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Abstract

A detailed qualitative and quantitative characterization of goat colostrum oligosaccharides (GCO) 

has been carried out for the first time. Defatted and deproteinized colostrum samples, previously 

treated by size exclusion chromatography (SEC) to remove lactose, were analyzed by nanoflow 

liquid chromatography-quadrupole-time of flight mass spectrometry (Nano-LC-Chip-Q-TOF MS). 

Up to 78 oligosaccharides containing hexose, hexosamine, fucose, N-acetylneuraminic acid or N-

glycolylneuraminic acid monomeric units were identified in the samples, some of them detected 

for the first time in goat colostra. As a second step, a hydrophilic interaction liquid 

chromatography coupled to mass spectrometry (HILIC-MS) methodology was developed for the 

separation and quantitation of the main GCO, both acidic and neutral carbohydrates. Among other 

experimental chromatographic conditions, mobile phase additives and column temperature were 

evaluated in terms of retention time, resolution, peak width and symmetry of target carbohydrates. 

Narrow peaks (wh: 0.2–0.6 min) and good symmetry (As: 0.8–1.4) were obtained for GCO using 

an acetonitrile:water gradient with 0.1% ammonium hydroxide at 40 °C. These conditions were 

selected to quantify the main oligosaccharides in goat colostrum samples. Values ranging from 

140 to 315 mg L−1 for neutral oligosaccharides and from 83 to 251 mg L−1 for acidic 

oligosaccharides were found. The combination of both techniques resulted to be useful to achieve 

a comprehensive characterization of GCO.

*Corresponding author. mlsanz@iqog.csic.es (M.L. Sanz). 
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1. Introduction

Goat milk is a complex mixture of nutritive and bioactive components with reported health 

benefits such as carbohydrates, lipids and proteins [1]. Although lactose is the main 

carbohydrate, presence of other oligosaccharides (OS) similar to those found in human milk, 

has been reported [2]. Among them, some studies indicate the existence of: (i) neutral 

oligosaccharides, whose structures are mainly based on lactose with the addition of neutral 

monosaccharides such as glucose or galactose (Hex), N-acetylglucosamine or N-

acetylgalactosamine (HexNAc) and fucose or deoxyhexose (Fuc) and (ii) acidic 

oligosaccharides, containing acidic components such as N-acetylneuraminic (Neu5Ac) or N-

glycolylneuraminic acid (Neu5Gc) [3,4]. Some of these oligosaccharides, such as those 

containing fucosyl- or sialyl-groups have been described to have prebiotic and pathogen 

binding activities [5–9]. Although much effort has been focused on the composition, 

structure and bioactiv-ity of OS in human milk, scarce information about both qualitative 

and quantitative composition of goat milk OS is available. Since it is well known that 

bioactive properties are directly related to OS chemical structure, the search of novel 

sensitive and reproducible methods for the analysis of goat milk OS is of special relevance. 

Moreover, it is expectable that goat colostrum has higher amounts of OS than goat milk in a 

similar way to bovine or human milk [3,10], representing an interesting source of bioactive 

OS.

Among the different techniques used for OS analysis, high performance liquid 

chromatography (LC) is one of the most widespread. Human milk OS have been 

successfully analyzed by normal phase [11] and reverse phase LC [11–13], although a 

previous derivatization step is required to improve carbohydrates retention [14]. High 

performance anion exchange chromatography (HPAEC) provides better separation without a 

previous derivatization step and it has been widely used for goat milk OS characterization 

and quantitation [2,15–19]. However, the complex profiles obtained for OS mixtures with 

different linkage variants and the use of high pH and high salts concentrations in mobile 

phases make this technique not compatible with mass spectrometry (MS), impairing their 

complete characterization [20].

Hydrophilic interaction liquid chromatography (HILIC) is a powerful LC operation mode 

for the analysis of complex OS mixtures (galactooligosaccharides, gentiooligosaccharides, 

etc.), providing an appropriate resolution and good peak shapes [14,20]. Moreover, mobile 

phases used in HILIC are compatible with MS and even the use of a high percentage of 

organic solvents enhances the ionization and increase sensitivity which makes this technique 

appropriate for structural and glycomic research [21]. However, applications of HILIC to the 

analysis of mammal milks are scarce. Marino et al. [22] developed a methodology for the 

analysis of bovine colostrum OS based on their fluorescent labeling, pre-fractionation by 

Martín-Ortiz et al. Page 2

J Chromatogr A. Author manuscript; available in PMC 2016 February 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



weak anionic exchange chromatography and separation by HILIC using an amide based 

column and a fluorescence detector. Structural assignment of 37 free glycans was carried out 

by a combination of HILIC analyses, exoglycosidase digestion, desalting and offline 

MS/MS analyses. HILIC has also been used for the successful determination of six acidic 

OS in bovine milk, bovine colostrum, and infant formulas [23] in combination with high-

resolution selected reaction monitoring mass spectrometry (HILIC-HRSRM-MS). 

Nevertheless, to the best of our knowledge, HILIC-MS has not been previously used for 

goat milk OS analysis, being the optimization of the method a requirement for their 

comprehensive characterization.

In recent years, the use of nano-liquid chip-based technologies mainly coupled to MS or 

tandem MS (MS/MS) techniques have demonstrated to be extremely helpful for OS 

identification and it has been applied to milk characterization due to its high sensitivity and 

capacity for compositional verification [4]. Nano-LC-Chip technology coupled to time of 

flight (TOF) MS has been successfully used for OS analysis of human milk [24], porcine 

milk [25] and bovine milk [26,27]. An exhaustive characterization of OS in goat’s milks 

with and without the genetic ability to synthesize αs1-casein by nano flow liquid 

chromatography-quadrupole-TOF MS (Nano-LC-Chip-Q-TOF MS) with a porous 

graphitized carbon column has been recently reported [4]. Twenty nine goat milk OS, 11 of 

which were detected by the first time, were identified and verified via MS/MS analyses. 

Moreover, a goat milk oligosaccharide library was also created, which gathered information 

available in the literature with the new identifications. This methodology has been proven to 

be an excellent tool for the identification of OS in mammal milks due to its high sensitivity 

and mass resolution; however, it has not been previously applied to the analysis of goat 

colostrum samples which could be of interest for further exploitation of goat colostrum 

oligosaccharides (GCO) as prebiotics.

In this study, goat colostrum samples, previously purified by size exclusion chromatography 

(SEC) to remove lactose, were firstly submitted to Nano-LC-Chip-Q-TOF MS analysis in 

order to exhaustively characterize their oligosaccharide fraction. As a second step, a HILIC-

MS methodology was developed for the separation and quantitation of the main GCO, both 

acidic and neutral compounds.

2. Materials and methods

2.1. Chemicals and reagents

All reagents were of analytical grade or better. Acetic acid from Normasolv (Barcelona, 

Spain), ammonium acetate, ammonium hydroxide from Panreac (Barcelona, Spain) and 

ethanol of analytical grade were purchased from Lab-Scan (Gliwice, Poland). Acetonitrile 

(ACN) and formic acid HPLC-MS grade were purchased from Fisher-Scientific (Fair Lawn, 

NJ, USA). ESI-TOF Low concentration Tuning Mix G1969–85000 was purchased from 

Agilent Technologies (Santa Clara, CA, USA).

Analytical standards of β-4-galactosyl-lactose, maltotriose and maltotetraose were obtained 

from Sigma Chemical Co. (St. Louis, MO, USA). 6′-Sialyl-lactose (6′-SL) sodium salt, 3′-

sialyl-lactose (3′-SL) sodium salt, 2′-fucosyl-lactose (2′-FL) and 3′-sialyl-N-
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acetyllactosamine were purchased from Carbosynth (Berkshire, UK). Standard solutions in 

ACN:water (50:50, v:v) were filtered through nylon FH membranes (0.22 µm; Millipore, 

Bedford, MA, USA) before injection.

2.2. Colostrum samples

For this study, colostrum samples from four Murciano-Granadina goats (CS1–CS4) were 

obtained from an experimental farm located at Estación Experimental del Zaidín (Granada, 

Spain). In addition, colostrum from twelve individual Murciano-Granadina goats reared at 

Hermanos Archiduque farm (Granada, Spain) were collected and pooled (CS5). Collected 

samples were immediately frozen at −80°C until further analysis. Animals were cared and 

handled in accordance with the Spanish guidelines for experimental animal protection 

(Royal Decree 53/2013 on the protection of animals used for experimentation or other 

scientific purposes) in line of corresponding European Directive (2010/63/EU). An 

experimental protocol was approved by the Ethics Committee for Animal Research from the 

Animal Nutrition Unit.

2.3. Fat and protein removal

Fat and proteins were removed from the samples following the methodology described by 

Martinez-Ferez et al. [15] with small modifications. Briefly, samples were defatted by 

centrifugation at 6500 × g for 15min at 5°C, then kept in an ice bath for 30min and filtrated 

through Whatman No. 1 filter paper to remove the supernatant lipid layer, which was 

discarded.

The total protein fraction was precipitated by adding two volumes of cold ethanol to the 

skimmed colostrum samples and shaking for 2 h in an ice bath. The solution was then 

centrifuged at 6500 × g for 30 min at 5 °C and supernatant was carefully collected. Ethanol 

was evaporated from the sample in a rotary evaporator (Büchi Labortechnik AG, Flawil, 

Switzerland) at 37 °C and the remaining aqueous solution containing the carbohydrate 

fraction was frozen and lyophilized.

2.4. Colostrum oligosaccharides isolation

Considering the high amounts of lactose present in goat colostrum and the interference of 

this disaccharide in the analysis of minor oligosaccharides, samples were submitted to SEC 

fractionation to remove mono- and disaccharides, obtaining an enriched oligosaccharide 

fraction. Briefly, 25 mL of colostrum carbohydrate solution (20% wt:v) was injected into a 

Bio-Gel P2 (Bio-Rad, Hercules, CA, USA) column (90 cm × 5 cm) using water as the 

mobile phase at a flow of 1.5mLmin−1 and maintained at 4°C. The degree of polymerization 

(DP) of collected fractions was determined by electrospray ionization-mass spectrometry 

(ESI-MS) on an Agilent 1200 series HPLC system (Hewlett-Packard, Palo Alto, CA, USA) 

coupled to a quadrupole HP-1100 mass detector at positive polarity selecting the 

corresponding m/z values. Fractions with DP ≥3 were pooled and freeze-dried.

2.5. Chromatographic analyses

2.5.1. Qualitative analysis (Nano-LC-Chip-Q-TOF MS)—Prior to MS analysis, 

purified and dried OS of CS1–CS5 were reconstituted to a final concentration of 0.1 mg 
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mL−1 with nanopure water. MS analysis was performed with an Agilent 6520 accurate-mass 

Quadrupole-Time-of-Flight (Q-TOF) LC/MS with a microfluidic nano-electrospray chip 

(Agilent Technologies, Santa Clara, CA, USA) as previously described [28]. The chip 

employed contained enrichment and analytical columns, both packed with graphitized 

carbon. Chromatographic elution was performed with a binary gradient of 3% ACN/0.1% 

formic acid in water (solvent A), and 90% ACN/0.1% formic acid in water (solvent B). The 

column was initially equilibrated and eluted with a flow rate of 0.3 µL min−1 for the nano 

pump and 4 µL min−1 for the capillary pump. The 65-min gradient was programmed as 

follows: 0–2.5 min, 0% B; 2.5–20 min, 0–16% B; 20–30 min, 16–44% B; 30–35 min, 44–

100% B; 35–45 min, 100% B; 45–65 min, 0% B. Data were acquired in the positive 

ionization mode with a 450–2500 mass/charge (m/z) range. The electrospray capillary 

voltage was 1600–1700 V. The acquisition rate was 0.63 spectra/s for both MS and MS/MS 

modes. Automated precursor selection was employed based on abundance, with up to 6 

MS/MS per MS. The precursor isolation window was narrow (1.3 m/z). Fragmentation 

energy was set at 1.8V/100Da with an offset of −2.4 V. Internal calibration was performed 

using m/z 922.009 and 1221.991 as the reference masses (ESI-TOF Low concentration 

Tuning Mix G1969–85000, Agilent Technologies).

For OS identification, the Find Compounds by Formula function of Mass Hunter Qualitative 

Analysis Version B.06.00 (Agilent Technologies) was used to generate a list of 

deconvoluted masses selected to be in a range of 450–1500 m/z with a >1000 height count 

and a typical isotopic distribution of small biological molecules. Charge states allowed were 

1–2. The function matched the masses of oligosaccharides with the goat milk 

oligosaccharide databases [4] creating a list of OS compositions with their specific retention 

time (RT).

Oligosaccharide compositions were confirmed by tandem MS (MS/MS) analysis using the 

same method previously described recording 6 MS/MS per each MS analysis. Compounds 

selected for MS/MS analysis were those with a count higher than 1000. Once OS were 

confirmed by MS/MS and their RT established, the relative abundance of each OS were 

determined by integration of individual peaks using the Batch Targeted Feature Extractor 

from MassHunter Profinder Version B.06.00 (Agilent Technologies) and using the MS 

library created in a previous work [4]. The retention time window allowed for compound – 

matching was ±0.5 min with the addition of ±0.25% of the RT at each time point.

2.5.2. Quantitative analysis (HILIC-QMS)—GCO analyses were performed on an 

Agilent 1200 series HPLC system (Hewlett-Packard, Palo Alto, CA, USA) equipped with an 

oven (Kariba Instruments, UK) and coupled to a quadrupole HP-1100 mass detector 

(Hewlett-Packard, Palo Alto, CA, USA) provided with an electrospray ionization (ESI) 

source. Samples (5 µL) were injected using a Rheodyne 7725 valve.

LC experiments were carried out on an ethylene bridge hybrid with trifunctionally-bonded 

amide phase (BEH X-Bridge column); 150 mm × 4.6 mm; 3.5 µm particle size, 135Å pore 

size, Waters (Hertfordshire, UK) at a flow rate of 0.4 mL min−1. Different binary gradients 

consisting of acetonitrile (ACN):water with addition of different additives (0.1% ammonium 
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hydroxide, 0.1% acetic acid or 5 mM ammonium acetate) and column temperatures (30–60 

°C) were assayed. Injection volume was 5 µL.

The electrospray ionization source was operated under positive or negative polarity using 

the following MS parameters: capillary voltage, 4kV; temperature, 300 °C; nitrogen drying 

gas flow, 12 L min−1; nebulizer (N2, 99.5% purity) pressure, 276kPa; and fragmentor 

voltage, 80–110 V. Adducts formed under optimal conditions were evaluated. In positive 

mode, mono-sodiated adducts [M+Na]+ were primarily formed for the different samples and 

only minor abundances of [M+K]+ and [M+H]+ were observed. Similarly, in negative mode, 

[M−H]− were detected. Therefore, ions corresponding to [M+Na]+ in positive mode and [M

−H]− in negative mode of the oligosaccharides under analysis were monitored in SIM mode 

using default variable fragmentor voltages. Data were processed using HPChem Station 

software version 10.02 (Hewlett-Packard, Palo Alto, CA, USA).

Optimization of the method was carried out on the basis of RT, peak width at half height 

(wh), peak tailing measured by the peak asymmetry factor (As): calculated as the ratio of the 

back half to front half widths at 10% of the peak height, and resolution (Rs), calculated as 

2(tR2 −tR1)/(wb1 +wb2), where 1 and 2 refer to two consecutive eluting carbohydrates and 

wb is the peak width at base. Rs values should be higher than 1.0 to get an appropriate 

separation and As close to 1 to get symmetric peaks.

Quantitative analysis was performed in triplicate by the external standard method, using 

calibration curves within the range 0.25–100 mg L−1 for maltotriose, maltotetraose, 2′-FL, 

3′-SL and 6′-SL. Prior to quantitation of OS in all colostrum samples, matrix effect was 

evaluated by quantifying target analytes in solutions of CS5 before and after SEC treatment 

diluted in water at different ratios (1:1–1:50, v/v). Reproducibility of the method was 

estimated on the basis of the intra-day and inter-day precision, calculated as the relative 

standard deviation (RSD) of retention times and concentrations of oligosaccharide standards 

obtained in n = 5 independent measurements. Limit of detection (LOD) and limit of 

quantitation (LOQ) were calculated as three and ten times, respectively, the signal to noise 

ratio (S/N).

3. Results and discussion

3.1. Qualitative analysis of goat colostrum oligosaccharides

Several studies have pointed out the efficiency of MS related techniques to characterize OS 

from different biological fluids [24,25,29].The Nano-LC-Chip-Q-TOF MS system is an 

excellent tool for oligosaccharide characterization in different mammal milks, allowing the 

identification of over 150 different OS in human milk and 55 in bovine milk [28–30]. In this 

work, a great variety of GCO structures were identified (based on their RT and accurate 

masses), showing a different profile than human or bovine milk.

Considering the high content of lactose in goat colostrum, qualitative structural analysis of 

GCO required a previous purification step based on SEC, leading to a reduction of 99.9% in 

lactose concentration (Fig. 1S in supplementary material). A partial loss of neutral OS 

containing three monomeric units was also observed. Table 1 presents the list of OS 
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identified by nano-LC-QTOF MS in the five goat colostrum samples previously purified by 

SEC. A total of 78 compounds were identified as oligosaccharides, 59 of which have been 

confirmed by their MS/MS spectrum. These results indicate that GCO show greater 

complexity compared to those of other domestic animals [3,4,9,15,19,31]. Similar nano-LC 

profiles were observed among the samples analyzed (see Fig. 1), although the whole set of 

OS was not identified in all samples tested. Fig. 2 shows MS/MS spectrum of hexosyl-

lactose, 2′-FL, and 3′-SL as representative of each OS type (neutral, fucosylated and acidic). 

The corresponding losses of the different monomeric units of these OS are indicated in the 

figure. MS/MS spectra of all OS identified in the samples analyzed are also available in Fig. 

2S of supplementary material.

From the 78 oligosaccharides identified, 40 (51.3%) are neutral non-fucosylated, 3 (3.8%) 

neutral fucosylated and 35 (44.9%) corresponded to sialylated (Ne5Ac/Neu5Gc) 

oligosaccharides. The predominant OS found in these colostrum fractions analyzed were 

sialyl-lactoses (neutral mass 633.211) followed by Hex-HexNAc-Neu5Ac (neutral mass 

674.238) and Hex-HexNAc-Neu5Gc (neutral mass 690.232) residues.

Regarding neutral OS, 7 isomers of the neutral oligosaccharide galactosyl-lactose (neutral 

mass 504.169), 9 isomers of digalactosyl-lactose (neutral mass 666.222), 5 isomers of tri-

galactosyl-lactose (neutral mass 828.277) and 4 isomers of tetragalactosyl-lactose (neutral 

mass 990.331) were also detected. Different isomers of N-acetylglucosaminyl-lactose 

(neutral mass 545.195) and N-acetylglucosaminyl-hexosyl-lactose (neutral mass 707.249) 

and N-acetylglucosaminyl-dihexosyl-lactose (neutral mass 869.301) were also found in all 

the colostra. These results are in good agreement with those found by Meyrand et al. [4] in 

goat milks, although a higher number of isomers of each oligosaccharide have been detected 

in the present work. Additionally, three oligosaccharides containing fucose were found in 

these samples (fucosyl-lactosamine, 2′-fucosyl-lactose and lacto-N-fuco-pentaose); some of 

these OS were detected in low abundance which hindered our ability to achieve good 

tandem spectra as further confirmation.

A total of 35 acidic OS, containing N-acetylneuraminic monomers (18), N-

glycolylneuraminic monomers (13) and 4 containing both (isomers of sialyl-N-glycolyl-

neuraminyl-lactose), were detected in goat colostrum (Table 1). To the best of our 

knowledge, these results show the greatest number of acidic OS found in goat milk, also 

including a higher Neu5Gc presence than that reported in previous studies (54.8% vs. 

29.4%) [4,19,31].

Conventionally, a step of reduction of carbohydrate aldehydes into their alditols form is 

performed using sodium borohydride. However, due to the low abundance of some 

fucosylated OS, the reduction was not performed to avoid unwanted sample losses 

associated with intense washing of residual borates (incompatible with the subsequent mass 

spectrometry analysis). Therefore, in some cases, the oligosaccharide isomers separated by 

nano-LC may include α and β anomers.
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3.2. Quantitative analysis of goat colostrum oligosaccharides

3.2.1. Optimization of HILIC-Q MS conditions—The pool goat colostrum CS5 sample 

after SEC treatment was chosen as a representative sample for the optimization of the 

HILIC-Q MS method. Molecular ion adducts for fucosyl-lactose, galactosyl-lactoses, sialyl-

lactoses, digalactosyl-lactoses, sialyl-lactosamines and glycolyl-neuraminyl-lactosamines 

were selected for the optimization of HILIC-QMS conditions at both positive and negative 

mode (Table 2). According to results shown in Table 1, several peaks were detected for 

selected m/z ions depending on the different conditions; however, only the main ones were 

considered for the optimization of the method. Chromatographic peaks corresponding to [M

+Na]+ 656 and 511 m/z ions under positive polarity and [M−H]− 632 and 487 m/z ions under 

negative polarity were assigned to 6′-SL and 3′-SL and 2′-FL, respectively, by comparison 

of their retention times and MS data with those of commercial standards.

The use of BEH-amide stationary phase was evaluated for the analysis of GCO. Different 

gradients of acetonitrile:water using 0.1% ammonium hydroxide as additive were assayed 

for the analysis of CS5 oligosaccharides. First of all, initial gradient conditions were 

evaluated, using different percentages of aqueous phase (10, 15 and 20%); 15% was selected 

for following experiments considering the appropriate retention times (14–16 min) of the 

first eluting compounds (acidic OS). Percentage of the aqueous phase was also increased up 

to 50% and 80% in 50 min; 50% was enough for the elution of target carbohydrates. Finally, 

gradient rate was also evaluated: aqueous phase was modified from 15% to 50% in 30, 40 

and 50 min; whereas 30 and 40 min were too fast for the appropriate elution of all the 

compounds, 50 min provided the best conditions. These elution results were slightly 

improved reducing final time to 46 min, when all target carbohydrates had eluted. In all 

cases, 10 min were required at 50% aqueous phase to clean de column. Then, initial 

conditions were recovered in 1 min and finally equilibrated for 15 min. These conditions 

were also applied to both 0.1% acetic acid and 5 mM ammonium acetate additives.

Table 3 shows the chromatographic parameters (RT, wh, As and Rs) considered for the 

selected carbohydrates under positive polarity. In all cases, acidic OS eluted before the 

neutral ones; this effect was more notable working under basic conditions (0.1% ammonium 

acetate as additive) where two eluting zones were clearly distinguished in CS5 profiles: (i) 

acidic oligosaccharides (14.6–16.5 min) and (ii) neutral oligosaccharides (32.6–42.5 min). 

The main separation mechanism in HILIC seems to be based on the partitioning between a 

water-enriched layer on the surface of the polar stationary phase and the relatively 

hydrophobic eluent [32] which mainly affect neutral carbohydrates. However, although 

BEH is considered a neutral stationary phase, ionization of residual surface silanol groups in 

this stationary phase at pH above 4 could impart negative charges to the column [32]. Under 

working conditions, negatively charged acidic oligosaccharides (pKa of sialic acid = 2.6) 

would be electrostatically repelled by the stationary phase and elute at shorter retention 

times.

No noticeable differences in the resolution values for the different conditions assayed were 

observed. Although, as previously mentioned, a better separation between acidic and neutral 

oligosaccharides was achieved using 0.1% ammonium hydroxide as additive, coelutions 
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between 3′-SL, sialyl-lactosamine and a glycolyl-neuraminyl-lactosamine and 6′-SL and a 

glycolyl-neuraminyl-lactosamine were observed. This behavior was also detected using 5 

mM ammonium acetate as additive. A better separation was observed under acidic 

conditions except for 3′-SL and a glycolyl-neuraminyl-lactosamine. Different isomers of [M

+Na]+ 527 and 689 m/z coeluted at the same retention time under all conditions, resulting in 

broad peaks mainly for digalactosyl-lactoses (wh: 2.0–3.6 min). Regarding the other 

oligosaccharides, in general, good peak width and symmetry values were obtained under 

both 0.1% ammonium hydroxide and 5 mM ammonium acetate (wh: 0.2–0.6 min and As: 

1.0–1.4 and wh: 0.2–0.4min and As: 0.6–1.1, respectively), whereas slightly broader peaks 

with poor symmetry were observed using 0.1% acetic acid as additive (wh: 0.3–0.6 min and 

As: 0.7–2.8). Fig. 3a shows the HILIC-MS profile of registered CS5 oligosaccharides eluted 

under basic conditions and positive polarity.

Under negative polarity, [M−H]− ions (632, 673 and 689 m/z) corresponding to acidic 

carbohydrates (6′-SL and 3′-SL, sialyl-lactosamine and glycolyl-neuraminyl-lactosamine, 

respectively) of CS5 were clearly detected using acetonitrile:water with 0.1% acetic acid, 

0.1% ammonium hydroxide and 5 mM ammonium acetate as additives. However, in all 

cases neutral carbohydrates could not be determined or were only slightly detected under 

these conditions (Fig. 3b). Therefore, further works were carried out under positive polarity.

The effect of temperature was also evaluated using BEH amide column with 

acetonitrile:water and 0.1% ammonium hydroxide as mobile phase. Three different 

temperatures (30, 40, 60°C) were assayed (Table 3 and Table 4). As expected, as 

temperature increased a higher decrease in RT of all the carbohydrates was observed (e.g. 

differences in RT values of 3.6 min for 3′-SL and 2.3 min for 2′-FL between 30 and 60 °C 

were observed). In general, narrower peaks with good symmetry were obtained at 40 and 60 

°C (e.g. wh = 0.2–0.4 min; AS =0.7–1.3), compared to elutions at 30 °C (e.g. wh =0.2–0.6 

min; AS = 0.7–1.4), whereas resolution was only slightly affected by temperature. 

Considering these results and in order to avoid high temperatures which could affect the 

stability of the stationary phase, 40 °C was selected for the analysis of the oligosaccharides 

under study.

3.2.2. Analytical parameters—Once the chromatographic conditions were selected, 

different analytical parameters were considered for the validation of the method before 

quantitative analysis.

External standard method was used for the quantitative analysis using calibration curves 

within the range 100–0.25 mg L−1 for 2′-FL, maltotriose, maltotetraose, 3′- and 6′-SL. These 

compounds were selected as representative of neutral fucosylated trisaccharides, neutral 

non-fucosylated trisaccharides, neutral tetrasaccharides and acidic OS, respectively. The 

obtained correlation coefficients from these calibration curves ranged from 0.92 to 0.99.

Considering that GCO are present at low levels, limit of detection (LOD), limit of 

quantitation (LOQ) and precision (RSD, %) data for a standard mixture including 6′-SL, 2′-

FL and maltotriose, as representative standards of target compounds, were calculated. As 

shown in Table 5, the lowest LOD and LOQ values were obtained for 6′-SL(3.28 and 
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10.94ngmL−1, respectively), whereas the highest were found for 2′-FL (160.62 and 535.41 

ngmL−1, respectively). Good precision values were obtained for all standards analyzed 

(RSD ranging 6.0–8.1%).

The potential effect on the quantitative determination of GCO of the sample matrix was also 

considered by analyzing different dilutions (1:1–1:50, v/v) of CS5 before and after SEC 

treatment. No differences in carbohydrates concentrations associated to a possible matrix 

effect were found for the different dilutions.

3.2.3. Quantitation of oligosaccharides in colostrum samples—Table 6 shows the 

quantitative data (mg L−1 goat colostrum) of the most abundant GCO for the five samples. 

Considering the potential loss of OS with three monomer units during SEC treatment, 

oligosaccharides marked with an asterisk in the table (2′-FL, 3′-SL, 6′-SL, sialyl-

lactosamine, galactosyl-lactoses, fucosyl-lactosamine, glycolyl-neuraminyl-lactosamine and 

glycolyl-neuraminyl-lactose) were quantified in the original samples only after fat and 

protein removal (before performing SEC).

A high variability in quantified OS concentrations was observed among the different 

colostrum samples. CS4 showed the highest concentrations of OS (572.24 mg L−1) whereas 

CS2 and CS3 showed the lowest values (251.22 and 293.16 mg L−1, respectively). Values 

ranging from 140 to 315 mg L−1 for neutral oligosaccharides and from 83 to 251 mg L−1 for 

acidic oligosaccharides were found. The most abundant OS were galactosyl-lactoses 

(separation of all the isomers was not possible and these compounds were quantified 

together: 124.92–265.77 mg L−1). Concentration of these neutral carbohydrates in colostrum 

samples are higher than those reported in the literature for goat milks [4]. Regarding 

fucosyl-oligosaccharides, 2′-FL showed higher concentrations (2.21–31.59 mg L−1) than 

fucosyl-lactosamine (3.08–6.15 mg L−1). As indicated before, concentration of 6′-SL 

(28.85–123.76 mg L−1) was higher than that of 3′-SL (3.05–11.99 mg L−1) in all the 

colostrum samples. These results could suggest an OS profile closer to human milk than 

bovine milk, where 3′-SL is the predominant form in the latter. Relatively high amounts of 

sialyl-lactosamine isomers were also found in colostrum samples (5.17–8.56 and 5.66–65.12 

mg L−1), whereas lower concentrations of other acidic OS were observed (Table 6). 

Although some of these oligosaccharides have been detected in previous works in mature 

goat milks [4,10,15], to the best of our knowledge, this is the first time that such a large 

number of oligosaccharides have been quantified in goat colostrum.

4. Conclusions

A high number of both neutral and acidic OS has been detected for the first time in different 

goat colostrum samples by Nano-LC-Chip-Q-TOF MS. Moreover, a HILIC-QMS method 

has successfully been developed for the first time for the quantitative analysis of these OS. 

Regarding mobile phase, acetonitrile:water with 0.1% ammonium hydroxide as additive has 

proven to be the most appropriate eluent to achieve good results in terms of peak width, 

peak symmetry and resolution. This method has proven to be successful for the quantitation 

of several OS in colostrum samples. Up to 0.57 g L−1 of total OS could be estimated, 

galactosyl-lactoses being the predominant carbohydrates followed by sialyl- and fucosyl-

Martín-Ortiz et al. Page 10

J Chromatogr A. Author manuscript; available in PMC 2016 February 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



oligosaccharides, respectively. Overall, findings contained in this work strengthen the 

potential of goat colostrum as an efficient source of naturally-occurring bioactive OS.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Nano-LC-Chip-Q-TOF MS profiles of goat colostrum oligosaccharides: CS1, CS2, CS3, 

CS4, and CS5.
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Fig. 2. 
MS/MS spectra of: (a) hexosyl-lactose 3_0_0_0_0 (m/z 505.176), (b) 2′-FL (m/z 489.181), 

and (c) 3′-SL (634.218). Light blue circle: hexose; dark blue circle: glucose; yellow circle: 

galactose; red triangle: fucose; violet diamond: Neu5Ac. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. 
Extracted ion chromatographic profile of CS5 oligosaccharides obtained using BEH amide 

column and 0.1% ammonium hydroxide as mobile phase additive. (a) ESI interface working 

under positive polarity and (b) under negative polarity. (1) 3′-Sialyl-lactose; (2) sialyl-

lactosamine; (3) glycolyl-neuraminyl-lactosamine; (4) 6í-sialyl-lactose; (5) 2′-fucosyl-

lactose; (6) galactosyl-lactoses; (7) di-hexosyl-lactoses.
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Table 2

Molecular ion adducts registered for colostrum goat milk oligosaccharides ([M+Na]+ in positive ionization 

mode and [M−H]− in negative ionization mode). Symbol code: neutral (N); acidic (A).

Peak no Oligosaccharides [M+Na]+ [M−H]−

1 α-2′Fucosyl-lactose 511 487 N

2 Galactosyl-lactoses 527 503 N

3 3′Sialyl-lactose and 6′sialyl-lactose 656 632 A

4 Di-hexosyl-lactoses 689 665 N

5 Sialyl-lactosamine 697 673 A

6 Glycolyl-neuraminyl-lactosamine 713 689 A
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Table 5

Limits of detection (LOD) and of quantitation (LOQ) and precision (relative standard deviation, % RSD) for a 

standard mixture analyzed by HILIC-Q MS using acetoni-trile:water with 0.1% ammonium hydroxide as 

mobile phase and 40°C as oven temperature.

Compound LOD
(ng mL−1)

LOQ
(ng mL−1)

Precision
(RSD, %)

2′-Fucosyl-lactose 160.62 535.41 6.9

6′-Sialyl-lactose 3.28 10.94 8.1

Maltotriose 19.76 65.87 6.0

Maltotetraose 114.21 380.69 7.2
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