flow is monotone. Now apply Proposition 1.10. O

A periodic orbit of a competitive or cooperative system is a limit set and consequently it
cannot contain two points related by <. The following sharper result will be useful later:

PROPOSITION 3.16. Nontrivial periodic orbit of a competitive or cooperative system can-
not contain two points related by <.

PROOF. By time-reversal we assume the system is cooperative, and in this case the con-
clusion follows from Proposition 1.10. O

Let @, ¥ be flows in respective spaces A, B. We say @ and ¥ are topologically equiv-
alent if there is a homeomorphism Q:A — B that is a conjugacy between them, i.e.,
Qo ®, =W, o Q for all ¢+ € R. The relationship of topological equivalence is an equiva-
lence relation on the class of flow; it formalizes the notion of “having the same qualitative
dynamics.”

A system of differential equations y' = F(y), defined on R¥, is called Lipschitz if F
is Lipschitz. That is, there exists K > 0 such that |F(y1) — F(y2)| < Kl|y1 — y2| for all
Y1, 2 € R¥. With these definitions, we can state a result of Hirsch [67] that follows directly
from Theorem 3.15.

THEOREM 3.17. The flow on a compact limit set of a competitive or cooperative system
in R" is topologically equivalent to a flow on a compact invariant set of a Lipschitz system
of differential equations in R"~1,

PROOF. Let L be the limit set, v 3> 0 be a unit vector and let H, be the hyperplane or-
thogonal to v, i.e, H, := {x: (x,v) = 0}. The orthogonal projection Q onto H, is given
by Ox = x — (x, v)v. By Theorem 3.15, Q is one-to-one on L (this could fail only if L
contains two points that are related by «). Therefore, Q,, the restriction of Q to L, is a
Lipschitz homeomorphism of L onto a compact subset of H,,. We argue by contradiction to
establish the existence of m > 0 such that |Q; x; — Qx| 2 m|x; — x2| whenever x; % x3
are points of L. If this were false, then there exists sequences x,;, y, € L, x, 7 y, such that

[Q(xn) — Q(yn)l — |Cen — Yu) — v{(U, Xn — V)| N
[%n — ynl [%n — nl

0

as n — oo. Equivalently, |w, — v{v, w,)| — 0 as n — oo where w, = x; — yn/|xn — yul.
We can assume that w, — w as n — oo where |w| = 1. Then, w = v{v, w) and therefore,
(v,w)? =1 so w = %v. But then x,, — y,/|x, — yn| = v as n — oo and this implies
that x,, <« y, or y, < x, for all large n, contradicting Theorem 3.15. Therefore, Qzl is
Lipschitz on Q(L). Since L is a limit set, it is an invariant set for (3.4). It follows that the
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dynamical system restricted to L can be modeled on a dynamical system in H,. In fact,
if y e Q(L) then y = Qp (x) for a unique x € L and ¥ (y) = Q1 (P;(x)) is a dynamical
system on Q(L) generated by the vector field

FOo) =0(£(07'»))

on Q(L). According to McShane [137], a Lipschitz vector field on an arbitrary subset of H,
can be extended to a Lipschitz vector field on all of H,, preserving the Lipschitz constant.
It follows that F can be extended to all of H, as a Lipschitz vector field. It is easy to see
that Q(L) is an invariant set for the latter vector field. We have established the topological
equivalence of the flow & on L with the flow ¥ on Q(L). Q(L) is a compact invariant
set for the (n — 1)-dimensional dynamical system on H,, generated by the extended vector
field. O

A consequence of Theorem 3.17 is that the flow on a compact limit set, L, of a competi-
tive or cooperative system shares common dynamical properties with the flow of a system
of differential equations in one less dimension, restricted to the compact, connected invari-
ant set Q(L). Notice, however, that L may be the limit set of a trajectory not in L, and
therefore Q(L) need not be a limit set.

On the other hand, the flow ¥ in a compact limit sets enjoys the topological property of
chain recurrence, due to Conley [31,30], which will be important in the next subsection.
The definition is as follows. Let A be a compact invariant set for the flow @. Given two
points z and y in A and positive numbers € and ¢, an (g, t)-chain from z to y in A is an
ordered set

{Z=-xl,x2,---,xm+l =y;t1)t25 '”atm}
of points x; € A and times #; 2> ¢ such that
| @ (ki) —xiq1] <€, i=1,2,...,m. (3.5)

A is chain recurrent for @ if for every z € A and for every € > 0 and 7 > 0, there is an
(¢, t)-chain from z to z in A.

Conley proved that when A is compact and connected, a flow @ in A is chain recurrent if
and only if there are no attractors. This useful condition can be stated as follows: For every
proper nonempty compact set S C A and all ¢ > 0, there exists s > ¢ such that ®;(S) ¢
IntS.

Compactness of A implies that chain recurrence of the flow in A is independent of the
metric, and thus holds for any topologically equivalent flow.

It is intuitively clear that, as Conley proved, flows in compact alpha and omega limit
sets are chain recurrent. Indeed, orbit segments of arbitrarily long lengths through point x
repeatedly pass near any point of w(x) U (x). Of course these segments do not necessarily
belong to w(x); but by taking suitable limits of points in these segments, one can find
enough (e, t)-chains in w(x) and a(x) to prove the flows in these sets chain recurrent. For
a rigorous proof, see Smith [194].
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3.5. Smale’s construction

Smale [182] showed that it is possible to embed essentially arbitrary dynamics in a com-
petitive or cooperative irreducible system. His aim was to warn population modelers that
systems designed to model competition could have complicated dynamics. His result is
also very useful for providing counterexamples to conjectures in the theory of monotone
dynamics, since by time reversal his systems are cooperative. In this section, competitive
and cooperative are with respect to the usual cone.

Smale constructed special systems of Kolmogorov type

x{=xiMi(x), 1<i<n, (3.6)
in R% where the M; are smooth functions satisfying

oM; <0 3.7
ax j

for all i, j; all sums are understood to be from 1 to n. We refer to such systems as to-

tally competitive. They are simple models of competition between n species, where M; is

interpreted as the per capita growth rate of species i.

Smale’s object was to choose the M; so that the standard (n — 1)-simplex X, = {x €
R% : )" x; =1} is an attractor in which arbitrary dynamics may be specified.

In order to generate a dynamical system on X, let H denote the tangent space to X,,
that is, H = {x e R": } x; =0}, and let 4: X, — H be a smooth vector field on 3,
meaning that all partial derivatives of 4 exist and are continuous on X,. We also assume
that & = (hy, ha, ..., hy) has the form h; = x;g;(x) where the g; are smooth functions
on X,. Then the differential equation

xi=hi(x), 1<i<n (3.8)

generates a flow in R} that leaves X, invariant. The form of the A; ensures that if x; (0) =0,
then x; (t) = 0 so each lower dimensional simplex forming part of the boundary of X, is
invariant.

The goal is to construct a competitive system of the form (3.6) satisfying (3.7) such that
its restriction to X, is equivalent to (3.8). Let p: [0, c0) — R, have continuous derivatives
of all orders, be identically 1 in a neighborhood of s = 1, and vanish outside the interval
[1/2,3/2]. As g is a smooth vector field on X, it has a smooth extension to R which
we denote by g in order to conserve notation. An example of such an extension is the map
x> P(Q_x;)g(x/> x;)/P(1), where P(u) = fou p(s)ds.

For n > 0, define

Mix)=1=50)+np(Y_x;)si(x), 1<i <.
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Then (3.7) holds for sufficiently small 7 since p(}_ x;) vanishes identically outside a com-
pact subset of R’; . Consider the system (3.6) with M as above. R’} is positively invariant;
and the function S(x) =), x;, evaluated along a solution x(¢) of (3.6), satisfies

d%S(x(t)) =S(x@®)[1-S(x®)]

since Y x;g;(x) = > h;(x) = 0. Consequently X,, which is S71(1) N R", is positively
invariant. Moreover if x(0) € R, then S(x(0)) > 0. This implies S(x(z)) - 1 as t — oo,
unless x(z) =0, and X, attracts all nontrivial solutions of (3.6) in R’jr. Restricted to X),,
(3.6) becomes

x{:nh,-(x), 1<ign.

Therefore the dynamics of (3.6) restricted to X, is equivalent, up to a change in time scale,
to the dynamics generated by (3.8).

As noted above, Smale’s construction has implications for cooperative and irreducible
systems since the time-reversed system corresponding to (3.6) is cooperative and irre-
ducible in IntR”; . Time-reversal makes the simplex a repellor for a cooperative system
@ in R’ . Therefore every invariant set in the simplex is unstable for ¢. Each trajectory
of @ that is not in the simplex is attracted to the equilibrium at the origin or to the virtual
equilibrium at co. The simplex is the common boundary between the basins of attraction
of these two equilibria. '

3.6. Invariant surfaces and the carrying simplex

It turns out that the essential features of Smale’s seemingly very special construction are
found in a large class of totally competitive Kolmogorov systems

x;=xiM;i(x), xelR]. 3.9

Here and below i and j run from 1 to n. Let @ denote the corresponding local flow. The
unit (n — 1) simplexis A" !:={x e R%: Y x; =1}

THEOREM 3.18. Assume (3.9) satisfies the following conditions:
(@) %’,‘f—j <0;
(®) M;(0)>0;
(c) M;(x) <O for |x| sufficiently large.
Then there exists an invariant compact hypersurface X C R)} such that
(i) X attracts every point in R, \ {0};
(i) ¥ NIntRY is a locally Lipschitz submanifold,
(iii) X NIntRY is transverse to every line that is parallel to a nonnegative vector and
meets X NIntRY ;
(iv) X is unordered,



296 M.W. Hirsch and H. Smith

(v) Radial projection defines a homeomorphism h: ¥ — A"! whose inverse is locally
Lipschitz on the open (n — 1)-cell A"~ N IntR% . There is a flow ¥ on A" such
that &;| % =ho®, oh™ L.

COROLLARY 3.19. If n = 3, every periodic orbit in ]Ri_ bounds an unordered invariant
disk.

Assumption (a) is the condition of total competition; (b) and (c) have plausible biologi-
cal interpretations. The attracting hypersurface X', named the carrying simplex by M. Zee-
man, is analogous to the carrying capacity K in the one-dimensional logistic equation
dx/df =rx(K — x). One can define X either as the boundary of the set of points whose
alpha limit set is the origin, or as the boundary of the compact global attractor. These sets
coincide if and only if X' is unique, in which case it uniformly attracts every compact set
in RY \ {0}. Uniqueness holds under mild additional assumptions on the maps M; (Wang
and Jiang [230]). The geometry, smoothness and dynamics of carrying simplices have been
investigated by Benaim [14], Brunovsky [21], Miercyfiski [140,143,141], Tineo {220], van
den Driessche and M. Zeeman [223], Wang and Jiang [230], E. Zeeman [239], E. Zeeman
and M. Zeeman [240-242], M. Zeeman [243].

Theorem 3.18 is proved in Hirsch [72] using a general existence theorem for invariant
hypersurfaces, of which the following is a generalization:

THEOREM 3.20. Let @ be a strongly monotone local flow in a p-convex open set D C R".
If L C D is a nonempty compact unordered invariant set, L lies in an unordered invariant
hypersurface M that is a locally Lipschitz submanifold.

IDEA OF PROOF. Define U to be the set of x € D such that ®;(x) > y for some ¢t > 0,
and some y € L. Continuity implies U is open, and it is nonempty since it contains z € D
where z > y € L. It can be shown that the lower boundary of U in D (Section 1.1) is a
hypersurface with the required properties, by arguments analogous to the proof of Theo-
rem 3.17. a

3.7. Systems in R?

Cooperative and competitive systems in R? have particularly simple dynamics. Versions
of the following result were proved in Hirsch [67], Theorem 2.7 and Smith [194], Theo-
rem 3.2.2. Tt is noteworthy that in the next two theorems @ does not need to be monotone,
only locally monotone; hence p-convexity of D is not needed.

THEOREM 3.21. Let D C R? be an open set and g : D = R? avector field that is cooper-
ative or competitive for the standard cone. Let y(t) a nonconstant trajectory defined on an
open interval I C R containing 0. Then there exists t, € I such that each coordinate y; (t)
is nonincreasing or nondecreasing on each connected component of I \ {t,}.
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PROOF. It suffices to prove that y/(¢) can change sign at most once. We assume g is coop-
erative, otherwise reversing time. Let & be local flow of g and set X (¢, x) = % (t,x). The
matrix-valued function X (¢, x) satisfies the variational equation

9 _ %8 : _
EX(t,x)—ax(q?(t,x)) X(@t,x), X0,x)=I.

Cooperativity and Corollary 3.4 show that X (¢, x) has nonnegative entries for ¢ > 0,
i.e., matrix multiplication by X (z, x) preserves the standard cone. The tangent vector
¥’ (t) to the curve y(z), being a solution of the variational equation, satisfies y’(t) =
X (1, y(0))y'(0). Nonnegativity of X (¢, x) implies that if y’(zy) lies in the first or third
quadrants, then y’(¢) stays in the same quadrant, and hence its coordinates have constant
sign, for ¢ > t9. On the other hand if y’(¢) for ¢ > 1y is never in the first or third quadrants,
its coordinates again have constant sign. (Note that y’(¢) cannot transit directly between
quadrants 1 and 3, or 2 and 4, since it cannot pass through the origin.) We have shown that
there is at most one # € I at which y’(z) changes quadrants. If such a 7y exists, set #, = to;
otherwise let ¢, € I be arbitrary. O

Variants of the next result have been proved many times for Kolmogorov type population
models (Albrecht et al. [1], Grossberg [53], Hirsch and Smale [80], Kolmogorov [97],
Rescigno and Richardson [168], Selgrade [178]).

THEOREM 3.22. Let g be a K-cooperative or K -competitive vector field in a domain
D C R2. Ify*(x) (respectively, y ~ (x)) has compact closure in D, then w(x) (respectively,
a(x)) is a single equilibrium.

PROOF. For the standard cone, denoted here by P, this follows from Theorem 3.21. The
general case follows by making a linear coordinate change y = Tx mapping K onto
the standard cone. Here T is any linear transformation that takes a basis for R? con-
tained in d P into the standard basis, which lies in K. Then we have u <g v if and
only if Tu <p Tv; in other words, T is an order isomorphism. It follows that the sys-
tem x’ = g(x) is K-cooperative (respectively, K-competitive) if and only if the sys-
tem y' = h(y) := Tg(T"ly) is P-cooperative (respectively, P-competitive). Therefore
T is a conjugacy between the local flows @, ¥ of the two dynamical systems, that is,
T o ®; = ¥, o T. Consequently the conclusion for P, proved above, implies the conclusion
for K. O

3.8. Systems in R3

The following Poincaré-Bendixson theorem for three-dimensional cooperative and com-
petitive systems is the most notable consequence of Theorem 3.17. It was proved by
Hirsch [76] who improved earlier partial results [67,187]. The following result from
Smith [194] holds for arbitrary cones K C R® with nonempty interior:
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THEOREM 3.23. Let g be a K-cooperative or K -competitive vector field in a p-convex
domain D C R3. Then a compact limit set of g that contains no equilibrium points is a
periodic orbit.

PROOF. Let @ denote the flow of the system, and L the limit set. By Theorem 3.17, the
restriction of @ to L is topologically equivalent to a flow ¥, generated by a Lipschitz planar
vector field, restricted to the compact, connected, chain recurrent invariant set Q(L). Since
L contains no equilibria neither does Q(L). The Poincaré—Bendixson theorem implies that
Q(L) consists of periodic orbits and, possibly, entire orbits whose omega and alpha limit
sets are periodic orbits contained in Q(L). The chain recurrence of ¥ on Q(L) will be
exploited to show that Q(L) consists entirely of periodic orbits.

Let z € Q(L) and suppose that z does not belong to a periodic orbit. Then w(z) and
a(z) are distinct periodic orbits in Q(L). Let w(z) = y and suppose for definiteness that
z belongs to the interior component, V, of R? \ y so that ¥;(z) spirals toward y in V.
The other case is treated similarly. Then y is asymptotically stable relative to V. Standard
arguments using transversals imply the existence of compact, positively invariant neigh-
borhoods U; and Uj of y in V such that U, C Inty Uy, z ¢ Uy and there exists #g > 0
for which ¥;(U1) C U, for t 2 £9. Let € > 0 be such that the 2¢-neighborhood of U, in
D is contained in U;. Choose #y larger if necessary such that ¥;(z) € U, for t > tg. This
can be done since w(z) = y. Then any (¢, 79)-chain in Q(L) beginning at x; = z satisfies
¥, (x1) € U and, by (3.5) and the fact that the 2e-neighborhood of U, is contained in Uy,
it follows that x; € U;. As £ > 1y, it then follows that ¥, (x2) € U, and (3.5) again implies
that x3 € Uy. Continuing this argument, it is evident that the (e, f9)-chain cannot return
to z. There can be no (e, t9)-chain in Q(L) from z to z and therefore we have contradicted
that Q(L) is chain recurrent. Consequently, every orbit of Q(L) is periodic. Since Q(L) is
connected, it is either a single periodic orbit or an annulus consisting of periodic orbits. It
follows that L is either a single periodic orbit or a cylinder of periodic orbits.

To complete the proof we must rule out the possibility that Q(L) consists of an annulus
of periodic orbits. We can assume that the system is cooperative. The argument will be
separated into two cases: L = w(x) or L = a(x).

If L = w(x) consists of more than one periodic orbit then Q(L) is an annulus of peri-
odic orbits in the plane containing an open subset O. Then there exists 7y > 0 such that
O(®Py(x)) € O. Let y be the unique point of L such that Q(y) = Q(P;,(x)). y = Py (x)
cannot hold since this would imply that L is a single periodic orbit so it follows that either
y L @;(x) or @y (x) < y. Suppose that the latter holds, the argument is similar in the
other case. Then there exists #; > fo such that @ (x) is so near y that @, (x) K &, (x).
But then the Convergence Criterion from Chapter 1 implies that &, (x) converges to equi-
librium, a contradiction to our assumption that L contains no equilibria. This proves the
theorem in this case.

If L =a(x) and Q(L) consists of an annulus of periodic orbits, let C C L be a periodic
orbit such that Q(L) contains C in its interior. Q(C) separates Q(L) into two components.
Fix a and b in L \ C such that Q(a) and Q(b) belong to different components of Q(L) \
Q(C). Since @, (x) repeatedly visits every neighborhood of @ and b as t = —o0, Q(P; (x))
must cross Q(C) at a sequence of times f — —oo. Therefore, there exist z;x € C such
that O(zx) = Q(®(x)) and consequently, as in the previous case, either zx <« Py, (x)
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or @y (x) < zi holds for each k. Passing to a subsequence, we can assume that either
2k K Dy (x) holds for all k or Py, (x) < zi holds for all k. Assume the latter, the argument
is essentially the same in the other case. We claim that for every s < 0 there is a point
w € C such that &;(x) > w. For if #; < s then

Ds(x) = q)s—-tk o ‘ptk x) < ¢s—tk (z) eC.

If y € L then @y, (x) — y for some sequence s, — —o0. By the claim, there exists w, € C
such that &, (x) > w,. Passing to a subsequence if necessary, we can assume that w, —
w € C and y > w. Therefore, every point of L is related by < to some point of C.

The same reasoning applies to every periodic orbit C’ C L for which Q(C”) belongs to
the interior of Q(L): either every point of L is < some point of C’ or every point of L is >
some point of C’. Since there are three different periodic orbits in L whose projections are
contained in the interior of Q (L), there will be two of them for which the same inequality
holds between points of L and points of the orbit. Consider the case that there are two
periodic orbits C1 and C; such that every point of L is < some point of C; and < some
point of C,. The case that the opposite relations hold is treated similarly. If u € C then it
belongs to L so we can find w € C, such that ¥ < w (equality can’t hold since the points
belong to different periodic orbits). But w € L so we can find z € Cy such that w < z.
Consequently, u, z € C; satisfy u < z, a contradiction to Proposition 3.16. This completes
the proof. O

A remarkable fact about three-dimensional competitive or cooperative systems on suit-
able domains is that the existence of a periodic orbit implies the existence of an equilibrium
point inside a certain semi-invariant closed ball having the periodic orbit on its boundary.
Its primary use is to locate equilibria, or conversely, to exclude periodic orbits. The con-
struction below is adapted from Smith [187,194] where the case K = Ri was treated;
here we treat the general case that K has nonempty interior. The terms “competitive” and
“cooperative” will be used to mean K-competitive and K -cooperative for brevity. A re-
lated result appears in Hirsch [75]. Throughout the remainder of this section, the system is
assumed to be defined on a p-convex subset D of Ri_.

We can assume the system is competitive. Let ¥ denote the periodic orbit and assume
that there exist p, g with p < ¢ such that

y Clp.qlCD. (3.10)
Define

B ={x eR* xisnotrelated to any point y € y } = (¥ + K)° N (y — K)°.
Here we use the notation A® for the complement of the subset A in R3. Observe that in
defining B we ignored the domain D of (3.4), viewing y as a subset of R3. Another way

to define B is to express its complement as B® = (y + K) U (y — K).
A 3-cell is a subset of R3 that is homeomorphic to the open unit ball.
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THEOREM 3.24. Let y be a nontrivial periodic orbit of a competitive system in D C R3
and suppose that (3.10) holds. Then B is an open subset of R consisting of two connected
components, one bounded and one unbounded. The bounded component, B(y), is a 3-cell
contained in [p, q). Furthermore, B(y) is positively invariant and its closure contains an
equilibrium.

Combining this result with Theorem 3.23 leads to the following dichotomy from
Hirsch [75].

COROLLARY 3.25. Assume the domain D C R3 of a cooperative or competitive system
contains [p, q] with p < q. Then one of the following holds:

@) [p, q] contains an equilibrium;

(ii) the forward and backward semi-orbits of every point of [p, q] meet D \ [p, q].

PROOF. We take the system to be competitive, otherwise reversing time. Assume (ii) is
false. Then [a, b] contains a compact limit set L. If L is not a cycle, it contains an equilib-
rium by Theorem 3.23. If L is a cycle, (i) follows from Theorem 3.24. |

PROOF SKETCH OF THEOREM 3.24. That B is open is a consequence of the fact that
y + K and y — K are closed. We show that B N D is positively invariant. If x € BN D,
y €y and ¢t > 0 then @_;(y) € y so x is not related to it. Since the forward flow of
a competitive system preserves the property of being unrelated, &,(x) is unrelated to y.
Therefore, @;(x) € BN D.

As in the proof of Theorem 3.17, for v > 0, H,, denotes the hyperplane orthogonal to v
and Q the orthogonal projection onto H, along v. Q is one-to-one on y so Q(y) is a Jordan
curve in H,,. Let H; and H, denote the interior and exterior components of H;, \ Q(y). If
x € 071 Q(p)) then Q(x) = Q(y) for some y € y and therefore either x =y, x < y or
y < x. In any case, x ¢ B. Hence,

B=(Bn o '(H))U (BN O (He)).

Set B(y) =B N Q- (HY.

Givenz € H,let A :={seR: z+svey+K}and A] :={seR: z+svey —K}.
Aj clearly contains all large s by compactness of ¥ and it is closed because y + K is
closed. If s € A, there exists y € y and k € K such that z+sv=y+ksoz+ (s +r)v=
y +k + rv, implying that s + r € A for all r > 0. It follows that A} = [s4(z), 00), and
similarly, A7 = (=00, 5-(2)]. If s—(2) > z4(2) s0 A;“ N A7 is nonempty, then there exists
seR, k;eK,and y; € y suchthat z4+sv=y; 4+ k1 =y, — k2. Wemust have ky =k, =0
or else y; > yj, a contradiction to Proposition 3.16, but then z + sv = y; so z = Qy]
contradicting that z € Hj. We conclude that s_(z) < z(z) and that z + sv € B(y) if and
only if s_(z) < s < s4(2). It follows that

B(y)={z+sv: z€ H;, s € (s-(2),54()}
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It is easy to show that the maps z > s4.(z) are continuous and satisfy 54 (z) —s—(z2) > 0
as z — y € y and this implies that B(y) is a 3-cell. See the argument given in Smith [187,
194].

To prove B(y) C [p, q], we identify K* as the set of x such that (x, k) > 0 forallk € K
(where (x, k) denotes inner product). Schneider and Vidyasagar [177] proved the elegant
result that every vector x has a unique representation

x=k—w, keK, wekK* (wk)=0.
Choose any z € BN (R3 \ [p, q]) and write

z—p=k—w, keK,weK*, (w,k)=0,

g—z=k—-w, KeK wek* (w,k)=0.

Observe that w > 0, w’ > 0 because z € B.
Either k>0 or k' > 0. Forif k =k’ =0 then g — p = —(w + w’), so

0K (w+w',g—p)=—llw+w|*<0.

This entails w + w’ = 0 and thus p = g, a contradiction.
We assume & > 0, as the case &k’ > 0 is similar, and even follows formally by replacing
K with —K. Then w > 0. Consider the ray R = {z +tk: t > 0}. If y € y, then

(w, 2+ 1tk —y) = (w,z— p) +(w, p— y) < (w, 2 — p) = —|w|* < 0.
Because z and u are unrelated, there exists u € K* such that (u,z — y) > 0. So
(u,z+tk—y)=(u,z—y) +1t(z, k) 2 (u,z—y)>0.

This shows that no point of R is related to any point of y. Therefore R and hence z are in
the unbounded component of B.

As B(y) is a connected component of the positively invariant set B, it is positively
invariant. Consequently its closure is a positively invariant set homeomorphic to the closed
unit ball in R3. It therefore contains an equilibrium by a standard argument using the
Brouwer Fixed Point Theorem (see, e.g., Hale [57, Theorem 1.8.2]). O

If B(y) contains only nondegenerate equilibria x1, x2, ..., X, then standard topological
degree arguments imply that m is odd and that 1 = }"/L; (—1)% where s; € {0, 1,2, 3} is
the number of positive eigenvalues of Df (x;). See Smith [187] for the proof and further
information on equilibria in B(y).

There are many papers devoted to competitive Lotka—Volterra systems in R3, largely
stimulated by the work of M. Zeeman. See for example [82,223,237,239,243,240,242]
and references therein. The paper of Li and Muldowney [115] contains an especially nice
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application to epidemiology. Additional results for three-dimensional competitive and co-
operative systems can be found in references [66,75-77,41,194,196,247,248].

The recent paper of Ortega and Sdnchez [153] is noteworthy for employing a cone re-
lated to the ice-cream cone and observing that results for competitive systems are valid
for general cones with nonempty interior. They show that if P is a symmetric matrix of
dimension n having one positive eigenvalue A, with corresponding unit eigenvector e,
and n — 1 negative eigenvalues, then (3.4) is monotone with respect to the order generated
by the cone K :={x e R*: {Px,x) 20, {x,ey) >0} if and only if there exists a function
w:R" — R such that the matrix P - Df; + (Df)T - P 4 u(x) P is positive semidefinite for
all x. They use this result to show that one of the results of R.A. Smith [204] on the exis-
tence of an orbitally stable periodic orbit, in the special case n = 3, follows from the results
for competitive systems. It is not hard to see that if (3.4) satisfies the conditions above then
after a change of variables in (3.4), the resulting system is monotone with respect to the
standard ice-cream cone.

For applications of competitive and cooperative systems, see for example Benaim [15],
Benaim and Hirsch [16,17], Hirsch [69,74] Hofbauer and Sandholm [81], Hsu and Walt-
man [84], Smith [194,196], Smith and Waltman [202].

4. Delay differential equations
4.1. The semiflow

The aim of the present section is to apply the theory developed in Sections 1 and 2 to
differential equations containing delayed arguments. Such equations are often referred to
as delay differential equations or functional differential equations. Since delay differential
equations contain ordinary differential equations as a special case, when all delays are zero,
the treatment is quite similar to the previous section. The main difference is that a delay
differential equation generally can’t be solved backward in time and therefore there is not
a well-developed theory of competitive systems with delays.

Delay differential equations generate infinite-dimensional dynamical systems and there
are several choices of state space. We restrict attention here to equations with bounded
delays and follow the most well-developed theory (see Hale and Verduyn Lunel [61]). If r
denotes the maximum delay appearing in the equation, then the space C := C([—r, 0], R")
is a natural choice of state space. Given a cone K in R”, Cx contains the cone of functions
which map [—r, 0] into K. The section begins by identifying sufficient conditions on the
right hand side of the delay differential equation for the semiflow to be monotone with
respect to the ordering induced by this cone. This quasimonotone condition reduces to the
quasimonotone condition for ordinary differential equations when no delays are present.
Our main goal is to identify sufficient conditions for a delay differential equation to gen-
erate an eventually strongly monotone semiflow so that results from Sections 1 and 2 may
be applied.
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In order to motivate fundamental well-posedness issues for delay equations, it is useful
to start with a consideration of a classical example that has motivated much research in the
field (see, e.g., Krisztin et al. [105] and Hale and Verduyn Lunel [61]), namely the equation

x'(t) =—x(t)+h(x(t~r)), >0, 4.1)

where A is continuous and r > 0 is the delay. It is clear that x(¢) must be prescribed on the
interval [—r, 0] in order that it be determined for ¢ > 0. A natural space of initial conditions
is the space of continuous functions on [—r, 0], which we denote by C, where n = 1 in this
case. C is a Banach space with the usual uniform norm |¢| = sup{|¢ ()|: —r <6 <0} If
¢ € C is given, then it is easy to see that the equation has a unique solution x(¢) forz > 0
satisfying

x(@)=¢©0), -r<6<0.

If the state space is C, then we need to construct from the solution x (), an element of the
space C to call the state of the system at time ¢. It should have the property that it uniquely
determines x (s) for s > t. The natural choice is x; € C, defined by

x @) =x(t+0), —r<0<0.

Then, xg = ¢ and x; (0) = x(¢).
The general autonomous functional differential equation is given by

x'(t) = f (), (4.2)

where f:D — R”", D is an open subset of C and f is continuous. In the example above,
fis givenby f(¢) = —¢(0) + h(¢(—r)) for ¢ € C. Observe that (4.2) includes the system
of ordinary differential equations

x'=g(x),

where g:R"” — R”, as a special case. Simply let f(¢) = g(¢(0)) so that f(x;) =
8(x(0)) = g(x(1)).

It will always be assumed that (4.2), together with the initial condition x¢ = ¢ € D
has a unique, maximally defined solution, denoted by x(z, ¢), on an interval [0, o). The
state of the system is denoted by x;(¢) to emphasize the dependence on the initial data.
Uniqueness of solutions holds if, for example, f is Lipschitz on compact subsets of D
(see Hale and Verduyn Lunel [61]). This holds, for example, if f € C 1(D) has locally
bounded derivative. If uniqueness of solutions of initial value problems hold, then the map
(t, ¢) = x:(¢) is continuous. Therefore, a (local) semiflow on D can be defined by

Pi(P) = x:(). 4.3)

In contrast to the case of ordinary differential equations, x (¢, ¢) cannot usually be defined
for ¢ < 0 as a solution of (4.2) and consequently, @, need not be one-to-one.
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It will be convenient to have notation for the natural embedding of R” into C. If x € R”,
let & € C be the constant function equal to x for all values of its argument. The set of
equilibria for (4.2) is given by

E={feD: xeR"and f(£) =0}.

4.2. The quasimonotone condition

Given that C is a natural state space for (4.2), we now consider what sort of cones in C
will yield useful order relations. The most natural such cones are those induced by cones
in R”. Let K be a cone in R” with nonempty interior and K* denote the dual cone. All
inequalities hereafter are assumed to be those induced on R” by K. The cone K induces a
cone Cg in the Banach space C defined by

Ck={peC: ¢(0) >0, —r<6<0}.

It has nonempty interior in C given by Int Cx = {¢p € Cx: ¢(6) > 0,9 € [—r,0]}. The
usual notation <, <, « will be used for the various order relations on C generated by Cg.
In particular, ¢ < 4 holds in C if and only if ¢ (s) < ¥ (s) holds in R” for every s € [—r, 0].
The same notation will also be used for the various order relations on R” but hopefully the
context will alert the reader to the appropriate meaning. Cones in C that are not induced by
a cone in R” have also proved useful. See Smith and Thieme [198,200,194].

An immediate aim is to identify sufficient conditions on f for the semiflow & to be a
monotone semiflow. The following condition should seem natural since it generalizes the
condition (QM) for ordinary differential equations in the previous section. We refer to it
here as the quasimonotone condition, (QMD) for short. “D” in the notation, standing for
delay, is used so as not to confuse the reader with (QM) of the previous section. We follow
this pattern in several definitions in this section.

(QMD) ¢,V € D, ¢ < ¢ and 1(¢(0)) = n (¥ (0)) for some n € K*, implies n(f(#)) <
n(f (¥)).

For the special case K =R’ , (QMD) becomes:
¢, ¥ €D, ¢ <y and ¢;(0) =v;(0) implies fi(d) < fi(¥).
As in Section 3, it is convenient to consider the nonautonomous equation
x'(@) = f(t,x), (4.4)
where f:£2 — R” is continuous on §2, an open subset of R x C. Given (ty, ¢) € 2, we
write x(¢, to, ¢, ) and x;(to, ¢, f) for the maximally defined solution and state of the

system at time ¢ satisfying x,, = ¢. We assume this solution is unique, which will be the
case if f is Lipschitz in its second argument on each compact subset of £2. We drop the
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last argument f from x(z, fo, ¢, f) when no confusion over which f is being considered
will result.

f:82 — R" is said to satisfy (QMD) if f(z, -) satisfies (QMD) on 2, = {¢ € C: (¢, ) €
§2} for each r.

The next theorem not only establishes the desired monotonicity of the semiflow @ but
also allows comparisons of solutions between related functional differential equations. It
generalizes Theorem 3.2 of Chapter 3 to functional differential equations and is a gener-
alization of Proposition 1.1 of [190] and Theorem 5.1.1 of [194] where K = R? is con-
sidered. The quasimonotone condition for delay differential equations seems first to have
appeared in the work of Kunisch and Schappacher [109], Martin [128], and Ohta [152].

THEOREM 4.1. Let f, g:$2 —> R" be continuous, Lipschitz on each compact subset of $2,
and assume that either f or g satisfies (QMD). Assume also that f(t, ¢) < g(t, ¢) for all
@, ¢) € 2. Then

SV ERy, ¢SV 1200, = x(t,10,¢,f)<x(t,00,¥,8)
Jor all t for which both are defined.

PROOF. Assume that f satisfies (QMD), a similar argument holds if g satisfies (QMD).
Let e € R” satisfy e 3> 0, ge(t,¢) = g(t,¢) + €e and ¥ := ¢ + €&, for € > 0. If
x(t, 10, ¥, g) is defined on [t9 — r, 71] for some t1 > #9, then x(¢, 19, Y, ge) is also defined
on this same interval for all sufficiently small positive € and

x(t, 80, Ve, 8e) > x(t, 20, ¥, 8), €—0,

for ¢ € [#,#;] by Hale and Verduyn Lunel [61, Theorem 2.2.2]. We will show that
x(t, 10,9, f) K x(t, 9, Ve, g¢) on [tg — r, 1] for small positive €. The result will then fol-
low by letting € — 0. If the assertion above were false for some €, then applying the remark
below Proposition 3.1, there exists s € (fg, #1] such that x(¢, t9, ¢, f) < x(t, to, Ve, ge)
for 1o <t < s and n(x(s, to, ¢, 1)) = n(x(s, to, ¥e, g¢)) for some nontrivial n € K*. As
n(x(t, t0, @, £)) <n(x(t,to, Ye, ge)) for tp <t < 5, by Proposition 3.1, we conclude that
Flimsn(x (s, 10,9, 1)) 2> $lmsn(x(s, 0, Ve, gc)). But

d
5 1(x(s, 10, Ve, 8¢)) = n(g (s, x5 (t0, Ve, g¢))) + €n(e)
> ﬂ(f(S, -xS(tO’ l[/€: ge)))
Z n(f(s’xs(to’ ®, f))) !
d
= 'CE tzsn(x(sa Io, ¢v f))»

where the last inequality follows from (QMD). This contradiction implies that no such s
can exist, proving the assertion. A
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In the case of the autonomous system (4.2), taking f = g in Theorem 1.1 implies that
x:(¢) < x: () for ¢ > 0 such that both solutions are defined. In other words, the semi-
flow @ defined by (4.3) is monotone. In contrast to Theorem 3.2 of the previous sec-
tion, if ¢ < ¥ we cannot conclude that x (¢, ¢) < x(t, %) or x;(¢) < x;(¥) since P, is
not generally one-to-one. A simple example is provided by the scalar equation (4.2) with
r =1 and f(¢) := max ¢, which satisfies (QMD). Let ¢ < v be strictly increasing on
[~1,-1/2), ¢(-1) =y (=1) =0, ¢(=1/2) =¥ (=1/2) = 1, and ¢(8) = ¥ (9) = 26
for —1/2 < 6 < 0. It is easy to see that x (¢, ¢) = x(t, ¢) fort = 0.

It is useful to have sufficient conditions for the positive invariance of K. By this we
mean that 75 € J and ¢ > 0 implies x (¢, #y, ¢) = O for all ¢ > 7y for which it is defined.
The following result provides the expected necessary and sufficient condition. The proof is
similar to that of Theorem 4.1; the result is the delay analog of Proposition 3.3.

THEOREM 4.2. Assume that J x K C §2 where J is an open interval. Then K is positively
invariant for (4.4) if and only if forall t € J

(PD) ¢ >0, A € K* and 1(¢(0)) =0 implies .(f(t,¢)) =0
holds.

Let L:J — L(C,R") be continuous, where L(C, R") denotes the space of bounded
linear operators from C to R”, and consider the initial value problem for the linear nonau-
tonomous functional differential equation

X =LMx, x,=0. (4.5)

Observing that (PD) and (QMD) are equivalent for linear systems, we have the following
corollary.

COROLLARY 4.3. Ler x(t, to, ) be the solution of (4.5). Then x(t, ty, ¢) = Qforallt > to
and all ¢ > 0 if and only if for each t € J, (PD) holds for L(t).

As in the case of ordinary differential equations, a stronger condition than (PD) for linear
systems is that for every ¢t € J, there exists « € R such that L(t)¢ + a¢ (0) > O whenever
¢ >0.

It is useful to invoke the Riesz Representation Theorem [171] in order to identify L(t)
with a matrix of signed Borel measures n(t) = (n(¢);;):

0
Liyp= [ dn)e. (4.6)

The Radon—Nikodym decomposition of 7;; with respect to the Dirac measure § with unit
mass at 0 gives 7;; (t) = a;;(t)8 +17;; (t) where a;; is a scalar and #;; (¢) is mutually singular
with respect to §. In particular, the latter assigns zero mass to {0}. Therefore,

. 3 0
Lty =AN¢O0)+ L)y, LH¢:= [ di)¢. 4.7

—r
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Continuity of the map ¢+ — A(¢) follows from continuity of 7 — L(t). The decomposi-
tion (4.7) leads to sharp conditions for (PD) to hold for L(¢).

PROPOSITION 4.4. (PD) holds for L(¢) if and only if
(a) f}(z‘) satisfies (P) of Proposition 3.3, and
() L(@)¢ = 0 whenever ¢ > 0.

PROOF. If (a) and (b) hold, ¢ > 0, A € K* and A(¢(0)) = 0 then A(L(r)¢) = A(A(H)$(0))
+ A(L(t)¢) = 0 because each summand on the right is nonnegative.

Conversely, if (PD) holds for L(t), v € 8K, A € K*, and A(v) = 0, define ¢, (6) = e"v
on [—r,0]. Then ¢, > 0 and ¢, converges point-wise to zero, almost everywhere with
respect to 7(t). By (PD),

ML) ¢n) = LA + L(t)¢n) > 0.

Letting n — 0o, we get A(A(f)v) > 0 implying that (P) holds for A(¢). Let ¢ > 0 be given
and define ¢, (0) = [1 —e"1¢(8) on [—r, 0], n > 1. ¢, converges point-wise to ¢ x, where
X is the indicator function of the set [—r, 0), and ¢ x = ¢ almost everywhere with respect
to /(). If A € K*, then A(¢,(0)) = 0 so applying (PD) we get 0 < A(L(t)¢p) = L()dy.
Letting n — oo we get (b). g

For the remainder of this section, we suppose that 2 = J x D where J is a nonempty
open interval and D C C is open. Suppose that 22 76 (t ¥) exists and is continuous on J x D
to L(C, R"). In that case, x(, tg, @) is contmuously differentiable in its last argument and
y(t, to, X) = a % = (t, to, ¢) x satisfies the variational equation

i)
YO =L k. )y 30 =2 @38)

36

See Theorem 2.4.1 of Hale and Verduyn Lunel [61]. We say that f (or (4.4)) is K-co-
operative if for all (¢, x) € J x D the function v — a (t x)¥ satisfies (PD). By Corol-
lary 4.3 applied to the variational equation we have the following analog of Theorem 3.5
for functional differential equations. The proof is essentially the same.

THEOREM 4.5. Let %(z, yr) exist and be continuous on J x D. If (QMD) holds for (4.4),
then f is K -cooperative. Conversely, if D is p-convex and f is K -cooperative, then (QMD)
holds for f.

Consider the nonlinear system

X'(0)=g(x(®), x(t —r), x(t = r2), ..., x(t —rm)), 4.9)
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where g(x, y,¥2,..., ™) is continuously differentiable on R™+1# and r j+1>r; > 0.
Then
af ag dg
g =5 D+ ; ayF 5 P (4.10)

where 8_,, is the Dlrac measure with unit mass at {—r¢} and x = ¥ (0), y* = ¢ (—r)
and (x,Y) := (x,yl,¥%, ..., y™). By Theorem 4.5, Corollary 4.3, and Proposmon 4.4,
(QMD) holds if and only if for each (x, Y), 3 (x Y) satisfies condition (P) and (x Y)is

K -positive, If K =R, the condition becomes ag, (x Y)>20,fori#j and (x )20
for all i, j, k; if, in addition, n = 1 then a%g;(x, Y) > 0 for all k suffices.

4.3. Eventual strong monotonicity

We begin by considering the linear system (4.5). The following hypothesis for the contin-
uous map L:J — L(C,R") reduces to (ST) of the previous section when r = 0:

(STD) forall ¢ € J and ¢ > 0 with ¢ (0) € 9K satisfying one of the conditions
(@) ¢(—r)>0and ¢(0) =0, or
) ¢(s)>0for—r <5 <0,
there exists v € K* such that v(¢(0)) =0 and v(L(£)¢) > 0.

The following result is the analog of Theorem 3.6 of the previous section for delay
differential equations. :

THEOREM 4.6. Let linear system (4.5) satisfy (PD) and (STD) and let tg € J. Then
¢>0,t200+2r = x(t,15,¢)>0.
In particular, x;(to, ¢) > 0 for t = tg + 3r.
PrROOF. By Corollary 4.3, we have that x(¢) := x(z, fo, ¢) = O for all ¢ > tp that be-
long to J. There exists 11 € (9, tp 4 7) such that x(tj — r) = ¢(t; —r) = xy (—=r) >0
since ¢ > 0. If x(¢;) = 0, then (STD)(a) implies the existence of v € K* such that
v(L(tl)xtl) > 0. As v(x(t)) 20 for t 2 1o and v(x(t;)) = 0 we conclude that
dtl,_,lv(x(t)) < 0. But d,|t~t1"(x(t)) = v(L(t1)xy) > 0, a contradiction. Therefore,
x(tl) > 0.
Now, by (4.7)
x = A@®x + Lt)x;

from which we conclude

t
x(t) =X @, t)x(t) + / X @, r)L(r)x, dr,
1
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where X (¢, to) is the fundamental matrix for y’ = A(¢)y satisfying X (to, to) = I. From (a)
of Proposition 4.4 and Corollary 3.4, it follows that X (¢, to) is K positive for ¢ 2 1. This,
the fact that x, 2 0, and (b) of Proposition 4.4 imply that the integral belongs to K so we
conclude that

x() 2 X, t)x@) >0, t=1.

We claim that x(¢) > 0 for ¢t > t; + r. If not, there is a #, > f; + r such that x(;) =
x1,(0) € 3K but x,,(s) > 0 for —r <5 < 0. Then (STD) implies the existence of v € K*
such that v(x(;)) = 0 and v(L(f2)x,) > 0. Since v(x(t)) > 0 for # > 7o we must have
%|,=,2v(x(t)) £ 0. But %h:,zv(x(t)) = v(L(#2)xs,) > 0, a contradiction. We conclude
that x(#) > O forz >t +r. ]

In a sense, (STD)(a) says that r has been correctly chosen; (STD)(b) is more fundamen-
tal. The next result gives sufficient conditions for it to hold.

PROPOSITION 4.7. If L(t) satisfies (PD) and either
(a) A(2) satisfies (ST), or
b) ¢ >0= L{t)p >0

then (STD)(b) holds.

PROOF. This is immediate from the definitions, the decomposition (4.7); Proposition 4.4,
and the expression v(L(¢)@) = v(A(t)$(0)) + v(L()¢). O

Theorem 4.6 leads immediately to a result on eventual strong monotonicity for the non-
linear system (4.4) where we assume that £2 = J x D as above.

THEOREM 4.8. Let D be p-convex, %(r, Y) exist and be continuous on J x D to

L(C,R™), and f be K-cooperative. Suppose that (STD) holds for %(r, ), for each
(t,¥)eJ x D.Then

b0, 41 €D, do <1 = x(,10,¢0) KL x(t,10,¢1)
for all t > ty + 2r for which both solutions are defined.

PROOF. By Theorem 4.5, we have x (¢, ty, ¢o) < x(¢, to, ¢1) for £.> to for which both so-
lutions are defined. We apply the formula

L
x(t7t0s ¢1) '_‘x(t,to,(i)o) =f _i

3 (¢, t0, 51 + (1 — $)o) (91 — do) ds. -
o 0¢

Here, for v+ € D and B € C, y(t, 10, B) = g—;(r, to, W) B satisfies the variational equa-

tion (4.5) where ¢ = 8 and L(¢) = %(t, x;(t0, ¥)). See Theorem 2.4.1 of Hale and Ver-
duyn Lunel [61]. The desired conclusion will follow if we show that y(z, 19, 8) > 0 for
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t>to+2r for ¥ =s¢1+ (1 —s)¢o and B =1 — ¢o > 0. By Theorem 4.6, it suffices to
show that L(¢) satisfies (PD) and (STD). But this follows from our hypotheses. )

In the next result, Theorem 4.8 is applied to system (4.9). We make use of notation
introduced below Theorem 4.5.

COROLLARY 4.9. Let g: RV s R” be continuously differentiable and satisfy
(a) g%(x, Y) satisfies (P) for each (x,Y) € Z;
(b) for each k, 2 (x,Y) is K positive;

(c) either g—f—(x, Y) satisfies (ST) or some ;}f;k(x, Y) is strongly positive on K.
Then the hypotheses of Theorem 4.8 hold for (4.9).

PROOF. Recalling (4.10), it is evident that (a) and (b) imply that (4.9) is K -cooperative.
Hypothesis (c) and Proposition 4.7 imply that (STD) holds. O

In the special case that (4.9) is a scalar equation, m = 1 and K =R, then g% (x,y)>0
suffices to ensure an eventually strongly monotone semiflow. ’

4.4. K is an orthant

Our results can be improved in the case that K is a product cone such as RY =TTio Ry,
i.e., an orthant. The following example illustrates the difficulty with our present set up.

x1 () = —x1(t) +x2(t — 1/2),

x5 (1) = x1(t — 1) — x2(8).

Observe that (PD) holds for the standard cone. For initial data, take ¢ = (¢1,¢2) €C
(r =1) where ¢; =0 and ¢2(0) >0 for 6 € (—1,—2/3) and ¢2() = O elsewhere in
[—1, 0]. The initial value problem can be readily integrated by the method of steps of length
1/2 and one sees that x(r) =0 for all 7 > —2/3. In the language of semiflows, ¢ > 0 yet
&, (¢p) = ®,(0) =0forallr > 0.The problem is that C([—1, 0], R?) is not the optimal state
space; a better one is the product space X = C([-1,0],R) x C([—1/2,0], R). Obviously,
an arbitrary cone in R2? will not induce a cone in the product space X.

For the remainder of this section we focus on the standard cone but the reader should
observe that an analogous construction works for any orthant K = {x: (=)™ x; = 0}.
Motivated by the example in the previous paragraph, let r = (r,r2,.... 1) €RY be a
vector of delays, R = maxr; and define

¢, =[]c(—r,0LR).

i=1
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Note that we allow some delays to be zero. We write ¢ = (¢1, ¢2, ..., ¢,) for a generic
point of C,. C, is a Banach space with the norm |¢| = > _ [¢;]. Let

cr=T]c(-ri.01,Ry)

i=1

denote the cone of functions in C, with nonnegative components. It has nonempty interior
given by those functions with strictly positive components. As usual, we use the notation
<, <, « for the corresponding order relations on C, induced by C;" . If x; (¢) is defined on
[—ri,0), 1 <i < n, o >0 then we may redefine x; € C, as x; = (x,l,xtz, ..., x}') where
xf (0) = x;(t + ) for 6 € [—r;, 0]. Notice that now, the subscript signifying a particular
component will be raised to a superscript when using the subscript “#” to denote a function.

If D C C, is open, J is an open interval and f:J x D — R" is given, then the stan-
dard existence and uniqueness theory for the initial value problem associated with (4.4)
is unchanged. Furthermore, Theorems 4.1 and 4.2, and Corollary 4.3 remain valid in our
current setting where, of course, we need only make use of the coordinate maps n(x) = x;,
1 <i < n in (QMD) and (PD). Our goal now is to modify (STD) so that we may ob-
tain a result like Theorem 4.6 that applies to systems such as the example above. We be-
gin by considering the linear system (4.5) where L:J — L(C,,R") is continuous and let
Li()¢:=(ei, LO)¢), 1 <i<n.

In our setting, L(¢) satisfies (PD) if and only if:

¢ >0and ¢;(0) =0 implies L;(#)¢ =0.

THEOREM 4.10. Let linear system (4.5) satisfy (PD) and
(i) tel,rj>0,620,¢;(—r;))>0= Li(1)¢ > 0 for some i
(ii) for every proper subset I of N :={1,2,...,n}, there exists j € N \ I such that
L;(t)¢p > 0 whenever ¢ >0, ¢i(s) >0, —r; <5 < 0,iel.
Then x(t, ¢, ) > 0if ¢ >0 forallt =ty +nR.

PROOF. By (PD) and Corollary 4.3 we have x(7) > 0 for t > #9. An application of the Riesz
Representation Theorem and Radon-Nikodym Theorem implies that fori =1,2,...,n,
we have

noop0
Li¢=ai)¢iO) + Y | ;6)denij(t,6) =ai(1)¢i(0) + Li(N¢,

j=1""Ti

where 7;;(¢) is a positive Borel measure on [—7;,0], a;(t) € R and L;(t)¢ > 0 whenever
¢ > 0. Moreover, t — 7;;(t) and t — a;(t) are continuous. See Smith [190,194] for details.
The representation of L; in terms of signed measures, 7;;, is standard; (PD) implies that
nij = f;; must be positive for i # j and that 7;; has the Lebesgue decomposition 7;; =
a;8 + n;; with respect to §, the Dirac measure of unit mass at zero, and 7;; is a positive
measure which is mutually singular with respect to §.
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If x; (t1) > O for some i and #; > ty then from x[(1) = ai()x; () + Li(t)x; = a;()x; ().
we conclude from standard differential inequality arguments that x; () > 0 for t > #;.

As ¢ > 0, there exists j such that ¢; > 0. If r; = 0 then x;(f9) > 0; if ; > O then
xj(ty —rj) > 0 for some 11 € (9, 1o + r;). In this case, it follows from (i) that x[(t) =
L;i(t1)¢ > 0 for some i and hence x;(f) > 0. Hence, x;(t) > 0 for ¢ > #; by the previ-
ous paragraph. Applying (i) with I = {i} and t = = £y + r; we may find k # i such
that x,’c(tz) = L(t2)x;, > 0 because xfz (s) > 0, —r; < 5 < 0. Therefore, we must have
Xk (r2) > 0 and hence x;(¢) > 0 for ¢ > r,. Obviously, we may continue in this manner until
we have all components positive for r > 1o + nR as asserted. d

Theorem 4.10 leads directly to a strong monotonicity result for the nonlinear nonau-
tonomous delay differential equation (4.4) in the usual way. We extend the definition of
K -cooperativity of f to our present setup with state space C, exactly as before.

THEOREM 4.11. Let D C C, be p-convex, %(r, ) exist and be continuous on J x D to

L(C,,R"), and f be K -cooperative. Suppose that for all (t, ) € J x D, L(t) .= %(t, ¥)
satisfies the conditions of Theorem 4.10. Then

b0, 1 €D, o<1, t 2t0+nR = x(1,19, Po) K x(t, 10, ¢1).

The biochemical control circuit with delays, modeled by the system

x1(8) = g(xn(t —ra)) — c1x1(®), @1

x}(t)=Xj—1(f—rj—1)—otjxj(t), 2<j<n ‘
with decay rates o; > 0 and delays »; > 0 with R > 0 provides a good application of
Theorem 4.11 which cannot be obtained by Theorem 4.8 if the delays are distinct. We
assume the g: R, — R, is continuously differentiable and g’ > 0. Equation (4.11) is an
autonomous system for which C;' is positively invariant by Theorem 4.2. See Smith [191,
194] for more on this application.

4.5. Generic convergence for delay differential equations

The aim of this section is to apply Theorem 4.8 and Theorem 4.11 to the autonomous
delay differential equation (4.2) to conclude that the generic solution converges to equilib-
rium. To &, defined by (4.3), we associate C, S and E, denoting respectively the sets of
convergent, stable and equilibrium points. The main result of this section is the following.

THEOREM 4.12. Let f € C1(D), (4.2) be cooperative on the p-convex open subset D of
C or C, and satisfy:

(a) The hypotheses of Theorem 4.8 or of Theorem 4.11 hold,

(b) Every positive semiorbit of ¢ has compact closure in D and D = AC U BC.
Then
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(i) C N S contains a dense open subset of D, consisting of points whose trajectories
converge to equilibria,;

(i) If E is compact there is a stable equilibrium, and an asymptotically stable equilib-
rium when E is finite.

PROOF. For definiteness, suppose that (4.2) is cooperative on the p-convex open subset
D of C and that the hypotheses of Theorem 4.8 hold. The other case is proved similarly.
Assumption (a) ensures that @ is eventually strongly monotone. Moreover, the derivative
of &, (¢) with respect to ¢ exists and @, (¢)x = y (fo, x), where y(¢, to, x) is the solution
of the variational equation (4.8). As our hypotheses ensure that L(¢) = %(x, (¢)) satis-
fies (STD), we conclude from Theorem 4.6 that @/ (¢) is strongly positive for T 2> 3r.
Compactness of @/ (¢):C — C for T > r follows from the fact that a bound for y- (fo, X),
uniform for x belonging to a bounded set B C C, can be readily obtained so, using (4.8),
we may also find a uniform bound for ¥yt to, x), T —r <t < 1. See, e.g., Hale [58,
Theorem 4.1.1] for more detail.

The hypotheses of Theorem 2.26, with X = D, are fulfilled: D is normally ordered and
D = BC U AC; while (M) and (D*) hold as noted above. Therefore Theorem 2.26 implies
the conclusion. O

In the special case that (4.2) is scalar (n = 1) we note that the set E of equilibria is
totally ordered in C, or C so the set of quasiconvergent points coincides with the set of
convergent points: Q = C. The classical scalar delay differential equation (4.1) has been
thoroughly investigated in the case of monotone delayed feedback (f(0) =0 and f "> 0)
by Krisztin et al. [105]. They characterize the closure of the unstable manifold of the trivial
solution in case it is three-dimensional and determine in remarkable detail the dynamics
on this invariant set.

Smith and Thieme [198,200,194] introduce an exponential ordering, not induced by a
cone in R”, that extends the scope of application of the theory described here. One of the
salient results from this work is that a scalar delay equation for which the product of the
delay r and the Lipschitz constant of f is smaller than e~ ! generates an eventually strongly
monotone semiflow with respect to the exponential ordering and therefore the generic orbit
converges to equilibrium: the dynamics mimics that of the associated ordinary differential
equation obtained by ignoring the delay. See also work of Pituk [159].

We have considered only bounded delays. Systems of delay differential equations with
unbounded and even infinite delay are also of interest. See Wu [234] for extensions to such
systems. Wu and Freedman [235] and Krisztin and Wu [106-108] extend the theory to
delay differential equations of neutral type.

5. Monotone maps

5.1. Background and motivating examples

One of the chief motivations for the study of monotone maps is their importance in the
study of periodic solutions to periodic quasimonotone systems of ordinary differential
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equations. See for example the monograph of Krasnosel’skii [99], the much cited paper
of de Mottoni and Schiaffino [42], Hale and Somolinos [60], Smith [188,189], Liang and
Jiang [121], and Wang and Jiang [229-231]. To fix ideas, let : R x R" — R”" be a locally
Lipschitz function and consider the ordinary differential equation

X' = £, x). ° .1)

As usual, denote by x(¢, #y, xo) the noncontinuable solution of the initial value problem
x (o) = xo, which for simplicity we assumed is defined for all 7. If f is periodic in ¢ of
period one: f(r+41,x) = f(¢, x) for all (¢, x), then it is natural to consider the period map
T:R" — R” defined by

T (x0) =x(1, 0, x9). (5.2)

Its fixed points (periodic points) are in one-to-one correspondence with the periodic (sub-
harmonic) solutions of (5.1). If K is a cone in R” for which f satisfies the quasimonotone
condition (QM), then it follows from Theorem 3.2 that T is a monotone map: x < y im-
plies Tx < T'y. Moreover, T has the important property, not shared with general monotone
maps, that it is an orientation-preserving homeomorphism.

In a similar way, periodic solutions for second order parabolic partial differential equa-
tions with time-periodic data can be analyzed by considering period maps in appropriate
function spaces. Here monotonicity comes from classical maximum principles. Hess [63]
remains an up-to-date survey. See also Alikakos et al. [3] and Zhao [245]. Remarkable
results are known for equations on a compact interval with standard boundary conditions.
Chen and Matano [23] show that every forward (backward) bounded solution is asymptotic
to a periodic solution; Brunovsky et al. [22] extend the result to more general equations.
Chen et al. [24] give conditions for the period map to generate Morse—Smale dynamics
and thus be structurally stable. Although monotonicity of the period map is an important
consideration in these results, it is not the key tool. The fact that the number of zeros on
the spatial interval of a solution of the linearized equation is non-increasing in time is far
more important. See Hale [59] for a nice survey.

A different theme in order-preserving dynamics originates in the venerable subject of
nonlinear elliptic and parabolic boundary value problems. The 1931 edition of Courant and
Hilbert’s famous book [34] refers to a paper of Bieberbach in Gértingen Nachrichten, 1912
dealing with the elliptic boundary value problem Au =¥ in §2, |32 = f, in a planar
region £2. A solution is found by iterating a monotone map in a function space. Courant
and Hilbert extended this method to a broad class of such problems. Out of this technique
grew the method of “upper and lower solutions” (or “supersolutions and subsolutions”) for
solving, both theoretically and numerically, second order elliptic PDEs (see Amann [4],
Keller and Cohen [95], Keller [93,94], Sattinger [176]). Krasnosel’skii and Zabreiko [101]
trace the use of positivity in functional analysis—closely related to monotone dynamics—
to a 1924 paper by Uryson [222] on concave operators. The systematic use of positivity in
PDEs was pioneered Krasnosel’skii and Ladyzhenskaya [100] and Krasnosel’skii [98].

Amann [5] showed how a sequence {u,} of approximate solutions to an elliptic problem
can be viewed as the trajectory {T"uo} of ug under a certain monotone map T in a suitable
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function space incorporating the boundary conditions, with fixed points of T being solu-
tions of the elliptic equation. The dynamics of T can therefore be used to investigate the
equation. Thus when T is globally asymptotically stable, there is a unique solution; while
if T has two asymptotically stable fixed points, in many cases degree theory yields a third
fixed point. As Amann [6] emphasized, a few key properties of T—continuity, monotonic-
ity and some form of compactness—allow the theory to be efficiently formulated in terms
of monotone maps in ordered Banach spaces.

Many questions in differential equations are framed in terms of eigenvectors of linear
and nonlinear operators on Banach spaces. The usefulness of operators that are positive
in some sense stems from the theorem of Perron [158] and Frobenius [51], now almost a
century old, asserting that for a linear operator on R" represented by a matrix with positive
entries, the spectral radius is a simple eigenvalue having a positive eigenvector, and all
other eigenvalues have smaller absolute value and only nonpositive eigenvectors. In 1912
Jentzsch [85] proved the existence of a positive eigenfunction with a positive eigenvalue
for a homogeneous Fredholm integral equation with a continuous positive kernel.

In 1935 the topologists Alexandroff and Hopf [2] reproved the Perron—Frobenius theo-
rem by applying Brouwer’s fixed-point theorem to the action of a positive n x n matrix on
the space of lines through the origin in R’}.. This was perhaps the first explicit use of the
dynamics of operators on a cone to solve an eigenvalue problem. In 1940 Rutman [173]
continued in this vein by reproving Jentzsch’s theorem by means of Schauder’s fixed-point
theorem, also obtaining an infinite-dimensional analog of Perron—Frobenius, known today
as the Krein—Rutman theorem [104,214]. In 1957 G. Birkhoff [20] initiated the dynamical
use of Hilbert’s projective metric for such questions.

The dynamics of cone-preserving operators continues to play an important role in func-
tional analysis; for a survey, see Nussbaum [149,150]. One outgrowth of this work has
been a focus on purely dynamical questions about such operators; some of these results
are presented below. Polyhedral cones in Euclidean spaces have lead to interesting quanti-
tative results, including a priori bounds on the number of periodic orbits. For recent work
see Lemmens et al. [117], Nussbaum [151], Krause and Nussbaum [102], and references
therein.

Monotone maps frequently arise as mathematical models. For example, the discrete
Lotka—Volterra corflpetition model (see May and Oster [136]):

(Wn+1, Vng1) = T(un, vn)

:= (up exp[r(1 — uy — bvp)], vn exp[s(1 — cu —va)])

generates a monotone dynamical system relative to the fourth-quadrant cone only when
the intrinsic rate of increase of each population is not too large (r, s < 1) and then only on
the order interval [0, #~!] x [0, s~*] (Smith [192]). Fortunately in this case, every point
in the first quadrant enters and remains in this order interval after one iteration. As is
typical in ecological models, the Lotka—Volterra map is neither injective nor orientation-
preserving or orientation-reversing. For monotone maps as models for the spread of a gene
or an epidemic through a population, see Thieme [218], Selgrade and Ziehe [181], Wein-
berger [232], Liu [123] and the references therein.
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5.2. Definitions and basic results

A continuous map T :X — X on thé ordered metric space X is monotone if x <y =
Tx < Ty, strictly monotone if x <y = Tx < Ty, strongly monotone if x <y = Tx &
Ty, and eventually strongly monotone if whenever x <y, there exists ng > 1 such that
T"x < T"y. We call T strongly order-preserving (SOP) if T is monotone, and whenever
x < y there exist respective neighborhoods U, V of x,y and ng > 1 such that n 2 no =
T"U < T"V.! As with semiflows, eventual strong monotonicity implies the strong order
preserving property.

The orbit of x is O(x) := {T"x}s>»0, and the omega limit set of x is w(x) =
ﬂk>0 O(T*x). If O(x) has compact closure, w(x) is nonempty, compact, invariant (that
is, Tw(x) = w(x)) and invariantly connected. The latter means that e (x) is not the disjoint
union of two closed invariant sets [116].

If T(x) = x then x is a fixed point or equilibrium. E denotes the set of fixed points.
More generally, if T*x = x for some k > 1 we call x periodic, or k-periodic. The minimal
such k is called the period of x (and O (x)). .

Let Y denotes an ordered Banach space with order cone Y... A linear operator A € L(Y)
is called positive if A(Y+) C Y (equivalently, A is a monotone map) and strongly positive
if A(Y4 \ {0}) C IntY) (equivalently, A is a strongly monotone map).

The following result is useful for proving smooth maps monotone or strongly monotone:

LEMMA 5.1. Let X C Y be a p-convex set and f : X — Y a locally C! map with qua-
siderivative h: U — L(Y) defined on an open set U C Y. If the linear maps h(x) € L(Y)
are positive (respectively, strongly positive) for all x € U, then f is monotone (respectively,
strongly monotone).

PROOF. By p-convexity it suffices to prove that every p € X has a neighborhood N such
that £|N N X is monotone (respectively, strongly monotone). We take N to be an open ball
in U centered at p. Suppose p +z € X N N, z > 0. By p-convexity, X N N contains the
line segment from p to p + z. The definition (above Lemma 2.15) of locally C 1 implies
that themap g:[0,1]1 > Y, t > f(p+1z)is C! with g'(t) = h(tz)z. Therefore

1

1
f(1v+z)~f(z)=g(0)—g(l)=f0 g’(t)dt=f0 h(tz)zdt.

Because h(tz) € L(Y) is positive and z > 0, we have h(tz)z € Y, therefore flp+2z)—
f(p) > 0. If the operators h(tz) are strongly positive, f(p +z) — f(p) > 0. a

PROPOSITION 5.2 (Nonordering of Periodic Orbits). A periodic orbit of a monotone map
is unordered.

LOur use of “strongly order-preserving” conflicts with Dancer and Hess [38], who use these words to mean what
we have defined as “strongly monotone”. Our usage is consistent with that of several authors. Tak4¢ (208,209]
uses “strongly increasing” for our SOP.
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PROOF. If not, there exists x in the orbit such that T%(x) > x for some & > 0. Induction
on n shows that T (x) > x for all n > 0. But if x has period m > 0, induction on k proves
that 7% (x) = x. ’ |

LEMMA 5.3 (Monotone Convergence Criterion). Assume T is monotone and O(z) has
compact closure. If m 2 1 is such that T"z < z or T"z > 7 then w(z2) is an m-periodic
orbit.

PROOF. Consider first the case m = 1. Compactness of O(z) implies the decreasing se-
quence {T*z} converges to a point p = w(x). Now suppose m > 1. Applying the case
just proved to the map 7™, we conclude that {T*"z} converges to a point p = T"(p). It
follows that w(z) = {p, Tp, T?p, ..., T 1 p}. O

Lemma 5.3 yields information on one-sided stability of compact limit sets when T is
SOP; see Hirsch [70].

In order to state the following lemma succinctly, we call a set J C N an interval if it is
nonempty and contains all integers between any two of its members. For a, b € N we set
[a,b] = {j € N: a £ j < b} (there will be no confusion with real intervals). Two intervals
overlap if they have more than one point in common.

Let J C N be an interval and f : J — X be a map. A subinterval [a,b] C J,a < b is
rising if f(a) < f(b), and falling if f(b) < f(a).

THEOREM 5.4. A trajectory of a monotone map cannot have both a rising interval and a
Jalling interval.

PrROOF. Follows from Theorem 1.6. O

LEMMA 5.5. If T is monotone, w(z) cannot contain distinct points having respective
neighborhoods U,V such that T"(U) < T" (V) for some r > 0.

PROOF. Follows from Theorem 5.4 (see proof of Lemma 1.7). |
The next result is fundamentalto the theory of monotone maps:
THEOREM 5.6 (Nonordering Principle). Let w(z) be an omega limit set for a monotone
map T.
(i) No points of w(z) are related by K.
(i) If w(2) is a periodic orbit or T is SOP, no points of w(z) are related by <.

PROOF. Follows from Proposition 5.2 and Lemma 5.5 (see the proof of Theorem 1.8). O

Call x convergent if w(x) is a fixed point, and quasiconvergent if w(x) C E. Just as for
semiflows, Proposition 5.6 leads immediately to a convergence criterion:



318 M.W. Hirsch and H. Smith

COROLLARY 5.7. Assume @ is SOP.
(i) If an omega limit set has a supremum or infimum, it reduces to a single fixed point.
(ii) If the fixed point set is totally ordered, every quasiconvergent point with compact
orbit closure is convergent.

PROOF. Part (i) follows from Theorem 5.6(ii), since the supremum or infimum, if it exists,
belongs to the limit set. Part (it) is a consequence (i). . O

5.2.1. Failure of the limit set dichotomy We now point out a significant difference be-
tween strongly monotone maps and semiflows:

The Limit Set Dichotomy fails for strongly monotone maps.

Recall that for an SOP semiflow with compact orbit closures, the dichotomy (Theo-
rem 1.16) states:

If a < b, either w(a) < w(b) orw(a) =w®) CE.

Taka¢ [211, Theorem 3.10], gives conditions on strongly monotone maps under which
a < b implies that either w (@) Nw(b) = @ or w(a) = w(b). He also gives a counterexample
showing that w(a) N w(b) = @ does not imply w(a) < w (), nor does w(a) = w(b) imply
that these limit sets consist of fixed points (they are period-two orbits in his example).
However, the mapping in his example is defined on a disconnected space.

For any map T in a Banach space, having an asymptotically stable periodic point p of
period > 1, the Limit Set Dichotomy as formulated above must fail: take a point g > p
so near to p that O(p) = w(p) = w(q). Clearly w(p), being a nontrivial periodic orbit,
contains no fixed points. Thus the second assertion of the Limit Set Dichotomy fails in this
case.

Dancer and Hess [38] gave a simple example in R for prime k of a strongly monotone
map with an asymptotically stable periodic point of period k which we describe below.
Therefore the second alternative of the Limit Set Dichotomy can be no stronger than that
w(a) = w(b) is a periodic orbit.

The Limit Set Dichotomy fails even for strictly monotone maps in R?. Let f(x) =
2 arctan(x), let @ > 0 be its unique positive fixed point, and note that 0 < f’(a) < 1. Define
To:R? — R? by Typ(x, y) := (f(¥), f(x)). Then E = {(—a, —a), (0,0), (a, a)} since f
has no points of period 2. The fixed points of T02 are the nine points obtained by taking all
pairings of —a, 0, a. An easy calculation shows that {(—a, a), (a, —a)} is an asymptotically
stable period-two orbit of Ty because the Jacobian matrix of T 02 is f’(a)? times the identity
matrix. 70 is strictly monotone but not strongly monotone. Now consider the perturbations
Te(x,y) :=To(x,y)+ (ex, €y). Itis easy to see that 7 is strongly monotone for € > 0; and
by the implicit function theorem, for small € > 0, T, has an asymptotically stable period-
two orbit O(pe) with p. near (—a, a). As noted in [38], this example can be generalized
to IR¥ for prime k.

Takac [212] shows that linearly stable periodic points can arise for the period map asso-
ciated with monotone systems of ordinary and partial differential equations. Other coun-
terexamples for low-dimensional monotone maps can be found in Smith [192,195].
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As we have shown, asymptotically stable periodic orbits that are not singletons can exist
for monotone, even strongly monotone maps. Later we will show that the generic orbit of a
smooth, dissipative, strongly monotone map converges to a periodic orbit. Here, we show
that every attractor contains a stable periodic orbit.

Recall that a point p is wandering if there exists a neighborhood U of p and a posi-
tive integer ng such that T"(U) N U = @ for n > ng. The nonwandering set §2, consisting
of all points ¢ that are not wandering, contains all limit sets. In the following, we as-
sume that X is an open subset of the strongly ordered Banach space Y and T : X — X is
monotone with compact orbit closures. The following result is adapted from Hirsch [71,
Theorems 4.1, 6.3].

THEOREM 5.8. If T is strongly monotone and K is a compact attractor, then K contains
a stable periodic orbit.

The proof relies on the following result that does not use strong monotonicity nor that
K attracts uniformly:

THEOREM 5.9. Let p € K be a maximal (resp., minimal) nonwandering point. Then p is
periodic, and every neighborhood of p contains an open set W 3> p (resp., W < p) such
that w(x) = O(p) forallx e W.

PROOF. Suppose K attracts the open neighborhood U of K and fix y 3> p, y € U. Since
p is nonwandering there exists a convergent sequence x; — p and a sequence n; — o0
such that T"%x; — p. For all large i, x; < y. Passing to a subsequence, we assume that
T"y — g. By monotonicity and x; < y for large i, we have ¢ = p. Butg € K N2 and the
maximality of p requires g = p. Since p < y and T"'y — p it follows that 7"y « y for
some m. Lemma 5.3 implies that w(y) is an m-periodic orbit containing p. As this holds
for every y >> p, the result follows. O

LEMMA 5.10. Let p, q € K be fixed points such that p < q, p is order stable from below,
and q is order stable from above. Then K N[ p, q] contains a stable equilibrium.

PROOF. Let R be a maximal totally ordered set of fixed points in K N[p, g]. An argument
similar to the one in the proof of Theorem 1.30 shows that the fixed point

e :=inf{z € E N R: z is order stable from above}
is order stable. That e is stable follows from the analog of Proposition 1.28. ]

PROOF OF THEOREM 5.8. Theorem 5.9 shows that some iterate 7", n 2> 0 has fixed points
P, q as in Lemma 5.10, which result therefore implies Theorem 5.8. a

Jiang and Yu [90, Theorem 2] implies that if 7' is analytic, order compact with strongly
positive derivative, then K must contain an asymptotically stable periodic orbit.
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5.3. The order interval trichotomy

In this section we assume that X is a subset of an ordered Banach space Y with positive
cone Y, with the induced order and topology. Much of the early work on monotone maps
on ordered Banach spaces focused on the existence of fixed points for self maps of or-
der intervals {a, b] such that a, b € E; see especially Amann [6]. The following result of
Dancer and Hess [38], quoted without proof, is crucial for analyzing such maps.

Let u, v be fixed points of 7. A doubly-infinite sequence {x,},cz (Z is the set of all
integers) in Y is called an entire orbit from u to v if

Xnt1 = T (xn), im x,=u, lim x,=v.
n——00 n—o0

If x, < x,41 (respectively, x, < x,+1), the entire orbit is increasing (respectively, strictly
increasing). If x,, > x,41 (vespectively, x, > x,41), the entire orbit is decreasing (respec-
tively, strictly decreasing). If the entire orbit {x,} is increasing but not strictly increasing,
then x,, = v for all sufficiently large »; and similarly for decreasing.

Consider the following hypothesis:

(G) X =[a,b] wherea,beY,a<band Ta=a, Tb=b. Themap T:X — X is
monotone and T (X) has compact closure in X.

THEOREM 5.11 (The Order Interval Trichotomy). Under hypothesis (G), at least one of
the following holds:
(a) there is a fixed point ¢ such that a < ¢ < b;
(b) there exists an entire orbit from a to b that is increasing, and strictly increasing if T
is strictly monotone;
(c) there exists an entire orbit from b to a that is decreasing, and strictly decreasing if
T is strictly monotone.

An extension of Theorem 5.11 to allow additional fixed points on the boundary of [a, b]
is carried out in Hsu et al. [83]. Wu et al. [236] weaken the compactness condition. See
Hsu et al. [83], Smith [192], and Smith and Thieme [201] for applications to general-
ized two-species competition dynamics. For related results see Hess [63], Matano [133],
Polacik [162], Smith [184,194].

A fixed point g of T is stable if every neighborhood of g contains a positively invariant
neighborhood of ¢. An immediate corollary of the Order Interval Trichotomy is:

COROLLARY 5.12. Assume hypothesis (G), and let a and b be stable fixed points. Then
there is a third fixed point in [a, b].

Corollary 5.14 establishes a third fixed point under different assumptions.

In general, more than one of the alternatives (a), (b), (c) may hold (see [83]). The fol-
lowing complement to the Order Interval Trichotomy gives conditions for exactly one to
hold, (iii) is taken from Proposition 2.2 of [83].

Consider the following three conditions:
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(a") there is a fixed point ¢ such that @ < ¢ < b;
(b") there exists an entire orbit from a to b;
(c") there exists an entire orbit from b to a.

PROPOSITION 5.13. Assume hypothesis (G).

@) IfT is strongly order-preserving, exactly one of ('), (b'), (¢') can hold. More pre-
cisely: Assume a <y < b and y has compact orbit closure. Then w(y) = {b} if
there is an entire orbit from a to b, while w(y) = {a} if there is an entire orbit from
btoa.

(ii) If a < b, at most one of (b'), (¢') can hold.
(iii) Suppose a < b, and E N [a, b]\ {a, b} # @ implies E N [[a, b]] \ {a, b} # 0. Then
at most one of (2'), (b)), (¢’) can hold.

PROOF. For (i), consider an entire orbit {x,} from a to b. There is a neighborhood U of a
such that T¥U < T*y for sufficiently large k. Choose x; € U. Then Tkxj < T*y < b for
all large k. As limg_s 00 T*x j = b and the order relation is closed, b is the limit of every
convergent subsequence of {T*y}. The case of an entire orbit from b to a is similar.

In (ii), choose neighborhoods U, V of a, b respectively such that U « V. Fix j so that
xj € U.If y € V then an argument similar to the proof of (i) shows that w(y) = {b}. Hence
there cannot be an entire orbit from b to a, since it would contain a point of V.

Assume the hypothesis of (iii), and note that (ii) makes (b’) and (c¢’) incompatible. If
(a"), there is a fixed point ¢ € [[a, b]], and arguments similar to the proof of (ii) show that
neither (b’) nor (¢’) holds. O

COROLLARY 5.14. In addition to hypothesis (G), assume T is strongly order preserving
with precompact image. If some trajectory does not converge, there is a third fixed point.

PROOF. Follows from the Order Interval Trichotomy 5.11 and Proposition 5.13(i). d

A number of authors have considered the question of whether a priori knowledge
that every fixed point is stable implies the convergence of every trajectory. See Alikakos
et al. [3], Dancer and Hess [38], Matano [133] and Takac [209] for such results. The fol-
lowing theorem is adapted from [38].

A set A C X is a uniform global attractor for the map 7 : X — X if T(A) = A and
dist(T"x, A) — 0 uniformly in x € X.

THEOREM 5.15. Let a,b € Y with a < b. Assume T :[a,b] — [a, b] is strongly order
preserving with precompact image, and every fixed point is stable. Then E is a totally
ordered arc J that is a uniform global attractor, and every trajectory converges.

PROOF. We first show that there exists a totally ordered arc of fixed points; this will not use
the SOP property. O(a) is an increasing sequence converging to the smallest fixed point
in [a, b]. Similarly, O (b) is a decreasing sequence converging to the largest fixed point in
{a, b]. By renaming a and b as these fixed points, we may as well assume thata, b € E. The
stability hypothesis and Corollary 5.12 implies there is a fixed point ¢ satisfyinga < ¢ < b.
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The same reasoning applies to [a, ¢] and [c, b], and can be repeated indefinitely to show
that every maximal totally ordered set of fixed points is compact and connected, hence an
arc (Wilder [233, Theorem 1.11.23]). Thus by Zorn’s Lemma there is a totally ordered arc
J C E joining a to b.

Next we prove: Every unordered compact invariant set K is a point of J. This will not
use precompactness of T ([a, b]). Set ¢ = inf{e € J: K < e}. It suffices to prove g € K,
for then K, being unordered, reduces to {g}. If ¢ ¢ K then g > k. By SOP and invariance
of K there is a are neighborhoods V of p and n > 0 such that K = T"(K) < T(V), hence '
K <T"(VNJ)=VnJ.This gives the contradiction K <inf(V NJ) <g4.

Every w(x) is compact by the precompactness assumption, and unordered by the
Nonordering Principle 5.6(ii). Total ordering of J therefore implies w(x) is a point of J.
This proves every trajectory converges.

To show that J is a global attractor, let N be the open e-neighborhood of J for an arbi-
trary € > 0. The stability hypothesis implies N contains a positively invariant open neigh-
borhood W of J. It suffices to prove T" (X) C W when = is sufficiently large. Convergence
of all trajectories implies that for every x € X there exists an open neighborhood U (x) of
x and n(x) > 0 such that T"(x) € W for all n > n(x). Precompactness of T (X) implies
T(X) C |J U (x;) for some finite set {x;}. Hence 7" (X) C W provided n > max{n(x;)}. U

If the map T in Theorem 5.15 is C! and strongly monotone, then E is a smooth totally
ordered arc by a result of Tak4c [211].

5.3.1. Existence of fixed points Dancer [37] obtained remarkable results concerning the
dynamics of monotone maps with some compactness properties: Limit sets can always be
bracketed between two fixed points, and with additional hypotheses these fixed points can
be chosen to be stable. The next two theorems are adapted from [37].

A map T:Y — Y is order compact if it takes each order interval, and hence each order
bounded set, into a precompact set.

THEOREM 5.16. Let X be an order convex subset of Y. Assume that T : X — X is
monotone and order compact, with every orbit having compact closure in X and every
omega limit set order bounded. Then for all z € Y there are fixed poirits f, g such that
ffo@<sg.

PROOF. There exists # € X such that u > w(z) because omega limit sets order bounded.
Since T (w(z)) = w(z), it follows that w(z) < Tiu for all i, hence @ (z) < w(u). Similarly,
there exists s € X such that w(u) < w(s). The set F:={x € ¥: w(z) < x < w(s)} is
the intersection of closed order intervals, hence closed and convex, nonempty because it
contains w (u), and obviously order bounded. Moreover F C X because X is order convex.
Therefore T(F) is defined and is precompact. Monotonicity of T and invariance of w(z)
and w(s) imply T (F) C F. It follows from the Schauder fixed point theorem that there is
a fixed point g € F, and g > w(z) as required. The existence of f is proved similarly. U

The cone Y, is reproducing if Y = Y, — Y, . This holds for many function spaces whose
norms do not involve derivatives. If Y has nonempty interior, it is reproducing: any x € ¥
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can be expressed as x = Ae — A(e — A~x) € Y. — Y4, where e >> 0 is arbitrary and A > 0
is a sufficiently large real number.

THEOREM 5.17. Let X C Y be order convex. Assume T : X — X is monotone, completely
continuous, and order compact. Suppose orbits are bounded and omega limits sets are
order bounded.

(i) For all z € X there are fixed points f, g such that f < w(z) < g.

(ii) Assume Y, is reproducing, X =Y or Y., and E is bounded. Then there are fixed
points ey = sup E and ey, = inf E, and all omega limit sets lie in [em, em]. More-
over, if x < ey, then w(x) = {em}, while if x > ey then o(x) = {em}.

(ili) Assume Yy is reproducing, X =Y or Y., E is bounded, and T is strongly order
preserving. Suppose zo € Y is not convergent. Then there are three fixed points
f < p < g such that f < w(z0) < g. If T is strongly monotone, f and g can be
chosen to be stable.

PROOF. We prove all assertions except for the stability in (iii). Complete continuity im-
plies that every positively invariant bounded set is precompact. Therefore orbit closures
are compact and omega limit sets are compact and nonempty, so (i) follows from Theo-
rem 5.16.

To prove (ii), note that E is compact because it is bounded invariant and closed. Choose
a maximal element ey € E (Lemma 1.1). We must show that ey > e for every e € E.
Since the order cone is reproducing, eyy —e =v — w with v, w > 0. Setu :=e+v +w.
Then u € X, u > e, and u > es. Monotonicity implies ey = T'ey < T'u for all i >0,
hence ey < w(u). By Theorem 5.16 there exists g € E such that w(u) < g. Hence ey < g,
whence ey = g by maximality. We now have ey < w(u) < g = epm, 80 o) = {em}-
Monotonicity implies (as above) e < w(u), therefore e < ey as required. This proves
ey = sup E, and the dual argument proves e, = infE. If x < e, then w(x) < e, by
monotonicity; but w(x) > e, by (i), s0 w(x) = {e;;}. Similarly for the case x > ey

To prove the first assertion of (iii), note that e,, < @(z) < ey by (i) and the Nonordering
Principle 5.6(ii). Monotonicity and order compactness of T imply [e, ey] is positively
invariant with precompact image. As T is SOP, there is a third fixed point in (e, es] by
Corollary 5.14. 0O

5.4. Sublinearity and the cone limit set trichotonmy

Motivated by the problem of establishing the existence of periodic solutions of quasi-
monotone, periodic differential equations defined on the positive cone in R", Krasno-
sel’skii pioneered the dynamics of sublinear monotone self-mappings of the cone [99].
We will prove Theorem 5.20 below, adapted from the original finite-dimensional version
of Krause and Ranft [103].

Let Y denote an ordered Banach space with positive cone Y. Denote the interior (pos-
sibly empty) of Y, by P. Amap T : Y} — Y, is sublinear (or “subhomogeneous”) if

O0<i<l = AT(x)<T(Ox),
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and strongly sublinear if
O<i<l,x>»>0 = AT(x)<KT(Ox).

Strong sublinearity is the strong concavity assumption of Krasnosel'skii [99]. It can be
verified by using the following result from that monograph:

LEMMA 5.18. T: P — Y is strongly sublinear provided T is differentiable and Tx >
T'(x)x for all x > 0.

PROOF. Let F(s) =s~!T(sx) for s > 0 and some fixed x 3> 0. Then F'(s) = —572T (sx)
+ 5~ 1T/(sx)x < 0 by our hypothesis. So for 0 < A < 1, we have

¢(Tx =27 1TOx)) = (F(1)) —p(F(W)) <0

for every nontrivial ¢ € Y7}, the dual cone in Y*, because %d)(F (s)) < 0. The desired
conclusion follows from Proposition 3.1. |

COROLLARY 5.19. Assume Y is strongly ordered. A continuous map T : Yy — Y is sub-
linear provided T is differentiable in P and Tx = T'(x)x for all x >> 0.

PROOF. By continuity it suffices to prove T|P is sublinear. Fix e 3> 0. For each § > 0 the
map P — Y, x = Tx +8e is strongly sublinear by Lemma 5.18. Sending & to zero implies
T is sublinear. O

Krause and Ranft [103] have results establishing sublinearity of some iterate of 7', which
is an assumption used in Theorem 5.20 below.

The following theorem demonstrates global convergence properties for order compact
maps that are monotone and sublinear in a suitably strong sense.

THEOREM 5.20 (Cone Limit Set Trichotomy). Assume T : Yy — Y, is continuous and
monotone and has the following properties for some r > 1:

(a) T" is strongly sublinear;

(b) T"x >0 forall x > 0;

(¢) T" is order compact.
Then precisely one of the following holds:

(i) each nonzero orbit is order unbounded;
(ii) each orbit converges to 0, the unique fixed point of T';
(iii) each nonzero orbit converges to q > 0, the unique nonzero fixed point of T .

A key tool in the proofs of such results is Hilbert’s projective metric and the related part
metric due to Thompson [219]. We define the part metric p(x, y) here in a very limited
way, as a metric on P (which is the “part™). For x, y >> 0, define

p(x,y) :=inf{p > 0: e Px Ky K ey}.
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The family of open order intervals in P forms a base for the topology of the part metric. It
is easy to see that the identity map of P is continuous from the original topology on P to
that defined by the part metric.

When Y = R" with vector ordering, with P = Int(R’jr), the part metric is isometric to
the max metric on R”, defined by dmax(x, y) = max; [x; — y;|, via the homeomorphism
IntR}) ~ R", x > (logxy,...,logx,). Restricted to compact sets in Int(R}), the part
metric and the max metric are equivalent in the sense that there exist «, 8 > 0 such that
ap(x, ) < I¥ = ¥lmax < BP(X, ¥)-

The usefulness of the part metric in dynamics stems from the following result. Re-
call map T between metric spaces is a contraction if it has a Lipschitz constant < 1,
and it is nonexpansive if it has Lipschitz constant 1. We say T is strictly nonexpansive
if p(Tx, Ty) < p(x, y) whenever x £ y.

PROPOSITION 5.21. Let T : P — P be a continuous, monotone, sublinear map.
(1) T is nonexpansive for the part metric.
(i1) If T is strongly sublinear, T is strictly nonexpansive for the part metric.
(iii) If T is strongly monotone, A C P, and no two points of A are linearly dependent,
then T | 4 is strictly nonexpansive for the part metric.
(iv) Under the assumptions of (ii) or (iii), if L C A is compact (in the norm topology)
and T(L) C L, then the set Loo = [ ),,..0 T" (L) is a singleton.

PROOF. Fix distinct points x, y € A and set ePOY) =1 > 1,s0that A~ 'x < y < Ax and A
is the smallest number with this property. By sublinearity and monotonicity,

AT S T(A'x) S Ty < T(x) < ATx (5.3)

which implies p(T'x, Ty) < p(x, y).

If T is strongly sublinear, the first and last inequalities in (5.3) can be replaced by <,
which implies p(T'x, Ty) < p(x, y).

When x and y are linearly independent, A~!x < y < Ax. If also T is strongly monotone,
(5.3) is strengthened to

AT S T(AV %) « Ty K T(x) ATx

which also implies p(T'x, Ty) < p(x, y).

To prove (iv), observe first that if L is compact in the norm metric, it is also compact
in the part metric. In both (ii) and (iii) 7 reduces the diameter in the part metric of every
compact subset of L. Since T maps L, onto itself but reduces its part metric diameter,
(iv) follows. O

PROOF OF THE CONE LIMIT SET TRICHOTOMY 5.20. We first work under the assump-
tion that r = 1. In this case Proposition 5.21 shows that every compact invariant set in P
reduces to a fixed point, and there is at most one fixed point in P. It suffices to consider the
orbits of points x € P, by (b).
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Suppose there is a fixed point g >> 0. There exist numbers 0 < A < 1 < p such that
x € [Aq, nq]l C P. For all n we have

0kAg=AT"g<T"\q) < T"x <T"(pq) <puT"q=puq.
q q

Hence O (x) C [Aq, nql, so O(Tx) liesin T ([Ap, nuql), which is precompact by (c). There-
fore w(x) is a compact unordered invariant set in P. Proposition 5.21(iii) implies that
w(x) = {q}. This verifies (iii).

Case I: If some orbit O(y) is order unbounded, we prove (i). We may assume y >> 0.
There exists 0 < y < 1 such that yy < x. Then yT"y < T"(yy) < T"x, implying O (x)
is unbounded.

Case 1I: If 0 € w(y) for some y, we prove (ii). We may assume y > 0. Fix u > 1
with x < py. Then 0 < T"x < T"(uy) < uT"y — 0. Therefore O(x) is compact and
T"x — 0.

Case III: If the orbit closure -O(—x) C [a, b] C P, then (iii) holds. For O) is compact
by (c), so w(x) is a nonempty compact invariant set. Because w(x) C O(x) C P, Casel
implies (iii).

Cases I, II and TII cover all possibilities, so the proof for » = 1 is complete. Now
assume r > 1. One of the statements (i), (i), (iii) is valid for 7" in place of T. If
(i) holds for T”, it obviously holds for 7. Assume (ii) holds for 7”. If x > O then
w(x)={0,T0),..., T7=1(0)}. As this set is compact and T" invariant, it reduces to {0},
verifying (ii) for 7. A similar argument shows that if (iii) holds for 7", it also holds
for T. ' a

The conclusion of the Cone Limit Trichotomy can fail for strongly monotone sublinear
maps—simple linear examples in the plane have a line of fixed points. But the following
holds:

THEOREM 5.22. Assume:
(a) T:Yy — Y, is continuous, sublinear, strongly monotone, and order compact,
(b) for each x > 0O there exists r € N such that T"x > 0.
Then:
(i) either O(x) is not order bounded for all x > 0, or O(x) converges to a fixed point
forallx 2 0;
(i) the set of fixed points > 0 has the form {Ae: a < A < b} where e > 0and0< a <
b < oo

PROOF. Let y > 0 be arbitrary. If O(y) is not order bounded, or 0 € w(y), the proof
of (i) follows Cases I and I in the proof of the Cone Limit Set Trichotomy 5.20. If
O(x) C [a,b] C P, then w(y) is a compact invariant set in P, as in Case IIl of 5.20. As
o(y) is unordered, every pair of its elements are linearly independent. Therefore Proposi-
tion 5.21(iv) implies w(y) reduces to a fixed point, proving (i). The same reference shows
that all fixed points lie on aray R C Y. through the origin, which must pass through some
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e > 0 by (b). Suppose p, g are distinct fixed points and 0 « p € x <<« ¢g. There exist
unique numbers 0 < i < 1 < v such that x = up = uq. Then

Txz2uTp=up=x, Tx<vIg=vg=x
proving T'x = x. This implies (ii). |

Papers related to sublinear dynamics and the part metric include Dafermos and Slem-
rod [35], Krause and Ranft [103], Krause and Nussbaum [102], Nussbaum [149,150],
Smith [183], and Takac¢ [208,215]. For interesting applications of sublinear dynamics to
higher order elliptic equations, see Fleckinger-Pellé and Takac [45,46].

5.5. Smooth strongly monotone maps

Smoothness together with compactness allows one to settle questions of stability of fixed
points and periodic points by examining the spectrum of the linearization of the mapping.
Let T: X — X where X is an open subset of the ordered Banach space Y with cone Y, hav-
ing nonempty interior in Y. Assume that T is a completely continuous, C! mapping with a
strongly positive derivative at each point. Then T is strongly monotone by Lemma 5.1 and
T’(x) is a Krein—Rutman operator so the Krein—Rutman Theorem 2.17 holds for T/(p),
D € E. Let p be the spectral radius of 7”/(p), which the reader will recall is a simple eigen-
value which dominates all others in modulus and for which the generalized eigenspace is
spanned by an eigenvector v 3> 0. Let V1 be the span of v in Y. There is 2 complementing
closed subspace V, such that ¥ = Vi @ V; satisfying T'(p) Vo C V5 and Vo, N Y, = {0}.
Let P denote the projection of Y onto V; along v. Finally, let  denote the spectral radius
of T'(p)|Va2: Va3 — V,, which obviously satisfies 7 < p. Mierczyfiski [139] exploits this
structure of the linearized mapping to obtain very detailed behavior of the orbits of points
near p. In order to describe his results, define K := {x € X: T"x — p} to be the basin
of attraction of p. Let M_ :={x € X: "l « Trx n > ng, some ng} be the set of even-
tually decreasing orbits, My := {x € X: T"x < T"t1x,n > ng, some ng} be the set of
eventually increasing orbits, and M := M_ U M be the set of eventually monotone (in the
strong sense) orbits.
The following result is standard but nonetheless important.

THEOREM 5.23 (Principle of Linearized Stability). If p < 1, there is a neighborhood U
of p such that T(U) C U and constants ¢ > 0, k € (p, 1) such that for each x € U and
alln

|IT"x — p|| <ex”lx — pl.
In the more delicate case that p < 1, Mierczyfiski [139] obtains a smooth hypersur-

face C, which is an analog for T of the codimension-one linear subspace V, invariant
under the linearized mapping T'(p):
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THEOREM 5.24. If p < 1 there exists a codimension-one embedded invariant manifold
C C X of class C! having the following properties:
(i) C={x+Pw+R(w)v: we O)where R: O — Risa C map defined on the rela-
tively open subset O of Va containing 0, satisfying R(0) = R'(0) = 0. In particular,
C is tangent to V at p.
(ii) C is unordered.
(iii) C={pe X: |[T"x — pll/k" = 0} = {x € X: |[T"x — pl/«" is bounded}, for
anyk, T <k < p. In particular, C C K.
iv) K\C={xeK: |T"x — pll/c" > oo} ={x € K: ||T"x — p||/x" is unbounded},
foranyk, T <k <p.
v) K\C=KnNnM.

Conclusion (v) implies most orbits converging to p do so monotonically, but more can be
said. Indeed, K "My ={x € K: (T"x — p)/||T"x — p|| = —v} and a similar result for
K N M_ with v replacing —v holds. The manifold C is a local version of the unordered
invariant hypersurfaces obtained by Tak4¢ in [209].

Corresponding to the space Vi spanned by v 3> 0 for T’(p), a locally forward invariant,
one dimensional complement to the codimension one manifold C is given in the following
result.

THEOREM 5.25. There is € > 0 and a one-dimensional locally forward invariant C' man-
ifold W C B(p;€), tangent to 'V at p. If p > 1, then W is locally unique, and for each
x € W there is a sequence {x_,} CW withTx_p, =x_py1, X0 =x,and k" ||x_, — p|| = 0
foranyi,l <k <p.

Here B(p; €) is the open €-ball centered at p. Local forward invariance of W means that
x € W and Tx € B(x; €) implies Tx € W. Related results are obtained by Smith [184].
In summary, the above results assert that the dynamical behavior of the nonlinear map 7'
behaves near p like that of its linearization T/(p). Obviously, the above results can be
applied at a periodic point p of period k by considering the map T'* which has all the
required properties.

Mierczynski {139] uses the results above to classify the convergent orbits of 7. Similar
results are obtained by Takac in [210].

It is instructive to consider the sort of stable bifurcations that can occur from a linearly
stable fixed point, or a linearly stable periodic point, for a one parameter family of map-
pings satisfying the hypotheses of the previous results, as the parameter passes through a
critical value at which p = 1. The fact that there is a simple positive dominant eigenvalue
of (T*)'(p) ensures that period-doubling bifurcations from a stable fixed point or from a
stable periodic point, as a consequence of a real eigenvalue passing through —1, cannot
occur. In a similar way, a Neimark—Sacker [113] bifurcation to an invariant closed curve
cannot occur from a stable fixed or periodic point. These sorts of bifurcations can occur
from unstable fixed or periodic points but then they will “be born unstable.”

The generic orbit of a smooth strongly order preserving semiflow converges to fixed
point but such a result fails to hold for discrete semigroups, i.e., for strongly order pre-
serving mappings. Indeed, such mappings can have attracting periodic orbits of period
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exceeding one as we have seen. However, TereScdk [217], improving earlier joint work
with Polac¢ik [164,165], and {65], has obtained the strongest result possible for strongly
monotone, smooth, dissipative mappings.

THEOREM 5.26 (Terescak, 1996). Let T:Y — Y be a completely continuous, C L point
dissipative map whose derivative is strongly positive at every point of the ordered Banach
space Y having cone Y. with nonempty interior. Then there is a positive integer m and an
open dense set U C Y such that the omega limit set of every point of U is a periodic orbit
with period at most m.

The map P is point dissipative (see Hale [58]) provided there is a bounded set B with
the property that for every x € X, there is a positive integer ng = no(x) such that P"x € B
for all n > ng. We note that the hypothesis that T'(x) is strongly positive implies that 7" is
strongly monotone by Lemma 5.1.

5.6. Monotone planar maps

A remarkable convergence result for planar monotone maps was first obtained by de Mot-
toni and Schiaffino [42]. They focused on the period-map for the two-species, Lotka—
Volterra competition system of ordinary differential equations with periodic coefficients.
The full generality of their arguments was recognized and improved upon by Hale and
Somolinos [60] and Smith [188,189,192]. We follow the treatment Smith in [192].

In addition to the usual order relations on R?, <, <, <, generated by R, we have the
“southeast ordering” (<), generated by the fourth quadrant K = {(u, v): u > 0,v < 0}.
The map T is cooperative if it is monotone relative to < and competitive if it is monotone
relative to K.

Throughout this subsection, we assume that 7 : A — A is a continuous competitive map
on the subset A of the plane. Further hypotheses concerning A will be made below. As
noted above, all of the results have obvious analogs in the case of cooperative planar maps
(just interchange cones). Competitive planar maps preserve the order relation <k by defi-
nition, but they also put constraints on the usual ordering, as we show below.

LEMMA 5.27. Let T: A — A be a competitive map on A CR2. Ifx,y € A satisfy Tx <
Ty, then either x < y or y L x.

PROOF. If neither x < y nor y <« x hold, then x <g y or y <k x holds. But x <g y im-
plies Tx < g Ty which is incompatible with Tx < T'y. A similar contradiction is obtained
from y <g x. (]

Lemma 5.27 suggests placing one of the following additional assumptions on 7'.

Op Ifx,ycAand Tx < Ty, thenx < y.
O-) Ifx,yeAand Tx <« Ty,then y < x.
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As we shall soon see, if T is orientation preserving, then (O4.) holds and if it is orien-
tation reversing, then (O_) holds. A sequence {x, = (s, vn)} C R? is eventually compo-
nentwise monotone if there exists a positive integer N such that either u, < un4 for all
n > N or uy41 <up forall n > N and similarly for v,.

In the case of orientation-preserving maps, the following result was first proved by de
Mottoni and Schiaffino [42] for the period map of a periodic competitive Lotka—Volterra
system of differential equations.

THEOREM 5.28. If T is a competitive map for which (Oy) holds then for all x € A,
{T"x}u>0 is eventually component-wise monotone. If the orbit of x has compact closure
in A, then it converges to a fixed point of T. If, instead, (O_.) holds then for all x € A,
{T2”x},,>0 is eventually component-wise monotone. If the orbit of x has compact closure
in A, then its omega limit set is either a period-two orbit or a fixed point.

PROOF. We first note that if T is competitive and (O_) holds then T 2 is competitive and
(O4) holds (use Lemma 5.27) so the second conclusion of the theorem follows from the
first.

Suppose that (O4) holds. If T"x <k T+l or T"*Hlx < T"x holds for some n > 1,
then it holds for all larger n so the conclusion is obvious. Therefore, we assume that this
is not the case. It follows that for each n > 1 either (a) T"x <« T"*+'x or (b) T"1x «
T"x. We claim that either (a) holds for all n or (b) holds for all n. Assume x <« Tx (the
argument is similar in the other case). If the claim is false, then there is an n > 1 such
that x « Tx < -+ < T"x & T"x but T"*+1x « T"x. But (O.) implies T"x < 7"~ 'x
contradicting the displayed inequality. a

Orbits may not converge to a fixed point if (O_) holds. Consider the map T':1 — 1
where I =[—1, 1]? and T (u, v) = (—v, —u) reflects points through the line v = —u. It is
easy to see using Lemma 5.1 that T is competitive and that (O-) holds (see below). Fixed
points of T lie on the above-mentioned line but all other points in [ are period-two points.

The hypotheses (O.+) and (O_) on T are global in nature and therefore can be difficult to
check in specific examples. We now give sufficient conditions for them to hold that may be
easier to verify in applications. A contains order intervals if x,y € A and x <y implies
that [x, y] C A. Clearly, A = [a, b} contains order intervals. If A C RZ and T:A — R?,
we say that T is C! if for each a € A there is an open set U in R? and a continuously
differentiable function F: U — R? that coincides with T on U N A. We will have occasion
to make certain hypotheses concerning 7”(x) even though it is not necessarily uniquely
defined. What we mean by this is that there exists an F as above such that T "(x) = DF(x)
has the desired properties. This abuse of language will lead to no logical difficulties in the
arguments below. In the applications, A will typically be ]Rﬁ_ or some order interval [a, b]
where a < b in which case 7" is uniquely defined.

Consider the following hypothesis:

(H4) (a) A contains order intervals and is p-convex with respect to <g.
(b) detT’(x) > 0 for x € A.
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(c) T'(x)(K) C K forx € A.
(d) T isinjective.

Hypothesis (H-) is identical except the inequality is reversed in (b).

LEMMA 5.29. IfT: A — A satisfies (Hy), then T is competitive and (O.) holds. If (H_)
holds, then T is competitive and (O_) holds.

PROOF. T is competitive by hypothesis (c) since A is p-convex with respect to <g.
Assuming that (H) holds, x,y,Tx,Ty € A and Tx « Ty, we will show that x < y.
According to Lemma 5.27, the only alternative to x < y is y < x so we assume the
latter for contradiction. Let a and b be the northwest and southeast corners of the rec-
tangle [y, x] C A so that a <k b and [y, x] = [a, b]g. Since T is competitive on A,
T([y,x]) C[Ta,Tbh]gx and Tx « Ty implies that Ta <k Tb. Consider the oriented Jor-
dan curve forming the boundary of [y, x] starting at @ and going horizontally to x, then
going vertically down to b, horizontally back to y and vertically up to a. As T is injec-
tive on A, the image of this curve is an oriented Jordan curve. Monotonicity of T implies
that the image curve is contained in [T'a, Tb]k, begins at T'a and moves monotonically
with respect to <x (southwest) through Tx and then monotonically to Tb before moving
monotonically (decreasing or northwest) from T'b through Ty and on to 7a. (H,)(b) im-
plies that T is locally orientation preserving, so upon traversing the first half of the image
curve from Ta to Ty to T'b, the curve must make a “right turn” at T'b before continuing on
to Tx and to T'a. As the image curve cannot intersect itself, we see that Tx <« Ty cannot
hold, a contradiction. O

In specific examples it is often difficult to check that T is injective. It automatically
holds if A is compact and connected and there exists z € T'(A) such that the set 7~1(z) is
a single point. This is because the cardinality of T-1(w) is finite and constant for w € T (A)
by Chow and Hale [26, Lemma 2.3.4].

The following is an immediate corollary of Theorem 5.28 and Lemma 5.29.

COROLLARY 5.30. IfT: A — A satisfies (H.), then {T"x} is eventually component-wise
monotone for every x € A. In this case, if an orbit has compact closure in A, then it con-
verges to a fixed point of T. If T satisfies (H_), then {T*"x} is eventually component-wise
monotone for every x € A. In this case, if an orbit has compact closure in A, then its omega
limit set is either a fixed point or a period-two orbit.

As an application of Corollary 5.30, we recall the celebrated results of de Mottoni and
Schiaffino [42] for the periodic Lotka—Volterra system

x' = x[r(t) —at)x — b(f))’]v

5.4
Y =y[s@) = c@)x —bt)y], G4

where r,s,a,b,c,d are periodic of period one and a,b,c,d > 0. The period map
T: ]Rf"F - Rﬁ_, defined by (5.2) for (5.4), is strictly monotone relative to the fourth quad-
rant cone K by virtue of Theorem 3.5. Indeed, (5.4) is a competitive system relative to
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the cone Rﬁ_ (the off-diagonal entries of the Jacobian J = J (¢, x, y) of the right-hand
side are nonpositive), and every such system is monotone relative to K. Observe that
J +al, for large enough « > 0, has nonnegative diagonal entries so (J + af)(u, v)” € K
if u,v)T e K (e, u20,v<0). T is strongly monotone relative to K in Int ]Rﬁ_ if
b, ¢ > 0 by Corollary 3.11. Because T is injective and orientation preserving by Liouville’s
theorem, (H.) holds. Orbits are seen to be bounded by simple differential inequality ar-
guments, e.g., applied to x” < x[r (t) — a(t)x]. Consequently, by Corollary 5.30, all orbits
O(T) converge to a fixed point; equivalently, every solution of (5.4) is asymptotic to a
period-one solution.

System (5.4) is most interesting when each species can survive in the absence of its com-
petitor, i.e. the time average of r and s are positive. In that case, aside from the trivial fixed
point Ep := (0, 0), there are unique fixed points of type E; := (e, 0) and E; := (0, f). Of
course, e, f > 0 give initial data corresponding to the unique nontrivial one-periodic solu-
tions of the scalar equations: x’ = x[r(t) — a(t)x] and y’ = y[s(t) — d(t)y]. The dynamics
of the period map for these equations is described by alternative (iii) of Theorem 5.20.

It is shown by de Mottoni and Schiaffino that there is a monotone, relative to K,
T -invariant curve joining E7 to E, which is the global attractor for the dynamics of T in
]R%_ \ {Ep}. This work has inspired a very large amount of work on competitive dynamics.
See Hale and Somolinos [60], Smith [188,189], Hess and Lazer [64], Hsu et al. [83], Smith
and Thieme [201], Wang and Jiang [230,231,229], Liang and Jiang [121], Zanolin [238].

6. Semilinear parabolic equations

The purpose of this section is to analyze the monotone dynamics in a broad class of second
order, semilinear parabolic equations.

For basic theory and further information on many topics we refer the reader to books
of Amann [11], Henry [62] Cholewa and Dlotko [25], Hess [63], Lunardi [124] and Mar-
tin [125], the papers of Amann [7-10], and the survey article of Pola¢ik [163].

Solution processes for semilinear parabolic problems have been obtained by many au-
thors; see for example [3,8,38,62,63,124,125,134,147,163,194,174,208,246]. We briefly
outline the general procedure, due to Henry, with important improvements by Mora and
Lunardi.

To balance the sometimes conflicting goals of order, topology and dynamics, the domain
of a solution process must be chosen carefully. We rely on results of Mora [147], refined
by Lunardi [124], for solution processes in Banach subspaces C’l‘; @2)cck@), k=0,1
determined by the boundary operator B.

6.1. Solution processes for abstract ODEs

If Y and X are spaces such that ¥ is a subset of X and the inclusion map ¥ — X is
continuous, we write ¥ <> X. When Y and X are ordered Banach space structures, this
notation tacitly states that Y is a linear subspace of X and Y, =Y N X .

The domain and range of any map 4 are denoted by D(h) and R(#).
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6.1.1. Processes Let Z be a topological space and set Z = {(t,t0,2) e Ry x Ry x
Z: t 2 ty}. A processin Z is a family @ = {®1,1}og 1<+ of continuous maps

B110:Dtyg—> Z, Dy openin Z,
0

where the set {(¢, #p, ) € Z: ze D(t, 1)} is open in A containing {(¢,¢,z): t 20,z € Z},
with the properties:

o the map (¢, o, z) = ©; 4, (z) is continuous from ZtZ.

o the cocycle identities hold:

tzh1 2ty = 61004 =0, ©O;;=Iidentity map of Z.

Equivalently: there is a local semiflow A on Ry x Z such that A;(5,ug) = (r +
1o, ©; 1, (uo)). It follows that for each (#, z) there is a maximal 7 = 7 (¢, 2) € (tg, co]
such that z € D, 4, for all ¢ € [to, 7). The trajectory of (ty, z) is the parametrized curve
[t0,T) = Z, t > O 4(2), whose image is the orbit of (19, z). A subset S C Z is positively
invariant if it contains the orbit of every pointin Ry x S.

A trajectory is global if it is defined on [y, 00). The process is called global when all
trajectories are global.

Let S be a space such that S < Z. It may be that S is positively invariant under the
process @, and the maps &, 4, : S N D(z, 1) — S are continuous respecting the topology
on S and furthermore, the map (¢, 79, s) — ©r 1,5 is continuous from Sto S. In this case
these maps form the induced process @5 in S.

A process © in an ordered space is called (locally) monotone, SOP, Lipschitz, compact,
and so forth, provided every map ©; ,, t > to has the corresponding property.

6.1.2. Solution processes Let X be a Banach space. .4 denotes a linear operator (usually
unbounded) in X with domain D(.A) C X, that is sectorial in the following strong sense:

o Ais adensely defined, closed operator generating an analytic semigroup {e’ A}@g in
L(X), and the resolvent operators (A\] — A)~! € L(X) are compact for sufficiently
large A > 0.

The latter property ensures that e/ is compact for £ > 0 [156, Theorem 2.3.3].

We make D(.A) into a Banach space with the graph norm Ixllpeay = lIx It + I Ax ||, or
any equivalent norm. Then 4:D(A4) — X is bounded, and D(A4) — X.

For 0 < o < 1 we define the fractional power domain of A% to be X% = X%(A) :=
D(A%). Thus we have [62]

D(A) — X% — X, D(A) =X.

Let F:[0,00) x X* — X be a continuous map that is locally Lipschitz in the second
variable, i.e.:
e F|[0, 1] x B(r) has Lipschitz constant L(z,r) in the second variable whenever
[0, ] C [0, 00) and B(r) is the closed ball of radius r in X¢.
Locally Holder in the first variable is defined analogously. We say F is C! in the second
variable if 3, F (¢, w) is continuous.
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The data (X, A, F) determine the abstract initial value problem
W'(t) = Au(t) + F(t,u(®)) (> 1), ©.1)
u(ty) =up € X. )

A continuous curve u: [fy, T) = X, to < T < 00 is a (classical) solution through (to, uo)
if u(r) € D(A) for tg < t < T and (6.1) holds. It is well known (e.g., Lunardi [124, 4.1.2])
that every solution is also a mild solution, i.e., it satisfies the integral equation

t
u(r) = et~ Ay 4 / e(’_s)AF(s, u(s))ds (o<t <71). 6.2)

fo

Moreover, every mild solution is a solution provided F is locally Holder in ¢ (Lunardi [124,
Proposition 7.1.3]).

A classical or mild solution is maximal if it does not extend to a classical or mild solution
on a larger interval in [fg, 00); it is then referred to as a trajectory at (t9, uo), and its image
is an orbit. When such a trajectory is unique it is denoted by ¢ > u(t, fo, #o). In this case
the escape time of (to, uo) is t (fo, uo) := 7. If T = 0o the trajectory is called global.

The following basic result means that Eq. (6.1) is well-posed in a strong sense, and that
solutions enjoy considerable uniformity and compactness.

THEOREM 6.1. Let (tg, uo) € Ry x X%. There is a unique mild trajectory at (o, uo), and
it is a classical trajectory provided F(t,u) is locally Holder in t. If to < t; < 1(t0, U0),
there is a neighborhood U of xo in X* and M > 0 such that

lult, to, uy) — u(t, to, u2)llxe < Mlluy —uzfixe, ur,u2€l.

There exist C > 0, tg < 11 < t(to, uo), a bounded neighborhood N of ug in X and a con-
tinuous map

Wifto, 1] x N —> X, (¢, v) = u(r, to, v),

where u(t, tg, v) is a mild solution, such that the following hold. If s, 1 € (to, 11], O0<a<l
andv,w € N:
@ ¥ (s, v) =¥ (s, w < Cllv—wl;
(i) 1w (s, v) — ¥ (s, w)lxe < (s —10)"*Cllv—wl;
(iii) ¥ ([s,11] x N) is precompact in X%;
iv) u(-, to, v): (to, t] = X% and u(:, to, v) : [t0, t1 = X are continuous;
(v) trajectories bounded in X* are global.

PROOF. Lunardi [124, Theorems 7.1.2, 7.1.3 and 7.1.10] proves the first assertion. Items
@), (ii) and (iv) follow from [124, Theorem 7.1.5], and (v) follows from Theorem 7.1.8
(see also Henry [62,3.34]). Fix B witha < 8 < 1. As N is bounded in X, ¥ (s x N) is
bounded in X? by (ii) (with « in (ii) replaced by B). Therefore ¥ (s X N) is precompact
in X*, and (iii) follows because ¥ defines a local semiflow on Ry x X¢. O
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Equation (6.1) induces a solution process ® in X, defined by Oy 1y (o) := ult, to, up).
Its restriction to X* defines an induced solution process on that space. When Eq. (6.1) is
autonomous, i.e., F(t, u) = F(u), this solution process boils down to a local semiflow @
in X%, defined by &, (t9, uo) = u(t + to, to, uo).

When F(z,u) has period A > O in ¢, the solution process is A-periodic: O =
O+, 15+1- In this case @ reduces to a local semiflow on S! x X%, the dynamics of which
are largely determined by the Poincaré map T := ©; ¢ which maps an open subset of X®
continuously into X%,

Let S be a set and Z a Banach space. We use expressions such as “S is bounded in Z”
or “S C Z is bounded” to mean S C Z and sup,c |lu||z < co. Note that S may also be
unbounded in other Banach spaces.

A map defined on a metric space is compact if every bounded set in its domain has
precompact image. It is locally compact if every point of the domain has a neighborhood
with precompact image.

A Banach space Y is adapted to the data (X, A, F) if the following two conditions hold:

X*e>Yes X (6.3)

and the map (¢, ug) > O ;,up from [y, ) X D(t, 1) NY to Y is continuous. The solution
process @ determines the induced solution process @Y in Y. The domain of e 1 18 the
open subset DY (¢, 1) := Diy,NY of Y.

Rather than work with fractional power spaces, one can assume that F : [0, 00) x K — X
where K is a suitable subset of X. The subset K C X is locally closed in the Banach space
X if for each x € K there exists r > O such that {y € K: ||x—y| < r}is closedin X. Closed
and open subsets K of X are locally closed. Note that the following result gives existence
and uniqueness of mild solutions while at the same time giving positive invariance. It is
a special case of Theorems VIIL.2.1 and VIIL3.1 in Martin [125]. Assumptions on the
semigroup e’ A remain as above.

THEOREM 6.2. Let K be a nonempty locally closed subset of a Banach space X and let
F:[0,00) x K — X be continuous and satisfy: For each R > 0 there are Lr > 0 and
y €(0, 1] such thatforx,y € K, ||x|l, |y < R,0<s,t <R

[F @, x)— Fs,y)| < Lr(lt —s1” +llx — ). (6.4)

Suppose also that:

(a) e"A(K) C K forallt >0, and

(b) liminf;\ o % dist(x +hF(t,x), K) =0 for (t,x) € [0, 00) x K.
Then for each (to, up) € [0, 00) x K, there is a unique classical trajectory u(t, to, uo) of
(6.2) defined on a maximal interval [y, T), and u(t) € K fortg <t < 1.

This result is useful for parabolic systems when X = C*(2), k =0, 1 but not when X =
LP($2). The substitution operators are well-behaved in the former cases but require very
stringent growth conditions for the latter; see Martin [125]. By virtue of the uniqueness
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assertions of Theorem 6.1 and Theorem 6.2, the solution processes given by the two results
agree on K if (6.4) holds.

Hypothesis (a) is obviously required for the positive invariance of K in case F =0.
Hypothesis (b), called the subtangential condition, is easily seen to be a necessary condi-
tion for the positive invariance of K if A = 0. See Martin [125, Theorem VI.2.1]. Both
hypotheses are trivially satisfied if K = X.

The following result is a special case of [125, Proposition VIIL4.1]:

PROPOSITION 6.3. Let F:[0, 00) X X — X be continuous and satisfy (6.4) with K = X
and let u(r) = u(t, to, xo) be the unique classical trajectory defined on a maximal interval
[to, ) guaranteed by Theorem 6.2. If T < 00 then lim;_, lu(@®)| = oo.

6.1.3. Monotone processes Given our interest in establishing monotonicity properties of
solution processes induced by parabolic systems in various functions spaces, there are two
approaches one may take. One is to establish the properties on spaces of smooth func-
tions such as fractional power spaces X for & < 1 near unity and then try to extend the
monotonicity to larger spaces, e.g., C 0(£2), by approximation. An alternative is to establish
the monotonicity properties on the larger spaces first and then get corresponding proper-
ties on the smaller spaces by restriction. We give both approaches here, beginning with the
former.

A process © is very strongly order preserving (= VSOP) if it is monotone and has
the following property: Given #o > 0, u > v, and € > 0, there exist s € (f, o + €] and
neighborhoods U, V of u, v respectively such that

t2s = O14,(UNDisy)>0r,(VN D).
This implies & is SOP and strictly monotone.

THEOREM 6.4. Assume X is an ordered Banach space and Y — X an ordered Banach
space such that Y is dense in X and the order cone Y, :=Y N Xy is dense in X1. Let ®
be a process in X that induces a monotone process OY inY. Then:
(a) ® is monotone.
(b) Assume R(O; ) CY forallt >ty = 0. Then ® is strictly monotone if@y is strictly
monotone, and © is VSOP provided &Y is strongly monotone and 0, 5, D(t, tp) —
Y is continuous fort > fy.

PROOF. (a) Fix u and v > u in X. The closed line segment uv spanned by u and v is
compact, hence there exists p > 1o with wv C Dy,,p. By the density assumptions there exist

convergent sequences u, —> U, Uy —> v in Dy, , such that u,, v, € Y and u, <v,. As oY
is induced from @, it follows that u,, v, € Dt’(;‘ - For all 1 € [tg, 0),

Or.to(n) = OF (un) < O (Wn) = Ot ().

Taking limits as n — 0o proves @y 1 (u) < O 4 (V). Thus @ is monotone.
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(b) Assume now that @ is strictly monotone. We show that @ is strictly monotone. Let
u(t), v(r) be local trajectories with u(z0) < v(t0). If r € (to, #1] is sufficiently near rg, then
u(r), v(r) are distinct points of Y, and u(r) < v(r) by (a). Hence u(r;) < v(t;) by strict
monotonicity of @Y.

To prove @ is VSOP, let u(z), v(¢) be as above with u(tp), v(tg) € D Iftg <5 <
r < t, strict monotonicity implies u(s) > v(s). These points are in ¥, @Y is strongly
monotone, and © agrees with @Y in Y. Therefore there are disjoint neighborhoods
Ui, V1 CY of u(s), v(s) respectively, such that

@r,s (Ul n Dr,s) > @r,s(vl N Dr,s)
and strict monotonicity implies that
t>r = 6;,(U1ND:y)>6,(ViN D ). (6.5)

As O :D(r,t9) — Y is continuous, we may define neighborhoods U,V C X of
u(tp), v(tp) respectively by

U=0,,Un, V=671
By (6.5) and the cocycle identities,
t>r = @tva (U N Df,t()) > @,Y,O(V N Dt,t())' D

Let X be an ordered Banach space with positive cone X and K a locally closed subset.
The mapping F : K — X is said to be quasimonotone (relative to X ) if:

(QM) Forall (¢, x), (t, y) € [0, 00) x K satisfying x < y we have:
L
K% - dist(y —x +h[F(t,y) — F(t,x)], X4) =0.

The next result is due to [125, Proposition VIIL.6.1 and Lemma 6.3] (see also [129] in
case of abstract delay differential equations).

THEOREM 6.5. Assume the hypotheses of Theorem 6.2 hold, F is quasimonotone, and
eAisa Dpositive operator for t > 0. In addition, suppose one of the following:
(i) K is open.
(i) K+ X4y CK.
(iii) X is a Banach lattice and K = [u, v] for some u, v € X U {—00, 00}, u < v.
Then

x,yEK,x<y = u@,x)<u(t,y) (0<t<min{z,1,}).
By [—00, v], v € X, is meant the set {x € X: x < v}; similarly for other intervals involv-

ing 4o00. Of course, —00 < v < oo for every v € X. Observe that K = [u, oo] is covered
by both (ii) and (iii).
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REMARK 6.6. If F has the property that for each x, y € K with x < y, there exists A > 0
such that F (¢, x) + Ax < F(t,y) + Ay then F is quasimonotone because

y—x+h[F(t,y) = Ft,0)] = 1= 2n)(y — x)
+h[F(t,y) + Ay — F(t,x) —Ax] € X4
when h < A~
REMARK 6.7. It is well-known that e/ is a positive operator if and only if (A1 — A1
is a positive operator for all large positive A. See, e.g., [11, Theorem II 6.4.1] or [125,
Proposition 7.5.3]. Indeed, if K is a closed convex subset of X, then e'AK C K if and
only if (\I — A)~'K C K for all large positive 2.

A Banach space X is a Banach lattice if foreachx,y € X, x Vy = sup{x, y} exists and
the norm is monotone in the sense:

xI<lyl = IIxlI<lyll,

where |x| denotes the absolute value of x: |x| := (—x) V x (see Vulikh [225]). Banach
lattices are easy to work with due to simple formulas such as

dist(x, X4) = llx — x4l = llx1I,
where x,. :=x v 0 and x_ = —(—x)4. The requirement that X be a Banach lattice is a
rather strong hypothesis which essentially restricts applicability to X = L?(£2), CcO(2) or
Cg (£2). However, the latter two will be important for reaction—diffusion systems.

6.2. Semilinear parabolic equations

Let 2 C R” be the interior of a compact n-dimensional manifold with C 2 boundary 3£2.
We consider the semilinear system of m coupled equations (1 <i < m):

8 .
_atit’_ = (Aju)t, x) + fi{t,x,u,Vu) (x €82, t > 1),
(Biup)(t,x) =0 (x €882, 1 > 1), (6.6)
u; (to, x) = vo,; (x) (x € Q).
Here the unknown functionis u = (uy, ..., 4m) :2 > R™ and Vu := (Vui,..., Vi) €
(R™y™ lists the spatial gradients Vu; of the u;, i.e., Vu; = (g%i, e g—;’;). Each A;(x)isa

second order, elliptic differential operator of the form

N I R
A=) € 50 +Zb’j(x)§j 6.7
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with uniformly continuous and bounded coefficients. Each n x n matrix C/(x) := [C{ 7 )]
is assumed positive definite:

0<inf((C'(x)y.y)) (xe2,yeR", |y|=1),

where (-, -} denotes the Euclidean inner product on R”.
The function

F=f1 0 fn) Ry x 2 xR™ x (R")" — R™

is continuous, and f(t, x, u, &) is locally Lipschitz in (i, £) € R” x (R")™. .
Each boundary operator B; acts on sufficiently smooth functions v : [p, 7) X 2 = R in
one of the following ways, where x € 952:

Dirichlet:  (Bjv)(t,x) =v(t, x);

Robin: (Biv)(t, x) = yv(t, x) + g—;(r, x);

a
Neumann: (B;jv)(t,x) = a—v-(t, x),
i

§

where y; : £2 — [0, c0) is continuously differentiable, and & :£2 — R" is a continuously
differentiable vector field transverse to 962 and pointing outward from £2. Note that Neu-
mann is a special case of Robin.

We rewrite (6.6) as an initial-boundary value problem for an unknown vector-valued

function u = (uy, ..., um): (19, 7) X 2 — R™,
du
§=(Au)(t,x)+f(t,x,u,Vu) (xef, t>t),
(Bu)(t,x) =0 (x €382, t > 1), ©.3)
u(ry, x) = up(x) (x € 9),

where the operators A:=A; X -.- x Ay, and B:= By x --- X B,, act componentwise on
u=(ut,...,um). By a solution process for Eq. (6.8) we mean a process in some function
space on £2, whose trajectories are solutions to (6.8).

Of special interest are autonomous systems, for which f = f(x,u, Vu); and the
reaction—diffusion systems, characterized by f = f(¢, x, u).

Assume n < p < co. To Eq. (6.8) we associate an abstract differential Eq. (6.1) in
LP(£2,R™). The pair of operators (A;, B;) has a sectorial realization 4; in L7 (£2) with
domain D(A;) — L”(£2) (Lunardi [124, 3.1.3]). The operator A := A; X --- x A, is
sectorial on X := LP (2, R™) =[L7(£2)]™.

Fora € [0, 1) set X* := X*(A). We choose « so that f defines a continuous substitution
operator

F:R. x X% - X, F(t,u)(x) := f(t, x,u(x), Vu(x)).
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It suffices to take o

1
1>a>-<1+£), (6.9)
2 D

for then X* < C1($2, R™) by the Sobolev embedding theorems.

The data (A, F) thus determine an abstract differential equation 4’ = Au + F(¢, u)
in X, whose trajectories u(t) correspond to solutions u(t, x) := u(t)(x) of (6.6). The as-
sumptions on f make F (¢, u) locally Lipschitz in u € X¢.

By Theorem 6.1 and the Sobolev embedding theorem we have:

PROPOSITION 6.8. Equation (6.8) defines a solution process ©@ on X := LP($2,R™)
which induces a solution process in X for every g € [0, 1) with B2a.

We quote a useful condition for globality of a solution:
PROPOSITION 6.9. Assume there are constants C > 0 and 0 < € < 1 such that

[£¢,x, 0, &) <C(1+ vl + 1E1%7€)  forall (t,x,v,8) e Ry x 2 x S x R”.
(6.10)

Ifu:lty, ©) = LP($2,R™) is a trajectory such that

timsup|u(®)] g gy < 00 (6.11)
t—>T—

then 1 = 00.

PROOF. Follows from Amann [9, Theorem 5.33}], taking the constants of that result to be
m=k=py=p=1c=s5=0,y1 =2—c¢. O

Solutions u:[f9,7) x 2 — R™ to (6.8) enjoy considerable smoothness. For ex-
ample, if the data 352;, f;, A;, B; are smooth of class C2t2¢, 0 < 2¢ < 1, then u €
CUHe2R2e([1, 1] x 2, R™) for all f < 1 < #; < T (Lunardi [124, 7.3.3(iii)]).

While useful for many purposes, solution processes in the spaces X suffer from the
drawback that X and its norm are defined implicitly, leaving unclear the domains of so-
lutions and the meaning of convergence, stability, density and similar topological terms.
In addition, the topology of X* might be unsuitable for a given application. To overcome
these difficulties we could appeal to results of Colombo and Vespri [29], Lunardi [124] and
Mora [147], establishing induced processes in Banach spaces of continuous, smooth or L?
functions; or we can apply Theorem 6.2. We now define these spaces.

For r € N let C"(£2) denotes the usual Banach space of C” functions on £2. Set

Co(R2):={veC"(2): vlas =0}.
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With y, £ as in a Robin boundary operator and r 2> 1, define

ve(2):= {v eC’(R2): y(x)vx) + —E(x) 0(xe ag)}.

It is not hard to show that:
e CO(2),C1(2) and C!} 5(.(2) are strongly ordered, with u >> 0 if and only if u(x) > 0
for zﬁ xe82;

° Cé (£2) is strongly ordered, with u >> 0 if and only if u(x) > O for all x € £2 and
du/dv >0 where v: 982 — R" is the unit vector field inwardly normal to 3£2;

. Cg (£2) is not strongly ordered. Both Cg (£2) and C%($2) are Banach lattices.

In terms of the boundary operators B;, for k =0, 1 we define Banach spaces

)
(2) ifBiisRobinandk =1,
(ﬁ) if B; is Robin and k = 0.

6‘ (2)  if B; is Dirichlet,

Note that C}?i (£2) is strongly ordered, while C %l, (£2) is strongly ordered if and only if B;
is Robin; C?;i (£2) is a Banach lattice. The ordered Banach space

ck(2,R") =11,C5 (2),

with the product order cone, is strongly ordered if k = 1, or k = 0 and no B; is Dirichlet.
The order cone L? (82, R™) is the subset of L?(§2, R™) comprising equivalence classes
represented by functions £2 — R’. Note that L”(§2, R™) is normally ordered but not
strongly ordered.

It is known that the pair of operators (A;, B;) has a sectorial realization A; on ck (B;)
and therefore the product operator A is sectorial on Ck ($2,R™). See Corollary 3.1.24,
Theorems 3.1.25, 3.1.26 in [124].

LEMMA 6.10. For X =LP(22,R™) or Cg (2, R™), the analytic semigroup e'A is a pos-
itive operator for t > O with respect to the cone of componentwise nonnegative functions
in X.

PROOF. As noted in Remark 6.7, it suffices to show that (A\I — .4)~! is positive for large
A > 0, or equivalently, that for each i and f; > 0, the solution g; € D(A;) of fi = Ag; —
Aj g; satisfies g; > 0. The existence of g; is not the issue but rather it’s positivity. Thus
it boils down to Ag; — A;g; = 0 = g; = 0. But these follow from standard maximum
principle arguments. See Lemma 3.1.4 in [155]. a

With X = L?(£2, R™) and A and « as above, we have a chain of continuous inclusions
of ordered Banach spaces

D(A) < X% < Ch(2,R") — C%(2,R™) — L?(2,R™),
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with a solution process in L?(£2, R™) and an induced solution process in X¢.

PROPOSITION 6.11. Let ® be the solution process in LP (£2,R™) for Eq. (6.1) with n <
p < oo,

(a) Forallt > ty, ©; 4y maps Dy g, continuously into C[l; (22, R™).

(b) © induces a solution process elin Cll; (2, R™).

(¢) © induces a solution process 6% in C% (£2,R™) provided f = f(t,x,u).

PROOF. By uniqueness of solutions it suffices to establish induced solution processes in
C};(ﬁ, R™) < LP($2,R™),and in Cg(ﬁ, R™) < LP(£2,R™) when f = f(¢, x, u). This
is done in Lunardi [124, Proposition 7.3.3] for m = 1, and the general case is similar.
Part (¢) follows from Theorem 6.2. O

Henceforth @F, k € {0, 1}, denotes the process ®%or ®! asin Proposition 6.11.
6.2.1. Dynamics in spaces X Forany set ' C R” and k =0, 1 define

Xk = {uecg(ﬁ,Rm): u(2)crij, 6.12)
Xr:={ueL?(2,R"): u()cr}. ’

A rectangle in R™ is a set of the form J = J; x --- x J,, where each J; C R is a non-
degenerate closed interval. R™, ]Rﬂ and closed order intervals [a, b], a < b are rectangles.

PROPOSITION 6.12. Let J :=T17"_ | J; be a rectangle in R™ such that either 0 € J; or B;
is Neumann, and the following hold for all x € 2, u € 8J:

fitt,x,u,0) 20 ifu; =infJ;, fit,x,u,00 <0 ifu; =supJ;. (6.13)

Then:

(1) In the reaction—diffusion case, X ; is positively invariant for © and X ]; is positively
invariant for OF (k=0,1).

(ii) Suppose k =m =1and J C R is an interval. Then X ; is positively invariant for @
and X } is positively invariant for @1,

PROOF. For the reaction—diffusion case we sketch a proof that X(} is ©%-positively in-
variant using Theorem 6.2. The proof that X ; is ®-positively invariant follows from this
since ©; 4, (u) is the LP limit limy @Qto (ur) where uy € X(J) approximates u € Xy in L”
and the facts: @ = © on X (}, a dense subset of the closed subset X ;. In order to verify
the subtangential condition for X9, it suffices to verify the subtangential condition for J:

P
llirlr\lg(r)lfﬁ dist(u + hf(t,x,u), J) =0 (6.14)
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for each (f,x,u) € [0,00) X 2 x J by Martin [125, Proposition IX.1.1]. But (6.14) is a
necessary condition for J to be positively invariant for the ODE

v =f(tx,v),

where x is a parameter. See, e.g., [125, Theorem VI.2.1]. It is well-known and easy
to prove that condition (6.13) implies the positive invariance of J for the ODE (see,
e.g., Proposition 3.3, Smith and Waltman [203, Proposition B.7], or Walter [227, Chap-
ter II, Section 12, Theorem II). It follows that (6.14) holds. Therefore the subtangential
condition for X(J) holds. Finally, we must verify that e"AX (J) C X(j) or, equivalently, that
e Aic %, 2, cc g, (£, J;). This follows from Remark 6.7 and standard maximum prin-
ciple ar'guments. It also follows from standard comparison principles for parabolic equa-
tions. See, e.g., Pao [155, Lemma 2.1] or Smith [194, Corollary 2.4].

The case k =m =1 is a special case of {227, Chapter IV, Section 25, Theorem I,
Section 31, Corollaries IV and V). O

Consider the case that (6.6) is autonomous:

ou; -
a—t'.—_Aiu,-+f,-(x,u,Vu) (xe 2, t>t), 6.15)
Biui=0 (Xeag, t>t0),

i =1,...,m. The solution processes ©, 61, ©9 reduce to local semiflows.

We introduce a mild growth condition, trivially satisfied in the reaction—diffusion case:

For each s > 0 there exists C(s) > 0 such that

W <s = [fGx,0,8)]<CE)(1+[6127F). (6.16)

The following result gives sufficient conditions for solution processes in X - to be global,
and to admit compact global attractors:

PROPOSITION 6.13. Assume system (6.15) satisfies (6.16). Let I' C R™ be a nonempty
compact set such that X i is positively invariant for (6.15). Then:
(a) There are solution semiflows &, ®1in X, X IF respectively. &' is compact.
(b) Assume (6.15) is reaction—diffusion. Then there is also a solution semiflow ®° in
X %. The semiflows &, 0, ! are compact and order compact. There is a compact
set K C X} which is the global attractor for all three semiflows.

PROOF. (a) Let I' lie in the open ball of radius R > 0 about the origin in R™ and let
h:R™ — R™ be any smooth bounded function that agrees with the identity on the open
ball of radius R. Define g by g(x, v, &) = f(x, ~A(v), &). Every trajectory in X of (6.15)
is also a trajectory of the analogous system in which f is replaced by g (compare Pol4¢ik
[163, pp. 842-843]). Nonlinearity g satisfies (6.16) with C(s) constant so (6.10) holds. As

lim sup]] u(t) ]l O, RM) <R,
t—>1—
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which implies (6.11), all trajectories are global by Proposition 6.9. Thus, the restrictions
of ¥, ! in X and C}g (2, R™) respectively to X and X ,L define semiflows ¢ and @!.
As ! is compact by Hale [58], Theorem 4.2.2, &' is compact because XL is closed in
cL(2,R™).

(b) In the reaction—diffusion case a similar argument establishes a compact solution
semiflow @9 in X (}; and @0 is order compact because order intervals in X Sl are bounded.
To prove @° order compact, let N be an order interval in X . For every t =25 > 0, &5
maps N continuously into an order interval N’ of X(Il. Precompactness in X of &;N
follows from the precompactness in X Sl of ®9N’, already established, and the continuous
inclusion ;N = @% o &N C #IN’,

To prove order compactness of @1, let Ny C X } be an order interval. N| is contained
in an order interval Ny of X(}. Let C¥ denote closure in X’} For all ¢+ > 0 we have
C1(§D,1 Ny = Cl(db,ONl) C Clco(cbtoNo), and the latter set is compact because ®° is order
compact. This proves &} Ny is precompact in X }

X Sl is closed and bounded in X°, hence o9x (} is precompact in X% for all t > 0 by (a).

Therefore K :=("),.o @2X% is a compact global attractor for ®°. Similarly, K (with the
same topology) is a compact global attractor for &.

We rely on the identity qbtl = <1>,OIX 11~ and continuity of q)tO : X(} - X 11“ forallt > 0. As
K is invariant under &9, it follows that K is a compact subset of X }1 To prove K a global
attractor for @1, it suffices to prove: For arbitrary sequences {x(i)} in X1, and #(}) — o0
in R4 with (i) > € > 0, there is a sequence iy — oo in N such that {dbtl(ik)x(ik)} converges

in XL to a point of K. Choose {ix} sothat @2 . (ip) converges X% ask—>ootopek;
r p t(ip)—e r P

this is possible because K is a compact global attractor for @°. Then dbtl(ik)x(ik) = 452 o

P x (ix), which converges in X} ask — oo to (bgp ck. O

0
t(ig)—e
EXAMPLE. Let the u; denote the concentrations or densities of entities such as chem-
icals or species. Such quantities are inherently positive, so taking the state space to be
LP(2,RY) or C’L‘; (2, R™) is appropriate. We make the plausible assumption that suffi-
ciently high density levels must decrease. Modeling this situation by (a) and (b) below, we
get the following result.

PROPOSITION 6.14. In Eq. (6.15) assume f = f(x,u) and let the following hold for
i=1,...,m:

@ filx,u) 20ifu; =0;

(b) there exists k > 0 such that f;(x,u) <0 ifu; > «. .
Then for k =0, 1 solution processes in the order cones L¥(2,RY), C g (82, RY) are de-
fined by semiflows &, ®* respectively; and there is a compact set K C X{‘O‘ e that is the

global attractor for &, &0 and ®1.

PROOF. Proposition 6.12 and (a) proves L7 (2, R’}) and C ’f; (2, R) are positively invari-
ant under the solution process.

Consider the compact rectangles J(c) := [0, ck]™ C R™, ¢ > 1. Assumption (b) and
Proposition 6.12 entail positive invariance of X ;). Proposition 6.13 shows that there are
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solution semiflows in X () and X’; () having a compact global attractor K. C X } () In
common. As the J(c) are nested and exhaust R”, these semiflows come from solution
semiflows @, d* as required. Moreover, all the attractors K. coincide with the compact
set K:=K1CX }(1). It is easy to see that K is the required global attractor. [

Results on global solutions and positively invariant sets can be found in many places.
See for example Amann [9,10], Cholewa and Dlotko [25], Cosner [33], Lunardi [124],
Pol4&ik [163], Smith [194], Smoller [205].

6.2.2. Monotone solution processes for parabolic equations We restrict attention here
to monotonicity properties with respect to the standard point-wise and component-wise
ordering of functions £2 — R™: f < g if and only if f;(x) < g;(x) for all x and all i.
The natural ordering on L (£2, R™) is defined on equivalence classes by the condition on
representatives that f;(x) < g; (x) almost everywhere.

Orderings induced by orthants in R” other than the positive orthant can be handled easily
by change of variables. See Mincheva [144] and [145] for results in the case of polyhedral
cones in R”.

Consider the case m =1 in Eq. (6.8).

THEOREM 6.15. In Eq. (6.8), assume m = 1 and f is C*. Then:
(i) @ is VSOP on LP(£2,R™).
(i) ®! is strongly monotone in C }3 (22).
(iii) If f = f(t,x,u) the induced process ®° on COB (£2) is VSOP, and strongly
monotone if all boundary operators are Robin.

PROOF. Let u, v:[tg, 1] X 2 — R be solutions with v(fg, x) — u(fg, x) = 0 for all x and
> 0 for some x. Then w := v — u is the solution to the problem

ot Jaxj
Bw(t,x) =0 (x €082, t >1t),
w(to,x) >0, w(to,x)#0 (x€Q)

9 .9 _
—w=Aw+§ b-—w+cw (x €82, t >1y),
= (6.17)

where bj = b;(¢,x) and cj = c;(t, x) are obtained as follows. Evaluate u, v and their
spatial gradients at (¢, x), and for s € [0, 1] set

Z(s) =1 —s){¢, x,u,Vu) +s{, x,v, Vv),

1
b(t,x) = (b1(t, %), ..., by(t, X)) = /0 Dsf(Z(s))ds,

1
c(t, x) =f0 D3 f(Z(s))ds
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where D4 f and D3 f denote respectively the derivatives of f (¢, x, y, §) with respect to
& € R" and y € R. By Taylor’s theorem

fl,x,v,Vv) — f(t,x,u,Vu) =b(t,x)(Vu — Vu) + ¢, x)(u — v),

whence (6.17) follows.

The parabolic maximum principle and boundary point lemma ({194, Theorems 7.2.1,
7.2.2]) imply that the function w(, -), considered as an element of C%; ), is > 0.
This proves (ii), and the first assertion of (iii) follows from Theorem 6.4(b). The proof
of strong monotonicity for Robin boundary conditions is similar to the arguments given
above. Part (i) follows from strong monotonicity of @', Theorem 6.4 and continuity of
Oy LP(2,R™) — X* < CL(2,R™). O

For m > 2 we impose further conditions on system (6.6) in order to have a monotone
solution process: it must be of reaction—diffusion type, and the vector fields f (¢, x, -) on
R™ must be cooperative. In other words, f(t,x,u) is C 1'in u and 8 fi/0u; = 0 for all
i # j. (The latter condition holds vacuously if m = 1). When this holds then the system
is called cooperative. If in addition, there exists ¥ € £2 such that the m x m Jacobian
matrix [0f;/0u;(t, x, u)] is irreducible for all (¢, u), we call the system cooperative and
irreducible

THEOREM 6.16. If system (6.15) is cooperative, then ©, ©*, k =0, 1 are monotone. If
the system is also irreducible, then:
(i) © is VSOP on LP($2,R™).
(i) @! is strongly monotone in C 11; (22, R™).
(iti) @Y is VSOPinC 109 (£2,R™) and is strongly monotone when all boundary operators
are Robin.

PROOF. Monotonicity in Cg (2, R™) follows directly from Theorem 6.5 and Remark 6.6.
Indeed, let u < v in Cg (?2—, IR™) and ¢ be fixed. Then

[F(t,v) = F(t, 1) + A(v — u)](x)

1
=/ (z—];(t,x,su(x)+(1—s)v(x))+AI> ds(v —u)(x) >0
0

for some A > 0 and all x € £2 by cooperativity of f and compactness of 2. This implies
that (QM) holds. The positivity of ¢’ follows from Lemma 6.10. Monotonicity of & in
LP(82,R™) follows from monotonicity of ©° and Theorem 6.4.

The proof of VSOP and strong monotonicity for Robin boundary conditions in
C% (22, R™) is like that of Theorem 6.15(i), exploiting the maximum principle for weakly
coupled parabolic systems (Protter and Weinberger [166, Chapter 3, Theorems 13, 14, 15
and pp. 192, Remark (i)]). See Smith {194, Section 7.4] for a similar proof.

Monotonicity of @! follows from monotonicity of @0, Strong monotonicity of &1, in
the case of Dirichlet boundary conditions, requires exploiting the maximum principle as in
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the previous case (the same references apply). VSOP of ® follows from strong monotonic-
ity of ©®!, Theorem 6.4 and continuity of the composition @ 4 : L7 (£2,R") — X% —
CL(2,R™). O

6.3. Parabolic systems with monotone dynamics

We now treat autonomous systems (6.15) having monotone dynamics. Our goal is The-
orem 6.17, a sample of the convergence and stability results derivable from the general
theory.

In addition to the assumptions for (6.6), we require the following conditions to hold
for the solution process @ in X := LP(£2,R™), with p satisfying (6.9) and X’,& defined
in (6.12):

(SP) If m > 2 in system (6.15) then f = f(x,u) and the system is cooperative and
irreducible. I" C R™ is a nonempty set, either an open set or the closure of an open
set. The solution process induces semiflows &, ®lin Xr, X } respectively, and
@0 in X(,)- for the reaction—diffusion case. These semiflows are assumed to have
compact orbit closures.

Simple conditions implying (SP) can be derived from Propositions 6.13.

The following statements follow from (SP), assertions about @Y having the implied
hypothesis f = f(x,u):

o XL isdensein X% andin Xr.

e & and ®° agree on X(}, and @, ° and ®! agree on X,L

o &, (respectively, <Dt0) maps X (respectively, X (}) continuously into X } fort >0

(Proposition 6.11).

e &, ®! and @0 have the same omega limit sets, compact attractors and equilibria.

e If I' is open or order convex and f(x, u, £isC Lin (u, &), the Improved Limit Set
Dichotomy (ILSD) holds for @' by Theorem 2.16, and for @ and ®° by Proposi-
tion 2.21.

e If I is compact then & is compact. In the reaction—diffusion case with I” compact,
@, @' and ¢0 are compact and order compact, and a common compact global attrac-
tor (Propositions 6.13).

e @! s strongly monotone; &Y is VSOP, and strongly monotone if all boundary opera-
tors are Robin; @ is VSOP (Theorem 6.16).

The sets of quasiconvergent, convergent and stable points for any semiflow ¥ are de-
noted respectively by Q(¥), C(¥), S(¥). References to intrinsic or extrinsic topology of
these sets (e.g., closure, density) for @, @! or @0 are to be interpreted in terms of the
topology of the corresponding domain X, X 11" or X (}.

THEOREM 6.17. If system (6.15) satisfies hypothesis (SP), then:
() The sets Q(P), Q(P°) and Q(P) are residual.
(ii) Assume I' is open or order convex and f(x,u,§) is C Lin (u, &). Then the sets
C(®) N S(@), C(@°) N S(@°) and C(P') have dense interiors.
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(iii) Assume f = f(x,u) and I is compact. Then the semifiows &, ®°, &1 are compact
and order compact, and they have a compact global attractor in common.

(iv) Assume I is open or order convex and Er is compact. Then some p € Er is stable
for ®. Every such p is also stable for &1, and for ° in the reaction—diffusion case.
When Er is finite, the same holds for asymptotically stable equilibria.

PRrROOF. (i) follows from Theorem 1.21.

(ii) for @ and ®° follows from Theorem 2.25(b). For @1, (ii) follows from Theo-
rem 2.26(a).

(iii) is a special case of Proposition 6.13(b).

In (iv), to find a p € Er having the asserted stability properties for @, it suffices to
verify the hypotheses of Theorem 1.30: (a) follows from (i), while (b) and (c) holds by the
assumptions on I" and compactness of E. Similarly for &0 in the reaction—diffusion case.

To prove the stability properties for p under &1, it suffices by Theorem 1.31 to show that
p has a neighborhood in X }- that is attracted to a compact set. By (i) and the assumptions
on I', there are sequences {1}, {v¢} in Q(®1) converging to p in X, such that

Uk S Ukt] < P S Ukl S Uk
and
p#FinfXr = wup <upy <p, PF#FSUPXr = p<Ukq <.

Replacing uy, v by their images under @, for sufficiently small ¢; > 0, we see from
strong monotonicity of ®! that we can assume:

p#IfXr = u Kupr1 L p, pFsSPXr = p <Ly L k.

The sets Ny := [[ug, vi]]x N X are positively invariant and form a neighborhood basis at
pin Xr.

Fix kg such that NV} is bounded in X } for all k > ko. By Theorem 6.1(iii), for every s > 0
there exists j 2 ko such that &, (N;) is precompact in X%, hence in X } Fix such numbers
s and j and let P denote the closure of ®;(N;) in X }« Being compact and positively
invariant, P contains the compact global attractor K :=(1),.,®; P for the semiflow in
@l|P. Then N ; is a neighborhood p in X } that is attracted under ®! to K. a
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