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Exploring Aligned-Images Bounds:
Robust Secure GDoF of 3-to-1 Interference Channel

Yao-Chia Chan and Syed A. Jafar
Center for Pervasive Communications and Computing (CPCC)
University of California Irvine
{yaochic, syed} @uci.edu

Abstract—Sum-set inequalities based on Aligned-Images
bounds have been recently introduced as essential elements of
converse proofs for asymptotic/approximate wireless network
capacity characterizations under robust assumptions, i.e., as-
sumptions that limit channel knowledge at the transmitters to
finite precision. While these sum-set inequalities have produced
robust Generalized Degrees of Freedom (GDoF) results for
various wireless networks, their scope and limitations in general
are not well understood. To explore these limitations, in this work
we study the robust secure GDoF of a symmetric 3-user many-
to-one interference channel. We identify regimes where existing
sum-set inequalities are sufficient, settling the GDoF for those
settings. For the remaining regime we conjecture the form of new
sum-set inequalities that may be needed, whose validity remains
an open problem for future work.

Index Terms—Finite Precision CSIT, Aligned Image Set, Sum-
set inequalities, Secure Communication, Interference Channel.

I. INTRODUCTION

The past decade has seen significant advances in our under-
standing of the capacity limits of wireless networks through
the pursuit of approximate and asymptotic metrics, such as
Generalized Degrees of Freedom (GDoF) characterizations
[1], [2]. Much of this progress has come about under idealized
assumptions that are too fragile to be meaningful in practice.
One of the biggest challenges that stands in the way of
understanding the robust capacity limits of wireless networks
is the difficulty of finding good information theoretic outer
bounds that can capture the impact of channel uncertainty.

Wireless networks are generally interference limited. Unlike
random noise, interference can be highly structured. The
structure of interference is critical to the capacity of a wireless
network because it determines the extent to which interference
can be managed — e.g., aligned [3], neutralized [4], [5],
decoded [6], or cancelled [7]. The ability to shape signals to
achieve desired interference structures depends strongly on the
amount of channel state information available to the transmit-
ters (CSIT). Yet, classical information theoretic approaches are
ill-equipped to capture this critical tension between structure
and channel uncertainty. This is evident from the fact that
some of the largest gaps between the best known information
theoretic inner and outer bounds tend to arise under channel
uncertainty [8]. From a bird’s-eye view, the difficulty may be
summarized as follows — random noise requires statistical
thinking which is well represented in the elegant toolset of
classical information theory; however, accounting for struc-
tured interference tends to require combinatorial reasoning

that, despite its importance, is far less developed in net-
work information theory, and is even more challenging under
channel uncertainty. Advances in this direction are few and
far in between. One of the most promising recent advances
is the emergence of the so called Aligned-Images Sum-set
Inequalities.

Introduced by Davoodi and Jafar in [9], [10], Aligned-
Images Sum-set Inequalities (in short, AI bounds) are infor-
mation theoretic GDoF bounds that compare the entropies of
different linear combinations (sums) of transmitted signals,
when the combining coefficients (channels) are known to
the transmitters only to finite precision. In their generalized
forms Al bounds allow various forms of partitioning of signals
by power levels, antennas, and alignment chains. Al bounds
are based on a combinatorial accounting of the number of
codewords that can cast resolvable images [11] at one receiver
while casting ‘aligned images’ at another receiver. These
bounds have been instrumental in settling important conjec-
tures [12], closing large GDoF gaps [9], establishing new DoF
characterizations [13], [14], identifying new parameter regimes
for optimality of robust schemes such as treating interference
as noise and rate-splitting [15]-[18], shedding new light on the
significance of network coherence times [19], and quantifying
extremal behaviors [20], [21]. The significance of Al bounds
is underscored by their surprisingly large advantage over the
best known alternatives; for example Al bounds show that
under finite precision CSIT a K user interference channel has
no more than 1 DoF [9], but no alternative approach thus far
has produced an outer bound under finite precision CSIT that
is better (smaller) than the trivial K /2 DoF bound (which
corresponds to perfect CSIT [22]). The lack of alternatives
suggests that exploring and expanding the scope of Al bounds
may be imperative to further progress. This is the motivation
for our work in this paper.

Following the information-theoretic mindset of studying ele-
mental models that bring fundamental issues into sharp focus,
we seek the simplest settings that allow us to see both the
utility and limitations of Al bounds. Our search brings us to the
problem of secure GDoF characterization of a symmetric 3-
to-1 (only the first user sees interference) interference channel
(see Fig. 1) under finite precision CSIT (in short, SGDOFgﬁ'l).
This problem is the ‘simplest’ in the sense that any further
simplification reduces it to a solved problem for which known
Al bounds are sufficient. For example, if we remove the
security constraint, then the GDoF are characterized in [10];



o1 =1
Wi — X1 —>@ D— Y1 — Wi, B, e
a2 =
W2—>X2—>@ _l@—>Y2—>WQ
iz =
Wi — X3 =3 Q)= Y3 — Ws
aszz =1

Fig. 1. A 3-to-1 Gaussian interference channel with secrecy constraint (2).

if we reduce the number of users then the secure GDoF of the
remaining Z-channel are fully characterized in [23]. However,
the known Al bounds appear to be insufficient to characterize
SGDoFgﬁ'l. Against this background, there are two main
contributions of this work. First, we identify regimes where
existing Al bounds are sufficient, settling SGDoF; ™, for those
settings. For the remaining regime we draw upon available
insights to conjecture the form of new sum-set inequalities
that may be needed, as well as the resulting SGDoFgﬁ'1
characterization. The validity of the conjectured new sum-set
inequality is currently an open problem.

Notations: For m,n € N with m < n, denote [n] =
{1,2,---,n} and [m : n] = {m,m+1,--- ,n}. For random
variables A, B, C and G, denote Hg(A | B) = H(A|B,G) and
Ig(A;B | C) = I(A;B|C,G). If {X(¢t): t € [T]} is well-
defined for some 1" € N, then we denote this set as a bold X.
For two functions f(z) and g(x), denote f(z) = o(g(x)) if
lim, o f(2)/g(z) = 0. Note that the values can be positive
or negative. All logarithms are to the base 2.

II. PROBLEM FORMULATION FOR SGDoFg,:ﬁ’,'1

We consider a 3-to-1 Gaussian interference channel (IC) as
depicted in Fig. 1. The messages W, are encoded into code-
words X ; = Ez(W1791)9 where i € [3], X, = {Xl(t) ct e
[T]} is a codeword spanning T channel uses, E; is the
encoding function, and 6, is private randomness available
to Transmitter ¢. The messages W; and the randomness 6;
are independent of each other and independent across users.
Codewords X ; are subject to a unit transmit power constraint;
ie., 7 Z;‘ll E[| X;(t)|?] < 1 for i € [3]. Following the GDoF
framework, the received signals in the ¢-th channel use are
defined as,

3
Yi(t) = Gin(t) VP Xy (t) + Ni(t), (1)
k=1

where a;r = 0 for i € {2,3},k € [3] and i # k. P is a
nominal power variable, which approaches infinity to define
the GDoF metric. The N;(¢) are the zero-mean unit-variance
additive white Gaussian noise terms. All symbols are real-
valued. Let G be a set of random variables that are drawn
from bounded-density distributions (see Definition 4 in [10]),
whose realizations are known to all the receivers and none
of the transmitters. For ease of exposition' let us assume that
elements of G are i.i.d. uniform in (1 — 6,1 + ¢) for some
small fixed 6 > 0, in order to model finite precision CSIT.

! Generalization to all bounded-density distributions [9] is immediate.

The random coefficients G;(¢) in (1) are distinct elements of
G, ie., Giy(t) € G forall i,k € [3],¢ € [T]. Note that we have
I({W;, X, : i € [3]}; G) = 0. We assume a symmetric setting
with channel strength parameters av1; = a9y = a3z = 1 and
Q12 = Q13 = Q.

Remark 1: The parameters «;; correspond to the approxi-
mate values of the point to point channel capacities in the orig-
inal finite-SNR channel setting to which the GDoF framework
is applied. To briefly summarize the intuition behind the GDoF
metric, note that the capacity of the point-to-point channel
from Transmitter k£ to Receiver ¢ in the GDoF model (1) is
~ %aik log(P). Thus, the GDoF framework scales the original
capacity of each link, a1, by the same nominal scaling factor,
%log(P). Intuitively, this scales the capacity of the network
approximately by the same scaling factor of %log(P) as
well, so that normalizing all rates by %log(P) as is indeed
done in the definition of GDoF (see equation (3)) provides
an approximation to the original network capacity. Indeed
the deterministic models of [2], which have been essential
to various capacity approximations over the past decade, are
specializations of the GDoF framework under perfect CSIT.

A rate tuple (Ry, Ro, R3) € RY is achievable if, Ve > 0,
34T > 0, such that (i) each message is comprised of T R;
i.i.d. uniform bits, (ii) the average decoding error probability
of each user is no larger than ¢, and (iii) the following secrecy
constraint is satisfied,

Ig(W_i1Y;) < Te, Vie[3] )

where W_; = {W; : j € [3],j # i}. The secure capacity
region Cp is the closure of the set of all achievable secure rate
tuples. Finally, the secure GDoF (SGDoF) region of the 3-to-1
interference channel under finite precision CSIT is defined as

D —0o0 = 10
SGDOFgf)l = (dlaan d3) V’L e [3]7 2 g (3)
(R1,R2,R3) € Cp
III. DEFINITIONS
The following definitions are inherited from [10].
Definition 1 (Power levels):
X\ 2{0,1,2,--- ,P* -1}, 4)

where A > 0 and P* = L\/ﬁ)\J We refer to A as power level,

and abbreviate P! = P.
Definition 2 (Segments): For non-negative real numbers
X, A1 and Ay with A\ < Ao, define

()t & {(X - P Lp)izj)J .

A1 P/\1

as the segment of X between power levels Ay and A;.
Intuitively, this segment is analogous to expressing X in P-
ary symbols and keeping only the segment of symbols from
the A\4* most-significant symbol to the A" most significant
symbol. Similarly, let us define (X)}* 2 {(X)j\\f X € X}.
For X € X, and with A > p > 0, the segment (X)L#
appears frequently in this work, so we denote it as (X)*. It



can be intuitively interpreted as the ¢ most significant symbols
in the P-ary expansion of X. Similarly, we define (X)* =
{(X)*: XeX}.

IV. RESULTS

In Section IV-A, we identify channel regimes where the
SGDoF region can be established with the known sum-set
inequalities from [10]. For the remaining parameter regime
where the SGDoF characterization is still open, we conjecture
that new sum-set inequalities may be needed. Section IV-B
formalizes this conjecture.

A. Utilizing existing Al bounds

The following theorem characterizes the SGDoF region for
certain channel regimes where the known sum-set inequalities
are shown to be sufficient.

Theorem 1: For all values of o except 1.5 < a < 2, the
SGDoF are characterized as follows.

1) Case 1: 0<a<1

SGDoFfp1 = {(dy,da,ds) | (6),(7),(8) are satisfied.}

0<d <1, Vie[3 (6
di+d; <2 a, Vi=23 (7
di+do+ds <3—a. (8)

2) Case 2: 1<a<lbora>2

SGDoFgﬁ'1 = {(dy,d2,ds) | (9),(10), (11) are satisfied.}

0<d; <1, vie[3] )

dy+d; <1, Vji=2,3 (10)
1

e — <1 11

di+ 3 — min{a, 2} (d> +ds) < (I

Remark 2: The two-user bounds in (10) are not implied
by the bounds for the 2-user Gaussian Z channel found in
[23]. This is because even if we set the rate for a user to
zero, that user’s transmitter remains available as a potential
helper (jammer) to enhance security for others, and that user’s
receiver remains active as an eavesdropping threat. Thus,
setting the rate of a user to zero is not the same as removing
that user, and the 2-user bounds in this work are indeed
different from those found in [23].

B. Exploring new Al bounds

Despite our efforts in this direction, as noted in Theorem
1, the SGDoF region remains open when 1.5 < o < 2. Based
on the insights available to us from these efforts, we currently
believe that for this regime new Al bounds may be needed.
Going one step further, we conjecture what these new Al
bounds may look like.

Conjecture 1: For t € [T] and k € [3], let X(¢) € A}, and

3 3

Y(t) = =2 LA

=1

ZLGk()

k=1

)] (12)

where G £ {G}.(t), Hi(t) : t € [T],k € [3]} are a set of i.i.d.
uniform random variables in (1 — 4,1+ J) for a given § > 0.
For ¢ € [n] and ¢ € [T], we define A\, =1— £, and

Xpe(t) = <Xk<>>“1 Zy(t) = (Z(t)3 "

t) = Z Z [Pl () Xua (1) ]

=1 k=1

13)

(14)

where h{, are arbitrary constants for all k € [3],] € [{] and
¢ € [n]. We collect Y (t), Ly(t), and Z,(t) for all t € [T]

respectively as Y, Ly and Zy, and denote L4 = {L, : ¢ €
A} and Z 4 ={Z,: ¢ € A}, where A C [n]. Then
Hg(Y|W) > Hg(Ly, Zy|W) + To(log P), ~ (15)

for any set of random variables W such that I(X, W;G) = 0,
and {U,V} forms a partition of [n].

Remark 3: Inequality (15) has a similar form to the existing
sum-set inequalities, and is a generalization of Theorem 4 of
[10] under the same setting, i.e., the number of inputs, the
number of the power level partitions and their heights. This
can be seen by setting U = [n] and V = 0 in (15), which leads
to Hg(YW) > H(Lq, Lo, --- , L, |W).

The essence of this conjecture lies in the ability to choose
arbitrary combinations of input segments as in L;,, or output
segments as in Zy for each of the n power level partitions.
Various special cases of this conjectured sum-set inequality
have already been proved previously. At one extreme, if we
always choose output segments, i.e., i/ = () and V = [n], then
such a choice leads to the bound Hg(Y'|W) > Hg(Z|W) +
To(log P), which is implied by Theorem 4 of [10]. At the
other extreme, if we always choose input segments, i.e., Y =
[n] and V = 0, then we have Theorem 4 of [10], as noted
in Remark 3. Other special cases of the conjectured bound
that are already covered by existing sum-set inequalities of
[10], include the case where V = [m], i = [m + 1 : n], and

ey = 1for £ € [m+1:n] and zero otherwise. This leads
to the bound
Hg(Y |W) = Hg((2)*, X'~ |W) (16)

which can also be obtained from [10].

Finally, while we omit the details for this observation, let
us note that if Conjecture 1 is true, then the bounds (9), (10),
(11) also describe the GDoF region for 1.5 < « < 2, i.e.,
Case 2 covers all o > 1.

V. PROOF

Case 1 is already proved in [16], so in this section we focus
on the proof for Case 2.

A. Achievability

In robust settings (finite precision CSIT), the main challenge
is to prove the information theoretic outer bounds, while the
optimal achievable schemes are relatively quite straightfor-
ward. That is also the case here. Given that achievability is
rather trivial, we will only briefly summarize it here. When
a > 2, the SGDoF region is reduced to a tetrahedron with
vertices (1,0,0), (0,1,0) and (0,0, 1). The first tuple is trivial.
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Fig. 2. Achievability of the SGDoF tuple (d1,d2,d3) = (0,1,2 — «).

For the tuple (0,1,0), User 2 achieves 1 DoF by encoding
the message W, into X, with a wiretap codebook, while
Transmitter 3 transmits a jamming signal to prevent Receiver
1 from eavesdropping. The tuple (0,0, 1) is similarly achieved
and time-sharing covers the entire SGDoF region.

On the other hand, when 1 < o < 1.5, the SGDOF region is
a polyhedron with vertices (0, 1,0), (0,0, 1), (1,0,0), (0,1, 2—
«) and (0,2 — a, 1). It suffices to show the achievability of
(0,1,2 — «) as the other tuples either follow from symmetry
or can be achieved as described previously. As illustrated
in Fig. 2, User 2 achieves his maximum 1 DoF with a
wiretap codebook. To prevent Receiver 1 from eavesdropping,
Transmitter 1 sends a noise signal that jams everything up to
power level 1, while Transmitter 3 sends a jamming signal that
hides the remaining top o — 1 power levels from Receiver 1.
This leaves Transmitter 3 with the bottom 1 —(a—1) =2—«
power levels that it can use to communicate with his desired
receiver, thus achieving d3 = 2 — a.

B. Converse

The single-user bounds (9) are trivial. To show the other
bounds (10) and (11), we need the following deterministic
model.

1) Deterministic model: We associate the Gaussian model
(1) with the following deterministic model:

3
Yi(t) =D [Gu(®) X (t)] (17)
k=1
Yi(t) = |Gu(t)P' ™ X,(t)] ;i = 2,3 (18)

where ¢t € [T, and the new inputs X;(t) = Ey (W1,60;) €
Xy, and X;(t) = E; «(W;,0;) € X, (i = 2,3) are codewords
independent of G. As shown in Lemma 5.1 of [9], the SGDoF
region of this deterministic model forms an outer bound of the
SGDOF region of the original Gaussian model (1).

2) The Bounds di +d; <1 (j = 2,3), for a > 1 : Here
we take j = 2 as an example and case j = 3 can be similarly
shown. We start from bounding Hg(Y 1|W;) from below.
Terms of the form To(log P), which are inconsequential for
GDoF, are omitted for brevity.

Hg(Y1|W1) > Hg(Z|Wh) (19)
= Hg(Z) (20)
= Hg(Z,W>) (21)
> TRy + Hg(Z|W>) (22)

> TRy + Hg((Y1)* ' [Wa)  (23)
=TRy + Hg((Y1)* 1), 24)
where Z = {Z(t) : t € [T]} and Z(t) = |G2(t)X2(t)] +

|G3(t)(X3())*7t], and G1(t),G2(t) € G for all t € [T].
Inequality (19) follows from Theorem 4 of [10]. The inde-
pendence of Z and W, gives us (20). Note that X, appears
in Z with strength o whereas X 3 appears in Z with reduced
strength a— 1, thus the top 1 power levels of Z expose (X2)*.
In other words, from Z one can obtain (X ) within bounded
distortion, from which W5 can be decoded. This gives us (21).
By the chain rule of entropy we have (22). Then we apply
Theorem 4 of [10] once again to obtain (23). Finally, (24)
follows from the security constraint (2). Next we apply Fano’s
inequality on User 1, and get

TRy < Ig(Yq;Wh) (25)
< Hg(Y1)— Hg((Y1)* ') = TR, (26)
< Hg(Y1 | (Y1)* ') - TR, 27)
< Tlog P — TR,, (28)

where inequality (26) is obtained by expanding mutual in-
formation as a difference of entropies and substituting from
(24). In the next step, (27) follows from the identity H(A) —
H(B) < H(A | B). Next, (28) follows because after the
conditioning on its top o — 1 power levels, the remaining 1
power level of Y| cannot carry more than 1 GDoF. Rearrang-
ing (28), normalizing both sides by T'log P = 37T log(P), and
applying the GDoF limit, we get the desired bound (10), i.e.,
di + d2 < 1, which concludes the proof.

3) The Bound di +ds+ds < 1 for « > 2. : Similar to the
procedure in Section V-B2, we start by bounding Hg (Y 1|W7)
from below, as follows.

Hg(Y1|Wh)

> Hg((X2)", (Y1)* 1 {Wh) (29
= Hg((X2)', (X3)", (Y1)* ! |W) (30)
= Hg((X2)',(X3)', (Y1)*) 31)
>T(Rs + R3) + Hg((XQ)l, ()_(3)1, (Yl)a_1|Wg, Wigz)
> T(Ry + R3) + Hg (Y1)~ Wy, W) (33)
=T(Ry + R) + Hg((Y1)* ). (34)

First we apply? Theorem 4 of [10] to obtain inequality
(29). Then (30) follows because one can cancel (X3)! from
(Y1)*! and extract (X 3)* within bounded distortion. Such
an operation is possible since « — 1 > 1. The next step,
(31) drops the conditioning on W; because none of the terms
contain X1, and therefore all terms are independent of W;
(up to the GDoF approximation). Note that X; appears only
in the bottom 1 power level of Y, which has zero overlap
with the top o — 1 power levels of Y, because o > 2. Next,

(32) holds because we can decode W5 and W3 respectively

2Using the notations in [10], we letL = 2,01 = L = a—
1,11 = I» = {2}, and choose ~i,72, 01,01 properly, so that Z;(t) =
[Gr2()(X2(8)* 1] + |G13()(X3(8))* 1], and Za(t) = (X2(t))" for
all t € [T).



from (X 2)! and (X3)!. Then we get (33) by dropping off
(X5)! and (X3)!, and arrive at (34) by applying the security
constraint (2). Now, we again apply Fano’s inequality to User
1, and get

TRy <Ig(Y1; W) (35)
< Hg(Y1) = Hg((Y1)* ') = T(R: + Rz)  (36)
<TlogP — T(R2 + R3), (37

where we apply the definition of mutual information and
substitute from (34) to obtain (36). The next step uses the same
reasoning as was used to get (28) from (26). Rearranging terms
and applying the GDoF limit to (37) we obtain the desired
bound (11) for a > 2, i.e., d; +ds +d3 < 1, which concludes
the proof.

4) The weighted sum bound for 1 < o < 1.5: In this
section we show the weighted sum bound (11) when 1 <
a < 1.5. First we apply Fano’s inequality to User 1 and get

TRy <Ig(Y1;W1) (38)
< Ig(Y1; Wi |(X2)* 7, (X3)*h) (39)
<TlogP — Hg(Y1|Wy, (X2)* 1, (X3)*™1). (40)

Inequality (39) holds because (X5)*~! and (X3)*~! are in-
dependent of W7, and the identity that I(A; B) < I(A; B | C)
holds whenever A is independent of C. Then (40) follows by
applying the definition of mutual information and bounding
the first entropy term.

To find a lower bound for Hg (Y 1|W, (X2)*™ 1, (X3)*~1)
in (40), we make use of the following lemma, whose proof is
relegated to Sec. V-C

Lemma 1: Let r be a rational number satisfying 0 < r <
a — 1. Then

Hg(Yl‘Wl, (XQ)ail, (XS)ail)

T _ _
oy (R2+ Rz + (r+1—a)log P) + To(log P) (41)

Let {rreQ: £€N,0<r <a—1} be a non-decreasing
sequence with limy_,o 1y = o — } 3 Then by Lemma 1, for
all £ € N, we have (with T'o(log P) terms omitted as usual)

Hg(Y1|[Wy, (X2))* 7, (X3)*7 )

1 3 _
> TRy + Ry)+ (2= 1) TlogP  (42)
2—ry 2—ry

Since the right-hand side is a continuous function of r, in the
neighborhood of « — 1, and 7y — o — 1 as ¢ — oo, we have

a—1 a—1
i o H (VW (X)) (X))
1 3—w
= g (e ) (z_w - 1) @)
L 44
3—a(d2+d3) (44)

By plugging (44) back into (40) and applying (3), we get the
desired bound (11) for 1 < o < 1.5. This concludes the proof.

3For example, choose 7, = {(a —-1)x 105+Z*J J104+E | where £* =

[(a — 1) x 10¢] # 0}.

min{¢ :

a—1
”’)\O
p+1 att |ls
1 1
2 p+2 at2 ||:
. . . o 2
: : : s
p—1 2p—1 Pt+ag—1], N
i~ \p—1
L P 2p pta |5
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Fig. 3. The mapping between U, and segments of X, defined in (45)

C. Proof of Lemma 1

Since r is rational, we let r = % where p # 0, ¢ are coprime

integers. Also we define \y =1 — g, and

Lell:pl
tefp+1:q
lefg+1:29—p|.

= Ao—
(Xl)Az '
(Xa)3
(X:s)iﬁizfl

(45)

Fig. 3 depicts the mapping between index ¢ and the segments
of X, where k € [3]. Then by applying Theorem 4 of [10],
for ¢ =1,2,---,2qg — p we have

Hg(Y 1 W) > HU ¢, Ui, Urpq1|WV), (46)

where modulo-(2¢g — p) is implicitly applied on the indices,

and W = {W;, (X)L, (X3)* 1}. On the right hand side

G is removed because it is independent of {U, : £ € [2¢—p]}.
Next we sum up the 2¢ — p inequalities in (46), and get

(2 — p)Hg(Y 1|WV)

2q—p
Z Z H(ﬁ—f705+17"' 70€+Q*1|W) (47)
=1
>qH(U1,Usz, - ,Usqp|W) (48)
> qH((X ﬁ (X2)b, (X3)k W) (49)
=qH((X1)", (X )m(Xz)a L (X 3), (X5)* W)
—qH((X2)* ' (X35)* W) (50)

> qH((X1)", (X2)a_1,(X3)a_1/W1)
—qH((X2)"H (X)) (5D
> qH((X1)* ", (X2)' (X3)' W) — g(a —1—r)Tlog P
—qH(

H((X2)*™ 1 (X3)* 1 w) (52)

Inequality (48) holds due to the submodularity of entropy. The
next inequality, (49) holds because we can recover (X )P/
from {U[ ¢ € [p]} within bounded distortion, and likewise
(X,)} p/a is obtained from {U, : ¢ € [p+ 1 : ¢]} and
(X3)} p/q from {Uy: ¢€[qg+1:2q—pl]}. Then (50) follows
by the chain rule of entropy and r = ;’ Note that one can
recover (X )¢, from (X ;)*~! and (X)! within bounded
distortion for k = 2, 3; so we have inequality (51). Finally in



inequality (52), we apply the uniform bound on the entropy of
(X 1)3~" and recognize that (X )2, = (X)', for k = 2,3.

Then we bound H((Xl)a_l, (Xg)l, (X3)1 |W1) in (52)
further from below as follows

H((X1)* (X)), (X3)! W)

> H((X1)* 1 (X)), (X3) W, Wa, W3) + T(Rs + Rs)
(53)

> H((X1)1 (X 9)?@D (X 3)2@= 1wy, Wy, W)
+T(Ry + R3) (54)

> Hg((Y1)* D |Wy, Wa, Ws) + T(Ry + Rs) (55)

= Hg((Y1)** V|W1) + T(Ry + Rs) (56)

Inequality (53) holds because Wy and W3 can be decoded
respectively from (X5)! and (X3)!, and then by the chain
rule of entropy. Next we note that (X )2(®~1 is a function of
(X x)! due to the fact that 2(a—1) < 1, where k = 2, 3, so we
have (54). Next, (55) holds because G is independent of X,

(k € [3]), and (Y'1)*@~Y can be recovered with G, (X)*~!
and (X;)?(®=1) with k& = 2,3 within bounded distortion.
Finally, we apply the secrecy constraint (2) to obtain (56).

Plugging (56) back into (52), we get

Hg(Y1|W)

> % [T(Rg +R3)—(a—1—7)Tlog P
+ Hg((Y1)* D)
— H(X2)"™ (X" Wh)| 57)

T _
ﬁ(Rz—l—R:&—&-(T—i—l—a)logP), (58)

which is the desired lower bound of Lemma 1. We apply
Theorem 4 of [10] to the first entropy term of (57) to obtain
(58). This concludes the proof.

VI. CONCLUSION

Taking the problem of characterizing the secure GDoF of a
3-to-1 interference channel under finite precision CSIT as an
instance, we explore the utility and limitations of existing sum-
set inequalities. On one hand we identify parameter regimes in
which the known sum-set inequalities are sufficient, and settle
the GDoF for these regimes as a byproduct. On the other hand,
for the remaining regime we posit that the existing sum-set
inequalities might not be enough to obtain tight GDoF bounds.
Based on this regime, we conjecture a generalized sum-set
inequality whose validity is currently an open problem for our
ongoing work.
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