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Abstract

Quantitative views of cellular functions requires precise measures of rates of biomolecule

production, especially proteins—the direct effectors of biological processes. Here we present a

genome-wide approach, based on ribosome profiling, for measuring absolute protein synthesis

rates. The resultant E. coli dataset transforms our understanding of the extent to which protein

synthesis is precisely controlled to optimize function and efficiency. Members of multi-protein

complexes are made in precise proportion to their stoichiometry, whereas components of

functional modules are produced differentially according to their hierarchical role. Estimates of

absolute protein abundance also reveal principles used to optimize design. These include how the

level of different types of transcription factors is optimized for rapid response, and how a

metabolic pathway (methionine biosynthesis) balances production cost with activity requirements.

Our studies reveal how general principles, important both for understanding natural systems and

for synthesizing new ones, emerge from quantitative analyses of protein synthesis.

INTRODUCTION

Protein biosynthesis is by far the largest consumer of energy during cellular proliferation;

translation by ribosomes is estimated to account for ~50% of the energy consumption of a

rapidly growing bacterial cell, and ~30% of that for a differentiating mammalian cell

(Buttgereit and Brand, 1995; Russell and Cook, 1995). The tremendous cost associated with

© 2014 Elsevier Inc. All rights reserved.
* To whom correspondence should be addressed. gene-wei.li@ucsf.edu, weissman@cmp.ucsf.edu.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Cell. Author manuscript; available in PMC 2015 April 24.

Published in final edited form as:
Cell. 2014 April 24; 157(3): 624–635. doi:10.1016/j.cell.2014.02.033.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



protein synthesis makes it a key step for regulating diverse cellular functions. Therefore,

determining how a cell allocates its synthesis capacity for each protein provides

foundational information for systems biology.

A fundamental question is whether it is necessary for the cell to exert tight control over the

synthesis of individual protein components. For example, the levels of stoichiometric

components of protein complexes could be established by differential degradation of excess

subunits (Blikstad et al., 1983; Lehnert and Lodish, 1988), rather than by precise synthesis.

Moreover, precise control of steady-state protein abundance may not be critical for the

performance of cellular circuits. The architectures of several signaling and metabolic

pathways have been shown to be robust against variation in protein levels through post-

translational feedback (Alon et al., 1999; Barkai and Shilo, 2007; Batchelor and Goulian,

2003; Hart et al., 2011; Shinar et al., 2007; von Dassow et al., 2000). It remains to be

explored whether these post-translational mechanisms are the dominant strategy for

maintaining proper functions, or are simply fail-safe mechanisms added on to fine-tuned

protein synthesis. More generally, defining such design principles is key to both

understanding and manipulating quantitative behavior of a cell.

Efforts to monitor protein synthesis rates at the global level have mainly relied on pulsed

metabolic labeling followed by two-dimensional gel electrophoresis, or more recently by

mass spectrometry (Dennis, 1974; Lemaux et al., 1978; Schwanhausser et al., 2009). While

relative changes in synthesis rates for the same protein are attainable (Selbach et al., 2008),

absolute rates are more difficult to evaluate. Additionally, the precision of pulsed metabolic

labeling is limited by requirement for nutrient shifts, which affect instantaneous rates of

protein synthesis. Alternative methods for expression profiling by determining global

mRNA levels (e.g. by high density microarrays or RNA-seq) do not report the extensive

regulation present at the level of translation. These constraints point to a need for a label-

free method with unbiased and deep coverage of cellular proteins.

Ribosome profiling—deep-sequencing of ribosome protected mRNA fragments—directly

captures protein synthesis in natural settings (Ingolia et al., 2009). It is a general tool for

monitoring expression as well as enabling identification of novel translational events

(Brandman et al., 2012; Brar et al., 2012; Ingolia et al., 2011; Li et al., 2012; Oh et al., 2011;

Stern-Ginossar et al., 2012). Here, we exploited the ability of ribosome profiling to provide

quantitative measurements of absolute protein synthesis rates, covering >96% of cellular

proteins synthesized in a single experiment. For stable proteins in bacteria, we then

estimated and verified absolute protein copy numbers.

This analysis revealed precise tuning of protein synthesis rates at the level of translation,

including a broadly used “proportional synthesis” strategy in which components of multi-

protein complexes are synthesized with ratios that quantitatively reflect their subunit

stoichiometry. Optimized translation rates are also prevalent among members of functional

modules—differential expression pertinent to their functional hierarchy, i.e. when the

activity of one member is controlled by the other, was widely observed in our dataset. The

protein copy numbers inferred from synthesis rates also revealed rules that govern the

abundance of transcription factors, and allowed quantitative characterization for the
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methionine biosynthesis pathway, for which we identified a bottleneck enzyme whose

expression level is optimized for maximal growth rate. More broadly, our approach and

datasets provide a foundation for quantitative understanding of both cellular physiology and

precise biological engineering.

RESULTS

Genome-wide measurement of absolute protein synthesis rates and protein copy numbers

The ribosome profiling approach involves freezing of cellular translation followed by

digestion of all mRNA regions that are not protected by the ribosome (Ingolia et al., 2012;

Ingolia et al., 2009). Each ribosome-protected mRNA fragment is then identified by

massively parallel next-generation sequencing (Ingolia et al., 2012; Ingolia et al., 2009).

Because each ribosome is producing one protein molecule, the rate of protein synthesis is

proportional to the ribosome density of a given gene as measured by the footprint density

(number of footprint per unit length of the gene), provided that all ribosomes complete a full

length protein and have similar average rates of elongation across genes. Both criteria are

broadly met in our dataset. During exponential growth in E. coli, there is little drop-off in

ribosome density for the vast majority of genes (Li et al., 2012; Oh et al., 2011) (Fig 1A).

The few genes that display large drop-off could represent novel events of translational

regulation (Fig. S1A). We have previously demonstrated that rare codons are generally

translated at similar speed as abundant codons, indicating that differences in codon usage

between transcripts do not cause differences in the average rates of elongation (Ingolia et al.,

2011; Li et al., 2012). Moreover, sequence dependent pausing of ribosomes (Li et al., 2012)

does not appear to broadly distort the average density of ribosomes along a message, as

similar ribosome densities are observed in the first and second halves of each gene. Most

genes differ by <30% (standard deviation of the mean, Fig 1A). Additionally, correcting for

sequence- and position-specific variation in elongation rates has only modest effect on

average ribosome density (Fig. S1). Together, these results indicate that local variations in

translation speed do not strongly impact synthesis rates measurements based on average

ribosome density.

To broadly evaluate the rates of protein synthesis, we performed ribosome profiling in E.

coli grown in different growth conditions with high sequencing depth (90 million fragments

per sample) using a modified protocol that enables more complete capture of footprints

(Methods). Within each dataset, synthesis rates were calculated as the average ribosome

density in the gene body, with correction factors for elevated ribosome density at internal

Shine-Dalgarno sequences and towards the beginning of open reading frames (Methods).

The corrections were small (Fig. S1D), but were nonetheless important for the quantitative

analysis described below. We determined the absolute rates of synthesis (in units of

molecules produced per generation) by normalizing the average ribosome density for each

protein in the proteome by the total amount of proteins synthesized during the cell doubling

time (Methods). For growth in a rich defined medium (Neidhardt et al., 1974), we evaluated

3,041 genes which account for >96% of total proteins synthesized. A similar number of

genes were evaluated for glucose-supplemented minimal media. All of these genes have

>128 ribosome footprint fragments sequenced, with an error of less than 1.3-fold across
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biological replicates. The lowest expression rate among these genes correspond to ~10

molecules per generation. The complete list of protein synthesis rates can be obtained at

http://ecoliwiki.net/tools/proteome/ (Table S1).

We validated our results by comparing our data against published measures of specific

protein copy numbers for E. coli. Because the overwhelming majority of proteins are long-

lived compared to the cell cycle during exponential growth (Larrabee et al., 1980), the

absolute copy number of a protein can be estimated as the synthesis rate times generation

time (21.5 min in rich defined media, see Methods). We compiled a list of 62 proteins that

have been quantified individually in 21 independent laboratories (Table S2). Although each

measurement is associated with its own uncertainty, we argue that collectively they

represent the current standard for quantification. Our results agreed well with these

published copy numbers with a Pearson correlation coefficient R2 = 0.96 (Fig. 1B).

Deviations from the identity line in Fig. 1B likely reflect biological phenomenon. For

example, the strongest outlier is σ32, the heat shock transcription factor that is known to be

actively degraded (Grossman et al., 1987). Our measures based on synthesis rates thus

provide an upper bound for the protein levels for the small subset of proteins that are rapidly

degraded. Differences in growth conditions and strain backgrounds contribute to other small

differences between literature values and our results (see Methods). Existing efforts to

globally quantify protein abundance in E. coli using mass spectrometry or fluorescent

reporter show less concordance and dynamic range (Fig. S2). In conclusion, our genome-

wide synthesis rate measurements and the resulting estimate of protein abundance are

supported by classic biochemical measurements across 5 orders of magnitude of protein

abundance.

Proportional synthesis of multi-protein complexes

We next used our measurements to evaluate the extent to which fine-tuned synthesis rates

are a general feature of cellular physiology, focusing initially on members of stable

multiprotein complexes with known stoichiometry. The subunits of these complexes require

balanced steady state levels, as excess components are often prone to misfolding or

aggregation (Tyedmers et al., 2010). Although quality control mechanisms for removing

uncomplexed proteins exist (Shemorry et al., 2013), it was unclear whether the

stoichiometry balance is generally established first at the synthesis level.

We first examined the F0F1 ATP synthase complex, which consists of 8 subunits, each with

different stoichiometry, expressed from a single polycistronic transcript (the “ATP operon”).

Despite sharing the same message, the ribosome density of each open reading frame is

clearly distinct (Fig. 2A), and qualitatively agrees with the differential synthesis rates

previously reported (Brusilow et al., 1982; Quax et al., 2013). Remarkably, the synthesis

rates quantitatively reflect the stoichiometry of the complex; the ATP operon has evolved to

synthesize the appropriate ratio of subunit proteins, ranging from 1- to 10-fold.

Rather than the ATP operon being a specialized case, we found that tuning of synthesis rates

to the subunit stoichiometry, or “proportional synthesis”, is a broadly used strategy for

protein complexes. We systematically assembled a list of stable multi-protein complexes

with well-characterized stoichiometry in E. coli (Table S3). Of the 64 complexes
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(comprising 212 different proteins) that are expressed in our growth conditions, 59 (92%)

adhere to proportional synthesis. The majority (55%) are synthesized at levels that are

indistinguishable from the stoichiometry (smaller than the experimental uncertainty of 1.3-

fold difference). The ratio of synthesis rates exceeds the ratio of stoichiometry by a factor of

two in only five complexes (Fig. S3D), and these small number of exceptions could suggest

dominant control at the level of degradation or the existence of dynamic sub-complexes, as

in the case of the outer membrane protein assembly complex (BAM) (Rigel et al., 2013).

Proportional synthesis applies to both cytosolic and membrane proteins. For complexes with

more than two components, the agreement between synthesis rates and subunit

stoichiometry is plotted in Fig. 2B and Fig. S3. We also observed very similar synthesis

rates for complexes with two equimolar subunits (Fig. 2C and Fig. S3A-C). Notably,

proportional synthesis is robust against temperature; similar ratios in synthesis rates were

observed both at 37°C and at 10°C (Fig. S4A). Furthermore, both abundant and scarce

proteins have evolved strict tuning of synthesis rates, as the expression levels of these

complexes ranges over four orders of magnitude.

Proportional synthesis in E. coli is predominantly achieved through translational, rather than

transcriptional control. The majority of multi-protein complexes encode their subunits on a

single polycistronic mRNA, with each subunit translated from its own initiation site (47/64

complexes, Fig. 2B-C and Fig. S3A). RNA-seq analysis confirms that the mRNA levels of

the genes in these operons are similar, whereas the different translation efficiency (synthesis

rate per mRNA) reflects the stoichiometry (Fig. S4BC and Table S4). Moreover, gene order

does not explain differential synthesis rates (Fig. 2A and 2C and Fig. S4D), consistent with

our previous observation that translation rates among genes in the same operon are only

weakly correlated (inset, Fig. 2C) (Oh et al., 2011). Protein synthesis rates are generally

determined by the frequency of translation initiation (Andersson and Kurland, 1990).

However, our current understanding of what determines translation initiation rates is highly

incomplete as existing models for either the strength of ribosome binding site or the Shine-

Dalgarno sequence alone do not predict proportional synthesis (Fig. 2C) (Salis et al., 2009).

Translational auto-regulation (Nomura et al., 1984), coupling (Baughman and Nomura,

1983) or specific RNA secondary structures (McCarthy and Gualerzi, 1990) are factors that

could contribute to precise tuning of synthesis rates. Our discovery of proportional synthesis

in polycistronic messages should help guide efforts to dissect the molecular mechanism of

translation initiation quantitatively, as well as aid the precise engineering of synthetic

biological networks.

The use of translational control and polycistronic operons to achieve proportional synthesis

has important potential advantages. In particular, setting the ratios of subunit expression

levels exclusively at the translational level greatly simplifies transcriptional regulation; the

cell needs only to control the overall expression of the complex and not the relative amounts

within the complex. Additionally, sharing the same polycistronic mRNA reduces stochastic

imbalance among components of the complex. Because transcription originates from a

single gene locus and is thus inherently noisy (Li and Xie, 2011), the ratio of proteins

encoded on different mRNAs would be subject to much higher noise levels (Elowitz et al.,
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2002; Swain, 2004). The use of polycistronic mRNAs circumvents this issue, but

translational tuning becomes necessary to achieve different expression levels.

Evidence for proportional synthesis in budding yeast

We found evidence that the budding yeast S. cerevisiae also exhibits tightly controlled

synthesis of stably associated protein complexes, as indicated by our analysis of a subset of

highly characterized complexes (Fig. 3A-B). Genomic duplication events in S. cerevisiae

have led to numerous paralogous genes, which in some cases can substitute for each other in

multi-protein complexes. Interestingly, we found that proportional synthesis is maintained

by tuning the synthesis rates for duplicated genes that encode the same subunit. For

example, the two α-tubulin genes together are translated at a similar rate as the single β-

tubulin gene (Fig. 3C). Similarly, for the COPII Sec23/24 heterodimer, the production rate

of Sec23 matches that of Sec24 and its two homologs (Sfb2 and Sfb3) combined (Fig. 3C).

A notable exception for proportional synthesis is the signal recognition particle, for which

four subunits are translated at 1:1:2:2 ratio and the other two subunits are in excess (Fig.

3A). It has also been shown that vertebrates produce uneven amounts of α- versus β-spectrin

and immunoglobulin light chains versus heavy chains (Blikstad et al., 1983; Lehnert and

Lodish, 1988; Shapiro et al., 1966). Understanding the rationale behind the unequal

synthesis in these exceptions could provide insights into their physiological functions.

Yeasts must employ distinct mechanisms to achieve proportional synthesis, as subunits are

encoded on different mRNAs in eukaryotes. For example, the dynamics of nuclear

localization of transcription factors and their affinity to promoter sites could provide

independent control for complex levels and subunit ratios (Cai et al., 2008). Given the

fundamentally different molecular mechanisms for prokaryotic and eukaryotic expression,

these observations argue that proportional synthesis is a result of convergent evolution that

maximizes protein synthesis efficiency while minimizing the adverse effects of having

uncomplexed subunits.

The broad use of proportional synthesis has important implications for the effect of

aneuploidy. Most genes do not possess feedback mechanisms for controlling their

expression levels (Springer et al., 2010). Thus a sudden changes in gene dosage would lead

to a large imbalance of subunits (Papp et al., 2003). Because cells normally do not face large

imbalances in the synthesis rate of multiprotein complexes, aneuploidy would lead to a

strong challenge to the protein folding and chaperone networks, consistent with the findings

of Amon and co-workers that general proteotoxic stress is a hallmark of aneuploidy

(Oromendia et al., 2012; Torres et al., 2008).

Taken together, our findings argue that the relative expression of members of multiprotein

complexes is primarily determined at the synthesis level, and that targeted degradation of

excess subunits is a secondary layer of control. Indeed components of multiprotein

assemblies whose uncomplexed subunits have been shown to be degraded, including the

ribosomal L8 complex and the SecYEG translocon in E. coli and Fas1/2 in S. cerevisiae,

also show proportional synthesis (Akiyama et al., 1996; Petersen, 1990; Schuller et al.,

1992).
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Hierarchical expression of functional modules

Stable protein complexes are only one of a wide range of functional modules that are

organized into operons in bacteria, leading us to ask whether translational control also sets

expression of other types of functional modules. Because our genome-wide ribosome

profiling dataset covers many different modules in the same functional class, we can use our

data to identify common expression patterns strategies that are selected through evolution.

Our studies of several different modules identified a 2nd pattern: hierarchical expression, in

which components are differentially expressed according to their hierarchical role.

Bacterial toxin-antitoxin modules (TA) are widely utilized two-gene systems that control

cellular survival (Yamaguchi et al., 2011). The role of antitoxin is to bind to and inhibit its

cognate toxin. E. coli contains at least 12 type II TA systems, each consisting of a toxin

protein and an antitoxin protein in a bicistronic operon (Yamaguchi et al., 2011). For every

well-characterized type II TA system, we found that the antitoxin is synthesized at a much

higher rate than the toxin (Fig. 4A), which would allow E. coli to produce sufficient amount

of antitoxin to avoid triggering cell death or growth arrest during unstressed growth. The

hierarchical expression between antitoxin and toxin is irrespective of their relative order in

the operon (Fig. 4A). Because most toxins target global translation, the translational control

observed for hierarchical expression of TA modules may provide insight into how the

system switches to a toxin-dominated state via translational feedback—a central question in

antibiotic persistence (Gerdes and Maisonneuve, 2012).

σ/anti-σ modules are conceptually similar to TA modules. Both are usually encoded in the

same operon, and anti-σ inhibits the transcriptional activity of the σ by direct binding.

Interestingly, anti-σ's, like antitoxins, are produced in excess compared to σ's (Fig. 4B). In

both cases, the uncomplexed antagonists (antitoxins and anti-σ's) are also subject to

regulated degradation (Ades et al., 1999; Yamaguchi et al., 2011). Thus the hierarchical

expression would not be evident by measuring protein levels, even though cells ensure an

excess of inhibitor during synthesis.

Translationally controlled hierarchical expression appears to be common for a diverse range

of functional modules. ATP-binding cassette (ABC) transporters, are comprised of core

transmembrane proteins and corresponding substrate-binding periplasmic proteins. Whereas

the core membrane complex components follow the proportional synthesis principle

elucidated above (Fig. 2B-C), we found that the periplasmic binding proteins are always in

large excess (Fig. 4D), suggesting that substrate binding is slower than transport across the

membrane. Two-component signaling systems, consisting of a histidine kinase (HK) and its

substrate, a response regulator (RR), also exhibit hierarchical translation. For each of the 26

two-component systems in E. coli, the substrate is synthesized at a much higher level than

the kinase (Fig. 4C). Using mathematical modeling and experimental validation, it has been

demonstrated that large excess of RR relative to HK promotes robustness against variations

in RR and HK levels (Batchelor and Goulian, 2003; Shinar et al., 2007). Here we show that

this strategy is universally employed for all two-component systems.

Taken together, these results show that hierarchical expression within operons is a key

design principle for many diverse functional modules. As illustrated in the four examples
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above, the same hierarchy of expression levels is repetitively used for the same type of

module, pointing to a common quantitative property that is critical for the execution of each

task. The examples here are certainly an incomplete list; more quantitative design principles

could be uncovered by identifying commonalities among similar systems in such genome-

wide datasets.

Bacterial proteome composition

Because the large majority of proteins are stable in E. coli (Larrabee et al., 1980), our

protein synthesis rate data provides a comprehensive view of proteome composition,

allowing us to probe how cells allocate resources (Fig. 5). By far the largest fraction of the

protein synthesis capacity is dedicated to making the machinery needed for further

translation (41% for growth in rich media and 21% in minimal media), whereas

transcription-related proteins account for only 5%. This disparity illustrates the importance

of understanding the translational control systems that allow cells to allocate their

translational capacity. The ability to monitor the partitioning of protein synthesis capacity

under different conditions will provide a critical tool for quantitative characterization of

cellular physiology.

The expression level of every protein in the cell is subject to two opposing constraints: the

requirement of its function and the cost associated with having an excess that consumes

limited resources, such as protein synthesis capacity, quality control machineries, and space

(Dekel and Alon, 2005). Our dataset opens up the possibility of broadly investigating how

these competing constraints govern protein expression levels. We select two specific cellular

functions (transcription factors and methionine biosynthesis) for further study.

Copy numbers of transcription factors reveal their mode of action

The bacterial chromosome is densely covered with transcription factors (TFs) that bind

DNA both specifically and non-specifically (Li et al., 2009). The crowded space on DNA

imposes constraints on the abundance of TFs, as overcrowding by non-specifically

associated DNA-binding proteins could drastically reduce the overall binding kinetics

(Hammar et al., 2012; Li et al., 2009). Thus, although higher concentrations of any given TF

would allow it to find its cognate DNA sites more rapidly (von Hippel, 2007), too many TFs

in total would mask binding sites. Based on our protein abundance estimates, we found that

the average distance between DNA-binding proteins is only ~36 basepairs on the E. coli

chromosome (assuming most DNA-binding proteins are associated with DNA

nonspecifically and randomly distributed throughout the genome, see Extended

Experimental Procedures), which is close to the theoretically optimal density for rapid

binding (Li et al., 2009). How cells allocate the limited space on DNA to maximize rapid

regulation by each TF remained obscure.

Our data indicates that the ~200 well-characterized TFs in E. coli show a wide variation in

level—more than 60% of the TFs are found to have an upper bound of fewer than 100

monomers per genome equivalent (Fig. 6A-B). A low copy number for a TF implies a slow

association rate to DNA, which could lead to slow transcriptional responses (Winter et al.,

1981). For example, single-molecule imaging in vivo previously revealed that it takes six
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minutes for one Lac repressor to find a single binding site in a cell (Elf et al., 2007).

Compared to the cell doubling time, which can be as short as 20 minutes, the binding

kinetics for a low copy number TF would make it difficult to achieve timely regulation. This

can be circumvented with the use of TFs that are always bound to their target but whose

ability to recruit RNA polymerase depends on the presence of ligands, as the kinetics of

regulation would be determined by diffusion of the small ligand rather than by diffusion of

the bulky and far less abundant protein. We therefore hypothesize that the low copy number

TFs have evolved to bind to DNA independent of their activity.

To test this hypothesis, we mined the literature for the biochemical properties of 102 TFs in

E. coli (Table S5). We found that abundant TFs bind to DNA only in response to ligands

(Fig. 6C). By contrast, the large majority of low abundance TFs bind to the target sites

independent of the corresponding ligands (Fig. 6C). Therefore, cells optimize the limited

space on DNA and the need for rapid regulation by requiring that TFs with low abundance

always bind to their target sites. This mode of DNA binding for low copy number TFs also

supports the model that TFs have evolved to occupy their target sites in native environments

(Savageau, 1977; Shinar et al., 2006). This class of TFs can be exploited to build

transcriptional circuits with fast response time without incurring extra synthesis cost and

nonspecific interactions. A potential downside, however, is increased gene expression noise

due to stochastic TF dissociation.

Precise control of enzyme production required for methionine biosynthesis

The expression of metabolic enzymes similarly faces two constraints: the requirement for

function and the cost of synthesis. Metabolic control analysis suggests that enzymes are

generally made in excess amounts, such that small changes in the level for each enzyme

have moderate effects on the output (Fell, 1997). On the other hand, the pools of bacterial

enzymes in related metabolic pathways are strictly dependent of growth rates (You et al.,

2013), arguing for precise control of expression based on cellular need. Thus, the principal

determinant of expression remained obscure. Here, we show that our quantification of the

proteome composition makes it possible to globally analyze the relationship between the

levels of metabolic enzymes and their actual reaction fluxes.

We focused on the well-characterized L-methionine biosynthetic pathway for E. coli grown

in media devoid of methionine (Met). We first calculated the cellular demand for this

pathway (31,000 s−1 Met per cell), i.e. the rate of Met consumption by protein synthesis, by

summing up the absolute rates of protein synthesis we determined for each protein times the

number of methionine residues in that protein. The other major pathway that consumes Met,

which is the synthesis of S-adenosyl-L-methionine, was estimated to contribute to a small

fraction of the overall flux (Feist et al., 2007) (see also Methods). We then compared the rate

of Met consumption with the maximum velocity (Vmax) for its biosynthetic pathway. For

each reaction in the pathway, we calculated Vmax by multiplying the enzyme abundance we

determined by its published turnover number (kcat) (Schomburg et al., 2002). The maximum

velocity varies by more than one order of magnitude among the reactions in Met

biosynthesis, suggesting that most reactions do not operate at saturating substrate

concentration. The last step that is catalyzed by MetE has among the smallest Vmax (Fig.
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7A), suggesting that it may be a bottleneck in this pathway. Remarkably, we found that the

maximal Met production rate allowed by MetE (Vmax = 34,000 s−1 per cell) matches the Met

consumption rate. Therefore, under these growth conditions, MetE catalyzed conversion of

L-homocysteine to L-methionine is a bottleneck step that operates at maximal velocity with

saturating substrate concentration.

Given that methionine biosynthesis by MetE is limiting the overall rate of protein synthesis,

why do cells not simply make more MetE protein? MetE is a large and slow enzyme, whose

production consumes ~8% of the total protein synthesis capacity in media devoid of

methionine. We investigated whether the cost of increasing MetE production further would

outweigh its benefit. To do so, we constructed a simple analytical model for the effect of

MetE expression on growth rate (Fig. 7B, Methods). The model considers the cost and

benefit of MetE synthesis independently, and allows us to evaluate the level of synthesis

where the tradeoff between cost and benefit is optimized. The benefit of producing MetE

arises from our observation that it is a bottleneck for the methionine supply for protein

synthesis. Hence, devoting more protein synthesis capacity to MetE increases growth rate

linearly (Methods). The cost of producing excess proteins, independent of their function,

comes from competition for ribosomes—an effect that has been widely studied for E. coli

(Dekel and Alon, 2005; Dong et al., 1995; Scott et al., 2010). To evaluate this cost, we used

the well validated numerical relationship described by Scott and Hwa (Scott et al., 2010).

These two constraints predict that the fastest growth rate, a 28 min doubling time, is

achieved at an optimal MetE level of 7% of protein synthesis capacity (Fig. 7B).

Remarkably, these predictions were in close agreement with the actual values observed for

cells lacking methionine: 27 min doubling time and 8% of protein synthesis capacity

devoted to MetE. We verified experimentally that both decrease and increase in MetE

production lead to slower growth (Fig. S5). Therefore, the expression of the key enzyme

MetE is accurately tuned to allow the highest possible growth rate. Furthermore, the cost of

expressing MetE is the main determinant for the slower growth rate when Met is limiting.

Our quantitative analysis of the Met pathway revealed a bottleneck step and its relationship

to fitness. The same approach should be applicable for a broad range of cellular and

engineered metabolic pathways, for which the control points are still largely unknown. In

addition, the global analysis of maximum reaction velocity (Vmax) can be used in concert

with flux balance analysis (Price et al., 2004; Schuetz et al., 2012) to identify possible routes

of metabolic flux at a given condition. More broadly, the global quantification of absolute

enzyme concentration provides a transformative tool for studying cellular metabolism.

DISCUSSION

We illustrate here the capacity to measure absolute synthesis rates for cellular proteins and

its utility for deciphering the logic behind the design principles of biological networks. We

identify the rules underlying the observed synthesis rates for many distinct classes of

proteins. These include proportional synthesis for multi-protein complexes and hierarchical

expression for common functional modules, both of which are made possible by finely tuned

rates of translation initiation. We anticipate that there are many more principles embedded in
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this and similar datasets which will both elucidate the regime in which biochemical reactions

operate, and provide a foundation for rational design of synthetic biological systems.

Our genome-wide dataset on protein synthesis rates also allows in-depth analysis of how

cells optimize the use of limited resources. Specifically, these data revealed strategies for

allocating limited space on DNA and limited protein synthesis capacity—transcription

factors can be kept at low abundances without kinetic penalties by pre-binding to target

sites, and the synthesis rate of a key enzyme that limits metabolic flux in the methionine

biosynthetic pathway is optimized to achieve a maximal growth rate. Limited resources of

various kinds pose constant challenges to all cells. Our approach reveals how the

translational capacity of a cell is allocated in the face of these challenges, greatly expanding

our ability to perform systems level analyses that were previously limited to selected

proteins and pathways.

While our studies illustrate the role of precisely tuned protein synthesis rates in bacteria, our

knowledge of how this translational control is achieved remains highly limited.

Understanding the control of translation initiation is both of fundamental importance and a

prerequisite for quantitative design in synthetic biology. Yet our current approaches for

predicting translation rates, based on strength of Shine-Dalgarno site and computed RNA

structure (Salis et al., 2009), fail to accurately account for the observed differences in

translation initiation rates (Fig. S6). Empirical measures of mRNA structures as they exist in

the cell, in combination with our measures of translation efficiency (Table S4), could be a

key tool in addressing this deficiency.

Although we focus on bacterial cells in this work, our approach to globally measure absolute

protein synthesis rates has broader applicability. Any species that is amenable to ribosome

profiling and has an annotated genome can be subject to this line of investigation; the

growing list currently includes both gram-negative and gram-positive bacteria, budding

yeast, nematodes, fruit fly, zebra fish, and mammals. For eukaryotes and multi-cellular

organisms, our approach will likely reveal a distinct set of principles and constraints for

optimizing the allocation of biosynthetic capacities. Furthermore, the breakdown of these

principles under stress conditions, such as aneuploidy and temperature and chemical shock,

will provide critical insight into the modes of failure and their rescue mechanisms.

Experimental Procedures

Ribosome profiling

Bacterial cells grown in specified liquid media were harvested by rapid filtration followed

by flash freezing in liquid nitrogen. Ribosome-protected mRNA footprints were extracted

from pulverized lysates as previously described (Li et al., 2012; Oh et al., 2011). Different

from previous procedures, a wider range of mRNA footprints size (~15 to 45 nucleotides

long) were selected on a denaturing polyacrylamide gel. The mRNA fragments were

converted to cDNA library as previously described (see Extended Experimental Procedures)

(Ingolia et al., 2009; Li et al., 2012; Oh et al., 2011). Deep sequencing was performed by

Illumina HiSeq2000. Data are available at Gene Expression Omnibus with accession

number GSE53767.
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Analysis for absolute synthesis rates

Counts of ribosome footprints for each gene were first corrected for the elevated density

towards the start codon. A metagene analysis for the relative density as a function of the

distance to start codons was used as a calibration. The resulting counts were corrected for

the elevated ribosome density downstream from internal Shine-Dalgarno sequences. For

each position on the gene, the affinity of the upstream hexameric sequence to the anti-Shine-

Dalgarno sequence was used to calibrate the distance-corrected counts (Li et al., 2012). The

calibration curve was obtained empirically by fitting the observed average ribosome

occupancy of hexameric sequences as a function of the hybridization energy to the anti-

Shine-Dalgarno sequence. The resulting ribosome density was averaged within the gene

body, excluding the first five and the last five codons.

The relative ribosome density was converted to absolute protein synthesis rates using the

total weight of cellular protein. The relative synthesis rate of a protein, as measured by its

corrected ribosome density compared to that of all proteins, was multiplied by the weight of

total proteins per cell—a proxy for the amount of proteins synthesized in a cell cycle. The

weight of total proteins per cell was estimated by dividing the amount of proteins per unit

volume of cell culture, which was measured using the Lowry method with BSA as standards

after trichloroacetic acid precipitation, by the number of cells per unit volume, which was

measured by counting colony-forming units after serial dilution. The absolute synthesis rates

listed in Table S1 are also available through PortEco (Hu et al., 2014).

Model for cost and benefit of MetE

In order to understand the amount of MetE expressed in the medium without methionine, we

constructed a quantitative model to predict the optimal level of MetE and growth rate. The

model considers the cost and benefit of MetE synthesis on growth rate. The cost function is

based on previous observations that synthesis of excess proteins competes with that of new

ribosomal proteins, which in turn leads to slower growth rate (Scott et al., 2010). Based on

the work by Scott et al, this relationship is , where λ is the growth rate,

λ0 is the growth rate when methionine is not limiting, ϕE is the mass fraction of MetE, ϕm/c

is the mass fraction of all other enzymes in the methionine and cysteine biosynthetic

pathways, and ϕC is the phenomenological fitting parameter that were established in their

work. The benefit function is based on our observation that the level of MetE determines

that rate of methionine synthesis and its consumption by protein synthesis, NEkcat =

fmetNRke. NE, NR are the numbers of MetE and translation ribosome, respectively. kcat, ke are

the turnover number of MetE and translation elongation rate, respectively. fmet is the fraction

of translated codons that encodes methionine. Re-writing this equation using ϕE and λ gives

, where lE is the number of amino acid residues in MetE. These two functions

relating the growth rate and the mass fraction of MetE are plotted in Fig. 7C.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Global measurement for absolute rates of protein synthesis using ribosome

profiling

• Majority of protein complexes are precisely made in proportion to stoichiometry

• Rates of synthesis for individual proteins are optimized for growth and function

• Copy number estimates for stable proteins provide basis for quantitative biology
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Figure 1. Absolute Quantification of Protein Synthesis Rates
(A) Effect of translational pausing on average ribosome density. Average ribosome density is plotted for the first and second

half of each gene. The Pearson correlation for genes with at least 64 reads aligned to both halves (red) is R2 = 0.92. The inset

shows the distribution of the fold-difference between the second and the first halves (N = 2,870, SD = 1.3 fold).

(B) Agreement between published protein copy numbers and absolute synthesis rates. The copy numbers of 62 proteins which

have been individually quantified in the literature are plotted against the absolute protein synthesis rates (Pearson correlation R2

= 0.96).

See also Figure S1, Figure S2, Table S1, and Table S2
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Figure 2. Proportional Synthesis of Multi-Protein Complexes
(A) Translation rates reflecting subunit stoichiometry for the ATP operon. Eight subunits of the F0F1 ATP synthase are

expressed from a polycistronic mRNA, whose level as measured by RNA-seq is shown in blue. Each subunit is associated with

different levels of ribosome density (green), and the average density is proportional to the subunit stoichiometry (right).

(B) Proportional synthesis for a diverse range of complexes. Synthesis rates are plotted as a function of the subunit

stoichiometry for multi-protein complexes whose subunits are encoded in the same operon. Complexes with different subunit

stoichiometry or more than two subunits are included here (also see panel (C)). The dashed line indicates the best-fit that crosses

the origin.
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(C) Proportional synthesis for complexes with two equimolar subunits. Each complex is plotted for the synthesis rates of the two

subunits, with the earlier (later) gene in the operon on the horizontal (vertical) axis. 28 equimolar and co-transcribed complexes,

covering 4 orders of magnitude in expression level, are plotted here. Inset shows the histogram of fold-difference between the

synthesis rates of the two subunits. Our experimental results are shown in red, and the predicted values based on a

thermodynamic model considering the sequence surrounding translation initiation sites are shown in blue (Salis et al., 2009).

The distribution of the differences in translation rates for all other operons is shown in gray. Panels B and C show complexes

whose subunits are encoded on a single polycistronic operon. See Fig. S3BC for examples of proportional synthesis involving

distinct transcripts.

See also Figure S3, Figure S4, Figure S6, Table S3, and Table S4.
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Figure 3. Proportional Synthesis for Complexes in Yeast
(A) Proportional synthesis for multi-protein complexes in S. cerevisiae. Synthesis rates are plotted as a function of the subunit

stoichiometry for complexes with more than two subunits. For the signal recognition particle, four subunits (Srp14/21/68/72) are

synthesized according to their stoichiometry, and the other two are exceptions.

(B) Proportional synthesis for heterodimeric complexes in S. cerevisiae. Each complex is plotted for the synthesis rate of the two

subunits.

(C) Proportional synthesis for complexes with paralogous subunits. For each complex, the subunits that can substitute each other

are plotted in the same column.
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Figure 4. Hierarchical Expression for Functional Modules
(A) Synthesis rates for toxin-antitoxin (TA) modules. E. coli contains 12 type II TA systems that are each expressed from a

polycistronic mRNA. (The order of genes differs among systems.) The anti-toxin protein binds to and inhibits the toxin protein,

while repressing its own transcription. The synthesis rates for each system are plotted (bottom). Modules with the toxin gene

preceding the antitoxin gene in the operon is marked by asterisk.

(B) Synthesis rates for sigma-anti-sigma factors modules. The anti-sigma factor binds to and inhibits the sigma factor,

preventing transcription from the promoter driven by the corresponding sigma factor. The synthesis rates for each systems are

plotted (bottom).
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(C) Synthesis rates for two-component signaling systems. Bacterial two-component signaling system consists of a membrane-

bound histidine kinase and the cognate response regulator. The synthesis rates for 26 two-component systems in E. coli are

plotted (bottom).

(D) Synthesis rates for ATP-binding cassette (ABC) transporters. An ABC transporter consists of a core membrane transporter,

an ATP-binding domain, and the corresponding periplasmic binding proteins. The synthesis rates for each transporter are plotted

(bottom).
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Figure 5. Composition of the E. coli Proteome
(A) Break down of the proteome by functions. The mass-fraction of the proteome that is devoted to specific biological functions

is plotted as a pie chart. The copy numbers were estimated for E. coli grown in rich defined medium (Methods).

(B) Ten proteins with the largest mass-fraction in the proteome. The color used for each protein corresponds to the biological

function indicated in A.
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Figure 6. Abundance of Transcription Factors (TFs)
(A) Cumulative distribution of abundance for transcriptional activators, repressors, and dual regulators. The cumulative

distribution for each class of TF is plotted as a function of the copy number per genome equivalent.

(B) Cumulative distribution of abundance for autoregulators. The cumulative distributions for positive- and negative-

autoregulators are plotted as a function of the copy number per genome equivalent.

(C) Ligand dependence of target binding. Among TFs whose abundance fall into a given range, the fraction that binds to the

target site in a ligand-dependent way is shown in blue, and the fraction that binds to the target site independent of ligands is

shown in green. The number of transcription factors analyzed is indicated above each bin.

See also Table S5.
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Figure 7. Quantitative Analysis of the Methionine Biosynthesis Pathway
(A) Maximal reaction rates for the intermediate steps. For each step of the pathway, the maximal reaction rate (Vmax), inferred

from the enzyme abundance in vivo and the turnover number measured in vitro, is shown as the width of the blue bar, unless no

in vitro data were available. The last step that is catalyzed by the enzyme MetE has Vmax = 34,000 Met/s/cell, whereas the flux

of methionine into protein synthesis is 31,000 Met/s/cell. The scatter plot on the right shows up-regulation of these enzymes in

media without methionine.

(B) Model predicting the optimal MetE level. In a model that considers the cost and benefit of MetE expression, the maximal

growth rate is plotted as a function of the mass fraction of MetE in the proteome. The cost due to competition with new

ribosome synthesis is shown in red, and the benefit from increased methionine flux is shown in blue. The maximal growth rate is

highest (28 min) when the mass fraction of MetE is ~7%. This prediction agrees with experimental results.

See also Figure S5.
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