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ABSTRACT OF THE DISSERTATION

Deep Representation Learning for Single-cell Sequencing Data Analysis

By

Yingxin Cao

Doctor of Philosophy in Mathematical, Computational and Systems Biology

University of California, Irvine, 2023

Professor Xiaohui Xie, Chair

Single-cell sequencing assays nowadays provide comprehensive genomics readouts at single

cell resolution. These measurements provide unprecedented opportunities for researchers to

study cell heterogeneity and elucidate transcriptional regulatory mechanisms. However, com-

putational modeling of single-cell sequencing data is challenging due to its high dimension,

extreme sparsity, complex dependencies and high sensitivity to noises from various sources.

In this thesis, we present our works of designing representation learning frameworks to deal

with various noises and effectively learn meaningful representations of cells and genes from

large-scale single-cell sequencing datasets. In the first part, we present our design using

deep generative models to learn confounding-free representations of cells through invariant

representation learning on scATAC-seq data. By eliminating the variations of confounding

factors in the latent space through mutual information minimization, our method produces

biologically more meaningful representations of cells, which brings in significant benefits in

downstream analyses. As a follow-up work, we present our strategy to extend this framework

to a multi-modal setting. Instead of performing hard alignment by projecting both modali-

ties to a shared latent space, our method encourages the local structures of two modalities

measured by pairwise similarities to be similar. This strategy is more robust against over-

fitting of noises, and facilitates various downstream analysis such as clustering, imputation,

x



and marker gene detection. In the second line of work, we present our design of founda-

tion models to learn meaningful semantic representation of genes from broad scRNA-seq

datasets. We show that pretraining foundation models on large-scale single cell datasets

enable the models to learn meaningful features of genes that are transferable to many other

downstream tasks. The pretrained model can also be adapted for imputation tasks with

great performance.
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Chapter 1

Introduction

1.1 Background

Single-cell Sequencing

The human body is made up of 37 trillion cells, each with their own structure and function.

The structural and functional characteristics of cells are determined by the proteins they

contain. No two cells in the body contain the exact same amount of each protein. The

functions served by these cells are broad and diverse, ranging from red blood cells delivering

oxygen, to immune cells defending our body and neurons generating perception and cog-

nition. The central dogma of molecular biology states that the instructions for producing

all the cells are written in the DNA. One of the greatest puzzles in biology is how the one-

dimensional string of just four letters gives rise to the complexity and diversity epitomized

by the 37 trillion cells in our body. To solve this puzzle, we need efficient experimental

data to characterize the structures and functions of cells systemically and comprehensively,

as well as innovative computational methods to figure out the mappings between genomics

elements that eventually generate cell functions.
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Recent advances in single cell sequencing technologies offer genome-wide measurements of

genetic information from individual cells and have produced a number of large-scale reference

data to characterize the complexity and diversity of human cells [84, 89, 14, 51]. Specifi-

cally, single-cell RNA sequencing (scRNA-seq) provides quantitative measures of the RNA

expressions of all genes in single cells, up to millions of cells in one experiment. Single-cell

ATAC-seq (sc-ATAC-seq) provides a comprehensive measurements of the chromatin accessi-

bility of the entire genome in individual cells, describing cell functions and states in terms of

the epigenetic landscape of the chromatin. In addition to RNAs and chromatin accessibility,

single cell technologies for other genomic modalities such as proteins and DNA methylations,

have also been developed. These developments have lead to the generation of hundreds of

large-scale single cell datasets, providing unprecedented views on the complexity and diver-

sity of cells across multiple genomic modalities, revealing new cell types, and new definition

of cell states and conditions. However, these large scale measurements also come with lim-

ited coverage, shallow read depth per cell, and batch effect, which makes data analysis

challenging, especially for integrative analysis across multiple datasets [60]. To effectively

utilize the information from these datasets, we need computational methods that could be

efficiently scaled to large-scale high dimensional dataset, and able to denoise the data to

produce biologically meaningful outputs.

Representation Learning

Representation learning aims to learn a suitable transformation of raw data to a space

that is easier for downstream machine learning algorithms to understand and process. The

transformed data is often called an embedding of original data. A good embedding captures

the inherent structure or meaningful attributes of the data, and is less noisy and usually

more interpretable compared with original measurements.

Many methods for single cell sequencing data analysis are developed based on the manifold

2



assumption [75, 60], which assumes that even though measurements of single cell data is

originally from extremely high dimension, since expression of different genes are correlated

according to certain rules, intrinsic cell distributions is from a lower-dimensional manifold.

Standard single cell data analysis pipelines usually perform clustering on this manifold to

assign a label to each single cell in an unsupervised mannar [68]. The clustering is usually

the start point of all the other downstream analysis, thus, many efforts are made to perform

better dimensional reduction on raw single cell data, to transform the raw measurements

of gene expressions to a interpretable representation of cells that researchers could used to

determine cell states, compute cell trajectories, study differentially expressed genes, and

identify targets or key elements that lead to scientific discoveries.

Deep Generative Models

Variational Autoencoder (VAE) [55] is a class of deep generative models that estimate the

likelihood of data through Bayesian variational inference. The Bayesian approach to describe

data distribution is usually through a latent random variable z as intermediate, and then

data could be generate by sampling from likelihood distribution pθ(x|z), with θ as parameters

of the model. p(z) is the prior distribution of the data. VAE assumes a standard normal

prior, and the posterior distribution qϕ(z|x) is approximated by a encoder model.

This specification is suitable for representation learning, as one can specify the latent variable

with lower dimension to represent the states of the cell, and jointly optimize the inference

model qϕ(z|x) parameterized by encoder network and the generative model pθ(x|z) parame-

terized by decoder network on single cell datasets. With GPU acceleration, and batch-based

gradient decent optimization, these models can be computed very efficiently and scaled to

large sample sizes. Also, this specification allow us to impose additional desired proper-

ties on the latent variable z through auxiliary objective functions, which makes it a flexible

framework with probabilistic interpretations.

3



Foundation Models

A foundation model is a large deep neural net model trained on a vast quantity of data

at scale that can be adapted to a wide range of downstream applications [7]. Foundation

models are behind recent transformations in how AI systems are built. Examples include

large-scale language models such as BERT [27], GPT [10], and PaLM [23], vision models such

as ResNet [44], Inception [99], and MAE [43], and multimodal models such as CLIP [82] and

DALL-E [83]. The rise of foundation models has significantly lowered the barrier of building

AI models for downstream applications, with users focusing on adapting and transferring

knowledge from these models to new applications, instead of building new models from

scratch.

Most of the recent foundation models are built on top of the transformer architecture [109].

Inputs to the transformer model are a sequence of word tokens from a differentiable embed-

ding module (NLP), or ordered patch tokens generated from a projection neural network

(CV). The tokens are then modeled through projections and multi-head attentions to gen-

erate high-level features used for predictions or other downstream tasks. The attention

mechanism allows transformer to model interactions between tokens at any locations of the

sequence with constant time complexity regarding to the order of the sequence. This al-

lows transformer models to be efficiently applied to large-scale training on broad datasets,

learning complex and meaningful features that are transferable for multiple tasks.

Pretraining of foundation models requires a pretext that could be conducted in an self-

supervised manner. Masked prediction is a common pretext for pretrain foundation models

both in NLP [27] and CV [43]. By masking out a significant amount of input data, the model

needs to learn fundamental rules in order to reconstruct the original data. In this way, these

pretexts allow the model to learn meaningful features without any labeled data. And by

increase the scale of the data as well as the parameter size of the model, researchers observed

4



continued performance increase on downstream tasks [10, 82, 83]. After pretraining, the

embedding module which contains tokens corresponding to individual words are optimized

to represent knowledge of the large scale datasets. Simple finetuning of these embeddings

could achieve great results on many downstream tasks. By representing genomics elements as

differentiable tokens [1], researchers have built foundation models for representation learning

on many types of largely available public datasets [87, 4, 49]. This provides a novel way for

representation learning, that could significantly reduce the computational resources needed

to use state-of-the-art AI models and benefit studies with only limited sample sizes.

1.2 Overview of the Dissertation

The main context of this dissertation contains three chapters. Chapter 2 and 3 focus on

learning representation of cells with variants of deep generative model frameworks. Chapter

4 focuses on learning representation of genes.

In chapter 2, we discuss our work on the SAILER project [16]. The aim of the project is

to use invariant representation learning to disentangle known confounding factors from the

latent representation of the cells. We achieve this through an auxiliary objective on mutual

information and achieved better results on clustering and imputation.

Chapter 3 discusses SAILERX [17], which is a follow-up on the SAILER work. In this project,

we focuses on fusing information from multiple modalities in a synergistic way, which would

eventually generate a better embedding than working with single modality. We found that

aligning different modalities through a similarity metric offers better results than performing

hard alignment. And we also extend this framework to integrate multi-modal datasets with

single-modal ones.

In chapter 4, we discuss our work on learning representation of genes through pretraining

5



foundation models on large scale datasets. We explain details of our framework that designed

to perform pretraining on scRNA-seq data, and demonstrate the utility of pretrained model

on multiple downstream tasks.
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Chapter 2

Disentangle Known Confounding

Factors from Latent Representation of

Cells through Invariant

Representation Learning

Single-cell sequencing assay for transposase-accessible chromatin (scATAC-seq) provides new

opportunities to dissect epigenomic heterogeneity and elucidate transcriptional regulatory

mechanisms. However, computational modelling of scATAC-seq data is challenging due to its

high dimension, extreme sparsity, complex dependencies, and high sensitivity to confounding

factors from various sources.

Here we propose a new deep generative model framework, named SAILER, for analysing

scATAC-seq data. SAILER aims to learn a low-dimensional nonlinear latent representation

of each cell that defines its intrinsic chromatin state, invariant to extrinsic confounding

factors like read depth and batch effects. SAILER adopts the conventional encoder-decoder

7



framework to learn the latent representation but imposes additional constraints to ensure

the independence of the learned representations from the confounding factors. Experimental

results on both simulated and real scATAC-seq datasets demonstrate that SAILER learns

better and biologically more meaningful representations of cells than other methods. Its

noise-free cell embeddings bring in significant benefits in downstream analyses: Clustering

and imputation based on SAILER result in 6.9% and 18.5% improvements over existing

methods, respectively. Moreover, because no matrix factorization is involved, SAILER can

easily scale to process millions of cells. We implemented SAILER into a software package,

freely available to all for large-scale scATAC-seq data analysis.

2.1 Introduction

Accessible chromatin regions host a network of complex interplays among numerous cis-

regulatory elements (CREs, such as enhancers and promoters), transcription factors (TFs),

cofactors, and chromatin remodelers in the three-dimensional genome for precise spatiotem-

poral gene expression control [56, 106, 8]. Assay for transposase-accessible chromatin using

sequencing (ATAC-seq) is an efficient method to probe accessible DNA regions in the genome,

by tagging them with sequencing adapters using the Tn5 transposase [11]. More recently, re-

searchers have developed single-cell ATAC-seq (scATAC-seq) technology to massively probe

accessible chromatin regions in individual cells [12, 25, 21, 91]. These methods make it

possible to comprehensively dissect the epigenetic heterogeneity across diverse cell states

at an unprecedented resolution. Due to its easy protocols and high-throughput capacities,

many labs and big consortia (e.g., the Human Cell Atlas, Human BioMolecular Atlas Pro-

gram) have employed scATAC-seq for single-cell epigenetic profiling [84, 62]. Furthermore,

the scientific community and funding agencies have initiated essential data-sharing policies

for expedited translational research. Thus, there is an urgent and essential need to develop
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robust, accurate, and scalable computational methods for scATAC-seq data analysis and

integration at a large scale.

Unfortunately, computational modeling of scATAC-seq data has faced several challenges.

First, scATAC-seq data tends to have very low coverage, usually with a few thousand dis-

tinct reads representing hundreds of thousands to even millions of accessible regions. Sec-

ond, scATAC-seq contains a high degree of dependencies because numerous cell-type-specific

CREs in accessible chromatin regions work in concert to jointly decide cell fate. Lastly,

scATAC-seq analysis is highly sensitive to numerous confounding factors arising within and

across samples (e.g., read depth variation and dataset-specific conditions).

Researchers have developed many computational approaches to tackle high-dimensional and

sparse scATAC-seq data [92, 33, 9, 115, 35], ut each has its limitations. For instance,

ChromVAR ignores the impacts of individual peaks and only groups cells by the TF mo-

tif enrichment scores from all peaks, resulting in non-optimal clustering performance [92].

SnapATAC uses Jaccard distance to calculate cell-to-cell similarities for dimension reduction

with a hidden assumption that peaks are independent of each other and contribute equally

to the similarity measure, which is incorrect in most cases. More recently, researchers devel-

oped the latent semantic index (LSI) for learning the lower-dimensional cell representations

[81, 38, 98]. Despite their scalability, such linear techniques may not fully capture the com-

plex dependencies of peaks. Moreover, these approaches correct for read depth effects by

removing components that highly correlate with the read depth, which is heuristic and may

lose the true cell-state-related information. Other nonlinear approaches, such as cisTopic

and SCALE, were then developed to learn better cell representations [9, 115]. However,

these methods assume constant read depths across different cells and ignore potential batch

effects from multiple samples, which compromises model performance in real applications.

Here, we aimed to overcome the limitations of existing methods by designing an invariant rep-

resentation learning scheme with a straightforward intuition – the true epigenetic variations
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from a specific cell state should remain the same across cells and samples, while variations

arising from confounding factors may change substantially, even for cells within similar bi-

ological groups. In other words, we can dissect the scATAC-seq cell-to-cell variations into

an invariant component representing its hidden cell states and a varying component due

to non-biological factors, such as the number of fragments in a cell and batch effects in the

multi-sample analyses (Figure 2.1). To this end, we developed a scalable and accurate invari-

ant representation learning scheme (SAILER) via a deep generative model to learn a robust

cell representation z that is only related to intrinsic cell states but is invariant to changes

in the confounding factor c (Figure 2.1). Specifically, we remove the variations related to

confounding factors from the learned latent representation by minimizing their mutual in-

formation I(z, c). Compared with previous methods, SAILER has three major advantages:

i) it is easily scalable to millions of cells in large-scale analyses via accelerated computation

on graphic processing units (GPUs); ii) it captures the nonlinear dependencies among peaks

via the expressiveness of deep generative modeling and robustly removes confounding fac-

tors from various sources, both within and across samples, to faithfully extract biologically

relevant information; iii) it provides a unified strategy for scATAC-seq denoising, clustering,

and imputation.

We implemented SAILER into a Python package that is freely available to the community.

To prove its effectiveness, we first benchmarked the clustering performance of SAILER with

state-of-the-art methods. We utilized three simulated scATAC-seq datasets with ground-

truth labels, representing different application scenarios with single- and multi-sample inputs.

SAILER significantly outperformed the existing methods, providing improved cell clustering

results and successfully identifying rare cell types. We also applied SAILER on real atlas-

level and multi-sample scATAC-seq datasets and showed that it could efficiently learn better

biologically relevant cell latent representations, which will facilitate various downstream

analyses such as cell clustering and imputations.
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Figure 2.1: The overall design of the SAILER method. SAILER takes scATAC-seq data
from multiple batches as input. Raw data is pushed through the encoder network to obtain
a latent representation. Confounding factors for each single cell are concatenated and fed to
the decoder along with the latent representation. Batch information is indicated by a one-
hot embedding, and read depth is subject to log transform and standard normalization. To
learn a latent representation invariant to changes in confounding factors, mutual information
between the latent variables and confounding factors are minimized during training.

2.2 Materials and Methods

In this section, we provide the mathematical details on our SAILER model and describe

methods for benchmarking with existing methods using both simulated and real datasets.

2.2.1 Effective invariant representation learning via a deep gener-

ative model

Let x ∈ {0, 1}n (with n peaks or bins) denote the genome-wide chromatin profile of a cell,

with xi indicating the presence or absence of a peak in bin i. x depends on both the

intrinsic properties of the cell and experimental confounding factors. Our goal is to derive a

latent representation of x (also called embedding) for each cell that reflects only its intrinsic

properties. Let z ∈ Rd be such a latent representation. Suppose c is the confounding variable
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that has statistical dependence on x, and is observable together with x. We denote qθ (z|x)

as the encoder probability, pϕ (x|z, c) as the decoder probability. The decoder part of our

model aims to model the conditional probability of x on c through a latent variable z,

p(x|c) = Ez∼p(z)[pϕ(x|z, c)] (2.1)

where p (z) is the prior distribution for a generative model set to be a (factorized Gaussian)

in our case. q (x, c) is the empirical distribution of the data point and confounding variable,

ϕ denote the parameters of the decoder network.

Following the variational autoencoder (VAE) model [55], we performed parameter inference

by maximizing an evidence lower bound of the log likelihood, corresponding to minimizing

the following loss function,

LVAE = Ex,c∼q(x,c)
[
−Ez∼qϕ(z|x)[log pθ(x|z, c)] +DKL(qϕ(z|x) ∥ p(z))

]
(2.2)

where qθ (z|x) is the posterior distribution modeled with a neural net with parameters θ.

The distribution of the latent representation z induced by empirical data distribution and

the posterior probability qθ (z|x) potentially can depend on c, as c is involved in the data

generation process. To derive a latent representation z independent of the confounding vari-

able c, we added an additional term to the loss function to minimize the mutual information

between the two variables [76],

LVAE + λI(z, c) (2.3)

where I (z, c) is the mutual information between latent representation z and c, with their
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joint distribution represented by qθ (z, x, c) = q (x, c) qθ (z|x). Based on the properties of

mutual information and variational inequality, I (z, c) is upper bounded by

I(z, c) ≤ Ex[DKL(qϕ(z|x)||qϕ(z))] −H(x|c) − Ex,c,z∼q[log pθ(x|z, c)] (2.4)

where the conditional entropy H (x|c) is a constant and can be removed from the loss func-

tion.

The final loss function we aimed to minimize is

L(ϕ, θ) = Ex∼q(x) [DKL(qϕ(z|x) ∥ p(z)) + λDKL(qϕ(z|x) ∥ qϕ(z))] (2.5)

−(1 + λ)Ex,c∼q(x,c)
[
Ez∼qϕ(z|x)[log pθ(x|z, c)]

]
(2.6)

Here is the KL-divergence between the encoder qθ (z|x) and prior p (z). is the recon-

struction loss. is the KL-divergence between q θ (z|x) and empirical marginal distribution

q θ (z). Because q θ (z) depends on the distribution of both x and c, minimizing the above

KL-divergence will reduce the effect of c on z. In the implementation, this extra term

is approximated by pairwise KL-divergences between all data points in a training batch,∑
x

∑
x′ DKL(qϕ(z|x) ∥ qϕ(z|x′)). Since latent variable z is parameterized by an isotropic

Gaussian, the pairwise KL has a nice analytical form, and can be efficiently computed with

matrix algebra. More detailed derivations can be found in supplementary notes section 2.

2.2.2 Model architecture and training

Considering the close to binary nature of scATAC-seq data, we use binomial likelihood to

parameterize the reconstruction loss. To tackle the extreme sparsity issue, we add a positive

weight ω to non-zero entries of binary cross-entropy loss l = ω ·x · log x̂+ (1−x) · log(1− x̂)

with ω determined by the empirical 0/1 ratio of the input data.
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The encoder and decoder are parameterized by two symmetric fully connected feedforward

neural networks (with 1000-100-10 units). A sigmoid activation is used for the final out-

put layer. For confounding factors, we use one-hot batch embedding and normalized log-

transformed sequencing depth for each cell. During training, input data is pushed through

the encoder network to generate the latent variable. Confounding factors are then concate-

nated together with latent variables and fed into the conditional decoder for reconstruction.

As suggested in [34], when training our model, we adopt a deterministic warmup and cyclical

annealing schedule to tackle the KL vanishing problem. Adam optimizer [54] with weight

decay 5e-4 and minibatch training are used to optimize the model. The model is built with

PyTorch library [79]. Hyperparameters of the model is chosen according to the log-likelihood

of the validation set. λ is set to be 1 in our study. In practice, value of λ can also be se-

lected based on empirically checking the values of the I (z, c) and λ. The optimal value is

determined to be the point where increasing λ does not lead to significant drop in the MI. In

supplementary notes section 1, Table 2.1 2.2 2.3, and Figure 2.2 we show that performance

our method is robust against hyperparameter choices.

Table 2.1: Evaluation Results under different λs.

λ 0 0.01 0.1 1 2 10 50

I(z, c) 0.071 0.053 0.045 0.040 0.043 0.046 0.040

ARI 0.539 0.546 0.560 0.575 0.546 0.562 0.605

NMI 0.773 0.774 0.778 0.799 0.772 0.779 0.780

Table 2.2: Evaluation results under different latent dimensions.

dim(z) 2 5 10 15 20

I(z, c) 0.105 0.059 0.040 0.038 0.0400

ARI 0.482 0.555 0.575 0.556 0.571

NMI 0.735 0.763 0.799 0.774 0.770

Table 2.3: Evaluation results under different intermediate neuron numbers.
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Figure 2.2: Clustering Performance of I(z, c), ARI and NMI under different Hy-
perparameters. (A) Performance variations with λ ranging from 0.01 to 100. (B) Perfor-
mance variations with latent dimension ranging from 5 to 20. (C) Performance variations
using number of neurons ranging from 100 to 500.
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# of units 50 100 200 350 500

I(z, c) 0.057 0.040 0.045 0.039 0.039

ARI 0.563 0.575 0.615 0.623 0.583

NMI 0.782 0.799 0.785 0.789 0.786

2.2.3 Dimension reduction and clustering

We project the raw high-dimensional sparse scATAC-seq data to a low-dimensional space

that reflects the hidden cell states rather than noise in the sequencing experiment. Specif-

ically, we used the raw scATAC-seq matrix x as the input to our SAILER encoder and

extracted the mean of the invariant component z as the cell representation. We set the de-

fault dimension d for z to 10 in our analysis. We then acquired 2D visualizations by running

t-distributed stochastic neighbor embedding (t-SNE) [107] or uniform manifold approxima-

tion and projection (UMAP) [72] on the latent mean. We further constructed a k-nearest

neighbor (KNN) graph from the lower-dimensional representations, and then applied the

Louvain algorithm [6] to assign cells to different clusters.

2.2.4 scATAC-seq imputation

We generated the imputation data via a reconstruction conditioned on the invariant repre-

sentation z and fixed confounding factor c. Specifically, we first pushed the raw data through

the encoder network, and obtained the mean parameters for z. Unlike the training process,

where we calculated the depth of the raw data and loaded the one-hot embedding according

to the real batch information, here we fixed the depth and batch indicator as the mean depth

and the indicator of the batch with the highest data quality. Finally, we concatenated the

fixed confounding values with the latent representation z and fed them into the conditional

decoder to obtain the imputed data. As a result, we used only the invariant component z to
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reconstruct the chromatin landscape during the imputation process, while keeping the other

confounding factors at a fixed level.

2.2.5 Performance benchmarking using multiple simulated datasets

We applied SAILER on three simulated scATAC-seq datasets with known cell type labels

generated by SCAN-ATAC-Sim [22] to represent three major application scenarios. We

used the peripheral blood mononuclear cell bulk ATAC-seq dataset provided on the SCAN-

ATAC-Sim website using all default parameter settings. Each simulation includes three

major parameters: ρ represents the signal-to-noise ratio (percentage of reads in the true peak

regions); µ and σ denote the mean and standard deviation of the fragment count per cell,

respectively.SCAN-ATAC-Sim randomly selects read counts for each cell from a log-normal

distribution, and then samples reads from both peak and background regions accordingly.

We first simulated a deeply sequenced scATAC-seq dataset (Sim1) with 5,000 fragments per

cell (µ=5,000, σ=1.5, and ρ=0.4), representing a scenario in which we are looking for rare

cell types. Specifically, we generated 10,000 cells from five cell types, with 100 cells from a

rare cell type accounting for 1% of the total population. Then, we generated one shallowly

sequenced sample with nine cell types, with µ=3,000, σ=1.5, and ρ=0.4 (Sim2). Lastly, we

simulated a two-sample dataset with slightly mismatched cell types to represent scATAC-seq

data integration applications with noticeable batch effects – one shallowly sequenced sample

(µ=2,500) along with another deep-sequenced sample (µ=5,000) with different signal-to-noise

ratios (ρ=0.4 and 0.5, respectively) (Sim3). In addition, we introduced one sample-specific

rare cell type in Sim3 to mimic a situation in which rare cell types (e.g., tumor cells) may only

exist in some samples. We benchmarked SAILER’s clustering performance with the linear

dimension reduction method LSI and another deep learning method, SCALE, on all three

simulated datasets. Specifically, we projected the raw input matrix x to a ten-dimensional

latent space, and further used UMAP to reduce the dimension to 2 for 2D visualization of
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the cell state landscape. We plotted colored labels according to the ground-truth cell type

for visual inspection of clustering performance.

We also used the mutual information to quantify the impacts of confounding factors on

the lower-dimensional representations learned by different methods. Specifically, we used a

non-parametric mutual information estimation approach [58] to estimate the mutual infor-

mation between the confounding factors and each dimension of the latent representation,

and calculated their mean values for comparison.

2.2.6 Imputation performance on simulated datasets

We also benchmarked the imputation performance of SAILER against SCALE [115] and

MAGIC [108] on the Sim3 dataset. SCALE is the only current method designated for

imputing scATAC-seq data, and MAGIC, originally designed to impute scRNA-seq data, has

been incorporated into many scATAC-seq computational pipelines [33, 38] for imputation

purposes.

For SCALE, we directly used the binary imputation output generated by thresholding at

mean values of each row and column. For MAGIC, we followed the standard pipeline by

applying the recommended l1 normalization and square root transformation before imputing

the data. Due to the extreme dimension, we used an approximate solver for efficiency. For

SAILER, we performed imputation as described in previous chapter.

To evaluate the result quantitatively, we calculated the Dice similarity coefficient (DSC) of

imputed data x̂ generated by the three methods against the bulk ATAC-seq data xbulk of the

corresponding cell type used to generate the simulated data. We calculated the DSC of the
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raw input against the bulk data to provide a baseline.

DSC =
2 · xbulk · x̂
|xbulk| + |x̂|

=
2TP

2TP + FP + FN
(2.7)

We also generated a 2D visualization to evaluate the landscape of the imputed data. We

directly applied a randomized principal component analysis (PCA) [40] to the imputed data,

and used UMAP to visualize the top ten principal components. We also provided the raw

input as a baseline.

2.2.7 Performance benchmarking on the mouse atlas dataset

We then demonstrated the performance of our method on a mouse atlas dataset containing

81,173 adult mouse cells from 13 tissues and 40 cell types [26]. Each cell type is annotated by

borrowing label information, inferred by marker genes, from the RNA-seq data. A previous

effort applied the mouse atlas dataset to benchmark multiple computational methods on

scATAC-seq data [19]. The leading method in that study, SnapATAC, was the only method

that could process the entire mouse atlas dataset within a reasonable time ( 12 h). Given

that both SAILER and SCALE are deep learning methods that can train and evaluate data

in mini batches, they are capable of handling the scale of the mouse atlas dataset. Thus, we

benchmarked SAILER against SnapATAC and SCALE on this dataset.

For SCALE and SAILER, we added a filtering process before loading the data. The filtering

involved reducing the bin numbers according to the procedure for filtering peaks used in

SCALE. For each cell, we removed bins with read counts of over 90% cells and less than 1%

cells.

We used normalized mutual information (NMI) and the adjusted Rand index (ARI) to

compare each method’s clustering results with the given labels.
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For clustering, we constructed a KNN graph and applied the Louvain algorithm [6] to as-

sign clusters to each cell. We compared the clustering results with ground-truth labels to

generate the ARI and NMI metrics. We also calculated mutual information between latent

representation and confounding factors for comparison.

2.2.8 Performance benchmarking on multi-sample scATAC-seq datasets

for mouse brain

To evaluate the ability of SAILER to deal with batch effects, we combined two mouse brain

datasets: a mouse brain dataset from the 10X Genomics website and a mouse secondary

motor cortex dataset (i.e., the MOs-M1 dataset) [33]. We first selected cells based on bar-

codes from the 10X mouse brain dataset. Then, we set a threshold and selected scATAC-seq

profiles with a promoter ratio between 0.2 and 0.6 and a log10-transformed unique molecular

identifier count [log10(UMI)] between 3 and 5. This process resulted in 4,100 cells selected

from the 10X mouse brain dataset and 15,136 cells selected from the MOs-M1 dataset. Us-

ing the same filtering criteria to remove low-quality cells, we selected 9,646 cells from the

MOs-M1 dataset for further analysis.

We then performed clustering on the lower-dimension representation learned by SAILER with

a Louvain algorithm on a KNN graph. We applied t-SNE to generate a 2D visualization of

the landscape. As cell labels are not available, we next visualized the activity scores of several

marker genes to justify the clustering results. We selected several marker genes from the

gene annotation file to obtain gene read counts within each cell. To avoid extreme sparsity

and discontinued values, we adopted MAGIC to smooth the gene-cell matrix to obtain the

final gene-level expression matrix. For each cell and each marker gene of interest, we applied

gene expression values corresponding to each cell and denoted them by color in the t-SNE

plot.
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2.3 Results

We applied SAILER on both simulated and real datasets and carried out comprehensive

performance benchmarking with existing methods, as discussed in the following sections

below.

2.3.1 Extensive cell-to-cell variations in scATAC-seq data arise

from confounding factors rather than biological heterogene-

ity

We found that, in addition to the underlying cell states, confounding factors from various

sources significantly contribute to the cellular heterogeneity in scATAC-seq experiments. For

instance, we extracted two mouse brain scATAC-seq datasets – one from the 10X genomics

website (10X) and one from the SnapATAC website (MOs-M1) (see details in the Methods

section). We uniformly processed these two datasets and found that the number of fragments

within the same dataset varied significantly. For example, the uniquely mapped read counts

per cell ranged from 1,500 to 6,000 for the MOs-M1 dataset (Figure 2.3). Moreover, datasets

generated from different labs showed distinct signatures. Specifically, the MOs-M1 dataset

sample had fewer reads per cell but was highly enriched in promoter regions (median read

count 3.506 vs. 4.236, promoter ratio 0.337 vs. 0.290). Most existing methods ignore such

confounding factors, resulting in biased latent cell representations in dimensional reduction.
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Figure 2.3: Visualization of confounding factors. (A) Scatter plots of a 10X mouse brain
dataset (10X) and a mouse secondary cortex MOs-M1 dataset (MOs-M1). For all the cells
in each dataset, we kept those with log10(UMI) between 0.3 and 0.5 and promoter ratio
between 0.2 and 0.6. (B) Boxplots of read depth and promoter ratio comparison between
selected cells from each dataset.

2.3.2 SAILER learns robust latent cell representations invariant

to various confounding factors in simulated data

Here, we extensively benchmarked SAILER with existing methods using simulated data

representing various application scenarios.

First, we simulated a deeply sequenced scATAC-seq dataset from five cell types, with varying

mapping reads per cell. We learned the latent cell representations using SAILER, SCALE,

and LSI as the input for the same clustering process. As shown in Figure 2.4A, linear meth-

ods like LSI could not capture the complex dependencies among the peaks and hence failed

to distinguish the rare cell type from the major cell types (red dots in the gray cluster).

In contrast, both SAILER and SCALE used a nonlinear dimension reduction via fully con-

nected neural networks and were able to report five clearly separable clusters. Furthermore,
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Table 2.4: Mutual Information between the latent representation and confounding factors
on simulation datasets.

Method Sim1 Sim2 Sim3
LSI 0.610 0.500 0.130
SCALE 0.290 0.224 0.087
SAILER 0.107 0.100 0.005

LSI and SCALE have a limited or no explicit module for correcting read depth effects. As a

result, their L-shaped cell clusters are severely confounded by fragment counts, as reflected

by the smooth transition from shallowly sequenced cells to densely sequenced ones within

each cluster (the yellow to red pattern in Figure 2.4A, Sim1). Such artifacts would be further

amplified in the downstream imputation analysis, because cells with more mapped reads will

exhibit even larger read counts after incorporating information from their similarly deeply

sequenced neighbors. Such artifacts would be further amplified in the downstream imputa-

tion analysis, because cells with more mapped reads will exhibit even larger read counts after

incorporating information from their similarly deeply sequenced neighbors. On the contrary,

SAILER penalizes such depth effects by introducing an extra penalty term to force the latent

cell representations to be as independent as possible to fragment counts per cell, resulting in

compact round-shaped clusters with almost random read count distributions (Figure 2.4A,

Sim1). This observation is consistent with the quantitative measure of the mutual informa-

tion I(z, c) between read counts and cell embeddings, where SAILER reported the lowest

I(z, c) at 0.107 among all three methods (0.290 and 0.610 for SCALE and LSI, respectively,

Table 2.4, Sim1). Thus, SAILER effectively removes confounding factors and learns robust

cell representations.

We further simulated another shallowly sequenced dataset with fewer fragments per cell

but more cell types, in order to conduct clustering performance benchmarking under more

complicated (and realistic) scenarios. As shown in Figure 2.4B, SCALE and LSI failed to

separate two major cell types by reporting completely overlapped clusters (yellow and purple

dots in Figure 2.4B). Similar to the previous simulation, we observed clear low-to-high read
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Figure 2.4: Results on simulation datasets. (A) 2D visualization of learned latent represen-
tations of LSI (top), SCALE (middle), and SAILER (bottom) on the Sim1 dataset. The
left column shows the distribution of cell types. The right column shows the distribution of
read depth indicated by color depth. (B) 2D visualization of learned latent representations
of LSI (top), SCALE (middle), and SAILER (bottom) on the Sim2 dataset. The left column
shows the distribution of cell types. The right column shows the distribution of read depth
indicated by color depth. (C) 2D visualization of learned latent representations of LSI (top),
SCALE (middle), and SAILER (bottom) on the Sim3 dataset. The left column shows the
distribution of cell types. The right column shows the distribution of cells from different
batches.

count transitions within their reported clustering, indicating severe read depth artifacts.

By contrast, SAILER distinguished cell types from distinct cell states into clear groups

and demonstrated homogeneous read counts within each cluster (bottom row, Figure 2.4B),

indicating effective read depth bias removal. As expected, SAILER also showed the smallest

amount of mutual information between fragment counts and latent cell representations (0.100

vs. 0.224 for SCALE and 0.500 for LSI, Table 2.4, Sim2), confirming the efficacy of its

invariant representation learning scheme.

Lastly, we designed a third simulation dataset to mimic the scATAC-seq integration scenario
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with obvious batch effects for all three methods. We used latent representations to generate

2D visualizations with UMAP, as shown in Figure 2.4C and Figure 2.5A. We applied both

batch information (right column) and cell-type information (left column) to annotate the

plots. As shown in the right column, even though LSI and SCALE can marginally cluster

the same type of cells, there are still clear boundaries between these batches. However,

SAILER merges different batches very well, indicating that this method can remove batch

information and retrieve the true distribution of cell biological states via the invariant latent

representations. In order to quantitively measure how well these two batches are merged

using different methods, we also calculated the mutual information between the batch in-

formation and each dimension of the latent representations (i.e., I(z, c)), as shown in Table

2.4. SAILER still had the lowest value of mutual information (0.005, compared to 0.130

and 0.087). Note this dataset contains two sample-specific rare cell types (red and green

dots, Figure 2.4C), representing a potentially common situation in which certain rare cell

types only appear in a few batches. LSI and SCALE completely merged the rare cell types

together; however, SAILER was able to distinguish these two cell types after removing depth

variation and batch effects from the latent representation.

We also compared SAILER with pipelines involving specific mechanism for batch effect re-

moval. SnapATAC incorporates Harmony [57] into their pipeline after dimensional reduction

to remove batch effect. However, when processing Sim3 dataset, in which two different rare

cell types appear in different batches, Harmony aligned two different rare cell types together

by mistake, while SAILER is able to marginally distinguish these two rare cell types while

keeping major cell types from different batches well mixed (Figure 2.6 A-C).
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Figure 2.5: Runtime and Scalability Summaries. (A) Runtime comparison of SAILER,
SCALE and SnapATAC on mouse atlas dataset. (B) Scalability of SAILER for different
sample sizes.

2.3.3 SAILER outperforms existing methods in atlas-scale data

analysis by reporting clearly separable clusters

To test the efficiency and accuracy of SAILER in a large-scale analysis, we benchmarked

our method on a mouse atlas scATAC-seq dataset with 80k cells from 40 cell types with

substantial read depth variations, as shown in Figure 2.7. We benchmarked SAILER with

the GMM VAE in SCALE, and SnapATAC, the leading and only algorithm that was able to

perform large-scale scATAC-seq analysis in a previous benchmarking study [19]. As shown

in Figure 2.7, SAILER can learn robust cell representations that generate tight and clearly
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Figure 2.6: Batch effect correction comparison. (A) SAILER (left) compared with other
batch-effect correction SnapATAC w/ Harmony (right) on Sim3 dataset. Color indicates cell
types. (B) SAILER compared with SnapATAC w/ Harmony on batch-effect correction. (C)
Neighbor composition distribution for SnapATAC w/ Harmony and SAILER.

separable clusters, as compared to other methods.

Besides, due to the lack of effective read depth removal, clustering results from SCALE are

significantly confounded by the total number of fragments per cell. Specifically, the direct

neighbors of deeply sequenced cells in SCALE’s reports are mostly those with higher read
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Figure 2.7: Results on the mouse atlas dataset. t-SNE visualization of lower-dimensional
representation generated by SAILER (left), Snap-ATAC (middle), and SCALE (right). The
first row shows the distribution of cell types. The second row shows the distribution of read
depth indicated by color depth.

counts in each cluster (light dots in the bottom line, Figure 2.7). This read depth effect will

severely impact the subsequent imputation analysis, as depth imbalance among cells will be

amplified when considering the neighbors. SnapATAC tends to remove such depth effects by

regressing out fragment counts per cell in the cell-to-cell similarity calculation. As a result,

its identified clusters are less affected by read depth. However, several internal groups were
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Table 2.5: Evaluation results on the mouse atlas dataset.

Method ARI NMI I(z, c)
SAILER 0.575 0.799 0.040
SnapATAC 0.538 0.748 0.127
SCALE 0.315 0.557 0.279

mixed together without clear separation, probably due to its independence and the equal

contribution assumption among various genomic regions in the Jaccard distance calculations.

Unlike SnapATAC, which requires a separate process for depth variation removal, SAILER

integrates depth removal into the learning process – the fully connected neural network

layers in SAILER allow nonlinear interactions among different genomic regions to better

separate cells from different biological states, while the extra mutual information penalty

term effectively removes read depth effects. This unified framework of SAILER makes each

task aware of the other tasks, resulting in noticeably improved clustering results. This

noticeable improvement can also be seen in the resulting NMI and ARI scores (Table 2.5).

For instance, SCALE and SnapATAC reported NMI scores of 0.557 and 0.748, respectively,

using known cell type-level labels, whereas SAILER showed a significantly higher NMI of

0.799. Moreover, SAILER reported lower mutual information (0.04), compared with 0.127 in

SnapATAC and 0.279 in SCALE, suggesting successful depth effect removal for this method.

It is worth mentioning that the complexity of the batch-based training process increases

linearly with the size of the input dataset (Figure 2.5B), resulting in better scalability of

SAILER to efficiently process millions of cells in multi-sample analyses. However, the poly-

nomial regression approach used in SnapATAC increases quadratically as the number of cells

increases. Chen et al. reported that Snap-ATAC takes nearly 12 hours to process the entire

mouse atlas dataset [19], while SAILER can complete this process within 4 hours trained

for 400 epochs. We compared the runtime against another deep learning method SCALE on

the mouse atlas dataset. As the result shown in Figure 2.5A, SAILER achieves the lowest

running time in all the three methods. Benefitting from the batch-based training scheme
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and GPU parallel acceleration, SAILER could handle the running process even when run-

ning sample increases to large scale in a reasonable memory cost (Supplementary Note 6 and

Figure 2.5B). This further demonstrates the advantage of the deep learning method when

scaling to very large datasets.

Moreover, we also followed the preprocessing procedures for subsampling by 10k cells for

performance benchmarking with 17 other methods, as most methods cannot handle an atlas-

scale dataset. Instead of cell-type labels, we used the same tissue-level cell labels for com-

prehensive clustering benchmarking. When applied to the subsampled dataset, SAILER still

achieved the highest ARI (0.397) among all methods (with the 17 other methods ranging

from 0.009 to 0.363). This further demonstrates the effectiveness of our method.

2.3.4 SAILER can effectively remove batch effects in multi-sample

scATAC-seq integration

Another common source of confounding factors are batch effects in multi-sample scATAC-

seq analysis, where samples may be processed and sequenced from different labs or even

sequencing platforms with distinct sample-specific signatures. To evaluate the performance

of our method in such scenarios, we applied SAILER on two mouse brain scATAC-seq samples

from two sources – one mouse brain dataset from the 10x Genomics website (10X) and one

generated from mouse secondary cortex brains [33].

For fair performance benchmarking, we uniformly processed these two datasets to identify

cells from random barcodes using the default parameters in SnapATAC [33]. Specifically,

after removing barcodes with less than 1,000 fragments and keeping the remaining ones

with promoter ratios between 0.2 and 0.6, we identified 4,100 and 9,646 cells from these

two samples (see details in the Methods section). Starting from the same tissue, we found

that these two samples generated from different labs showed distinct fragment signatures.
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For instance, the dataset from the 10X Genomics website demonstrated a higher mean

read coverage per cell (log(UMI) = 4.149 vs. 3.547, P-value = 10e-15 using the two-sided

Wilcoxon test) and a lower mean promoter ratio (0.320 vs. 0.367, P-value = 2.48e-87 using

the two-sided Wilcoxon test). After pre-processing, we projected the remaining cells into a

ten-dimensional space using SAILER and SCALE, and then generated a KNN graph (k=16)

and performed clustering via the Louvain algorithm. We also used t-SNE to map the ten-

dimensional cell representations onto a 2D space for visualization and labeled the sample IDs

using different colors in Figure 2.8. In the ideal case, a good computational method should

overcome batch effects by reporting cell clusters with homogenous sample ID distributions.

However, due to the lack of an appropriate batch effect removal module, we found that

clusters reported by SCALE were predominantly driven by sample effects rather than the

true biological states of the cells (Figure 2.8A). In contrast, SAILER effectively removed

batch effects by introducing an additional penalty to reduce the mutual information I(z, c)

between the variant component and the batch component in the objective function. As a

result, the different samples were homogeneously mingled in the clearly separated clusters

reported by SAILER (yellow and grey dots in Figure 2.8A). Furthermore, we also compared

the embeddings generated by SAILER with SnapATAC (with Harmony) on these datasets

to measure the ability of handling platform-to-platform variations. Similar clustering and

mixing result of the two compared methods on these two datasets further demonstrating the

potential of SAILER dealing with platform-based batch effects (Figure 2.9A).

To test whether these SAILER-reported clusters represent distinct biological cell states,

we calculated the overall chromatin accessibility scores of well-known marker genes [33]

and labeled cells using the activity scores of the marker genes. As shown in Figure 2.8B,

SAILER identified clearly separable cell clusters that correspond well with the activities of

the marker genes (sst, pvalb, gad2, and plp1 ). For instance, sst is a well-known marker

gene widely expressed in inhibitory neurons. SAILER homogeneously grouped together sst-

enriched cells from different batches, demonstrating its ability to appropriately remove batch
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Figure 2.8: Results on mixed mouse brain datasets. (A) Clustering result comparison of
SCALE and SAILER on two batches of mouse brain cell samples. Clustering result (a) using
SCALE, (b) using SAILER, and (c) using SAILER but colored and labeled with numbers
calculated using the Louvain method based on the KNN graph. (B) Clustering result of
SAILER on two batches of datasets but colored with four marker gene scores, namely sst,
pvalb, gad2, and plp1. The brighter the color, the higher the gene score shown for those
cells.

effects while retaining the true cell-cell variability.

2.3.5 SAILER can precisely reconstruct a chromatin accessibility

landscape free of various confounding factors

Despite high throughput in revealing epigenetic heterogeneity, scATAC-seq experiments suf-

fer from severe missingness by reporting only a few thousand fragments in the entire genome.

Therefore, accurate chromatin landscape reconstruction and imputation are essential to un-
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Figure 2.9: Batch correction methods comparison on different sequencing platforms. (A)
UMAP visualizations of latent landscapes generated by SnapATAC+Harmony (left) and
SAILER (right) on merging two datasets of mouse brain generated with combinatorial in-
dexing single nucleus ATAC-seq (MOs-M1/ snATAC) and droplet-based platform (Mouse
Brain 10X / 10X) respectively.

covering the full regulatory potential within a cell. However, very few computational methods

are designed explicitly for chromatin accessibility imputation.

Here, we took advantage of the deep generative model and its invariant representation to

reconstruct a full chromatin accessibility landscape that is independent of sequencing depth

and batch effects. During imputation, we fixed the values of the confounding variables,

such that the variations of the reconstructed scATAC-seq data only depend on the invariant

representation z, which reflects the intrinsic variation of biological states.

To further demonstrate this, we performed imputation on the third simulation dataset (Sim3)

with two simulated samples. SCALE is currently the only available method designated

for imputing scATAC-seq data. LSI has no direct imputation module, we added MAGIC

as suggested for benchmarking [38]. First, SAILER, MAGIC, and SCALE generated the

imputed data. These data, along with the raw data, were then processed by PCA and

visualized with UMAP in 2D. From the PCA embeddings shown in Figure 2.10, we found
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Figure 2.10: Imputation pipeline and results. Simulated data (Sim3) with 2 batches is
generated by Scan-ATAC-Sim tool. Imputed data is generated by running SCALE, MAGIC,
and SAILER, respectively. Imputed data is then subject to PCA and visualized by UMAP.
Dice Score is computed between each imputed data and the Bulk Data. The Dice score
between Input data and Bulk data is also shown as baseline.

that the imputation data of SCALE were severely affected by depth variation and batch

effects. We observed similar results with MAGIC, where after imputation, the same types

of cells from different batches were divided into separate clusters in the PCA embedding.

However, the imputed data by SAILER did not show separate clusters from different batches.

Moreover, the rare cell types (shown in green and red, Figure 2.10) were separable in the

PCA embedding, which was not the case for SCALE or MAGIC. The results indicate that,

without proper removal of confounding factors during imputation, the imputed data show

clear variations that correlate with confounding factors. In addition, the data diffusion

strategy used in MAGIC is not friendly to rare cell types, as the rare cells can be easily

overwhelmed by the major cell types. Thus, compared with SCALE and MAGIC, SAILER

is the only method capable of removing confounding factors from imputation data, while

preserving unique information from rare cell types.
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As the bulk ATAC-seq data used to simulate the single-cell data is available, we used the

bulk data as the ground truth and calculated the DSC for each imputation method. The

DSC (also known as the F1 Score) is a harmonic mean of the precision and recall. Because

scATAC-seq is imbalanced in 0/1 entries, we used DSC as a balanced metric to evaluate the

imputation performance. We generated a violin plot to show the DSC distributions of raw

single-cell data, SAILER, and SCALE. As shown in Figure 2.10, SAILER and SCALE both

achieved higher DSC scores compared to the raw data, indicating that both methods generate

reasonable imputation results. SAILER achieved a higher mean DSC compared with SCALE

(0.64 vs. 0.54), further demonstrating the effectiveness of invariant representation learning.

2.4 Discussion

In this work, we developed a scalable and accurate single-cell ATAC-seq processing and inte-

gration method called SAILER via efficient invariant representation learning. As compared

with previous methods, SAILER has three distinct characteristics designed explicitly for

single-cell data analysis – 1) it utilizes nonlinear dimension reduction via fully connected

neural networks in a deep generative framework to handle complex dependencies among var-

ious peaks; 2) it dissociates cell-state-related biological variations from those arising from

confounding factors (e.g., read depth and batch effects) to faithfully embed the cells into a

low-dimensional latent space to facilitate various downstream analyses, such as cell cluster-

ing and imputation; 3) it is easily scalable to large-scale single-cell data analysis accelerated

using GPU parallelism.

We applied SAILER to various simulated and real scATAC-seq datasets and comprehensively

compared its performance with state-of-the-art analysis pipelines. We showed that SAILER’s

robust cell embeddings can effectively remove noise impacts from different sources and im-

prove clustering and imputation results on all of the benchmark datasets. We should note
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that the invariant representation learning framework presented here is general and can be

applied to other types of high-throughput genomic data like scRNA-seq and single-cell DNA

methylation, or to joint analysis of multi-modality single-cell genomics data. Specifically,

several single-cell multi-omics technologies have recently emerged for measuring multiple

types of molecules in the same cell [50]. To achieve this, we could apply a multi-modal VAE

to encode a variational posterior jointly from single-cell multimodal omics inputs using deep

neural networks, where the resultant latent space factors into a shared subspace to profile cell

states or functions for individual cells and private subspaces could be used to solve specific

technical issues for each modality.

In summary, we developed a deep generative model, SAILER, for learning robust latent

cell representations invariant to changes in various noise factors, which has not been possible

with most current scATAC-seq analysis tools. Given the fast-expanding collection of publicly

available single-cell sequencing data, we envision that the SAILER framework can serve as a

powerful tool to remove impacts from confounding factors and uncover cellular heterogeneity

across diverse cell states and conditions in large-scale single-cell omics data analysis.

2.5 Supplementary Notes

2.5.1 Results on Hyperparameter Robustness

In this section, we present evaluation results under different hyperparameter settings. In

particular, we show the mean mutual information I(z, c), Adjusted Rank Index (ARI), and

Normalized Mutual Information (NMI) between cluster assignments and ground truth labels

evaluated on the mouse atlas dataset for different hyperparameter settings. The default

setting is λ = 1, dim(z) = 10, number of intermediate neuron units is 100. For each

experiment, we change one of the hyperparameter listed above. The results are shown in
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Table 2.1, 2.2, 2.3 and Figure 2.2.

2.5.2 Derivations of the Mutual Information Objective

In this section, we show the detailed derivation of the mutual information objective [76] used

in our model.

With properties of Mutual Information and a variational inequality, we have

I(z, c) = I(z,x) − I(z,x|c) (2.8)

= I(z,x) −H(x|c) +H(x|z, c) (2.9)

≤ I(z,x) −H(x|c) − Ex,c,z∼q[log pθ(x|z, c)] (2.10)

= Ex[DKL(qϕ(z|x)||qϕ(z))] −H(x|c) − Ex,c,z∼q[log pθ(x|z, c)] (2.11)

H(x|c) doesn’t involve z, thus it could be ignored during the optimization. Terms from

the above equation looks similar as the VAE objective, with some modifications on the

conditional log likelihood.

LVAE = Ex,c∼q(x,c)
[
−Ez∼qϕ(z|x)[log pθ(x|z, c)] +DKL(qϕ(z|x) ∥ p(z))

]
(2.12)

According to the equation above, the ELBO of VAE is modified to minimize the negative log

likelihood conditioned and the mutual information between latent variable z and confounding

factors c for invariant representation learning.

min LVAE + λI(z, c) (2.13)
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Putting above equations together, we have the final objective,

L(ϕ, θ) = Ex∼q(x) [DKL(qϕ(z|x) ∥ p(z)) + λDKL(qϕ(z|x) ∥ qϕ(z))]

−(1 + λ)Ex,c∼q(x,c)
[
Ez∼qϕ(z|x)[log pθ(x|z, c)]

]
(2.14)

2.5.3 Results on Batch Effect Correction Benchmarking

In this section, we show benchmark results on Sim3 dataset using SnapATAC [33] with

Harmony [57] and SAILER. Sim3 dataset contains 2 batches, 6 types of cells including 2

rare cell types. Harmony is applied after dimensional reduction in SnapATAC pipeline to

remove batch effect. We show UMAP visualization of latent landscape colored by cell type

(Figure 2.6A), t-SNE visualization of latent landscape colored by batch (Figure 2.6B). As

shown in the Figure 2.6A, SnapATAC with Harmony failed to separate the two batch specific

rare cell types (blue+orange cluster), while SAILER’s unified framework separated these two

cell types successfully. In Figure 2.6B, SnapATAC without batch effect correction clearly

shows separated batches even within the same cell type. Harmony can align different batches

together, but with obvious sub-cluster patterns. On the contrary, SAILER merges these cells

quite well by reporting locally homogeneous mixing from different batches.

We also calculated a quantitative measure of the mixing of cells from different batches in

three steps. 1) Build the KNN graph for each cell (K=50); 2) Find the 50 nearest neighbor

of each cell in the embedded space; 3) For each cell, calculate the proportion of its nearest

neighbors from batch 0 and batch 1, denoted by p0 and p1 separately.

Intuitively, a good batch effect correction method will provide p0 and p1 approximately

0.5 (after cell number normalization) if two batches from different platforms is well mixed,

otherwise will result in a biased mixture, as shown in Figure 2.6C(a). From Figure 2.6C(b),

we can see that SAILER has better local mixture of two batches by reporting balanced
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p1 values, as compared with SnapATAC with Harmony, which indicates improved local

homogeneity, proving that our method is more robust in dealing with multiple batches.

2.5.4 Runtime and Scalability

We compared the runtime of three methods benchmarked with the mouse atlas dataset[26],

namely SAILER, SCALE [115], and SnapATAC. Figure 2.5A shows the runtime of three

methods. Both deep learning methods SCALE and SAILER are trained thoroughly for 400

epochs using a NVIDIA RTX 2080Ti GPU. Scalability of SAILER is tested on re-sampled

mouse atlas dataset with sample size ranging from 5k to 1M. Results are shown in Figure

2.5B. SAILER achieves the shortest runtime. In the meantime, runtime of SAILER scales

linearly up to sample size of 1M cells in our experiment.

2.5.5 Results on Batch Effect Correction on different platforms

Last but not least, batch effects are often caused by experiments from different platforms.

These platform-to-platform variations also play a vital role in separating cells apart even if

they are originated from the same cell type. To evaluate the clustering performance of our

method SAILER on cells from different platforms, we choose SnapATAC (with Harmony) as

comparison and draw the UMAP visualization plot on two mouse brain datasets [33] gener-

ated using combinatorial indexing single nucleus ATAC-seq platform (MOs-M1/ snATAC)

and droplet-based platform (Mouse Brain 10X / 10X) respectively. As the result shown in

Figure 2.9, both SnapATAC (with Harmony) and SAILER performs quite well in mixing

these two platform cells together, further demonstrating that our model is quite robust in

dealing with batch effects.
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2.5.6 Results on memory cost

In terms of memory usage, since CPU based method like SnapATAC is different from GPU

based methods like SAILER and SCALE, so to evenly compare its cost, we monitor the

memory cost of the two GPU-based, namely SAILER and SCALE, on mouse atlas dataset

during training process, their memory cost are 4319 megabytes and 4553 megabytes respec-

tively using NVIDIA 2080ti GPU, which is just 1/3 of the maximum memory of one GPU

card. Thus, the model could be expected to apply to more memory consuming datasets.

The reasonable memory cost also denotes a useful application for other memory consuming

datasets.
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Chapter 3

Integrating Multimodal single-cell

data with structural similarity

Multimodal single-cell sequencing technologies provides unprecedented information on cel-

lular heterogeneity from multiple layers of genomic readouts. However, joint analysis of two

modalities without properly handling the noise often leads to overfitting of one modality

by the other and worse clustering results than vanilla single-modality analysis. How to effi-

ciently utilize the extra information from single cell multi-omics to delineate cell states and

identify meaningful signal remains as a significant computational challenge. In this work,

we propose a deep learning framework, named SAILERX, for efficient, robust, and flexible

analysis of multi-modal single-cell data. SAILERX consists of a variational autoencoder with

invariant representation learning to correct technical noises from sequencing process, and a

multimodal data alignment mechanism to integrate information from different modalities.

Instead of performing hard alignment by projecting both modalities to a shared latent space,

SAILERX encourages the local structures of two modalities measured by pairwise similari-

ties to be similar. This strategy is more robust against overfitting of noises, which facilitates

various downstream analysis such as clustering, imputation, and marker gene detection. Fur-
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thermore, the invariant representation learning part enables SAILERX to perform integrative

analysis on both multi- and single-modal datasets, making it an applicable and scalable tool

for more general scenarios.

3.1 Introduction

Single cell sequencing (sc-seq) offers genome-wide measurements of genetic information from

individual cells [101, 14, 30, 26, 77, 53, 96]. Recent technology advances allow simultaneous

profiling of multiple modalities in the same cells [20, 69], allowing us to dissect cellular het-

erogeneity from multiple layers and investigate the transcriptomic and epigenomic interplays

at the finest possible resolution.

Several computational methods have been developed to deal with some key factors of data

integration, such as correcting batch effect while maintaining biological patterns for scRNA-

seq data (scVI, scANVI, Scanorama, Harmony etc.) [66, 45, 57, 116], and embedding multi-

modal data to the same embedding without corresponding information [65, 3, 59, 111, 95,

32, 15]. Readers can refer to [3] for a more detailed comparison of data integration methods.

However, it is still remaining a challenge to effectively utilize information cross different

modalities due to problems such as unbalanced signal-to-noise ratio (SNR), datasets with

missing modalities, handling modality-specific noise factors and batch effects. Recently,

many computational methods have been developed to analyze multimodal single cell data

[36, 112, 50, 74, 114, 120]. A common strategy used by many methods is to project data from

different modalities to a shared latent space. For example, existing methods like scAI, scMM,

scMVAE, BABEL and Cobolt [50, 74, 114, 120, 37] use either Nonnegative Matrix Factor-

ization (NMF) or Encoder-Decoder types of neural networks to project multiple modalities

to a common latent space. Their underlying assumption is that measurements from different

modalities are equally informative and share a common distribution, which does not hold

42



Table 3.1: Comparisons on the functionality of benchmarked methods.

Method Approach Nonlinear Scalability Multiome Missing Modality
Bias

Correction
Signac LSI × × ✓ × ×
Schema QP ✓ × ✓ × ×
SAILER VAE-Inv ✓ ✓ × × ✓
Cobolt MVAE ✓ ✓ ✓ ✓ ×

SAILERX VAE-Inv ✓ ✓ ✓ ✓ ✓

under many circumstances. For instance, a typical scATAC-seq experiment usually reports

1,000 to 20,000 mappable fragments per cell over the entire 3.2 billion base pair genome,

resulting in noticeably higher dropout rates and coverage variations as compared to the RNA

modality from the same cell. As a result, lines of literatures pointed out that direct fusion of

modalities with neural networks can introduce severe overfitting across modalities, resulting

in poor separation of cell clusters in learned latent representation [94]. In observance of this,

Sigh et al. proposed Schema framework by learning an affine transformation of similarity

matrices through metric learning to find a joint representation of cells which is regularized to

be similar to a reference embedding [94]. However, the flexibility of the transformation could

limit the expressiveness of the joint embedding, and it does not explicitly handle batch effect

and other technical noises. In another strategy, Signac [42] used weighted nearest neigh-

bor (WNN) graph to generate a joint embedding based on predictability of data from two

modalities of each cell. However, information fusion is done after separate embeddings are

generated without considering latent interaction between the two modalities, potentially lim-

iting the overall performance. Besides, most existing methods cannot handle sc-multiome

data with missing modalities (due to either possible QC failures in one modality or data

integrations from different sequencing protocols) or contain explicit mechanisms to handle

technical noises in each modality, which are common in real data analysis (Table 3.1).

Hereby, to tackle these issues, we propose a deep learning framework, named SAILERX, to

improve analysis of multiomics or hybrid of single- and multi-modal single cell sequencing
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datasets (Table 3.1). Distinct from existing methods, SAILERX can handle both parallel

scRNA-seq and scATAC-seq multiome data, single modal scATAC-seq data, and a hybrid

of these two types of data. To address the modality heterogeneity and avoid overfitting,

we use the more robust gene expression information as a reference modality, to regularize

the learning process of the chromatin accessibility modality. Specifically, scATAC-seq data

is modeled with a Variational Autoencoder (VAE) and embeddings of scRNA-seq data are

pre-trained and not explicitly modeled at training time. We further impose regularization

via minimizing the distance between the pairwise similarity in the embedding space be-

tween two modalities (Figure 3.1), which encourages local structures of cells to be similar to

the reference modality while accommodating substantially different technical noises across

modalities. The resulting representation of cells implicitly contains information from two

modalities and avoids the risk of overfitting. In the meantime, an invariant representation

learning objective [76, 16] is used in the VAE framework to eliminate observable technical

noises and allows integration of multiple datasets through end-to-end training. The model-

ing choice of SAILERX allows hybrid integration of datasets with scATAC-seq measures and

datasets with paired scRNA-seq and scATAC-seq, effectively utilize the information from

high quality multimodal data to improve the analysis of single-modal datasets.

We benchmark SAILERX with existing state-of-the-art (SOTA) methods for multi/single-

modal single cell data analysis on three popular single cell datasets with different sequencing

technologies and types of tissues. We show that SAILERX generates representations of cells

that provide better clustering and imputation. We also demonstrate how the single modal

scATAC-seq dataset could benefit from hybrid training. For biological applications, those

improvements significantly benefit the downstream analysis of chromatin accessibility data.

SAILERX is implemented in a python package freely to the community.
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Figure 3.1: Overall design of SAILERX. (A) SAILERX takes co-assayed single cell RNA-seq
and ATAC-seq data as input. scATAC-seq data is modeled with invariant representation
learning through VAE, while embedding of scRNA-seq is processed during pre-training and
not explicitly modeled in the training process. A regularization is imposed to encourage the
local structure of cells in the embedding space to be similar between two modalities through
minimizing the distance between pairwise cosine similarity matrices of two modalities. Latent
scATAC-seq feature is further used to perform downstream analysis. (B) SAILERX is also
capable of integrating single modal scATAC-seq with multimodal datasets through hybrid
training, which could further enhance the clustering performance on single modality data.

3.2 Materials and Methods

In this section, we provide details on our SAILERX model and datasets for benchmarking,

as well as describe methods.

3.2.1 Datasets

In this study, we focus on multimodal single cell sequencing data with paired scRNA-seq

and scATAC-seq measurements. For this purpose, three popular public single cell multiomics

datasets with different cell types and sequencing technologies are used in this study, namely
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10x Genomics PBMC dataset [42], Share-seq dataset [69] and SNARE-seq dataset [20].

PBMC dataset

10X Genomics offers multiple datasets with PBMC cells, we collect PBMC 10k Multiome

and PBMC 3k from the 10X genomics website. The PBMC 10k dataset is mainly used for

benchmarking cross modality integration performance. For the PBMC 3k dataset, we only

use the chromatin accessibility data for hybrid joint analysis with 10k dataset. The gene

expression modality of 3k dataset is not used in hybrid training and only used for identifying

ground truth labels of cells from the 3k dataset in this case. For integration of two sc-

multiome datasets, the gene expression modality is used normally. For these two datasets,

cell types are annotated through label transfer using an existing PBMC reference dataset via

tools in the Seurat [42] and SeuratDisk package. Specifically, we use a high-quality dataset

[42] as the reference dataset to transfer cell type labels to PBMC 3k and PBMC 10k datasets

respectively.

For scenario one (cross modality integration), the 10k Multiome data is acquired from 10X

genomics website. We first download PBMC 10k expression matrix and chromatin accessi-

bility matrix as well as its fragment file from 10X Genomic Multiome dataset, and we follow

the same quality control protocol as Signac [98] to filter out low quality cells. This retains

11,331 cells for further analysis. For scRNA-seq, we then normalize scRNA-seq data using

SCTransform function with default parameters. After that, principal component analysis

(PCA) is used to extract top 50 PCs for further clustering and joint analysis with scATAC-

seq. As for scATAC-seq, since the set of peaks identified using CellRanger often merges

nearby peaks, which would potentially cause bias in tasks like motif enrichment analysis, in

our study, peak calling is performed on PBMC 10x dataset by using fragment file to generate

unique peaks using MACS2 software [119]. After that, we follow the same process described

in [114] and keep the autosome data and get the final scATAC-seq peak-by-cell matrix. This
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matrix is further used to process and benchmark with all the other methods. For instance,

in Signac, TF-IDF is performed on the scATAC-seq matrix and then SVD is adopted on the

TF-IDF output matrix to get the 50-dimension latent embedding, which is further used for

clustering and joint analysis with scRNA-seq data.

Regarding to the second scenario (hybrid joint analysis), we use the aforementioned multi-

modal PBMC 10k data, which consists of scRNA-seq and scATAC-seq data as a reference

and perform joint analysis with the chromatin accessibility data from PBMC 3k dataset. We

retrieve PBMC 3k scATAC-seq data from 10X Genomics and treat it as a single modality

dataset. We reason that 3k dataset with scATAC-seq contains less information than the

multiomics dataset, however, since they come from the same types of cells, we could use

10k multiomics dataset as a reference to assist the analysis of 3k scATAC-seq data. We use

reduce function from GenomicRanges package [61] to merge common peaks from scATAC-

seq 10k and 3k dataset, and the peak by cell matrix is reconstructed separately for the two

scATAC-seq data, which is further used to train and evaluate our model, as illustrated in

Figure 3.1B.

Share-seq dataset

For Share-seq dataset, we retrieve Share-seq mouse skin dataset from Ma et al. (9), which

contains 34,474 cells of both modalities of scRNA-seq and scATAC-seq data. For scRNA-

seq data, we normalize its gene by cell matrix by using SCTransform function with default

parameters from Signac package, then PCA is utilized to get top 50 PCs for further analysis.

For scATAC-seq data, we keep the preprocessed peak by cell matrix used in Ma et al. The

gene by cell and peak by cell matrices are used for evaluation on other methods.

Snare-seq dataset. For Snare-seq dataset, we download adult brain cortex data of two modal-

ity matrices from Chen et al. [20]. For scRNA-seq data, we follow the same processed steps

47



as previous by normalizing gene by cell matrix using SCTransform function [42] with default

parameters. After that we adopt PCA on the normalized matrix and use top 50 PCs as

latent embedding for further analysis. As for the scATAC-seq data, after retrieving the pro-

cessed scATAC-seq matrix from Chen et al, we also follow the same processed procedure as

BABEL [114] and filter out low quality cells while keeping the original peaks unchanged. In

details, genes that are encoded on sex chromosomes are first removed, and cells expressing

fewer than 200 genes, or more than 2,500 genes are also filtered.

3.2.2 Model

Here, we describe details and implementation of our SAILERX model. SAILERX combines

information from the gene expression measures to improve the downstream analysis of chro-

matin accessibility. SAILERX could also perform integrative analysis on multiple datasets

with one or multiple modalities.

The model takes the co-assayed single cell multimodal data xi, i ∈ 1, 2, . . . ,M as input. We

denote the gene expression data as xg1:M and the peak data as xp1:M (M indicates the total

number of multimodal data samples). Our model could also take single modal scATAC-seq

datasets xpM :B (B indicates total number of sample batches) as input and perform integrative

analysis among allxp = [xp1, x
p
2, . . . , x

p
M , ..., x

p
B]. The overall method follows the invariant

representation learning framework based on Variational Autoencoders (VAEs) [76, 16].

LInv = LV AE + λI (z, c) (3.1)

≥ E[−KL[q(z|x)||p(z)]] + (1 + λ)E[logpxz, c] − λKL[q(z|x)||q(z)] (3.2)

In order to utilize the gene expression information provided by multimodal single cell samples,

we add an extra term to regularize the local data structure in the chromatin accessibility
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posterior qϕ (z1:M |xp1:M) to be close to the local structure measured by gene expression.

We use pairwise cosine similarity to describe the local data structure, where the cosine

similarity is computed as

S =
A ·B

||A|| ||B||
=

∑n
j=1AjBj√∑n

j=1A
2
j

√∑n
j=1B

2
j

(3.3)

For each sample batch i, A and B are two single cell data vectors from f (xgi ) (where f (xgi )

is a transformation of raw gene expression data) and qϕ (zi|xpi ) for Sgi and Spi respectively. In

general, f (·) can be any embeddings of gene expression data preferred by user (e.g., a VAE or

top PCs from PCA) since it is not parameterized by our neural network model here and only

serving as a reference. For the convenience of comparing with existing methods, in our study,

we mainly use the PCA results generated by Signac/Seurat [42] as the reference embedding.

Some other scRNA-seq embedding methods (scVI [66], scANVI [116], Scanorama [45]) are

also tested.

During the training, we minimize a distance-based objective d (·, ·) between the local pairwise

cosine similarity matrix for each sample batch i calculated by gene expression data Sgi and

the pairwise similarity matrix calculated by latent distribution of peak data modeled by

invariant VAE Spi , where both S’s are b by b symmetric matrices with batchsize b for each

minibatch during training.

LLocal =
M∑
i=1

d (Sgi , S
p
i ) (3.4)

By choosing a proper differentiable distance metric d (·, ·), we can fuse this term into the

end-to-end training of our deep generative model. The overall loss function would be the

sum of the canonical VAE objective, a mutual information penalty, and the local similarity
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regularization. Here, we multiply a weight vector γ = [γ1, γ2, . . . , γb] with length b equals

to the number of cells in current mini batch. This weight γj is calculated based on the

ratio between read depth from gene expression modality and read depth from chromatin

accessibility modality for each cell j. This weight vector is then subject to log transformation

and min-max normalization to ensure stability γj = MinMaxNorm
[
log
(
depthRNA

depthATAC

)]
. After

scaling it with a constant scalar, we have our final weight vector γ ∈ R+b. The relationship

between the scaling factor and the final LLocal is shown in Figure 3.2A. We note that after

certain point, further increase of this scaling factor will no longer reduce the final LLocal. We

recommend using this point as the choice for the scaling factor, as further increase of this

weight does not transfer more information from the reference modality. Meanwhile, it may

compromise the invariant representation learning objective, which could lead to problems in

confounding factor removal or imputations. Also, from Figure 3.2B, we can see clustering

metrics of SAILERX are robust in a relatively large range of weight values. In terms of choice

of λ and dimension of latent variable, similar as in [16], the framework is robust against the

choice of λ and dimension of latent variable.

The final loss of SAILERX is a summation of the invariant representation learning objective

from equation 1 and the local alignment loss from equation 3 weighted by γ.

L = LInv + γLLocal (3.5)

In our implementations, we chose the Euclidean distance for d (·, ·) since it is differentiable

and easy to calculate.

For the architecture of neural networks, we adapt the encoders and decoders structures

from BABEL [114], where each chromatin is independently modeled by a two-layer dense

encoder network, and outputs from each encoder network are concatenated with each other

before being input to the final linear layer which yields the latent variable. The decoder
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Figure 3.2: Results on hyperparameter stability. (A) The alignment loss LLocal decreases as
the scaling factor increases. (B) Clustering metrics ARI and NMI as a function of scaling
factor.

is symmetric to the encoder network, taking the latent and confounding variables as input

and reconstructing the data. The assumption here is that interactions between genes and

regulating factors are mainly within each chromatin. This type of modeling is efficient in

memory consumption since it significantly reduces the total number of parameters. For fair
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comparison, the original SAILER encoder and decoder networks are also updated to the

same structure.

3.2.3 Hybrid Training

One characteristic of SAILERX is that it allows integration of datasets with missing modal-

ities (when B > M). In this scenario, for datasets with both modalities measured (xi, i ∈

1, 2, . . . ,M), the loss function follows the form of equation (3.5), where a reference embedding

is available for calculatingLLocal; for datasets with only one modality (xi, i ∈ M, . . . , B), we

no longer calculate or backpropagate the gradient for LLocal, since no reference embeddings

are available for these datasets. For these scATAC-seq datasets, we still perform batch effect

correction through the invariant representation learning objective (equation (3.2)), where

the batch effect is represented as the confounding variable c, along with the read depth for

each single cell.

3.2.4 Evaluations

For all methods, we project the input data to a lower-dimensional space (dimension of

embedding is 50 by default, unless specified by other methods) that delineates the latent cell

states. For Seurat, we use the scTransform function to normalize the raw counts and use the

normalized data as input for PCA; for Signac, we use its multimodal integration analysis,

which uses the same normalized gene expression data and additional TF-IDF transformed

peak data as input; for SAILER we use the peak data as input; and for Cobolt and Schema,

we follow their tutorials and use data from both modalities as input. To generate a lower-

dimensional embedding for benchmarking, for Seurat, we use the top 50 PCs after PCA;

for Signac, we use the results of Weighted Nearest Neighbor (WNN) analysis as a joint

embedding of gene expression and chromatin accessibility modalities; for SAILERX, we
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extract the mean of the posterior latent distributions as the cell representation; for Cobolt,

we use the latent variable z with dimension 50 calculated from its multimodal variational

autoencoder; and for Schema, we use the 50-dimensional latent feature retrieved by using its

fit transform function. Other compared reference embeddings are generated with scVI [66],

scANVI [116] and Scanaroma [45] using scIB package [67]. We set the default dimension

as 50 for compared methods, including Seurat, Schema, Cobolt, SAILER, and Signac in

our analysis in order to fairly compare all these works. As for the rest methods, we keep

the default latent dimension settings in the scIB package for scVI, scANVI and Scanaroma

(30, 30 and 100 respectively). 2D visualizations are acquired by running uniform manifold

approximation and projection (UMAP) [72] on the latent embeddings.

One major task of these dimensional-reduction methods is to project the input genomics data

to a lower dimensional embedding that is informative on cell type identification through clus-

tering. To evaluate how the clustering generated from these embeddings are compared to the

ground truth cell labels, we use quantitative metrics of Adjusted Rand Index (ARI), Normal-

ized Mutual Information (NMI), and Silhouette Score to assess the performance of different

methods. ARI and NMI evaluate how well computational clusters overlap with ground truth

labels, and the Silhouette coefficient evaluates the separation of the cell clusters. These

metrics are common metrics used for benchmarking single cell clustering methods [118, 115].

Specifically, to generate cluster assignment for each cell, we construct k-nearest neighbor

(KNN) graphs from the lower-dimensional embeddings of different methods respectively,

and then apply the Louvain algorithm [104] to assign individual cells to different clusters.

Each method generates its own set of clusters, and these clusters are then used to calculate

quantitative metrics of ARI, NMI, and Silhouette Score for benchmarking. The calculations

of metrics are carried out by functions from scikit-learn [80] library. For analysis in Figure

3.3 and 3.7, for fair comparisons, all methods are producing the same number of clusters. To

determine the effect of clustering parameters and cluster numbers, we provide a wide range

of resolutions and KNN numbers to the Louvain algorithm to determine the final clustering
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assignments. During the process, we record the number of clusters identified based on each

combination of parameters (resolution and KNN number) for each experiment, as well as the

metric scores for that clustering assignment. The effect of clustering parameters and cluster

numbers are summarized in Figure 3.5.

3.2.5 Imputation

We generate the imputation data via a reconstruction conditioned on the invariant repre-

sentation and fixed confounding factors. Specifically, we first push the raw data through

the encoder network, and obtain the mean parameters for latent distributions. Unlike the

training process, where we calculate the depth of the raw data and load the one-hot em-

bedding according to the real batch information, here we fix the depth and batch indicator

for reconstruction. As a result, we use only the invariant component z to reconstruct the

chromatin landscape during the imputation process, while keeping the other confounding

factors at a fixed level.

When evaluating imputation results, we first generate imputed data with each method.

Then use randomized PCA to project the imputed data to a lower dimension. We then

use UMAP to visualize the landscape of imputed data in 2D. For benchmarking against

MAGIC, we use both graphs generated by scRNA-seq modality and scATAC-seq modality

for fair comparison. The RNA graph is based on the Seurat embedding and ATAC graph

is based on MAGIC’s own pipeline. For benchmarking with scOpen, we follow the manual

on its GitHub site to generate a dense imputation matrix. The imputed matrices are then

subject to randomized PCA and visualized with UMAP. Quantitative scores (ARI, NMI,

Silhouette Score) are calculated based on clustering results generated from the top PCs.
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Table 3.2: List of cell-type specific marker genes used to visualize expressions.

Cell Type Marker Gene Names
Pvalb Erbb4, Cemip, Lrrc4c, Slit2, Cntnap4, Btbd11, Zfp536, Esrrg, Kcnc1,Cntnap5c

L4 Car10, Unc5d, Rorb, Pcdh15, Dcc, Gria4, Prkg1, Fstl4, Kcnh5, Cpne9
CD4 Naive Bach2, Fhit, Igf1r, Ccr7, Ak5, Apba2, Lef1, Maml2, Sell,Satb1-as1

B Naive Ighm, Ighd, Tcl1a, Bach2, Col19a1, Il4r, Skap1, Camk2D, Foxp1, Khdrbs2

3.2.6 Marker Gene Expression Analysis

To further evaluate the quality of cell clusters, we visualize the expression of marker genes

in clusters labelled as CD4 näıve cells and B näıve cells from the PBMC dataset and L4 cells

and Pvalb cells from the SNARE-seq dataset. To associate the cell clusters to biological cell

types, the cell cluster labels are called based on a majority vote of the ground truth labels

of the cells contained in each cluster. The four types of cells are chosen for this analysis

because they are similar to other cell types and are challenging to cluster them. The CD4

cluster sits very close to CD8 näıve and other CD4 subtype clusters in the embedding space.

The L4 cluster sits close to the L2/3 and L6 IT cell clusters. In particular, gene expression

information alone cannot well separate subtypes of B cells.

The cell-type specific marker genes used for the visualization are called by the FindMarker

function in Seurat [97]. These genes are identified as marker genes because they show

significant differential RNA expression in the cells labeled with the corresponding cell types

vs. other cells. Cell-type labels are based on ground-truth labels. The top 10 chosen marker

genes associated with each cell type are shown in Table 3.2.

For each cell type, we use boxplots to visualize the mean normalized expression of marker

genes (Figure 3.6) of the cells from the cluster labeled with the corresponding cell type.

The gene expression values are normalized by scTransform, and the mean values are shown

in Table 3.3, Pairwise t-tests between SALIERX and other methods indicate whether the

marker genes from SALIERX show significantly higher expression than those from other
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methods. T-test p-values are indicated by ns (p-value > 0.05, i.e., not significant), * (p-

value < 0.05), ** (p-value < 0.01) and *** (p-value < 0.001).

3.2.7 Motif Analysis

We perform motif analysis on several key motifs to demonstrate a case of discovering cell-type

specific motif enrichment between different cell types. The putative cell types are determined

by same procedures in previous section through clustering and majority vote. We first

compute a per-cell motif activity score by running chromVAR [92]. It converts the peak by

cell matrix to a motif by cell matrix, allowing us to get the motif activity score per cell, which

provides an alternative method for identifying differentially active motifs between diverse

cell types. In order to discover differential motif activities, we also utilize z-score, calculated

by chromVAR, and FindMarkers function, provided by Signac [98], to get the average z-

score differences between different cell types. Then these motifs are sorted according to

their p-values. We set the parameter mean.fxn=”rowMeans” and fc.name=”avg diff” in the

FindMarkers function following Signac tutorial to compute the average difference in z-score

in terms of fold-change calculation between the groups.

After that we apply MotifPlot to plot the 4 of the top 6 motifs that represents the most

differential expressed motifs between the two cell types. Finally, we also get the clustering

result with regards to specific cell types that we use to compare differential motifs. We use

Louvain algorithm to assign a specific cluster number to each cell cluster, and then collect all

the cells that belong to the same cluster number, which overlaps with the most cells of that

specific ground truth cell type. We refer the z-score of those cells of that motif calculated

from chromVAR and draw barplot to show the z-score distribution on that plot.
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3.3 Results

Joint analysis of single cell multi-omics data with paired measurements often suffers from

imbalanced SNR from different modalities [94]. In our study, we mainly focus on paired mea-

surements of scRNA-seq data and scATAC-seq data. In practice, data from the scATAC-seq

modality is often more affected by read depth variations and limited coverage rate, which

would greatly impact the joint embedding when fusing data from two modalities together.

In order to address the aforementioned issues, we design a framework SAILERX by using

the structural similarity for the integration of the two-modality data and achieve satisfac-

tory result. Here, we benchmark SAILERX with other methods that are able to cluster

single/multi-modal single cell data. We also demonstrate that SAILERX could be used to

align datasets with missing modality and improve analysis by applying joint analysis with

a high-quality multimodal dataset. We include Table 3.1 to better illustrate the differences

between our methods and others. After that, we further demonstrate the benefits of our

method on downstream analysis such as motif discovery. Details are described in the follow-

ing subsections.

3.3.1 SAILERX generates better clustering by fusing information

from two modalities

We first benchmark our framework on PBMC 10k dataset, which consists of paired transcrip-

tion and chromatin accessibility sequenced on 11,331 cells of human PBMC. This dataset

is generated by 10X genomics. Some mature and differentiated blood cells from PBMC

dataset have clear separation of cell types such as B cells and T cells. However, within those

cell types, some sub-cell types such as monocytes are still ongoing differentiation process,

resulting in continuously distributed cell clusters which often pose challenges to clustering

algorithms.
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During training, the regularization term in SAILERX encourages the local structure of the

posterior distribution on the scATAC-seq data to be close to its scRNA-seq correspondence.

The embedding from scATAC-seq is generated by the encoder network of a VAE, and the

embedding for scRNA-seq modality for this dataset is generated by one of the scRNA-seq em-

bedding methods. In this study, we mainly use PCA from Seurat as the scRNA-seq reference

embedding, but other methods are also demonstrated in this dataset (Figure 3.3C). During

training, we also assign a weight for each cell on this regularization term based on the read

depth of two modalities (Methods). Cells with poor quality on scATAC-seq measurements

will have higher weights. With this flexible weighting mechanism, cells with poor scATAC-

seq measurements could get more information from its scRNA-seq correspondence, and cells

with better data quality from scATAC-seq side could preserve their informative parts. After

training, we retrieve the posterior mean of latent variable as our final embedding and clus-

ter those cells accordingly. We benchmark our methods with three state-of-the-art (SOTA)

methods that could handle multiomics data integration, i.e., Signac, Schema and Cobolt, as

well as SOTA methods that only work on single modality data (i.e., Seurat, scVI, scANVI,

Scanorama on scRNA-seq, and SAILER on scATAC-seq).

2-D visualizations of the embeddings generated by different methods are shown in Figure

3.3A, with cells colored by ground truth cell type labels. The ground truth cell type labels

are inferred through Seurat-style mapping strategy from [42]. We validate these ground

truth cell type labels by visualizing some enriched expressions of known cell type-specific

marker genes (Figure 3.4), such as pDC cells (with known marker genes CLEC4C and NRP1)

[24, 93, 70, 85], and Treg cells (with known marker gene FOXP3 and RTKN2) [90, 5]. From

the results, we can see that the ground truth cell types here correspond well with the well-

known cell-type markers, so we consider these labels as “ground truth” labels for the following

analyses.

To quantitatively assess these clustering methods, we use ARI, NMI, and Silhouette metrics
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Figure 3.3: Results on PBMC 10k Multiome dataset. Cells colored by ground truth label. (A)
UMAP visualizations of embeddings on PBMC 10k Multiome dataset generated by different
methods. Red circles show separation of sub clusters of B cells under Seurat (scRNA-seq
only), SAILER (scATAC-seq only) and SAILERX (multimodal). (B) Quantitative metrics
of ARI, NMI, and Silhouette Score on clustering generated by different methods. Error bars
are generated by repeating experiments with 90% randomly subsampling. (C) Quantitative
metrics of ARI Score on Reference Embeddings on gene expression modality and Integrated
Embeddings generated by SAILERX.

to evaluate the clustering results. ARI and NMI evaluate how well the computational clus-

ters derived from lower-dimensional embeddings overlap with ground truth cell labels; and

the Silhouette coefficient measures the separation of the cell clusters in the embedding space.
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Figure 3.4: Visualizations of marker gene expressions by inferred ground truth cell types in
the PBMC 10k Dataset. CLEC4C and NRP1 are marker genes for pDC cells; RTKN2 and
FOXP3 are marker genes for Treg cells.

Higher scores indicate better matchings and separations. The metric scores are shown in

Figure 3.3CB-C and Figure 3.5C, with SAILERX achieving the highest scores in ARI, NMI,

and Silhouette coefficient. From the scores, we can see Seurat achieves a great performance

on overall clustering results. In the figure, we can see it forms tight and separable clusters

for most cell types. Some other multimodal integration methods do not perform as well as

Seurat when adding extra information from chromatin accessibility, showing that adding ex-
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Table 3.3: Mean expressions of markers on cells clustered by different methods.

Cell Type SAILERX Seurat Signac Cobolt Schema SAILER
Pvalb 7.10 4.25 7.07 0.72 5.01 3.71
L4 1.05 1.11 0.97 -0.01 0.92 0.77
B naive 6.29 3.60 6.09 3.55 3.68 3.60
CD4 1.36 1.34 1.34 1.05 1.07 1.23

tra information without properly handling the noise could harm the overall clustering result.

However, when we compare SAILERX with Seurat, we can see the embedding generated

by SAILERX keeps the robust separation of cell clusters inherited from its reference gene

expression modality, while preserves the useful signals appearing in the chromatin accessi-

bility modality. This could also be demonstrated by the separation of sub clusters of B cells

colored in red and blue (Figure 3.3A red circles), and the higher marker gene expressions

for cells identified as B näıve cells (Figure 3.6A, Table 3.3). This shows that through proper

integration of information from both modalities, SAILERX could discover new (sub)types of

cells previously unidentifiable with gene expression modality only. Also, from the results, we

can see that our integration benefits the delineation of continuously distributed cell types,

e.g., CD4 cells. CD4 cells are previously reported to be more identifiable using chromatin

accessibility information [88]. This can be demonstrated when we try to identify subtypes

of CD4 cell. Compared with other methods, CD4 näıve cells identified by SAILERX have

higher marker gene expressions (Table 3.3). This shows our cross-modality integration can

also benefit the cell type identifications for ambiguous subtypes.

For robustness evaluation, we further test if our method could consistently improve upon

different reference embeddings. Here we use three other scRNA-seq embedding methods

(scVI, scANVI, and Scanorama) to generate reference embeddings and then use these em-

beddings to help train SAILERX models. As shown in the FFigure 3.3C and Figure 3.8, the

joint embeddings combine information from two modalities and constantly outperform their

reference embeddings. This shows effectiveness and robustness of SAILERX’s information

fusing strategy.
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Figure 3.5: Clustering scores of PBMC 10k dataset by different number of identified clusters.

Similar analyses are performed on the SNARE-seq dataset [20] with a different sequencing

technology. SNARE-seq data are from mouse brain tissue. A great majority of cells in this

dataset are found in a quiescent state, and thus is more stable compared with PBMC cells.

Compared with PBMC 10K from 10X genomics, the SNARE-seq data tends to have much

shallower read depth in chromatin accessibility reads, which makes this chromatin accessi-

bility data here sparser than the scATAC-seq data in the previous analysis. From the results

(Figure 3.7), we can see some integration methods severely suffer from this when projecting

data from two modalities into one shared latent space. In this scenario, embedding gener-
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Figure 3.6: Comparing the expression of marker genes in clusters derived by different meth-
ods. (A) Mean expression of marker genes of B Naive cells and CD4 Naive cells from PBMC
10k dataset. (B) Mean expression of marker genes of Pvalb cells and L4 cells from SNARE-
seq dataset.

ated by SAILERX forms tighter clusters (Figure 3.7A) and achieves the best performance in

terms of quantitative results (Figure 3.7B). The separation of cell types is also demonstrated

by marker gene expressions of cells identified by different methods (Figure 3.6B, Table 3.3),

where SAILERX shows higher results compared with other methods.

We also perform clustering analyses on a more recent Share-seq dataset [69] on mouse skin

tissues. The results are shown in Figure 3.9, where SAILERX achieves better results in terms

of quantitative scores. Among all different types of tissues and sequencing technologies, the

integration strategy used by SAILERX robustly outperforms other methods, showing the

effectiveness of our framework.
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Figure 3.7: Results on SNARE-seq dataset. (A) UMAP visualizations of embeddings gener-
ated by different methods on SNARE-seq dataset. Cells are colored by ground truth labels.
(B) Quantitative metrics of ARI, NMI, and Silhouette Score on clustering generated by dif-
ferent methods. Error bars are generated by repeating experiments with 90% subsampling.

Figure 3.8: UMAP Visualizations of reference embeddings vs SAILERX embeddings. Top
row: UMAP visualizations of reference gene expression embeddings generated by different
methods. Bottom row: joint embeddings generated by SAILERX after training.
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Figure 3.9: Results on Share-seq dataset. Cells colored by ground truth label. (A) UMAP
visualizations of embeddings on mouse skin Share-seq dataset generated by different methods.
(B) Quantitative metrics of ARI, NMI and Silhouette Score on clustering.

3.3.2 SAILERX improves analysis of single modal scATAC-seq

dataset by aligning it to multimodal datasets

Besides fusing information from two modalities within one dataset, SAILERX is also capa-

ble of performing multi-sample data alignment even for datasets with missing modalities.

This is achieved by the invariant representation learning objective of our framework. By as-

signing a batch indicator variable as a confounding factor, the model automatically corrects

for the batch effect during training. When integrating datasets with missing modalities,

we ignore the regularization term for those cells with only one type of measurements. For

this case, we use PBMC 10k Multiome dataset with paired scRNA-seq and scATAC-seq

measurements, together with a single-modal PBMC 3k dataset with scATAC-seq only as

described in Methods. Two datasets are jointly trained as described above. We then ob-

tain the latent representation and perform clustering on cells from PBMC 3k dataset using
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Figure 3.10: Hybrid training result on PBMC 3k dataset. (A) Datasets used for training.
(B) UMAP visualizations of PBMC 3k dataset. (C) Metrics on clustering for PBMC 3k
dataset.

Louvain community detection. The results are shown in Figure 3.10, and ground truth cell

types are identified by marker genes as in Hao et al [42]. Here we evaluate the clustering

metric, and compare it with Cobolt [37], which is also capable of integrating multimodal

data with missing modality, and Signac, which only performs integration with scATAC-seq

modalities. The Cobolt method adopts a multimodal VAE with shared latent space. As

shown in Figure 3.10 B and C, SAILERX achieves the best clustering metrics, showing that

the flexible fusing mechanism works better on the noisy single cell multiomics data compared

with Cobolt, and the single modal data with lower data quality could benefits a lot from

this type of multi-sample alignment.
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Figure 3.11: Results on batch effect correction on PBMC 10k and 3k datasets. (A) UMAP
Visualizations of PCA (left) embedding on gene expression modality and TF-IDF + SVD
(right) embedding on chromatin accessibility modality before batch effect corrections. (B)
UMAP visualization of embeddings after batch effect correction. Top row: colored by cell
types; Bottom row: colored by batches.

In addition to batch alignment between one multi-modal and one single modal dataset,

SAILERX could also align data from multiple multimodal datasets. We demonstrate this

with complete PBMC 3k and 10k datasets. As shown in Figure 3.11, SAILERX could align

data from different batches when there exists a clear batch effect while preserving a high

quality of clustering results. And in Figure 3.12, SAILERX is trained in a situation with cell

type heterogeneity: we mimic this by dropping one unique cell type from each batch. When

these data are processed together for batch alignment, we find that the unique cell clusters

are preserved. This shows that SAILERX can preserve biological signals when performing

batch effect corrections.
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Figure 3.12: UMAP visualizations of the embedding generated by SAILERX. Left: colored
by cell types; Right: colored by batches.

3.3.3 Cross modality integration facilitates downstream analysis

of chromatin accessibility data

In previous sections we have demonstrated that SAILERX is able to generate better embed-

dings under different scenarios. Here, we explore how this advantage could benefit down-

stream analysis of chromatin accessibility data. Here, we perform motif enrichment and

motif activity analysis on the SNARE-seq data mentioned above, which suffers more from

the sparsity and dropouts on the chromatin accessibility signals.

We first perform differential testing using the chromVAR [92] deviation z-score as described

in Methods. Here we use Pvalb and Sst cells (colored in red and purple in Figure 3.7A) to

calculate the differential motifs between these two cell types. Then we plot the top 6 motifs

that are mostly enriched between the two cell types by p-value calculated by FindMarkers

function from Seurat. As shown in Figure 3.13. Mef-family motifs are greatly enriched

in Pvalb-specific peaks in scATAC-seq data, with 4 out of 6 Mef-family motifs enriched in

those Pvalb-specific regions. These findings are consistent with previous reports [97, 33].
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Moreover, the Mef2c motif is also reported to be involved in the development of Pvalb

interneurons [71], and also shown enriched as one of the differential motifs (Figure 3.13,

Figure 3.14). To quantify the performance of these enriched motifs, we select those groups

of cells from clustering results of each method, which most likely represent Pvalb cells, and

then we calculate the value of z-score within those cells (details in Methods). We compare

the results generated by five other methods that are able to integrate multimodal scRNA-seq

and scATAC-seq data or work only on scATAC-seq modality. As shown in Figure 3.13, our

method achieves the highest value of motif deviation z-score among all the methods with the

differential significance of pairwise t-test p-values all less than 0.05, showing that SAILERX

is more likely to discover novel motifs based on this clustering. In addition, we compare

L4 and L5 PT cells and compute the enriched motifs between those cells. Previous reports

claim that POU3F2 protein associates with bipolar disorder and is involved in the neocortex

development in mice [18]. From the top 6 enriched motifs we could find, there are several

POU family related motifs enriched in the cells including POU3F2. Therefore, we explore

the motif enrichment results on L5 PT cells using POU1F1 and POU3F2 motif deviation

z-score calculated by chromVAR. Results are shown in Figure 3.13B. We find that SAILERX

still achieves the highest motif deviation z-score, further demonstrates the effectiveness of

our method on facilitating downstream analysis of chromatin accessibility data.

3.3.4 SAILERX recovers the cell type landscape in chromatin ac-

cessibility space through imputation

The high throughput of sc-seq measurements provides expressions and chromatin accessi-

bility information at the finest resolution. However, due to the limitations of read depth

and coverage, sc-seq data suffers from severe sparsity due to random dropouts during the

sequencing stage. Imputation is often applied during data analysis to recover the missing

values. Here we test how our methods denoise the raw scATAC-seq data after integrating
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Figure 3.13: Motif enrichment scores. Motif deviation z-scores on cells identified as (A) Pvalb
and (B) L5 PT by different methods from SNARE-seq dataset and the imputed dataset (im-
putation done by SAILERX). For each cell type, four enriched motifs are selected. Pairwise
t-tests are performed between SAILERX and all other methods. Three-stars refers to differ-
ential significance between two methods (p-value less than 0.05).

information from the scRNA-seq modality. We benchmark against MAGIC [28], which uti-

lizes data diffusion to perform data imputation, and scOpen which is a matrix factorization

based method.

Here, imputed data is generated by SAILERX, MAGIC, and scOpen respectively. For

MAGIC, since one key factor for imputation quality is the neighborhood graph, we pro-

vide graphs generated by scRNA-seq and scATAC-seq to MAGIC (details in Methods), and

show the visualizations of imputation results in Figure 3.15. As we can see, compared with

MAGIC and scOpen, imputed data generated by SAILERX better preserves the cell type
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Figure 3.14: Motif deviation z-scores on cells identified as (A) Pvalb and (B) L5 PT by
different methods from SNARE-seq imputed data. The data is imputed through SAILERX.
For each cell type, four enriched motifs are selected. Pairwise t-tests are performed between
SAILERX and all other methods. Three-stars refers to differential significance between two
methods (p-value less than 0.05).

landscape, where cells of different types are forming distinct clusters. Since SAILERX can

control the read depth at imputation stage, imputed data is free of these technical artifacts.

Compared with other imputation strategies, imputation done by deep generative models

better preserves the cell clusters and keeps distinct features of cells. To further validate

the imputation result, we use imputed SNARE-seq data generated by SAILERX and redo

the motif enrichment analysis on Pvalb and L5 PT cells (previous section). Motif devia-

tion z-scores are visualized with violin plots as shown in Figure 3.13 (see SAILERX imp

column). From the results, we can see that data imputed by SAILERX shows significantly

higher enrichment score, which indicates that some missing peaks are imputed for certain
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Figure 3.15: Results of imputations on PBMC 10k. (A) UMAP visualizations of imputed
10x Genomics PBMC chromatin accessibility data generated by SAILERX, scOpen, and
MAGIC (MAGIC imputations are done with graphs generated by scRNA-seq and scATAC-
seq respectively). Cells are colored by ground truth labels. (B) Quantitative metrics on the
cell landscape.

cell types.

3.4 Discussion

Multimodal single cell data provides a more comprehensive way of measuring cell manifold.

However, it is computationally challenging to leverage these multiomics data to better de-

pict the biological view of cell-cell specificity still poses challenges for researchers due to
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imbalanced SNR cross modalities. Some modalities in nature have lower coverage rate, thus

suffers more from noises like dropout. Current methods often fuse these multimodal data by

projecting them to a same latent space [37, 94, 98]. These approaches assume measurements

from two modalities have the same distribution, and both modalities are equally informative

on cell state information. In reality, these assumptions barely hold because chromatin acces-

sibility changes usually prior to the changes of gene expression states [69]; and scATAC-seq

measurements tend to suffer more from sparsity but could potentially provide more detailed

information on cell states. In the meantime, since there exist technical noises during se-

quencing process, which could bias the observed state of a cell toward different directions,

projecting the observed data from different modalities to a same point could be problematic.

Experiments have shown that projecting two modalities to a shared latent space could result

in overfitting of noises and lead to worse delineation of cell state landscape, especially when

using powerful models like neural networks [94].

To tackle these issues, in SAILERX, we use a more stable way by representing the more

robust gene expression modality as a reference embedding, and guide the inference of a

VAE modeling chromatin accessibility data. Instead of regularizing the latent variable for

different modalities to be the same, we encourage the pairwise distances between cells to be

similar across different modalities, in the meantime, use invariant representation learning to

remove technical noises that are observable at training time. This flexible information fusing

framework encourages the local structure of data to be similar and weights cells differently

to better retrieve information from heterogeneous modalities. According to our results, this

type of information fusion is able to preserve the informative parts from both modalities and

constantly achieves better embeddings and downstream analysis. The final clustering results

implicitly contain information from two modalities and can constantly improve upon any

single modalities. SAILERX could also be used on dataset with missing reference modality.

This allows SAILERX to be used under more scenarios (when datapoints from reference

modality is missing during QC or analyzing a dataset with different sequencing protocols),
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using multimodal single cell data as a reference to facilitate the analysis of scATAC-seq data

which usually suffers from low signal-to-noise ratio. With the help of SAILERX, researchers

could rescue those low-quality single modality data through hybrid data integration and

discover more informative features underneath those noises.
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Chapter 4

Learning Semantic Representation of

Genes through Large Scale

Pretraining on Single-cell Sequencing

Data

Recent advancements in single-cell technologies have ushered in an era of unprecedented

data generation, yielding atlas-level datasets encompassing millions of individual cells. These

collective datasets offer a rich tapestry of insights into the intricate gene interactions un-

derpinning the diverse functionalities of distinct cell types. In this study, we introduce

“Expresser” (short for Expression Transformer), a foundational model designed for effective

pretraining on large-scale single-cell RNA sequencing (scRNA-seq) datasets. Our primary

objective is to harness the model’s capacity to distill meaningful quantitative annotations

of genes, thereby empowering a multitude of downstream tasks. Expresser was pretrained

with self-supervision on a diverse spectrum of single-cell datasets, comprising approximately

6 million cells. To evaluate its efficacy, we subject the model to fine-tuning on various
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downstream tasks. Our experimental results corroborate the proficiency of the pretrained

Expresser model in several key aspects. Firstly, it excels in accurately imputing missing

expression values, a vital operation in scRNA-seq data analysis. Furthermore, the semantic

gene representations acquired through pretraining prove to be highly transferable across a

diverse spectrum of downstream tasks. These tasks encompass predicting gene interactions,

quantifying loss-of-function scores, assessing dose sensitivity, and inferring protein-protein

interactions. In summation, our study illuminates the advantages of pretraining expansive

foundational models on diverse scRNA-seq datasets, providing meaningful gene representa-

tions and facilitating their utility for quantitative gene annotation.

4.1 Introduction

The human body is made up of 37 trillion cells, each with their own composition and function.

Genes are the basic building blocks of cellular molecular systems. Even though researchers

have almost identified the entire transcriptome, the fundamental rules of how genes interact

with each other and give rise to the function of cells have yet to be fully understood. To solve

this puzzle, we need sufficient experimental data to characterize the gene expression patterns

and functions of cells systemically and comprehensively, as well as innovative computational

methods that take advantage of these large-scale datasets, and learn fundamental knowledge

of genes that are transferrable under different scenarios.

From the data perspective, recent advances in single cell sequencing technologies offer genome-

wide measurements of genetic information from individual cells and have produced a number

of large-scale reference data to characterize the complexity and diversity of human cells.

Specifically, single-cell RNA sequencing (scRNA-seq) provides quantitative measures of the

expressions of all genes in single cells, up to millions of cells in one experiment. Devel-

opments in single cell technologies have led to projects like Human Cell Atlas and others
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[84, 89, 14, 51], providing comprehensive measurements with whole transcriptome data from

millions of single cells.

On the computational side, recent research demonstrates that pretraining large models on

broad data enable the models to learn fundamental features from data, which allow them to

be adapted to a wide range of downstream applications with little finetuning while achiev-

ing state-of-the-art performance. These models are referred as foundation models or Large

Language Models (LLMs) in natural language processing. Foundation models have recently

transformed how machine learning systems are built in both computer vision and natural

language community. Examples include large-scale language models such as BERT [27],

GPT [10], and PaLM [23], vision models such as ResNet [44], Inception [99], and MAE [43],

and multimodal models such as CLIP [82] and DALL-E [83]. The rise of foundation models

has significantly lowered the barrier of building AI models for downstream applications, with

users focusing on adapting and transferring knowledge from these models to new applica-

tions, instead of building new models from scratch. Here comes an interesting question:

how researchers could fully utilize the potential of abundant single cell datasets to decipher

complex and diverse patterns of interactions between genomic elements, and then to produce

novel annotations of genes that could be finetuned for many different downstream purposes?

During the past few years, many computational methods have been developed for ana-

lyzing single cell sequencing data [68, 67, 105, 118, 46]. The majority of these methods

aims to project the data to a lower dimensional manifold [75], and then conduct clustering

[66, 29, 2, 113, 17, 86], batch effect correction [39, 57, 13], and imputation [63, 47, 108] accord-

ingly. However, most methods focus on learning embeddings that characterize the similarity

between cells, and this could be confounded with batch effect and random dropouts from

the sequencing process. In the meantime, in order to achieve best performance under these

noises, some methods can only work with a subset of highly variable genes instead of the

entire transcriptome. These aspects hinder the methods of this category from effectively
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learning from multiple large datasets.

More recently, there are also efforts on pretraining LLMs with single cell data. scBERT [117]

trained BERT-based transformer encoder models and demonstrated its utilities in annotat-

ing cell types. Geneformer [103] uses masked language modeling pretext to pretrain BERT

transformers on scRNA-seq data ranked by expression levels to generate contextualized gene

embeddings that could be finetuned for other downstream tasks including predicting func-

tional annotations of genes related to network biology. These two methods showed the

benefits of LLMs pretrained on single cell, however, both of them rely primarily on model

structures originally designed for language modelling; and their modeling choices with BERT

structure limited the models’ potential for learning informative quantitative correlations be-

tween genes.

Despite the tremendous progress that have been made, current methods do not fully har-

ness the potential of large-scale single cell datasets. To address these challenges in modeling

single cell data, in this study, we proposed Expression Transformer, a modified transformer

encoder-decoder architecture for pretraining foundation models on single cell data to learn

fundamental features of genes that are transferable among datasets. We collect data from

multiple atlas level datasets generated by different sequencing technologies for pretraining

the foundation model. In order to facilitate the model to learn meaningful embeddings of

genes, we design a novel decoder architecture that learns interactions between genes and di-

rectly regresses the quantitative expression values under a masked prediction pretext. During

training, we focus on modeling non-zero expression values only, since it carries more reliable

signal and prevents the model from overfitting the noises. To demonstrate the effectiveness

of our model architecture and the utility of the embeddings, we benchmark on downstream

tasks including imputing missing values from scRNA-seq experiments, predicting protein

interactions, predicting gene loss of function score, and prediction tasks related to network

biology. In summary, we explore novel model designs that could be used to pretrain founda-
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tion models in single cells, and demonstrate how pretrained semantic embeddings of genes

could benefit downstream tasks while minimizing the computation that needs to be carried

out by end users.

4.2 Materials and Methods

4.2.1 Datasets and Preprocessing

Datasets

In order to demonstrate the effectiveness of foundation models in single cell, we constructed

a training dataset with 6M single cells from multiple tissues and donors. Datasets used here

are downloaded from the Human Cell Atlas[84, 89, 14, 51] website. Multiple datasets are

aligned to the same dimension of genes and concatenated into one memory mapping array

for effective training with deep foundation models. We kept all the pro-tein coding genes

with uniquely identifiable gene symbols, which resulted in 18,483 genes used in training and

benchmarking. Given that our training objective only focuses on entries with nonzero values,

datasets with missing genes are filled with zeros. Genes are then modeled with differentiable

tokens as part of model parameters. For dataset with m genes, the tokens can be represented

as

Tm×d
g = [td1, t

d
2, ..., t

d
m] (4.1)

where tj ∈ Rd represents the embedding vector with dimension d corresponding to the jth

gene in the dataset. Gene embedding tokens Tg are implemented with the Pytorch embedding

module with dimension d equals to 200 throughout most of our experiments unless specified

elsewhere. The gene embedding tokens are randomly initialized at the beginning of training
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and optimized during the training process.

Data Preprocessing

Data preprocessing involves standard normalizations for scRNA-seq data and a binning pro-

cess mapping a continuous scalar representation of expression value to an expression embed-

ding. Following the standard Scanpy [113] pipelines, the normalization process normalizes

total sum of expression values of each cell to 1e4 and then applies the log transformation

(scanpy.pp.log1p) to the data. After normalization, the expression matrix with n cells and m

genes can be represented as a positive matrix Xn×m ∈ R+. To convert the expression values

to vector embeddings that could be effectively used by trans-former-based model, we adapt

the expression value binning [117, 102] to map scalar representation of expression values to

a series of relative expression embeddings.

Specifically, we assign k tokens to represent the expression values. For cell i, we first re-

trieve the largest expression value Li = max(Xi,:), and then assign k uniformly distributed

continuous intervals [ab, ab+1], b ∈ [0, k − 1] between (0, Li), where a0 = 0 and ak = L. For

a given expression value of gene j in cell i, we denote Bi,j = b, if Xi,j ∈ [ab, ab+1]. Unless

specified elsewhere, in most of our experiments we set number of bins k to be 50. This pro-

cess would generate a new representation of data denoted by bin IDs Bn×m ∈ {1, 2, ..., k}.

During the modeling, similar as gene tokens, we maintain a set of differentiable expression

tokens Ek×d
g = [ed1, e

d
2, ..., e

d
k] as a part of parameter of the model, and retrieve certain values

through a dictionary lookup fashion implemented with Pytorch embedding module during

training and inference.
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4.2.2 Model architecture and pretraining

For the pretraining of the foundation model, we adapt a masked expression prediction pre-

text, where at each iteration we randomly mask a certain ratio of non-zero expression values

for each cell, and use the rest of observations to predict the masked values.

Our ExpressionTransformer consists of two parts: an encoder block with N layers of tra-

ditional transformer encoders, and an expression decoder designed for masked expression

prediction pretext. For the encoder block, we adapt the original transformer encoder mod-

ules [109]. The transformer encoder has a multi-head self-attention mechanism to learn

increasingly com-plexed representation of input tokens. The inputs are query matrix Q, key

matrix K, and a value matrix V. Each attention head computes the attention of its inputs,

Attentioni(Q,K, V ) = softmax

(
QWQ

i (KWK
i )T√

dk

)
VW V

i (4.2)

where WQ
i , WK

i , W V
i are the learnable parameters of head i. For transformer encoders with

self-attentions, the Q, K, and V are the same input matrix copied three times. The multi-

head attention concatenate outputs from each single attention head and produce the output

for each layer.

MultiHead(Q,K, V ) = Concat(

Attention1(Q,K, V ), Attention2(Q,K, V ), ...Attentionh(Q,K, V ))

(4.3)

We use ϕj to denote a set of p genes with non-zero expressions in cell j. The input to the

encoder block is the gene tokens T p×dϕj
of non-zero genes. The input is then push through the

encoder block and produce a contextualized representations of gene set ϕj which we denote

as T ′ p×d
ϕj

. Within the encoder block, each layer’s output has the same shape as its input,

and then will be used as the input for next layer. We set number of encoder layers N=12 and
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number of attention heads h=4 during most of our experiments. After we encode the inputs

and get the representation of genes T ′ p×d
ϕj

from the last layer of the encoder block, we use

a masking process to mask expression levels of certain genes and train the model to use the

rest of observations to predict the masked values. The masking process masks a portion of

the genes from ϕj. Here, we denote the set of q masked genes as ψj, and their contextualized

embeddings as T ′ q×d
ψj

. During the pretraining, for each iteration, we randomly select a set

of genes ψj from ϕj for cell j. The contextualized embedding of the observed genes is then

T
′ (p−q)×d
ϕj−ψj

.

In order to facilitate the model to learn useful representations of gene tokens, we propose an

expression transformer decoder layer: we set Q as embeddings of the masked genes T ′ q×d
ψj

;

K as the observed gene token embeddings from the encoder outputs T
′ (p−q)×d
ϕj−ψj

; and V as

the expression values of the observed genes E
(p−q)×d
ϕj−ψj

. The expression decoder first computes

the cross attention between the masked genes and unmasked genes tokens, and then applies

the cross-attention map and a learnable parameter W V to the expression value V. This

process will encourage the model to learn useful interactions between masked and unmasked

genes based on their contextualized embedding and then apply multi-head attentions and

transformations to the expression values based on these interactions to predict the masked

outputs.

To improve pretraining efficiency, we focus on genes with non-zero expression values for each

cell. This allows us to reduce the sequence length of each cell to around 1000 throughout

the experiments, since most of the cells do not have observed expressed genes over 1000. In

implementation, we pad the input sequences of all cells to the same length of 1100, while we

use logic mask to set the attention score of padded tokens to -inf to zero out the attentions

on these padded tokens.

The output from the expression decoder P q×d
ψj

will then be sent to a multi-layer perceptron

(MLP) with softplus activation for final prediction. We also concatenate the largest expres-
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Figure 4.1: Overview of pretraining framework and Expression Transformer model design.
(A) Model pretraining framework. The model is pretrained on large-scale single cell datasets
with masked expression value prediction pretext. During the pretraining, for each iteration,
the expression values of a subset of randomly selected genes are masked, and the model
is trained to infer the masked values based on the rest of observed gene expressions. (B)
Architecture of the Expression Decoder. Cross attention maps are computed based on the
observed gene embeddings (K) and masked gene embeddings (Q), and then act on the ob-
served expressions (V) to eventually generated the predictions for expression values of the
masked genes.

sion value Lj of the given cell in order to provide the MLP enough information to predict

the exact expression values.

X̂j,ψi
= SoftP lus(MLP (concatenate(Pψj

, Lj))) (4.4)

We trained the model with mean square error (MSE) loss function using the Adam optimizer

with learning rate 1e-4.

lj =
∑
v∈ψi

(Xi,v − X̂i,v)
2

(4.5)
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4.2.3 Evaluation of gene embeddings

To demonstrate that the model learns gene embeddings that contain meaningful informa-

tion, we tested these gene embeddings on three downstream tasks: predicting gene loss of

function (LoF) score, predicting protein interactions, and predicting gene dose-sensitivity.

For each task, we retrieve the gene embedding tokens Tg after pretraining and, only fine-

tuned them with simple models using Scikit-learn library. We benchmarked our method

with existing methods that produces gene embeddings, including Gene2vec [31] and Gene-

former [103]. Specifically, the Gene2vec embeddings are provided at their GitHub site

(https://github.com/jingcheng-du/Gene2vec) and we retrieve the Geneformer gene tokens by

loading their pretrained model provided at (https://huggingface.co/ctheodoris/Geneformer)

and extracted the weights from the embedding layer. To test the effectiveness of the expres-

sion decoder, we benchmarked our model with a version replacing the final decoder with a

BERT-style encoder (denoted as “w/o Decoder”).

For predicting protein interactions, we collected the paired interaction data from the STRING

database [100, 110]. It contains experimental evidence of interactions between pairs of pro-

teins. We labeled protein pairs with experimental interaction evidence over 200 as positive

samples, and those with low-er than 200 as negative samples. We retrieved the embedding

for each method as described pre-viously and match the genes with corresponding proteins

according to their Ensembl gene and protein IDs. We concatenated the embeddings for each

pair of the samples as inputs, and trained a Gradient Boosting Classification Tree with de-

fault settings for all the methods. The dataset is randomly divided into training and testing,

and the results are reported based on the test set. We reported the test accuracy and area

under the curve (AUC) of the receiver operating characteristic (ROC) curve for each method.

For predicting the gene loss of function z-score, we collected the data from [52] and match

the gene ID with the genes in our pretraining. We retrieve the embeddings in the same
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way as described above, and fit a liner regression with the provided data. We visualize the

predictions with scatter plots with ground truth versus predictions. In addition, we also

report the Pearson correlation between predictions and ground truth.

For predicting the gene dose sensitivity, we followed the procedures in [103]. We collected

the data from [78] and retrieved the list of MRDS and MRDIS genes. Here, we reference the

AUC score of the Geneformer from the original paper [103]. For the rest of the methods, we

used the same procedure to get the embeddings for each gene. After we align each gene’s

embedding, we treat this as a binary classification task, by using each gene’s embedding

as input and predict whether the gene is from MRDS or MRDIS list. We fitted trained

a Gradient Boosting Classification Tree with default settings and reported test AUC and

accuracy on the leftout test set (20%).

4.2.4 Evaluation of Imputation

To evaluate if the model could accurately predict the missing values from scRNA-seq data, we

collected the several popular scRNA-seq datasets that used for benchmarks [63, 108, 48, 64].

For datasets with count data, we use the same normalization and preprocessing as described

above, by first normalizing the total counts of each cell to 1e4 with l1-normalization and then

applying the log transformation to the data points. Following similar procedures [48], genes

with non-zero expression values are randomly dropped out and used for evaluation. For

other methods, we followed the recommended workflow to generate imputation data, and for

Expression Transformer, similar as the workflow during pretraining, we treated dropouts as

masked genes and use the prediction from the decoder as the imputed values. The evaluation

metrics used here are the mean absolute error (MAE) and the Pearson correlations between

imputed and ground truth values.
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4.3 Results

4.3.1 Overview of the pretraining process

In order to fully utilize the large-scale datasets and information measured within each single

cell, we developed a transformer-based model (Figure 4.1) and pretrained it on a masked

value prediction pretext. The Expression Transformer model contains an embedding mod-

ule, an encoder block, and an expression decoder which is designed to perform the masked

prediction pretext and facilitate the model to learn useful representation of genes. The em-

bedding module maintains embeddings of all the genes selected for modelling (Methods) as

learnable parameters. It returns the corresponding embedding of a given gene when that

gene is being used, and updates the embedding vector when loss is backpropagated. The

encoder block consists of standard transformer encoder layers [109], learning specific context

of each single cell. Since scRNA-seq data contains lots of observed zeros of which most

are considered as random dropouts, we only input genes with non-zero expression values

during the pretraining since these measurements are considered to be more reliable. The

en-coder block then takes embeddings of genes with non-zero expressions as input. For each

forward pass, these embeddings are pushed through the transformer encoder layers to gen-

erate specific cotextualized embeddings of each cell given the set of observed genes. These

contextualized embed-dings are then subjected to random masking, and then sent to the

Expression Decoder for masked prediction. The masked expression value prediction is a

standard pretext for self-supervised learn-ing. It only requires gene expression values and

no other labels, and could learn generalizable features genes by training on broad datasets.

For each training iteration, input genes are randomly subset as observed or masked. Expres-

sion values of observed genes are provided through expression embeddings (Methods) to the

model, while the expression values of masked genes are substituted with a mask token. Dur-

ing the pretraining, the Expression Decoder is trained to learn relationships between genes,
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then utilize this information to predict masked values based on the ob-served expression val-

ues. To facilitate this, we design the Expression Decoder with a cross-attention mechanism

learning correlations between observed and masked genes. Then the cross-attention maps

act on the expression embeddings of observed genes through multi-head attention, and then

produce the final prediction on the masked genes (Methods).

After pretraining, we retrieve the embedding module as semantic representations of genes.

We demonstrate the utility of these embeddings by finetuning it for several different down-

stream tasks with simple prediction models that could run on devices without GPU supports.

We benchmarked the performance of over embeddings with Geneformer [103] and Gene2Vec

[31]. Also, to test if the Expression Transformer could make predictions on gene expressions

generalizable to new datasets, we tested our model for imputing missing expression values

and benchmarked it with other popular scRNA-seq imputation methods.

4.3.2 Inferring missing expression values with pretrained Expres-

sion Transformer model

High sparsity has been a longstanding issue for analyzing single cell sequencing data. Due

to the limited read depth and coverage for each single cell, the measurements are filled with

abundance of zeros, of which a significant amount of them are caused by expressed reads

not captured by sequencing process. These noises hinder the downstream analysis of the

data, and often requires an imputation process to recover some expression values. Many

computational methods have been developed to tackle this problem. Most of the methods

utilize similarity between cells to impute missing values. Here our model takes a different

approach by pretraining on inferring relationships between genes and then make predictions

based on the available observations. To test if our approach is valid, we used the 10x PBMC

[48] dataset and Human Cell Landscape [41] (HCL) dataset for benchmarking. Each dataset
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Figure 4.2: Results on imputing scRNA-seq data. (A) Scatter plots of imputed predictions of
different methods against the ground truth values on HCL dataset. (B) Quantitative metrics
of Mean Absolute Error (MAE) and Pearson Correlation Coefficient (PCC) calculated based
on imputed predictions and ground truth from 10x PBMC and HCL datasets.

is first subject to artificial dropouts, and the dropped non-zero expression values are used

as the ground truth for evaluation. We followed the same data preprocessing (Methods)

pipeline as the pretraining, and feed the data to each method as instructed in their original

tutorials. We benchmarked our method with MAGIC [108], scImpute [63], and scVI [66],

and the results are shown in Figure 4.2. Figure 4.2A shows the scatter plot of imputed

values plotted against the ground truth values on the HCL dataset. Imputations generated

by Expression Transformer algins better with the ground truth values. This is in line with

the quantitative scores shown in Figure 4.2B, where Expression Transformer has lower Mean

Absolute Error (MAE) and higher Pearson Correlation Coefficient (PCC) between ground

truth and imputed value. This demonstrates that foundation models pretrained on broad

datasets could make meaningful predictions on missing expression values. The improved

performance showed the benefits of large scale pretraining and transfer learning.
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4.3.3 Predicting gene and protein interactions with pretrained se-

mantic representation of genes

Providing functional annotations for each gene is an important yet challenging tasks. Most

of the existing Gene Ontology (GO) based approaches try to categorize genes by knowledge

of biological processes, pathways, and etc. However, these annotations are not entirely

objective, given that it is impossible to provide all aspects of experimental evidence for

each gene; and often given a specific task, the relationship between different genes could be

varying. Here in the following tasks, we demonstrate that through large-scale pretraining, we

provide meaningful annotations of genes as quantitative embedding vectors with a complete

data-driven manner. To demonstrate that the embeddings capture meaningful features of

genes, we use the pretrained embeddings as input and finetune a very simple model to

transfer it to other prediction tasks.

In the first task, we used paired gene embeddings generated from different methods as input,

to finetune a Gradient Boosting Tree to classify whether the gene pairs or its encoded proteins

have interactions. The gene-gene interaction dataset is collected from [31], where gene pairs

that share GO annotations with experimental evidence are marked as positive samples, and

gene pairs that do not share any GO terms as negative samples. The protein interaction

dataset is collected from STRING database [100, 110], and we labeled protein pairs with

experimental interaction evidence over 200 as positive samples, and those with lower than

200 as negative samples. The downstream tasks here are considered as binary classification,

with embeddings of gene pairs used as input and the classifier will predict whether these two

genes have interactions. We finetuned separate models for embeddings from different method,

and for different tasks as well (for predicting gene-gene interactions and protein interactions

respectively). We benchmarked embeddings of Expression Transformer with embeddings

generated by Gene2vec [31] and Geneformer [103] (Methods). Gene2vec trained a Word2vec

[73] based model on many bulk RNA-seq co-expression datasets; Geneformer is a BERT-
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Figure 4.3: Results on predicting gene and protein interactions. (A) ROC curve of classi-
fiers trained on different embeddings to predict gene-gene interactions. (B) ROC curve of
classifiers trained on different embeddings to predict protein interactions.

based LLM trained on broad scRNA-seq datasets with gene IDs ranked by expression values.

In the meantime, in order to test the effectiveness of the Expression Decoder design, we also

bench-marked with an Expression Transformer model with only transformer encoders, which

we denote as “w/o Decoder” (Methods). In the “w/o Decoder” model, we replace the decoder

module to a standard transformer encoder and add the expression values to the observed

genes. Figure 4.3 shows the test set ROC curve of classifiers trained on different embeddings.

We can see embeddings from Expression Transformer have the largest area under the curve

(AUC). And if we compare it with the AUC of the model without Expression Decoder, we

can see that the Expression Decoder helps to learn more meaningful embeddings of genes to

better predict gene-gene and protein interactions
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4.3.4 Predicting gene loss-of-function score

A gene loss of function (LoF) z-score is a statistical measure that is used to quantify the

extent to which a genetic variant is predicted to disrupt the function of a gene. LoF score

is associated with gene’s tolerance against mutations, and is useful for identifying disease-

related genes, understand-ing genetic variability, and studying gene functions. In this task,

we used a simple linear regression to finetune the gene embeddings for predicting gene LoF

score. The LoF score dataset is collected from [52]. Again, we benchmarked with Gene2vec,

Geneformer, and a “w/o Decoder” model. Embeddings of each gene from different methods

are used as input for the linear regression to regress the corresponding gene’s LoF score. From

Figure 4.4, we can see that predictions based on Expression Transformer’s Embedding align

better with the true LoF score compared with other methods. In the meantime, embeddings

trained on single cell datasets performs better than Gene2vec which trained on bulk RNA-

seq data. This might be due to that scRNA-seq datasets have greater coverage and better

resolution of cell types and tissues. One thing to note is that even though variant information

is not used at all during the pretraining, the embeddings benchmarked here are still able to

make predictions on mutational constraints. This indicates that gene’s tolerance of variants

may also relate to its functional relationship with other genes.

4.3.5 Predicting gene dosage sensitivity

Gene dosage sensitivity refers to the intolerance of a gene to variations in its copy number.

Copy Number Variants (CNVs) are sequence variations in the genome that result in deletion

or duplication of segments of DNA that can affect the copy number of certain genes. For

dosage-sensitive genes, CNVs could disrupt the normal function of the gene that would lead

to developmental dis-orders and diseases. The dosage sensitivity of genes is related to the

compensatory mechanism of the gene regulatory network. Predicting gene dosage sensitivity
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Figure 4.4: Results on predicting LoF score. The scatter plots show the predicted LoF score
with embeddings from different methods plotted against the ground truth. ρ indicates the
Pearson correlation between predictions and the ground truth.

has implications on therapeutic tar-gets of certain diseases. Here, we collected gene sets

previously reported to be dosage-sensitive or not [103, 102], and consider this a binary

classification task to predict whether a given gene is dose sensitive or not providing this gene’s
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Table 4.1: AUC score of gene dosage sensitivity prediction with embeddings from different
methods.

Methods Geneformer Expression Transformer
AUC 0.91 0.92

embedding. Following the evaluation pipeline in Geneformer [103], we trained a gradient

boosting tree based classifier on the gene list and report the AUC of ROC curve in Table

4.1. We can see Expression Transformer achieved comparable results as the Geneformer.

This could also demonstrate the representation learned by Expression Transformer could be

transferred to tasks related to network biology.

4.4 Discussions

In this study, we explored pretraining foundation model on broad scRNA-seq datasets with

masked value prediction pretext. Instead of focusing on learning embeddings of cells and

perform batch integration and imputation through cell-cell similarity, the Expression Trans-

former learns relationship between genes that generalizable across different datasets. In

our experiments, the pretrained model is able to capture useful interactions that could be

used to accurately impute missing expression values. In order to facilitate the model to

learn meaningful representations of genes, we designed an Expression Decoder based on the

cross-attention mechanism. The Expression Decoder first computes attention maps based on

the contextualized gene embeddings between observed and masked genes, and then applied

multi-head attention accordingly to predict the masked expression values. We retrieved the

semantic embeddings after pretraining, and demonstrated the utility of the embeddings by

finetuning them to other downstream tasks with relatively simple model. The downstream

tasks include predicting gene-gene and protein interactions, predicting gene loss of function

(LoF) scores and predicting gene dosage sensitivity. Embeddings retrieved from Expres-

sion Transformer showed better results in these downstream tasks, which demonstrates that
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the pretraining generates biologically meaningful semantic representations of genes; and the

embedings from Expression Decoder generates better results compared with standard trans-

former encoder, which shows the benefits of our design. These findings highlight the potential

for large foundation models to generate fundamental insights on biology, as well as assist

analysis of small datasets through transfer learning. For future works, exploring different

disease conditions or treatments as independent controllable factors could be an interesting

direction, as it could provide more insights on how gene interactions are interrupted under

different conditions and potentially offers candidate targets for diseases treatments. Also,

the utility of single-cell contextualized embeddings is under-explored in our study. A con-

textualized embedding based on each single cell’s measurement could be useful for many

cell-based tasks, including cell annotations, perturbation studies, drug responsive study, etc.
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