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MOVE-REDUCED GRAPHS ON A TORUS

PAVEL GALASHIN AND TERRENCE GEORGE

Abstract. We determine which bipartite graphs embedded in a torus are move-reduced.
In addition, we classify equivalence classes of such move-reduced graphs under square/spider
moves. This extends the class of minimal graphs on a torus studied by Goncharov–Kenyon,
and gives a toric analog of Postnikov’s and Thurston’s results on a disk.

Introduction

Let T = R2/Z2 be a torus, and let Γ be a bipartite graph embedded in T. We say that two
such graphs Γ,Γ′ are move-equivalent if they are related by the moves (M1)–(M2) shown in
Figure 1. We say that Γ is move-reduced if there does not exist a graph Γ′ move-equivalent
to Γ to which we can apply one of the reduction moves (R1)–(R3) shown in Figure 2. The
goal of this paper is to describe which graphs Γ are move-reduced, and which pairs of move-
reduced graphs are move-equivalent. A similar problem has been considered in [GK13] for
the class of minimal graphs. Each minimal graph is move-reduced, however, the converse is
not true; see Figure 3.

We briefly summarize our main results; see Section 1 for more details. It was shown
in [GK13] that move-equivalence classes of minimal graphs are classified by their Newton
polygons N . The sides of N are obtained by taking the homology classes of strands in Γ.
Here, a strand is a path making a sharp right (resp., left) turn at each black (resp., white)
vertex. A strand of a move-reduced (as opposed to minimal) graph Γ may intersect itself,
and this induces a weak decoration λ = (λe)e∈E(N) of N , labeling each side e = (i, j) of N
by a partition λe of gcd(i, j). Our first main result (Theorem 1.5) gives a characterization
of move-reduced graphs in terms of weakly decorated Newton polygons that parallels the
results of [GK13, Pos06].

Our second main result concerns move-equivalence classes of move-reduced graphs. The
solution to this problem turns out to be more subtle than its counterparts in [GK13, Pos06].
First, we show that in a move-reduced graph, different strands corresponding to the same
side of N never cross each other. This induces a strong decoration α = (αe)e∈E(N) of N ,
labeling each side e = (i, j) of N with a cyclic composition αe of gcd(i, j). We associate a
rotation number d(α) to α, and our second main result (Theorem 1.13) is that the set of
all move-reduced graphs with strongly decorated Newton polygon (N,α) is a union of d(α)
move-equivalence classes. The classes are distinguished by the value of an explicit modular
invariant µ(Γ) ∈ Z/ d(α)Z associated to each move-reduced graph Γ.
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←→ ←→

(M1) The spider move. (M2) The contraction-uncontraction move.

Figure 1. Equivalence moves for bipartite graphs in T. One can also apply
these moves with the roles of white and black swapped. For (M1), the vertices
of the square are assumed to have degree at least three. For (M2), the two
white vertices are assumed to be distinct and have degree at least two. The
shaded area denotes a small open disk inside T.

−→ −→ −→

(R1) Parallel edge reduction. (R2) Leaf reduction. (R3) Dipole reduction.

Figure 2. Reduction moves for bipartite graphs. (R1) removes one of two
parallel edges, (R2) removes a leaf together with its single neighbor, and (R3)
removes an isolated edge.

Our motivation to study move-reduced graphs arises from the dimer model on Γ and
the associated spectral transform of [KOS06, KO06]. Each weighted bipartite graph (Γ,wt)
with positive real edge weights embedded in T determines a simple Harnack curve with a
distinguished line bundle. It is thus natural to study which limiting objects appear when
one sends some edge weights to zero. This corresponds to deleting edges from Γ and then
applying reduction moves. Note in particular that the move-reduced graph Γ2 in Figure 3(b)
is obtained from the minimal graph Γ1 in Figure 3(a) by removing a single edge, which
demonstrates that the class of move-reduced graphs is more naturally suited for this problem.

For the case of planar bipartite graphs in a disk, the role of the spectral transform is played
by Postnikov’s boundary measurement map [Pos06]. This map associates to each weighted
planar bipartite graph in a disk a point inside the totally nonnegative Grassmannian. The
boundary measurement map is continuous with respect to sending some edge weights to zero.
Our motivating problem is to find a suitable compactification of the space of Harnack curves
with line bundles such that the spectral transform would have similar continuity properties.

As an important step towards Postnikov’s results, he characterized move-reduced graphs
on a disk and showed that their move-equivalence classes are in bijection with positroids.
The present manuscript is the first in a series of papers aimed at studying the toric analog
of the totally nonnegative Grassmannian and its positroid stratification.

1. Main results

In Section 1.1, we introduce the notions of weakly and strongly decorated polygons. In
Section 1.3, we will associate a weakly decorated polygon with any bipartite graph embedded
in the torus, and we will use it to characterize move-reduced graphs. In Section 1.4, we will
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(a) Graph Γ1. (b) Graph Γ2. (c) Γ2 with strands. (d) Γ3 with strands.
(2)

(1) (1)

(1, 1)

(1) (1)

(e) Ṅ(Γ2). (f) Ṅ(Γ3).

Figure 3. The graphs Γ1 and Γ3 are minimal in the sense of [GK13] and
therefore are move-reduced. The graph Γ2 is not minimal but is move-reduced.
See Section 1.3 for a definition of strands and Ṅ(Γ).

associate a strongly decorated polygon to any move-reduced graph Γ, and will use it to
characterize which graphs are move-equivalent to Γ.

1.1. Decorated polygons. A convex polygon N in the plane R2 is called integral if its
vertices are contained in Z2 ⊂ R2. We denote the set of edges of N by E(N), and orient
them counterclockwise around the boundary of N so that each edge is a vector in Z2. For
an edge e = (a, b) of N , let |e|Z := gcd(a, b) be its integer length. For vectors e, e′ ∈ Z2, let
det(e, e′) be the determinant of the 2× 2 matrix with columns e, e′.
A partition of n with k parts is a tuple λ = (λ1 ≥ λ2 ≥ · · · ≥ λk > 0) such that |λ| :=

λ1+λ2+ · · ·+λk = n. A composition of n with k parts is a tuple α = (α1, α2, . . . , αk) ∈ Zk
>0

such that |α| := α1 + · · ·+ αk = n. A cyclic composition of n with k parts is an equivalence
class of compositions of n with k parts under cyclic shifts (α1, α2, . . . , αk) ∼ (α2, . . . , αk, α1).
Thus, forgetting the order of the parts of a (cyclic) composition yields a partition.

Definition 1.1.

• A weakly decorated polygon is a pair Ṅ = (N,λ), where N is a convex integral
polygon, and λ = (λe)e∈E(N), where λe is a partition of |e|Z.
• A strongly decorated polygon is a pair N̈ = (N,α), where N is a convex integral
polygon, and α = (αe)e∈E(N), where αe is a cyclic composition of |e|Z.

1.2. Minimal graphs. Recall that a strand or a zig-zag path S is a walk in Γ that turns
maximally right at the black vertices and maximally left at the white vertices of Γ. The
set of strands of Γ is denoted by S(Γ). Since Γ is finite, a strand S is a (not necessarily
simple) closed walk, and we let [S] ∈ Z2 = H1(T,Z) denote its homology. Since each edge
of Γ is contained in two strands that traverse it in opposite directions, the sum

∑
S∈S(Γ)[S]

is zero, so we can associate to Γ an integral polygon N(Γ), called the Newton polygon of Γ,
as follows. We let N(Γ) be the convex integral polygon N (possibly degenerate, i.e., having
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0 area), unique up to translation, whose counterclockwise-oriented boundary consists of the
vectors ([S])S∈S(Γ) in some order.
A face of Γ is a connected component of T \ Γ. Thus, a face of Γ is contractible if and

only if it is homeomorphic to an open disk.
Let π : R2 → T denote the universal covering map. Let Γ̃ := π−1(Γ) denote the corre-

sponding biperiodic graph in R2. Following Goncharov–Kenyon [GK13], we say that Γ is
minimal if every face of Γ is contractible, there is no strand with zero homology, there is no
strand with a lift in Γ̃ with a self-intersection, and there are no parallel bigons in Γ̃, i.e., pairs
of lifts of strands in Γ̃ that pass through edges e1 ̸= e2 of Γ̃ with both lifts oriented from e1
to e2. The class of minimal graphs is preserved by move-equivalence, and minimal graphs
are move-reduced. Therefore, move-equivalence classes of minimal graphs are a subset of
move-equivalence classes of move-reduced graphs. We will extend the following two results
about minimal graphs to move-reduced graphs.

Lemma 1.2. [GK13, Lemma 3.14] Let Γ be a minimal bipartite graph embedded in T with
Newton polygon N(Γ) = N . Then Γ has 2Area(N) contractible faces.

We generalize Lemma 1.2 and prove the converse in Theorem 1.5.

Theorem 1.3. [GK13, Theorem 2.5 and Lemma 3.11] For any convex integral polygon
N , there exists a minimal bipartite graph Γ that admits a perfect matching and satisfies
N(Γ) = N . Two minimal graphs Γ,Γ′ are move-equivalent if and only if N(Γ) = N(Γ′).

Theorem 1.3 is generalized in Proposition 1.11 and Theorem 1.13; see Remark 1.14.

1.3. Move-reduced graphs. We say that two strands S, S ′ ∈ S(Γ) are parallel if [S], [S ′] ̸=
0 and [S] ∈ R>0[S

′]. For each edge e ∈ E(N), we let

Se(Γ) := {S ∈ S(Γ) | [S] ∈ R>0e}
denote the corresponding set of parallel strands. Thus, we have e =

∑
S∈Se(Γ)[S], and we

let λe := (|[S]|Z)S∈Se(Γ) be the corresponding partition of |e|Z. We call Ṅ(Γ) the weakly
decorated Newton polygon of Γ. The weakly decorated Newton polygon is invariant under
(M1)–(M2) but not under (R1)–(R3).

In Proposition 1.11, we will see that for any weakly decorated polygon Ṅ , there exists a
move-reduced graph Γ satisfying Ṅ(Γ) = Ṅ . On the other hand, it is clear that any graph Γ
can be transformed into a move-reduced graph using the moves (M1)–(M2) and (R1)–(R3).

Definition 1.4. For a partition λ = (λ1 ≥ λ2 ≥ · · · ≥ λk > 0) of n with k parts, the excess

of λ is defined by exc(λ) := n−k =
∑k

i=1(λi−1). If λ = (λe)e∈E is a collection of partitions,
we denote exc(λ) :=

∑
e∈E exc(λe).

We are ready to state our first main result.

Theorem 1.5. Let Γ be a bipartite graph embedded in T with weakly decorated Newton
polygon Ṅ(Γ) = (N,λ). Assume that Γ has a perfect matching. The following conditions
are equivalent.

(1) Γ is move-reduced.
(2) Γ has 2Area(N) + exc(λ) contractible faces, no contractible connected components,

and no leaf vertices.
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Figure 4. A move-reduced graph with no perfect matchings and whose New-
ton polygon is a single point.

Remark 1.6. If Γ is minimal, then λe = (1, 1, . . . , 1) for each edge e ∈ E(N), so exc(λ) = 0.
Moreover, Γ has no contractible connected components since we would have a zero-homology
strand and no leaf vertices since we would have a strand whose lift in Γ̃ has a self-intersection.
Therefore, Theorem 1.5 generalizes Lemma 1.2 and also shows the converse.

Remark 1.7. The assumption that Γ has a perfect matching is essential; for example,
Theorem 1.5 fails for the graph Γ in Figure 4. This graph is move-reduced and does not have
any perfect matchings. Thus, Γ satisfies condition (1) but does not satisfy condition (2) of
Theorem 1.5. Alternatively, if Γ has no isolated vertices, the assumption that Γ has a perfect
matching can be replaced with either one of the following assumptions:

• the Newton polygon of Γ is not a single point, or
• the number of black and white vertices in Γ is the same;

see part (i) of Theorem 1.16 below.

Remark 1.8. The condition that Γ has 2Area(N) + exc(λ) contractible faces in (2) is
equivalent to a statement that Γ has the minimal possible number of contractible faces
among all graphs with weakly decorated Newton polygon Ṅ(Γ).

Example 1.9. For the graphs Γ1,Γ2,Γ3 shown in Figure 3, the weakly decorated Newton
polygons Ṅ(Γ2), Ṅ(Γ3) are computed in Figure 3(e–f). In particular, letting Ṅ(Γ2) = (N,λ)
and Ṅ(Γ3) = (N,λ′), we see that Area(N) = 1, exc(λ) = 1, and exc(λ′) = 0. This is
consistent with Theorem 1.5 since Γ2 has 3 faces, while Γ3 has 2 faces, all of which are
contractible.

1.4. Move-equivalence classes of move-reduced graphs. In this section, each graph is
assumed to be bipartite and to have a perfect matching. We view graphs embedded in the
torus up to isotopies. Let π : R2 → T denote the universal covering map.

Proposition 1.10. Let Γ be a move-reduced graph with Newton polygon N .

(1) There are no zero-homology strands and any lift S̃ of a strand S ∈ S(Γ) under π
does not intersect itself;

(2) Any strand S ∈ S(Γ) intersects itself |[S]|Z − 1 times;
(3) Any two distinct parallel strands S, S ′ ∈ S(Γ) do not share any vertices or edges of

Γ.

Let Γ be a move-reduced graph with Newton polygon N . By part (2) of Proposition 1.10,
for e ∈ E(N), any two strands S ̸= S ′ in Se(Γ) do not share vertices or edges. Thus,
we have a natural cyclic ordering on Se(Γ) given by the direction of the normal vector to
e that points into the interior of N . Let αe = (|[S]|Z)S∈Se(Γ) be the corresponding cyclic
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(2, 2)

(2, 2)

(a) Graph Γ1. (b) Graph Γ2. (c) Strands in Γ1. (d) Strands in Γ2. (e) N̈(Γ1) = N̈(Γ2).

Figure 5. Two move-reduced graphs that are not move-equivalent but have
the same strongly decorated Newton polygons. The graph Γ2 has vertices of
degree 2 at the vertical boundaries of the rectangle.

composition of |e|Z. We set α = (αe)e∈E(N), and we refer to N̈(Γ) := (N,α) as the strongly
decorated Newton polygon of Γ. The following result is shown in Section 6.5.

Proposition 1.11. For any strongly decorated polygon N̈ , there exists a move-reduced graph
Γ that admits a perfect matching and satisfies N̈(Γ) = N̈ .

The moves (M1)–(M2) never change the homology of the strands and preserve the class of
move-reduced graphs. Thus, if two move-reduced graphs Γ,Γ′ are move-equivalent then we
have N̈(Γ) = N̈(Γ′). One is tempted to conjecture that the converse is also true, but that
is not the case; for instance, the two graphs in Figure 5 have the same strongly decorated
Newton polygons, but they are not move-equivalent, since one graph is connected and the
other one is not. See Figure 22 for a more subtle example. To remedy this issue, we make
the following definition.

Definition 1.12. Let α = (α1, α2, . . . , αm) be a cyclic composition of n = α1+α2+ · · ·+αm.
Consider a partition I(α) = {I1, I2, . . . , Im} of Z/nZ into cyclic intervals of size |Ij| = αj

given by I1 = [1, α1], I2 = [α1 + 1, α1 + α2], etc. The rotation number rot(α) is the smallest
integer r ∈ [n] := {1, 2, . . . , n} such that σr(I(α)) = I(α), where σ : Z/nZ → Z/nZ is the
map sending i 7→ i+ 1 (mod n) for all i, and σ(I(α)) := {σ(I1), σ(I2), . . . , σ(Im)}.
For example, rot((1, 1, 1, 1, 1, 1)) = 1, rot((2, 1, 2, 1)) = 3, and rot((2, 2, 1, 1)) = 6. We have
rot((n)) = n because by convention, we distinguish between cyclic intervals [j, j + n− 1] in
Z/nZ for different j ∈ [n].

The rotation number of a collection α = (αe)e∈E of cyclic compositions is given by

(1.1) d(α) := gcd{rot(αe) | e ∈ E}.
The following is our second main result.

Theorem 1.13. Let N̈ = (N,α) be a strongly decorated polygon. The set of move-reduced
graphs Γ satisfying N̈(Γ) = N̈ is a union of d(α) move-equivalence classes. Explicitly, two
move-reduced graphs Γ,Γ′ are move-equivalent if and only if

(N̈(Γ), µ(Γ)) = (N̈(Γ′), µ(Γ′)),

where µ(Γ) ∈ Z/ d(α)Z is the modular invariant defined in Section 1.5. Moreover, for
any µ ∈ Z/ d(α)Z, there exists a move-reduced graph Γ that admits a perfect matching and
satisfies (N̈(Γ), µ(Γ)) = (N̈ , µ).
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3

0 0

1

3

2 2

1

0 0

3

1 + 3

1 + 3

2 + 2 2 + 2 2 + 2

3 + 1

0 + 0 0 + 0 0 + 0

1

2 2

3

0 0

1

3

2 2

1

0 0

0 0 1 + 0 1 + 0

2 + 3 2 + 3

3 + 2 3 + 2

0 + 1 0 + 1

1 + 0 1 + 0

(a) γe for Γ1. (b) γe′ for Γ1. (c) γ for Γ1. (d) γe for Γ2. (e) γe′ for Γ2. (f) γ for Γ2.

Figure 6. Computing the modular invariants (Section 1.5) of graphs Γ1 and
Γ2 from Figure 5. See Example 1.15.

Remark 1.14. Suppose N is a convex integral polygon and αe = (1, 1, . . . , 1) for each edge
e ∈ E(N). Then d(α) = 1 so there is a unique move-equivalence class of graphs Γ with
N̈(Γ) = (N,α). Since minimal graphs with Newton polygon N have strongly decorated
Newton polygon (N,α), this is the move-equivalence class of minimal graphs with Newton
polygon N . Thus, Theorem 1.13 specializes to Theorem 1.3 in this case.

1.5. Modular invariant. We explain the construction of the modular invariant µ(Γ). Let
Γ be move-reduced and let N̈(Γ) = (N,α) be its strongly decorated Newton polygon. Let
e ∈ E(N) and set r := rot(αe), n := |αe| = |e|Z. Thus, r divides n. Let F e be the set
of connected components of T \ ⋃S∈Se(Γ) S, which we call e-regions. Construct a labeling

γe : F e → Z/nZ so that for any segment of a strand S ∈ Se(Γ) adjacent to e-regions
F− (resp., F+) to the right (resp., left) of S, the labels γe(F−), γ

e(F+) ∈ Z/nZ satisfy
γe(F+) ≡ γe(F−) + 1 (mod n).

Since the above conditions only involve differences of γe, there are n ways to construct
such a labeling γe that differ by adding elements of Z/nZ. We shall choose a particular
one as follows. The labeling γe induces a partition I(γe) of Z/nZ into cyclic intervals so
that for each strand S ∈ Se(Γ), the associated cyclic interval contains γe(F ) for all F ∈ F e

appearing immediately to the right of S; see Figure 6 and Example 1.15. Now, recall that
αe is a cyclic composition. Of all the cyclic shifts of αe, let αe = (αe

1, α
e
2, . . . , α

e
m) be the

lexicographically maximal one, and let I(αe) be the associated partition of Z/nZ into cyclic
intervals from Definition 1.12. We say that the labeling γe is lex-maximal if I(γe) = I(αe).
Since σr(I(αe)) = I(αe), we see that there are n/r lex-maximal labelings γe. Fix one such
labeling and let γ̄e : F e → Z/rZ be obtained by taking the values of γe modulo r. Thus, γ̄e

does not depend on the choice of γe, and is an invariant of Γ.
Repeat the above procedure for all e ∈ E(N). Let F (Γ) be the set of faces of Γ. We will

construct a labeling γ : F (Γ) → Z/dZ, where d := d(α). For each face F ∈ F (Γ), we set
γ(F ) :=

∑
e∈E(N) γ̄

e(F ) (mod d). This is a well-defined element of Z/dZ in view of (1.1).

Moreover, any two adjacent faces F, F ′ of Γ are separated by two strands going in opposite
directions, so γ(F ) = γ(F ′). In other words, the labeling γ is constant. By definition, its
value is the modular invariant µ(Γ) ∈ Z/dZ.
The moves (M1)–(M2) induce bijections between e-regions. Since all the faces involved in

(M1)–(M2) except the middle face in (M1) are in the same e-regions, µ(Γ) is invariant under
move-equivalence.
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Example 1.15. Consider the graphs Γ1 and Γ2 from Figure 5. Let N̈ = (N,α) be their
strongly decorated Newton polygon shown in Figure 5(e). Thus, N is a line segment of length
4, and let e = (4, 0) and e′ = (−4, 0) be the two edges of N . We have α := αe = αe′ = (2, 2),
and rot(α) = 2. Examples of lex-maximal labelings γe and γe′ for Γ1 and Γ2 are shown in
Figure 6(a–b, d–e). The labeling γ for Γ1 and Γ2 is obtained by taking the labeling γe + γe′

shown in Figure 6(c, f) modulo d(α) = 2. We see that in fact γ(F1) = 0 ∈ Z/2Z is even
for each face F1 of Γ1, while γ(F2) = 1 ∈ Z/2Z is odd for each face F2 of Γ2. Therefore,
µ(Γ1) = 0 ∈ Z/2Z and µ(Γ2) = 1 ∈ Z/2Z, which is consistent with Theorem 1.13 since the
graphs Γ1 and Γ2 are not move-equivalent.

1.6. Overview of the proof. We shall proceed by relating bipartite graphs embedded in
T to elements of the double affine symmetric group, i.e., pairs of affine permutations. In
Sections 4 and 5, we show the following result.

Theorem 1.16. For any move-reduced graph Γ without isolated vertices, exactly one of the
following holds:

(i) Γ has a single strand that is a simple zero-homology loop. In this case, Γ has no
perfect matchings and has a different number of black and white vertices.

(ii) Γ is move-equivalent to a graph Γ′ such that, for a suitable choice of the fundamental
domain, each strand S ∈ S(Γ′) with [S] = (i, j) intersects the vertical line x = 0
minimally, i.e., exactly |i| times.

In part (i), a zero-homology loop is a strand S satisfying [S] = 0, and a zero-homology loop
S is called simple if the lift of S to R2 under the covering map R2 → T is a simple (i.e.,
non self-intersecting) closed curve; see e.g. Figure 4(a). In part (ii), choosing a fundamental
domain corresponds to the standard SL2(Z)-action on the Newton polygon of Γ.

In Section 6.2, we show that if (ii) holds, then Γ′ can be put into a particular form called
an affine plabic fence. Such graphs correspond to shuffles of reduced words of two affine
permutations on commuting sets of indices (see Section 6). In Sections 2 and 3, we study
the associated conjugation problem for the affine symmetric group, relying on the results
of [HN14, Mar20]. Finally, we complete the proof in Sections 6.5–6.6.

1.7. Previous results. The idea of relating bipartite graphs embedded in T to conjugation
of double affine permutations is not new and appears in [LP13, FM16, GSZ20]. A discussion
of graphs that are move-reduced but not minimal in the sense of [GK13], and in particular
the graph Γ2 in Figure 3(b), appears in [FM16, Section 8.3]. Graphs that are move-reduced
but not minimal also appear in the context of open Toda chains [GSV11, Wil16].

In [GSZ20, Section 4.4], the authors also consider the problem of classifying move-reduced
graphs and their move-equivalence classes. They associate a weakly decorated Newton poly-
gon to each graph and prove a lemma classifying conjugacy classes in the double affine sym-
metric group. However, this classification does not imply a classification of move-reduced
bipartite graphs and their move-equivalence classes. The reason is that the moves (M1)–
(M2) correspond only to particular kinds of conjugation in the affine symmetric group (see
Definition 2.2), not to arbitrary conjugation. This discrepancy leads us to studying strongly
decorated Newton polygons and modular invariants.

We also note that in [GSZ20, Section 4.4], the authors rely on Theorem 1.16 and refer
to [FM16] for its proof. However, the argument in [FM16, Section 4.1] only applies to
graphs whose strands go monotonously from left to right, that is, have strictly increasing
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(a) Standard arrow diagram of f . (b) Arrow diagram Df (x).

Figure 7. Arrow diagrams of affine permutations; see Sections 2.1 and 2.3.

horizontal coordinate. With that assumption, the conclusion of Theorem 1.16 (that each
strand intersects the line x = 0 minimally) becomes vacuously true.

Acknowledgments. We thank Xuhua He for bringing the paper [Mar20] to our attention.
We also thank Timothée Marquis for discussions related to [Mar20] and for updating and
extending [Mar20] to the generality suited for our needs (cf. Remarks 2.15 and 3.3). The first
author is grateful to Thomas Lam for ideas that originated during the development of [GL21],
which were influential for our overall proof strategy and specifically for the arguments in
Sections 2 and 3. Finally, we thank the anonymous referee and Niklas Affolter for their
valuable suggestions and careful reading of the text.

2. Affine permutations, cycles, and slopes

As we will explain in Section 6.2, Theorem 1.16 allows one to recast bipartite graphs em-
bedded in T and their moves into certain conjugation moves on pairs of affine permutations.
In this and the next section, we develop the properties of affine permutations needed to
complete the proofs of our main results.

Our proof strategy is inspired by that of [Mar20]. The reader familiar with the theory
of affine Coxeter groups and their reflection representations is encouraged to consult Re-
marks 2.15 and 3.3.

2.1. Background and notation. Let n ≥ 1 and recall that [n] := {1, 2, . . . , n}. An affine
permutation is a bijection f : Z→ Z satisfying f(i+ n) = f(i) + n for all i ∈ Z. The group

of affine permutations is denoted S̃n (where the group operation is given by composition of

maps Z→ Z). For f ∈ S̃n, set

n(f) := n, k(f) :=
1

n

∑
i∈[n]

(f(i)− i), and d(f) := gcd(k(f), n(f)).

It is known (see Remark 2.1 below) that k(f) is always an integer. We have S̃n =
⊔

k∈Z S̃
(k)
n ,

where S̃
(k)
n := {f ∈ S̃n | k(f) = k}. For f ∈ S̃n, let f̄ ∈ Sn be the unique permutation (i.e.,

bijection [n] → [n]) satisfying f̄(i) ≡ f(i) (mod n) for all i ∈ [n]. For k ∈ Z, we denote by

fk,n ∈ S̃
(k)
n the affine permutation sending i 7→ i + k for all i ∈ Z. The affine permutation

f can be written in window notation as [f(1), f(2), . . . , f(n)], which completely determines
f(i) for all i ∈ Z.
The group S̃

(0)
n is a Coxeter group with generators Π := {si | i ∈ [n]}, where the affine

permutation si : Z → Z sends i 7→ i + 1 and i + 1 7→ i (and therefore it swaps i + dn with
i+1+ dn for all d ∈ Z), and j 7→ j for j ̸≡ i, i+1 (mod n). For i ∈ Z, we let si := sī where
ī ∈ [n] satisfies ī ≡ i (mod n).
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a b i i+ 1

i i+ 1 c d

. . .. . .

. . .. . .

c∼
a b i i+ 1

i i+ 1 c d

. . .. . .

. . .. . .

a b i i+ 1

i i+ 1 c d

. . .. . .

. . .. . .

si−−→

a b i i+ 1

i i+ 1 c d

. . .. . .

. . .. . .

Figure 8. The two affine permutations on the left are c-equivalent. The
affine permutations f, f ′ on the right satisfy f

si−→ f ′ but are not c-equivalent.
See Definition 2.2. Figure reproduced from [GL21, Figure 5].

The group S̃
(0)
n is also known as the affine Weyl group of type Ãn−1. Let Λ := f1,n ∈ S̃

(1)
n .

Thus, S̃n = S̃
(0)
n ⋊ ⟨Λ⟩. We will also be interested in the quotient group Ŝn := S̃n/⟨Λn = id ⟩,

known as the extended affine Weyl group of type Ãn−1. The group S̃
(0)
n is a subgroup of both

S̃n and Ŝn. We denote by σ : S̃n → S̃n the rotation operator given by σ(f) := ΛfΛ−1.

Let f ∈ S̃n. Define

Inv(f) := {(i, j) ∈ Z× Z | i < j and f(i) > f(j)},
ℓ(f) := #{(i, j) ∈ Z× Z | i < j, f(i) > f(j), and i ∈ [n]}.

The standard arrow diagram of f is obtained by drawing an arrow (i/n, 1) → (f(i)/n, 0)
for all i ∈ Z; see Figure 7(a) for an example when f = [7,−1, 2, 5, 8, 3, 11] in window
notation. The set Inv(f) consists of pairs of crossing arrows, and ℓ(f) counts the number of
crossing arrows modulo the equivalence relation generated by (i, j) ∼ (i + n, j + n) for all
i, j ∈ Z. Alternatively, ℓ(f) is the minimal integer l such that f can be written as a product
f = si1si2 · · · silΛk for some indices i1, i2, . . . , il, k; in this case, si1si2 · · · silΛk is called a
reduced expression for f . For the example in Figure 7(a), we have

k(f) = 1, ℓ(f) = 11, and f = s3s4s6s7s2s5s6s1s4s3s2Λ.

Remark 2.1. In general, the integer k(f) is equal to the signed number of intersections of
the arrows with one of the dashed vertical lines.

Following [GP93, GKP00, He07, He10, HN14, Mar20], for f, f ′ ∈ S̃n, we write f
si−→ f ′ if

f ′ = sifsi and ℓ(f ′) ≤ ℓ(f). We write f → f ′ if there exists a sequence f = f0, f1, . . . , fm =

f ′ of affine permutations such that for each j ∈ [m], we have fj−1
si−→ fj for some i ∈ [n].

Definition 2.2. We say that f, f ′ ∈ S̃n are c-equivalent if f → f ′ and f ′ → f . In this case,
we write f

c∼ f ′.

This terminology is borrowed from [GL21]. See Figure 8.

When talking about conjugacy classes, we always mean S̃
(0)
n -conjugacy classes, which we

will usually denote by O. Given a conjugacy class O, let Omin be the set of elements of O
of minimal length. We have the following important result.

Theorem 2.3 ([HN14, Theorem 2.9]). Let f ∈ S̃n and let O be the S̃
(0)
n -conjugacy class

containing f . Then there exists f ′ ∈ Omin such that f → f ′.

Definition 2.4. We say that f ∈ S̃n is c-reduced if for all f ′ ∈ S̃n such that f → f ′, we
have ℓ(f) = ℓ(f ′) (or equivalently, f ′ → f).
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The following result follows immediately from Theorem 2.3.

Corollary 2.5. An affine permutation f ∈ S̃n is c-reduced if and only if it has minimal
length in its conjugacy class O (i.e., f ∈ Omin).

It is clear that
c∼ yields an equivalence relation on the set of c-reduced elements in S̃n.

The goal of Sections 2 and 3 is to give a solution to the following problem.

Problem 2.6. Determine the structure of c-equivalence classes of c-reduced elements in S̃n.

2.2. Cycles and slopes. A set C ⊂ Z is called n-periodic if for all i ∈ Z, we have i ∈ C if
and only if i+ n ∈ C.

Definition 2.7. Let f ∈ S̃n. A set C ⊂ Z is called f -closed if it is nonempty, n-periodic,
and for all i ∈ Z, we have i ∈ C if and only if f(i) ∈ C.

Definition 2.8. Let C be an f -closed set. Because it is n-periodic, the set C ∩ [n] is
nonempty. Let nf (C) := #(C ∩ [n]). There exists a unique order-preserving bijection

rC : C → Z sending min(C ∩ [n]) to 1 ∈ Z. The restriction f |C ∈ S̃nf (C) is an affine
permutation defined by

(2.1) f |C := rC ◦ f ◦ r−1
C .

Given an f -closed set C, we let

nf (C) = n(f |C), kf (C) := k(f |C), df (C) := d(f |C), and νf (C) :=
kf (C)

nf (C)
.

The rational number νf (C) is called the slope of C. Thus, we have f |C ∈ S̃
(k′)
n′ for n′ = nf (C)

and k′ = kf (C).

Definition 2.9. A cycle of f is a minimal by inclusion f -closed set C. The set of cycles of
f is denoted Cf .

Thus, the cycles of f are in bijection with the cycles of f̄ , and a nonempty subset of Z is
f -closed if and only if it is a disjoint union of cycles of f . For i ∈ Z, we write νf (i) := νf (C),
where C is the cycle of f containing i.

Example 2.10. Let f = [7,−1, 2, 5, 8, 3, 11] in window notation be the affine permutation in
Figure 7(a). Then f has two cycles: C (resp., C ′) consists of all i ∈ Z congruent to 1, 4, 5, 7
(resp., to 2, 3, 6) modulo n = 7. We have

nf (C) = 4, kf (C) = 2, df (C) = 2, νf (C) = 1/2,

nf (C
′) = 3, kf (C

′) = −1, df (C
′) = 1, νf (C

′) = −1/3.

Given f ∈ S̃n and ν ∈ Q, we set

Cf (ν) := {C ∈ Cf | νf (C) = ν}, Cf,ν :=
⊔

C∈Cf (ν)

C,

nf (ν) :=
∑

C∈Cf (ν)

nf (C), kf (ν) :=
∑

C∈Cf (ν)

kf (C), df (ν) :=
∑

C∈Cf (ν)

df (C).
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(a) Arrow diagram Df (x). (b) Standard arrow diagram of gxfg
−1
x .

Figure 9. The arrow diagram Df (x) is topologically equivalent to the stan-
dard arrow diagram of gxfg

−1
x ; see Example 2.12.

For f ∈ S̃n, we set

νf := {ν ∈ Q | Cf,ν is nonempty}; therefore,
⊔
ν∈νf

Cf,ν = Z.

For ν ∈ νf , we have ν = kf (ν)/ nf (ν) and gcd(kf (ν), nf (ν)) = df (ν).

Definition 2.11. Let λf := (λf,ν)ν∈νf
, where λf,ν is the integer partition of df (ν) induced

by (df (C))C∈Cf (ν).

2.3. Arrow diagrams. Let

L′
n := {x : Z→ R | xi+n = xi + 1 for all i ∈ Z}.

We may identify L′
n with Rn via a map x 7→ (x1, . . . , xn). Let Ln be the quotient of the

vector space L′
n
∼= Rn by the linear span of the vector (1, 1, . . . , 1) ∈ Rn. Thus, two elements

x, y ∈ L′
n represent the same element of Ln if and only if there is a constant c such that

xi − yi = c for all i ∈ Z.
For any g ∈ S̃n, we have a point 1

n
g ∈ Ln sending i 7→ 1

n
g(i). To a point x ∈ Ln, we

associate a labeled point configuration D(x), that is, a collection of labeled points on the real
line: a point labeled i ∈ Z is located at coordinate xi. We denote Im(x) := {xi | i ∈ Z} ⊂ R.
Recall the notion of a standard arrow diagram from Section 2.1. More generally, to each

f ∈ S̃n and x ∈ Ln one can associate an arrow diagram Df (x) obtained by drawing an arrow
(xi, 1) → (xf(i), 0) for each i ∈ Z. For example, the standard arrow diagram of f is just

Df (x) for x = 1
n
id, where id ∈ S̃

(0)
n is the identity map.

We say that x ∈ Ln is generic if xi ̸= xj for all i ̸= j ∈ Z. We denote by L◦
n the set of

generic elements of Ln. The cutoff point for x ∈ L◦
n is the midpoint of the interval of all

c ∈ R \ Im(x) such that

(2.2) #{i ≤ 0 | xi > c} = #{i ≥ 1 | xi < c}.

For x ∈ L◦
n, we let gx be the affine permutation in S̃

(0)
n such that for all i, j ∈ Z, gx(i) < gx(j)

if and only if xi < xj. Explicitly, if c ∈ R is the cutoff point for x and i1, i2, . . . , in ∈ Z are
such that c < xi1 < xi2 < · · · < xin < c + 1 then we have g−1

x = [i1, i2, . . . , in] in window
notation; cf. Example 2.12 below.

For f ∈ S̃n and x ∈ L◦
n, the arrow diagram Df (x) is topologically equivalent to the

standard arrow diagram of gxfg
−1
x . That is, we have an order-preserving bijection ϕx :=

x ◦ g−1
x : Z → Im(x) such that (i, j) ∈ Inv(gxfg

−1
x ) if and only if the arrows starting at

(ϕx(i), 1) and (ϕx(j), 1) cross in Df (x).
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Example 2.12. Let f = [7,−1, 2, 5, 8, 3, 11] be the affine permutation shown in Figure 7(a).
An example of the arrow diagram Df (x) for some x ∈ L◦

n is shown in Figure 7(b) and also
in Figure 9(a). We have g−1

x = [2, 3, 1, 4, 6, 5, 7] in window notation, which is obtained by
reading off the labels between the two vertical dashed lines. These dashed lines are located

at positions c and c+1, where c is the cutoff point of x. We find gx = s5s2s1 ∈ S̃
(0)
n , and thus

gxfg
−1
x = [−2, 1, 7, 6, 2, 10, 11] in window notation. The standard arrow diagram of gxfg

−1
x

is shown in Figure 9(b). Comparing it with Df (x) shown in Figure 9(a), we see that indeed
the two arrow diagrams are topologically equivalent (modulo a relabeling of the points given
by the map ϕx).

We think of an arrow diagram Df (x) for (f, x) ∈ S̃n × L◦
n as a “geometric realization”

of the affine permutation gxfg
−1
x , and extend our definitions and notation to this case. For

example, we denote by ℓf (x) := ℓ(gxfg
−1
x ) the number of crossings in Df (x) modulo the

shift 1
n
(i, j) 7→ 1

n
(i + n, j + n). For f ∈ S̃n and x, x′ ∈ L◦

n, write Df (x) → Df (x
′) if

gxfg
−1
x → gx′fg−1

x′ , and Df (x)
c∼ Df (x

′) if gxfg
−1
x

c∼ gx′fg−1
x′ . We say that Df (x) is c-reduced

if so is gxfg
−1
x .

We say that x is almost generic if there exist (i0, j0) ∈ Z2 such that for all i ̸= j, we have
xi ̸= xj unless {i, j} = {i0 + dn, j0 + dn} for some d ∈ Z. Thus, Df (x) → Df (x

′) if there
exists a continuous curve x(t) ∈ Ln, t ∈ [0, 1], such that x(0) = x, x(1) = x′, x(t) is almost
generic for t in some finite set B and generic for t ∈ [0, 1] \ B, and ℓf (x(t)) is a weakly
decreasing function on [0, 1] \B.

2.4. ϵ-straight arrow diagrams. Fix f ∈ S̃n. Recall that for C ∈ Cf and i ∈ C, we write
νf (i) := νf (C). For ϵ > 0 and x ∈ Ln, we say that the arrow diagram Df (x) is ϵ-straight if
for all i ∈ Z, xf(i) is ϵ-close to xi + νf (i). For example, the arrow diagram Df (x) shown in
Figure 7(b) is ϵ-straight for some 0 < ϵ < 0.15.

Denote by Strϵ(f) the set of ϵ-straight elements in Ln:

Strϵ(f) := {x ∈ Ln : |xf(i) − (xi + νf (i))| ≤ ϵ for all i ∈ Z}.
We set Str◦ϵ(f) := Strϵ(f) ∩ L◦

n.
The following result is an analog of [Mar20, Lemma 6.8(1)]; see also [Mar18, Lemma 5.4]

and [Mar14, Proposition 3.4]. See Remark 2.15 below for the relation between our results
and those of Marquis.

Proposition 2.13. For any f ∈ S̃n, x ∈ L◦
n, and ϵ > 0, there exists y ∈ Str◦ϵ(f) such that

Df (x)→ Df (y).

Example 2.14. The diagram in Figure 7(a) can be continuously deformed into the diagram
in Figure 7(b). During the deformation, the point labeled 1 passes to the right through
the points labeled 2, 3 while the point labeled 5 passes to the right through the point la-
beled 6. The resulting sequence of swaps is recorded in the reduced word for gx = s5s2s1; cf.
Example 2.12.

Proof. We will find a smooth curve x(t), t ∈ R≥0 in Ln such that x(0) = x and such that we
can take y := x(t) for t sufficiently large. The curve will be defined via the following linear
system of first order ordinary differential equations (ODEs):

(2.3) ∂xi(t)/∂t = xf(i)(t)− xi(t), for all i ∈ Z.
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Rewriting each xi(t) in terms of (xj(t))j∈[n], we obtain an n×n inhomogeneous linear system
of ODEs. It splits into independent systems for each cycle of f .
Fix a single cycle C of f , and let m := nf (C). We have an m×m system of ODEs of the

form ∂z(t)/∂t = Az(t) + b, for a constant m ×m matrix A and a constant vector b ∈ Rm.
Let w := f̄ |C ∈ Sm be the permutation obtained by taking f |C modulo m. The permutation
matrix Pw of w has eigenvalues e2πir/m for r = 0, 1, . . . ,m − 1. We have A = Pw − Im,
where Im is an m×m identity matrix. Thus, the eigenvalues of A are λr := e2πir/m − 1 for
r = 0, 1, . . . ,m − 1. (In particular, they are all distinct and have nonpositive real part.) A
general solution to the homogeneous system ∂z(t)/∂t = Az(t) is then a linear combination of
vector-valued functions of the form exp(λrt)zr, where zr is the eigenvector of A corresponding
to λr.

One eigenvalue of A is λ0 = 0, and the corresponding eigenvector is z0 := (1, 1, . . . , 1)T .
The vector b is a 0, 1-vector with 1’s in positions corresponding to i ∈ [n] ∩ C such that
f(i) > n. In particular, the sum of coordinates of b is kf (C), and thus νf (C)z0−b belongs to
the image of A. Letting z̃0 be one of its preimages under A, we see that z(t) = νf (C)tz0− z̃0
is a solution to the inhomogeneous system ∂z(t)/∂t = Az(t)+ b. Thus, an arbitrary solution
differs from it by a linear combination of the functions exp(λrt)zr, each of which is constant
(for r = 0) or decays exponentially (for r ̸= 0).
It follows that for t large enough and i ∈ Z, we have xi(t) = νf (i)t+ o(t), and ∂xi(t)/∂t =

νf (i) + o(1). By (2.3), we get x(t) ∈ Strϵ(f) for all t sufficiently large. It is also clear that
for t outside a discrete set, we have x(t) ∈ Str◦ϵ(f).
Since x = x(0) was generic, we can change it slightly so that each point x(t) is almost

generic for t in some discrete set B and generic for t ∈ [0,∞) \ B. We claim that ℓf (x(t))
is weakly decreasing for t ∈ [0,∞) \ B. Indeed, let t0 ∈ B be such that xi(t0) = xj(t0) for
some i, j ∈ Z. Since x(t0) is almost generic, we have xf(i)(t0) ̸= xf(j)(t0).

1 Thus, ∂xi(t)/∂t ̸=
∂xj(t)/∂t at t = t0. Suppose that ∂xi(t)/∂t > ∂xj(t)/∂t at t = t0, so xf(i)(t0) > xf(j)(t0).
Then xi(t

−) < xj(t
−) and xi(t

+) > xj(t
+) for some t− < t0 < t+ very close to t0. We still

have xf(i)(t
−) > xf(j)(t

−). Thus, the arrows starting at xi(t
−) and xj(t

−) form a crossing in
Df (x(t

−)) but do not form a crossing in Df (x(t
+)). Therefore ℓf (x(t

−)) ≥ ℓf (x(t
+)). Note

that the arrows starting at xf−1(i)(t
±) and xf−1(j)(t

±) may or may not form a crossing in
Df (x(t

±)). Depending on that, the difference ℓf (x(t
−))− ℓf (x(t

+)) is either zero or one. □

Remark 2.15. Our constructions can be translated into the well-studied geometric setup as

we now explain. The group S̃
(0)
n acts simply transitively on the set Σ of chambers of an infinite

hyperplane arrangement {xi = xj + k | i ̸= j ∈ [n], k ∈ Z} in Rn/⟨(1, 1, . . . , 1)⟩. Choosing

a distinguished fundamental chamber C0, the map g 7→ gC0 yields a bijection S̃
(0)
n

∼−→ Σ.
Identifying Ln

∼−→ Rn/⟨(1, 1, . . . , 1)⟩ by a linear isomorphism sending x 7→ (x1, . . . , xn), the

S̃n-action on Ln coincides with its action on Rn/⟨(1, 1, . . . , 1)⟩. For g ∈ S̃
(0)
n , the point 1

n
g

gets mapped to the barycenter of the corresponding (simplicial) chamber gC0. An element
x ∈ Ln is generic if and only if it belongs to the interior of a chamber, and almost generic
if and only if it belongs to the interior of a facet of a chamber. The set Strϵ(f) for ϵ = 0
equals the set denoted Min(f) in [Mar20]. The map sending f to the tuple (f |ν)ν∈νf

of its
restrictions is the map denoted πΣη in [Mar20] (whose image is an element of finite order;
cf. Lemma 3.6). Our proof strategy may be considered an adaptation of [Mar20, Proof of

1This statement is true unless f(i) = i + kn and f(j) = j + kn for some k. But in that case, we have
xi ̸= xj (because x was generic) and xi(t

′) = i+ kt′, xj(t
′) = j + kt′ for all t′ ≥ 0, so xi(t

′) ̸= xj(t
′).
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Proposition 6.20]: given an arbitrary chamber C, construct a walk from C to a chamber
intersecting Min(f), and then use the projection πΣη to obtain an element of finite order.

The notion of a modular invariant was inspired by [Mar20, Part (A
(1)
ℓ ) of Theorem 10.12].

Remark 2.16. One key point that allows for a significant simplification in our approach in
type A (compared to the approach of [Mar20] for arbitrary Coxeter groups) is a new proof of
Proposition 2.13 using ODEs. We hope that this argument can be of independent interest.
It appears to generalize to affine Weyl groups but not to arbitrary Coxeter groups.

2.5. Vector configurations and conjugacy. We return to Problem 2.6. Our first goal is

to describe S̃
(0)
n -conjugacy classes in S̃n.

Let f ∈ S̃n. For ν ∈ νf and C ∈ Cf , set

ef (ν) := (nf (ν), kf (ν)) and ef (C) := (nf (C), kf (C)).

Clearly, ef (ν) =
∑

C∈Cf (ν)
ef (C) is a sum of collinear vectors, and their integer lengths are

given by |ef (C)|Z = df (C), so |ef (ν)|Z = df (ν). We let Ef := (ef (ν))ν∈νf
be the vector con-

figuration associated to f . By analogy with Definition 1.1, we call Ėf := (Ef ,λ
f ) the weakly

decorated vector configuration associated to f , where λf was introduced in Definition 2.11.

Proposition 2.17. Let f, f ′ ∈ S̃n. Then f is S̃
(0)
n -conjugate to f ′ if and only if Ėf = Ėf ′.

Proof. Since Ėf depends only on the cycles of f and their slopes, it is clearly invariant under

conjugation, which shows the “only if” direction. Suppose now that f, f ′ ∈ S̃n are such that
Ėf = Ėf ′ . Because the permutations f̄ , f̄ ′ ∈ Sn have the same cycle type, they are conjugate
in Sn. We may therefore apply Sn-conjugation to f ′ (permuting the cycles along the way)
to obtain an element f ′′ such that f̄ = f̄ ′′ (in particular, f and f ′′ have the same sets of
cycles), and such that for each cycle C of f , we have nf (C) = nf ′′(C) and kf (C) = kf ′′(C).

Let tei ∈ S̃n be the affine permutation sending i 7→ i + n and j 7→ j for j ̸≡ i (mod n),

called a translation element. Thus, tei−ej := teit
−1
ej

belongs to S̃
(0)
n , and we see that f can

be obtained from f ′′ via conjugations by such elements tei−ej for i, j belonging to the same
cycle of f . □

2.6. A characterization of minimal-length elements. Our next goal is to give an ex-
plicit characterization of c-reduced affine permutations; see Corollary 2.20.

Given two subsets A,B ⊂ R2, define their Minkowski sum by A+B := {a+ b | a ∈ A, b ∈
B}. Given a vector configuration E = {e1, e2, . . . , em} ⊂ Z2, the associated zonotope Z(E)
is the convex polygon in R2 obtained as the Minkowski sum of line segments

Z(E) := [0, e1] + [0, e2] + · · ·+ [0, em].

For e1, e2 ∈ R2, recall that det(e1, e2) is the determinant of the 2 × 2 matrix with columns
e1, e2. The following formula for the area of Z(E) is well known [McM84]:

Area(Z(E)) =
∑

1≤i<j≤m

|det(ei, ej)|.

Recall the notion of exc(λ) from Definition 1.4.

Lemma 2.18. Let f ∈ S̃n. Then f is c-reduced if and only if

(2.4) ℓ(f) = Area(Z(E)) + exc(λ), where Ėf = (E,λ).



16 PAVEL GALASHIN AND TERRENCE GEORGE

In the proof of the lemma, we will count inversions (j, j′) ∈ Inv(f) according to the cycles
containing j and j′.

Definition 2.19. Given two cycles C,C ′ ∈ Cf , their ordered crossing number is defined as

xing(C,C ′) := #{(j, j′) ∈ Inv(f) | j ∈ [n] ∩ C and j′ ∈ C ′}.
Thus, we have

∑
C,C′∈Cf

xing(C,C ′) = ℓ(f).

Proof of Lemma 2.18. Denote the right-hand side of (2.4) by ℓ(Ėf ). First, we show that

for any f ∈ S̃n, we have ℓ(f) ≥ ℓ(Ėf ). Observe that if g ∈ S̃
(k)
n has a single cycle then

ℓ(g) ≥ d(g) − 1 (where d(g) = gcd(k, n)), because the map fk,n = Λk has gcd(k, n) cycles,
and for each i ∈ [n], sig has either one more or one less cycle than g. Thus, each cycle C of
f contributes at least df (C)− 1 to ℓ(f):

(2.5) xing(C,C) ≥ df (C)− 1.

It follows that for each ν ∈ νf , we have∑
C∈Cf (ν)

xing(C,C) ≥ exc(λf,ν).

To each cycle C we can associate a piecewise-linear curve P (f)(C) in R2 obtained by choos-
ing some i ∈ C and joining the points pd :=

(
d, 1

n
fd(i)

)
for d = 0, 1, . . . , nf (C); cf. [GL21,

Section 4]. We have p0 = (0, i
n
) and pnf (C) = (nf (C), i

n
+ kf (C)), thus P (f)(C) gives rise to

a closed curve on T = R2/Z2 with homology ef (C) = (nf (C), kf (C)). It is well known that
given integers n′, k′, n′′, k′′ with k′/n′ > k′′/n′′, a curve in T with homology (n′, k′) intersects

a curve with homology (n′′, k′′) from below at least

∣∣∣∣det(n′ k′

n′′ k′′

)∣∣∣∣ times. Thus, given cycles

C ̸= C ′, we have

(2.6) xing(C,C ′) ≥
{
0, if νf (C) ≤ νf (C

′);

|det(ef (C), ef (C
′))|, otherwise.

We have shown that ℓ(f) ≥ ℓ(Ėf ).

Conversely, consider a weakly decorated vector configuration Ė = (E,λ). By Proposi-

tion 2.17, O := {f ∈ S̃n | Ėf = Ė} is an S̃
(0)
n -conjugacy class. By Corollary 2.5, f ∈ O is

c-reduced if and only if f ∈ Omin. We have shown above that for any f ∈ O, ℓ(f) ≥ ℓ(Ė).
It remains to construct g ∈ O such that ℓ(g) = ℓ(Ė). Such an affine permutation will be
constructed in Section 3.2. □

Corollary 2.20. Let f ∈ S̃n. Then f is c-reduced if and only if all of the following conditions
are satisfied.

(1) For each C ∈ Cf , xing(C,C) = df (C)− 1.
(2) For each C ̸= C ′ in Cf , we have

xing(C,C ′) =

{
0, if νf (C) ≤ νf (C

′);

|det(ef (C), ef (C
′))|, otherwise.

Proof. We have lower bounds on xing(C,C) and xing(C,C ′) given by (2.5)–(2.6). Moreover,
we showed in Lemma 2.18 that f is c-reduced if and only if all of these inequalities are
equalities. □
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Remark 2.21. Corollary 2.20 was obtained jointly with Thomas Lam during the develop-
ment of [GL21].

Corollary 2.22. If f ∈ S̃n is c-reduced and C ⊂ Z is f -closed then f |C is c-reduced.

3. The structure of c-equivalence classes

The goal of this section is to give a complete description of c-equivalence classes of c-
reduced affine permutations; see Theorem 3.2.

3.1. Cyclic compositions. Let f ∈ S̃n be c-reduced. Fix a slope ν ∈ νf . By Corollary 2.20,
we have xing(C,C ′) = 0 for all C ̸= C ′ in Cf (ν). We thus get a natural cyclic order on the
set Cf (ν) induced by the cyclic order on [n] ∼= Z/nZ. Recall that

∑
C∈Cf (ν)

df (C) = df (ν).

In other words, the cyclic order on Cf (ν) yields a cyclic composition αf,ν of df (ν). Letting

αf := (αf,ν)ν∈νf
, we consider the strongly decorated vector configuration Ëf := (Ef ,αf ).

Lemma 3.1. Let f, f ′ ∈ S̃n be c-reduced. If f
c∼ f ′ then Ëf = Ëf ′.

Proof. By assumption, ℓ(f) = ℓ(f ′). It suffices to consider the case f ′ = sifsi for some
i ∈ [n]. By Proposition 2.17, we have Ėf = Ėf ′ . Thus, we only need to check that the
relative order on Cf (ν) is preserved for each slope ν ∈ νf . Let Ci, Ci+1 be the cycles passing
through i, i+1, respectively, and suppose that νf (Ci) = νf (Ci+1) = ν. In order to apply a c-
equivalence f 7→ f ′, there must be a crossing between the arrows i 7→ g(i) and i+1 7→ g(i+1)
for either g = f or g = f ′; see Figure 8. But because f, f ′ are c-reduced, by Corollary 2.20,
they cannot have crossings between different cycles of the same slope. Thus we must have
Ci = Ci+1, so the relative order on Cf (ν) is preserved. □

To give the converse to Lemma 3.1, we need to consider modular invariants discussed in
Section 1.5. Recall from Definition 1.12 that for a cyclic composition α, we have the rotation
number rot(α), and for a family α of cyclic compositions, d(α) is the greatest common
divisor of their rotation numbers.

Given a conjugacy class O and a strongly decorated vector configuration Ë, let

Omin[Ë] := {f ∈ Omin | Ëf = Ë}.

The goal of this section is to prove the following result.

Theorem 3.2. Let f ∈ S̃n be c-reduced. Let O be the S̃
(0)
n -conjugacy class of f . Then

Omin[Ëf ] is a union of d(αf )-many c-equivalence classes. Moreover, for any two c-reduced
f, f ′ ∈ Omin, we have

(3.1) f
c∼ f ′ ⇐⇒ (Ëf , µ(f)) = (Ëf ′ , µ(f ′)),

where µ(f) ∈ Z/ d(αf )Z is the modular invariant defined in (3.2).

Remark 3.3. Alternatively, Theorem 3.2 may be deduced from the recently updated version
of [Mar20, Theorem B].
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Figure 10. A strongly decorated vector configuration (left) and an ϵ-straight
arrow diagram (right); see Section 3.2.

3.2. Constructing ϵ-straight diagrams explicitly. Let Ë = (E,α) be a strongly deco-
rated vector configuration and fix a small ϵ > 0. Our goal is to construct an ϵ-straight arrow

diagram D(Ë) = Dg(x) for some x ∈ L◦
n and c-reduced g ∈ S̃n with Ëg = Ë. We start with

an example and then proceed with a formal description.

Example 3.4. Let Ë = (E,α) denote the strongly decorated vector configuration shown in
Figure 10(a). Thus, the vectors in E are e1 = (2, 0), e2 = (2, 2), and αe1 = αe2 = (2). An
ϵ-straight arrow diagram D(Ë) is shown in Figure 10(b). On the other hand, if Ë = (E,α)
is the strongly decorated vector configuration shown in Figure 10(c), then E consists of a
single vector e = (18, 12) decorated by a cyclic composition αe = (2, 1, 3). The associated
ϵ-straight arrow diagram D(Ë) is constructed in Figure 10(d).

For a vector e = (a, b) ∈ Z2, we denote n(e) := a and k(e) := b. For e ∈ E, let
ν(e) = k(e)/ n(e) denote its slope. Assume that n(e) > 0 for all e ∈ E. Let α = (αe)e∈E
and αe = (αe

1, . . . , α
e
me

). Consider the circle R/Z and choose a collection of starting points
p = (p̄ei )e∈E,i∈[me], where p̄ei ∈ R/Z. Let P̄ e

i := {p̄ei + rν(e) | r ∈ Z} ⊂ R/Z be the set
containing p̄ei and consisting of n(e)/|e|Z equally spaced points on a circle. We choose p so
that we additionally have:

(1) distR/Z(P̄
e
i , P̄

e′

i′ ) > ϵ for all (e, i) ̸= (e′, i′); and
(2) the points (p̄e1, p̄

e
2, . . . , p̄

e
me

) are cyclically ordered in R/Z.
Now, for each fixed e ∈ E and i ∈ [me], we construct an arrow diagram De

i . Let P e
i ⊂ R

be the preimage of P̄ e
i under the projection R → R/Z, and choose p′ ∈ P e

i . Set d := αe
i .

For each r ∈ [d], set p′r := p′ + rϵ
d
. We refer to the points (p′r)r∈[d] as the block associated to

p′, and denote by P ′
e,i := P e

i + ϵ
d
[d] the set of points in all such blocks. Let p̄′ ∈ P̄ e

i be the
image of p′ in R/Z. If p̄′ ̸≡ p̄ei (mod Z) then we draw an arrow (p′r, 1) → (p′r + ν(e), 0) for
each r ∈ [d]. Otherwise, we draw an arrow (p′r, 1)→ (p′σ(r) + ν(e), 0) for each r ∈ [d], where

σ = (1 2 . . . d) ∈ Sd is a d-cycle. The resulting arrow diagram is denoted De
i .

Let P :=
⊔

e∈E,i∈[me]
P ′
e,i ⊂ R be the resulting set of points, and let D(Ë) :=

⋃e
i∈[me]

De
i

be the corresponding arrow diagram. Let x : Z → P be an order-preserving map. Then
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there exists a unique affine permutation g ∈ S̃n such that D(Ë) = Dg(x). By construction,

Ëg = Ë and ℓ(g) = ℓ(Ë), which completes the proof of Lemma 2.18. By Lemma 2.18, g is
c-reduced.

3.3. Affine permutations of constant slope.

Definition 3.5. Let f ∈ S̃n and ν ∈ Q. We say that f is of constant slope ν if νf = {ν}.
(That is, if all cycles of f are of the same slope ν.)

It is clear that if f ∈ S̃
(k)
n is of constant slope ν then we must have ν = k/n.

Recall that Ŝn is a quotient of S̃n by Λn. We denote the quotient map S̃n → Ŝn by f 7→ f̂ .

Lemma 3.6. Let f ∈ S̃n. Then f̂ ∈ Ŝn has finite order if and only if f is of constant slope.

Proof. Let N be the least common multiple of nf (C) for all C ∈ Cf . Then fN is a translation
element; that is, fN(i) = i + din for all i ∈ Z, where (di)i∈Z is some sequence of integers.
Explicitly, if i ∈ C then di = Nνf (C) ∈ Z. This implies the result. □

Let f ∈ S̃
(k)
n be c-reduced and of constant slope, and set d := gcd(k, n). By Corollary 2.20,

the arrows between different cycles of f do not cross. Therefore, for each cycle C ∈ Cf , we
have C = C + d as subsets of Z. Denoting by IC ⊂ Z/dZ the image of C under the map
Z 7→ Z/dZ, we get a partition I(f) = {IC | C ∈ Cf} of Z/dZ into cyclic intervals.2 It is
clear that I(f) is invariant under c-equivalence.

Proposition 3.7 ([Mar20, Proposition A]). Let f, f ′ ∈ S̃
(k)
n be c-reduced and of constant

slope. Then

f
c∼ f ′ if and only if I(f) = I(f ′).

We say that a cyclic composition α = (α1, α2, . . . , αm) is written in normal form if the
sequence (α1, α2, . . . , αm) is lexicographically maximal out of all sequences obtained by ro-
tating α, i.e., (αr, αr+1, . . . , αm, α1, . . . , αr−1) for r ∈ [m]. As in Definition 1.12, we associate
to α a partition I(α) = (I1, I2, . . . , Im) of Z/dZ (where d = α1 + α2 + · · · + αm) into cyclic
intervals given by I1 = [1, α1], I2 = [α1 + 1, α1 + α2], etc.
Note that if α = αf,ν then we have d = α1 + α2 + · · ·+ αm = gcd(k, n), and therefore we

have two partitions I(α) and I(f) of Z/dZ into cyclic intervals. These partitions are related
by a rotation σr of Z/dZ for some r; however, this rotation is only defined up to a symmetry
of I(α), i.e., up to σrot(α). (Here, rot(α) divides d.)

Definition 3.8. Let f ∈ S̃
(k)
n be c-reduced of constant slope ν = k/n, and let α := αf,ν be

written in normal form. The modular invariant µ(f) ∈ Z/ rot(α)Z is the unique element
such that σµ(f)(I(α)) = I(f).

Corollary 3.9. Let f, f ′ ∈ S̃
(k)
n be c-reduced and of constant slope ν = k/n. Then

f
c∼ f ′ if and only if (αf,ν , µ(f)) = (αf ′,ν , µ(f ′)).

2The case where f is a single cycle requires special care. As mentioned after Definition 1.12, we distinguish
between different cyclic intervals [j, j+d−1] of Z/dZ. Topologically, the standard arrow diagram of f (viewed
as a union of arrows) will be disconnected, and we choose I(f) := {[j, j+ d− 1]} for j ∈ Z/dZ such that the
points (j, 1) and (j − 1, 1) belong to different connected components.



20 PAVEL GALASHIN AND TERRENCE GEORGE

Proof. The =⇒ direction is clear since both αf,ν and µ(f) are invariant under c-equivalence.
Conversely, having αf,ν = αf ′,ν implies that I(f) and I(f ′) coincide up to cyclic shift, and
µ(f) = µ(f ′) guarantees that I(f) = I(f ′). The result then follows from Proposition 3.7. □

3.4. Finishing the proof. For f ∈ S̃n and ν ∈ νf , let f |ν := f |Cf,ν
. Thus, f |ν has constant

slope ν. If in addition f is c-reduced then by Corollary 2.22, so is f |ν . In this case, recall from
Definition 3.8 that the modular invariant µ(f |ν) is an element of Z/ rot(αf,ν)Z. By (1.1),
d(αf ) is defined as the greatest common divisor of the numbers d(αf,ν) over all ν ∈ νf .

Definition 3.10. For c-reduced f ∈ S̃n, define the modular invariant µ(f) ∈ Z/ d(αf )Z by

(3.2) µ(f) :=
∑
ν∈νf

µ(f |ν) mod d(αf ).

Lemma 3.11. Let f, f ′ ∈ S̃n be c-reduced. If f
c∼ f ′ then µ(f) = µ(f ′).

Proof. Suppose that f
si−→ f ′ for some i ∈ [n]. If νf (i) = νf (i + 1) = ν then we have

f |ν si−→ f ′|ν , so f |ν and f ′|ν are c-equivalent and thus by Corollary 3.9, we have µ(f |ν) =
µ(f ′|ν). Suppose now that νf (i) ̸= νf (i+ 1). If 0 < i < n then we have f |ν = f ′|ν and thus
µ(f |ν) = µ(f ′|ν).
It remains to consider the case i = n and νf (0) ̸= νf (1). Let ν0 := νf (0), ν1 := νf (1).

Since ν0 ̸= ν1, by the definition of f |ν0 in (2.1), we see that f ′|ν0 = σ(f |ν0) and f ′|ν1 =
σ−1(f |ν1). Here, σ(g) = ΛgΛ−1 is the rotation operator introduced in Section 2.1. Thus,
µ(f ′|ν0) = µ(f |ν0)+1 and µ(f ′|ν1) = µ(f |ν1)− 1, and the sum in (3.2) remains the same. □

We will need one more tool for working with ϵ-straight diagrams from Section 2.4. Fix

c-reduced f ∈ S̃n and small ϵ > 0. For x ∈ Str◦ϵ(f) such that Df (x) is c-reduced, recall from
Corollary 2.20 that Df (x) contains no crossings between distinct cycles of the same slope.

Definition 3.12. Let x ∈ Str◦ϵ(f) be c-reduced and let a := (aC)C∈Cf
be a family of real

numbers associated to the cycles of f . Consider a curve x(t), t ≥ 0, given for each i ∈ Z by
xi(t) = xi + taC , where C is the cycle containing i. Let T > 0 be such that for t ∈ [0, T ],
xi(t) ̸= xj(t) for any i ̸= j such that νf (i) = νf (j). In this case, we say that x′ := x(T ) is
obtained from x = x(0) by block-shifting.

In other words, block-shifting allows us to move the collections of points (xi)i∈C indepen-
dently for each cycle C, subject to the condition that two cycles of the same slope never
collide. It is clear that for ϵ sufficiently small, if x ∈ Str◦ϵ(f) is c-reduced and x′ ∈ Str◦ϵ(f) is
obtained from x by block-shifting then x′ is c-reduced and Df (x)→ Df (x

′).

Proof of Theorem 3.2. The =⇒ direction follows from Lemmas 3.1 and 3.11.

For the ⇐= direction, let f, f ′ ∈ Omin. Thus, f
′ = f0ff

−1
0 for some f0 ∈ S̃

(0)
n . Let x, x′ ∈

Str◦ϵ(f) be obtained from 1
n
id, 1

n
f0 ∈ L◦

n via Proposition 2.13 so that Df (
1
n
id)→ Df (x) and

Df ′( 1
n
id) = Df (

1
n
f0)→ Df (x

′).

Set h := gxfg
−1
x and h′ := gx′fg−1

x′ , where gx was defined after (2.2). We have f
c∼ h and

f ′ c∼ h′. Since f, f ′ are c-reduced, so are Df (x),Df (x
′) and h, h′. Since Ëf = Ëf ′ , and thus

Ëh = Ëh′ , we see that the partitions I(h|ν) and I(h′|ν) of Z/ df (ν)Z into cyclic intervals
differ by rotation for all ν ∈ νf . Our goal is to apply block-shifting to x with the aim of
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achieving I(h|ν) = I(h′|ν) for all ν ∈ νf . To do so, consider the following operation on the
partitions (I(h|ν))ν∈νf

:

(3.3) for some ν ̸= ν ′ in νf , replace I(h|ν) 7→ σ(I(h|ν)) and I(h|ν′) 7→ σ−1(I(h|ν′)).

We first explain how to obtain (3.3) via block-shifting.

Applying block-shifting to Df (x) corresponds to applying a sequence h
si1−→ h1

si2−→ · · · sil−→ h′

of c-equivalences. In order to control how each restriction h|ν changes under such opera-
tions, we need to distinguish between the cases ij = n and ij ̸= n as we did in the proof of
Lemma 3.11.

Recall the notion of the cutoff point from (2.2). Suppose that applying block-shifting to
x switches the positions of adjacent points xj and xk for some j, k. If the cutoff point of x is
between xj + d and xk + d for some d ∈ Z then the corresponding c-equivalence corresponds
to sn, otherwise it corresponds to si for i ∈ [n− 1].

Consider slopes ν ̸= ν ′ in νf . We may apply block-shifting to move Cf,ν (resp., Cf,ν′) to
the right (resp., left) so that no point in Im(x) passes through the cutoff point c of x, until
c is located in an interval of R \ Im(x) between a point of Cf,ν and a point of Cf,ν′ . We
may then shift Cf,ν (resp., Cf,ν′) further to the right (resp., left) until these two points swap
places. This corresponds to replacing h|ν with σ(h|ν) and h|ν′ with σ−1(h|ν′), which results
in applying (3.3) to I(h|ν) and I(h|ν′).

Recall that for ν ∈ νf , by the definition of rot(αf,ν), we have σrot(αf,ν)(I(h|ν)) = I(h|ν).
Let d := d(αf ) = gcd{αf,ν | ν ∈ νf}. Write d =

∑
ν′∈νf

aν′ rot(α
f,ν′) for some integers aν′ .

Then, for each fixed ν ∈ νf , we have (aν rot(α
f,ν) − d) +

∑
ν′ ̸=ν aν′ rot(α

f,ν′) = 0. Consider

a vector c ∈ Zνf with coordinates cν := aν rot(α
f,ν) − d and cν′ := aν′ rot(α

f,ν′) for ν ′ ̸= ν.
Since the coordinates of c sum up to zero, c may be written as a Z-linear combination of
vectors of the form eν1 −eν2 , where (eν′)ν′∈νf

is the standard basis of Zνf . We can therefore
use (3.3) to rotate each I(h|ν′), ν ′ ∈ νf , by the corresponding coefficient cν′ . The result of
this operation is

(3.4) replace I(h|ν) 7→ σ−d(I(h|ν)) and preserve I(h|ν′) for all ν ′ ̸= ν.

Fix ν ∈ νf . Applying (3.3), we can achieve I(h|ν′) = I(h′|ν′) for all ν ′ ̸= ν. Recall that

Ëh = Ëh′ , and thus µ(h) = µ(h′). We see that I(h|ν) and I(h′|ν) differ by rotation by a
multiple of d, so applying (3.4), we achieve I(h|ν) = I(h′|ν).

By definition, we have h = gxfg
−1
x and h′ = gx′fg−1

x′ . Thus, for r ∈ Z, we have σr(h) =
gx◦Λrσr(f)g−1

x◦Λr and σr(h′) = gx′◦Λrσr(f ′)g−1
x′◦Λr . As labeled point configurations, x and x◦Λr

differ by adding r to all labels. Thus, the cutoff point of x◦Λr is to the left of the cutoff point
of x, and there are precisely r points of Im(x) = Im(x◦Λr) between them. Assuming ϵ is small
enough, we can choose r such that the cutoff points of x◦Λr and x′◦Λr are not ϵ-close to any
point in Im(x◦Λr)∪ Im(x′ ◦Λr). We then replace h, h′, x, x′ with σr(h), σr(h′), x◦Λr, x′ ◦Λr,

respectively. Clearly, showing h
c∼ h′ is equivalent to showing σr(h)

c∼ σr(h′).
Applying block-shifting to x so that all points in Im(x) are far away from the cutoff point

of x results in a sequence of c-equivalences of the form h 7→ sihsi for i not equal to 0 modulo
n. Therefore such block-shifting preserves the condition that I(h|ν) = I(h′|ν). We apply
such block-shifting to both x and x′ so that for ν ̸= ν ′, no point in Cf,ν is ϵ-close to a point
in Cf,ν′ .
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By Proposition 3.7, we have h|ν c∼ h′|ν for all ν ∈ νf . Since h|ν and h′|ν are c-reduced,

they have no crossings between different cycles. Thus, each c-equivalence in h|ν c∼ h′|ν swaps
points xi and xj from the same cycle. Such points are ϵ-close together in x because the
arrows incident to them form a crossing and have slopes ϵ-close to ν. Thus, the interval
between xi and xj contains neither the cutoff point of x nor any point of Cf,ν′ for ν

′ ̸= ν. It
cannot contain any point of Cf,ν because xi and xj are adjacent in h|ν . We can therefore lift

the c-equivalence h|ν c∼ h′|ν to h and assume that h|ν = h′|ν for all ν ∈ νf . Thus, the only
difference between h and h′ is the relative ordering of the blocks of ϵ-close points in x, x′

corresponding to the different slopes. Applying further block-shifting, we can permute such
blocks until their orders coincide, which gives the desired c-equivalence h

c∼ h′. □

4. Plabic graphs and triple-crossing diagrams

We discuss the properties of bipartite graphs embedded in T and explain how to re-
cast them in the equivalent languages of plabic graphs [Pos06] and triple-crossing dia-
grams [Thu17].

4.1. Triple-crossing diagrams in the disk. The results of this section were independently
discovered by [Pos06] and [Thu17]. We state the results in terms of Thurston’s notion of
triple-crossing diagrams.

Definition 4.1. A triple-crossing diagram D in the disk D := [0, 1]2 is a smooth immersion
of a disjoint union of oriented circles and closed intervals into D, defined up to isotopy. The
image of a connected component is called a strand. The image of a circle is called a loop
and the image of a closed interval is called an arc. The immersion is required to satisfy the
following conditions:

(1) Three strands cross at each intersection point. We call these intersection points triple
crossings.

(2) The endpoints of the arcs are distinct points on the boundary of D, and there are no
other points of D on the boundary of D.

(3) The orientations of the strands induce consistent orientations on the boundaries of
the faces of D.

Here, a face ofD is a connected component of D\D. Property (3) implies that around every
triple crossing, the orientations of strands alternate in and out, and that the orientations of
the end points alternate in and out along the boundary of D. If D has n arcs, then it has
2n boundary points, and the connectivity of the arcs induces a matching of the in-boundary
points with the out-boundary points, called the trip permutation in [Pos06].

Definition 4.2. A triple-crossing diagram D in the disk D is said to be reduced if it has
the fewest number of triple crossings among all triple-crossing diagrams with the same trip
permutation.

Definition 4.3. Two triple-crossing diagrams are said to be move-equivalent if they are
related by move (M1)′ in Figure 11. A triple-crossing diagram D is called move-reduced if it
is not move-equivalent to a triple-crossing diagram D′ to which one of the reduction moves
(R1)′−(R2)′ can be applied.

Remark 4.4. Postnikov’s reduction move (R1)′ in Figure 11 differs from Thurston’s 1 −
0 move (see Figure 16). Postnikov’s move will be more important for our eventual goal
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←→ −→ −→

(M1)′. (R1)′. (R2)′.

Figure 11. Equivalence move (M1)′ and reduction moves (R1)′−(R2)′ for
triple-crossing diagrams. Each move has two possible strand orientations.
(R2)′ removes a strand that is a simple loop.

of understanding the behavior of the dimer model under taking limits, since it preserves
dimer partition functions (cf. [Pos06, Theorem 12.1]). On the other hand, Thurston’s
move preserves the trip permutation which allows for inductive arguments; e.g., in the proof
of Theorem 1.5.. It also appears naturally in connection with double affine permutations
(see Section 6.2 and Remark 6.2).

A monogon in D is a strand with a self-intersection. A parallel bigon in D is a pair of
strands with two intersection points x ̸= y, with both strands oriented from x to y.

Theorem 4.5 ([Pos06, Theorem 13.2 and Lemma 13.6] and [Thu17, Theorem 7]). Let D be
a triple-crossing diagram in D. The following are equivalent.

(1) D is move-reduced;
(2) D is reduced;
(3) D contains no loops, monogons, or parallel bigons.

Theorem 4.6 ([Pos06, Corollary 14.7] and [Thu17, Theorem 3]). All n! matchings of in-
and out-boundary points are realizable as trip permutations of move-reduced triple-crossing
diagrams.

Theorem 4.7 ([Pos06, Theorem 13.4] and [Thu17, Theorem 5]). Any two move-reduced
triple-crossing diagrams with the same trip permutation are move-equivalent.

Each pair of in- and out-endpoints in the matching divides the boundary of D into two
intervals. Suppose that I is a minimal such interval with respect to inclusion. We say that
a strand S whose endpoints are the endpoints of I is boundary-parallel if there are no triple
crossings within the region between S and I.

Proposition 4.8 ([Pos06, Proof of Theorem 13.4 and Figure 13.4] and [Thu17, Lemma 12]).
Suppose I is an inclusion-minimal interval of the boundary matching of a move-reduced triple-
crossing diagram D, and let S be the strand in D whose endpoints are the endpoints of I.
Then, D is move-equivalent to a triple-crossing diagram D′ in which S is boundary-parallel.

4.2. Plabic graphs and triple-crossing diagrams on the torus. A plabic graph Γ =
(B ⊔W,E) on a torus T is a (finite) graph embedded in T such that:

(1) The vertices of Γ are colored black or white. The set of black vertices (resp., white
vertices) is denoted by B (resp., W ).

(2) The set of edges of Γ is denoted by E. Each edge is incident to two vertices of
opposite colors or incident to two white vertices.

(3) The black vertices are trivalent.
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(a) Black vertex (degree-three). (b) White vertex (arbitrary degree).

Figure 12. The procedure to convert plabic graphs into triple-crossing dia-
grams and vice versa.

We identify plabic graphs that are related by contracting an edge incident to two distinct
white vertices into a single white vertex. Therefore, we can assume that each white-white
edge is a loop based at a white vertex.

Remark 4.9. The term plabic graph was originally introduced to denote planar bicolored
graphs [Pos06]. We still use it for graphs embedded on a torus, with the main emphasis on
the properties that such graphs (i) are drawn on T without self-intersections, and (ii) are
bicolored but not necessarily bipartite. Our definition of a plabic graph is more restrictive
than that of [Pos06]. Such plabic graphs were previously studied under the name white-
partite [GPW22, Definition 7.14] or black-trivalent [Gal21, Definition 8.1, Remark 8.2].

Definition 4.10. A triple-crossing diagram D on the torus T is a smooth immersion of a
disjoint union of oriented circles into T. The image of a circle is called a strand, and the
set of strands of D is denoted S(D). The immersion is required to satisfy the following
conditions:

(1) Three strands cross at each intersection point. We call these intersection points triple
crossings.

(2) The orientations of the strands induce consistent orientations on the boundaries of
the faces of D.

Similarly to Definition 4.1, a face ofD is a connected component of T\D. The property (2)
implies that around every triple crossing, the orientations of the strands alternate in and
out. (However, the converse need not hold if D has a non-contractible face.) Each strand S
in D determines a homology class [S] ∈ H1(T,Z) ∼= Z2.

Lemma 4.11. The sum of the homology classes of all strands is 0 in H1(T,Z).
Proof. LetR+ (resp., R−) denote the union of the faces ofD such that the induced orientation
is counterclockwise (resp., clockwise). Then, by property (2), we have that

∑
S∈S(D) S =

∂R+ = −∂R− as 1-cycles in T, and R+ ∪R− = T. Therefore,

2
∑

S∈S(D)

[S] = [∂R+]− [∂R−] = [∂T] = 0. □

Remark 4.12. A triple-crossing diagram can be converted into a plabic graph and vice versa
using the local procedure shown in Figure 12. When converting a triple-crossing diagram into
a plabic graph, the ambiguity in the third case in Figure 12(b) is irrelevant since we identify
plabic graphs related by contracting white-white edges incident to distinct white vertices.
The notions of move-reduced and move-equivalent plabic graphs are given by Definition 4.3.

Remark 4.13. If Γ is a bipartite graph in T with all black vertices of degree at least
three, one can convert Γ into a plabic graph by applying a sequence of black uncontraction
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moves (M2). When Γ has black vertices of degree zero, one, or two,3 extra care needs to be
taken; see Appendix A. Conversely, any plabic graph can be converted into a bipartite graph
by placing a black vertex of degree two in the middle of each white-white edge.

The notions of weakly/strongly decorated Newton polygons and modular invariants intro-
duced in Section 1.3 for bipartite graphs extend to plabic graphs in an obvious way. Using
Remark 4.12, we can transfer them to triple-crossing diagrams.

In what follows, we will prove the versions of our main results translated into the language
of triple-crossing diagrams and plabic graphs. The proof for bipartite graphs follows from
the results in Appendix A. For instance, in Section 6.3, we will prove the following version
of Theorem 1.5 and show that it implies Theorem 1.5 in Appendix A.1.

Theorem 4.14. Let D be a triple-crossing diagram with weakly decorated polygon Ṅ =
(N,λ). Assume that N is not a single point. The following are equivalent.

(1) D is move-reduced;
(2) D has no connected components that are contractible in T and contains 2Area(N) +

exc(λ) triple crossings.

Similarly to Remark 1.8, 2Area(N) + exc(λ) is the minimal possible number of triple cross-
ings for a triple-crossing diagram with weakly decorated Newton polygon (N,λ).

Let π : R2 → T denote the universal covering map. The following result will be proved
in Section 6.4.

Proposition 4.15. Let D be a move-reduced triple-crossing diagram with Newton polygon N .

(1) The preimage D̃ of D under π contains no closed loops, and any lift S̃ of a strand
S ∈ S(D) does not intersect itself;

(2) Any strand S ∈ S(D) intersects itself |[S]|Z − 1 times;
(3) Any two distinct parallel strands S, S ′ ∈ S(D) do not intersect, and there is no face

of D that contains portions of both strands in its boundary.

By part (3) of Proposition 4.15, there is a natural cyclic order on each set of parallel
strands, so the strongly decorated Newton polygon N̈ is well-defined.

5. Reduction to the cylinder

The goal of this section is to prove the triple-crossing diagram version of Theorem 1.16.
Consider a move-reduced triple-crossing diagram D on the torus T. Let D be a fundamental
rectangle for T, and let u, d, l, r denote the up, down, left and right sides of D, respectively.
Identifying the u and d sides, we get a cylinder A, and further identifying the l and r sides,
we get a torus T. We have quotient maps D→ A→ T. The images of the u and d sides in
A or in T coincide and are referred to as the u− d side. Similarly, the images of the l and r
sides in T are referred to as the l − r side.

We say that triple-crossing diagrams D and D′ are isotopic in T if there is an ambient
isotopy of T taking D to D′. When applying such isotopies, we fix the fundamental rectangle
D. Using an isotopy in T if necessary, we assume that the intersections of strands with the
sides of D are transverse. A strand S with homology class (i, j) must intersect the l− r side
at least i times and the u− d side at least j times. The preimage of a strand under the map
A→ T is either a union of arcs with endpoints on the boundary of A or a closed loop in A.

3This applies especially to the case of a degree-two black vertex connected to the same white vertex by
both edges.
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−→ −→ −→

(a) Move (P). (b) Move (T).

Figure 13. The move (P), pushing a boundary-parallel strand past the d-
side of D removing the intersection points with the d-side, and the move (T),
interchanging the relative order of the endpoints of the red and blue strands
along the d-side of D. thereby removing the triangular region bounded by the
strands and the d-side of D.

5.1. Pushing strands through the boundary.

Lemma 5.1. Suppose we have a strand S in D with both endpoints on a side s of D. Then,
using moves and isotopy in T, we can remove the endpoints of S in s without increasing the
number of intersections of any other strands with the boundary of D.

Proof. Let I denote the interval in s between the endpoints of S. Suppose I is minimal with
respect to inclusion among all intervals on the boundary of D between endpoints of strands.
Using Proposition 4.8, we make S boundary-parallel, and then apply an isotopy in T pushing
the strand S past the s-side of D (Figure 13(a)).

If I is not minimal, we use induction on the number of intervals contained in I. Suppose
I ′ is an inclusion-minimal interval contained in I. Using the above procedure, we can remove
the endpoints of I ′ and thereby reduce the number of intervals contained in I. □

Definition 5.2. We call the above procedure move (P); see Figure 13(a).

Lemma 5.3 ([GK13, Figure 12]). Suppose we have a pair of strands in D that have con-
secutive in- or out-endpoints on a side of D, and moreover, suppose that these two strands
cross in D. Then, the relative order of the two endpoints along s can be reversed using moves
and isotopy in T without increasing the number of intersections of any other strands with
the boundary of D.

We remove the consecutiveness assumption from Lemma 5.3.

Lemma 5.4. Suppose we have a pair (S, S ′) of strands with endpoints on a side s of D with
the same orientation (i.e., both in or both out), and suppose that S, S ′ cross in D. Then, the
relative order of the endpoints of S, S ′ in s can be reversed using moves and isotopy in T,
thereby removing the triangular region bounded by S, S ′ and the side s, without increasing
the number of intersections of any other strands with the boundary of D.

Proof. Assume without loss of generality that both S, S ′ have an out-endpoint in s. Let I
be the interval in s between the endpoints of S, S ′. Use move (P) to remove any strands
that have both endpoints in I. Then, any strand with an out-endpoint in I must cross at
least one of S, S ′. Let ℓ be the number of crossings formed by pairs of strands having an
out-endpoint in I. Repeatedly using Lemma 5.3, we can decrease ℓ until it becomes equal
to 1 and use Lemma 5.3 once more to swap the endpoints of S, S ′. □

Definition 5.5. We call the procedure in Lemma 5.4 move (T); see Figure 13(b).
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5.2. Affine matchings. Fix n ≥ 1. Consider an infinite vertical strip S with points labeled

(5.1) . . . , A0, A1, A1, A2, A2, . . . and . . . , B0, B1, B1, B2, B2, . . .

on the left and the right boundary of S from bottom to top, so that the points Ai, Bi are
at the same height, and the points Ai, Bi are at the same height, for each i ∈ Z. Let
A := {Ai | i ∈ Z}, A := {Ai | i ∈ Z}, B := {Bi | i ∈ Z}, B := {Ai | i ∈ Z}. Let
Xi + n := Xi+n and Xi + n := Xi+n for X ∈ {A,B} and i ∈ Z.

Definition 5.6. An affine matching with period n is a bijection π : A ⊔ B → A ⊔ B such
that π(Ai+n) = π(Ai) + n and π(Bi+n) = π(Bi) + n for all i ∈ Z.

This notion is closely related to the classical notion of affine permutations discussed in
Section 2.1. An affine matching is represented by drawing an arrow from x to π(x) inside S
for all x ∈ A ⊔B.
A triple-crossing diagram D in T gives rise to an affine matching πD as follows. Let D

be a fundamental rectangle. Using an SL2(Z) transformation, we can assume that there
are no strands with homology classes in {0} × Z other than zero-homology loops. Let n
denote half the number of intersection points of strands with the l − r side of D (so there
are 2n endpoints of strands on the l − r side of D, half of which are oriented in and half of
which are oriented out). Let S denote the infinite vertical strip that is the universal cover
of A. Then, S consists of Z-many copies of D glued along the u − d sides, which we label
. . . ,D−1,D0,D1, . . . from bottom to top. Applying an isotopy in T, we may assume that the
bottom-most intersection point of a strand with the left side of D is oriented in. Label the
intersection points of strands with the boundary of S as in (5.1). Thus, the points in A ⊔B
are in-endpoints and the points in A⊔B are out-endpoints. The connectivity of strands in S
determines an affine matching πD with period n, which, moreover, has total signed number
of crossings through any horizontal line equal to 0 (since the total homology of all strands
is 0 by Lemma 4.11).

Remark 5.7. Each strand S in S determines a word wS in the alphabet {u, d, l, r} whose
letters from left to right record the crossings of S with the sides of D as we move along the
strand. Using move (P), we can assume that there are no occurrences of ud or du in wS;
thus, we have wS = xykz for some x, z ∈ {l, r}, y ∈ {u, d}, and k ≥ 0. For a strand S such
that wS = xykz, we denote by S1, . . . , Sk+1 the corresponding strands in D.

Lemma 5.8. If the strands S and T emanating from Ai and Ai+1 cross in S, then we
can swap their endpoints Ai and Ai+1 using moves and isotopy in T without increasing the
number of intersections of any other stands with the boundary of A.

Proof. By translating the fundamental rectangle, we can assume that i = 1. Without loss
of generality, we can assume that wS = rukz where k ≥ 0 and z ∈ {l, r}. If wT = rr or
wT = rdv for some word v, then the segments S1 and T1 cross in D and we can use move
(T). Suppose wT = rumz with m ≥ 0 and z ∈ {l, r}. Consider a crossing of S and T in S. If
this crossing belongs to Sj then it must also belong to Tj. Let j ≥ 1 be the minimal index
such that Sj crosses Tj. If j ≥ 2, then applying move (T) at the u− d side, we can swap the
bottom endpoints of Sj and Tj so that the strands Sj−1, Tj−1 would cross. We continue this
process until j = 1 and apply move (T) at the l − r side. □

5.3. Proof of Theorem 1.16. We are now ready to prove Theorem 1.16.
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(a) Case (1), k = 1. (b) Case (2), k = 0. (c) Case (2), k = 2.

Figure 14. The cases in the proof of Theorem 1.16; see Section 5.3.

Lemma 5.9. The number of intersections of strands in D with the sides of A can be made
either the minimum possible (i.e., equal to

∑
S∈S(D) |i|, where [S] = (i, j)) or equal to 2 using

moves and isotopy in T.

Proof. Consider the affine matching πD with period n equal to half the number of intersection
points of strands with the l − r side of D and consider a strand S from Ai to Aj with the
smallest value of dist(Ai, Aj). Assume i < j. By minimality of dist(Ai, Aj), the strand T
emanating from Ai+1 must cross the strand S. By Lemma 5.8, we can swap the endpoints
Ai and Ai+1, decreasing dist(Ai, Aj). Eventually, we force dist(Ai, Aj) to be less than the
height of D, in which case we apply move (P) and decrease n. We proceed until either n = 1
or when there are no arcs from Ai to Aj, in which case there will be also no arcs from Bi to
Bj (for any i, j ∈ Z). □

We now study the case when n = 1. Since the total signed number of crossings through
any horizontal line is equal to 0, we have either:

(1) πD(A1) = Bk+1 and πD(B1) = A−k+1 for some k ∈ Z; or
(2) πD(A1) = Ak+1 and πD(B1) = B−k+1 for some k ∈ Z.

See Figure 14. If πD satisfies (1), then the number of intersections of strands with the sides of
A is minimal and equal to 2. Suppose that πD satisfies (2). If k ∈ {0,−1}, we can use move
(P) to remove the two intersection points, so the number of intersections of strands with
sides of A is minimal and equal to 0. However, if k /∈ {0,−1}, the number of intersections
of strands with the sides of A is not minimal (since we have

∑
S∈S(D) |i| = 0), and we call

such a triple-crossing diagram exceptional. In this case, D consists of a single strand S in T
that is a zero-homology loop (see Figure 4 for the associated bipartite graph when k = 1).
It is not hard to see that the strand S is simple, that is, lifts to a non self-intersecting closed
curve in R2. This is case (i) of Theorem 1.16. In order to complete the proof, we need to
show that in this case, the associated bipartite graph Γ has no perfect matchings.

Proposition 5.10. Let Γ be a move-reduced bipartite graph in T. Suppose that Γ has a
single strand which is a simple zero-homology loop. Then Γ has a different number of black
and white vertices, and, in particular, has no perfect matchings.

Proof. Given a closed immersed curve ρ : S1 → R2 with non-vanishing differential, we let
wind(ρ) ∈ Z denote its winding number, which is the number counterclockwise turns made by
the tangent vector of ρ. For a collection ρ of such curves such that no three curves intersect
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at the same point, we let wind(ρ) :=
∑

ρ∈ρwind(ρ) denote their total winding number. One

can check that the total winding number wind(ρ) is invariant under the skein relation

(5.2) → .

Let Γ̃ be the lift of Γ to the universal cover R2 of T = R2/Z2. Let S be the unique strand of
Γ. We apply a small perturbation to S so that each triple crossing is replaced by three double
crossings arranged in a small counterclockwise cycle around the corresponding black vertex
of Γ. After this perturbation, each white vertex of Γ is surrounded by a clockwise cycle of
strands, and the strand directions alternate around each face of Γ; see [Pos06, Lemma 14.4].
Let S̃ be some lift of S to R2. Thus, S̃ is a simple closed curve, and therefore wind(S̃) = ±1,
depending on whether S̃ is oriented counterclockwise or clockwise. Any two lifts of S differ by
a shift in Z2. Let N ≫ 1 be a large positive integer, and let ρ be the collection of all Z2-shifts
of S̃ that are contained inside the square [0, N ]2 ⊂ R2. Because S̃ has bounded size, there
are at least cN2 such shifts, for some fixed constant c > 0, and therefore |wind(ρ)| ≥ cN2.
On the other hand, resolving all crossings in ρ using the skein relation (5.2), we obtain a
collection ρ′ of simple closed curves satisfying wind(ρ) = wind(ρ′). Each of these curves
will contain a single vertex of Γ̃ inside of it. Moreover, if the vertex of Γ̃ inside ρ′ ∈ ρ′ is
black (resp., white), then ρ′ is oriented counterclockwise (resp., clockwise). Therefore, the
difference between the numbers of black and white vertices of Γ̃ contained inside [0, N ]2 is
of size at least cN2. This implies that Γ must have a different number of black and white
vertices: otherwise, the difference between the numbers of black and white vertices of Γ̃
contained inside [0, N ]2 would be at most linear in N . □

6. Relating affine permutations to bipartite graphs on a torus

The goal of this section is to apply the results of Sections 2 and 3 to bipartite graphs
embedded in T and to finish the proof of our main results, Theorems 1.5 and 1.13.

6.1. The double affine symmetric group. The double affine symmetric group S̈n is gen-
erated by S ⊔ S̄ ⊔ {Λ}, where S := {si | i ∈ Z/nZ} and S̄ := {si | i ∈ Z/nZ}, subject to the
relations

sisi+1si = si+1sisi+1, Λsi+1 = siΛ, s2i = 1, sisj = sjsi if |i− j| > 1,

sisi+1si = si+1sisi+1, Λsi+1 = siΛ, s2
i
= 1, sisj = sjsi if |i− j| > 1,(6.1)

Λn = 1, sisj = sjsi.

In other words, we have an isomorphism S̈n
∼= (S̃

(0)
n × S̃

(0)
n ) ⋊ ⟨Λ⟩/⟨Λn⟩, where Λ acts

on each copy of S̃
(0)
n by conjugation. Any element w ∈ S̈n can be written as a product

w = si1si2 · · · silΛksjmsjm−1
· · · sj1 for some k ∈ {0, 1, . . . , n − 1} and l,m ≥ 0. If l + m is

minimal among all such ways of writing w as a product, then si1si2 · · · silΛksjmsjm−1
· · · sj1

is called a reduced expression for w, and l +m is called the length of w and denoted ℓ(w).
Note that

f := si1si2 · · · silΛk and f := sn−j1sn−j2 · · · sn−jmΛ
k

are then reduced expressions for affine permutations f, f ∈ S̃n. We denote ϕ(w) := (f, f)
and call (f, f) the pair of affine permutations associated to w. We have ℓ(w) = ℓ(f) + ℓ(f).
We explain the reasoning behind the formula for f in Remark 6.3.
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Figure 15. Plabic graphs and triple-crossing diagrams in A associated to
generators.

−→

Figure 16. (R1)′′ Thurston’s 1− 0 move.

Remark 6.1. For any k ∈ Z and f, f ∈ S̃
(k)
n , there exists w ∈ S̈n satisfying ϕ(w) = (f, f).

6.2. Relating triple-crossing diagrams in A to double affine permutations. Let w be
a double affine permutation and let w1w2 · · ·wl be an expression for w, where wi ∈ S⊔S̄⊔{Λ}.
Following Fock and Marshakov [FM16], we associate to the expression w1w2 · · ·wl a triple-
crossing diagram in A as follows. Each generator s ∈ S⊔ S̄⊔{Λ} is assigned a triple-crossing
diagram D(s) in A as shown in Figure 15. The triple-crossing diagram D(w1w2 · · ·wl) for the
expression w1w2 · · ·wl is obtained by concatenating the diagrams D(w1), D(w2), . . . , D(wl)
from left to right, so that the right boundary of D(wi) is glued to the left boundary of
D(wi+1) for i ∈ [l − 1]. Further gluing the right boundary of D(wl) to the left boundary of
D(w1), we obtain a triple-crossing diagram in T. The corresponding plabic graph in T is
called an affine plabic fence. As explained in [FM16, Appendix D], each relation in (6.1) can
be realized using isotopy and moves on the corresponding triple-crossing diagrams, except
for the relations s2i = 1 and s2

i
= 1, which are realized using Thurston’s 1 − 0 move (R1)′′

(Figure 16). Note that the left-hand side of (R1)′′ is the same as (R1)′ (but the right-hand
side is not), and therefore a triple-crossing diagram D is move-reduced if and only if it is
not move-equivalent to a triple-crossing diagram D′ to which either (R1)′′ or (R2)′ can be
applied.

Remark 6.2. Postnikov’s reduction (R1)′ leads to the relations s2i = si and s2
i
= si of the

0-Hecke monoid.
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Ai+1

Ai+1

Ai

Ai+1

Ai+1

Ai

−→

Figure 17. Uncrossing a triple crossing near the left boundary of A (dashed).

Remark 6.3. Rotation by 180 degrees acts on the triple-crossing diagrams by

D(si) 7→ D(sn−i), D(si) 7→ D(sn−i), D(Λ) 7→ D(Λ),

and induces an antiautomorphism of S̈n sending si 7→ sn−i, si 7→ sn−i, and Λ 7→ Λ. We have

defined ϕ(w) = (f, f) so that rotation of D(w) by 180 degrees translates under ϕ into an

automorphism of S̃n × S̃n sending (f, f) 7→ (f, f).

Lemma 6.4. Suppose D is a move-reduced triple-crossing diagram in T which is not a
single strand that is a simple zero-homology loop. There is a double affine permutation
w = w(D) such that D is move-equivalent to D(w), and such that f, f are both c-reduced,
where ϕ(w) = (f, f).

Proof. Since D is not a single strand that is a simple zero-homology loop, after applying a
move-equivalence using Theorem 1.16, we may assume that the number of intersections of
strands in D with the sides of A is minimal and that there are no strands with homology
class in {0} × Z. Let π := πD denote the affine matching of D; cf. Section 5.2. Then, we
have π(A) = B and π(B) = A. As in Remark 5.7, for any strand S in D, the word wS is
given by wS = xykx for x ∈ {l, r} and y ∈ {u, d}.

We first show that S cannot intersect itself in A. Without loss of generality, assume
wS = rukr for k ≥ 0. If k = 0, S = S1 cannot intersect itself since D is move-reduced.
Let k > 0 and let S1, . . . , Sk+1 denote the corresponding strands in D in order as we move
along S so that S1 has word ru, S2, . . . , Sk have words uu and Sk+1 has word ur. Since D
is move-reduced, no Si has a self-intersection, so any self-intersection of S must be between
Si and Sj for i ̸= j. If j ̸= k + 1, using move (T) on the u − d side, we can make the
intersection to be between Si+1 and Sj+1. Therefore, applying move (T) repeatedly, we may
assume that the only intersections are between Sk+1 and some of the other strands. Then,
since S1, . . . , Sk do not cross, the endpoints of S1, . . . , Sk on the u-side of D appear in order
from left to right, so the endpoints of S2, . . . , Sk+1 on the d-side of D also appear in order
from left to right. If Sk+1 intersects Si, they form a parallel bigon contradicting that D is
move-reduced.

We construct w = w(D) by induction on the number of triple crossings in D. Suppose
D contains no triple crossings. Then, the affine matching is of the form π(Ai) = Bi+m and
π(Bi) = Ai−m for some m ∈ Z. We assign the double affine permutation w := Λm to D.
Suppose the number of triple crossings in D is nonzero. Since no strand has a self-

intersection, there must be three distinct strands in A at every triple crossing, so two of
them must have their in-endpoints on the same side of A. Any strand whose in-endpoint is
between them must cross at least one of them (since no strand starts and ends on the same
side of A), so there exists i ∈ [n] such that the strands S and T emanating respectively from
either Ai and Ai+1 or from Bi and Bi+1 cross in A. The proofs of Lemmas 5.4 and 5.8 show
that we can create a triple crossing between S1 and T1 near the boundary of A (i.e., such
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−→
S1

S2
S3

−→

(a) (b)

Figure 18. (a) Uncrossing the strands S1 (blue) and S2 (green), while the
strand S3 (red) is unaffected. (b) The uncrossing move applied to the two
strands participating in both triple crossings on the left-hand side of (M1)′.

that there are no other triple crossings in the triangular region bounded by S1, T1 and the
side of A containing their in-endpoints). Let D′ be the triple-crossing diagram in A obtained
by uncrossing this triple crossing (Figure 17). We let w := siw(D

′) (resp., w := w(D′)si) if
the two strands emanate from Ai and Ai+1 (resp., Bi and Bi+1).

Clearly, D(w) is move-equivalent to D, hence it is move-reduced. Let ϕ(w) = (f, f). We
show that f and f are c-reduced. Suppose not. By Theorem 2.3, there is a c-reduced pair

(f ′, f
′
) such that f → f ′ and f → f

′
, and we must have used either s2i = 1 or s2

i
= 1 at least

once. This implies that D(w) is not move-reduced, a contradiction. □

6.3. Proof of Theorem 4.14. (1) =⇒ (2): Suppose D is move-reduced. Since N is not a
point, by Lemma 6.4, D is move-equivalent to a triple-crossing diagram D(w), where w is a
double affine permutation. Therefore, D and D(w) have the same number of triple crossings.
By Lemma 2.18, the number of triple crossings in D(w) is ℓ(f) + ℓ(f) = Area(Z(Ef )) +

Area(Z(Ef )) + exc(λ), where ϕ(w) = (f, f). By (6.2) below, we have ℓ(f) + ℓ(f) =
2Area(N) + exc(λ). If D had a contractible connected component D′, then D′ must have a
loop strand. By Theorem 4.5, D′, and therefore D is not move-reduced.

For the converse implication, we will need the following result.

Lemma 6.5. Let D be a triple-crossing diagram with weakly decorated Newton polygon Ṅ . If
D is not move-reduced, then there is a move-reduced triple-crossing diagram D′ with weakly
decorated Newton polygon Ṅ containing strictly fewer triple crossings than D.

Proof. Recall the reduction move (R1)′′ shown in Figure 16. The move (R1)′′ preserves the
connectivity of the strands, and therefore does not change Ṅ . If D is not move-reduced,
then we can use moves (M1)′, (R1)′′ and (R2)′ to get a move-reduced D′ with weakly dec-
orated Newton polygon Ṅ . Since D has no contractible components, (M1)′ cannot create
contractible components, and therefore we must use (R1)′′ at least once before we can use
(R2)′. Since we decrease the number of triple crossings when we apply (R1)′′, D′ contains
strictly fewer triple crossings than D. □

(2) =⇒(1): Suppose that D has 2Area(N) + exc(λ) triple crossings and that D has no
contractible connected components. If D is not move-reduced, there is a move-reduced D′

with weakly decorated Newton polygon Ṅ with fewer than 2Area(N)+exc(λ) triple crossings
by Lemma 6.5, contradicting (1) =⇒ (2). □

6.4. Proof of Proposition 4.15. Let p be a triple-crossing at which three strands S1, S2, S3

meet. We call the variant of the skein relation shown in Figure 18(a) uncrossing S1 and S2

at p.
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Figure 19. There is no way to complete the red and blue strands so that
they do not cross without creating a self-intersection.

By Lemma 6.4, D is move-equivalent to a triple-crossing diagram D(w), where w ∈ S̈n for
some n and the associated affine permutations f, f are c-reduced.

To show part (1), suppose there is a closed loop S̃ in D̃. Then, the projection S := π(S̃)
of this closed loop is a strand with [S] = (0, 0). Since move-equivalence preserves homol-
ogy classes of strands, S becomes a zero-homology strand in D(w). Since every strand in
D(w) moves monotonously to the left or to the right, there are no zero-homology strands
in D(w), a contradiction. If D̃ contains a strand S̃ with a self-intersection, then uncross-
ing S := π(S̃) at the triple point with the self-intersection yields a triple-crossing diagram
with the same weakly decorated Newton polygon but with fewer triple crossings, contradict-
ing Theorem 4.14.

We now show part (2). By Corollary 2.20(1), part (2) is true for D(w). Suppose part (2)
is false for D. Since D is move-equivalent to D(w), there is an intermediate triple-crossing
diagram D′ for which part (2) is false, but upon applying (M1)′ to D′, it becomes true. Then
there is a strand S in D′ that intersects itself more than |[S]|Z− 1 times, but upon applying
(M1)′, the number of intersections becomes |[S]|Z − 1. Since (M1)′ only removes crossings
between the two anti-parallel strands T1 and T2 that cross on the left-hand side of (M1)′, T1

and T2 should both be portions of S. Upon uncrossing T1 and T2 at both the triple crossings
(see Figure 18(b)), the Newton polygon is unchanged, and the strand S splits into a loop
and at most two other strands, so 2Area(N) + exc(λ) can decrease by at most one, but the
number of triple crossings decreases by two, contradicting Theorem 4.14.

To show part (3), we will need the following lemma.

Lemma 6.6. Suppose S, S ′ ∈ S(D) are two distinct parallel strands that do not intersect.
Let R be a closed topological disk in T whose interior contains some portion of S and S ′.
Let a and b (resp., c and d) denote the in- and out-endpoints of S (resp., S ′) around the
boundary of R. Then, the cyclic order of the endpoints around the boundary of R cannot be
abcd or dcba.

Proof. Let D̃ denote the preimage of D in R2. Let R̃ be a lift of R in R2. Let S̃, S̃ ′ denote
the lifts of S, S ′ to D̃ that intersect R̃. Let N ≫ 1 be a large positive integer, and consider
a circle of radius N centered at R̃. Then, either S or S ′ has a self-intersection (Figure 19)
which contradicts part (1) of Proposition 4.15. □

Suppose there is a face F of D with portions of S, S ′ in its boundary. Recall from Defini-
tion 4.10 that the strands in D induce a consistent orientation around the boundary of F .
We let R be a disk that contains a portion of F together with parts of S and S ′, and get a
contradiction with Lemma 6.6.
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N Z(E+) Z(E−)

Figure 20. Proof of (6.2): the dashed line subdivides N into two polygons
whose areas are 1

2
Area(Z(E+)) and

1
2
Area(Z(E−)).

Finally, we prove the statement in part (3) that parallel strands do not intersect. Similarly
to part (2), by Corollary 2.20(2), part (3) is true for D(w). Therefore, there is a D′ move-
equivalent to D such that part (3) is false for D′, but upon applying (M1)′ to D′, it becomes
true. The two anti-parallel strands that cross on the left-hand side of (M1)′ should be
portions of S, S ′ respectively. Upon uncrossing S and S ′ at both triple crossings, the union
of S and S ′ becomes the union of a loop and a strand T with homology class [T ] = [S]+ [S ′].
Therefore, N is unchanged and 2Area(N) + exc(λ) decreases by one, but the number of
triple crossings decreases by two, again contradicting Theorem 4.14.

□

6.5. Proof of Proposition 1.11. Suppose N̈ = (N,α) is a strongly decorated Newton
polygon and µ ∈ Z/ d(α)Z. Recall from Section 3.2 that for e = (a, b) ∈ Z2, we denote
n(e) := a and k(e) := b, and ν(e) = k(e)/ n(e). Using an SL2(Z) transformation, we can
assume that n(e) ̸= 0 for all e ∈ E(N). We assign to N̈ the pair (Ë+, Ë−) of strongly
decorated vector configurations, consisting of edges of N oriented to the right and left,
respectively, as follows. We define:

(1) E+ := {e | e ∈ E(N), n(e) > 0} and α+ = (αe)e∈Ë+
; and

(2) E− := {−e | e ∈ E(N), n(e) < 0} and α− = (rev(αe))−e∈Ë−
, where for a cyclic com-

position α = (α1, α2, . . . , αm), rev(α) := (αm, αm−1, . . . , α1) is the cyclic composition
with the cyclic order reversed.

Similarly to Remark 6.3, we have rotated the vectors in E− by 180 degrees. We have the
following basic relation between the area of N and the areas of the zonotopes Z(E+), Z(E−):

(6.2) 2Area(N) = Area(Z(E+)) + Area(Z(E−)).

To see this, observe that the lower boundary of Z(E+) coincides with the lower boundary of
N (given by the vectors in E+), and the upper boundary of Z(E+) is obtained by rotating
its lower boundary by 180 degrees. A similar statement holds for Z(E−), from which the
result follows; see Figure 20.

Let f and f be a pair of c-reduced affine permutations with Ëf = Ë+ and Ëf = Ë− con-
structed as in Section 3.2. Observe that

∑
e∈E+

k(e) =
∑

e∈E−
k(e), and thus by Remark 6.1,

there exists w ∈ S̈n satisfying ϕ(w) = (f, f). By (6.2), the triple-crossing diagramD := D(w)
has the correct number of triple crossings, so it is move-reduced by Theorem 4.14. Let
Γ := Γ(D) be the associated bipartite graph (cf. Appendix A). By construction, N̈(Γ) = N̈ .

Finally, we show that Γ has a perfect matching. Let w = si1si2 · · · silΛksj1sj2 · · · sjm be a
reduced expression. Omitting all generators sik and sik such that the corresponding vertical
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s1 s3 s4 s3 s1 s4 Λ Λ s3

2

2

1

3

3
4

4

1

Figure 21. The triple-crossing diagram D(w) with strongly decorated New-
ton polygon N̈ = (N,α) from Example 6.7.

−2 −2

−1 −1
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3 3

4 4

s1 s3 s4s0 s3 s1 s4s0 s3s0Λ Λs1 s3 s4 s3 s1 s4 s3

−2 −2

−1 −1
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4 4

s1 s3 s4s0 s3 s1 s4s0 s2s0Λ Λs1 s3 s4 s3 s1 s4 s2

(2)

(2)

(2)

(a) Γ(w). (b) Γ(w′). (c) N̈(Γ(w)) = N̈(Γ(w′)).

Figure 22. Two plabic graphs Γ(w), Γ(w′) from Example 6.8 having the
same strongly decorated Newton polygons but different modular invariants.
According to Theorem 1.13, these graphs are not move-equivalent.

edge in Γ is traversed by the same strand in the opposite directions (i.e., yields a self-
intersection in D(w)), we get a triple-crossing diagram D′ with strongly decorated Newton
polygon (N,α′) satisfying (α′)e = (1, 1, . . . , 1) for all e ∈ E(N). By Theorem 4.14 and
part (2) of Proposition 4.15, D′ is move-reduced, so it is minimal in the sense of [GK13].
The corresponding bipartite graph Γ′ := Γ(D′) has a perfect matching by [GK13, Lemma
3.11], and since Γ′ is obtained from Γ by deleting a subset of edges, so does Γ. □

Example 6.7. Let N̈ = (N,α) be the strongly decorated Newton polygon with edges
e1 = (2, 0), e2 = (2, 2) and e3 = (−4,−2), and αe1 = αe2 = αe3 = (2) shown in Figure 22(c).
The strongly decorated vector configuration Ë+ and its ϵ-straight arrow diagram D(Ë+) are
shown in Figure 10(a–b). From D(Ë+), we find the reduced expression f = s1s3s4s3s1s4Λ

2.
Similarly, we have f = s1Λ

2, so that w = s1s3s4s3s1s4Λ
2s3. The corresponding triple-crossing

diagram D(w) is shown in Figure 21.

Example 6.8. Let w′ = s1s3s4s3s1s4Λ
2s2 be obtained from w in Example 6.7 by replacing

s3 with s2. The associated plabic4 graphs Γ(w),Γ(w′) shown in Figure 22 have the same
strongly decorated Newton polygons but different modular invariants in Z/ d(α)Z, where
d(α) = 2.

4Strictly speaking, the graphs shown in Figure 22 are not plabic in the language of Section 4.2 since they
have edges with both endpoints black. To convert them into plabic graphs, one has to add a degree two
white vertex in the middle of each such edge.
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←→ ←→ −→ −→

(M1b). (M2b−iii) Resplit move. (R1−iii). (R2w−iii).

Figure 23. Moves and reductions on graphs that correspond to moves
and reductions on triple-crossing diagrams. Under Γ 7→ D(Γ), (M1b) and
(M2b−iii) become (M1)′, and (R1−iii) and (R2w−iii) become (R1)′.

6.6. Proof of Theorem 1.13. We show first that two move-reduced graphs Γ,Γ′ are move-
equivalent if and only if

(N̈(Γ), µ(Γ)) = (N̈(Γ′), µ(Γ′)).

The =⇒ direction is clear, since both N̈ and µ are invariant under move-equivalence; see
Sections 1.4 and 1.5.

For the ⇐= direction, using Lemma 6.4, we assume that the triple-crossing diagram D
(resp., D′) associated to Γ (resp., Γ′) is of the formD(w) (resp., D(w′)) for some double affine

permutations w,w′. Let (f, f) (resp., (f ′, f
′
)) be the pair of affine permutations associated

to w (resp., w′). Let σ(w) = ΛwΛ−1 be the rotation operator, and let σ(Γ) be the bipartite
graph associated to the triple-crossing diagram D(σ(w)). Note that µ(σ(Γ)) = µ(Γ), but
µ(σ(f)) = µ(f) + 1 and µ(σ(f)) = µ(f) − 1. Therefore, replacing Γ with σµ(f ′)−µ(f)(Γ), we
can assume that µ(f) = µ(f ′).

We will show that there is an r ∈ Z such that σr(f)
c∼ f ′ and σr(f)

c∼ f
′
. Since N̈(Γ) =

N̈(Γ′) implies that Ëf = Ëf ′ and Ëf = Ë
f
′ , by Theorem 3.2, it suffices to show that there is

an r ∈ Z such that µ(σr(f)) = µ(f ′) and µ(σr(f)) = µ(f
′
), or equivalently, such that r ≡ 0

(mod d(αf )) and r ≡ µ(f) − µ(f
′
) (mod d(αf )). Note that d(α) = gcd(d(αf ), d(αf ))

and µ(Γ) ≡ µ(f) + µ(f) (mod d(α)). Since µ(Γ) = µ(Γ′) and µ(f) = µ(f ′), we have

µ(f)− µ(f
′
) ≡ 0 (mod d(α)). The existence of such an r follows from Lemma 6.9.

Lemma 6.9. Let d1, d2 be positive integers, and let d = gcd(d1, d2). Then, there exists r ∈ Z
such that r ≡ 0 (mod d1) and r ≡ d (mod d2).

Proof. Let x, y ∈ Z be such that xd1 + yd2 = d. Take r := xd1. □

Finally, we show that there are d(α) nonempty move-equivalence classes, i.e., that for
any µ ∈ Z/ d(α)Z, there is a move-reduced graph Γ with (N̈(Γ), µ(Γ)) = (N̈ , µ). In the
proof of Proposition 1.11, we constructed Γ with N̈(Γ) = N̈ as the graph associated to a
triple-crossing diagram D(w). Let (f, f) be the pair of affine permutations associated to w.
Let w′ be the double affine permutation associated to (σr(f), f) and let Γ′ be the bipartite
graph associated to the triple-crossing diagram D(w′). Then

(N̈(Γ′), µ(Γ′)) = (N̈(Γ), µ(Γ) + r),

so by varying r, we can get any value of the modular invariant.

Appendix A. From bipartite graphs to triple-crossing diagrams

The goal of this section is to give a relation (Lemmas A.3 and A.5) between bipartite
graphs and triple-crossing diagrams; cf. Remark 4.13. We will use these results to deduce
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−→ −→ −→ −→

(R1−ii) White-based (R2b). (R2w−ii). (R3).
loop reduction.

Figure 24. Moves and reductions on graphs that are not compatible with
triple-crossing diagrams. (R1−ii), (R2b) and (R3) contain black leaves. Both
sides of (R2w−ii) correspond to the same triple-crossing diagram.

Theorem 1.5 from Theorem 4.14. Unless otherwise stated, all graphs in this section are
bipartite.

Let (M1b) (resp., (M1w)) denote the version of (M1) with black (resp., white) triva-
lent interior vertices, and let (M2b) (resp., (M2w)) denote the version of (M2) contract-
ing/uncontracting black (resp., white) vertices. Note that (M1w) can be realized using
(M1b) and (M2b) — we uncontract all the black vertices using (M2b), apply (M1b) and
then contract using (M2b).

We say that Γ is (M2w)-reduced if contraction using (M2w) cannot be applied to Γ.

Lemma A.1. Two (M2w)-reduced graphs Γ and Γ′ are move-equivalent if and only if they
are related by (M1b) and (M2b). An (M2w)-reduced graph is move-reduced if and only if it is
not move-equivalent to an (M2w)-reduced graph to which one of (R1)–(R3) can be applied.

Proof. By inspection, we see that no move or reduction, except possibly (M2b), involves a
degree-two black vertex that can be contracted using (M2w). (Moves (R1) and (R2) might
have degree-two black vertices but they cannot be contracted using (M2w).) Applying (M2b)
with a degree-two black vertex is the same as applying (M2w). □

For the rest of this section, we assume that our graphs are (M2w)-reduced. A white-based
loop in Γ is a parallel edge in which the black vertex has degree two (see the left-hand side of
(R1−ii) in Figure 24). In (R1), if the black vertex has degree greater than three, then we can
uncontract using (M2b) to make it degree three, and denote this case of (R1) by (R1−iii).
Otherwise, we have a white-based loop and we denote this case by (R1−ii) (Figure 24).

Let (R2b) (resp., (R2w)) denote black (resp., white) leaf removal. If the white leaf in
(R2w) is incident to a black vertex of degree greater than three, we can uncontract the black
vertex using (M2b) to get a white leaf incident to a black vertex of degree three and call this
(R2w−iii). If we have a black vertex of degree two, we call it (R2w−ii) (Figure 24).

Let Γ be a graph in T. Use (R2b), (R2w−ii) and (R3) to remove all black leaves and white
leaves incident to degree-two black vertices. Use (M2b) to uncontract black vertices with
degree greater than three until every black vertex has degree either zero, two or three. We
call such a graph partially reduced. Remove isolated black vertices and omit all degree-two
black vertices, converting the two incident edges into a single edge to get a plabic graph. Use
the procedure in Figure 12 to obtain a triple-crossing diagram D(Γ). Under this procedure,
zig-zag paths in Γ become strands of D(Γ). The choices in applying (M2b) lead to move-
equivalent triple-crossing diagrams. Let (M2b−iii) denote the resplit move (Figure 23),
which consists of two applications of (M2b).

Lemma A.2. Two partially reduced graphs Γ and Γ′ are move-equivalent if and only if they
are related by (M1b) and (M2b−iii). A partially reduced graph Γ is move-reduced if and only
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−→ −→ −→ −→

(a) (b) (c) (d)

Figure 25. Reductions on triple-crossing diagrams that do not correspond to
reductions on graphs under D 7→ Γ(D). Here, (a) and (b) are the two versions
of (R2)′, and (c) and (d) the two versions of (R1)′′. In (d), we further contract
the degree-two black vertex to get an (M2w)-reduced graph.

if it is not move-equivalent to a partially reduced graph Γ′ to which either (R1−ii), (R1−iii)
or (R2w−iii) can be applied.

Proof. Since Γ is partially reduced, no black vertices involved in (M2b) have degree two. Any
applications of (M2b) involving black vertices of degree greater than three can be decomposed
into multiple applications of (M2b−iii).

Clearly, (M1b) preserves partial reducedness. Contracting/uncontracting using (M2b)
does not change whether any of the moves (R2b), (R2w−ii) or (R3) can be applied. There-
fore, if Γ is related to Γ′ using (M2b), then we can further apply (M2b) to make Γ′ partially
reduced. The reductions (R1−ii), (R1−iii) and (R2w−iii) are the only ones that can be
applied to a partially reduced graph. □

Conversely, we obtain a graph Γ(D) from a triple-crossing diagram D as follows. Use the
procedure in Figure 12 to obtain a plabic graph, contract any white-white edges incident to
distinct white vertices and place a black vertex at the midpoint of each white-white edge
to obtain a bipartite graph Γ(D). The different choices in applying Figure 12(b) all lead to
the same plabic graph when we contract any white-white edges incident to distinct white
vertices.

Note that Γ(D) is partially reduced and has no isolated black vertices. Therefore, Γ 7→
D(Γ) and D 7→ Γ(D) are inverse functions between partially reduced graphs without isolated
black vertices and triple-crossing diagrams.

Lemma A.3. The functions Γ 7→ D(Γ) and D 7→ Γ(D) between partially reduced graphs
without isolated black vertices and triple-crossing diagrams respect move-equivalence.

Proof. Under the correspondence, (M1)′ becomes either (M1b) or (M2b−iii), so the result
follows from Lemma A.2. □

Remark A.4. The functions Γ 7→ D(Γ) and D 7→ Γ(D) do not commute with reductions;
see Figures 24 and 25.

Lemma A.5. The function Γ 7→ D(Γ) is a bijection between move-equivalence classes of
move-reduced graphs without isolated vertices and move-equivalence classes of move-reduced
triple-crossing diagrams, with inverse D 7→ Γ(D).

Proof. If Γ is move-reduced and has no isolated black vertices, then it can be transformed
using (M2b) into a partially reduced graph. Therefore, move-equivalence classes of move-
reduced graphs without isolated black vertices are in bijection with move-equivalence classes
of move-reduced partially reduced graphs without isolated black vertices.
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By Lemma A.3, Γ 7→ D(Γ) is a bijection between move-equivalence classes of move-reduced
graphs and some subset T of move-equivalence classes of triple-crossing diagrams that we
need to identify.

Let Γ be move-reduced and partially reduced without isolated vertices. Γ has no white-
based loops; otherwise (R1−ii) can be applied. Since isolated loops in D := D(Γ) correspond
to isolated white vertices or white-based loops in Γ, D contains no isolated loops. Since (M1)′

cannot create isolated loops, D is move-reduced if and only if it is not move-equivalent to a
D′ to which (R1)′ can be applied. Under the functions Γ 7→ D(Γ) and D 7→ Γ(D), (R1−iii)
and (R2w−iii) become (R1)′ (Figure 23), so D is move-reduced by Lemma A.2. Therefore, T
is contained in the set of move-equivalence classes of move-reduced triple-crossing diagrams.

Let D be a move-reduced triple-crossing diagram, and let Γ := Γ(D). Since

(1) (R1−iii) and (R2w−iii) become (R1)′ (Figure 23);
(2) An isolated white vertex becomes the left-hand side of (R2)′ (Figure 25(a)); and
(3) The left-hand side of (R1−ii) becomes the left-hand side of (R2)′ (Figure 25(b)),

Γ has no isolated white vertices, and Γ is move-reduced by Lemma A.2. Therefore, T contains
the set of move-equivalence classes of move-reduced triple-crossing diagrams. □

A.1. Proof of Theorem 1.5. We need the following lemma.

Lemma A.6. Let Γ be a move-reduced graph without isolated vertices. Assume N(Γ) is not
a single point. The number of contractible faces of Γ is equal to the number of degree-three
black vertices of Γ.

Proof. If Γ is the affine plabic fence associated to Λk, then both numbers are zero. Each si
and si increases both numbers by one. Therefore, the result holds for affine plabic fences.
If Γ is move-reduced, then Γ is move-equivalent to the bipartite graph associated with an
affine plabic fence by Lemma 6.4 and Lemma A.5, and move-equivalence does not change
the number of contractible faces. □

If Γ and Γ′ are related by (M2w) or (M2b), then each of the conditions (1)−(2) holds
for Γ if and only if it holds for Γ′. Each of (1)−(2) imply that Γ is leafless. Therefore, we
can assume that Γ is partially reduced. Moreover, since Γ has a perfect matching, Γ has no
isolated vertices.

(1) =⇒ (2): Since Γ has a perfect matching, N is not a single point by Theorem 1.16.
The implication follows from Lemma A.5, Theorem 4.14 and Lemma A.6.

(2) =⇒ (1): Suppose N is a single point. Then, 2Area(N) + exc(λ) = 0 so Γ has no
contractible faces. Since (M1)–(M2) cannot create leaves or contractible faces, none of the
reductions (R1)–(R3) can be applied to any graph move-equivalent to Γ, so Γ is move-
reduced.

Assume N is not a single point. By Lemma A.2, Γ is not move-reduced if and only if it
is move-equivalent to a partially reduced Γ′′ to which either (R1−ii), (R1−iii) or (R2w−iii)
can be applied. Since Γ has no leaves and (M1)–(M2) cannot create leaves, either (R1−ii)
or (R1−iii) can be applied to Γ′. Let D := D(Γ) be the associated triple-crossing diagram.
Then, either (R1)′′ or (R2)′ can be applied to D′. We decrease the number of contractible
faces in Γ when we apply either reduction (see Figure 25 (b) and (c)). Transform D′ into a
move-reducedD′′ by further using (M1)′, (R1)′′ and (R2)′. The graph Γ′′ = Γ(D′′) has strictly
fewer contractible faces than Γ, no isolated vertices, and satisfies Ṅ(Γ′′) = Ṅ(Γ). Since N is
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not a single point, Γ′′ has 2Area(N)+exc(λ) contractible faces by Lemma A.5, Theorem 4.14
and Lemma A.6, a contradiction.
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