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ABSTRACT OF THE DISSERTATION

Exploring Semantic Concept Co-Occurrences for Image Based Applications

by

Linan Feng

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2014
Dr. Bir Bhanu, Chairperson

Describing visual image contents by semantic concepts is an effective and
straightforward way to facilitate various high level applications. Inferring semantic
concepts from low-level pictorial feature analysis is challenging due to the semantic
gap problem, while manually labeling concepts is unwise because of a large number
of images in both online and offline collections. In this paper, we present a novel ap-
proach to automatically generate intermediate image descriptors by exploiting concept
co-occurrence patterns in the pre-labeled training set that renders it possible to depict
complex scene images semantically. Our work is motivated by the fact that multi-
ple concepts that frequently co-occur across images form patterns which could provide
contextual cues for individual concept inference. We discover the co-occurrence pat-
terns as hierarchical communities by graph modularity maximization in a network with
nodes and edges representing concepts and co-occurrence relationships separately. A
random walk process working on the inferred concept probabilities with the discovered
co-occurrence patterns is applied to acquire the refined high level image semantic repre-
sentation. Through experiments in applications including automatic image annotation,

semantic image retrieval, moth species identification and multi-pedestrian tracking on

vi



several challenging datasets, we demonstrate the effectiveness of the proposed concept
co-occurrence patterns as well as the proposed image semantic representation in com-

parison with state-of-the-art approaches.
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Chapter 1

Introduction

Representing images by semantic concepts instead of visual features remains
a challenging problem. Generating semantic descriptors manually is not feasible due
to the ever-growing number of image collections. Current machine intelligence and
statistical learning techniques for inferring semantic concepts from low-level features
struggle in bridging the semantic gap [104]. However, many image-based applications
such as retrieval, annotation, recommendation, indexing and ranking, require an effective
semantic representation of images. There is a growing need in automatically inferring
concepts from visual properties by learning the correspondence from loosely labeled
data.

Semantic concepts cover not only objects that are used in many recognition
tasks but also topics at the semantic levels beyond single objects. These higher semantic
level could be a scene (e.g., beach), an event (e.g., commencement), and a piece of
knowledge (e.g., how to drive a car). A simple form of contextual information is the
co-occurrence frequencies of groups of concepts that appear across images with similar

scenes. Visual co-occurrence can be quite important in providing semantic cues in



inferring concepts compared to other conceptual and perceptual models [160] such as the
WordNet distance [136] which is built upon semantic similarity. It has been shown [62]
that co-occurrence of concepts could consolidate the appearance of each concept in an
image. For example, if “horse” and “windmill” forms a co-occurrence pattern, then
the probability of occurrence of “horse” could be reinforced by a strong confidence of
“windmill” inference, while the occurrence of “zebra” could be rejected because it has
a weak co-occurrence with “windmill”. Discovering co-occurrence patterns of semantic
concepts is an essential step to encode contextual information into the individual concept
inference.

In Chapter 3, we propose a novel approach to discover the co-occurrence pat-
terns in a network structure where the nodes represent semantic concepts and edges
represent co-occurrences. The significance of the co-occurrence relationship between
two concepts is denoted by the edge weight. A common property that has been dis-
covered in many networks is the community structure property, which is the partition
of network nodes into groups (communities) with highly inter-connected nodes (more
edges with higher weights), and nodes belonging to different groups being sparsely con-
nected (fewer edges with lower weights). Inspired by the theories in network analysis,
we discover the concept co-occurrence patterns by identifying communities in a network.
We adopt modularity optimization [118] based approach to uncover hierarchical commu-
nity structure which naturally reflects the co-occurrence patterns at different closeness
levels. The idea of hierarchical community structure and co-occurrence patterns is illus-
trated in Figure 1.1. To our knowledge, our work is the first attempt to explore concept
co-occurrences from the network analysis point of view.

In Chapter 3, we also introduce a novel random walk based approach to uti-

lize the discovered co-occurrence patterns to generate “concept signature”, a new image
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Figure 1.1: An illustration of (a) a network of nodes representing the semantic con-
cepts and the edges representing the co-occurrence relations, and (b) the discovered
corresponding hierarchical community structure from the network that shows concept
co-occurrence patterns at different levels.

representation using high-level semantic concepts to assist in image annotation and re-
trieval. The hypothesis here is that the probability scores of uncertain semantic concepts
in the concept signature that are generated from the inference model can be promoted
or weakened based on the reliably inferred members in a co-occurrence pattern. We
demonstrate that our concept signature representation can be very useful in annotation
and retrieval of complex scene images. Experimental results in image annotation and
retrieval application scenarios on popular benchmark datasets show clear gains from co-
occurrence patterns as compared to other baseline approaches with/without exploiting
concept correlations.

Manually collecting, identifying, archiving and retrieving specimen images is
an expensive and time-consuming work for entomologists. There is a clear need to
introduce fast computer systems integrated with modern image processing and analysis
algorithms to accelerate the process. In Chapter 4, we describe the development of
an automated moth species identification and retrieval system (SPIR) using computer
vision and pattern recognition techniques. The core of the system is a probabilistic model

that infers Semantically Related Visual (SRV) attributes from low-level visual features



of moth images in the training set, where moth wings are segmented into information-
rich patches from which the local features are extracted, and the SRV attributes are
provided by human experts as ground-truth. For the large amount of unlabeled testing
images in the database or added into the database later on, an automated identification
process is evoked to translate the detected salient regions of low-level visual features on
the moth wings into meaningful semantic SRV attributes. We further propose a novel
network analysis based approach to explore and utilize the co-occurrence patterns of
SRV attributes as contextual cues to improve individual attribute detection accuracy.
The effectiveness of the proposed approach is evaluated in automated moth identification
and attribute-based image retrieval. In addition, a novel image descriptor called SRV
attribute signature is introduced to record the visual and semantic properties of an image
and is used to compare image similarity. Experiments are performed on an existing
entomology database to illustrate the capabilities of our proposed system. We observed
that the system performance is improved by the SRV attribute representation and their
co-occurrence patterns.

Additionally, we apply the idea of co-occurrence pattern detection in a very
interesting application which is known as group-based multi-pedestrian tracking using
single camera. The details are discussed in Chapter 5. Consider a video clip record-
ing a number of pedestrians walking in an outdoor (indoor) environment such as a
square (hall). Imagine an algorithm that is able to analyze the video and answer the
questions like: Are these people evacuating from an emergent situation? Are they gath-
ering for a special event? By just looking at each individual it could be very hard to
train the computers to understand these high-level concepts from the low-level visual
representations. In Chapter 5, we introduce a new model for analyzing social behaviors

among pedestrians: rather than treating each person in isolation, we analyze their social



grouping behaviors so as to reinforce the recognition of movements of each individual in
a group. Our approach is inspired by recent achievements in computer vision and pat-
tern recognition where the correlations of semantic or geometrical concepts are utilized
as extra contextual information for recognizing objects in complex scenes [57]. In our
work, pedestrian detection and interactions are enforced by taking the advantage of con-
textual information that comes from within-group positional, velocity and directional
distance consistences. This provides our approach the robustness to pedestrian walking
behavior analysis from dynamic cluttered background, occlusions among pedestrians,
illumination and viewpoint changes, or the variations of backgrounds caused by mobile
cameras such as smart-phones.

Each chapter in this dissertation stands alone as a complete description of
each aforementioned method and application. Before we dive into details of individual

methods, related work is presented in Chapter 2.



Chapter 2

Related Work

In the following, we review those approaches that are most relevant to our
research along five directions: (i) Models that investigate concept correlations as con-
textual information for image based applications, (ii) Image semantic descriptors, (iii)
Network analysis approaches for detecting communities (co-occurrence patterns), (iv)
Automated insect identification and image retrieval systems and (v) crowd scene anal-

ysis and multi-people tracking.

2.1 Semantic Concept Co-occurrence Models

The approaches based on co-occurrence models for concept inference in complex
scene images have gained an increasing popularity [38, 79, 158]. In [62, 136], pairwise
concept co-occurrence has been integrated into the concept categorization framework by
using a co-occurrence matrix. These approaches have several advantages over standard
concept inference techniques, for example, incorporating semantic context compensates
the ambiguity of concept visual appearance. However, the matrix of the co-occurrence

has an inevitable pairwise constraint on the relationship.



Several recent works explore multi-concept learning/detection techniques for
automated image annotation that aim to model the co-occurrence information among
concepts/annotations. A simple way is to rank the related concepts based on their
co-occurrence relations in the training set and use the ranked relations to refine the
annotation results. The idea is similar to collaborative filtering (CF) [70] used by the
recommender systems [47]. CF has been introduced in image retrieval [163] to collect
the relevance feedback co-occurrences. One of the challenges for CF is the data spar-
sity problem where the image-concept matrix used for collaborative filtering could be
extremely large and sparse in a large image dataset. Matrix-factorization (MF) [103]
has been found to be accurate and scalable to address the sparsity problem in CF. By
introducing the non-negative constraint into the MF process (NNMF), Zhou et al. [198]
proposed a CF method for concept correlation estimation, and Liu et al. [101] presented
a framework for semi-supervised multi-label learning using NNMF. Li et al. [98] pro-
posed a multi-correlation probabilistic matrix factorization model to seamlessly estimate
the image-concept, image-image and concept-concept correlations simultaneously. De-
sai et al. [34] examine spatial co-occurrence statistics and incorporate it as contextual
relations. Our approach in this paper is significantly different from the above works in
discovering the co-occurrence patterns of concepts of any size by detecting the patterns
as social communities in a network structure.

To learn more reliable contextual relationships among the semantic concepts,
multi-task learning [48] has been introduced for hierarchical image annotation which
requires the incorporation of concept ontology. Fan et al. [49] constructed the concept
ontology using semantic and visual similarity of concepts, in an attempt to explore the
inter-concept correlations and to organize the image concepts in a hierarchy. Multi-task

learning is adopted to overcome the problem of intra-concept visual variations. Bourdev



et al. [50] presented a hierarchical concept learning framework by incorporating concept
ontology and multi-task learning to enhance the image classification performance with
a large concept vocabulary. Our approach not only avoids the pairwise constraint, but
also, more interestingly, it relies more on the contextual relationships (co-occurrences)
rather than the perceptual relationships (concept ontology) that are used in the multi-
task learning frameworks [48, 49, 50].

Another problem in existing approaches is that one concept cannot be shared
among co-occurrence groups. For example, the method proposed in [27] attempts to
discover the co-occurrence between objects by learning a tree structure using Chow-Liu
algorithm based on pairwise mutual information. But in their tree structure a concept
at the root can only have relationships with the children in its subtree, and cannot have
any relationship with the nodes in its siblings’ subtrees. Also the same concept cannot
be duplicated and shared between subtrees. For instance in their tree structure, sky only
has a connection with mountain but not with tree and road which may not be true in
many cases. In contrast, our proposed approach addresses the overlapping of concepts
explicitly.

One of the drawbacks in existing work [136, 160] is the dataset limitation. To
find the co-occurrence relationships between objects, these papers do not use strongly
labeled data. Instead, they rely on outside sources such as Google Sets, WordNet
and Word Association. However, these sources usually do not consider the visual co-
occurrence, namely, they are purely based on text or semantic meaning similarity. For
example, Google Sets leverage the word co-occurrence on web pages without considering
the actual observations in images. WordNet is purely based on the semantic meaning
similarity to determine the distance between concepts. It does not reflect the actual

co-occurrence property in images. However, in our work, we use the datasets for which



the labels are given only when the corresponding concept are observed in an image.
Many algorithms for detecting concept correlations used graph models which is
close to our idea. Probabilistic graph models that focus on batch-mode concept detection
are proposed in [178]. Correlation of concept co-occurrence and relative spatial locations
in images are captured by a tree model in [27]. Besides the positive correlations, they

also modeled the negative relationships in the tree structure.

2.2 Image Semantic Descriptors

Many papers in computer vision adopt semantic representations for multimedia
understanding and scene analysis, and for applications such as semantic based image
annotation and retrieval [41, 148, 186]. Berg et al. [165] automatically generate natural
language sentences from gist features at different image sizes. Since their final goal is
to generate sentence description for an image, the image descriptor is only used in an
intermediate procedure and it is still based on visual features which will have a gap
between the semantic meaning of images. Unlike these descriptors, our image signature
representation focuses on mid-level semantic concepts that are not too general (e.g.,
forest, desert) and not too specific (e.g., palm tree, NIKE shoes) and addresses the
semantic gap problem explicitly.

Farhadi et al. [3] generate semantic descriptions for images in the form of
sentence annotations. Instead of predicting sentence from an image directly, they provide
an intermediate step to compute the meaningful triplet (object, action and scene). They
name the set of triplets as meaning space. The idea of finding the most matched triplet
from the meaning space for an image is similar to our concept of finding co-occurrence

patterns from the network structure. However, the meaning space is used only as an



intermediate step for predicting the sentences, it is not used as a semantic descriptor for
comparing image similarity as in our work.

Attribute representation has become a trend in image classification [95, 14]
and visual recognition [53, 91] due to its intuitive way in interpreting images and cross-
category generalization [51]. Unlike visual words, semantic attributes are sharable dis-
criminative visual properties that are machine-detectable and human nameable (e.g.,
“square” as a shape property, “silk” as a texture property, “has wing” as a sub-component
property, and “can fly” as a functional property). One advantage of semantic attributes
is that they naturally bridge the gap between low-level visual features and high-level
concepts. In other words, semantic attributes can be used to answer not only “how”
two images are similar in a human interpretable way [173], but also “why” an image is
identified to belong to a specific category [126]. Attributes are also used frequently in
multimedia retrieval as an intermediate semantic description [42]. As compared to the
attribute-based representations, our concept signature is generated from the inference
models combined with a refinement process that utilizes the co-occurrence information
of the concepts.

The most similar image descriptor to our concept signature is the Object Bank
representation [98]. However, there are several differences. First, the Object Bank rep-
resentation is computed on grids over an entire image but the grids usually do not fully
match the object geometry. Instead, we compute concept signature for each segmented
salient region and the signatures are concatenated to form the final image descriptor.
Second, each object in the bank is selected based on the occurrence frequency across dif-
ferent datasets. However, we do not consider cross-dataset concept occurrence because
an indoor concept may not have frequent occurrences in an outdoor dataset. Third,

object bank is used to address the scene classification and object recognition tasks while
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our concept signature is used for image annotation and semantic image retrieval.

2.3 Finding Communities in Networks

Network structure has drawn great attention in analyzing social relationships
between people. Network structures are proposed in [36, 188] as interaction graph where
individuals are indicated by the nodes and the edges between them are weighted by their
relatedness in either social or visual sense. A different type of network is presented in [23]
with edges express the probability of individuals belonging to a group.

A very common property in many realistic complex networks such as social
networks and biological networks is known as the community structure [69, 122], i.e.,
the nodes in the network naturally divide into groups with denser connections inside
each group and looser connections among groups. In our tracklet interaction network,
the nodes and edges represent pedestrian tracklets and their social grouping behavior,
respectively, and the social groups can be viewed as the communities in the network.

Traditional algorithms for detecting groups of nodes in a network can be cate-
gorized into partition based methods [59], hierarchical clustering algorithms which can
be further classified into agglomerative (e.g., [12]) and divisive (e.g., [116]) algorithms,
spectral algorithms [113], modularity-based methods [118], and dynamic algorithms [77].
In most of the work [12, 59, 118] the edges are unweighted in the problem domains, thus,
additional computing is required, e.g., in [46] the edge weight is defined by the number
of non-independent paths between nodes which can be computed using polynomial-time
“max-flow” algorithms, and in [69] it is defined by Freeman’s edge betweenness central-
ity. However, in our network the edge weights are computed directly from the distance

metric defined on the spatio-temporal relations between tracklets. As a single node
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(tracklet of pedestrian) can be present in multiple groups simultaneously (the uncer-
tainty of social groups, for example, a tracklet has equal distances to the other two
tracklets), this results in the overlapping of groups, or the sharing of nodes between
groups. There are techniques devoted to solve this problem in recent network analysis
research [123, 194].

Nodes and edge weights can change over time when the video sequence pro-
ceeds. The emergence of new groups as well as the growth, split, merge, and death of
old groups can occur over time. As compared to the other algorithms, modularity based
approaches have been demonstrated to be the most effective in finding good partitions
in an efficient manner in large networks, and they can address weighting, overlapping
and evolving problems in a network [68], therefore, we adopt modularity-based approach

in our work to find the social groups from tracklet interaction networks.

2.4 Automated Insect Identification/Retrieval Systems

Insect species identification recently has received great attention due to the
urgent need for systems that can help in biodiversity monitoring [130], agriculture and
border control [6, 93], as well as conservation and other related research [154]. Likewise,
identifying species is also the prerequisite to conducting more advanced biological re-
search such as species evolution and developmental studies. However, the vast number
of insect species and specimen images is a challenge for manual insect identification.
The request for automated computer systems is only likely to grow in the future.

Several attempts have been made in the last two decades to design species iden-
tification systems from any type of available data. There have been sophisticated ap-

plications to solve problems in classifying orchard insects [176], recognizing the species-
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specific patterns on insect wings [60] and identification of insect morphologies on fossil
images [81], etc. It has been recognized that these computer-aided systems can overcome
the manual processing time and errors caused by human subjectiveness.

Besides the above mentioned systems, there are more well-known systems: the
SPecies IDentification Automated (SPIDA) system [39], the Digital Automated Identi-
fication SYstem (DAISY) [121], the Automated Bee Identification System (ABIS) [144]
and DrawWing [157], a program for describing insect wings in a digital way. The first
two systems use machine learning techniques such as neural network as the core of the
classifier, while DAISY is not only used for moth identification as the main purpose but
also used for any type of species identification in general, such as fish, pollen and plants.
On the other hand, SPIDA is designed for recognizing 121 spider species in Australia.
The system keeps refining its learning accuracy by using user uploaded labeled images
as more training data. ABIS uses a similar idea as us on finding attribute patterns from
bee’s wings to recognize their species. It utilizes the SVM-based discriminative classifier
and the average performance reaches 95% in accuracy.

One common property of these systems is that they all rely on images taken
from carefully positioned target under consistent lighting conditions which reduces the
difficulty of the task to some extent. One interesting aspect of automated species iden-
tification is that the data are not limited to images. For example, the paper proposed
by Ganchev et al. [63] describes the acoustic monitoring of singing insects that ap-
plies sound recognition technologies into the insect identification task. Meulemeester et
al. [110] report on the recognition of bumble bee species based on statistic analysis of
the chemical scent extracted from the cephalic secretions. A challenging competition
on multimedia life species identification [84] was recently held on identifying plant, bird

and fish species using image, audio and video data separately.
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The development of these systems made great efforts in incorporating machine
learning techniques like principal component analysis (PCA), linear discriminant analy-
sis (LDA), artificial neural networks (ANNs), support vector machine (SVM) and many
other techniques.

With the increase of insect images, there is a growing tendency in the field of
entomology by using image retrieval systems to help archive, organize and find images
in an efficient manner. Content-based image retrieval [151] has been well studied and
developed for many years in the image retrieval domain. It looks at the contents of the
image itself and extracts certain pictorial features used to compare the image similarity
automatically. Great efforts have been made using content-based image retrieval tech-
nique to find the relevant images to a query based on the visual similarity, the prototype
systems for retrieving Lepidoptera images include “butterfly family retrieval” [168], a
web-based system “Butterfly Ecology” [169] and a part based system [11]. Most of these
systems focus on extracting low-level features such as color, shape and texture as the
image representation that allows the systems to compare images based on these features.

These systems are attractive but still present a number of problems. For ex-
ample, a powerful function of CBIR is the ability to integrate user interaction where
retrieval precision is adjusted according to user provided relevance feedback (RF) in-
formation. However, none of the existing systems has adopted the RF scheme into the
retrieval framework. Also, a common limitation of the available systems is they only

cope with a comparatively small number of species or categories in the dataset.
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2.5 Multi-Pedestrian Tracking with Social Groups

In Chapter 5, we apply our concept co-occurrence pattern detection model in a
very special application senario which is known as multi-pedestrian tracking with social
groups. People tend to form groups when they walk. If we consider indivisuals as nodes
and their social relations during walk as edges, we can actually represent pedestrians in a
network and the social groups among people can be viewed as the co-occurrence patterns
in the network structure. We propose to understand the social grouping behavior based
on current computer vision techniques for pedestrian detection, multi-people tracking
and data association to concatenate short tracks into longer reliable trajectories passing
through the scene. State-of-the-art multi-people tracking approaches can be catego-
rized into two classes based on the time sensitivity: real-time tracking and time-delayed
tracking. In real-time tracking, the detection responses and the correspondences among
them are usually jointly estimated and updated for each frame by using the information
acquired from previous frame. Techniques such as particle filter are often adopted [8, 16]
to estimate the intermediate states. Many approaches in this category focus on tracking
each target separately [170] and they tend to fail when encountered with challenging
situations involving from inter-people and scene occlusions, illumination or appearance
variations and abrupt motion changes. However, there are also approaches such as [8]
that jointly track individuals and groups and demonstrate that individual tracking can
be improved by group tracking and viceversa.

For the approaches in time-delayed tracking category, multiple targets are
tracked simultaneously [4, 153]. The detection responses produced by pedestrian de-
tectors are formed into tracklets and the final tracks are obtained by associating the

tracklets at different granularities [78]. The association of tracklets is addressed by
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global optimization solutions such as K-shortest path [9], Hungarian algorithm [78],
CRF [180] and cost-flow network [193]. The occlusions are modeled as merging and
splitting of tracklets and solved by using Markov Chain Monte Carlo (MCMC) [187].
Most of these approaches generally do not use high-level semantics such as social groups
to improve data-association for tracking.

Discovering the interactions among pedestrians to improve tracking in crowded
scenes has become a new trend of research in the literature. Solmaz et al. [152] intro-
duced an approach that identifies individual/group behaviors without any object detec-
tion, tracking or training steps. Pelligrini et al. [129] proposed a dynamic model for
tracking people in complex scenes that exploit the social interactions such as attraction
and repulsion. According to recent research by Moussa et al. [114], 70% of people in
a crowd walk in groups. The grouping property of pedestrians is explicitly analyzed in
the computer vision field in [65]. Specifically, groups are used as contextual knowledge
for trajectory prediction and refinement [128, 179].

With the increasing need for surveillance systems monitoring and detecting
activities of interests in mass events with their continuing growth in size and frequency,
the study of social grouping behavior of pedestrians by using computer vision techniques
has become a popular research area [22, 88, 129, 109, 172, 191]. When people walk,
they naturally form groups with smaller distances to the members in the same group
and larger distances to the people outside the group [114]. An interesting discovery by
MacPhail shows that 89% of people attend events in groups and 94% of them leave with
the people they come with [107].

Members in the same group often share same walking behaviorals, known as
the collective behavior of pedestrians [17], such as change of direction and speed, way of

avoiding obstacle, etc., that describes the distinctive and dramatic features of group tra-
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jectories and of individual trajectories within groups. In turn, groups can be determined
based on the individual spatial location, cardinality and velocity [67]. Recent research
efforts [28, 29, 196] have suggested that social groups that exhibit collective behaviors
can be used to improve the understanding of social events in video sequences involv-
ing interactions among groups, especially in the cases where the cameras have elevated
viewports and monitor crowded environments in which pedestrians are still discernible
while partial body occlusions happen frequently. In the context of role understanding of
social groups in video sequences, many approaches [25, 36, 37, 55, 137, 189] have been
proposed that combine sociological analysis and computer vision techniques to detect
and recognize the behaviors of social groups by using key frames extracted from a video.

There is recent evidence that more efficient algorithms can be developed based
on the recognition of high-level social groups detected in a hierarchical structure [142,
195]. The social grouping behavior of people shopping together is captured and evaluated
by analyzing the inter-body distances [75]. The velocity similarity has been applied
in [135, 179] to group people together for motion prediction and tracking. Ge et al. [64]
identify small groups of pedestrians based on pre-detected trajectories, however, unlike
our approach, they model the social grouping behavior in a pairwise manner, and they
overlook the dynamic structural changes of the social groups (merge, split, appear,

disappear, etc. [175]).
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Chapter 3

Semantic Concept Co-occurrence
Patterns for Image Annotation

and Retrieval

3.1 Introduction

Semantic concept inference addresses the problem of deriving concepts from
multimedia visual content. It is an essential ingredient for many applications, such as
automated image annotation and concept-based image retrieval. The concepts cover a
variety of topics, such as a single object (e.g., table), a scene (e.g., beach), an event (e.g.,
commencement), and a piece of knowledge (e.g., drive car). The difficulty of detecting
these concepts varies as the semantic complexities are different.

Approaches for detecting semantic concepts attempt to address the fundamen-
tal issue of bridging the semantic gap [104]. Recent research has demonstrated the

effectiveness of using semantic correlation instead of visual correlation as a contextual
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cue to narrow the semantic gap in the multi-concept inference task. For example, in-
dividual concept detector can be confused by the concepts having very similar visual
properties, e.g., “ocean” and “sky”. The explicit knowledge from contextual informa-
tion, e.g., “sky” and “airplane” have a stronger correlation than “ocean” and “airplane”,
can actually help reduce or even remove the uncertainty in the inference results.

In general there are five types of correlations between semantic concepts: (i)
Synonymy, (ii) Similarity, (iii) Meronymy (v) Inclusion and (iv) Co-occurrence. The
first four types measure the relationship between the semantic meanings of the concepts,
while co-occurrence measures the concurrent frequency of concepts.

Compared to other four types of correlation that have been widely used in the
concept inference literature, co-occurrence can be more important in the inference of
complex scenes because multiple concepts are cocurrently presented. For example, the
uncovered patterns of co-occurrences can be used to help distinguish visually similar
objects based on the context, e.g., horse could be reinforced by the pre-discovered co-
occurrence pattern (horse, windmill), and zebra could be weakened because it has no
co-occurrence relationship with windmill. The underling idea is that concepts that are
observed together across many images are likely to have the co-occurrence relationship
and constitutes a co-occurrence pattern. For example, if a group of traffic light, street,
car is observed in many images, we consider it as a co-occurrence pattern, and the
inference of each individual concept can be improved if we have the knowledge of the
co-occurrence patterns in advance.

The problem is how can we discover the co-occurrence patterns that realize
the underlying groud-truth in maximum accuracy and efficiency. Considering the large
number of semantic concepts in the real world and their intricate co-occurrence rela-

tionships, it would be natural to represent them in a network with nodes indicating
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the concepts and edges standing for the interactions between nodes. The edges can be
naturally associated with weights to denote the significances of the co-occurrences. A
common property that has been discovered in many networks is the community struc-
ture property, which is the partition of network nodes into groups (communities) with
highly inter-connected nodes (more edges with larger weights), with nodes belonging to
different groups being sparsely connected (less edges with smaller weights). Inspired by
the theories in network analysis, discovering the concept co-occurrence patterns, which
are the groups of concepts that co-occur frequently, can be solved by identifying the
communities, which are sets of closely connected nodes in the network representation.

We qualitatively define the communities of concepts in the network as groups of
nodes (concepts) that have tight internal connections (co-occurrences) and loose external
connections (co-occurrences) to the other groups. Therefore, a hierarchical community
structure can naturally reflect the co-occurrence patterns at different semantic levels.
We illustrate the idea of hierarchical community structure and co-occurrence pattern in
Figure 1.1.

Graph partition algorithms provide an effective alternative for analyzing the
communities. We adopt modularity optimization [118] in our framework to uncover
the communities. The final goal is to utilize the detected hierachical co-occurrence
patterns (communities)to boost the accuracy of individual concept inference in different
applications such as automatic image annotation and concept-based image retrieval.
We demonstrate the effectiveness of our approach on a wide variety of concepts in real
images obtained from popular benchmark datasets. Experimental results in the proposed
application scenarios show clear gains from co-occurrence patterns comparing to other
baseline approaches with/without exploiting concept correlations.

Figure 3.1 shows the system diagram of the proposed approach.
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Figure 3.1: The flowchart of the proposed concept inference framework. The contribu-
tions are: (i) a co-occurrence pattern detection method that effectively explores hierar-
chical correlations among semantic concepts, (ii) random walk based approach to refine
the concept signature representation based on detected concept co-occurrence patterns.

3.1.1 Contributions of This Chapter

In constrast with state-of-the-art approaches, we summarize the fundamental

contributions of this chapter below:

1. We devised an original approach to discover the hierarchical co-occurrence pat-
terns of concepts as underlying community structures in a concept co-occurrence
network. This is the first work as we know that attempts to explore the co-
occurrences from the network analysis point of view. The co-occurrence patterns
or communities capture the concept concurrent property and provide more in-
formation for individual concept detection. Accordingly, we propose method to
utilize the detected patterns to improve individual concept detection, infer and
boost more difficult concepts that usually have large visual variations from easy

ones in complex scenes.

2. We introduce a simple image content descriptor referred to as concept signature

generated from the concept detection responses. Neither like traditional visual
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descriptors that are purely based on low-level pictorial features, nor like textual
descriptors such as labels, captions, keywords that contain only the high-level
semantic information, the proposed descriptor can record the semantic concept
with its corresponding confidence value inferred from low-level features. Based
on the concept signature, we can annotate images with the concepts that exceed
certain confidence threshold. We can also estimate the semantic distance between

two images under a given metric.

To leverage the contextual information, we only deal with the images with
multiple concepts. In order to acquire a reliable individual concept detector, the training
images are labeled at the object level, i.e., the concepts are given with the minimum
bounding rectangles (MBRs), and the visual features are extracted regionally. In the
semantic sense, a pool of concepts is collected from the training set as the vocabulary
to construct the co-occurrence network (described in Section 3.2.1.1) for concept co-
occurrence pattern detection (Section 3.2.1.2).

The semantic concepts are used to build probabilistic models for inferring
the correspondence between a semantic concept and the relevant visual features (Sec-
tion 3.2.2). We use both generative and discriminative models, for comparison, as
individual concept detectors to discover the semantic concepts in the test images.

Concept signature is introduced as visual and semantic description of images
with its elements obtained from the individual concept inference results (described in
Section 3.2.3). With the help of the uncovered concept co-occurrence patterns, the con-
cept signature is further refined to approach the ground-truth labels through a random
walk process. The effectiveness of the proposed framework is evaluated experimentally

in Section 3.3 for automatic image annotation and concept-based image retrieval appli-
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cations. Table 3.1 summarizes the definition of symbols used in Section 3.2.

3.2 Technical Details

3.2.1 Construction of Co-occurrence Network and Pattern Detection

3.2.1.1 Co-occurrence Network Construction

In this section, we discuss the representation of various co-occurrence relation-
ships among different semantic concepts. As the number of concepts is large and the
relationship among them tend to be complex, we model them by a network structure.
In this paper, we name such a network of concepts as Concept Co-occurrence Network
(CCN). Let G = (V,w) represent a network structure, where each edge e € F is as-
signed with a positive weight w(e) corresponding to its importance in the network. Let
® = {c1, ¢, ..., } be the concept vocabulary in the training image set, where m is the
total number of unique concepts annotated to the images that the system is attempting
to detect. Let T' = {t1, ta, ..., t,} denote the training image set with size n. The CCN is
constructed by associating each concept ¢; with a node v; in GG. Concepts with textual
and visual appearances in the same media resource are likely to have co-occurred and
should be linked together by an edge in E.

The edge weight is determined by three types of co-occurrence measure, namely,
global semantic co-occurrence measures, global visual co-occurrence measure and local
visual co-occurrence measure. First, We evaluate the global semantic co-occurrence by
the normalized Google distance [30] (NGD). NGD is proposed to compute the pairwise
conceptual distance by counting the number of web pages containing the query concept
returned by Google search engine. NGD is intrinsically a co-occurrence measure that

explores the co-occurrence of words from on-line textual documents assuming a global
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Table 3.1: Definition of symbols used in Section 3.1

Symbols Definitions

G(V,w) The constructed concept co-occurrence network with V and FE representing the node and edge sets
separately, and w denoting the edge weight.

Vg The i*" element in the node set V.

o The vocabulary of semantic concepts in this work.

m The number of semantic concepts in vocabulary ®.

c; The it element in the concept vocabulary ®.

T, t; The training image set and the it" clement.

n The number of images in the training set.

Amxm The adjacency matrix used to record the edge weights in G, A(c;,cj) denotes the weight of the edge
connecting concepts ¢; and c;.

Hpyxn The association matrix, h;; = 1 if concept c¢; appears in image tj in the training set and 0 otherwise.

G(c) The number of pages containing concept ¢ reported by Google search engine.

G(eq, c2) The number of pages containing concepts c¢; and cg.

Q The number of pages indexed by Google.

F(c) The number of images containing concept ¢ in Flickr.

F(cy, c2) The number of images containing both concepts ¢; and cg in Flickr.

N4 The number of images indexed by Flickr.

Tik Equals 1 if concept ¢; appears in training image tj, 0 otherwise.

n1, M2, N3 The weights set to evaluate the importance of each co-occurrence measure, Z?:l n; = 1.

C The community detected in the network structure.

Q¢ The modularity measure of community C.

AQ The modularity gain acquired when the community structure changes.

k; The summation of edge weights attached to node v; in the network.

ki,c The summation of edge weights where the edges are connecting node ¢ to the nodes in community C.

T The half of the summation of all the edge weights.

5 The delta function used in computing the modularity.

Yin The summation of edge weights inside community C.

Sout The summation of edge weights that link to the nodes outside community C.

Ac The visual variation of semantic concept c.

R, |Re|, 'ri Training region set containing concept ¢, the size of the set and the it element.

Rg, |Re|, TJE Negative training region set of ¢, the size of the negative set and the jth element.

fRre The mean of the feature vectors of the regions in Re.

fré The feature vector of it" region TZ in Re.

frj The feature vector of jth’ region 'r%‘in Rez.

c
zZ The dimension of the above feature vectors.
x2 The Chi-square distance between two feature vectors.

The function that generates the prototype vector.

g The prototype vector generated from a region.

w The weight vector in the SVM objective function.

b The bias vector in the SVM objective function.

e1, e The constants for controlling the relative influence of the two competing terms in the SVM function.

h The hinge loss function in the SVM objective function.

CS The concept signature descriptor.

Se; The confidence score of concept ¢; in the signature.
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Table 3.2: The summarization of the usage and motivation for adopted co-occurrence
measures.

Co-occurrence Measure Usage & Motivation

Normalized Google Distance (NGD) Captures the global semantic co-occurrences. The number of semantic concept co-
occurrences in a local dataset is far below than what is generated by the massive
web users. For example, there are 434 million concepts/annotations found from web
images [35]. NGD can actually reflect the confidence that two semantic concepts can

co-occur among online textual resources.

Normalized Tag Distance (NTD) Captures the global visual co-occurrences. NGD assumes concept relationships only
depend on semantic co-occurrences in the text field which cannot guarantee the ex-
istence of these co-occurrences from the visual perspective (i.e., the presence in the
images). NTD treats the tags that are associated with the images as the general se-
mantic concepts used in NGD and calculates the co-occurrence in the same way as

NGD. It strengthens the visual co-occurrences between concepts.

Automatic Local Analysis (ALA) Captures the local visual co-occurrences. NGD and NTD utilize the global informa-
tion that is out of the scope of a local dataset. However, global co-occurrences may

not exactly match the local co-occurrence in an image collection. Therefore, ALA is

introduced to strengthen the local visual co-occurrences.

meaning of words. Second, for global visual co-occurrence measure, we adopt Flickr
based normalized tag distance [100] (NTD) measure. NTD treats the tag list associated
with each image in a role similar to the web page in NGD and it calculates the conceptual
distance in the same way. Since tag lists indicate visual co-occurrences of concepts in
social media resources, it is very intuitive to use NTD to reflect the global frequency of
concept co-occurrences. Finally, we apply automatic local analysis [7] (ALA) to identify
local visual co-occurrence of concepts in a particular image dataset denoted as the
training set in order to capture the local co-occurrence property in the specified image
collection. The motivations and the usefulness of the three measures are summarized in
Table 3.2.

The motivation for using the three co-occurrence measures is that they can
complement one other. NGD uses the entire World-Wide-Web as the dataset which is
known to be the largest on earth. The contextual information is given by billions of in-

dependent persons of knowledge, thus, it can overcome the limitation in the scope of the

25



Algorithm 1: CCN construction

Input: Training image set T" with n images, a vocabulary ® with m individual concepts

Output: Constructed concept co-occurrence network G = (V,w)
1 Initialize a m X m concept adjacency matrix A for recording edge weights with every element
set to 0.;

2 Measure the global semantic co-occurrence between each pair of concepts {c;, ¢;}, i € 1,...,m,

maz{logG(ci), logG(c;)}—logG(cqi, cj) .

j # i by normalized Google distance [30]: NGD(c;,cj) = Tog—min{logG(c,), Togllc;)}

3 Measure the global visual co-occurrence by normalized Tag distance [100]:

maz{logF(c;), logF(Cj)}flogF(ci, C]‘) .
log¥—min{logF(c;), logF(c;)} ’

NTD(ci,cj) = exp

4 Measure the local visual co-occurrence by automatic local analysis [7):

A~ Xt eT Tik XTjk
T Xty er Tk XTik 24 e T XTjk =24, T Tik XTjk]

ALA(ci, ¢j) = exp(—A), where

5 Combine the three measures into the final co-occurrence significance and assign the value to
element A(c;, ¢j);

6 A(ci,cj) =m1-NGD(ci,c5) +m2 - NTD(ci,c5) +n3 - ALA(cs, ¢;). In our setting we put equal
importance on the three measurements, so n; = %;

7 Traverse all the elements in A, add ¢; as node, connect two nodes ¢;, ¢; with edge weight

according to the value of A;;;

concepts represented in image datasets. However, NGD does not involve any visual in-
formation in the distance calculation, and co-occurred concepts in the textual documents
may have zero probability to appear in the real life images (e.g., concepts from science-
fiction novels). Therefore, visual co-occurrences are analyzed to decrease the ambiguities
arisen from texts. Global visual co-occurrences from community-contributed web image
collections, e.g., Flickr, are represented by the rich tags as metadata. However, it cannot
accommodate the changes to the training dataset. i.e., images and concepts that are
added or removed from the original dataset. Local visual co-occurrence can contribute
to dynamic dataset, thus, it is reasonable to be considered. The steps for constructing

the CCN are described in Algorithm 1.
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3.2.1.2 Co-occurrence Pattern Detection

Finding the co-occurrence patterns of the interconnected nodes corresponds to
uncovering community structures from the randomness of the network topology which is
close to graph clustering or partitioning problem. However the problem is computation-
ally intractable. Recently modularity has been used as a criterion for determining the
effectiveness of the detected communities, and at the same time it can serve as an objec-
tive function to maximize. In this paper we adopt modularity optimization paradigm to
address the problem and propose a method based on Newman-Girvan modularity [118]
optimization. The modularity measures the quality of a partition by comparing the
link density of nodes inside a community with the links to the outside nodes. Usually
high values of modularity suggests good partitions. In the case of weighted network, we

define the modularity of community C' as:

1 kik;
Qo = o5 D _[Aij — < 10(IDi, 1D;) (3.1)

2V

Typically modularity score is in the range of [—1, 1], and in practice a value greater than
0.3 indicates a significant community. The modularity is calculated over all the pairs
of nodes in the network, where I D; and ID; are their community IDs, 6(ID;,I1D;) =1
it ID; = ID; for two nodes v; and v;, otherwise = 0. We consider iteratively merging
the nodes into a hierarchical community structure with different levels of resolution by
maximizing the modularity gain at each iteration. The modularity gain of moving an

outside node v; into a community C' is evaluated by:

AQ:[Ezn“sz,C 7(Zout+ki)2}7
2r 2r (3.2)
Zin Zout 2 kz‘ 2
Sp — ()"~ GG

Please see Table 3.1 for the definitions of symbols. Algorithm 2 is given for
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detecting the hierarchical concept co-occurrence patterns (communities) in a network.
The runtime of the algorithm for co-occurrence pattern detection is O(|V|(|E| + |V]))
where |E| is the number of edges and |V| is the number of nodes in the network. The
algorithm iteratively generates a hierarchical community structure with different reso-
lutions, in other words, the communities of individual concepts, and the communities of
communities. To point out, our algorithm addresses the share of nodes problem between

communities explicitly.

3.2.2 Concept Occurrence Inference Models

We integrate the detected concept co-occurrence patterns for individual con-
cept inference. We use probabilistic inference models to build the correspondence be-
tween concepts and regional visual features from training data. The outputs of the
model running on testing images are vectors of concepts with corresponding probabili-
ties scores of the occurrence. We name this vector representation as concept signature
which captures both the semantic and visual information about images.

Individual concept inference is the baseline and key factor to the overall per-
formance although we demonstrate later that it can be improved by utilizing the co-
occurrence patterns. In order to compare the effect of the baselines, we implement two
individual concept inference models based on generative and discriminative training.

The generative model is built by jointly estimating the probability of visual
and semantic representations. Suppose 7T is the training set of annotated images and R is
the set of corresponding segmented regions, and let r be an element of R. We specify the
process of feature vector generation and vector quantization as an integrated function
G, with ¢ = G(r) € R’. Each image t in T can be represented as a set of regions

ry = {ry,re,...,m7n} along with the corresponding concept from the set {ci,co,...cp}.
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Algorithm 2: Concept co-occurrence pattern detection

Input: Co-occurrence network built from Algorithm 1
Output: Hierarchical concept co-occurrence patterns

while Positive Modularity Gain can be achieved do

1
2 Partitioning phase;
3 foreach c; in the vocabulary(i =1,...,N) do
4 Assign Node n; represents ¢; in the network;
5 Label n; with community tag Cj;
6 Each node will have an unique community tag after above step;
7 while Positive Modularity Gain can be achieved do
8 foreach n; in the network do
9 Remove n; from its original community Cj;
10 foreach neighboring community Cj of n; do
11 Add n; to Cy;
12 Calculate modularity gain AQ (eq.(2)) after changing the community structure;
13 if AQ > 0 then
14 Let Cp,1q and Cpew denote the original community and new community of node
ng;
15 Compute modularity scores Qcold and QC,, 0, PY €a.(1);
16 if Qo,,, >= 0.3 and Q¢,,,,, >= 0.3 then
17 n,; is shared by both communities;
18 Split n; into n; and n;,
19 Add n; into C,;gq and add n; into Cnew;
20 Copy the edges of n; that are incident to other nodes for ”,w
21 else if Q¢ ,, < 0.3 and Qc,,,,, >= 0.3 then
22 L Change the community tag of n; from Cy;q to Crew;
23 else
24 L n; stays in the original community;
25 else
26 L n; stays in the original community;
27 Coarsening phase: generates the hierarchical structure;
28 Replace the nodes in the same community detected from the above steps as a single node;
29 Replace the edges between the nodes in two adjacent communities by a single edge with summed edge
weights;
30 Represent edges in the same community as a self-looped edge with weight equal to the sum of the
internal edge weights;
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Given an image region r, firstly, we model the probability of obtaining concept ¢ by
sampling from a multinomial distribution Pa4(c|r) that will split probability mass among
multiple concepts. Subscript M represents the multinomial distribution. Secondly, we
model the relation between a region r in the training set and a possible prototype vector
g as a distribution Pg(r|g). Finally, when given a region r from the unknown set, we
model the probability of getting a prototype vector g by sampling from a distribution
Pg(g|r). For an unknown region r; from a test image, the probability of observing ¢; is

given by the joint probability:

P(ricj) = Y {P(Tt)-PM(ij)

TtGRch

{ S Priritan. Potarir }}

gt

(33)

We assume that the training set is sufficient to cover all possible instances of
the region-concept pair in the test set. The larger the size of the training set, the more
correct knowledge about the generative model that we can obtain.

The discriminative model is created by an ensemble of instance-SVMs for
each concept where the idea is similar to [105]. For each concept, the positive instances
are the regions containing that concept and the rest are negatives. We first train a
separate linear SVM classifier for each positive instance of a given concept with the
negatives. For each positive instance with feature fr}; of concept ¢, and the negative set
Rz with instance feature frg, the weight vector w are learned by optimizing the convex
objective:

B(w, fri,b) = |[w][? +erh(w foi +b) +e2 ) h(—w'f; —b) (34)
- C

where h represents the hinge loss function h(xz) = (0,1 — ) which permits
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hard-negative mining to find the small subset of dominating negative support vectors
from Rz. For a test region, the instance-SVM classifiers of a concept are first applied.
The outputs from individual classifiers are fused by weighted averaging to generate the
final concept score. The weight w attached to each single classifier is determined by

adaptive linear neural network (ALNN) in a validation process.

3.2.3 Concept Signature and its Refinement

We propose concept signature as image descriptor. Concept signature is a
vector in which each entry contains a tuple of concept and its occurring probability from
the inference model. Compared to other image descriptors, concept signature: 1) records
both the visual and semantic information of an image, thus, image can be compared and
retrieved based on high-level semantic concept similarity, which we denote as concept-
based image retrieval in this paper. 2) has a very simple form, therefore, it can lower the
memory cost for storing large image collections and decrease the computational costs.
3) can keep all the concept occurrence probabilities which can be revised later on when
individual concept inference accuracy is improved.

We refine the original scores in the concept signature in a re-ranking man-
ner formulated as a random walk process over the contextual co-occurrence patterns.
Suppose the hierarchy has L levels, we set the lowest level that contains the semantic
concepts as level-1 and the highest level as level-L. Assume initially concept ¢; has oc-
curring score s, given by the inference model, and let lowest(c;, ¢j) denote the function
to compute the level of the lowest superordinate (common ancestor) between ¢; and c;.

In the k™" updating iteration, the score s, is refined by the random walk process:

l t(ci, c;
k=a} Sg]fl.wm_a).sgl (3.5)
cj#e;
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We set « to 0.5 which means the effects from its own score and the scores from
neighboring concepts are treated equally. The scores are updated recursively until all
the scores converge. Eq. 3.5 can strengthen the scores of concepts in more closely related
patterns and weaken the more isolated ones. Finally, we give Algorithm 3 for generating

image concept signature and random-walk refinement:

Algorithm 3: Concept signature refinement

Input: Testing image set

Output: Refined concept signature representation for each testing image

1 foreach Image T in the testing set do

2 Detect the salient regions 71, ..., 7m by mean shift based segmentation [31];

3 foreach Salient region r; do

4 Apply the inference models defined in eq. 3.3 or eq. 3.4;

5 Compute the original regional signature CSy, = ((c1,5¢;); - (CnsSey));

6 Compute the intermediate image-level signature by C'Sp = % >, CSry;

7 Obtain the final image concept signature by random walk based refinement (eq. 3.5);

3.3 Experimental Results

3.3.1 Image Datasets and System Parameters
3.3.1.1 Image Datasets

e The LabelMe [140] dataset is a collection of 72,852 images containing more than
10,000 concepts. We use a subset which contains 10,000 images and 2,500 concepts.
The raw images have different resolutions (e.g. 2560 x 1920, 1600 x 1200, 256 x 256,
etc.). In this paper, we use the resolution of 1600 x 1200 downloaded from the website
by using the Toolbox provided by the dataset creators.

e The Scene Understanding (SUN’09) [27] dataset contains 12,000 images and more
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than 5,800 concepts covering a variety of indoor/outdoor scenes. The total number of
annotated labels is 85,456 which results in an average of seven labels per image. The
images are collected from multiple sources (Google, Flickr, Altavista, LabelMe) and are
labeled by a single annotator using the LabelMe tool. The labels are manually verified
for consistency.
e The Outdoor Scene Recognition (OSR) [120] dataset has 2,682 images with 520
concepts across eight outdoor scene categories: coast, forest, highway, inside-city, moun-
tain, open-country, street, tall-building. All the concepts are labeled with corresponding
bounding boxes manually.

The selected datasets have the following advantages compared to other datasets
(e.g., TinyImages [159], MSRC [146], Caltech-101 [94]): (i) All the datasets present com-
plex scenes containing multiple concepts in a single image which is suitable for exploring
the concept co-occurrence correlations. (ii) Compared to the general and specific terms
defined in the synonym set in WordNet (e.g., “mammal”, “tool”, “geological formation”)
and used by ImageNet (e.g., “coconut tree”, “ocean floor”, “Davy Jones”), most of the

«,

concepts are at the intermediate level of semantics (e.g., “tree”, “sea”, “people”) which
are more relevant to Folksonomy-style tags used in daily life. (iii) The datasets have
a large number of concepts that cover a great majority of object categories. (iv) The

bounding boxes for the concepts are available in standard XML format which can be

easily parsed by programs (e.g., the open source tool TinyXML used in our framework).

3.3.1.2 System Parameters

The weighting parameter w (Section 3.2.1.1) is set to 1/3 for the three measures.
The modularity threshold Q¢ (Section 3.2.1.2) is set to 0.3, and the weight parameter

a in the random walk process (Eq. 3.5) in this paper is set to 0.5. All the parameters
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are set empirically and they are kept constant for all the experiments reported in this

paper.

3.3.2 Visual Features

We extract visual features locally from the regions enclosing the concepts de-
fined by minimum bounding rectangle (MBR). For test images, the features are extracted

from the MBRs of the segmented salient regions. The features are:

e Color GIST feature [120] is computed on 4 x 4 grids over the concept bounding
box. The MBRs are resized to 32 x 32 (we do not maintain the aspect ratio) and

then the orientation histograms are calculated at 3 scales with 8, 8 and 4 bins.

e The pyramid of histogram of oriented gradients (PHOG) feature [13] is
computed by following steps: 1) extract the Canny edges in the concept bounding
box, 2) quantize the gradient orientation on the Canny edges (from 0° to 180°)
into 20 bins, 3) Four spatial pyramid levels are used (1 x 1,2 x 2,4 x 4, 8 x 8).

Each level is used in an independent kernel.

e PHOG with oriented edges [161] considers the direction (0° to 360° divided

into 40 bins) of the salient Canny edges. We use four-level spatial pyramid.

e The pyramid of Shechtman and Irani self similarity feature [145] is com-
puted at every 5 pixels and quantized into 300 clusters using k-means, and then

the histograms are calculated at three levels.

e The bag of visual words feature [161] is obtained by first computing the SIFT

descriptors [102] at the interest points detected by Hessian-Affine detector [89],
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and then quantizing them into a vocabulary of visual words with the size of 1000.

Finally, a sparse histogram is generated based on the visual words.

3.3.3 Applications and Evaluation Criteria

3.3.3.1 Application 1: Automatic image annotation

The goal is to predict concept occurrences for an image from a given concept
vocabulary. The predictions are then used to annotate the image based on the rank of the
probability scores. Most existing approaches for AIA neglect the co-occurrence patterns
among concepts and annotate the concepts individually. In our framework, the concepts
ranked as top-M in the refined concept signature based on the inferred probability scores
are used as the annotations. An alternative way with unfixed annotation length is to

use all the annotations with scores passing certain threshold.

3.3.3.2 Application 2: Concept-based image retrieval

For a given query, we compute the similarity to the database images based
on the concept signature representation using the Earth Mover’s Distance (EMD) [139]

as the distance metric. Given two concept signatures p and q, the EMD is defined

Do 25— 0i39(pisa5)

as: EMD(p, q) = ST o

, where o;; denotes the flow and it follows the
constraints of the scores in the concept signature and d(p;, ¢;) is the pre-defined ground
distance between each pair of individual concepts. In our setting, we use the reciprocal of
the edge weight in the co-occurrence network as the measure of ground distance. EMD
measures the least amount of work to completely transfer one signature into another, it

is calculated by linear programming [139].
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3.3.3.3 Evaluation criteria

e Automatic image annotation: The performance is evaluated by Top-M Fj 5
measure, Top-M F} measure and Precision measure for a given annotation length M. In
our case, we set M to 5. Fjg measure is defined as (1+3%)-(P-R/3%P+R), where P is the
averaged per-image precision and R is the averaged per-image recall. When we set 3 to
0.5, we put more emphasis on precision than recall. The reason is that the ground-truth
annotation length is usually more than the fixed length we used for most of the images.
Therefore, even we get all the annotations correct, we still cannot reach the best recall
score. Instead, we look for better performance by considering the true positives in the
total five annotations. However, to give more information on the performance, we also
provide the results evaluated by standard F; measure and Precision measure.

e Image retrieval: The performance is evaluated by the ranks of the relevant images
in the returned results. We have five human assessors launched queries using each
database image and provide relevance information on the retrieved images. The degree
of relevance of a retrieved image is calculated by the total number of assessors who
submit “relevant” decision divided by five. Further statistical evaluation relies on the
standard image retrieval measure: Mean average precision of top D retrieved images over
all the images. Let D be the retrieved image set and R be the relevant ones with size
|R| i

|R|. Given a query @, the average precision is defined as AP(Q) = ﬁ it Rank(R)”

and the mean average precision (M AP) is the averaged AP over all the images.
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3.3.4 Co-occurrence Pattern Detection Results

3.3.4.1 Experiment I: Co-occurrence measure study

We apply our co-occurrence pattern detection approach on a network built from
the training set of each dataset. LabelMe contains 2,500 individual concepts, SUN’09
contains 5,800 concepts, and OSR has 520 concepts.

We demonstrate that our combined co-occurrence measure of NGD, NTD, and
ALA is more effective than each of the individual measures in co-occurrence network
construction as well as co-occurrence pattern detection in the following experiments.
First, we compare example pairwise concept co-occurrence scores computed by different
measures in Table 3.3. The scores are averaged over the three datasets and normalized to
the range [0, 1]. Generally, we find the results from NGD, NTD, ALA are more coherent
on the pairs with degrees of co-occurrences that are more consistent to human perception
(e.g., “mountain-tree”, “sky-cloud”, and “road-car”) than the less consistent ones (e.g.,
‘sand-sea‘”, “person-terrance” and “rock-hill”). However, our combined measure is able
to reach the maximum consensus among the three. For example, our combined measure
is able to leverage the information from NGD and NTD to increase the co-occurrence
score of ALA from 0.448 to 0.532 for the pair of “mountain-tree”, and is able to use local
information from ALA to improve the co-occurrence measure of NGD and NTD for the
pair of “wall-staircase”. From Table 3.4 we can observe the effectiveness of using the
combined measure in co-occurrence pattern detection evaluated by the modularity score
(Eq. 3.1). Our combined measure gives the best performance in modularity measure
from 5th level to 10th level in the hierarchy. The reason for this is that the combined
measure can leverage both the global and local co-occurrences as well as utilize both the

semantic and visual information.
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Table 3.3: Pairwise co-occurrence scores for example concept pairs by using NGD, NTD,
ALA and the combination of the three.

Pairwise Co-occurrence Scores (normalized to [0,1])

Concept Pairs | NGD NTD ALA Combined

mountain-tree 0.551 0.597 0.448 0.532
sky-cloud 0.713 0.825 0.629 0.722
road-car 0.533 0.614 0.687 0.611
street-building | 0.429 0.475 0.512 0.472
sand-sea 0.217 0.483 0.359 0.353
ground-grass 0.261 0.385 0.297 0.314
person-terrance | 0.097 0.152 0.219 0.156

door-window 0.483 0.509 0.411 0.468

rock-hill 0.202 0.317 0.384 0.301
sun-land 0.215 0.158 0.278 0.217
river-boat 0.343 0.416 0.357 0.372

sidewalk-sign 0.294 0.187 0.371 0.284
field-fence 0.482 0.359 0.411 0.417
wall-staircase 0.128 0.119 0.274 0.174

curb-streetlight | 0.213 0.319 0.307 0.280

38



Table 3.4: Averaged modularity scores (Q) from 5th to 10th level.

Modularity Scores

Datasets | NGD NTD ALA Combined

OSR 0.218 0.259 0.224 0.275

SUN09 0.152 0.170 0.143 0.212

LabelMe | 0.173 0.164 0.139 0.197

3.3.4.2 Experiment II: Impact from the hierarchy level

Figure 3.2(a) shows the change in modularity for different levels of hierarchy
in the three datasets. We observe that the maximum of modularity for LabelMe occurs
at level 6 with @ ~ 0.354, the maximum for SUN’09 occurs at level 7 with @) ~ 0.513
and the maximum for OSR occurs at level 5 with @@ ~ 0.402. This indicates that
the individual concepts in SUN’09 have significant community property than OSR and
LabelMe, and even appear at lower level of SUN’09 (from level 7 to level 12), the com-
munity property is comparatively large compared to the LabelMe and OSR datasets.
Figure 3.2(b) shows the correspondence between the number of co-occurrence patterns
and the modularity values at different levels of the hierarchical community structures.
From Figure 3.2(b) we can compute the average number of concepts in the co-occurrence
patterns by dividing the total number of concepts by the number of co-occurrence pat-
terns. LabelMe has approximately 5 concepts averaged over all the co-occurrence pat-
terns at the maximum modularity point, similarly, SUN09 has 6 concepts and OSR has
4 concepts. Note the averaged number of concepts in the co-occurrence patterns are

consistent with the averaged number of concepts contained in the training images.
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Figure 3.2: (a) Modularity vs. level of the hierarchy. (b) Modularity vs. the number of
co-occurrence patterns.

3.3.5 Automatic Image Annotation Results

3.3.5.1 Experiment I: Co-occurrence measure study

Table 3.5 presents the precisions obtained for the three datasets at different an-
notation length (Pre@l, Pre@3, Pre@5, Pre@10) by using four co-occurrence measures:
NGD, NTD, ALA, and our Combined. Pre@QN denotes the precision of annotations in
the first N words using 60% percent of the dataset for training. Overall, our combined
co-occurrence measure achieves the best performance especially when the annotation
length is larger than 1. The reason is that for more annotations more co-occurrence in-
formation can be utilized. Generally, when the length of the annotation becomes larger,
it deteriorates the annotation precision, however, using combined co-occurrence infor-
mation our proposed measure still can achieve relatively stable performance regardless
of the dataset complexity differences. Furthermore, the number of true positives ex-
ceeds 30% for our co-occurrence measure at the length of ten annotations which implies
that at least three annotations on average are correctly given by our approach. Note
that, in general, the contribution from local visual co-occurrence, which is adopted by

ALA, surpasses the contributions from global semantic co-occurrence and global visual
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co-occurrence which are adopted by NGD and NTD, respectively. This demonstrates
that each dataset has unique co-occurrence patterns which are different from the global
ones. However, by introducing the global information, we can actually consolidate the
common patterns which may lack enough samples in a local dataset and weaken the

unusual patterns.

3.3.5.2 Experiment II: Annotation performance

To demonstrate the effectiveness of our proposed framework for the image

annotation application, we evaluate the following approaches as shown in Table 3.6:

e Baseline-Gen model: Our generative implementation for individual concept
inference unified with concept signature representation served as the base model.
(The base model does not include co-occurrence pattern detection and random

walk boosting).

e Baseline-Dis model The discriminative version of the baseline-gen model. The

other setup is the same as in baseline-gen.

e CRF': The conditional random field (CRF) based image annotation approach by
Xiang et al. [178] that uses the original pairwise co-occurrences from a network
structure without hierarchical co-occurrence pattern detection. We re-implemented

it to compare it with our hierarchical pattern scheme.

e Context: The object detection and localization approach by Choi et al. [27] that
is used for image annotation. They introduced a tree-structured context model
which is comparable to our network structure and hierarchical patterns. We re-

implemented it to compare its performance with our approach.

41



Table 3.5: Precisions at different annotation lengths by using different co-occurrence
measures.

LabelMe

Co-occurrence Measure | Pre@l  Pre@Q3 Pre@5 Pre@l0

NGD 0.3393 0.2584 0.2230  0.1276

NTD 0.3752  0.2772  0.2481  0.2025

ALA 0.3806  0.2857 0.2564  0.1847

Combined 0.4628 0.4533 0.4279 0.3104
SUNO09

Co-occurrence Measure | Pre@l Pre@3 Pre@Q5 Pre@l0

NGD 0.3528  0.2693 0.2432 0.1384

NTD 0.3423  0.2537 0.2593  0.1457

ALA 0.3516  0.2714  0.2581  0.1543

Combined 0.4332 0.4233 0.4017 0.3042
OSR

Co-occurrence Measure | Pre@l  Pre@3 Pre@5 Pre@l0

NGD 0.3393 0.2584 0.2230  0.1276
NTD 0.3752 0.2772  0.2481  0.2025
ALA 0.3806  0.2857 0.2564  0.1847
Combined 0.4423 0.4323 0.4264 0.3504
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e HCP-Gen: This is our proposed framework integrating generative concept infer-
ence, co-occurrence pattern and random walk boosting. HCP refers to hierarchical

co-occurrence pattern.

e HCP-Dis: A framework with a discriminative concept inference model and ev-

erything else is the same as in HCP-Gen.

We evaluate the impact of the training set size by Top-5 Fp 5 measure averaged
over all the testing images. We split the datasets into training and testing sets with
three size configurations. For each split configuration we repeated the experiment 10
times by using each of the approaches. Table 3.6 summarizes the data splits, mean
performance and standard deviations. The tables show that the impact of training set
size is obvious and consistent across different datasets. The larger the training set, the
better performance can be achieved for all the approaches. Our approach shows clear
improvements over the other models reflected by the maximum % gain (achieved by
using HCP-Gen or HCP-Dis). Also, there is a significant performance gain when the
training data size exceeds the testing data size for all the three datasets (see the last
two columns for each dataset in Table 3.6. In general, all the approaches require at least
50% of the dataset used for training to have reasonable annotation performance. Even
the performance of our framework is deteriorated when the training data is under 40%.

Next, to analyze the scalability of our approach, we compare the results on
the three datasets with increased complexity (OSR < SUN(09 < LabelMe) evaluated by
the total number of concepts in the datasets and the number of concepts per image.
Table 3.6 shows that generally when the images are complex the performance of the
approaches drop. This is demonstrated by the Top-5 Fp5 measure. In particular, we

observe that our approach achieves better maximum performance gain when the images
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Figure 3.3: The recall rate of common concepts in the three datasets.

have higher complexities. For example, LabelMe usually has more than 10 concepts in
an image, the maximum performance gain reaches 20.59% when the training set contains
80% of the images. SUN09 contains on average 5-10 concepts per image, the maximum
performance gain is between 11.29% and 14.00%. OSR has the least number of concepts
in an image, and the maximum gain is the lowest as well which is approximately 10.00%
only. This indicates that our approach is well suited for understanding images with
complex scenes. Table 3.6 also shows that the performance increase by our approach is
less compared to other approaches when the images are relatively simple as in the OSR
dataset.

We further compare the recall rates at top-5 annotation length obtained by
CRF [178], Context [27] and our HCP-Dis approach on selected common concepts across
the three datasets. The results are given in Figure 3.3. We observe that the contextual
information from the three datasets have different effects on individual concept inference.

For example, the recall rates for most of the concepts in LabelMe are relatively lower than
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SUNO09 and OSR. The reason for this is that there are more noisy annotations, such as the
misspelling and meaningless words in LabelMe from the folksonomy-style annotations,
and these noisy annotations deteriorate the co-occurrence pattern detection performance
and have adverse impact on the individual concept refinement. OSR dataset has larger
recall rates on outdoor concepts while has smaller recall rates on other concepts. We
stack the recall rates obtained by different approaches into a single column and we
observe that Context [27] (with hierarchy) performs better than CRF [178] (without
hierarchy) while our approach always has the highest performance gain on the recall
rate. This demonstrates the effect of using hierarchical co-occurrence patterns vs. no
hierarchy. Additionally, the recall rates of CRF [178], Context [27] highly depend on the
visual consistency of the semantic concepts. For concepts have large intra-concept visual
variations (e.g., “road”, “ground”, “streetlight”, and “skycraper” in Figure 3.3), the
performance drops greatly especially for CRF which only considers the original pairwise
concept co-occurrences. On the other hand, our approach can maintain relatively stable
performance which demonstrates the effectiveness of utilizing contextual information
obtained from the detected co-occurrence patterns.

Figures 3.4(a), (b) show the performance comparison based on the Top-M Fj 5-
measure for the three datasets as a function of the annotation length M. As the num-
ber of annotations increases, we observe that the performance of baseline approaches,
CRF [178] and Context [27] drops faster than our proposed HCP approaches, which
demonstrates that our co-occurrence pattern and refinement has a boosting effect on in-
dividual concept inference. Further, our approach is more effective in using contextual
information than CRF [178] and Context [27] because we explore the correlations of con-
cepts beyond pairwise relationships. We also observe that our discriminative model and

generative provide approximately the same boost in performance compared to the other
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Figure 3.4: (a),(b) show the image annotation performance of the approaches applied
to the three datasets measured by Top-5 Fj5-measure with annotation length M = 5.

approaches. However, HCP-Dis performs better than HCP-Gen for the datasets such as
LabelMe and SUN’09 that have more complex scenes and more semantic concepts in a
single image. Therefore, we conclude that HCP-Dis has a stronger discriminative power
when the number of semantic concepts that share increasingly high visual similarity in
an image. Also HCP-Gen can better tolerate the intra-concept visual variation in simple
scenes.

Figure 3.6 shows the top-5 annotation results for some example images that are
produced by our approach. The annotations in green color are the correctly predicted
labels and red ones are mistakenly predicted. It is interesting to look at the annotations
in blue. These concepts are inferred from the detected individual concepts and co-
occurrence patterns. Although they are not exactly the same as the annotations in the
ground-truth, but they are close in the meaning for a specific scenario, e.g., “road” and
“path” in an “outdoor - street view” scenario, “people” and “pedestrian” in an “indoor
- hall” scenario. This shows that our proposed approach can effectively enrich the
annotations by considering the scene concepts implicitly contained in the co-occurrence
patterns. The refinement capacity of our approach can be seen from the annotation

results of the right image in the second row and left image in the last row where the
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Figure 3.5: The annotations for the test images from the three datasets by our approach.
They are compared with the ground-truth. Green labels are correctly predicted, red ones
are wrongly predicted and blue ones have very close semantic meaning to the ground-
truth.

ground-truth concepts “check-in-desk” and “bus” are occluded in the image and the

similar concept “table” and “car” are enriched by our proposed refinement strategy.

3.3.6 Concept-based Image Retrieval Results

3.3.6.1 Experiment I: Co-occurrence measure study

Table 3.7 gives the mean average precisions (MAP) for the datasets at four
different sizes of retrieved images (MAP@5, MAP@10, MAP@15, MAP@20) by using
four co-occurrence measures: NGD, NTD, ALA, and combined. MAP@N represents
the mean average precision of retrieved images in the size of N using 60% percent of
the dataset for training. The results in Table 3.7 show that our combined co-occurrence
measure achieves the best performance at all sizes of the retrieved images.

From Table 3.7 we can observe that the combined co-occurrence measure
achieves the best performance and the performance is stable when the size of the re-

trieved images is less than 15. Even when the size is 20, the combined co-occurrence
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Table 3.7: Mean average precision for different sizes of retrieved images by using different
co-occurrence measures.

LabelMe
Co-occurrence Measure | MAP@Q5 MAP@10 MAP@15 MAP@20
NGD 0.2564 0.2317 0.1869 0.1003
NTD 0.2616 0.2484 0.2195 0.1574
ALA 0.2543 0.2336 0.1752 0.1249
Combined 0.2825 0.2617 0.2797 0.1809
SUNO09
Co-occurrence Measure | MAPQ5 MAPQ@Q10 MAP@15 MAP@20
NGD 0.2646 0.2334 0.1954 0.1172
NTD 0.2476 0.2318 0.2094 0.1290
ALA 0.2584 0.2027 0.1853 0.1274
Combined 0.2923  0.2898 0.2517 0.1972
OSR
Co-occurrence Measure | MAP@Q5 MAP@10 MAP@15 MAP@20
NGD 0.2738 0.2418 0.1989 0.1373
NTD 0.2864 0.2529 0.2046 0.1508
ALA 0.2953 0.2591 0.2153 0.1643
Combined 0.3394 0.3004 0.2846 0.2038
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measure can still have reasonable results in all three datasets. Note that, in general,
the contributions from the three individual measures are relatively the same for all sizes
of retrieved images. But the boost in MAP values is clear when combining the three
measures. This demonstrates that the co-occurrence information from the three mea-
sures will compensate each other and it is helpful in learning more accurate concept
relationships. Note that the MAP measure is affected by two factors: the difficulty of
the dataset and the number of retrieved images. The combined measure can achieve a
better MAP compared to the individual measures for all datasets of varying difficulty

levels and retrieved image sizes.

3.3.6.2 Experiment II: Image retrieval performance

The goal is to show the effectiveness of our concept inference framework for
image retrieval task. We implement and evaluate the following approaches for compar-
ison as summarized in Table 3.8. We also vary the training set size to show its impact

on the retrieval performance.

e Baseline-1:The content-based image retrieval framework that compares the image
similarity by directly computing the Fuclidean distance between the visual feature

vectors as described in Section 4.2.

e Baseline-II: The proposed framework integrated with SVM-based individual con-
cept inference. The concept signatures are used directly without refinement by

co-occurrence patterns.

e Semi-Supervised graphical model (SSG): The approach in [186] uses a latent-
tree to find the relationship between semantic concepts. The pairwise relevance is

obtained from the graphical model directly. No hierarchical co-occurrence patterns
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[ LabelMe

SUNO09

OSR

Figure 3.6: An example of the top-10 retrieved images by our proposed approach. The
retrieved images are ranked based on their semantic distance to the query. The top row
shows the correctly retrieved images with street view and the stop sign. In the middle
row, the top retrieved images correctly match the bedroom scene represented in the
query. And in the last row, the images with a beach scene and people are placed at the
top positions.

are detected.

e Hierarchical semantic indexing (HSI): The retrieval framework proposed
in [33] uses the information from generated hierarchical semantic relationships
between concepts for comparing image similarity. However, as compared to our
work, they do not consider the co-occurrence between concepts, and their concept

distance is defined on WordNet.

e HCP-IR: Our proposed approach integrated with hierarchical co-occurrence pat-
tern detection and concept signature refinement. We implemented the discrimina-

tive model here.

We repeat the split of each of the dataset for ten times. From Table 3.8 we
can observe that the larger the training set size for all the three datasets, the larger
MAP can be achieved by all the approaches. The standard deviations are also given in
this table. Baseline-I achieves the worst performance which concludes that traditional
content-based image retrieval paradigm is not suitable for retrieving images containing

many semantic concepts with a large visual variations. SSG is only marginally better
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than our Baseline-II approach, for the reason that it only considers the pairwise relation-
ship between individual concepts and the approach is not intended to use images from
complex scenes. HSI outperforms SSG while our HCP-IR significantly outperforms both
SSG and HSI by 5.74%-20.53%. This result validates our assumption that the proposed
hierarchical concept co-occurrence patterns can boost the individual concept inference.
In particular, we can observe that when using only 40% of the dataset for training, our
method can still achieve comparatively good performance than SSG and HSI. An exam-
ple of the retrieval results by using our HCP-IR approach with 80% training data for
the three datasets is shown in Figure 3.6. We can observe that the returned images are
more semantically related to the scene concept reflected in the query images rather than
just visually related. The overall performance of all the approaches decrease when the
dataset becomes more complex. However, our approach can maintain a stable maximum
gain over SSG [186] and HSI [33].

Figures 3.7(a), (b) summarize the results for MAP at top-D retrieval results.
Our model (HCP-IR) consistently outperforms the other approaches with varying num-
ber of retrieved images on the three datasets. This shows the effects of semantic concept
correlations and the concept signature descriptor in the context of image retrieval. The
results demonstrate that all the components of our framework are essential: (1) detecting
individual semantic concepts is important for retrieving images of complex scenes (La-
belMe, SUN’09) as Baseline-II is more effective than Baseline-I (directly using low-level
features without semantic learning). (2) learning more sophisticated concept correlation
models (HSI, HCP-IR) improves performance over simple pairwise relationships (SSG).
We also note a higher precision for OSR than for the other two datasets. This is due to
a relatively small number of individual concepts present in the dataset, and therefore,

the detected co-occurrence patterns are more significant in more compact forms.
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Figure 3.7: (a), (b) show the image retrieval performance of the approaches applied to
the three datasets measured by Top-D MAP with varied number of retrieved images D.

3.4 Conclusions

This paper has made a novel contribution to the literature on context-based
co-occurrences in computer vision where co-occurrences of concepts are used as con-
textual cues for improved concept inference. It introduced a framework for individual
concept inference and refinement by exploring the concept co-occurrence patterns in
images with network community detection algorithms. The framework is evaluated for
automated image annotation and concept-based image retrieval tasks using the new
concept signature representation. The approach is tested on recent practical datasets
and compared with the state-of-the-art methods. The experimental results convincingly
show the following: (a) The importance of the hierarchy of co-occurrence patterns and
its representation as a network structure, (b) The effectiveness of the approach for build-
ing individual concept inference models and the utilization of co-occurrence patterns for
refinement of concept signature as a way to encode both visual and semantic informa-
tion. In the future we will explore the message-passing approach for concept signature

refinement and compare it with the random walk based approach.
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Chapter 4

Automated Moth Species

Identification and Retrieval

4.1 Introduction

Moths are important life forms on the planet with approximately 160 000
species discovered [21], compared to 17 500 species of butterflies [21], which share the
same insect Order with Lepidoptera. Although most commonly seen moth species have
dull wings (e.g., the Tomato Hornworm moth, see Figure 4.1(a)), there are a great
number of species that are known for their spectacular color and texture patterns on
the wings (e.g., the Giant Silkworm moth and the Sunset moth, see Fig. 1b and Fig.1c
respectively). As a consequence, much research on identifying the moth species from
the entomologist side has focused on manually analyzing the taxonomic attributes on
the wings such as color patterns, texture sizes, spot shapes, etc., in contrast with the
counterpart biological research that classifies species based on DNA differences.

As image acquisition technology advances and the cost of storage devices de-

creases, the number of specimen images in entomology is grown at an extremely rapid
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Figure 4.1: Moth wings have color and texture patterns at different levels of complexity
based on their species: (a) Tomato Hornworm, (b) Giant Silkworm and (c) Sunset.
Photo courtesy of Google Image search engine.

rate both in private database collections and over the web [18, 19, 87]. Species iden-
tification, relying on manually processing images by entomologists and highly trained
experts, is time-consuming and error-prone. The demand for more automated and ef-
ficient methods, to meet the requirements of real world species identification such as
agriculture and border control, is increasing. Given the lack of manually annotated text
descriptors to the images, and the lack of consensus on the annotations caused by the
subjectivity errors of the human experts, engines for archiving, searching and retriev-
ing insect images in the databases based on keywords and textual metadata face great
challenges in feasibility.

The progress in computer vision and pattern recognition algorithms provides
an effective alternative for identifying the insect species and many computer assisted sys-
tems that incorporate these algorithms have been invented in the past two decades [39,
60, 81, 144, 176]. In the image retrieval domain, one of the common approaches intro-
duced to complement the difficulties in text-based retrieval relies on the use of Content-
Based Image Retrieval (CBIR) systems [20, 149, 190], where sample images are used
as queries and compared with the database images based on visual content similari-
ties [11, 169] (color, texture, object shape, etc.). In both the identification and retrieval

scenarios, visual features that are extracted to represent morphological and taxonomic
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information play an important role in the final performance. Context information is
often used to help improve individual detection performance of the visual features [38].

These intelligent systems provide a number of attractive functions to entomol-
ogists, however, drawbacks have been revealed in several aspects:

e First, most systems only extract visual features that do not contain any
semantic information. However, recent research [73] shows that human users are more
expecting to access images at the semantic level. For example, users of a system are
more likely to find all the moths containing eye spots on the dorsal hind wings rather
than to find all the moth containing a dark blue region near the bottom of the image. An
intermediate layer of image semantic descriptor that can bridge the gap between user
information need and low-level visual feature is absent in most existing systems.

e Second, most systems involve no human interaction and feedback. For ex-
ample, the insect classification system introduced by L. Zhu et al. [199] works in an au-
tonomous way on feature selection and classification. The retrieval systems [11, 168, 169]
for butterfly images do no ask users to provide feedback and refine the results on the
fly. However, the need for user-in-the-loop stems from the fact that intelligent systems
are not smart enough to interpret image in the same way as humans. For example, two
different species could be identified as the same based on their visual similarity. Without
human intervention, the system will not be able to tune its parameters and correct the
mistakes.

e Third, the current systems for species identification overlook the co-occurrence
relationship among features. For example, in [85, 86, 106, 176], the co-occurrence of fea-
tures as contextual cues was not investigated to reduce or even remove the uncertainty
in species identification. Intuitively, such information is helpful to better distinguish

insect species. For example, in some species of Lepidoptera, a border “eye spot” feature
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Figure 4.2: Sample moth wings illustrate the Semantically-Related Visual (SRV) at-
tributes. (a) Four sets of SRV attributes on the dorsal fore wings: eye spot (top left),
central white band (top right), marginal cuticle (bottom left) and snowflake mosaic
(bottom right). In each set, the right image is the enlarged version of the left image.
(b) Four sets of SRV attributes on the ventral hind wings. Note it is harder to described
the images in a semantic way with simple texts compared to the images in group (a).

may often be accompanied with a central “bands” feature on the wings, while other

species may not have this combination of wing features. Such co-occurrence of features

could be very useful to improve the performance of species identification.

4.1.1 Contributions of This Chapter

In this chapter, we present a new system for automated moth identification
and retrieval based on the detection of visual attributes on the wings. The objective
of our method is to mimic human behavior on differentiating species by looking at spe-
cific visual contexts on the wings. More specifically, the notion of “context” refers to
discovering certain attribute relationships by taking into account their co-occurrence fre-
quencies. The main motivation of our system relies on the conjecture that the attribute
co-occurrence patterns encoded on different species can provide more information for
refining the image descriptors. Unlike earlier works, we attempt to address all the above

mentioned problems, and the contributions of this paper are summarized as follows:

1. We build image descriptors based on so-called Semantically Related Visual (SRV) at-

tributes, which are the striking and stable physical traits on moth wings. Compared
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to traditional visual features used in many systems, our SRV attributes have human-
designated names (e.g., blue preapical spot, white central bands, yellow eye spot,
etc.) which makes them valuable as semantic cues. Some examples of SRV attributes
are shown in Fig 4.2. The probabilistic existence of these attributes can be discov-
ered from images by trained detectors using computer vision and pattern recognition
techniques. Compared to traditional image feature representations, which is usually
a vector of numeric values denoting the significance of visual properties, such as the
curvature of a shape boundary, the color intensity of a region, etc., the SRV attribute
based image descriptor provides a semantically rich way which is much closer to the

way that humans describe and understand images.

. Our system detects and learns SRV attributes in a supervised way. The SRV-
attributes are manually labeled by human experts to a small subset of the image
database that is used for training the attribute detectors. The core of the detec-
tor is a probabilistic model that can infer SRV-attribute occurring scores from the
unlabeled testing images. We characterize individual images by stacking the proba-
bilistic scores of the present SRV attributes into a so-called SRV-attribute signature.
The species identification and retrieval tasks are performed by comparing the SRV-
attribute signature similarity. Specifically, in the image retrieval task, we incorporate
human relevance feedback scheme (often collected via user click-and-mark data) with
the goal of retrieving more relevant images in future search sessions. We also con-
sider ranking results based on constraints of multi-attribute queries and the relative

strengths to improve the effectiveness of attribute based image search.

. We explicitly explore the co-occurrence relationship of SRV attributes. The under-

lying idea is that the attributes that appear together frequently across many images
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are likely to form a certain pattern. Moths from the same species often exhibit con-
sistent patterns of SRV attributes on the wings. In this paper, we propose a novel
approach that utilizes the external knowledge from human labeling in the training
set to build a co-occurrence network of SRV attributes and further uncover the pat-
terns of these attributes and use them as contextual cues to improve the individual

attribute detection performance.

Our experimental evaluation shows that the proposed SRV attribute based im-
age representation can improve moth species identification accuracy and image retrieval
precision considering different datasets. Experimental results also demonstrate that the
proposed system can outperform state-of-the-art systems in the literature [150, 169] in
terms of effectiveness. We also evaluate other aspects of the proposed system (such as

the impact of parameters) in the experiment section.

4.2 Technical Details

4.2.1 Moth Image Dataset

The dataset used in this study is collected from an online library of moth,
butterfly and caterpillar specimen images created by Dr. Dan Janzen [80] over a long-
term and ongoing project started in 1977 in northwestern Costa Rica. The goal of the
inventory is to have records for all the 12, 5004 species in the area. As of the end of 2009,
the project had collected images of 4,500 species of moths, butterflies and caterpillars.
We use a subset of the adult moth images under the permission of Dr. Dan Janzen.
The dataset is publicly available at http://janzen.sas.upenn.edu.

The images are available for both the dorsal and ventral aspects of the moths.

Each image was resized into 600x400 pixels in resolution, and is in RGB colors. Our
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Table 4.1: Families, species and the number of samples in each species used in our work.

Sub-Families  Species Images | Sub-Families Species Images
Catolacinae  Ceroctenaamynta 101 Nystaleinae Bardaximaperses 74
Catolacinae FEudocimamaterna 85 Nystaleinae Dasylophiabasitincta 78
Catolacinae Eulepidotis folium 76 Nystaleinae Dasylophiamaxtla 98
Catolacinae  Eulepidotisrectimargo 57 Nystaleinae Nystaleacollaris 85
Catolacinae  Hemicephalisagenoria 121 Nystaleinae Tachudadiscreta 112
Catolacinae  Thysaniazenobia 79 Pyrginae Atarnessallei 101
Dioptinae Chrysoglossanorburyi 75 Pyrginae Dyscophellusphrazanor 86
Dioptinae Erbessaalbilinea 98 Pyrginae Tithraustesnoctiluces 96
Dioptinae Erbessasalvini 117 Pyrginae Entheusmatho 99
Dioptinae Nebulosaerymas 69 Pyrginae Hyalothyrusneleus 82
Dioptinae Tithrausteslambertae 87 Pyrginae NascusBurns 94
Dioptinae Polypoetesharuspex 92 Pyrginae Phocidesnigrescens 104
Dioptinae Dioptislongipennis 92 Pyrginae Quadruscontubernalis 69
Hesperiinae  Methionopsisina 122 Pyrginae Urbanusbelli 88
Hesperiinae  Neoxeniadesluda 107 Pyrginae MelanopygeBurns 76
Hesperiinae  SalianaBurns 70 Pyrginae Myscelusbelti 103
Hesperiinae  Salianafusta 97 Pyrginae Mysoriaambigua 93
Hesperiinae  TalidesBurns 70 Rifargiriinae  Dicentriarustica 78
Hesperiinae  Vettiusconka 96 Rifargiriinae  Farigiasagana 84
Hesperiinae  Aromaaroma 135 Rifargiriinae  Hapigiodessigi fredomarini 93
Hesperiinae  Carystoidesescalantei 88 Rifargiriinae  Malocampamatralis 100
Nystaleinae  Lirimirisguatemalensis 95 Rifargiriinae  MeragisaJanzen 65
Nystaleinae  Isostylazetila 99 Rifargiriinae  Naprepahoula 74
Nystaleinae  Oriciadomina 101 Rifargiriinae  Pseudodryaspistacina 83
Nystaleinae  Scoturaleucophleps 117 Rifargiriinae  Rifargiadissepta 69
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complete dataset contains 37,310 specimen images covering 1, 580 species of moth, but a
majority of the species have less than twenty samples. Because our feature and attribute
analysis are based on regions on the wings, and some specimens show typical damage
ranging from age-dependent loss of wing scales (color distortion), missing parts of wings
(incomplete image), or uninformative orientation differences in the wings or antennae,
this makes the number of qualified samples even less, and we carefully selected fifty
species across three family groups and six sub-family groups: Hesperiidae (Hesperinae,
Pyrginae), Notodontidae (Dioptinae, Nystaleinae) and Noctuidae (Catolacinae, Hete-
rocampinae [=Rifargiriinae]) from the original dataset. This new sub-collection has a
total of 4,530 specimens of good quality (see Table 4.1 for the distribution of the species
used in our work).

We show sample images of twenty representative species out of the fifty species
used in our work in Figure 4.3. The moth specimens have been photographed against
an approximate uniform (usually white or grey) background, but often with shadow
artifacts. The specimens are curated in a uniformed way with the wings horizontal and
generally with the hind margin of the forewing roughly perpendicular to the longitudinal

axis, which facilities the subsequent image processing and feature extraction steps.

4.2.2 System Architecture

The flowchart of the proposed moth identification and retrieval system is shown
in Figure 4.4. The system architecture contains five major parts: 1) information ex-
traction of moth images, 2) SRV attribute detection on moth wings, 3) co-occurrence
network construction and co-occurrence pattern detection for the SRV attributes, 4) im-
age signature building and refinement based on SRV attributes and their co-occurrence

patterns, and finally 5) applications in moth species identification and retrieval. We
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Figure 4.3: Sample images for twenty moth species selected from all the species used in
this work. We do not show all the species due to the space limit.

give the details about each part in the following sections.

The information extraction module consists of several steps including back-
ground and shadow removal, salient region detection by segmentation, SRV attribute
labeling for the training set and visual feature extraction.

In order to train the attribute detectors, we use a small subset of the image
collection as the training set. Each training image is segmented manually into regions
and the attributes labeled manually to the corresponding regions. The SRV attribute
detector is learned from extracted local visual features and the SRV attribute labels by
modeling the joint probability of occurrence. After the joint distribution is obtained,
we infer the posterior probabilities of attributes from the visual features of the testing
images without attribute labeling. The output of the detectors is a pool of the posterior

probability scores of each attributes, which is combined into the attribute signature
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Figure 4.4: The flowchart of the proposed moth species identification and retrieval
system. It consists of: 1) information extraction, 2) SRV attribute detection, 3) attribute
co-occurrence pattern detection, 4) attribute signature building and refinement, and 5)

moth identification and retrieval applications.
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representation of the images.

As the attribute detection relies on the effectiveness of the low-level features to
some extent, and in order to improve the detection accuracy by bridging the semantic
gap, we propose a novel approach to explore the contextual information of the attributes.
Specifically, the co-occurrence pattern recognition module is aimed at uncovering the
explicit co-occurrence relationship between attributes in images and utilizing it to fur-
ther improve the individual attribute detection performance. A random walk process
is integrated in this module to maximize the agreement on appearance of individual
attributes in an image with respect to co-occurrence.

Relevance feedback is a crucial strategy in image retrieval systems for retrieval
result refinement. In our system, we provide the application interface with functions like
marking the relevance decisions on the retrieved images. However, as the users of the
system may have different levels of professional knowledge, we evaluate their expertise by
requiring them to participate in a sample species identification test and authorizing them
different levels of permissions to submit feedback based on their scores. The following

sections will provide the implementation details of each part shown in Figure 4.4.

4.2.3 Feature Extraction

4.2.3.1 Background removal

It is important to partition the images into “background” and “foreground”
because the background usually contains disturbing visual information (such as shadows
created by the lighting device, bubbles and dirts on the specimen holder, etc.) that
can affect the performance of the detector. We adopted the image symmetry based

approach [155] for background and shadow removal. The moth image dataset used in this
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Figure 4.5: Steps for background and shadow removal. (a) Original image (with shadow),
(b) Detected SIFT points, (c) Detected symmetry axis, (d) background removed image,
(e) segmentation for small parts, and (f) image after shadow removal.

paper have the properties of moth wings with high reflection symmetry (Figure 4.5(a)).
Because the shadows have the most salient influence on the following processing steps,
and they are not symmetric in the images, we use symmetry as the key constraint to
remove the shadow.

The SIFT points of the image are detected (Figure 4.5(b)) and symmetric pairs
of the points are used to vote for a dominant symmetry axis (Figure 4.5(c)). Based
on the axis, a symmetry-integrated region growing segmentation scheme is applied to
remove the white background from the moth body and shadows (Figure 4.5(d)), and
the same segmentation process is run with smaller thresholds to partition the image
into shadows and small local parts of the moth body (Figure 4.5(e)). Finally, symmetry
is used again to separate the shadows from the moth body by computing a symmetry
affinity matrix. Since the shadows are always asymmetric with the axis of reflection,

their symmetry affinity will have higher values than the parts of moth body, which is

used as the criterion to remove the shadows (Figure 4.5(f)).
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4.2.3.2 SRV attribute labeling

A sub-region of the moth wing is considered an SRV attribute if: 1) it repeat-
edly appears on moth wings across many images, 2) it has salient and unique visual
properties and 2) it can be described by a set of textual words that are descriptive for
the sub-region.

We scan the moth images and manually pick a group of SRV attributes. Sim-
ilar ways have been utilized for designing “concepts” or “semantic attributes” in image
classification and object recognition tasks. For example, building nameable and dis-
criminative attributes with human-in-the-loop [44, 125]. However, compared to their
semantic attributes, our SRV attributes cannot be described with concise semantic
terms (e.g., “A region with scattered white dots on the margin of the hind wing on
the dorsal side”). Therefore, we propose to index the SRV attributes by numbers,
e.g., “attribute_1”, “attribute_2” and so forth. We also explicitly incorporate the po-
sitions of the SRV attributes into the attribute index. Each moth has two types of
wings: the forewing and the hindwing, and each type of wing has two views: the ven-
tral view and the dorsal view, the SRV attribute index is finally defined in an uni-

“at_

fied format “attribute_No./wing_type/view”, e.g., “attribute_1/forewing/dorsal”,
tribute_5/hindwing/ventral”, etc. Furthermore, as the moths are symmetrical to the
center axis, we only label one side of the moth with the index of SRV attributes.

In order to acquire reliable attribute detectors, SRV attributes are labeled by
human experts to the regions in the training images. The regions are represented by the

minimum bounding rectangles (MBRs) which are produced by using the on-line open

source image labeling tool “LabelMe” [141].
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4.2.3.3 Salient region detection by segmentation

For the test images, we use the salient region detector to extract small regions
or patches of various shapes that could potentially contain the interested SRV attributes.
A good region detector should produce patches that capture salient discriminative visual
patterns in images. In this work, we apply a hierarchical segmentation approach based
on reflection symmetry introduced in [155] to jointly segment the images and detect
salient regions.

We apply symmetry axis detection on the moth images to compute a symmetry
affinity matrix, which represents the correlation between the original image and the
symmetrically reflected image. FEach pixel has a continuous symmetry affinity value
between 0 (perfectly symmetric) and 1 (totally asymmetric), which is computed by the
Curvature of Gradient Vector Flow (CGVF) [134]. The symmetry affinity matrix of each
image is further used as the symmetry cue to improve the region-growing segmentation.
The original region-growing approach considers aggregating pixels into regions by pixel
homogeneity. In this paper, we modified the aggregation criterion to integrate the
symmetry cue. More details about the approach are explained in [155].

Comparison between Figure 4.7(a) and (b) indicates that by using symmetry,
more complete and coherent regions are partitioned. The result in Figure 4.7(b) is
obtained by using the same region growing, but without symmetry, so it has many noisy
and incomplete regions. The improvements are obtained by using the symmetry cue only.
Two more results on salient region detection by using symmetry based segmentation are

shown in Figure 4.7(c) and (d).
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Figure 4.6: Results from salient region detection. (a) symmetry based segmentation,
(b) segmentation without using symmetry. Two more results are shown in (c) and (d)
by using symmetry based segmentation.

4.2.3.4 Low-level feature extraction

We represent the above detected salient regions by the minimum bounding
rectangles (MBRs). The local features of each bounding rectangular are extracted and
pooled into numeric vector descriptors. We have three different types of features used
to describe each region: a) color-based feature, b) texture-based feature, and c¢) SIFT
keypoint-based feature.

1) HSV color feature. The color feature is insensitive to changes of size and
direction of regions. However, it suffers from the influence of illumination variations.
For the color feature extraction, the original RGB (Red-Green-Blue) color image is first
transformed into HSV (Hue-Saturation-Value) space, and only the hue and saturation
components are used to reduce the impact from lighting conditions. We then divide the

interval of each component into 36 bins, the image pixels inside the salient region are
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counted for each bin, and the histogram of the 72 bins is concatenated and normalized
into the final color feature vector.

2) Grey Level Co-occurrence Matrix (GLCM) based texture feature. Texture
feature is useful to capture the regular patterns of the spatial arrangement of pixels and
the intrinsic visual property of regions. We adopt the gray level co-occurrence matrix
(GLCM) proposed by Haralick in [74] to extract the texture features. The GLCM is a
pixel-based image processing method.

The co-occurrence matrices in GLCM are calculated based on second order
statistics as described in [71]. Each element P(i,j,d,¢) in the matrix represents the
frequency of co-occurrence of the gray levels of the pixel pair (i, j) along a specific
direction ¢ (e.g., horizontal, diagonal, vertical, etc.) at a distance d (e.g., one to six
pixels) between the pixels.

Let I(z,y) denote a two-dimensional digital image of size M x N, and suppose
the maximum grey level is G, hence i,j € [0, G], an element in the GLCM representing
the co-occurrence value of two pixels (z1,y1), (z2,y2) in the image I at angle ¢ and

distance d is expressed in the following equation:

P(i,j,d, ) = > Al(w1,m), (z2,92)] (4.1)
d,p

where A = 1, if (z1,y1) = ¢ and (x2,y2) = j, else A = 0. In the original
approach, the author [74] computed 14 statistical features from the matrix. However, the
GLCMs can be very sparse, and applying statistics looping through each of the GLCMs
can result in a very inefficient procedure given that most of the matrix entries are zero.
We use a subset of patches containing the SRV attributes with ground-truth labels.
The 14 GLCM features are extracted for each patch. We conduct a classification task

for each patch using each of features. The best features that have more discriminative
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power and lower computation time for all the patches are selected (by plotting the error
rate vs. computation time and selecting the optimum point located within a certain
radius range to the origin where the error is low and the computation time is also low).
This results in the four most effective and efficient features listed below:

e Energy (Angular Second Moment):

ASM =) ) " P(i, ) (4.2)
i g
Energy measures the image gray-level distribution and the texture uniformity.
ASM is relatively large when the distribution of P(i,j) is more concentrated on the
main diagonal.

e Entropy:

ENT = — Z Z P(i,5)logP(i, j) (4.3)

? J

Entropy measures the disorder of an image. ENT is larger when the value of
P(i,j) is more dispersed and it achieves its largest value when all the P(i, j)s are equal.

e Correlation:

_ 2255 ()P(J) — paty

040y

COR

(4.4)
Correlation measures the gray tone linear dependencies in an image. iz, fiy, 0, 0y

are the means and standard deviations of Py(i) = 3, P(i, j) and Py(j) = >, P(4, j).

e Homogeneity (Inverse Difference Moment):

IDM = Z; WP(i,j) (4.5)
Homogeneity is inversely proportional to the image contrast feature at constant en-
ergy. Smaller gray tone difference in pair elements will contribute to larger value of
homogeneity.

The above selected features are considered as the most relevant (or most ef-

71



fective) features, because they have smaller variations across different combinations of
displacement and direction parameters, while they capture the information from dif-
ferent texture patterns more effectively. We tested the features on the training image
patches and these features gave the best stability and discriminative power compared
to the reset of 10 unselected features. We set the distance between the pair of pixels at
4 scales (1, 2, 4, 8) and set the directions at 4 angles (0°, 45°, 90°, 135°). These scale
and orientation parameters were examined as the most appropriate setting by applying
Chi-square test on the optimal GLCM computed with the selected four features of the
training patches. The final GLCM texture feature vector is oh length 64 (4 feature types
x 4 direction x 4 distances).

3) SIFT (Scale Invariant Feature Transform) based keypoint feature. SIFT [102]
proposed by Lowe is a very popular feature used in computer vision and pattern anal-
ysis. SIFT feature has the advantage that it is invariant to changes in scale, rotation,
and intensity. The major issues related to extracting this feature include selecting the
keypoints and calculating the gradient histogram of pixels in a neighboring rectangular
region. In this work, we apply the Difference-of-Gaussians (DoG) operator to extract
the keypoints. For each keypoint, the 16x16 pixels in the neighboring region are used.
We divide a region into 16 4x4 subregions. For each pixel in a subregion, we calculate
the direction and magnitude of its gradient. We quantize the directions into 8 bins,
and build a histogram of gradient directions for each subregion. The magnitude of the
gradient is used to weight the contribution of a pixel. Finally, the 8-dimensional fea-
ture vectors from the eight-bin direction histogram of each subregion are combined and

weighted into a 128-dimensional vector to record local information around the keypoint.
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4.2.4 SRV Attribute Detector Learning Module

In this module, the SRV attribute detector is trained by using a generative
approach based on probability theory. To illustrate the basic idea, consider a scenario
in which an image region depicted by an N-dimensional low-level feature vector XN
is to be assigned into one of the K SRV attributes k¥ = 1,..., K in a higher level of
semantics. From probability theory we know that the best solution is to achieve the a
posterior probabilities p(k|X) for a given X and each attribute category k, and assign the
attribute with the largest probability score to the region. In the generative model, we
model the joint probability distribution p(k, X) of image region features and attributes,

and Bayes’ theorem provides an alternative to derive p(k|X) from p(k, X):

bl — P XD p(XK IR (w6

p(X) R, p(X[i)p(i)

As the sum in the denominator takes the same value for all the attribute categories, it

can be viewed as a normalization factor over all the attributes. Equation (4.6) can be

rewritten as:
p(k|X) o< p(k, X) = p(X|k)p(k) (4.7)

which means we only need to estimate the attribute prior probabilities p(k) and the like-
lihood p(X|k) separately. The generative model has the advantage that it can augment
the large amount of unlabeled data in a dataset from a small portion of the labeled data.

As defined earlier K denotes the pool of SRV attributes. Let k; be the ith
attribute in K. According to the previous section, k; is assigned to a set of image
regions Ry, = {ri,ré,...,rfmki} along with the corresponding feature vectors Xj, =
{2}, 2%, ,a:ilkl}, where n is the number of regions in an image. We assume the fea-

ture vector is sampled from some underlying multi-variate density function px(-|&;).

We use a non-parametric kernel-based density estimate [61] for the distribution px. As-
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suming region r; to be in the test image with feature vector x;, we estimate px (x¢|k;)

by using a Gaussian kernel over the feature vectors Xj,:

px(weki) = = Z copl=(w =2, 5 (e~ w)} (4.8)

nia \/2nn X

¥ is the covariance matrix of the feature vectors in Xj,.

p(k;) is estimated by using Bayes estimators with a prior beta distribution, the
probability distribution of p(k;) is given by:

ki
p(ki) LN

(4.9)

where y1 is the smoothing parameter estimated from the training set, d, , = 1 if attribute
k; occurs in the training region r and 0 otherwise. Vi, is the number of training regions
that contain attribute k; and N, is the total number of training regions.

Finally, for each test region with feature vector x;, the posterior probability of
observing attribute k; in K given x, p(k;|x;) is given by multiplying the estimates of
the two distributions:

n

ex —xt—aj'T -1 Ty — s g )
(ki) (lz p{—( i) X J)})X(,U'(Sk“ +Nk,)

n NCZ ] p+ N,

For each salient region extracted from a test image I, the occurrence probability of each

(4.10)

attribute in that region is inferred by equation (4.10). The probabilities for all attributes
are combined into a single vector which is called region SRV attribute signature. For a
test image with several salient regions, we combine the region SRV attribute signature
into a final vector by choosing the max score for each attribute. We name this vector as

the image SRV attribute signature and it is used as the semantic descriptor for images.

4.2.5 SRV Attribute Co-occurrence Pattern Detection Module

Attribute labels given by human experts as ground-truth semantic descriptions

across the entire training image set are used to learn the contextual information based
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on the attribute label co-occurrences. In this section, we devise a novel approach to dis-
cover the co-occurrence patterns of the individual attributes based on network analysis
theories. More specifically, we construct an attribute co-occurrence network to record
all the pairwise co-occurrence between attributes. The patterns are detected as the com-
munities in a network structure. A similar concept is used in social network to describe

a group of people that have tightly-established interpersonal relationships.

4.2.5.1 SRV attribute co-occurrence pattern detection

We first introduce the notion of community structure from the network per-
spective. One way to understand and analyze the correlations among individual items is
to represent them in a graphical network. The nodes in the network corresponds to the
individual items (attributes in our case), the edges describe the relationships (attribute
co-occurrence in our case), and the edge weights denote the relevant importance of the
relationship (co-occurrence frequency in our case).

A very common property of a complex network is known as the community
structure, i.e., groups of nodes may have tight internal connections in terms of a large
number of internal edges, while they may have less edges connecting each other. These
groups of nodes constitute the communities in the network. The existence of community
structure reflects underlying dependencies among elements in the target domain. If a
group of individual attributes always occur together in the training image set, then an
underlying co-occurrence pattern can be defined by these attributes, and this pattern
can be used as a priori knowledge in the attribute detection for the test images.

The approach we adopted to detect the communities in the network is mod-
ularity optimization [119]. Suppose attributes a; and a; in A are represented as two

nodes ¢ and j, and suppose i belongs to community C; and j belongs to community
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Cj in a partition. The modularity @) is defined as a qualitative measure of a particular

partition on the network in the form of:

wiwj

Q= Y Iy = “519(C.C) (@.11)

where d equals to half of the summation of all the edge weights in the network, w;; is the
edge weight between ¢ and j, w;(w;) equals the summation of the edge weights attached
to node i(j), 0(C;, C;) =1 if C; = C; and 0 otherwise.

We consider iteratively merging the nodes into communities based on the cri-
terion that the merge of nodes generates a positive modularity gain at each iteration.

The modularity gain of moving an outside node ¢ into a community C' is evaluated by

Zin _
2d

Zout
2d

Yin +kic
2d

AQ = St LU 2 - (el (1.12)

(

(

where YJ;,, represents the sum of edge weights inside C', w; ¢ equals the sum of weights
of edges that link i to C, d is the same as defined in equation (4.7), ¥, is the sum of
weights of edges that link outside nodes to nodes in C', w; is the sum of weights of the
edges incident to i. Based on modularity optimization, we propose the following two

phase algorithm to detect the attribute co-occurrence patterns in the network:

4.2.5.2 SRV attribute signature refinement with the co-occurrence patterns

The co-occurrence patterns are utilized for refining the detection results on each
individual SRV attribute by performing a random walk process [76] over the patterns.

We define the distance between two attributes a; and a; as

2 x # of CP{aj,a;}

Dahaj = # Of CP{az} —+ # Of CP{CL]}

(4.13)

where # of CP{a;,a;} is the number of co-occurrence patterns containing both at-
tribute a; and a;. Suppose initially the occurrence probability of attribute a; in the

image attribute signature is s(a;) (given by the generative model), then in the mth it-
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Algorithm 4: SRV Attribute Co-occurrence Pattern Detection

Input: SRV attribute co-occurrence network.
Output: Hierarchical SRV attribute co-occurrence patterns.

1 Partitioning phase:

2 do
3 Assign each node a different community tag C;,i =1, ..., N;
4 foreach node i in Community C; do
5 Remove i from its original community C;;
6 Add i into each of its neighboring nodes j’s community Cj;
7 if AQ > 0 computed by (4.12) from placing i to C; then
8 Examine the value of Q¢, and Q; with i assigned to each neighboring
community by (4.11);
9 if Qc;, > 0.3 && Qc; > 0.3 then
10 Attribute 4 is shared by the two communities C; and Cj;
11 Split 7 into ¢ and i/, put them into C; and Cj;
12 Copy the edges of i incident to other nodes for i/;
13 else
14 Place ¢ into Cj;
15 else
16 No node will be moved;

17 while Every node has been traversed && no increase can be achieved for AQ;

18 Coarsening phase:

19 foreach Existing community C; do

20 Replace the entire community C; by a single node i in the network;

21 Replace the edges between community C; and its neighboring communities by
single edges;

22 Compute the weight for a single edge as the sum of old edge weights;

23 Represent internal edges as a self-looped edge with weight equals the sum of

internal edge weights;

24 Iteration: Repeat 1 — 23 until no positive AQ can be achieved;
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eration the new value of the probability is formulated by the following random walk

process:
sm(a;) = az $m—1(a;) - Daja; + (1 — ) - s(a;) (4.14)
J
where « is a weight parameter that takes a value between (0,1). The above formula
can strengthen the occurrence probabilities of the attributes in the same patterns and

weaken the isolated ones. The controlling parameter is determined by using the training

sets.

4.2.6 Identification Module

The attribute detector learned from the training data is used in the identifica-
tion module for the testing images. The inputs to the detector are the detected salient
regions from the test images as well as the extracted low-level visual features. The
output of the detector is the so-called “image SRV attribute signature”. The species
identification of testing images is performed by comparing testing image signatures with
the training image signatures. Therefore, we also build the attribute signatures for the
training images. For a training image I, the attribute signature is S!4! with each ele-
ment s(a;) € {0,1} and s(a;) = 1 when image I has regions labeled with attribute a;
and = 0 otherwise. We further divide the training images into groups based on their
scientific species designation. The element values are averaged across the signatures
within each species group for each individual attribute and the obtained signature is
called the species prototype signature.

The testing image of a species is identified by comparing its image attribute
signature with the species prototype signatures of the fifty species. The distance between

the two signatures is calculated by the Euclidean distance. The testing image is finally
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identified as the species with the smallest distance value. If several species have very
similar distance values to the testing image, we assign all the species labels to that
image, and let the image retrieval system give the final decision on the species based on

the feedback from the users who are determined as experts by the retrieval system.

4.2.7 Retrieval & Relevance Feedback Module

We implement a query by example (QBE) paradigm for our retrieval system.
QBE is widely used in conventional content-based image retrieval (CBIR) systems when
the image meta-data, such as captions, surrounding texts, etc. are not available for

keyword based retrieval.

4.2.7.1 Image retrieval using query by example

In the QBE mode, the user is required to submit query in terms of an example
specimen image to the system. Finding an appropriate query example, however, is still
a challenging problem in the research area of CBIR. In our system, we provide an image
browsing function in the user interface, and the user is allowed to browse all the images
in the database and submit a query. Images are compared by their content similarity.
Each image in the database is represented by a low-level visual feature vector F' and
a high-level SRV attribute signature S, for a query image ) and a database image Y.
The distance between them is calculated by fusing the Euclidean distance over the visual

feature vectors and the Earth Mover’s distance [138] over the SRV attribute signatures:
Dist(Q,Y) = nDpuc(Fq, Fy) + (1 = n)Demp(Sq, Sy) (4.15)

where n is the adjusting parameter between the two distance measures and is deter-
mined by the long-term cross-session retrieval history working on the subset of training

images [184]. If the precision for a particular query is increased when more importance
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is put on the feature distance, then 7 is adjusted to a larger value, otherwise it becomes
smaller.

Earth Mover’s Distance (EMD) is used as a proper measure for comparing
signature difference given the pre-defined ground distances for pairs of attributes. The
underlying idea of Earth Mover’s distance is: given two signatures of attributes, one
can be seen as a mass of earth spread in the attribute space, the other as a collection
of holes in the same attribute space. EMD is defined as the least amount of work
needed to fill the holes with the earth. The ground distance between a pile of earth
(an attribute element in the first signature) and a hole (an attribute element in the
second signature) corresponds to the amount of work needed to move that pile of earth
to the hole (the base metric defined in the attribute space and used to compute the
distance between two attributes). In our setting, the ground distance can be obtained
by taking the reciprocal of the edge weights between the two attributes in the co-
occurrence network which reflects the hardness that two attributes occur together in
the images. Let d(Sg(a;), Sp(a;)) denote the ground distance between attribute a; in
the query signature and attribute a; in the database image signature. The Earth Mover’s

Distance between their signatures is defined as:

Dot =1 fijd(Sq(ai), Sp(ay))
Z?; Z?:l fi

where f;; is called a flow that is transferred from one signature to the other. The EMD

DEMD(SQ,SD) = (4.16)

is computed by solving all the f;; using linear programming [99]. The EMD can be
viewed as a measure of the least amount of work needed to transfer one signature into

the other, a unit of work in the process is evaluated by the ground distance.
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4.2.7.2 Relevance Feedback

The Relevance feedback (RF') scheme has been verified as a performance booster
for our retrieval system. The reason is that RF can capture more information about
user’s search intention, which can be used to refine the original image descriptors from
feature extraction and attribute detection [40].

Our RF approach follows the Query Point Movement (QPM) paradigm as
opposed to the Query Expansion (QEX) paradigm. We move the query point in both
the feature space and the attribute space toward the center of the user’s preference by
using both the relevant and irrelevant samples marked by the user at each retrieval
iteration. However, before the users’ decisions are used to refine the descriptors, their
expertise in identifying moth species are evaluated by sample tests when they first enter
the system. If an user has 90% accuracy in identifying the species, their relevance
feedback will take effect.

Suppose in each retrieval iteration the system returns N images. Let F =
{f1, f2y..., fn} denote the visual feature vectors and S = {si,s2,...,sy} denote the
attribute signatures of the retrieved images, and let fg and sg represents the query
descriptors accordingly. The refinement on the descriptors is equivalent to learning
projection matrix Wy that transforms { fi, fa, ..., fn, fo}into {f{, fé, ey f]/\,, fc/g}v as well
as W, that transforms {s1, s2, ..., Sy, 5@} into {3/1, 3/2, s s}\,, s/Q}, by which the query and
the relevant images resemble as much as possible in the feature and attribute spaces and

deviate from the irrelevant ones.
Let P and N denote the sets of positive and negative results. We build pair-

wise relevant descriptor set Ay, A; and pairwise irrelevant descriptor set €27, ), in the
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following way:

As = {(5q; 8:)|si € Ps} U{(s1,85)]8i,8; € Ps}
(4.17)
Qp ={(fo, [)lfi e N} UL(fi, F)I(fi € Py fj € Np) U (fi € Np N f € Py)}

Qs = {(s0,si)|si € NoFU{(s1,8;)|(si EPsNs; € N)U(s; €ENsNsj € Ps)}

After the transformation Wy, the sum of the squared distances of the visual feature

pairs in Ay is comupted as:

> Wih=WEH Wi -wi)
(fi,f5)eNy

= > TrWi(fi— ) (fi = ) W] (4.18)
(fisfj)ENS

=Tr(W}Xa,Wy),
where X, = Z(fi,fj)eAf(fi — f)(fi = f;)¥ and T is the trace of the matrix. Similarly,
we have Tr(WI Xy W), Tr(WfXQfo) and Tr(WI Xq Wy). We would like to have
the sum of distances from A as small as possible and the sum of distances from 2 as

large as possible, so have the following objective functions:

min TT(WJTXAfo)

Wi max Tr(WfTXQfo)

P T —
Wy W= (4.19)

min Tr(WIXy W), mar Tr(WIXq, W)
WIW,=I WIW=I

where [ is the identity matrix, the purpose of having the constraints WfT Wr=1, WST Wy =
I is to prevent arbitrary scaling of the projection. The minimization and maximization

problems in (5.6) is usually formulated as a trace ratio optimization problem [167]:

TT(WfTXQf Wy)

mar S oTv o o
TT'(WJTXAf Wy)

T —
Wi te=t (4.20)
Tr(WT Xq,Ws)

MAT T WX, W)

WIW,=I
Wang et al. [167] proposed an iterative algorithm to conduct trace ratio optimization,

which is adopted in our work to solve the problem in (5.7) and is summarized in Algo-

rithm 2.
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Algorithm 5: Trace ratio optimization [167]

Input: The sum of descriptor distances in the positive and negative sets:
Xag, Xa,, Xap, Xa,-
Output: The transformation matrices Wy and Wy
1 Initialize W}) , W9 as arbitrary columnly orthogonal matrices such that (W}) )TW}J =1
and (W)TW? = 1.
2 Set iteration counter n = 1.
3 repeat

4 Compute A%, AL defined as follows:

Tr((W;’_l)T)XQf W}"l

A=
f o n—1\p n—1
T ((Wf ) )XAfo (421)
)\n _ TT((W,;lil)T)XQSW.;Lil
ST ((WETHT) X W !
5 Solve the following trace difference maximization problem to obtain W§ and W'

by performing eigen-decomposition of (Xa, — AfXa,) and (Xq, — Ay Xa,):

W3 = argmaxTr[WfT(XQf — AP XA, )Wy]
WIw,=I
W = argmazTrWTX (Xa, — AP XA, )W

WIWe=I

(4.22)

6 Setn=n+1.

7 until convergence;

8 return W and W'
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Figure 4.7: The Screen shot of the system. The images can be browsed in the display
window and selected as queries. The “Submit Relevance Feedback” button is used for
manual submissions and the “Autorun” button is used for simulated submissions. The
species labels are shown in the text area. The user can click to mark the images as
relevant, and the rest are used as irrelevant samples automatically. We can show up to
60 retrieved images in dorsal and ventral views.

4.3 Experimental Results

We implemented the system on Microsoft Windows platform using C# net
with the Windows Presentation Foundation application development framework. The
image database with relevant features and attributes are deployed on MySQL server.
The database is set up by importing .txt files with numeric values of the attributes and
features, and textual information describing the image properties of the moth images.
We show the screenshot of the application in Figure 4.7. We report here the results
in two application scenarios: (i) moth species identification based on SRV attributes;
(7i) Moth image retrieval with relevance feedback based on visual features and SRV

attributes.
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4.3.1 Image Source and System Parameters

Examination of the moth image collection used in this study is introduced in
Section 3.1. All 4,530 specimen images used in our experiments were manually labeled
with SRV attributes with MBRs by using the tool introduced in Section 4.2.3.2. The
species labels are provided by human experts (Dr. Janzen and his colleagues). The
labels of the training images are used in the training process. The labels of the testing

images are used as ground-truth for validation purposes.

4.3.2 Species Identification Results

We randomly sampled the images into 10 subsets, one subset was held out for
testing and the rest of the subsets was used for training the model. This process was
repeated ten times by using each subset of images as the testing set. The average of
these results on 10 subsets is reported in this paper in Table 4.3. The tuning parameters
are summarized in Table 4.2. We evaluated the model performance for each combination
of parameters {Q, a, n} on the testing set. We chose the parameter set that maximized
the overall performance averaged over the ten testing subsets. The value of the selected

parameters are: ) = 0.3, o« = 0.6, n = 0.5.

4.3.2.1 Evaluation criteria

The performance of the automated species identification is evaluated by the
accuracy measure. A test image is assigned to the species category for which prototype
signature has the smallest distance to the image’s SRV attribute signature. The accuracy
measure is defined for each species as the number of correctly identified individuals
divided by the the total number of specimens of that species in the testing set. A

testing image is considered as a correct identification if the species label generated by
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the program matches with the ground-truth label.

4.3.2.2 Baseline approaches

To demonstrate the effectiveness of our proposed framework for the moth
species identification application, we compare with the following approaches as base-

lines:

e Baseline-I: The most basic model that only uses the visual features extracted
from Section 4.2.3.4. No SRV attributes and the signature representation has
been used. The images are identified purely based on the visual feature vector

similarity calculated by using the Euclidean distance.

e Baseline-II: Our generative model for individual attribute detection unified with
the attribute signature representation serves as the Baseline-II model. However,
this model does not include attribute co-occurrence pattern detection and random

walk refinement on the SRV attribute signatures.

¢ VW-MSI: We reimplemented a visual words based model based on the avail-
able code (http://people.csail.mit.edu/fergus/iccv2005/bagwords.html) online for
image classification [150] and name it as “Visual Words based Moth Species Identi-
fication” (VW-MSI). We only implemented the appearance model in the approach

and ignored the complex spatial structures.

e SRV-MSI: Our proposed approach integrated with co-occurrence pattern detec-
tion and SRV attribute signature refinement. We name it as “SRV attribute based

Moth Species Identification” (SRV-MSI).

We compared the species identification results of the proposed approach with

other three approaches in Table 4.3. The best performance as well as the worst perfor-
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mance are made bold in the table. The mean and standard deviation of the accuracy of
the experiments conducted for ten times are computed and shown for the fifty species.
As we can observe from Table. 4.3, our system performs the best for almost all the
fifty species except that VW-MSI outperforms ours in five species: Neoxeniades luda,
Isostyla zetila, Atarnes sallei, Nascus Burns and Mysoria ambigua. This demonstrates
the effectiveness of SRV attributes and the co-occurrence patterns used for signature
refinement.

The range of the mean identification accuracy of our system on the fifty species
is between 0.3455 and 0.7764. The identification accuracy of some of the species is rela-
tively low (e.g. Hemicephalis agenoria, Neoxeniades luda, Dasylophia basitincta, Dasy-
lophia maztla and Nascus Burns). When we visually examined the samples from these
species, we found that the moth has less discriminative visual patterns or SRV attributes
in our scenario on the wings. This phenomenon reflects that our system may lose the
power in identifying moth species with dull wings. Specifically, our system achieved low
performance in two species categories: Dasylophia basitincta and Dasylophia maztla,
which have very similar visual appearances. The confusion matrix (we do not show it
in the paper for the reason of space limitation) shows that our system mis-identifies the
samples from one species into the other species. However, we observe that VW-MSI
and other baselines also lose the effectiveness when dealing with moth images with very
similar physical appearances. Based on the values of the standard deviation, our system
still gives the most stable results across all the species categories compared to the other
three approaches.

The total number of SRV attributes manually given to the images by the human
experts is 450. As a result, the maximum length of the SRV attribute signature for the

images is 450. In order to compare the impact from the vocabulary size of the attributes
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Table 4.3: Identification accuracy for the fourty species. The performance of SRV-MSI
is greater than all other approaches except for Neoxeniades luda, Isostyla zetila, Atarnes
saller and Nascus Burns.

Baseline 1 Baseline II VW-MSI SRV-MSI
Species Mean Std Mean Std Mean Std Mean Std
Ceroctena amynta 0.2965 0.0321 0.4176 0.0169 0.4318 0.0196 0.4582 0.0174
FEudocima materna 0.4968 0.0257 0.5483 0.0275 0.5764 0.0319 0.5944 0.0209
Eulepidotis folium 0.3910 0.0279 0.4141 0.0264 0.4219 0.0267 0.4482 0.0371
FEulepidotis rectimargo 0.5561 0.0246 0.5875 0.0236 0.5962 0.0233 0.6134 0.0163

Hemicephalis agenoria 0.3314 0.0268 0.3349 0.0302 0.3721 0.0331 0.3931 0.0236

Thysania zenobia 0.4102 0.0327 0.4329 0.0236 0.4623 0.0235 0.4971 0.0356
Chrysoglossa norburyi 0.5472 0.0225 0.5553 0.0253 0.5672 0.0237 0.5752 0.0205
Erbessa albilinea 0.6048 0.0365 0.6324 0.0336 0.6547 0.0136 0.6755 0.0174
Erbessa salvini 0.3562 0.0468 0.3634 0.0425 0.3867 0.0325 0.4143 0.0345
Nebulosa erymas 0.5432 0.0312 0.5647 0.0291 0.5699 0.0257 0.5935 0.0225
Tithraustes noctiluces 0.5438 0.0214 0.5624 0.0331 0.5912 0.0284 0.6086 0.0251
Polypoetes haruspex 0.5247 0.0216 0.5369 0.0234 0.5682 0.0273 0.5906 0.0202
Dioptis longipennis 0.5621 0.0281 0.5746 0.0212 0.5990 0.0187 0.6154 0.0175
Methionopsis ina 0.4721 0.0375 0.4835 0.0367 0.5014 0.0325 0.5102 0.0425
Neozentades luda 0.3742 0.0374 0.3852 0.0432 0.4176 0.0396 0.3975 0.0457
Saliana Burns 0.5042 0.0364 0.5356 0.0256 0.5494 0.0275 0.5731 0.0234
Saliana fusta 0.6480 0.0247 0.6597 0.0275 0.6968 0.0214 0.7346 0.0134
Talides Burns 0.5437 0.0256 0.5572 0.0247 0.5854 0.0173 0.6352 0.0176
Vettius conka 0.6417 0.0334 0.6782 0.0148 0.7332 0.0184 0.7544 0.0169
Aroma aroma 0.5437 0.0273 0.6035 0.0245 0.6204 0.0174 0.6461 0.0211
Carystoides escalantei 0.5326 0.0324 0.5487 0.0264 0.5843 0.0222 0.6033 0.0254

Lirimiris guatemalensis 0.3975 0.0421 0.4129 0.0256 0.4615 0.0236 0.4930 0.0249

Isostyla zetila 0.5248 0.0363 0.5392 0.0365 0.5472 0.0251 0.5364 0.0357
Oricia domina 0.4964 0.0368 0.5175 0.0316 0.5389 0.0380 0.5632 0.0195
Scotura leucophleps 0.5014 0.0378 0.5246 0.0217 0.5547 0.0246 0.5757 0.0221
Bardazima perses 0.4764 0.0371 0.4954 0.0314 0.5327 0.0287 0.5551 0.0307
Dasylophia basitincta 0.3842 0.0457 0.3976 0.0351 0.4029 0.0225 0.4344 0.0275
Dasylophia maxtla 0.3683 0.0416 0.3754 0.0363 0.3938 0.0324 0.4113 0.0278
Nystalea collaris 0.4173 0.0285 0.4326 0.0291 0.4852 0.0257 0.5021 0.0274
Tachuda discreta 0.3647 0.0321 0.4056 0.0249 0.4303 0.0352 0.4512 0.0269
Atarnes sallei 0.6084 0.0372 0.6396 0.0278 0.7174 0.0147 0.7059 0.0187

Dyscophellus phrazanor 0.5483 0.0364 0.5731 0.0381 0.6295 0.0331 0.6494 0.0362

Tithraustes lambertae 0.6053 0.0271 0.6056 0.0374 0.6324 0.0289 0.6713 0.0285
Entheus matho 0.6153 0.0490 0.6273 0.0411 0.6308 0.0271 0.6534 0.0279
Hyalothyrus neleus 0.6472 0.0394 0.6717 0.0285 0.6954 0.0192 0.7106 0.0168
Nascus Burns 0.3258 0.0173 0.3394 0.0314 0.3547 0.0390 0.3455 0.0372
Phocides nigrescens 0.6138 0.0442 0.6359 0.0321 0.6784 0.0179 0.6797 0.0171
Quadrus contubernalis 0.6432 0.0316 0.6572 0.0257 0.6933 0.0271 0.7096 0.0263
Urbanus belli 0.5276 0.0164 0.5713 0.0268 0.5944 0.0196 0.6132 0.0254
Melanopyge Burns 0.6261 0.0255 0.6527 0.0275 0.6798 0.0138 0.6930 0.0214
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Table 4.4: The ranges of accuracy as a function of the number of SRV attributes and
the number of visual words used in the experiments. The bold number indicates the
largest accuracy for each approach.

Accuracy range

VW-MSI SRV-MSI

Number of attributes/visual words  Lower bound  Upper bound  Lower bound  Upper bound

50 0.2137 0.4282 0.2542 0.4673
100 0.2563 0.4356 0.2716 0.4927
150 0.2918 0.4847 0.3164 0.5574
200 0.3157 0.6658 0.3374 0.6923
250 0.3578 0.7271 0.3763 0.7567
300 0.3334 0.7016 0.3431 0.7764
350 0.3126 0.6567 0.3267 0.7637
400 0.2876 0.6145 0.3178 0.7521
450 0.2747 0.5983 0.3027 0.7278

and the visual words for VW-MSI and SRV-MSI, we set the maximum size of the visual
words vocabulary to 450 as well. The SRV attributes and the visual words are ranked
in the relative vocabulary based on the number of appearance in the image collection.
We change the number of attributes and visual words used in the experiments
and show the corresponding accuracy variation in Table 4.4. The best performance
achieved by our approach is marked bold in the table. We can observe that our system
achieves the best performance when we use approximately 300 SRV attributes. For
the visual words based approach, the best performance is achieved when the number
of visual words is around 250. It is obvious that the accuracy of VW-MSI drops very
fast and has a large range when the number of visual words exceeds 300. However, our
SRV attribute based approach has relatively small variations across different attribute

settings which demonstrates that it is less sensitive to the vocabulary size compared to

VW-MSI.
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4.3.3 Image Retrieval Results

To test the performance of our SRV attribute based approach for image retrieval
with the proposed relevance feedback scheme, like for species identification in Section
4.2, we divided the entire image dataset into 10 folds. The parameters are determined
using the same scheme as described in Section 4.2.1. We set the number of attributes
to 300. In order to reduce the amount of work of submitting relevance feedback that
are required by users, we propose to simulate the user interaction by launching queries
and submitting feedback automatically by the system. The simulated process works in
the following way: the system compares the ground-truth species labels of the retrieved
images with the query, if the species label matches the query, the system will mark the
image as relevant, otherwise, the image is marked as irrelevant. By doing this, we assume
the relevance feedback provided by the users will always by correct (i.e., users will only
mark the relevant images as those from the same species category as the query). Note
that the ground-truth is only used by the system to judge the relevance of the retrieved
images. It is not involved in comparing image similarity in the retrieval procedure. For
each query, we request the users or the system to provide five iterations of relevance
feedback. We have half of the queries in each species category launched by the users
and the other half simulated by the system. The results are computed based on the

combination of the two methods.

4.3.3.1 Evaluation criteria

In each iteration, the retrieval precision is evaluated by the rank of the relevant
images. Further statistical evaluation of the averaged precision for each species relies on

standard image retrieval measure: Mean average precision of top D retrieved images over

91



all the query images from a specific species category. Let D be the number of retrieved
images and R be the relevant ones with size |R|. Given a query @, the average precision
is defined as AP(Q) = ﬁ Z‘R| ~—4—— and the mean average precision (M AP) is the

1=1 Rank(R;)

averaged AP over all the testing images.

4.3.3.2 Baseline approaches

To demonstrate the effectiveness of our proposed retrieval framework, we use

the following approaches as the baselines to compare the results:

e Baseline-I: The proposed image retrieval framework without relevance feedback

scheme.

e Baseline-II: We reimplemented an insect image identification approach [169] and
integrated it into our retrieval framework with five iterations of relevance feedback
process. The features used are a combination of color, shape and texture features
and there is no higher level image descriptor like our SRV attribute that has been

used in the original approach.

e SRV-IR: Our proposed retrieval framework with relevance feedback scheme based

on the SRV attributes.

We show the top twelve retrieved images in the application interface. However,
the application can be adjusted to show more images upon request. Table 4.5 summa-
rizes the mean averaged precision from the three approaches for all the fifty species. As
we can observe, when RF scheme is applied (Baseline-II and SRV-IR), the mean av-
eraged precision is increased compared to the retrieval without RF (Baseline-I), which
demonstrates the effect of human interaction in improving the retrieval performance.

When more retrieval iterations are involved in the searching process, and when more
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iterations of relevance feedback are provided, the system can find more relevant images
matching user’s search intention. In the two approaches that adopts relevance feedback
scheme, our approach which uses SRV attribute based image descriptor outperforms
Baseline-1I for all the species categories. The system response time for each individual
query for a database of 1000 images is around 150ms. For a database of 4000 images

the response time for each individual query is approximately 500ms.

4.4 Conclusions

In summary, this paper has reported a novel insect species identification and
retrieval system based on wing attributes in the moth image dataset. The purpose of
the research is to design computer vision and pattern recognition approaches to conduct
automated image analysis that can be used by the entomologists for insect studies. We
have demonstrated the effectiveness of our system in species identification and image
retrieval for fifty moth species.

The dataset we used contains around 4,530 images which could be easily ex-
tended to larger sizes in the future to test the scalability of the system. Overall, our
system achieves the best performance compared to the baseline approaches in identi-
fication and retrieval. The identification accuracy is over 70% on the image collection
and the mean average precision reaches 70% as well for some of the species.

A significant diffference between our work and the similar ones in insect iden-
tification is that, we provide an intermediate-level feature, namely, the SRV attributes,
which function as a bridge, to narrow the semantic gap between machine understanding
and human interpretation of the images. We are excited to see that SRV attributes

successfully capture the visual patterns on the moth wings at a higher semantic level
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Table 4.5: Comparison of the retrieval performance for the fifty species.

Mean Average Precision

Species BL-I BL-II  SRV-IR | Species BL-I BL-II  SRV-IR
Ceroctenaamynta 0.4096  0.3872 0.4571 Bardaximaperses 0.2836  0.3064 0.3275
FEudocimamaterna 0.4538 0.4170 0.4764 Dasylophiabasitincta 0.3538  0.4152 0.4658
Eulepidotis folium 0.3824 0.4115 0.4745 Dasylophiamaxtla 0.3628  0.3738 0.4145
Eulepidotisrectimargo 0.5572  0.5069 0.6130 Nystaleacollaris 0.3427 0.3735 0.3841
Hemicephalisagenoria 0.4187  0.3950 0.4712 Tachudadiscreta 0.2917  0.2978 0.3114
Thysaniazenobia 0.4104 0.3933 0.4705 Atarnessallei 0.5832 0.6224 0.6778
Chrysoglossanorburyi 0.5856  0.5710 0.6786 Dyscophellusphraxanor  0.5324  0.5799 0.6128
Erbessaalbilinea 0.6045  0.5972 0.7153 Tithrausteslambertae 0.4846  0.4472 0.5315
Erbessasalvini 0.4587  0.4311 0.5478 Entheusmatho 0.4796  0.4925 0.5486
Nebulosaerymas 0.5219  0.5346 0.5857 Hyalothyrusneleus 0.6042  0.6584 0.6971
Tithraustesnoctiluces 0.5486  0.5148 0.5749 NascusBurns 0.2396  0.2846 0.3167
Polypoetesharuspex 0.5745  0.5237 0.5964 Phocidesnigrescens 0.5755  0.5942 0.6398
Dioptislongipennis 0.4816  0.4754 0.5048 Quadruscontubernalis 0.6492  0.7047 0.7168
Methionopsisina 0.3581  0.3847 0.3994 Urbanusbelli 0.5693  0.5480 0.5724
Neozxeniadesluda 0.3625  0.3827 0.4117 Melanopyge Burns 0.6454  0.6845 0.6992
SalianaBurns 0.5317  0.5485 0.5884 Myscelusbelti 0.6715 0.7047 0.7673
Salianafusta 0.6046  0.5917 0.6459 Mysoriaambigua 0.4917  0.4802 0.5746
TalidesBurns 0.5154 0.5308  0.5742 Dicentriarustica 0.3969 0.4105  0.4453
Vettiusconka 0.6296 0.6115 0.7135 Farigiasagana 0.2946  0.3072 0.3418
Aromaaroma 0.4537  0.4425 0.5289 Hapigiodessigi fredoma  0.3634  0.3728 0.4051
Carystoidesescalantei 0.5046  0.4672 0.5274 Malocampamatralis 0.4746  0.4869 0.5537
Lirimirisguatemalensis  0.3234  0.3456 0.3753 MeragisaJanzen 0.5643 0.5756 0.6683
Isostylazetila 0.5924  0.5483 0.6175 Naprepahoula 0.3748  0.4245 0.4886
Oriciadomina 0.4641  0.4547 0.5044 Pseudodryaspistacina 0.2975 0.3174 0.3531
Scoturaleucophleps 0.5179  0.5357 0.5678 Rifargiadissepta 0.5648  0.5247 0.6190
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and generate better results consequently.

However, the discriminative power of our system drops when the moth species
contain highly similar visual properties. This could cause potential failure in both
identification and retrieval once more images are included in the dataset that belong to
different species categories, however, share strong visual patterns on the wings. These
cases would be difficult for humans as well.

Future research will include investigations on more effective feature and at-
tributes as well as more advanced learning approaches which could address both the

scalability and discrimination issues.
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Chapter 5

Understanding Dynamic Social
Grouping Behaviors of

Pedestrians

5.1 Introduction

Consider a video clip recording a number of pedestrians walking in an outdoor
(indoor) environment such as a square (hall). Imagine an algorithm that is able to
analyze the video and answer the questions like: Are these people evacuating from an
emergent situation? Are they gathering for a special event? By just looking at each in-
dividual it could be very hard to train the computers to understand these high-level con-
cepts from the low-level visual representations. In this paper we introduce a new model
for analyzing social behaviors among pedestrians: rather than treating each person in
isolation, we analyze their social grouping behaviors so as to reinforce the recognition of

movements of each individual in a group. Our approach is inspired by recent achieve-

96



ments in computer vision and pattern recognition where the correlations of semantic or
geometrical concepts are utilized as extra contextual information for recognizing objects
in complex scenes [57]. In our work, pedestrian detection and interactions are enforced
by taking the advantage of contextual information that comes from within-group posi-
tional, velocity and directional distance consistences. This provides our approach the
robustness to pedestrian walking behavior analysis from dynamic cluttered background,
occlusions among pedestrians, illumination and viewpoint changes, or the variations of
backgrounds caused by mobile cameras such as smart-phones.

It is important to understand the collective social behaviors at a group level
in many real-world scenarios. For example, people tend to participate or leave an event
with herding behavior [114]. When crowd of people evacuate from an emergent situation,
they leave with the members in their original group [124], the direction of the group
is usually determined by the fastest member and the speed of the group is limited by
the slowest member [65]. Computer vision techniques, such as multi-people tracking in
crowded scenes [45, 197], crowd segmentation [162] have made tremendous progress in
recent years and they provide the opportunities to solve real-world challenging problems
such as recognition of human behaviors at the activity and event level that far exceeds
the conventional capabilities of a surveillance system.

In this paper, we attempt to achieve a higher level understanding of crowd
behaviors in terms of social groups and interaction patterns that are displayed while
they are traveling together. A social group of pedestrians consists of people with shared
walking patterns such as change of directions, change of speeds, avoiding obstacles,
etc [24]. In particular, we explicitly explore the dynamic properties of social groups that
capture the spatio-temporal changes such as splitting and merging of people. Determing

the dynamic group structure of a crowd provides the basis for further high-level analysis
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Figure 5.1: Left: A real-world video frame (from CAVIAR dataset) shows that people
are walking in groups. Individuals and related trajectories are labeled with numbers
and the potential social groups among them are marked in different colors. Right: A
snapshot restored from evolving tracklet interaction network (ETIN) representation at
a given time interval (top) and a hierarchical social group structure discovered by the
proposed approach (bottom).

of events involving social interactions within and across groups.

We propose to detect the social groups of pedestrians based upon the state-
of-the-art pedestrian detector and reliable tracklet generation techniques. Our main
contribution, is that we explore the evolving social group property among tracklets
in a network structure, which we call “evolving tracklet interaction network” (ETIN).
Based on the social psychological models of collective behavior, the reliable tracklets
generated from detection responses are represented as nodes in ETIN with incident
edges indicating the social interactions and grouping behaviors (see Figure 5.1). The
significance of social grouping behavior between nodes is defined by the edge weights.
Tracklets from pedestrians in a potential group will have denser spatio-temporal co-
occurrences reflected by larger edge weights in ETIN compared to the tracklets from
the pedestrians outside the group. We also propose to address the dynamic changes of

social groups in ETIN explicitly which is similar to detecting evolving communities that

exist in many common social networks such as Facebook and Twitter.
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5.1.1 Contributions of This Chapter

We validate our framework extensively on multiple video datasets that are col-
lected from indoor/outdoor public scenes with elevated viewpoints which is the typical
setting of surveillance cameras. We compare the results from our group understanding
algorithms with manually labeled ground-truth group IDs in a quantitative way. Our
work builds upon the recently proposed techniques in the literature on tracking by detec-
tion responses and tracklet association [16, 26, 78, 128, 187, 193]. Our contributions

are four-fold:

1. We propose a novel evolving tracklet interaction network (ETIN) to depict social
grouping behaviors of pedestrians from reliably built tracklets of individuals which

embody meaningful spatio-temporal interactions of individuals.

2. We explicitly explore the dynamic property of social groups by providing adapta-
tion schemes for nodes and edges in ETIN representation. Our approach has not
only the power of updating the network of tracklets in a very efficient manner, but

also has the ability to trace the evolution of the network over time.

3. We introduce a novel modularity optimization based group detection algorithm
that detects the hierarchical social group structure with a distance metric reflecting
the spatio-temporal interactions among the pedestrians. We also provide a unified
framework that addresses social group detection refinement and pedestrian tracklet

association in an iterative manner.

4. Experimental results and comparison with current techniques using several datasets
show that our approach is robust in medium crowd-density scenarios. We find

agreement between the predicted social groups and the human-understanding of
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Figure 5.2: The block diagram of our evolving tracklet interaction network (ETIN)
framework for understanding social grouping behavior of pedestrians.

the group structures.

Our work in this paper provides a novel way for social grouping behavior un-
derstanding by representing tracklets of pedestrians and their correlations in a network
structure which is original in the field. We also provide a framework that iteratively re-
fines the pedestrian tracklet association and social group detection. Our method differs
in three ways from the related work of social group recognition: (1) We detect groups
in different sizes. In addition, our detected groups are generated in a hierarchical form
where groups are captured at different granularities. (2) Our model explicitly handles
dynamic changes of social groups, i.e., merging and splitting, in an effective and efficient
manner. (3) Our model is built upon tracking by detection techniques where reliable
short-term trajectories, or tracklets are available. The social grouping behaviors are,

therefore, captured for a period of time in a consistent manner.

5.2 Technical Approach

As illustrated in Figure 5.2, the main focus of this work is to understand
the dynamic social grouping behavior of pedestrians by using surveillance videos and

developing techniques which provide an automated way to quantitatively analyze videos
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instead of spending hundreds of person hours to watch and manually labeling them. We
name our approach the Evolving Tracklet Interaction Network (ETIN) based dynamic
social grouping behavior analysis.

The walking behaviors of pedestrians are represented by their trajectories in
the frames. However, it is often a non-trivial task to acquire reasonable trajectories in
an automated way for pedestrians in a crowded or semi-crowded environment, because
of the occlusions among pedestrians. In this regard, it becomes necessary to track people
in a given video for a few seconds without occlusions and yield short-term trajectories,
called tracklets, and hypothesize pedestrian groups based on these reliable tracklets.
The next step is to merge and link these tracklets into long-term trajectories using the
detected social groups as contextual information. The hypothesis is that pedestrians
in the same group should have very similar trajectories. If some of the trajectories
are broken because of occlusion, the rest of the trajectories that are complete in the
same group can place useful constraints on associating the fragments. This step plays
a critical role in accurately detecting long-term groups and their dynamic changes in
the future. We, therefore, provide an unified framework that iteratively discovers social
groups from reliable tracklets and identify stable and coherent trajectories of pedestrians
that benefits from the group contexts.

We represent the interactions among tracklets by using the proposed evolving
tracklet interaction network (ETIN) and detect social groups using the modularity-based
algorithms. Each tracklet is initialized as a node with corresponding information such
as the starting and ending frames of the tracklet that is incorporated into ETIN. The
relationship between existing nodes and the new node is measured by the edge weights
based on the spatio-temporal interactions of the tracklets. Existing edges also need to

be updated each time a new node is incorporated because of the transitive property of
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social grouping behavior, i.e., the social interactions between two existing nodes should
be strengthened when a new node is appended with strong connections to both nodes.
In order to reduce the time complexity of updating edge weights, we propose an efficient
algorithm that takes advantage of the prior social group information and update the
edges in an accelerated way.

To study the dynamic property of social groups such as formation, termination,
splitting and merging, it is essential to characterize the transitions that go through a
network at different time instants along the video. For this purpose, we utilize temporal
snapshots to review static versions of the evolving network at different time intervals
by applying time sliding windows in the network. In each snapshot, the nodes are kept
that have some temporal overlaps with the time sliding window with corresponding
edges. The social groups are then detected from the static ETIN for this specific time
interval. This is formulated as a community detection problem and solved by modularity
optimization that maximizes the within-group connections and minimizes the between-
group connections. In the following we describe major components of the system shown

in Figure 2.

5.2.1 Preprocessing Module

We detect pedestrians in each frame using pre-trained deformable part-based
detector [56]. In order to lower the percentage of false positives, we explicitly tune the
detector to exclude partially occluded people. We also remove detection responses that
are of inappropriate sizes as judged by camera calibration. The detections are chained
together in a dual-threshold/conflicting pairs data association step to generate short-

term tracklets [78]. The output is a set of tracklets that eliminate identity switches.
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5.2.2 Evolving Tracklet Interaction Network

For each tracklet x from the output of above procedure, we record the attributes
in the format of z(ID, tuple set {ct;,vt,},ti € [tstart,tend]), Where ID is an unique
number used as the index of the tracklet, tstqrt, teng are the corresponding starting and
ending frames, tuple {c,,vs,} records the centroid of detection ¢ projected onto the
ground plane and the estimated velocity vector v at a given time instant (frame) ¢;. We
initialize nodes and incorporate them into TIN for the tracklets in the order of their
tstart attribute. Each node is also assigned with the corresponding tracklet’s attributes.
The interactions between individual nodes are modeled as pairwise spatio-temporal co-
occurrences and we represent them as edges in the network. Edge weight indicates the
significance of a specific interaction. For a given pair of tracklets, we categorize their
interaction into two types based on whether they have a temporal overlap: 1) interaction
of tracklets with overlap and 2) interaction of tracklets without overlap.

For the first type of interaction, we define the temporal overlap as I' = [tg, t1]
of length (1 —tp+ 1) frames. The interaction between two tracklets is measured by the
weighted sum of aggregated positional, velocity and directional distances. Given two

tracklets x; and x;, the distances are defined as:

» Ttk llef—ctl]
D (mivxj) = 1- 6$p(* |T[pP )

v Tile, llvi—vtl] 51
D*(zi,x;) = 1—€$p(—T) (5.1)

+ + t t
il k0 le 70].0

DY (zi,z;) = 1—exp(——3—3
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where pP and pY are scaling factors for tuning the aggregated distance. The
double vertical bar (|| - ||) represents the L2 norm of a vector. All the three distance
measures are scaled into the range [0, 1] by exponential normalization. Aggregating the

distances over time increases the robustness for capturing dynamic social grouping be-
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Figure 5.3: Two types of tracklet interactions are shown in the left and right side.
The two tracklets with overlapped interaction are marked in red and the other tracklet
without overlap is marked in purple. The importance of the interaction is either calcu-
lated based on their positional, velocity and directional distances based on the temporal
overlapping interval or the distances based on the projected overlapping interval.

haviors. Tracklets that are closer to each other and have similar velocities and directions

for a longer time will yield smaller distances. The final pairwise interaction is defined

as:

egj =exp(—(w1 - DP +wa - D” + (1 —wy — wa) - Dd)) (5.2)

where w; and wy are the weights to adjust the importance of each factor. We use
equal weights in our setting to combine the three distance measure into a final tracklet
interaction importance measure that is computed over the temporal interval of overlap.

For non-overlapping tracklets x; and z;, suppose tf"d < tjt‘”'t and the time

interval I' = | < 7 where 7 is a threshold, we determine the potential spatio-

d
tfn 7t§tart]
temporal interaction between them in the projected overlap interval [tf"d, t;t“’"t} based

, we estimate the centroids of both tracklets

on the motion model. Let t € [tf”d,t;?tm“ g

at frame t by Eq. (5.3).

end end
ti ti

¢k = b v (t—t)
(5.3)
t _ tjta“ t;tart start
g = ¢ +v; (t5eT — 1)
end

The velocities are assumed to be constant in the interval and represented by v? and
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tstart
J

v

;- We compute the interaction importance for the second type of interaction by

nd start
¢ t

replacing the parameters in Eq. (5.1) with ¢!, ct ot U

U J  and I'= [tf“d,tjm”], and

repeat Eq. (5.2). Finally, the computed values from Eq. (5.2) are used as the edge weights
between pairs of nodes representing the tracklets in ETIN. The two types of tracklet
interaction and the distances are illustrated in Figure 5.3. The interaction importance

is used as the edge weights when connecting two nodes representing the tracklets in the

ETIN.
For each new node, respective edges are added based on the conditions #5147t <
tg;’l;isting + 7 for a non-negative threshold 7. However, the edge weights between existing

nodes also need to be updated because of the social group transitivity. For example,
two existing nodes x;, x; initially have a small interaction degree. When a new node zy,
is added, both e;; and ej), are large which implies a high probability that z; and zj are
in a social group, so are x; and xj. And if % > i + e%k’ in this case, x;, x;, ) should
be in a same group and e;; also needs to be modified accordingly.

Consider N existing nodes {x1, x2, ..., x,} and a new node x, we can calculate
1 1

> =+ —,i,] €

eik,1 € {1,...,n} for any pair of nodes (z;,z,), and compare if ei > ot
ij i j

{1,...,n} & i # j. However, if the number of nodes in the network is large, the com-
putation will take a lot of time. In order to reduce the computational cost, we propose
a group detection based node incorporation and edge updating scheme as illustrated in
Figure 5.4.

First, we denote the constructed ETIN at current frame ¢ as G;. We detect the
groups of nodes using the approach proposed in Section 5.2.3 and the groups are rep-
resented as {g1, g2, ..., gm }. Further, we compute the intergroup closeness between any

pair of groups by the symmetric Hausdorff similarity measure H(g;, g;) = %}l(gmi)
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TIN Construction

Figure 5.4: The new node incorporation and edge updating scheme for the evolving
ETIN. (a) The original ETIN. (b) Detection the social groups among nodes based on
the modularity optimization. The symmetric Hausdorff similarity is calculated for each
pair of groups. (3) When a new node ¢, is added, the interactions to other nodes are
computed only for the nodes in the groups that have distances to x,e, below a certain
threshold.

where h(-,-) is defined by Eq. (5.4).

S S sort(ei)

PR (5:4)

h(gi,9;) =

where the sort function arrange e;; in descending order and we use the top-k, k equals
half size of the second group. Hausdorff metric is popular in computing the similarity
among nodes in two finite sets. g; and g; are considered to be close to each other if
every member in g; has large interaction importance to at least half of the members in
gj. The idea is similar to the concept of group expansion introduced in [108].

Using Hausdorff criterion, we set up an appropriate threshold €, and two groups
i, gj are considered as neighbouring groups if H(g;,g;) > €. When a new node comes
in, we compare its averaged interaction degree eg”? to a group g with another properly
chosen threshold € to see if egvg = IT}I Zﬂl €imew > € which indicates the new node is

interacting with the group g. We chose ¢ >> € so that any non-neighbouring groups of
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g according to € are not interacting with the new node. In this way, we only need to
compute the interactions to g and its neighbouring groups and update the edge weights
in these groups. For the example presented in Figure 5.4(c), eg,? > €, we calculate the
interactions for x,e, and nodes in g; as well as the nodes in the neighbouring group g

and updating the corresponding edges and avoid the calculation for non-neighbouring

groups gs and g4. The entire process is summarized in Algorithm 5.1.

5.2.3 Social Group Detection

We make use of the temporal snapshots to examine static versions of ETIN at

different time intervals. We detect the social groups from a restored static ETIN in a
given temporal window using modularity measure [117].
Definition: Let G = (V, E) denote a varying tracklet interaction network where V'
represents unique tracklets and F the interactions that exist among the tracklets. We
define a temporal snapshot S;(V;, F;) of G to be a network representing only tracklets
and interactions active in a particular time interval [tffe"t t¢"d] called the snapshot
interval.

A social group, in our case, is defined as a group of nodes in a specific snapshot
that has large internal interaction importance. On the other side, nodes in the group
will have weak interactions to the outside nodes. A common way towards detecting
communities of people based on the links in a social network is to recursively divide
the entities in the complete network into subgroups. We naturally transform the group
analysis into finding a method from the social network perspective. In order to quantify
the goodness of a network partition, modularity has been widely accepted as a mea-
surement of the partition which has been found to be robust and effective in many real

world networks [117].
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Algorithm 6: New node incorporation and edge updating

Input: Current ETIN, {z1,...z,,}, {e;;}. 4,5 € {1,....,n}, Tnew
Output: Evolved ETIN with ., incorporated and edges updated
1 Step one: Detect social groups G = {¢1, ..., gm } in ETIN by the approach
proposed in Section 5.2.3 ; /* Group distance calculation. */
2 foreach each g; in G do

3 foreach each g; in G and j # i do

4 Calculate the inter-group closeness by H(g;, g;);
5 if H(gi,g;) >€ & g; ¢ gfeighbor then
6 L Add g; in gineighbor;
7 else if g; ¢ g?on*neiyhbor then
8 L Add g; in g;wnfneighbor;
9 Copy G to G’ as x,e’s candidate group set;
10 do
11 foreach g; in G’ do
12 if €59 = ﬁ legzll €j.new > € then
13 Updating €j.,e Where x; € g;, delete g; from G;
14 Updating ej.new Where xy € gzwighbor;
15 Delete g;leighbor7g?onfneighbor from G':
16 if ej% > ej.icw + ek.im where z;,xy, € gi||g;leighbor then
17 L Update e by maz(e;.new, €knew);

18 while G’ # &;

19 return Updated ETIN;
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Basically, modularity is the fraction of connections within groups subtracting
the expected links of the same quantity of node degrees while the connections are dis-
tributed in a random way. Usually, larger value of modularity indicates more significant
social grouping phenomenon of nodes. Therefore, our goal is to divide the nodes into
groups such that the modularity of the entire network is maximized.

Problem Definition: Given the evolving G = (G, G1, ..., G,,) where G| is the snapshot
at the first snapshot interval, and the rest G's are the snapshots obtained by (Go+i*xAG).
The problem is to find an adaptive algorithm that efficiently identify the groups at any

snapshot interval utilizing the information from the previous interval.

The modularity @;; of two nodes x;, x; measures the difference between their
connection strength and expectation of random pair of nodes in the current snapshot of
ETIN. Suppose the neighboring node set of node z; is N; where each node is connected

by an edge to x;, the modularity @;; is defined as,

Dken, Cik ° ZkeNj €k

me,rneTIN €mn

Qij = eij —

Initially, we assign all the nodes in one group, the modularity ) of the entire
network is the summation of the @;js of any pair of nodes. However, if we divide the
nodes into two groups, we use a label vector s € R™ to denote the group of each node. If
an element s; = +1, the corresponding node is assigned to the first group, and s; = —1

otherwise, and the modularity of the network changes to:

D ke, ik * Xen, Eik

> mom Emn

Q’:sT-Q-s:sT-Z[eij— ]-s (5.6)
)
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The element values in the vector s are determined by first representing () in
the matrix format, eigen-decomposing it into eigenvalues and eigenvectors, and then s;
is set to +1 if the corresponding eigenvalue is positive and —1 otherwise. The strategy
for two-subgroup division can be applied to divide the entire network into multiple
groups recursively if we change the label vector s into a matrix S € R™ ! where [ is the
number of groups, it starts from 1 and keeps increasing. We record the modularity before
and after a new division as Qqst and @Qpnew, then the modularity gain is measured by
AQ = Qnew — Qrast- We stop the recursive division until there is no positive modularity
gain, i.e., AQ < 0. After the top-down division, we assign an unique ID to each of the
detected groups based on the path from root to leaf in the hierarchical structure.

Now we address the problem of tracing the dynamic social group changes from
one snapshot to the next snapshot based on the modularity maximization criteria. As
time goes by, new node could be incorporated into the network and old node could also
be deleted from the network. Intuitively, adding a new node that results in the insertion
of one or more intra-group edges, or deleting an old node that leads to the removal of one
or more inter-group edges in the current snapshot will not weaken the group structure
obtained from the previous snapshot. Similarly, removing intra-group edges or inserting
inter-group edges will not strengthen the group structure from the previous snapshot.
However, when two groups have less distractions, adding or deleting an edge between
them may change the structures of them, leading them either to merge or split further.
In this case, we need to determine to which group the new node should join to maximize
the modularity gain.

Inspired by an adaptive network analysis approach introduced in [183], we

determine that a new node u stays in the original group C or moves to a new group C’
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stay u 243 en€TIN Emn

by two kinds of forces: is the force to keep u stay in C

/ / . . .
and Flg[we =l — 3 CZ*ZCT'IN o— Is the force that C’ attract u into it. Based on these

two forces, the node u can determine to stay in an old group if F] SC

tay 1S greater than any

of the FZC/ and vice versa. The proof of Theorem 1 in Appendix A demonstrates that

eave’

joining the group with the largest ﬂg;v . will maximize the modularity gain.
Accordingly, when a node is removed in the current snapshot, it may cause
a current group broken into subgroups which may further merge into other groups.
To address this problem efficiently and effectively, we utilize the clique percolation
method [122]. When a node is removed, a 3-clique is placed to one of its neighbor and
the clique percolates until no nodes in the original group are discovered. The subgroups

of original group then choose the best groups to merge. The algorithm for detecting the

dynamic social groups based on the snapshots is given as Algorithm 2.

5.2.4 Unified Social Group Detection and Tracklet Fragment Associ-

ation

We introduce a unified social group detection and tracklet association scheme.
Sets of short tracklets extracted from two consecutive snapshots are concatenated into
longer tracklets by using adapted Hungarian algorithm [90] with contextual social groups.
We forward scan the tracklets until the number of non-overlapping tracklet pairs reaches
the maximum number of detection responses in the frames. The starting and ending
frames of the snapshot are set to the starting frame of the first tracklet and the ending
frame of the last tracklet, respectively. We then restore a static version of the ETIN
by including all the nodes that have a temporal overlap to the sliding window. We
use the approach proposed in Section 5.2.3 to detect the social groups of tracklets and

obtain the group ID for each tracklet in the time window. Finally, we integrate the
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Algorithm 7: Dynamic Social Group Detection

10

11

12

13

14

15

16

17

18

19

20

Input: Current snapshot S, detected social groups from previous snapshot

Output: New hierarchical group structure for the current snapshot

Cpre: C1,C4,...Cy, new node set N(u), removal node set R(v)

foreach v in N(u) do

if u has no adjacent edge then

Create a new group with u as the single member;

Leave other groups and overall () intact;

else if u connects existing groups then

foreach neighbor group C' do

c' O eureqs .
Calculate F},, . = ey D S ——

. . C/ .
Find the maximum Fj,/,, ;

if FC > FS

eave stay

then

Move u to C’;

else

Leave all the groups intact;

foreach v in R(v) do

if v.degree > 0 then

Place a 3-clique to one of v’s neighbor group;

Let the clique percolate until no nodes in C' are discovered;

Let the rest nodes of C' merge into other groups based on Q’;

else

Leave all the groups intact;

return Dynamically updated social groups;
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group information along with the commonly used appearance and motion models into

the affinity matrix M and formulate the linear assignment problem as:

argmin Z ¢ijM,;;,  where (5.7)
peo 4=
Mi' =N [7/)2] : eij] + 72fappr(xia xj) + A/Bfmotion(xiv xj) (58)

where ;; = leg(x;,x;)/L, L is the total number of levels of the hierarchical
grouping and lcg(-,-) is the function for computing the lowest common group of two
tracklets in the hierarchy. @ is the correspondence matrix with an element ¢;; = 1 if
tracklets z; and x; are linked and O otherwise. foppr(+,-) and fiotion(-,-) denote the
appearance and motion models, respectively. ;s are the weighting parameters to deter-
mine the importance of each model. After the association process, the newly generated
set of longer tracklets is used as input for the next round of social group detection and

fragment association until all the tracks for the pedestrians are complete.

5.3 Experiments

We validate our proposed method for understanding the dynamic social group-
ing behavior of pedestrians on a collection of videos from real-world scenes (shopping
mall, University campus, building patio) with different densities of crowds (low and
medium), viewports, and sizes of the target in the frames. Sample video frames of each
sequence are shown in Figure 5.5, 5.6, 5.7. Each video was recorded using elevated

cameras. The videos were converted to sequences of JPEG files using the open source
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Table 5.1: Percentage Distribution of the Group Sizes

size of 1 2 3 4 or more
CAVIAR [1] 0% | 57% | 8% 14%
PETS2009 [2] 13% | 42% | 21% 24%
UNIV (newly introduced) 10% 69% | 5% 16%

software “Video to Picture Converter” to produce non-interlaced 24-bit color images at
a frame rate of 30 frames per second. We apply deformable part-based detectors on all
the frames [56]. The detection responses from different frames are connected to form the
initial short tracklets. We show and discuss how the detection responses from pedestrian
detector will impact the performance of the unified social group detection and tracklet

association framework in Section IV C.

5.3.1 Data Collection

The grouping information in the current video datasets is usually unavailable
which requires us to manually determine the ground-truth pedestrian groups. We have
manually labeled two publicly available datasets that are originally used for multi-people
tracking research purpose: CAVIAR dataset [1] (low crowd density), PETS2009 [2]
(medium /high crowd density). The ground-truth labeling process is conducted by asking
three human judges to identify groups by assigning individuals with group IDs. The
judges can rewind and play a video as many times as needed. The final consensus of the
ground-truth groups are acquired by using majority voting among the judges. We also
introduced a new dataset named “UNIV” which is collected from a University building
patio from an elevated camera. The ground-truth for this data are also established by
combining decisions made by multiple human judges. There are disagreements among

the judges on some of the groups which indicates baseline ambiguity exists in the video
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sequences. The average disagreement rate on the number of group over the three datasets
is about 5% percent of the total number of groups.

Feedback from the judges indicates that the difficulty of group identification
arises when the crowd density increases. This makes PETS2009 the most difficult dataset
to label. Also it is easier to identify groups from sequences with a camera viewport
direction that is parallel with the walking directions of the pedestrians than the videos
from camera with perpendicular views to the direction of the walking people.

CAVIAR dataset captures people walking in an indoor shopping mall environ-
ment by an elevated camera. In the dataset, people either walk from near field to far
field or vice versa, and a lot of social grouping behavior can be observed during their
walking. The merging and splitting of groups also happen frequently over time. There
are also partial occlusions between the members of groups. PETS2009 dataset contains
video sequence recorded in an outdoor scene from an University campus with a high
density of people in each frame (on average 25 people are visible in each frame). Iden-
tifying individuals within a group is more challenging due to the frequent occlusions
and the abrupt motion changes (direction, velocity, etc.). UNIV dataset is collected at
a large camera angle under bright light conditions. The crowd density is larger than
CAVIAR but smaller than PETS2009 dataset. However, more grouping behaviors and
other social interactions are involved in this dataset.

The percentage distribution of group sizes from the ground-truth labeling for

the video sequences are summarized in Table 5.1.

5.3.2 Quantitative Evaluation

We set ws in Eq. (5.2) and ~vs in Eq. (5.8) to 1/3. We set the two thresholds

e = 0.05 and ¢ = 0.3 in Algorithm 1. We compare the performance of our proposed
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Figure 5.5: Group detection results from CAVIAR dataset. The pedestrians that are
walking in the same group are marked in the same color. The splitting and merging
behaviors are shown in the last four frames.
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Figure 5.6: Group detection results from PETS2009 dataset. The scene is more crowded
and complex with a lot of occlusions happen among pedestrians. The dynamic changes of
social groups are captured by the color changes of their bounding boxes. The pedestrians
with white bounding boxes are walking alone.

group detection with the following baseline approaches:

- Baseline-I [24]: A hierarchical agglomerative clustering based group analysis
approach that starts with assigning each individual into a separate group and gradually
merges the small groups into larger ones. The spatio-temporal dissimilarity between
tracklets of individuals is used as a distance measure. However, it does not explicitly
address the dynamic changes of social groups.

- Baseline-II [64]: It is another bottom-up group detection approach that is
built upon algorithms for pedestrian detection and multi-people tracking. The inter-
actions between individuals are measured by pairwise proximity and velocity without
using a network representing the interactions and modularity gain as the group measure.

We compare our ETIN approach with two baseline approaches using the eval-

uation metric as the Percentage of correctly detected Social Groups (PSG) of different

sizes. We measure the influence of simultaneous groups by using Percentage of cor-
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Figure 5.7: Group detection results from UNIV dataset. Group splitting and merging
behaviors are shown in scenario A, B and C. Scenario D demonstrates the effect of social
groups in tracklet association when partial occlusions among group members happen.
The social groups are marked in different colors of bounding boxes.
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Figure 5.8: The PSG measure is compared across the three approaches, as the percentage
of false detections varies on (a) CAVIAR, (b) PETS2009 and (c¢) UNIV.

rectly detected social groups of Any size as a function of the number of Simultaneous
groups (PAS). We also compare the performance of different approaches in tracking the
dynamic social group changes (splitting and merging) by using Percentage of correctly
detected Dynamic group Changes (PDC), which is defined as the number of correctly
detected group changes by our unified detection and association approach, divided by
the total number of ground-truth changes marked manually in the video frames.

e Results on CAVIAR dataset. We automatically detected pedestrians and gener-
ated the tracklets, and carried out the ETIN construction and modularity-based hier-
archical group detection to understand the social grouping behaviors. Sample results
are shown in Figure 5.5. The statistical results are summarized in Table 5.2. From the

table we can observe that, all the approaches are able to identify the pedestrians walking
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Table 5.2: Quantitative Evaluation on CAVIAR Dataset

Metric Baseline-1 [24] | Baseline-1I [64] | our ETIN
PSG-1 67.4% 79.2% 83.5%
PSG-2 52.2% 65.7% 75.4%
PSG-3 48.5% 57.1% 69.4%
PSG-4/more 39.3% 47.6% 67.8%
PAS-1 78.5% 82.1% 86.9%
PAS-2 54.9% 62.6% 69.4%
PAS-3/more 47.3% 51.7% 61.3%
PDC 34.5% 31.2% 79.5%

alone with a high percentage of correctness. However, when the group size increases,
the PSG scores from Baseline-1 and Baseline-II degrades more than for our approach,
which implies that our approach is more robust in detecting social groups in larger sizes.
Further, when the group size is larger than 2, our PSG score is relatively stable which
demonstrates the power of our network representation of tracklet interactions is stronger
as compared to the pairwise social interaction representation used in other approaches.
Baseline-1 achieves relatively the same low score of PDC as Baseline-II which indicates
that they do not actively address the dynamic group changes. This suggests that our
unified framework for social group detection and tracklet association that utilizes tem-
poral snapshots at different time intervals yields better performance in tracking the
dynamic changes of social groups. Our approach achieves the best performance when
more than one group appear simultaneously measured by the PAS scores. When more
than two groups appears at the same time, our approach can still maintain a relatively
large score (61.3%) which demonstrates that our approach can effectively handle the

influences across groups.
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Table 5.3: Quantitative Evaluation on PETS2009 Dataset

Metric Baseline-1 [24] | Baseline-1I [64] | our ETIN
PSG-1 49.3% 53.2% 74.5%
PSG-2 39.5% 35.1% 67.3%
PSG-3 29.7% 31.7% 59.3%
PSG-4/more 29.1% 27.5% 51.6%
PAS-1 53.6% 61.7% 78.7%
PAS-2 41.9% 50.4% 63.2%
PAS-3/more 27.2% 31.3% 51.9%
PDC 26.1% 25.5% 58.4%

e Results on PETS2009 dataset. Similar experiments were conducted on the shorter
but more challenging PETS2009 dataset. The scores of the evaluation metrics are sum-
marized in Table 5.3. Our approach gives better results (though reduced PSGs and
PDC scores) for group detection and dynamic behavior tracking performance as com-
pared to the other two approaches. Some sample detected groups and pedestrian walk-
ing behaviors are shown in Figure 5.6. Even for this harder problem, our approach still
demonstrates a substantial agreement (more than 50% of correctness) with the ground-
truth not only on the different group sizes (1, 2, 3, 4 and more than 4), but also on the
dynamic changes of the memberships of the groups.

A further investigation on the results shows that the PSG performance of our
approach is not as stable as on the CAVIAR dataset. It degrades gradually as the
number of members in the groups increase. A potential reason is that the crowd is in
medium /high density and the group members tend to walk in a random pattern to avoid
collisions to other pedestrians which results in a weakened social interactions among

group members. For a moderate crowd of 25 people per frame, our PDC score is above

120



0.5, which still indicates a reasonable to good performance of our approach in tracking
the dynamic group changes. The PAS scores have decreased to 51.9% compared to the
CAVIAR dataset when more than two groups appear simultaneously. This implies that
incorrect group information exerts on single person will have negative influence on the
tracking performance when the density of the pedestrians is large and occulsion becomes
a challenging problem.

e Results on UNIV dataset. To further evaluate the effectiveness of our approach in
understanding the dynamic social groups, we applied the approach on the UNIV dataset
where more social grouping behaviors are involved in a natural setting. The inter-group
interactions are easier to be distinguished from the intra-group interactions in the first
few frames because the groups are coming from different corners in the scene and the
walking direction of each group is different. However, it becomes more challenging when
the groups begins to merge and re-split in the middle frames of the video. A quantitative
comparison is shown in Table 5.4.

From Table 5.4 we can observe that although the PSG scores drop to some de-
gree compared to the scores from the CAVIAR dataset, the performance of our approach
still exceeds the Baselines which demonstrates that the dynamic group analysis model
and the unified group detection and tracklet association framework work effectively on
this dataset where group information plays a positive role in concatenating tracklets
of group members while intense occlusion happens. Overall, our proposed approach
achieves the best results over the other approaches in PSG scores in all the group sizes.
However, as compared to the CAVIAR dataset, the PDC scores from all the approaches
have decreased to some extent as UNIV has much more dynamic social interactions that
are interlaced with a large number of occlusions.

There are considerable drops in the PDC scores for the two Baselines compared
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Table 5.4: Quantitative Evaluation on UNIV Dataset

Metric Baseline-1 [24] | Baseline-1I [64] | our ETIN
PSG-1 60.3% 66.7% 78.6%
PSG-2 57.3% 60.4% 73.1%
PSG-3 51.2% 55.8% 70.3%
PSG-4/more 49.6% 51.4% 69.5%
PAS-1 54.8% 62.8% 74.3%
PAS-2 44.5% 49.6% 61.7%
PAS-3/more 38.6% 41.1% 48.9%
PDC 14.3% 11.9% 54.2%

to our method, particularly for the Baseline-II where the score drops from 31.2% in the
CAVIAR dataset to 11.9%. The primary reason is that the other two methods do
not handle group changes explicitly by investigating the group member interactions
over time. The PAS score shows that our approach can still achieve a relatively good

performance when more group dynamics (appear, disappear, merge, split) are involved.

5.3.3 Impact from False Detection

It is to be noted that the underlying detection errors could propagate to the
group detection process in all the approaches that are based on pedestrian detection.
To show that to what extent these approaches rely on accurate detection responses, we
artificially introduce three types of false detections into the correct detection responses.
They are: misdetections which represent the type of missing data, false responses and
inaccurate detections that represent outliers and noises separately. The first type of
false detections is added by randomly erasing correct detections and the rest two types

are added by setting detections at random locations that do not cover correct detec-
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tions. All the three types of false detections are added together at the percentages
[0,5%,10%, 15%, 20%, 25%)] of the total number of detections in the three datasets. The
group detection performance measured by PSG-2 as a function of false detection per-
centages is shown in Figure 5.8.

The results from Figure 5.8 show that the robustness of our approach given
unreliable detection responses. As expected, our approach maintains the best perfor-
mance when the false detection percentage increases. This indicates that social groups
are important contextual cues when the short tracklets are linked to form longer ones; if
a group member is occluded by other pedestrians in the scene, the other group members
that have close tracklet interactions can contribute to the estimation of the tracks of the
occluded group member. The performance of the other two approaches that do not con-
sider using group information in forming the trajectories drops as more false detections

are obtained.

5.3.4 Application: Pedistrian Tracking

The focus of this paper is our novel approach in understanding dynamic so-
cial grouping behaviors by clustering trajectories using a social network analysis based
method. However, tracking individuals by generating reliable tracks is itself a non-trivial
task because of the complexity of the environment. Therefore, for completeness, we uti-
lize our social grouping analysis framework in this section to address the individual
tracking problem, which is capable of producing reasonable results that can be com-
pared with other state-of-the-art tracking methods. Tracking individuals in the crowd
is formulated as a multi-target tracking problem. We use our modified Hungarian algo-
rithm that is integrated with individual group information to perform multi-target data

association between current trajectory hypothese and the trajectories in the following
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Table 5.5: Quantitative Tracking Performance on FM Dataset

Metric | DEEPER-JIGT [8] | VAR3 [8] | our ETIN

MOTP 0.80 2.80 0.31

MOTA 67.58% 2.73% 69.42%

frames (see Section III-D for more detail). Our modified Hungarian algorithm finds an
optimal bipartite marching between tracklets not only based on the physical similarity
but also based on the group similarity.

We evaluate our approach using the following dataset:

e Friends Meet (FM) [8]: contains groups of pedestrians that appear, disap-
pear and evolve (split and merge) over time. The dataset is composed of 53 sequences
for a total of 16286 frames. We use a subset of 25 sequences that contains sequences in
real-life outdoor scenes. The range of the individuals in a single frame is between 3 and
11.

We use the following metrics to evaluate the performance:

e MOTP (Multi-Object Tracking Precision) [10]: which we define as the to-
tal error for associated tracklet-hypothesis pairs across all the time sliding windows,
averaged by the total number of associations made. The value is the lower the better.

e MOTA (Multi-Object Tracking Accuracy) [10]: which equals one minus the
mismatch rate in the data association process. It is similar to metrics widely used in
other domains such as the word error rate (WER) used in speech recognition. The value
is the larger the better.

We compare with the following approaches as baselines:

- DEEPER-JIGT (DEcentralizEd Particle filtER for Joint Individual-Group

Tracking) [8]: a joint individual-group tracking framework based on decentralized parti-
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cle filtering which factorizes the joint individual-group state space in two conditionally
dependent subspaces. The approach is specialized in real-time tracking scenario.

- VAR3 [8]: a variant of DEEPER-JIGT which separates individual from
group tracking in two different particle filters thus blocks the contribution of the group
clustring.

The results on FM dataset are summarized in Table 5.5. Our approach reaches
the best performances in terms of the MOTP and MOTA evaluation. Moreover, the
group information has been demonstrated as a crucial source to boosting the individual
tracking. By pruning away the group information (VAR3), the performances decrease
dramatically compared to other two approaches (DEEPER-JIGT and our ETIN) which
build the connection between groups and individuals. In our unified social group detec-
tion and tracklet fragment association framework, the individual tracklets consider the
influence from the groups in the data association process which shows the effectiveness

of injecting group-driven dynamics.

5.4 Conclusions

We proposed a principled method for understanding the social grouping be-
havior of pedestrians as well as a unified framework for tracking the dynamic social
group changes and tracklet association based on the temporal snapshots of the intro-
duced evolving tracklet interaction network (ETIN). Our novel model addressed the
social group understanding problem in video sequences from a social network perspec-
tive. The novelties included representing tracklets of pedestrians and their interactions
in a network which is evolving over time and carrying out modularity to divide the

tracklets into hierarchical subgroups. The dynamic changes of social groups are de-
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tected using the restored static temporal snapshots of the original network based on the

time overlaps.

5.5 Proof of the Maximal Modularity Gain

Theorem 1: Suppose a new node u with degree d is added into the group that

. . C/
gives the maximum Fy;,, _,

then adding u to C' gives the mazximal modularity gain.
Proof: Let C” be another group of G and C” # C’. We would like to prove
that joining u into C” will give less modularity gain than joining C’. Let for denotes

the total degree of nodes in C’, and let M denotes half of the summation of the total

edge weights in G. The overall modularity Q when u joins C’ is

Q7€C'+6%/ (for+ety +d)?  ecn  (for +edn)?

— 5.9
M+d 4(M + d)? M+d 4(M + d)? (59

where A is the summation of other modularity gains. Similarly, adding u to

C" will give

(fer + eqé,)z ecr + Eqé,,

Q/ _ ecr
M+d  4(M+d)? M+d (5.10)
7(fC” +eé// +d)2 4 ecr A :
4(M + d)>2 M+d
and
1 d(fc// — fc/ + e o e“,)
/ u u C C
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. . . . /
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which means

d(for — for + 61é«// - eé/)
2(M 1 d)

€1CL</ - eqév// + >0 (513)

therefore, Q — @’ > 0 and the conclusion is true.
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Chapter 6

Summary and Future Work

In this dissertation, we proposed several methods for automated image annota-
tion and concept-based image retrieval by exploring semantic concept co-occurrence pat-
terns, automated moth image identification and retrieval and tracking multi-pedestrians
by social groups, respectively.

In Chapter 3, we present a novel approach to automatically generate interme-
diate image descriptors by exploiting concept co-occurrence patterns in the pre-labeled
training set that renders it possible to depict complex scene images semantically. Our
work is motivated by the fact that multiple concepts that frequently co-occur across
images form patterns which could provide contextual cues for individual concept infer-
rence. We discover the co-occurrence patterns as hierarchical communities by graph
modularity maximization in a network with nodes and edges representing concepts and
co-occurrence relationships separately. A random walk process working on the inferred
concept probabilities with the discovered co-occurrence patterns is applied to acquire
the refined concept signature representation. Through experiments in automatic image

annotation and semantic image retrieval on several challenging datasets, we demonstrate
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the effectiveness of the proposed concept co-occurrence patterns as well as the concept
signature representation in comparison with state-of-the-art approaches.

In Chapter 4, we describe the development of an automated moth species
identification and retrieval system (SPIR) using computer vision and pattern recogni-
tion techniques. The core of the system is a probabilistic model that infers Semantically
Related Visual (SRV) attributes from low-level visual features of moth images in the
training set, where moth wings are segmented into information-rich patches from which
the local features are extracted, and the SRV attributes are provided by human experts
as ground-truth. For the large amount of unlabeled testing images in the database
or added into the database later on, an automated identification process is evoked to
translate the detected salient regions of low-level visual features on the moth wings into
meaningful semantic SRV attributes. We further propose a novel network analysis based
approach to explore and utilize the co-occurrence patterns of SRV attributes as contex-
tual cues to improve individual attribute detection accuracy. Working with a small set
of labeled training images, the approach constructs a network with nodes representing
the SRV attributes and weighted edges denoting the co-occurrence correlation. A fast
modularity maximization algorithm is proposed to detect the co-occurrence patterns
as communities in the network. A random walk process working on the discovered co-
occurrence patterns is applied to refine the individual attribute detection results. The
effectiveness of the proposed approach is evaluated in automated moth identification
and attribute-based image retrieval. In addition, a novel image descriptor called SRV
attribute signature is introduced to record the visual and semantic properties of an im-
age and is used to compare image similarity. Experiments are performed on an existing
entomology database to illustrate the capabilities of our proposed system. We observed

that the system performance is improved by the SRV attribute representation and their
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co-occurrence patterns.

In Chapter 5, we present a framework for characterizing hierarchical social
groups based on evolving tracklet interaction network (ETIN) where the tracklets of
pedestrians are represented as nodes and the their grouping behaviors are captured by
the edges with associated weights. We use non-overlapping snapshots of the interaction
network and develop the framework for a unified dynamic group identification and track-
let association. The approach is evaluated quantitatively and qualitatively on videos of
pedestrian scenes where manually labeled ground-truth is given. The results of our
approach are consistent to human-perceived dynamic social groups of the crowd. The
performance analysis of our method shows that the approach is scalable and it provides

situational awareness in a real-world scenarios.
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