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Abstract

Classification methods for multivariate and functional data using features from density

ratio estimation

by

Zachary Terner

We introduce a new method for estimating density ratios using splines, as a gener-

alization of a method from Silverman [1]. This method applies to general domains and

can be used to estimate joint density ratios. We then use the spline method to construct

a new classifier named DAB, or Dependence-Adjusted naive Bayes. The DAB classifier

estimates marginal log density ratios and uses them as features in a binary classifica-

tion problem. We show that DAB may recover the optimal Bayes solution in certain

Gaussian situations where naive Bayes cannot, and we also demonstrate its performance

on simulated and empirical datasets. We also recreate a comparison of naive Bayes and

logistic regression from Ng and Jordan [2] and show where DAB can outperform both

methods. Last, we demonstrate DAB’s effectiveness in the setting of functional data as

an extension to the functional naive Bayes classifier [3].
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Chapter 1

Introduction

The problem of classifying new observations into one of two or more classes is an old

and ongoing problem in statistics. Many new statistical machine learning methods have

been developed for this purpose, including the proliferation of neural network and deep

learning techniques in recent years. The development of these methods has coincided

with an increase in the types and quantities of data available to train reliable classifiers.

Similarly, the field of functional data analysis has also experienced a surge in the

data collected and the subsequent methods developed. These data arise in a variety of

application areas, including medicine, chemometrics, brain imaging, and finance [4, 5, 6,

7, 8, 9]. As a result, several classification methods designed for functional data have been

published recently. Many of the more recent functional data classification papers translate

classical ideas from multivariate data classification into a functional data framework. For

example, Delaigle and Hall show that linear and quadratic discriminant analysis applied

to functional data can achieve perfect classification, or an asymptotic misclassification

rate of zero, under certain Gaussian conditions [10, 11]. Rossi and Villa present support

vector machines applied to functional data [12], with Wu and Liu developing a robust

version [13]. Similarly, there has been work in developing functional data methods for
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Introduction Chapter 1

decision trees [14].

More recently, Dai, Mueller, and Yao proposed a nonparametric Bayes classifier for

functional data [3]. Bayes classifiers are known to provide optimal misclassification rates

when the joint densities are known and specified. Estimating joint densities is a tall task

for multivariate data and even harder for functional data, since densities for functional

data generally do not exist [15]. Dai, Mueller, and Yao overcome this by using the density

ratios of functional projection scores in place of a traditional density ratio. Assuming

the projection scores to be independent lets them reduce the Bayes classifier to the naive

Bayes classifier, following the derivation of the naive Bayes classifier in multivariate data.

Rather than treat these scores as independent, Huang and Ruppert include a Gaussian

or t-copula in their Bayes classifier to model the dependence [16].

In this thesis, we propose new classification methods with either multivariate or func-

tional data. The contribution of this thesis comes in two main parts: first, we propose

a method for density ratio estimation, a special case of which can be traced back to

Silverman [1]. We show that this technique of estimating the log density ratio directly

can work better than the method used in [3] and [16] of taking the log of the quotient

of two separate kernel density estimates. Second, we propose a generalization of the

naive Bayes classifier to adjust for the dependence between variables. We show that this

generalization can improve classification performance in both the traditional multivari-

ate and functional data settings via simulation and real data applications. Additionally,

we demonstrate that in certain Gaussian situations, this generalization can recover the

optimal Bayes classifier, which is known to minimize misclassification rates.

2



Introduction Chapter 1

1.1 Bayes and naive Bayes classifiers

In this section we introduce the general Bayes classifier, discuss its optimality, and

explain its relationship to the naive Bayes classifier. We then show how naive Bayes is

equivalent to logistic regression under a specific Gaussian setting. Both of these methods

are fundamental to the contribution presented here, where we compare the classifier

presented in Chapter 3 with naive Bayes and logistic regression solutions.

1.1.1 Naive Bayes

The general Bayes classifier for multivariate data is known to minimize misclassifica-

tion rates [17, 18, 19, 20]. Let Y be our class labels and denote X as our p multivariate

predictors. The Bayes classifier can be written as

ŷ = arg max
y

P (Y = y|X = x). (1.1)

In other words, we assign new observations x to the class which has the maximum

posterior probability [21]. In the two-class problem, where Y ∈ {0, 1}, let

Q(x) =
P (Y = 1|X = x)

P (Y = 0|X = x)
. (1.2)

The Bayes classifier assigns observations to class Y = 1 if Q(x) > 1. In this case, we

compute the posterior conditional probabilities of the two classes and take the ratio to

determine which class has the higher posterior probability. By applying Bayes’ theorem,

Q(x) =
P (Y = 1)P (X = x|Y = 1)

P (Y = 0)P (X = x|Y = 0)
(1.3)

where we have switched the conditioning to require a density of the data conditional on
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Introduction Chapter 1

the class, P (X = x|Y = y). The class probabilities, P (Y = y), can be estimated by

computing the number of instances in each class. However, the conditional probabilities

in (1.3) can be very difficult to estimate in practice, especially when p is large, due to

the curse of dimensionality [22].

One common assumption used to compute the joint densities in (1.3) is to assume

that the predictor variables are independent, conditional on class membership. Let gy(x)

be the density function of X conditional on Y = y. Let X = (X1, . . . , Xp) and gyk be the

marginal density function of Xk conditional on Y = y. By the factorization theorem, if

the predictor variables are independent, we can write

Q(x) =
P (Y = 1)g1(x)

P (Y = 0)g0(x)
=
P (Y = 1)

∏p
k=1 g1k(xk)

P (Y = 0)
∏p

k=1 g0k(xk)
. (1.4)

Since (1.4) contains only products, we can take the log to convert the products into

a sum. This creates the traditional naive Bayes classifier, which we denote as Qn(x) :

Qn(x) = logQ(x) = log
P (Y = 1)

P (Y = 0)
+

p∑
k=1

log
g1k(xk)

g0k(xk)
. (1.5)

In (1.5), we simply need to compute the log density ratio of each marginal variable. The

class label is assigned based on whether the sum of the log density ratios and the prior

probabilities is positive (Y = 1) or negative (Y = 0).

The naive Bayes classifier has been popular due to its strong performance. Multiple

studies have sought to determine why the classifier performs well empirically even when

the conditional independence assumption is violated. Hand and Yu provide a review

of these explanations in [23]. One explanation given is that naive Bayes can provide

lower variance estimates of P (Y |X = x) than more complicated models, especially in

small sample sizes, because naive Bayes is traditionally restricted to computing only one
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estimand per feature, the log density ratio. This reduction in variance comes at a cost

of having an estimate of E[P̂ (Y |X)] taken with respect to X that may be more biased

than the estimates from other models. However, this bias may not matter in terms of

classification performance as long as P̂ (Y = 1|X) > P̂ (Y = 0|X) when P (Y = 1|X) >

P (Y = 0|X) and vice versa. Additional information can be found in [23, 24, 2, 25].

1.1.2 Logistic regression

Consider the case where we are interested in modeling the posterior probability,

P (Y = 1|X = x), as done in logistic regression. We show below that taking the marginal

density ratios, as done in naive Bayes, results in a logistic regression model in the spe-

cial case of Gaussian data where the only difference between the two classes is in the

means [26, 27].

Recall that in (1.5), we write the conditional log odds, Qn(x), as the sum of the

log of p marginal density ratios and a constant. If the only difference between the

two marginal Gaussian densities comes in the means – Xk|Y = 0 ∼ N(µ0k, σ
2
k) and

Xk|Y = 1 ∼ N(µ1k, σ
2
k) – we can write each individual log ratio as

log

(
g0k(x)

g1k(x)

)
=

(µ0k − µ1k)

σ2
k

xk +
(µ2

1k − µ2
0k)

2σ2
k

. (1.6)

Let

w0 = log

(
P (Y = 0)

P (Y = 1)

)
+

p∑
k=1

(µ2
1k − µ2

0k)

2σ2
k

wk =
µ0k − µ1k

σ2
k

(1.7)

where we have grouped all constant terms as w0 and terms depending on xk as wk. We
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Introduction Chapter 1

can then rewrite (1.5) as

Qn(x) = w0 +

p∑
k=1

wkxk (1.8)

which follows the form of a logistic regression presented in terms of the log odds.

Besides this clear connection, naive Bayes and logistic regression models comprise a

Generative-Discriminative pair [2]. As Ng and Jordan note, generative classifiers learn

a model of the joint probability P (X, Y ) and generate predictions using Bayes rule to

calculate P (Y |X = x), as done by the naive Bayes classifier. Discriminative classifiers

attempt to model P (Y |X = x) directly, as done in the logistic regression example noted

above. The authors note that generative classifiers approach their asymptotic error rate

faster than discriminative classifiers, though discriminative classifiers have a lower asymp-

totic error rate. Therefore, there are two regions of performance: in smaller sample sizes,

generative classifiers perform better since they more quickly approach their asymptotic

error rate; in larger sample sizes, discriminative classifiers perform better since they

have a lower asymptotic error rate. In this thesis, we develop a discriminative classifier

that explicitly connects logistic regression to naive Bayes by using the log density ratios

as features. We compare the performance of this model with naive Bayes and logistic

regression.

1.2 Bayes classifier for functional data

In the section that follows, we borrow a significant portion of notation from Dai,

Mueller, and Yao [3], but denote differences once they appear. We assume that our

observed data arise from a common distribution (X, Y ), where X is an observed square-

integrable random function in L2(T ). In this setup, we define T as a compact interval

and Y ∈ {0, 1} as a group label. Let X(y) be a random function which shares the same

6



Introduction Chapter 1

distribution as X if X is from population Πy (y = 0, 1), and let πy = P (Y = y) be the

prior probability that an observation belongs to Πy. We are interested in classifying a

new observation X into one of two groups. The Bayes classifier assigns a new observation

X = x to Π1 if

Q(x) =
P (Y = 1|X = x)

P (Y = 0|X = x)
> 1, (1.9)

where X refers to a random predictor function and x a realized functional observation.

Denote g0 and g1 as densities of X conditional on Y = 0 and Y = 1, respectively, where

we assume the existence of a suitable dominating measure. Using Bayes’ Theorem, we

can equivalently write (1.9) as

Q(x) =
π1g1(x)

π0g0(x)
. (1.10)

Dai, Mueller, and Yao approximate (1.10) by representing x and the random X

by their projections onto an orthogonal basis {ψj}∞j=1. Denote {xj}∞j=1 as projection

scores via xj =
∫
T
x(t)ψj(t)dt. Approximating the probabilities P (Y = y| X = x) by

P (Y = y|x1, . . . , xJ), the approximate Bayes classifier is written as

Q(x) ≈ P (Y = 1|x1, . . . , xJ)

P (Y = 0|x1, . . . , xJ)
=
π1f1(x1, . . . , xJ)

π0f0(x1, . . . , xJ)
(1.11)

where f1 and f0 represent the conditional densities, now with respect to the usual

Lebesgue measure, for the first J random projection scores. We reserve fy to refer

only to conditional densities of random projection scores in the remainder of this work.

One method of simplifying (1.11) is to introduce assumptions that can ease the com-

putation. Dai, Mueller, and Yao assumed that the covariances of the stochastic processes

from which the functional data arise share the same eigenfunctions across classes. Let

µy(t) = E{X(y)}(t) and Gy(s, t) = Cov{X(y)(s), X(y)(t)} be the mean and covariance
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functions conditional on class Y . Assume the covariances

Gy : L2(T )→ L2(T ), Gy(f)(t) =

∫
T

Gy(s, t)f(s)ds (1.12)

are continuous. Then by Mercer’s theorem [28],

Gy(s, t) =
∞∑
j=1

λyjφyj(s)φyj(t), (1.13)

where φyj = φj are the shared orthonormal eigenfunctions (j = 1, 2, . . . ) with corre-

sponding eigenvalues λyj which remain nonnegative but monotonically decrease. The

eigenvalues satisfy
∑∞

j=1 λyj < ∞ where y = 0, 1 represents the class. One can set the

shared eigenfunctions {φj}∞j=1 to be the projection directions {ψj}∞j=1. An alternative ap-

proach is to use the partial least squares (PLS) basis for the covariance decomposition.

See [29] and [30] for details.

As previously stated, a common assumption when constructing a Bayes classifier is to

assume that the joint density of the features can be written as the product of the marginal

densities via independence. This creates the naive Bayes classifier. For the functional

Bayes classifier, under the assumption of a common eigenbasis {φj}∞j=1 between classes,

projecting onto this basis yields uncorrelated scores within each class. Assuming these

scores are not only uncorrelated but also independent, as would be the case for Gaussian

functional data, yields the functional naive Bayes classifier. Taking the logarithm, (1.11)

becomes

QJ(x) = log
(π1
π0

)
+

J∑
j=1

log
(f1j(xj)
f0j(xj)

)
, (1.14)

denoting the density of the jth score under Πy as fyj. Using this classifier, one assigns a

realization to Π1 if QJ(x) is positive and to Π0 otherwise. This classifier is presented in

[3].

8
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1.2.1 Functional Bayes classifier with copula

Huang and Ruppert proposed an extension of the functional Bayes classifier by adding

a copula to the classifier QJ(x) [16]. We summarize this contribution here.

Note that (1.11) includes the computation of the joint density of projection scores.

Depending on the choice of basis and the distribution of the data, these scores may

exhibit some dependence or correlation between them. Copulas can be used to account

for the dependence between these truncated projection scores.

As noted above, let xj =
∫
T
x(t)φj(t)dt represent the jth projection score. We denote

the copula for class y as a CDF Cy and its corresponding PDF cy, with marginals all

being uniform distributions on [0, 1]. Let Fyj and fyj denote the marginal CDF and PDF

of Xyj, the jth random projection score conditional on class Y = y. We can then define

Fy(x1, . . . , xJ) and fy(x1, . . . , xJ) as the joint CDF and PDF of Xy1, . . . , XyJ , respectively,

as

Fy (x1, . . . , xJ) = Cy {Fy1 (x1) , . . . , FyJ (xJ)} ,

fy (x1, . . . , xJ) = cy {Fy1 (x1) , . . . , FyJ (xJ)} fy1 (x1) · · · fyJ (xJ) . (1.15)

Our revised Bayes classifier then becomes

logQ∗J(x) = log

(
π1
π0

)
+

J∑
j=1

log

{
f1j (xj)

f0j (xj)

}
+ log

{
c1 {F11 (x1) , . . . , FJ1 (xJ)}
c0 {F10 (x1) , . . . , FJ0 (xJ)}

}
(1.16)

where we assign new observations to class 1 if logQ∗J(x) > 0 and to class 0 otherwise.

1.3 Density ratio estimation

The estimation of density ratios is a classic and fundamental problem in the field

of statistics. As demonstrated in Section 1.1, computing density ratios is the central
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aspect of building the Bayes classifier, which provides minimal misclassification rates,

or the naive Bayes classifier, which is often developed in its place. Estimating density

ratios pervades almost all areas of statistics, from building classification models, outlier

detection [31], changepoint detection [32], deep learning [33], and machine learning in

general [34]. See [35] for additional application areas and references regarding density

ratio estimation.

In this section, we review two methods for estimating density ratios. We later compare

a developed method for estimating density ratios with the first method presented here,

taking the ratio of two kernel densities.

1.3.1 Ratio of two kernel density estimates

One of the most common methods of density ratio estimation is by taking the ratio

of two kernel density estimates. Suppose that we obtain two independent samples of

observations X11, . . . , X1n1

iid∼ g1 and X01, . . . , X0n0

iid∼ g0 where g1 and g0 have the same

domain. Our goal is to estimate the ratio d(x) = g1(x)/g0(x). One may estimate each

density function first and then take the ratio as the estimate of d. In particular, the

kernel estimate d̂k of d is

d̂k(x) =
ĝ1(x)

ĝ0(x)

where ĝ1 and ĝ0 are kernel density estimates of g1 and g0.

1.3.2 Silverman’s approach

Next we detail an approach to density ratio estimation from Silverman [1], which has

been updated in [36]. Suppose that we obtain two independent samples of observations

on the real line X11, . . . , X1n1

iid∼ g1 and X01, . . . , X0n0

iid∼ g0 where g1 and g0 have the

same domain. For the estimation of the density ratio d(x) = g1(x)/g0(x), Silverman

10
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considered an almost equivalent problem: regard X01, . . . , X0N0 as the N0 arrivals of an

inhomogeneous Poisson process with intensity function λ0(x), and X11, . . . , X1N1 as the

N1 arrivals of an inhomogeneous Poisson process with intensity function λ1(x). Denote

the combined and ordered samples as Z1, . . . , ZN , where N = N1 + N0. Let Yi = 1

if Zi arises from the λ1 process and Yi = 0 if Zi arises from the λ0 process. We define

λ(x) = λ0(x)+λ1(x) and µ(x) = λ1(x)/λ0(x). Conditioning on the total number of events

N = n, the Z1, . . . , ZN are order statistics. The joint density of (Z1, . . . , ZN , Y1, . . . , YN)

can therefore be written as

f(z1, . . . , zN , y1, . . . , yN |N = n)

= n!I(z1 ≤ z2 ≤ · · · ≤ zn)
n∏
i=1

λyi(zi).

= n!I(z1 ≤ z2 ≤ · · · ≤ zn)
n∏
i=1

λ0(zi)(λ1(zi)/λ0(zi))
yi

= n!I(z1 ≤ z2 ≤ · · · ≤ zn)
n∏
i=1

(λ1(zi) + λ0(zi))(λ1(zi)/λ0(zi))
yi

λ0(zi)+λ1(zi)
λ0(zi)

= n!I(z1 ≤ z2 ≤ · · · ≤ zn)
n∏
i=1

λ(zi)µ(zi)
yi

1 + µ(zi)
. (1.17)

We add that N ∼ Pois(
∫
I
λ(x)) where I is the domain of functions g0 and g1. There-

fore, the log-likelihood of λ and µ can be written as

l(λ, µ) = −
∫
λ+N log

∫
λ+

∑
log λ (Zi) + l1(µ) (1.18)

where l1(µ) depends only on the data and µ. When µ is given, we see that (N,Z1, . . . , ZN)

form a minimal sufficient statistic for λ. We can treat the sum of the intensities λ as

a nuisance parameter since the primary interest is in estimating the ratio µ. To write

a likelihood for µ, note that the distribution of (N,Z1, . . . , ZN) depends only on the

11
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nuisance parameter λ. Thus, (Y1, . . . , YN) is sufficient for µ following the definition by

Fraser [37]. By conditioning on the sufficient statistic (N,Z1, . . . , ZN), we obtain the

conditional log-likelihood l1 of µ as

l1(µ) =
N∑
i=1

[yi log µ (zi)− log {1 + µ (zi)}] . (1.19)

Note that this expression is maximized when µ(zi) = 0 for each i where yi = 0 and

infinity for all other i. Maximizing this log-likelihood to obtain an estimate of µ would

therefore provide poor estimates. Additionally, note that the log-likelihood is undefined

when µ(zi) is negative but, when yi = 0, the likelihood increases as µ(zi) approaches

zero. To remedy this, we substitute α = log µ and write the conditional log-likelihood l2

as

l2(µ) =
N∑
i=1

(yiα (zi)− log [1 + exp {α (zi)}]) . (1.20)

This formulation yields a similar problem as (1.19) since (1.20) is maximized when α(zi) =

−∞ if yi = 0 and α(zi) = ∞ if yi = 1. However, one can use any spline model with

a smoothing penalty to obtain a reasonable estimate for α(zi). Further details on the

estimation of α(zi) using spline models can be found in [1, 38, 39, 40, 41] and in Chapter

2.

Finally, the estimate of log density ratio d̂s(x) using a smoothing penalty can be

written as

d̂s(x) =
n0

n1

µ̂(x) (1.21)

where we scale our estimate µ̂(x) = exp(α̂) by the ratio of number of observations in

each class.

12



Chapter 2

Direct Density Ratio Estimation

Using Splines

2.1 Introduction

The estimation of density ratios is a classic and important problem in the field of

statistics. As demonstrated above, the Bayes classifier and many of its derivatives, in-

cluding the naive Bayes classifier, depend on computing reliable estimates of density

ratios between two classes. Modern machine learning approaches including generative ad-

versarial networks (GANs) [42, 43, 33], reinforcement learning [44], and semi-supervised

learning [45] also depend on estimating the ratio of two densities. Applications of density

ratio estimation abound in changepoint detection [32, 46], outlier detection [31, 47], quan-

tile estimation [48], variable selection [49], and other areas. Further details on density

ratio estimation in machine learning can be found in [34].

Numerous methods for density ratio estimation exist [35]. The technique described

in Section 2.2 differs from some previous procedures, such as the one described in Sec-

tion 1.3.1, since it estimates the log density ratio directly. In general, estimating a desired
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quantity directly is preferred over estimating it via intermediate steps since direct esti-

mates tend to have lower variance [50]. We continue with detailing this procedure before

applying it to real and simulated datasets. Note that the method developed in [1] and

summarized in Section 1.3.2 applies only to univariate density functions on real line.

In Section 2.2 we propose a method for estimating density ratios defined on arbitrary

domains.

2.2 Spline estimation of density ratio

Suppose that we observe (X,Y) where Y = 1 or Y = 0, X ∈ X and X is an arbitrary

set. Let g1(x) denote the conditional density of X|Y = 1 and similarly let g0(x) denote

the conditional density of X|Y = 0. Note that the domain of functions g0 and g1 are

arbitrary sets which contain a subset of the real line as a special case. In particular, the

domain could be a subset of a Euclidean n−space. Denote πy = P (Y = y) for y = 0, 1.

Using Bayes’ theorem, we can write

p(x) , P (Y = 1|X = x) =
π1g1(x)

π1g1(x) + π0g0(x)
=

rd(x)

1 + rd(x)
(2.1)

where r represents the ratio of prior probabilities, π1/π0, and d(x) represents the density

ratio, g1(x)/g0(x).

The logistic probability, or the log odds ratio, can be written as

η(x) = log
p(x)

1− p(x)
= log r + log d(x). (2.2)

Given data {(xi, yi), i = 1, . . . , n}, η(x) can be estimated nonparametrically. We

assume that η ∈ H where H is a reproducing kernel Hilbert space (RKHS) and estimate
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η as the minimizer of the penalized likelihood:

−
n∑
i=1

yiη(xi) +
n∑
i=1

log(1 + exp η(xi)) + λJ(η) (2.3)

where J(η) is a penalty [51, 52]. The estimate of the log density ratio using the RKHS,

d̂h, (referring to the Hilbert space h,) is defined as

d̂h(x) , η̂(x)− log r̂ (2.4)

where r̂ is an estimate of r. A simple estimate is r̂ =
∑n

i=1 yi/(n−
∑n

i=1 yi). In comparison,

Silverman [1] justified his method using the connection between inhomogeneous Poisson

processes and density functions. He used the likelihood conditioned on sufficient statistics

and treated the sum of intensity functions as a nuisance parameter. Therefore, his method

is limited to density ratios defined on the real line. Note that the negative log-likelihood

in the first two terms in (2.3) has the same form as the conditional log-likelihood (1.20).

Therefore, with the same model space and penalty, these two approaches lead to the

same estimate.

Here we consider the specific problem of classification. We use the likelihood con-

ditional on {x1, . . . , xn} which is sufficient for the marginal density f(x) where f(x) =

π0g0(x)+π1g1(x) is the nuisance parameter. There is no limitation regarding the domain

of f(x) as our method applies to general domains. For example, X can take the form of

a circle or sphere. Additionally, X can be a subset of a Euclidean n−space. In the case

where one knows that k ≤ p variables are correlated, one can estimate the joint den-

sity f(x1, . . . , xk) of the correlated variables rather than the marginal density for each

variable. However, in the remainder of this thesis we only consider methods based on

estimates of marginal densities.
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The Bayes rule based on this estimated density ratio is equivalent to nonparametric

logistic regression [51]. Specifically, the Bayes rule assigns an observation to Class 1

when rd(x) ≥ 1 which is equivalent to η(x) ≥ 0. In the dependence-adjusted naive Bayes

method to be proposed in Section 3.1 later, we will estimate marginal density ratios and

then fit logistic regression models with these estimated log density rations as features.

Specifically, for multivariate X = (X1, . . . , Xp), we first estimate marginal density ratios

zk = dk(xk) for k = 1, . . . , p where dk(xk) = g1k(xk)/g0k(xk) and g1k and g0k are marginal

densities of Xk conditional on classes 1 and 0 respectively. Therefore, we only need to

solve (2.3) for univariate spline models for each marginal density ratio.

Define Xk, an arbitrary set, as the domain of variable Xk. When Xk = [a, b], we may

use the cubic spline Sobolev space W 2
2 [a, b] as H. When Xk = R, we may use the cubic

thin-plate spline space as H. See [52] for choices of other model spaces.

We use the estimated marginal density ratios zk as the features to logistic regression

models. As illustrated in Section 3.3 and Section 3.4, using zk as the features in a

logistic regression may perform better than a traditional GLM. Note that the Bayes

rule traditionally uses the full likelihood f(y|x)f(x) while logistic regression uses the

conditional likelihood, f(y|x). In our approach, we estimate the density ratio using the

conditional likelihood and treat the prior density f(x) as a nuisance parameter.

2.3 Simulation studies

We present several simulations to evaluate and compare methods for the estimation

of density ratios. The simulation settings include three distributional settings: 1) the

ratio of two univariate Gaussians, where the only difference is in the mean, (σ0 = σ1 =

2, µ0 = 2, µ1 = 4), 2) the ratio of two univariate Gaussians, where the only difference

is in the standard deviation (σ0 = 1.25, σ1 = 2, µ0 = µ1 = 2), and 3) the ratio of
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two Weibull(a, b) distributions, where the only difference is in ay, the shape parameter

(b0 = b1 = 1, a0 = 4, a1 = 5). These are evaluated at three sample sizes: small (n = 50),

medium (n = 300), and large (n = 1000). In all settings, the two classes have the same

number of observations. (For example, in the small settings, n0 = n1 = 50, where ny is

the number of training observations in class y.)

In each of these settings, we compare two methods of estimating the log density

ratio: the spline method as described in Section 2.2, and the ratio of two kernel density

estimates as described in Section 1.3.1. The spline estimates of the log density ratio were

computed using a p-spline using the gam function from version 1.8.28 of the mgcv package

in R [53]. These are fit by building a binomial GAM (setting family = "binomial").

The kernel density estimates were computed using the density function from the stats

package in R. The Gaussian kernel and default bandwidth selection method were used.

To evaluate the estimates, we use a method of computing normalized mean square

error (NMSE) as described in [36]. Denote ri as the true density ratio estimate with r̂spi

and r̂kdei as its estimate from the spline and ratio of kernel density estimates, respectively.

Then the NMSE for the spline estimate, NMSEsp is defined as

NMSEsp =
1

n

n∑
i=1

( r̂spi∑n
i=1 r̂

sp
i

− ri∑n
i=1 ri

)2
(2.5)

with an analogous formula for NMSEkde. Normalizing in this way helps to prevent the

mean square error from being skewed by large outliers. We present the results of these

simulations in Table 2.1 and Figures 2.1 to 2.3 below. Note that the boxplots present the

logarithm of NMSE to aid the comparison. As shown, the spline outperforms the KDE

in all settings, and the density ratio estimation improves as n0 increases.
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Distribution Method n0 Average NMSE SD of NMSE
Gaussian1 KDE 50 2.2e-03 2.9e-03
Gaussian 1 Spline 50 4.3e-04 1.4e-03
Gaussian 1 KDE 300 5.8e-04 6.3e-04
Gaussian 1 Spline 300 1.5e-05 1.1e-04
Gaussian 1 KDE 1000 2.6e-04 2.1e-04
Gaussian 1 Spline 1000 3.7e-06 3.7e-05
Gaussian 2 KDE 50 2.6e-03 3.0e-03
Gaussian 2 Spline 50 6.4e-04 1.7e-03
Gaussian 2 KDE 300 7.9e-04 5.9e-04
Gaussian 2 Spline 300 2.8e-05 1.1e-04
Gaussian 2 KDE 1000 3.4e-04 1.6e-04
Gaussian 2 Spline 1000 9.3e-06 4.9e-05

Weibull KDE 50 1.6e-03 2.9e-03
Weibull Spline 50 4.4e-04 1.6e-03
Weibull KDE 300 3.6e-04 5.6e-04
Weibull Spline 300 2.3e-05 1.6e-04
Weibull KDE 1000 1.6e-04 1.9e-04
Weibull Spline 1000 3.1e-06 2.9e-05

Table 2.1: Simulation results reported as Average NMSE with associated standard devi-
ations.
The Gaussian 1 setting calculates the ratio of univariate Gaussians, where the only dif-
ference is in the mean of the two classes: σ0 = σ1 = 2, µ0 = 2, µ1 = 4.
The Gaussian 2 setting calculates the ratio of univariate Gaussians, where the only dif-
ference is in the standard deviation of the two classes: σ0 = 1.25, σ1 = 2, µ0 = µ1 = 2.
The Weibull setting calculates the ratio of two Weibull(a, b) distributions: b0 = b1 =
1, a0 = 4, a1 = 5.
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Figure 2.1: Log of the NMSE over 500 simulation runs for Gaussian 1. σ0 = σ1 = 2, µ0 =
2, µ1 = 4.
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Figure 2.2: Log of the NMSE over 500 simulation runs for Gaussian 2. σ0 = 1.25, σ1 =
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Chapter 3

DAB for Multivariate Data

We begin by introducing the DAB method in Section 3.1 and showing how it relates to

both naive Bayes and logistic regression. Section 3.2 covers several interesting properties

of the DAB method, including a case-by-case analysis of its ability to recover the optimal

Bayes solution in certain Gaussian settings. We evaluate the performance of DAB using

simulated and real data in Section 3.3 and Section 3.4.

3.1 The DAB method

Recall (1.5), the traditional naive Bayes classifier for multivariate data. As noted

previously, the naive Bayes classifier results from assuming that the predictor variables in

the optimal Bayes classifier are independent conditional on the class. Rather than assume

the features are independent, we allow the marginal density ratios to be weighted to

account for dependencies among them. Let Y be the class label and X = (X1, . . . , Xp) be

p multivariate predictors. Let Qα(x) denote a new classifier of multivariate observations

x = (x1, . . . , xp). Define zk as the log ratio of marginal densities zk , log g1k(xk)
g0k(xk)

, where gyk

is the density function of Xk conditional on Y = y. We seek Qα(x) as a linear combination
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of derived features

Qα(x) = α0 +

p∑
k=1

αkzk (3.1)

where the αk represent weights that can be used to adjust for the dependencies among

the marginal density ratios. This family of classifiers includes naive Bayes as a special

case, where α0 is the log ratio of the prior probabilities and αk = 1 for all k > 0. We

estimate αk by framing (3.1) as a logistic regression via the logit link

logit p(x) = α0 +

p∑
k=1

αkzk. (3.2)

In a traditional naive Bayes classifier, the only step is to estimate the log density

ratio of each feature marginally. To estimate (3.2), we simply treat the estimated log

density ratios as features and obtain αk using a logistic regression with the logit link.

Other link functions, such as the probit, can also be used. Additionally, other methods,

such as support vector machines, can be used to estimate αk.

The interpretation of coefficients αk is straightforward. In a traditional logistic regres-

sion, logit p(x) = β0 +
∑p

k=1 βkxk, we interpret βk as the corresponding change in the log

odds when xk increases by 1, assuming all other features xj, j 6= k are held constant. We

can interpret αk in (3.2) as the corresponding change in the log-odds when zk increases

by 1, where zk represents the log ratio of marginal densities. A change in the density

ratio exp(zk) of 100h% will change the log-odds by αk log(1 + h). Thus, we explicitly

connect the changes in the conditional density of X in the predictors to the conditional

density of Y in the response. We name this classifier Dependence-Adjusted naive Bayes,

or DAB, since the classifier retains the simplicity of naive Bayes while adjusting for the

dependencies between features by estimating αk.

Framing the classifier as a regression problem provides additional flexibility, namely
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the inclusion of interaction and higher order terms as well as regularization. We can

generalize (3.1) as

Qα(x) = ζ(z;α) (3.3)

where ζ is a known function of z = (z1, . . . , zp)
T with parameters α. In (3.1), ζ is merely

the dot product of α and z where z0 = 1. However, ζ can also include interaction and

higher-order terms as well as nonlinear functions of z. In the sections that follow, we show

several cases where the inclusion of higher-order terms provides further benefit than the

naive Bayes classifier and in some cases recovers the form of the optimal Bayes classifier.

3.2 Properties of DAB

3.2.1 Approaching and recovering the optimal Bayes solution

One potential advantage of the DAB classifier comes through its ability to bridge the

gap from the naive Bayes classifier to the optimal Bayes solution. We illustrate this below

in the Gaussian setting of X|Y = y ∼ N(µy,Σy), but it may hold in more general cases.

We proceed by explaining in which Gaussian situations DAB may recover the optimal

Bayes solution, and in which situations neither DAB nor naive Bayes can recover the

optimal Bayes solution.

Assume that X|Y = y ∼ N(µy,Σy) where y ∈ {0, 1} and Σy is p × p and positive

definite. Let gy represent the multivariate density under class y. Define the vector bT1×p ,

µT0 Σ−10 −µT1 Σ−11 and define S , Σ−10 −Σ−11 with the ikth element Sik. We can write the
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log ratio of the joint density as

log
g1(x)

g0(x)
=

1

2
log
|Σ0|
|Σ1|

+
1

2

(
(x− µ0)

TΣ−10 (x− µ0)− (x− µ1)
TΣ−11 (x− µ1)

)
= b0 +

1

2
xT(Σ−10 − Σ−11 )x− (µT0 Σ−10 − µT1 Σ−11 )x

= b0 +
1

2
xTSx− bTx (3.4)

where b0 represents a constant term that does not depend on x.

We compare the form presented in (3.4) via the joint density with the log ratio of the

marginal densities. We can write the marginal log density ratio zk of Xk as

zk =
1

2
log

σ2
0

σ2
1

+
1

2

((xk − µ0k

σ0k

)2
−
(xk − µ1k

σ1k

)2)
= α0k +

1

2

(
σ−20k − σ

−2
1k

)
x2k −

(µ0k

σ2
0k

− µ1k

σ2
1k

)
xk (3.5)

where α0k is a constant. Eq. (3.5) represents the marginal log density ratio of one variable.

However, we are interested in computing a linear combination of marginal density ratios

as shown in (3.1). Thus, when building the DAB classifier, we are actually computing

Qα(x) = α0 +

p∑
k=1

αkα0k +

p∑
k=1

αk

(1

2

(
σ−20k − σ

−2
1k

)
x2k −

(µ0k

σ2
0k

− µ1k

σ2
1k

)
xk

)
. (3.6)

The weights αk in (3.6) serve the same purpose as in (3.1). We endeavor to compare (3.4)

with (3.6) to determine where (3.6), under the correct choice of αk, can recover the

optimal Bayes solution as a function of x. Notice that both the log of the joint density

ratio, (3.4), and the log of the marginal density ratio, (3.6), are quadratic functions of x.

Thus, comparing these two forms amounts to identifying the circumstances where the log

ratios of the marginal densities can match terms with the log ratio of the joint density.

We present four cases below. These cases are 1) the classic case of a difference in
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means between the classes but a shared covariance; 2) the case where the quadratic terms

in (3.6) cancel; 3) the case where the linear terms in (3.6) cancel; and 4) the case where

no cancellation occurs.

Case 1: Σ0 = Σ1 = Σ, µ0k 6= µ1k for all k

When the two classes share the same covariance but have different means, the optimal

Bayes classifier is

log
g1(x)

g0(x)
= b0 − bTx (3.7)

where b0 is a constant that does not depend on x. Recall the vector bT1×p , (µT0 −

µT1 )Σ−1 = (b1, . . . , bp)
T since Σ0 = Σ1. We can equivalently write (3.7) as

log
g1(x)

g0(x)
= b0 −

p∑
k=1

bkxk. (3.8)

Define δk , µ0k − µ1k and set αk = −bkσ2
k/δk and b0 = α0 +

∑p
k=1 αkα0k. Then the DAB

classifier is written as

Qα(x) = α0 +

p∑
k=1

αkzk

= α0 +

p∑
k=1

αk

(
α0k +

( δk
σ2
k

)
xk

)
= b0 −

p∑
k=1

bkxk. (3.9)

Note that (3.9) contains no quadratic terms since the quadratics cancel out of the

marginal density ratio. By setting αk = −bkσ2
k/δk, we can recover the form of the

optimal Bayes classifier presented in (3.8). If any δk were to equal 0, the corresponding

zk would also be 0. Thus, we may not be able to recover the optimal Bayes solution.

If Σ = Σ0 = Σ1 is a diagonal matrix, bk = δk/σ
2
k. In this case, α = 1. Therefore, DAB
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recovers the naive Bayes solution, which is also the optimal Bayes rule.

Case 2: Σ0 6= Σ1, σ
2
0k = σ2

1k for all k, µ0k 6= µ1k for all k

When the two classes have different covariances and different means, but the same

variances, the optimal Bayes classifier is written as (3.4). The DAB classifier initially

takes the form of (3.9) since the quadratic terms in the marginal log density ratios cancel.

We can add higher-order terms to the DAB classifier in (3.9) to recover the joint density

ratio completely. Let αjk = Sjkσ
2
kσ

2
j/(2δkδj), αk = −(bk

σ2
k

δk
+ 2

∑p
j=1 αkjα0j), and set

b0 = α0 +
∑p

k=1 αkα0k +
∑p

k=1

∑p
j=1 αjkα0jα0k. We construct the DAB classifier for Case

2 below. We denote this classifier as Qα,2(x) to note that we are extending DAB to

include second order terms.

Qα,2(x) = α0 +

p∑
k=1

αkzk +

p∑
k=1

p∑
j=1

αjkzjzk

= α0 +

p∑
k=1

αk

(
α0k +

( δk
σ2
k

)
xk

)
+

p∑
k=1

p∑
j=1

αjk

(
α0j +

( δj
σ2
j

)
xj

)(
α0k +

( δk
σ2
k

)
xk

)
= α0 +

p∑
k=1

αkα0k +

p∑
k=1

p∑
j=1

αkjα0kα0j +

p∑
k=1

(
αk + 2

p∑
j=1

αkjα0j

) δk
σ2
k

xk

+

p∑
k=1

p∑
j=1

αkj
δjδk
σ2
jσ

2
k

xjxk

= b0 − bTx +
1

2
xTSx.

(3.10)

Under the proper choice of the linear terms αk and higher order terms αjk, we can recover

the quadratic form of the joint density ratio in (3.4) exactly.
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Case 3: Σ0 6= Σ1, σ
2
0k 6= σ2

1k,
µ0k
σ2
0k
6= µ1k

σ2
1k

for some k

The optimal Bayes classifier takes its full quadratic form specified in (3.4). The DAB

classifier takes its full quadratic form specified in (3.6). We cannot recover the optimal

Bayes solution since we cannot estimate separate αk for the linear and quadratic coef-

ficients using the marginal density ratios. This occurs because the linear and quadratic

coefficients are linked together by αk. However, the additional flexibility offered by DAB

may allow it to outperform naive Bayes.

Case 4: Σ0 6= Σ1, µ0k = µ1k, σ
2
0k 6= σ2

1k for some k

Note that this is a special case of Case 3, since the requirement that µ0k = µ1k for

some k ensures that µ0k
σ2
0k
6= µ0k

σ2
0k
. In this case, the optimal Bayes classifier takes its full

form specified in (3.4). Let zk be an example instance where µ0k = µ1k and σ2
0k 6= σ2

1k.

The marginal log density ratio zk is written as

zk =
1

2
log

σ2
0

σ2
1

+
1

2
(σ−20k − σ

−2
1k )x2k. (3.11)

Here zk only contains terms that are quadratic in xk, but the joint log density ratio

may contain terms that are linear in xk. Therefore, we cannot recover the optimal Bayes

solution since some features in the joint density ratio cannot be recovered from the

marginals.

In general, DAB can recover the optimal Bayes solution when the marginal density

ratios zk are all linear in x, as shown in Cases 1 and 2. When there are quadratic terms

in some of the zk, it may be impossible to recover the optimal Bayes solution. This is

described in Cases 3 and 4.
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3.2.2 Negative coefficients in the Bayes classifier

One notable disadvantage of the naive Bayes classifier is that it does not allow for

the creation of fractional or negative coefficients in its sum. We show below that there

are simple bivariate Normal cases where including negative coefficients for the marginal

ratios would be appropriate.

Consider Case 1 from above, where Σ0 = Σ1 but µ0k 6= µ1k for all k. Let δk ,

µ0k − µ1k, let ρ denote the correlation between X1 and X2, and let σ1 and σ2 denote the

corresponding standard deviations. As shown in (3.7), the optimal αk = −bkσ2
k/δk where

b1×p , (µT0 − µT1 )Σ−1.

To compute α, we can write bT = δTΣ−1 as

δTΣ−1 =
1

(σ1σ2)2(1− ρ2)

σ2(δ1σ2 − δ2ρσ1)
σ1(δ2σ1 − δ1ρσ2)


T

. (3.12)

Let D denote the matrix with σ2
k/δk on the diagonal and 0 in all remaining elements. We

can calculate α as a matrix computation:

α1

α2

 = −bTD =

 1
(σ1σ2)2(1−ρ2)

σ2σ2
1

δ1
(δ2ρσ1 − δ1σ2)

1
(σ1σ2)2(1−ρ2)

σ1σ2
2

δ2
(δ1ρσ2 − δ2σ1)


T

. (3.13)

The sign of each coefficient is determined by

sign(α1) = sign
(δ2ρσ1 − δ1σ2

δ1

)
, and

sign(α2) = sign
(δ1ρσ2 − δ2σ1

δ2

)
. (3.14)

For α1 in particular, if δ1 and δ2 share the same sign, then the condition ρ|δ2|σ1 <

|δ1|σ2 implies that α1 is negative. When δ1 and δ2 have opposite signs, ρ|δ2|σ1 > |δ1|σ2
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will ensure a negative value of α1. These two conditions can also be written as

If sign(δ1) = sign(δ2),
δ1σ2
δ2σ1

> ρ =⇒ α1 < 0.

If sign(δ1) 6= sign(δ2),
δ1σ2
δ2σ1

< ρ =⇒ α1 < 0. (3.15)

Similar conditions apply to obtain a negative coefficient for α2. Thus, it is evident that

there are common situations where negative coefficients would be appropriate to include

when using Bayes’ rule for classification. Fig. 3.1 below plots the eigenvectors of the

covariance matrix Σ for four values of ρ where µ0 = (0, 0), µ1 = (1, 1), δ1 = δ2 = 1, σ1 = 1

and σ2 = 1/2. By (3.15), ρ < 0.5 would give a negative α1. We plot the eigenvectors

below for ρ ∈ {0, .25, .5, .75} to demonstrate the change in the shape of the ellipse.

3.3 Simulation examples

We proceed by detailing simulation examples which demonstrate the performance of

the DAB classifier on simulated datasets. We adopt a factorial design with two choices

of dimension p = 5 and p = 10, three choices of sample size n2 = 50, 150, and 500, and

three choices of conditional distributions, multivariate Gaussian, mixture of multivariate

Gaussians, and multivariate uniform. We use n2 to denote the number of observations in

the smaller class and n1 = 2n2 to denote the number of observations in the larger class.

This setup allows us to evaluate the performance of the models on imbalanced classes.

All tests were performed on sample sizes equal to those used to train the models.

In the multivariate normal setting, X|Y = y ∼ N(µy,Σy) where µ0 = 0,µ1 = 21,

where 0 and 1 denote a p-vector of 0s and 1s, respectively. We set Σ0 = Ip, a p × p

identity matrix, and Σ1 = (1− ρ)Ip + ρ11T , a p× p matrix with 1 on the diagonals and

ρ on the off-diagonals. The µy vector has length p for each simulation.
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Figure 3.1: Plot of the eigenvectors for different values of ρ.

In the mixture of Gaussians setting, we set gy(x) = πy1φ(x|µy1,Σy1)+πy2φ(x|µy2,Σy2)

where y = 0 or 1, π01 = π11 = π02 = π12 = 0.5, µ11 = 0,µ12 = 1,µ01 = 1,µ02 =

21,Σ01 = Σ02 = Ip,Σ11 = Σ12 = (1− ρ)Ip + ρ11T , and φ(x|µ,Σ) is the density function

of a multivariate Gaussian distribution with mean µ and covariance matrix Σ.

In the multivariate uniform setting, we generate X|Y = 0 as a p-dimensional Uni-

form(0,1) with covariance Σ0 = Ip. Similarly we generate X|Y = 1 as a p-dimensional

Uniform(0.1, 1.1) with covariance Σ1 = (1−ρ)Ip+ρ11T . These were generated using the

MultiRNG package in R [54], which implements an approach described in [55].

The simulations below are presented in the following order. The first plot contains
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simulations of the multivariate Gaussian setting in increasing sample size for p = 5. The

second plot contains the same simulation but p = 10. The next two plots follow the

same setup but are done using data from the mixture of Gaussians setting. The last

two plots show results for the multivariate uniform. The graphs show error rates from

ten methods for the Gaussian setting and error rates from eight methods for the non-

Gaussian settings. The error rates represent the average misclassification rate over 10

replications on out-of-sample data. These are matched to the legend as follows:

• Bayes-true: This line represents the optimal error rates using Bayes rule by tak-

ing the true log density ratio of the two classes. This serves as a benchmark for

all comparisons. For the multivariate Gaussian and mixture of Gaussian cases, we

simply take the log density ratio of the PDFs as described above. For the multi-

variate uniform case, we characterize the joint density of the multivariate uniform

using a Gaussian copula and the marginal densities. Similar to (1.15), let

fy (x1, . . . , xp) = cy {Fy1 (x1) , . . . , Fyp (xp)} fy1 (x1) · · · fyp (xp) .

where fy(x1, . . . , xp) represents the joint density of (x1, . . . , xp) conditional on class

y, cy represents the Gaussian copula density conditional on class y, Fyp(xp) repre-

sents the pth marginal CDF of xp conditional on class y, and fyp(xp) represents the

pth marginal density of xp conditional on class y.

Let Σ denote the correlation matrix of the Gaussian copula, and denote q1×p =

(Φ−1(u1), . . . ,Φ
−1(up)) where Φ−1(u) denotes the inverse of a standard Gaussian

CDF. The Gaussian copula density conditional on class y is provided by [56] as

cy(u) =
1√

det Σ
exp

[
− 1

2
q(Σ−1 − I)qT

]
. (3.16)
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This representation allows us to evaluate the joint density of the multivariate uni-

form in both classes.

• NB-true (Gaussian only) This line represents error rates using the naive Bayes

classifier. However, we know the true marginal log density ratio, so we use the true

mean and variance in calculating the ratio.

• Bayes-est (Gaussian only) This is similar to Bayes-true, but here we are using

the sample values to estimate the log density ratio.

• NB-est (Gaussian) / NB (others) This is using the naive Bayes rule, but we

use sample estimates of the mean and variance in the log density ratio.

• GLM-linear This line represents error rates from fitting a full GLM to the data

itself without taking log density ratios. Here we only use the linear terms in the

GLM.

• GLM-quad This line represents error rates from fitting a full GLM with quadratic

and interaction terms to the data itself without taking log density ratios.

• DAB1-linear This line represents using kernel density estimation to estimate the

marginal log density ratios and then fitting a GLM to the estimated log density

ratios. The kernel density estimation was done using the density function in R

with default arguments. Thus, we used the Gaussian kernel and a bandwidth chosen

by Silverman’s method described in (3.31) of [57]. The same settings were used for

DAB1-quadratic. This GLM contains only linear terms. This is a version of the

DAB model.

• DAB1-quadratic This line represents using kernel density estimation to estimate

the marginal log density ratios and then fitting a GLM to the estimated log density
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ratios. The GLM contains linear and higher order (quadratic and interaction)

terms. This is a version of the DAB model.

• DAB2-linear This line represents using a p-spline to estimate the marginal log

density ratios and then fitting a GLM to the estimated log density ratios. The

p-spline was fit using the gam function from version 1.8.28 of the mgcv package in

R [58]. These are fit by building a binomial GAM (setting family = "binomial").

This implementation uses penalized regression splines to represent the smooth func-

tions. The smoothing parameter used was the default setting of GCV.Cp, which

uses Mallows’ Cp in the case of a binomial family. The same settings were used for

DAB2-linear. The GLM contains only linear terms. This is a version of the DAB

model.

• DAB2-quad This line represents using a spline to estimate the marginal log den-

sity ratios and then fitting a GLM to the estimated log density ratios. The GLM

contains linear and higher order (quadratic and interaction) terms. This is a version

of the DAB model.

The Gaussian plots in Fig. 3.2 and Fig. 3.3 correspond to a special case of Case 1

(Σ = Ip) and Case 2 (all ρ) above. The true joint density ratio outperforms all other

candidate models, as expected. At p = 5 and n1 = 100, DAB1-linear performs similarly

to GLM and NB. However, as the sample size increases, DAB1-quad and DAB2-quad,

the density ratio estimates with all higher order and interaction terms, perform almost

as well as the true joint density ratio in Fig. 3.2.

In Fig. 3.3 the trend is similar. At p = 10 and n1 = 100, naive Bayes works about as

well DAB2-quad. At n1 = 300, DAB1-linear and GLM-linear are the best alternatives

to the true Bayes ratio until ρ ≈ 0.8, where the quadratic models do well. At n1 = 1000,

DAB1-linear and DAB2-linear do well until ρ ≈ .6, at which point DAB1-quad and
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DAB2-quad do better. However, these error rates do not match the true Bayes ratio as

well as we see in the p = 5 case. Thus, when there are additional covariates in the model,

it appears that we need a larger sample size to perform as well as the optimal Bayes

classifier.

The mixture of Gaussians plots in Fig. 3.4 and Fig. 3.5 show similar behavior when

p = 5 or p = 10. When p = 5 and n1 = 100, GLM-linear, DAB1-linear, DAB2-linear,

and naive Bayes all exhibit very similar performance. These models provide the lowest

misclassification error until ρ ≈ 0.5, where the quadratic models GLM-quad, DAB1-quad,

and DAB2-quad do better. Of these, DAB2-quad outperforms the others once ρ > 0.5.

When p = 5 and n1 = 300, the linear and quadratic models do equally well until ρ ≈ 0.35.

From there onwards, the quadratic models do better with DAB1-quad and DAB2-quad

each providing lower misclassification rates than GLM-quad. When n1 = 1000, we see

the same trend except that the ρ at which the quadratic models begin to do better is

now ≈ 0.2.

When p = 10 and n1 = 100, the linear models serve as the best alternatives until

ρ ≈ 0.6. At low values of ρ the quadratic models have the highest misclassification error

but they provide the lowest misclassification error when ρ > 0.6. When n1 = 300, the

linear models again do better until ρ ≈ 0.35, where the quadratic models outperform

it. DAB2-quad provides the lower misclassification rates than the other two quadratic

models in both cases. Last, when n1 = 1000, DAB1-quad and DAB2-quad each do well

for all values of ρ. They do better than the linear models at ρ ≈ .15.

In all mixture of Gaussians cases, all models besides DR2-quad, DR1-quad, and GLM-

quad perform worse as ρ increases. Estimating the density ratio and adding all quadratic

and interaction terms generally performed better than adding all quadratic terms using

a standard GLM on the data itself.

The multivariate uniform settings appeared to be more challenging to classify than
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the Gaussian and mixture of Gaussians settings. When p = 5, DAB1-linear provided

the lowest misclassification until ρ ≈ 0.6 when n1 = 100, until ρ ≈ 0.5 when n1 = 300,

and until ρ ≈ 0.6 when n1 = 1000. The DAB2-quadratic model provides the lowest

misclassification error at high values of ρ. The same trend occurs when p = 10. DAB1-

linear performs best until ρ ≈ 0.6 when n1 = 100 and it performs best until ρ ≈ 0.5 when

n1 = 300 and n1 = 1000. At high values of ρ, DAB2-quad does best along with GLM-

quad. Interestingly, the worst option for the multivariate uniform case was DAB2-linear,

or the linear model using spline estimates of the density ratio.

The DAB method generally outperforms the GLM variants in these simulations. The

quadratic methods initially perform worse than the linear counterparts under small sam-

ple settings and in settings of small ρ. However, as the sample size and ρ increase, the

quadratic DAB models outperform all other alternatives. This may arise due to not only

the increased dependence in one of the two classes as indicated by increasing ρ, but also

an improvement in the ability to estimate the log density ratio as the sample grows larger.

Of the two methods used for density ratio estimation, where DAB1 indicates the

ratio of kernel density estimates and DAB2 indicates the spline method of density ratio

estimation, DAB2-quadratic and DAB2-linear performed at least as well as their DAB1

counterparts in all Gaussian and mixture of Gaussian settings. Interestingly, in all set-

tings of the multivariate uniform, DAB1-linear gave lower misclassification rates than

DAB2-linear at all values of ρ. DAB1-quad also gave lower misclassification rates than

DAB2-quad for small and medium values of ρ, but DAB2-quad did better for large values

of ρ.
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Figure 3.2: Simulation results from multivariate Gaussian data. The y-axis represents average misclassification error over 10 replica-
tions. The x-axis represents the ρ parameter between the two classes. p = 5 in all plots. The plots are ordered in increasing level of
sample size.
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Figure 3.3: Simulation results from multivariate Gaussian data. The y-axis represents average misclassification error over 10 replica-
tions. The x-axis represents the ρ parameter between the two classes. p = 10 in all plots. The plots are ordered in increasing level of
sample size.
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Figure 3.4: Simulation results from a mixture of Gaussian distributions. The y-axis represents average misclassification error over 10
replications. The x-axis represents the ρ parameter between the two classes. p = 5 in all plots. The plots are ordered in increasing
level of sample size.
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Figure 3.5: Simulation results from a mixture of Gaussian distributions. The y-axis represents average misclassification error over 10
replications. The x-axis represents the ρ parameter between the two classes. p = 10 in all plots. The plots are ordered in increasing
level of sample size.
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Figure 3.6: Simulation results from a multivariate uniform. The y-axis represents average misclassification error over 10 replications.
The x-axis represents the ρ parameter between the two classes. p = 5 in all plots. The plots are ordered in increasing level of sample
size.
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Figure 3.7: Simulation results from a multivariate uniform. The y-axis represents average misclassification error over 10 replications.
The x-axis represents the ρ parameter between the two classes. p = 10 in all plots. The plots are ordered in increasing level of sample
size.
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3.4 Real data examples

We demonstrate the performance of this classifier on seven real datasets from the

UCI machine learning repository [59]. All of these datasets besides the abalone dataset

were used in the aforementioned paper by Ng and Jordan [2] to compare naive Bayes

with logistic regression. We use many of the same datasets with continuous variables

to recreate their comparisons while adding the linear DAB classifier using the spline

method of density ratio estimation. As done by Ng and Jordan [2], we evaluate the

performance of these classifiers at different training sizes n. At each training size, we

conduct 250 replications and report the average misclassification rate on out of sample

data. These are plotted in the odd-numbered figures in Figure 3.8 – Figure 3.23 below.

The general shapes of the plots below match those of the same figures in [2], but there

are minor differences. Although we attempted to choose the same variables as done by

Ng and Jordan, it is possible that we may have omitted or included variables which they

did not omit or include since their description only states that non-continuous variables

were excluded from the analysis. It is also likely that their implementations of logistic

regression and naive Bayes differ from those used here. All logistic regressions plotted

below were fit using the standard glm function in R. The naive Bayes classifiers were

built using the naive bayes function from the naivebayes package in R [60].

For each dataset below, we have paired the misclassification rates below with corre-

lation heatmaps of the features in the same dataset by each class using the ggcorrplot

package in R [61]. These comprise the even-numbered figures below. We have also plot-

ted the difference between the class correlation structures in the third panel. This is done

to show how the difference in correlation structures relates to DAB’s performance. In

general, DAB appears to perform better than naive Bayes and logistic regression when

there are large differences in the correlation structures in each class, as shown in the
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ionosphere and sonar datasets. If the correlation structure between the two classes is

more similar, as in the liver and Boston housing datasets, then it is harder for DAB to

outperform logistic regression. However, DAB can still outperform naive Bayes under all

scenarios as the sample size grows large.

DAB clearly needs a large sample size to perform as well as logistic regression. This

is largely because the spline method, which is used to estimate the log density ratios,

requires a sufficient sample size. In the absence of a sufficient sample, one may prefer to

use logistic regression or naive Bayes as classification models.
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Figure 3.8: Average misclassification rate over 250 replications at different training sizes
for the abalone dataset. Observations corresponding to the middle two quartiles of the
response variable were removed from the dataset, so classification took place on data
that were above the 3rd quartile (Class 1) or below the 1st quartile (Class 0).
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Figure 3.9: Correlation structure for Class 0 and Class 1 in the abalone dataset. We only present the upper half of the correlation
matrix since the correlation matrix is symmetric. The rightmost image represents the differences in correlation between Class 0 and
Class 1. In this image there are few differences in terms of the correlation between the classes.
Abalone is a type of shellfish. The classification task at hand is to predict a dichotomized age after removing the middle 50% of
the data. The variables used refer to physical characteristics of the abalone, including its length, height, and various weights. More
information can be found in [62].
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Figure 3.10: Average misclassification rate over 250 replications at different training sizes
for the adult dataset. Non-continuous variables were removed from the classification.
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Figure 3.11: Correlation structure for Class 0 and Class 1 in the adult dataset. We only present the upper half of the correlation
matrix since the correlation matrix is symmetric. The rightmost image represents the differences in correlation between Class 0 and
Class 1. The only notable difference comes in the correlation of X1 and X13.
The response variable here in the adult dataset is whether a person makes ≥ 50K/year using data from the 1994 census. The covariates
are age, the number of people represented by that entry in the database, and hours worked per week. More information can be found
in [63].
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Figure 3.12: Average misclassification rate over 250 replications at different training
sizes for the Boston housing dataset. The response variable was whether the median
value of the home exceeded the median value of all homes. Non-continuous variables
were removed from the classification.
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Figure 3.13: Correlation structure for Class 0 and Class 1 in the Boston housing dataset. We only present the upper half of the
correlation matrix since the correlation matrix is symmetric. The rightmost image represents the differences in correlation between
Class 0 and Class 1. The largest differences are in the correlation of rm with ptratio and rm with black. More information can be
found in [64].
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Figure 3.14: Average misclassification rate over 250 replications at different training sizes
for the Ionosphere dataset. Non-continuous variables were removed from the classifica-
tion.
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Figure 3.15: Correlation structure for Class 0 and Class 1 in the ionosphere dataset. We only present the upper half of the correlation
matrix since the correlation matrix is symmetric. The rightmost image represents the differences in correlation between Class 0 and
Class 1. There are many large differences in the correlation structure between the two classes.
The response variable in this dataset is whether the radar return showed evidence of structure in the ionosphere, or not. More
information can be found in [65].
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Figure 3.16: Average misclassification rate over 250 replications at different training
sizes for the Ionosphere dataset. In this example we arbitrarily chose ten variables for
the classification. Note that all methods achieve lower misclassification rates on a smaller
dataset and DAB still does best as the training size increases. Non-continuous variables
were removed from the procedure.
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Figure 3.17: Correlation structure for Class 0 and Class 1 in the ionosphere dataset using only the first ten variables. We only present
the upper half of the correlation matrix since the correlation matrix is symmetric. The rightmost image represents the differences in
correlation between Class 0 and Class 1. There are many large differences in the correlation structure between the two classes.
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Figure 3.18: Average misclassification rate over 250 replications at different training sizes
for the liver dataset. Non-continuous variables were removed from the classification.
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Figure 3.19: Correlation structure for Class 0 and Class 1 in the liver dataset. We only present the upper half of the correlation
matrix since the correlation matrix is symmetric. The rightmost image represents the differences in correlation between Class 0 and
Class 1. There are small differences in the correlation structure between the two classes.
This dataset, the Indian Liver Patient Dataset, contains measurements from 416 liver patients and 167 non-liver patients. The
covariates presented above consist of age, bilirubin measurements, protein measurements, albumin, etc. More information can be
found in [66].
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Figure 3.20: Average misclassification rate over 250 replications at different training sizes
for the Pima dataset. Non-continuous variables were removed from the classification.
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Figure 3.21: Correlation structure for Class 0 and Class 1 in the Pima dataset. We only present the upper half of the correlation
matrix since the correlation matrix is symmetric. The rightmost image represents the differences in correlation between Class 0 and
Class 1. There are minimal differences in the correlation structures between the two classes.
The response variable in the Pima dataset is whether a patient has diabetes. The covariates include age, BMI, blood pressure, and
other medical measurements. More information can be found in [67].
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Figure 3.22: Average misclassification rate over 250 replications at different training sizes
for the Sonar dataset. Non-continuous variables were removed from the classification.
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Figure 3.23: Correlation structure for Class 0 and Class 1 in the sonar dataset. We only present the upper half of the correlation
matrix since the correlation matrix is symmetric. The rightmost image represents the differences in correlation between Class 0 and
Class 1. There are clear differences in the correlation structure between the two classes.
The response variable in the sonar dataset is whether the object being studied is a rock or a mine. The covariates include measurements
taken at various angles by bouncing sonar off a given object. More information can be found in [68].

60



Chapter 4

DAB for Functional Data

4.1 The fDAB method

The formulation of a naive Bayes classifier for functional data was presented in (1.14).

Following the derivation in Section 3.1, we can similarly extend the dependence-adjusted

Bayes model to functional data. Here we assume that our observed data arise from a

common distribution (X, Y ) where X is an observed square-integrable random function

in L2(T ), T is a compact interval, and Y ∈ {0, 1} is a group label. Let X(y) be a

random function which shares the same distribution as X if X arises from population

Πy (y = 0, 1) and let πy = P (Y = y) be the prior probability than observation belongs to

Πy. Recall that to build the functional naive Bayes classifier, we project our functional

data onto an orthogonal basis {ψj}∞j=1 to get projection scores. The basis can be chosen

a number of ways, including through a mixture of conditional covariances, as done in [3],

or using the partial least squares decomposition [29]. If the covariance of the two classes

share a common eigenbasis, and this is chosen as the orthogonal basis for projection,

this creates projection scores that are uncorrelated. We compute the projections {xj}∞j=1

using xj =
∫
T
x(t)ψj(t)dt. Therefore, in this chapter, x denotes a vector of projections of
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a functional random variable onto an orthogonal basis. We define fyj(xj) as the density

of the jth projection score xj under population Πy.

Consider an updated form of QJ(x), the functional Bayes classifier:

QJ(x) = α0 +
J∑
j=1

αj log
(f1j(xj)
f0j(xj)

)
. (4.1)

In (4.1), we have updated (1.14) with α0, a constant that does not depend on x, and

an αj coefficient that equals 1 for all j if the scores are independent, as the naive Bayes

framework assumes. However, if there are dependencies among the projection scores xj,

we can adjust for those dependencies by estimating αj. To estimate αj, we once again

frame this classifier as a generalized linear model (GLM), where we introduce the logit

link to obtain a standard GLM form:

logit p(x) = α0 +
J∑
j=1

αj log
(f1j(xj)
f0j(xj)

)
. (4.2)

Eq. (4.2) can be seen as a more specific case of (3.2), the general formulation of the

dependence adjusted naive Bayes classifier. In (4.2), the log ratio of the projection scores

forms our log ratio of two marginal densities, defined as zk in (3.2). Once again, α0

includes the log ratio of the prior probabilities and any constant terms which may arise

from taking the log ratio of the marginal densities of the projection scores. We name

the classification method presented in (4.1) fDAB, or the functional dependence-adjusted

naive Bayes classifier.
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4.2 Simulation studies

We present two tables of classification results using simulated functional data. In the

first table, we focus on functional data that are sample paths of Gaussian processes. In the

second table, we generate functional data that do not contain any Gaussian components

and demonstrate how existing methods do not perform as well in these circumstances.

The columns of Tables 4.1 and 4.2 below contain results from the different classi-

fiers that were used. The first two columns contain results using the implementation

and methods of the t and Gaussian copulas described in [16]. The Naive Bayes column

contains misclassification rates for the Naive Bayes classifier as described in [3] and as

implemented by Huang and Ruppert [16]. The last five columns display results from

fDAB and its variants. Since fDAB is a GLM with log density ratio features, we can

create alternative models by adding higher order terms to the model and including reg-

ularization in the model estimation. The L1 and L2 columns include results from using

the cv.glmnet function from the glmnet package in R to select the appropriate tuning

parameter and fit the lasso and ridge regression models, respectively [69]. The Quadratic

model contained all possible main effects and quadratic terms but did not include inter-

actions. The Interaction model contained all possible main effects and interaction terms

but did not include quadratic terms. As shown in the results, the Interaction model

generally performed poorly on all test data, so we do not expect additional benefit from

fitting all interaction and quadratic terms.

For every simulation setting, we generate 200 functions from each class using the

setups specified in the following sections. To identify the optimal number of components

J , we let J vary from 1 to the maximum number of bases used in the generation of the

functions. For most settings, this was five, but we let J reach eight in the last simulation

setting. We performed 10-fold cross-validation at every level of J to identify the J that
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gives the minimal misclassification rate. Once the optimal J was chosen, we performed

10-fold cross-validation on the same data using a new train/test split. This was done to

provide a better estimate of the error rate at the chosen J.

The estimation of the density ratios follows the procedure described in [3], where the

training data are centered and pooled to obtain a joint covariance estimate. We write

Gy(s, t) = Cov{X(y)(s), X(y)(t)} =
∑∞

j=1 λjyφj(s)φj(t), where φj are the eigenfunctions

assumed to be common between the classes and λjy represents the jth eigenvalue from

class y. Pooling the data allows us to obtain a joint covariance operator G = π0G0+π1G1,

where φj becomes the jth eigenfunction of G with eigenvalue λj = π0λj0 +π1λj1. We use

sample estimates of our mean and covariance functions, µ̂y(t) and Ĝy(s, t), to build the

model. Thus, we create our sample estimate of the covariance as Ĝ(s, t) = π0Ĝ0(s, t) +

π1Ĝ1(s, t) and its corresponding eigenvalues and eigenfunctions as (λ̂j, φ̂j). With these

tools, we can estimate principal component scores as ξ̂j =
∫
T
X(t)φ̂j(t)dt, (j = 1, . . . , J).

Our projection scores for a given X
(y)
i are written as ξ̂ijy under the assumption of noise-

free predictor trajectories.

4.2.1 Simulations of Gaussian functional data

Table 4.1 presents results from N = 200 runs of two different Gaussian or Gaussian-

based simulation scenarios. We enumerate the settings below where each item corre-

sponds to a row of the table in the simulation. In each setting, t is a vector of 200

equally spaced points from 0 to 1 unless otherwise specified.

1. Gaussian: same covariance between the classes, different means.

All functions were generated using a basis of φ(t) = [cos(2πt), sin(2πt), cos(4πt), sin(4πt), 1]

and an expansion of Xk(t) =
∑5

j=1 ayjφj(t) where y denotes class membership. In

Class 0, the coefficients a0j
iid∼ N(µ0,Σ) where µ0 = (−.2, .2, .4, .6, .8). The co-
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variance matrix Σ contained diagonal elements of (.6, .7, .8, .9, 1) and off-diagonal

elements of ρ = 0.3. In Class 1, the coefficients a1j
iid∼ N(µ1,Σ) where µ1 =

(−1, 1,−.5, .5, .1).

2. Gaussian: same means between the classes, different covariances.

All functions were generated using a basis of φ(t) = [cos(2πt), sin(2πt), cos(4πt), sin(4πt), 1]

and an expansion of Xk(t) =
∑5

j=1 ayjφj(t) where y denotes class membership. In

Class 0, the coefficients a0j
iid∼ N(0,Σ0) where Σ0 is the identity matrix. In Class

1, the coefficients a1j
iid∼ MVN(0,Σ1) where Σ1 contains 1s on the diagonals and

ρ = .8 on the off-diagonals.

The results in these settings confirm the expected behavior of the classifiers under Gaus-

sian situations. The Naive Bayes classifier does best when the only difference in the two

classes comes in the mean of the Gaussian distribution, since it recovers the optimal

Bayes solution. When the difference comes in the covariance, the copulas outperform the

other methods since they explicitly model the dependence.

4.2.2 Simulations of functional data from other distributions

We enumerate the settings below where we generated functional data that do not

have any Gaussian components.

1. Rows 1-3 in Table 4.2: Multivariate uniform coefficients.

All functions were generated using a basis of φ(t) = [cos(πt), sin(πt), cos(2πt), sin(2πt), 1]

and an expansion of Xk(t) =
∑5

j=1 ayjφj(t) where y denotes class membership. In

Class 0, the coefficients were drawn independently and identically from a multivari-

ate uniform with identity covariance matrix (Σ0 = I) using the MultiRNG package

in R [54] as described in [55]. In Class 1, the coefficients were drawn independently
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and identically from a multivariate uniform where Σ1 contained 1s as diagonal el-

ements and ρ > 0 for the off-diagonal elements. Rows 1, 2, and 3 correspond to

ρ = .96, .8, and .3 respectively.

2. Rows 4-6 in Table 4.2: Multivariate Laplace coefficients.

All functions were generated using a basis of φ(t) = [cos(πt), sin(πt), cos(2πt), sin(2πt), 1]

and an expansion of Xk(t) =
∑5

j=1 ayjφj(t) where y denotes class membership. In

Class 0, the coefficients were drawn independently and identically from a multivari-

ate Laplace with identity covariance matrix (Σ0 = I) using the MultiRNG package

in R [54], which follows the method of [70]. In Class 1, the coefficients were drawn

independently and identically from a multivariate Laplace where diag(Σ1) = 1 and

the off-diagonal elements were all ρ > 0. Rows 4, 5, and 6 correspond to ρ = .96, .8,

and .3 respectively. The shape parameter was set to 2 and the mean was set to 1

for all Laplace draws.

The multivariate Laplace distribution can be written as

f(x|µ,Σ, γ) = c exp
(
− ((x− µ)TΣ−1(x− µ))γ/2

)
c =

γΓ(d/2)

2πd/2Γ(d/γ)
|Σ|−1/2 (4.3)

where Σ is symmetric and positive definite and µ, γ and Σ are the mean vector,

the shape parameter, and the covariance matrix.

3. Row 7 in Table 4.2: Quadratic example.

All functions were generated using a basis of φ(t) = [cos(πt), sin(πt), cos(2πt), sin(2πt)]

and an expansion of Xk(t) =
∑4

j=1 ayjφj(t). In Class 0, a01, . . . , a04
iid∼ Unif(0, 1).

In Class 1, a set of coefficients b11, . . . , b14 were drawn from a Unif(0, 31/3). The

coefficients used in the expansion a1j depend on b1j by the relationship a1j|b1j
iid∼
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Unif(0, b21j). This was done to generate coefficients that fall under the curve pre-

sented in Fig. 4.1.

4. Row 8 in Table 4.2: Added basis.

In Class 0, functions were generated using a basis of φ(t) = [cos(πt), sin(πt), cos(3πt),

sin(3πt), cos(4πt), sin(4πt), 1] and an expansion of Xk(t) =
∑7

j=1 ayjφj(t). The co-

efficients ayj are drawn to be multivariate uniform with covariance matrix Σ0 which

has diagonal elements of [8, 4, 4, 2, 2, 1, 1] and off-diagonal elements of ρ = 0.5, sim-

ilar to a setting presented in [71]. In Class 1, functions were generated using the

same basis as listed above with the addition of sin2(πt) added to the basis vec-

tor. The first seven coefficients are multivariate uniform with the same covariance

matrix Σ0. The last function in the basis had coefficient a18 ∼ Unif(0, 1).

These simulations show the importance of modeling the dependence using the DAB

classifier. In the multivariate uniform settings, we see that the DAB model does best

when the coefficients are highly correlated; that improvement declines when ρ decreases

to 0.3. In the Laplace settings, the copulas generally do best when ρ = 0.96 but the

separation between the classifiers declines as ρ decreases. Taken together, these results

indicate that a t or Gaussian copula can model the dependence when that dependence

is strong and the distribution is bell-shaped. However, if the copula does not match the

distribution of the coefficients in shape, the DAB may perform better, especially when

the coefficients in one of the classes are highly correlated.

The last two rows of Table 4.2 highlight the flexibility of fitting a GLM to the log-

density ratios. We show that fitting a GLM using the quadratic terms of the log density

ratios can improve classification when one class of the functional data are generated

with coefficients that exhibit strong nonlinear dependence. Additionally, we present an

interesting case where DAB and its variants strongly outperform both copulas and the
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Naive Bayes classifier, merely by adding an extra basis to the coefficient expansion. Thus,

the DAB fits have the ability to model differences in the two classes which a copula cannot

capture and a Naive Bayes model ignores.

Figure 4.1: Distribution of the coefficients of Class 1 in Row 7 of Table 4.2.

68



D
A
B

for
F
u
n
ction

al
D
ata

C
h
ap
ter

4

Table 4.1: Simulation results from Gaussian cases. Misclassification rates are reported in percent error and accompanied by standard
deviation. The new methods here are fDAB, the DAB classifier applied to functional data, and the variants that follow it as described
in the text. We use the ratio of kernel density estimates to estimate the density ratio in these simulations. Rates within .05 of the
smallest misclassification rate are highlighted in green.
When the functional data follow sample paths of Gaussian processes and Σ0 = Σ1, naive Bayes gives the lowest misclassification error.
When Σ0 6= Σ1, the t and Gaussian copulas give the lowest misclassification error since they model the dependence explicitly.

t Copula G Copula Naive Bayes fDAB L1 L2 Quadratic Interaction
µ1 6= µ0,Σ1 = Σ0 13.85 (1.66) 13.83 (1.67) 13.74 (1.77) 13.88 (1.74) 13.80 (1.71) 13.82 (1.71) 14.22 (1.84) 14.44 (1.83)
µ1 = µ0,Σ1 6= Σ0 13.71 (1.72) 13.66 (1.72) 14.28 (1.73) 14.18 (1.73) 14.59 (1.77) 14.61 (1.79) 14.97 (1.92) 16.62 (2.43)

Table 4.2: Simulation results from non-Gaussian distributions. Misclassification rates are reported in percent error and accompanied
by standard deviation. The new methods here are fDAB, the DAB classifier applied to functional data, and the variants that follow it
as described in the text. We use the ratio of kernel density estimates to estimate the density ratio in these simulations. Rates within
.05 of the smallest misclassification rate are highlighted in green.
In these examples, fDAB performs best in a variety of scenarios: when the data are uniform and ρ is high, in a few Laplace settings,
and in the added basis setting. fDAB appears to be more flexible than the t and Gaussian copulas when the functional data are not
Gaussian. The Quadratic model also performs well in two settings.

t Copula G Copula Naive Bayes fDAB L1 L2 Quadratic Interaction
Unif: .96 3.5 (0.94) 3.5 (0.93) 3.27 (0.9) 2.78 (0.84) 2.98 (0.97) 2.94 (0.92) 6.84 (2.47) 10.04 (3.02)
Unif: .8 15.59 (1.91) 15.59 (1.89) 15.41 (1.97) 14.58 (1.98) 15.12 (1.98) 15.05 (1.94) 14.46 (1.93) 15.3 (1.97)
Unif : .3 39.58 (3.02) 39.67 (3.02) 39.06 (2.92) 39.14 (2.77) 39.48 (2.84) 39.39 (2.86) 39.42 (2.89) 39.51 (2.82)
Laplace: .96 0.71 (0.44) 0.71 (0.44) 0.74 (0.46) 1.31 (0.73) 1.07 (0.57) 1.05 (0.56) 3.85 (2.09) 3.1 (1.81)
Laplace: .8 8.7 (1.37) 8.73 (1.35) 8.54 (1.29) 8.44 (1.4) 8.61 (1.42) 8.6 (1.46) 8.9 (1.35) 10.57 (1.85)
Laplace: .3 39.5 (2.64) 39.48 (2.66) 39.04 (2.6) 39.09 (2.63) 39.62 (2.76) 39.55 (2.71) 39.15 (2.48) 39.61 (2.63)
Quadratic 19.96 (2.18) 19.66 (2.1) 19.02 (2.19) 18.78 (2) 19.36 (2.12) 19.38 (2.18) 18.2 (1.98) 19.17 (2.15)
Added Basis 14.97 (2.02) 15.04 (1.77) 12.08 (1.37) 7.1 (1.54) 7.66 (1.64) 7.68 (1.65) 8.77 (2.59) 15.07 (2.4)
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4.3 Real data examples

We present empirical classification results obtained on four real data examples. No

smoothing was applied to any of the datasets since all datasets appear smooth when

plotted. To evaluate the performance, we used N = 200 repetitions of 10-fold cross-

validation on each dataset. Each data example was run using both the PCA basis and

the PLS basis, as done in [16] and [10].

The first example that we use consists of wine spectra data. This dataset contains

124 samples of wine spectra measured on 256 points, with n1 = 78 with alcohol content

greater than 12 and n0 = 46 with alcohol content less than 12. These data were provided

online by Professor Marc Meurens of the Université Catholique de Louvain.

The second included dataset is the DTI dataset from the refund package in R [72].

The MRI/DTI data in the refund package were collected at Johns Hopkins University

and the Kennedy-Krieger Institute. This dataset includes 142 subjects with fractional

anisotropy measurements taken at 93 points on the corpus callosum. The outcome vari-

able in this case is a diagnosis of multiple sclerosis (MS), since MS can create lesions in

white matter tracts that decrease fractional anisotropy. As done in [16], we selected the

first visits of all patients and used only the 141 cases without any missing values. There

were n1 = 42 healthy patients and n0 = 99 unhealthy patients.

The third example consists of the phoneme data from the fds package in R [73]. This

dataset contains five separate phonemes based on digitized speech. As done in [10], we

try to classify the two sounds “aa” and “ao.” There are 400 functions in each class and

each function contains 150 measurements.

The fourth dataset describes particulate matter (PM) emissions from heavy trucks.

This dataset was used in [74], extracted from [75], and provided by Wentian Huang and

David Ruppert [16]. As done in [16], we dichotomize log PM and classify the n1 = 41
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cases with log PM above average as high and the n0 = 67 cases with log PM below

average as low. Each function contains 91 measurements.

In each repetition, we first performed 10-fold cross-validation for every option of the

number of components, J, to be used on the whole dataset. For wine and DTI, the

maximum J was set to 10; for the truck and phoneme datasets, the maximum J was set

to 30. The higher limit was used since [16] and [10] note that the differences in these

datasets occur in very large expansions of the functional principal component scores.

Preliminary examinations of the other datasets indicated that J was not needed beyond

10. All predicted probabilities were thresholded at 0.5.

Once the number of components were selected, 10-fold cross-validation was repeated

on the whole dataset using a new split of the data and the selected number of compo-

nents. We report the average misclassification rates along with their associated standard

deviations in percent error.

As seen in the tables below, the DAB classifier performs best on the wine data using

the PCA basis. All variants of DAB besides the interaction model outperform the Naive

Bayes or copula models on the phoneme data using the PCA basis. The copula and

Naive Bayes models perform best on the DTI and truck data, respectively.

The PLS basis tells a different story. Interestingly, the Naive Bayes implementation

on the PLS basis outperforms all other methods on the wine data. The DAB variants

generally do better than the copula and Bayes methods on the DTI data, with the

quadratic model doing best. The Gaussian and t-copulas exhibit the best performance

on the phoneme data, though all methods are substantially improved over the PCA basis

on this dataset. Last, the copulas outperform all other methods on the truck dataset,

validating the results in [16].
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Figure 4.2: Plots of the four functional datasets. Thick lines denote the class average.
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Table 4.3: Empirical results using PCA basis and spline density ratio estimation reported as average percent error (standard deviation).
The L2 and Quadratic variants do best on the Wine and DTI datasets, while the Gaussian copula and naive Bayes do best on the
Truck and Phoneme datasets.

t Copula Gaussian Copula Naive Bayes fDAB L1 L2 Quadratic Interaction
Wine 9.5 (1.62) 8.83 (1.6) 8.77 (1.55) 8.04 (1.55) 7.33 (1.34) 7.15 (1.31) 8.71 (1.45) 8.8 (1.42)
DTI 25.08 (2.07) 25.44 (2.04) 27.06 (1.79) 22.67 (1.85) 23.11 (1.77) 23.17 (1.87) 22.54 (1.76) 23.09 (1.91)

Truck 29.94 (2.84) 29.7 (2.86) 30.28 (3.47) 31.31 (3.59) 31.44 (3.05) 31.18 (3.1) 34.22 (4.25) 35.18 (3.74)
Phoneme 21.09 (0.47) 21.09 (0.45) 19.64 (0.63) 20.61 (0.87) 20.25 (0.74) 20.22 (0.71) 21.2 (0.88) 22.92 (0.6)

Table 4.4: Empirical results using PLS basis and spline density ratio estimation reported as average percent error (standard deviation).
The Quadratic model and DAB variants outperform naive Bayes and the copulas on the DTI datasets, but naive Bayes and the
Gaussian copula have the lowest misclassification rates on the Wine, Truck, and Phoneme datasets. Switching to the PLS basis
improves misclassification results substantially for the copulas and naive Bayes on the Wine, Truck, and Phoneme datasets.

t Copula Gaussian Copula Naive Bayes fDAB L1 L2 Quadratic Interaction
Wine 7.18 (1.5) 6.75 (1.42) 6.12 (1.2) 7.63 (1.78) 6.9 (1.18) 6.84 (1.21) 6.77 (1.56) 6.6 (1.2)
DTI 27.54 (2.31) 27.67 (2.15) 27.47 (1.64) 22.96 (1.31) 23.62 (1.67) 23.55 (1.74) 22.27 (1.14) 23.21 (1.38)

Truck 25.59 (3.12) 25.44 (3.25) 29.77 (4.1) 28.15 (3.59) 29.63 (3.22) 29.55 (3.41) 28.82 (3.95) 25.56 (3.53)
Phoneme 18 (0.49) 17.96 (0.49) 17.69 (0.47) 18.32 (0.56) 17.83 (0.43) 17.78 (0.42) 18.21 (0.56) 18.1 (0.52)
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Table 4.5: Empirical results using PCA basis and ratio of KDE estimates reported as average percent error (standard deviation).
Rates within .05 of the smallest misclassification rate are highlighted in green.
The L1 and L2 models do best on the Phoneme dataset. The Gaussian copula and fDAB do about equally well on the wine dataset,
but the Gaussian copula has less variance in its misclassification rate. The Gaussian copula does best here on the DTI data and naive
Bayes does best on the Truck data.

t Copula Gaussian Copula Naive Bayes fDAB L1 L2 Quadratic Interaction
Wine 8.29 (1.3) 7.46 (1.09) 8.66 (1.41) 7.47 (1.57) 8.15 (1.48) 8.34 (1.44) 8.68 (1.86) 8.27 (1.48)
DTI 23.11 (2.01) 22.88 (2.01) 25.2 (1.61) 23.48 (1.9) 23.6 (1.97) 23.55 (1.9) 23.17 (1.62) 23.37 (1.88)

Truck 30.77 (2.65) 30.9 (2.67) 30.37 (3.13) 31.35 (3.52) 31.07 (3.17) 31.13 (3) 33.85 (3.65) 35.72 (4.29)
Phoneme 21.21 (0.42) 21.24 (0.48) 21.05 (0.71) 20.64 (0.84) 20.25 (0.77) 20.25 (0.76) 21.1 (0.88) 22.9 (0.72)

Table 4.6: Empirical results using PLS basis and ratio of KDE estimates reported as average percent error (standard deviation).
The naive Bayes model does best here on the Wine data. The Quadratic model and variants of fDAB do better on the DTI data
than naive Bayes or the copulas. Switching to the PLS basis improves misclassification results substantially for the copulas and naive
Bayes on the Truck and Phoneme datasets.

t Copula Gaussian Copula Naive Bayes fDAB L1 L2 Quadratic Interaction
Wine 8.23 (1.65) 7.41 (1.48) 6.3 (1.52) 7.88 (2.62) 7.93 (1.7) 8.01 (1.64) 17.51 (3.54) 7.45 (2.06)
DTI 25.32 (1.92) 24.82 (2.06) 24.13 (1.73) 22.33 (1.47) 22.4 (1.62) 22.36 (1.54) 22.23 (1.41) 22.53 (1.57)

Truck 23.43 (2.72) 23.35 (2.61) 26.67 (3.14) 26.91 (3.69) 27.35 (3.39) 27.64 (3.43) 27.94 (3.48) 24.05 (3.23)
Phoneme 18.46 (0.55) 18.42 (0.52) 18.52 (0.5) 19.32 (0.52) 18.64 (0.5) 18.63 (0.5) 19.36 (0.6) 18.98 (0.55)
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Chapter 5

Discussion

In this work, we have demonstrated a new method for log density ratio estimation us-

ing splines in Chapter 2. Although we only estimate univariate log density ratios, the

methodology can be applied in more general cases. For example, if k ≤ p features in a

dataset are known to be independent of the others, one may estimate their joint density

as a component of the full joint density of all variables, simplifying overall computation.

We show in Section 2.3 that the spline method consistently outperforms the standard log

ratio of kernel density estimates in a variety of simulation settings.

The spline methodology of estimating the log density ratio also demonstrates advan-

tages compared to kernel density estimation in the classification methods of Chapters

3 and 4, where the marginal log density ratios are treated as features. In Chapter 3,

we show that there are situations where the multivariate DAB classifier can recover the

optimal Bayes solution in a Gaussian setting by taking linear or quadratic combinations

of marginal log density ratios. These theoretical results are confirmed by simulation

analyses done in Section 3.3, where we show that DAB outperforms a variety of other

methods, including using GLMs on the actual data. In Section 3.4, we show that DAB

can outperform naive Bayes and logistic regression as the size of the training samples
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increase. We offer a qualitative explanation of where multivariate DAB can outperform

a standard logistic regression, explaining that DAB can better account for correlations

between the features when there are differences in correlations within each class.

Chapter 4 extends the DAB model to functional data through the functional dependence-

adjusted naive Bayes classifier, or fDAB. In fDAB, the features are once again marginal

log density ratios, but these are marginal log density ratios of functional projection scores.

We compare fDAB’s performance versus both the functional naive Bayes classifier, as de-

veloped by [3], and the naive Bayes classifier augmented by a copula, as derived by [16] in

simulation and real data settings. In simulation settings, DAB cannot match the perfor-

mance of naive Bayes or the copula models when the data are sample paths of Gaussian

processes. A possible explanation for this is that the chosen basis, which is formed by

performing some variant of functional PCA on the observations, often has the effect of

removing or at least weakening correlations amongst the projection scores. However,

fDAB can provide lower misclassification results when the data are non-Gaussian and

when there are significant dependencies among the coefficients used to generate the data.

In the real data setting, we compare fDAB to naive Bayes and the copula methods

using both functional PCA and PLS bases on four datasets. These comparisons also

compare kernel density estimates for estimating the log density ratio with spline esti-

mates. Across these four settings, DAB performs consistently well on the DTI data and

occasionally presents the lowest misclassification rate on the wine data. The truck and

phoneme datasets exhibit their lowest misclassification results using the PLS basis ex-

pansion and the Gaussian copula, possibly indicating that these datasets resemble paths

of Gaussian processes more so than the wine and DTI datasets.

In general, DAB can be useful in both multivariate and functional data settings.

In the context of multivariate data, the performance improvements come through its

ability to more closely approach the optimal Bayes classifier through estimating the log
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of the marginal density ratios. By treating these marginal log density ratios as features,

DAB can account for dependencies in the dataset more explicitly than naive Bayes and

standard logistic regression. In particular, a logistic regression with only main effects

terms assumes that, in the Gaussian setting, the two classes share the same covariance

and differ only in terms of the mean. DAB does not make this assumption and can

perform better than logistic regression by adjusting for these dependencies. In terms of

functional data, DAB similarly can model the dependencies between features. There are

cases where Gaussian or t copulas outperform DAB, since the functional data resemble

sample paths of Gaussian processes; however, when the dependence is non-Gaussian,

DAB can provide lower misclassification rates.

5.1 Future work

There are several avenues of future research to pursue. In the multivariate setting,

DAB can be extended to the case of discrete covariates or used in the presence of cat-

egorical covariates. It would also be interesting to compare DAB’s performance in the

multivariate real data setting when the model includes higher order terms. We showed in

Section 3.2 that adding higher order terms can recover the optimal Bayes classifier in cer-

tain Gaussian simulation settings, but we did not add higher order terms in multivariate

real data settings. Comparing DAB to logistic regression in this setting could deter-

mine whether DAB can outperform logistic regression empirically even in the presence

of higher order terms.

Additionally, more theoretical analysis of DAB’s performance relative to logistic re-

gression and naive Bayes would be worthwhile. Ng and Jordan [2] show that logistic

regression’s asymptotic misclassification rate is lower than naive Bayes’s asymptotic mis-

classification rate since they form a generative/discriminative pair. In Section 3.4, we

77



show that DAB can outperform logistic regression on some datasets but on other datasets

it appears to mirror logistic regression’s performance. We qualitatively attribute this to

differences in the correlation structures in the two classes, but a more formal argument

could determine specifically when DAB can be expected to outperform logistic regression.

One could also extend DAB in the functional data setting to be used in the context

of multivariate functions. Creating interaction terms in this setting would be particu-

larly useful, as one can learn how two functional components vary together relative to a

response variable. Additionally, one could use DAB in a setting where a dataset includes

both functional and multivariate data. These hybrid settings are an interesting use case

for DAB since it is flexible and can accommodate different types of covariates.

Last, it would be interesting to understand how sensitive DAB’s performance is based

on the method of density ratio estimation. In Section 3.3, we find that the spline method

of density ratio estimation generally outperforms the ratio of kernel density estimates

with the exception of the multivariate uniform case. Understanding DAB’s sensitivity

to the method of density ratio estimation could help one decide when to use DAB and

which method of density ratio estimation would best suit a given dataset.
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